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David Makinson

THE PHENOMENOLOGY
OF SECOND-LEVEL INFERENCE:

PERFUMES IN THE DEDUCTIVE GARDEN

Abstract

We comment on certain features that second-level inference rules commonly used

in mathematical proof sometimes have, sometimes lack: suppositions, indirect-

ness, goal-simplification, goal-preservation and premise-preservation. The em-

phasis is on the roles of these features, which we call ‘perfumes’, in mathematical

practice rather than on the space of all formal possibilities, deployment in proof-

theory, or conventions for display in systems of natural deduction.

Keywords: Second-level inference, suppositions, indirect inference, goal simplifi-

cation, goal preservation, wlog, premise preservation.

1. Introduction

In logic, it is commonplace to distinguish between inferences of first and
second levels. In broad terms, a first-level inference passes from certain
statements serving as premises to a statement taken as conclusion. In
concise notation, it is of the type Γ ` γ, where γ is a statement and Γ is a
finite set of the same, with the sign ` indicating passage from one to the
other. A second-level inference, on the other hand infers the validity of an
entire argument from the validity of one or more other arguments. In the
same notation, it is of the form Γi ` γi(i ≤ n)/∆ ` δ where the slash marks
a step from the n subordinate inferences Γi ` γi on the left to the principal
one on the right. The former kind of inference can, of course, be regarded
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as the limiting case of the latter where n = 0, but here we will always be
considering the principle case that n ≥ 1.

Not only are these two levels formally distinct, but they also ‘smell’ quite
differently. One also senses differences within the second level; for exam-
ple, each of the rules of conditional proof (CP,→+), reductio ad absurdum
(RAA), disjunctive proof (DP,∨+), universal generalization (UG,∀+) and
existential instantiation (EI,∃−) has its own intuitive feel or, as we shall
say, its ‘perfume’. This article is about such perfumes, which can be de-
fined quite precisely. We will see how a second-level inference-rule may be
(or fail to be) suppositional, indirect, goal-simplifying, goal-preserving or
premise-preserving, in senses to be defined, discuss why these features can
be useful in practice, and draw attention to a connection with without loss
of generality (wlog) reasoning.

Some disclaimers may forestall misunderstanding. There are no theo-
rems, no philosophical messages or agenda. We are not interested in the
space of all mathematically possible forms of second-level proof, but with
steps that, arguably, one finds in everyday mathematical reasoning. Since
that proceeds in accord with classical logic, it is the only kind of logic
to concern us, not free, intuitionistic, relevance-sensitive, paraconsistent,
fuzzy or any other variety. Nor are we concerned with the various dis-
play systems that have been devised in textbook presentations of natural
deduction (see the overviews in e.g. [10], [3, chapter 2], [11]). The text
merely offers an organized review of folklore about inferential practice; in
the more pretentious language of our title, it is a foray in the phenomenol-
ogy of second-level inference.

As is well known, any second-level inference rule Γi ` γi(i ≤ n)/∆ ` δ
may equivalently be presented as what has been called a ‘split-level’ rule
∆; Γi ` γi(i ≤ n)/δ, where the premise-set ∆ of the principal inference is
moved to the left of the slash (cf. [8, chapter 10]). In the split-level version
the conclusion is thus a proposition δ (as in a first-level rule), which is
obtained from a set ∆ of propositions (again like the first level) that is,
however, accompanied by the inferences Γi ` γi (as for the second level).
Arguably, this is the form that corresponds most closely to inferential prac-
tice and to what is done in systems of natural deduction. The present text
could be written using either idiom; we have chosen the second-level one
because it is a little easier to read and more familiar to readers.

Throughout, we use the terms ‘proof’, ‘inference’ and ‘argument’ in-
terchangeably according to the whims of style; similarly with ‘subordinate



The Phenomenology of Second-Level Inference. . . 329

inference’ and ‘sub-proof’, ‘statement’ and ‘proposition’ (understood in a
broad sense, as possibly containing free variables), ‘supposition’, ‘assump-
tion’, and ‘hypothesis’, while recognizing that in other contexts it can be
useful, even essential, to make distinctions between them. Table 1, at the
end of the paper, keeps track of the discussion.

2. Suppositions

Do second-level proofs have anything in common apart from the general
type Γi ` γi(i ≤ n)/∆ ` δ mentioned above? It is tempting to say that, in
every instance, each of the subordinate inferences Γi ` γi makes a suppo-
sition (also called assumption or hypothesis); in other words, that for all
i ≤ n, there is a statement α with α ∈ Γi but α 6∈ ∆.

That is almost true but, notoriously, not quite. There is a very im-
portant form of second-level inference, with just one subordinate inference,
that makes no supposition, namely universal generalization (UG,∀+):

UG : Γ ` γ/Γ ` ∀x(γ), when x has no free occurrences in Γ.

Here the premise-set Γ of the unique subordinate inference Γ ` γ is exactly
the same as that of the principal inference Γ ` ∀x(γ), nothing more, nothing
less.

From a heuristic point of view, the presence of a supposition in a subor-
dinate argument gives it one more item to grab and deploy, so the absence
of a supposition means that it foregoes that bonus. But UG has another
feature that tends to compensate: it is ‘goal-simplifying’, in the sense that
the conclusion γ of its subordinate argument is simpler, in its logical struc-
ture, than the conclusion ∀x(γ) of the principal argument. We will return
to goal-simplification in section 4.

All other rules for logical connectives in Table 1 are suppositional, as
can be seen by inspection. For disjunctive proof,

DP,∨− : Γ ∪ {α} ` γ; Γ ∪ {β} ` γ/Γ ∪ {α ∨ β} ` γ,

the suppositions are α, β. Another form of disjunctive proof widely used
in informal practice, sometimes called proof by cases, is DPx : Γ, α ` γ;
Γ,¬α ` γ/Γ ` γ, where the suppositions are α,¬α. For existential instan-
tiation, the supposition is α:
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EI, ∃− : Γ ∪ {α} ` γ/Γ ∪ {∃x(α)} ` γ, when x has no free
occurrences in Γ, γ.

For the two forms of conditional proof in Table 1, the suppositions are
respectively α,¬γ:

CPa,→+: Γ ∪ {α} ` γ/Γ ` α→ γ

CPb,→+: Γ ∪ {¬γ} ` ¬α/Γ ` α→ γ.

For reductio ad absurdum, the supposition is ¬α in each of the two subor-
dinate arguments of RAAa, as also in the unique subordinate argument of
RAAb:

RAAa : Γ ∪ {¬α} ` γ; Γ ∪ {¬α} ` ¬γ/Γ ` α

RAAb : Γ ∪ {¬α} ` α/Γ ` α.

We have distinguished between two forms of CP , and two forms of RAA,
because they disagree on other perfumes to be considered later. On the
other hand, we do not distinguish between the above forms of RAA and
those obtained by inverting the positive and negative occurrences of α. Al-
though the latter distinction is important for intuitionistic logic, we remain
in the classical domain and it turns out that the inverted forms agree with
the above ones on all perfumes considered.

What about connective-free (sometimes called structural) rules? Re-
flexivity is connective-free, but first-degree, while both monotony and cu-
mulative transitivity are second-degree:

Monotony : Γ ` γ/Γ ∪∆ ` γ,

CT : Γ ` γ; Γ ∪ {γ} ` δ/Γ ` δ.

Their status is rather special, in inferential practice as much as in logical
theory. They are less visible than the rules for connectives in everyday
mathematical reasoning, as well as in systems of natural deduction, because
they are rarely rendered explicit when applied. In effect, they are implicit
in the very structure of a deduction as it develops, whether in the usual
linear fashion or in tree form. Moreover, in the present author’s view,
their connections with the various perfumes that we are considering are
less interesting than in the case of rules for connectives. For these reasons,
we settle on a compromise: the behaviour of these two rules with respect
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to each perfume is recorded in Table 1 (last two rows), but not discussed
further in the text.

The following remarks may help put this bare picture in perspective.

History. It is interesting to recall that Jaśkowski, in his seminal paper
of 1934 ([5]), appears to have been reluctant to accept that there are second-
level inferences without suppositions. The title of his paper is “On the rules
of suppositions in formal logic”. When presenting UG, he introduces its
subordinate inference by writing Tx on a new line, explaining that T “is
here a new constant analogous to the symbol of supposition S” (section 5,
page 29).

To be sure, choosing an item arbitrarily by declaring a fresh variable
does have some resemblance to the act of making a supposition. This is
reflected in the language used: in English, at least, both “let x be...” and
“suppose that...” are in the imperative rather than the indicative mood.
But they are not quite the same action, and a ‘semi-supposition’ display
risks obscuring the difference.

In effect, we can read Jaśkowski’s Tx entry in either of two ways. On
one reading, which is rather confusing, it articulates the constraint on the
variable x, which is a condition in the metalanguage, as if it were an addi-
tional premise of the subordinate inference. On another reading, it merely
announces that one is about to enter a subordinate argument and that one
intends to generalize on the variable x when leaving it – which is what
is also done by the informal mathematical phrase “let x be an arbitrary
so-and-so”. However, giving Tx a line number in a derivation may not be
the most transparent way of signalling that reading.

In any case, the Tx notation was not used in the independently con-
ceived work of Gentzen [1], which was much more influential for theoretical
investigations of mathematical logicians. And although Jaśkowski’s paper
was, directly or indirectly, a basic inspiration for textbook accounts of natu-
ral deduction for students of philosophy in the second half of the twentieth
century, few of them adopted this part of his notation, one well-known
exception being, however, [6] (cf. [4]).

Flattening. On the other hand, textbooks presenting systems of natu-
ral deduction often streamline displays by “flattening” UG, that is, trans-
forming it into a step that is first-level, but procedural rather than infer-
ential. The rule is articulated as authorizing passage from a proposition γ
to the corresponding proposition ∀x(γ) under the proviso that x does not
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occur free in any of the premises or suppositions on which γ depends in the
deduction under construction. That the passage is procedural rather than
inferential is evident from the fact that in general γ 6|= ∀x(γ), irrespective
of whether the proviso is satisfied. It is only when we reflect on the ra-
tionale for the proviso that we can begin to see the second-level inference
underlying the procedural step.

While such flattening simplifies the formal display of a natural deduc-
tion, in the present author’s view it runs a danger of obscuring what is
really going on. Given that we have deduced γ from various premises and
suppositions (the Γ in the rule) in which x does not occur free, UG autho-
rizes us to conclude ∀x(γ) on the basis of those same propositions. That is
second-level and the student should brought to realize it, and not allowed to
forget it. In particular, UG should not be confused with the first-level and
genuinely inferential step of vacuous generalization V G : γ/∀x(γ) whenever
x has no free occurrences in γ.

Universal generalization is not the only second-level rule that systems of
natural deduction like to flatten. Even more so is existential instantiation
which, we recall, tells us: Γ∪{α} ` γ/Γ∪{∃x(α)} ` γ, when x has no free
occurrences in Γ, γ. This is treated as authorizing passage (again, procedu-
rally, but not inferentially) from a proposition ∃x(α) to the corresponding
proposition α, under a suitable condition. The precise formulation of that
condition varies with the conventions of the particular natural deduction
system, but its essential content is that x does not occur free in any of the
premises or suppositions on which ∃x(α) depends, nor on any conclusion
that is subsequently derived from α. This reference to premises and conclu-
sions again alerts us to the fact that that there is a second-level inference
underlying the first-level procedural step.

Colloquial mathematical reasoning with EI also flattens it, in a less
formal way. In a proof, having reached a proposition ∃x(α), where α con-
tains x free, one simply says “choose any one such x” and works on α,
taking care not to use the same variable x for anything else until the proof
is complete. The second-level nature of the manoeuvre is thus left implicit,
and perhaps corresponds more closely to a variant of EI, namely the rule
Γ ` ∃x(α),Γ∪{α} ` γ/Γ ` γ, under the same proviso that x has no free oc-
currences in Γ, γ. There is more on ‘flattening’ second-level and split-level
rules in [8, section 10.3.3].
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Making UG suppositional. It is also possible to reformulate UG to ren-
der it suppositional. We may add to the premise-set Γ of the subordinate
inference Γ ` γ, as a supposition, either ¬γ, or a tautology of classical
propositional logic such as p ∨ ¬p, or a theorem of first-order logic such as
a = a, without needing actually to use it. The modified rule remains classi-
cally correct and one can carry out the same derivations as before without
change. Systems of natural deduction that proceed this way, for classical
and non-classical logics, are discussed in [3]. But, in the classical context,
why bother unless one thinks that there is something philosophically wrong
about second-level inference without a supposition? The manoeuvre does
not correspond to mathematical practice and detours through an idle or
artificially employed assumption.

The “let x be...” locution. In practice, when one uses a phrase like
‘Let x be an arbitrary so-and-so’ (say, an arbitrary equilateral triangle) the
‘so-and-so’ condition almost always identifies a class that is more restricted
than the entire universe of discourse under consideration (say, the class of
points, lines and figures on a plane). This is because we are doing two things
at the same time. We are trying to prove, from given information Γ (say,
the axioms of plane geometry), a general conditional ∀x(ϕ(x) → ψ(x)).
To that end, we begin by establishing ψ(x) from Γ ∪ {ϕ(x)} and then
carry out two second-level steps. The first applies CP to conclude that
Γ ` ϕ(x) → ψ(x), to which the second applies UG, under the condition
that x does not occur free in Γ, to conclude that Γ ` ∀x(ϕ(x)→ ψ(x)). To
streamline the argument, the two steps are customarily run together.

Non-classical logics. Although we are concerned only with classical
reasoning, we note in passing that supposition-free second-level inference
rules also appear in some well-known non-classical logics, notably for intro-
ducing the box connective in natural deduction systems for the modal logic
S5 and some of its sub-logics, as well as for logics of relevance-sensitive con-
ditionals when those conditionals are understood as conveying some kind
of necessity (as is the case for the relevance logic E, but not for R).

For S5, that is not really anything new since its box can be seen as
shorthand for a universal quantifier with a single fixed variable x. Specif-
ically, modal formulae can be translated to classical first-order formulae
with monadic predicates: fix a variable x, associate injectively each sen-
tence letter p with a one-place predicate letter P , put T (p) = P (x) for
sentence letters (always with the fixed choice of variable x), translate truth-
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functional connectives into themselves, and put T (�α) = ∀xT (α). When
the S5 rule �+ is expressed in the form Γ ` γ/Γ ` �γ under the pro-
viso that no sentence letter in γ occurs unmodalized in Γ, it corresponds
to classical UG. In this way, UG can be seen as the ultimate source of
supposition-free second-level rules in S5 and thus also, indirectly, in some
of its subsystems.

3. Indirectness

The best-known of the perfumes, used and discussed since Greek antiquity,
is indirectness. As it has received so much attention, we will be very brief.

Often, reductio ad absurdum alone is counted as indirect, but it seems
reasonable to include contrapositive conditional proof under this name, as
is sometimes done. Accordingly, we define a second-level inference form
Γi ` γi(i ≤ n)/∆ ` δ to be indirect iff each subordinate argument has a
supposition that negates (or is negated by) the conclusion (or the conse-
quent of the conclusion) of the principal argument. Indirect inferences are
thus by definition a particular type of suppositional inference. Inspection
tells us that in this sense RAAa, RAAb and CPb are indirect, while the
other argument-forms in Table 1 are direct.

Reductio often permits very short and elegant arguments; see e.g. [7,
section 2.3] for a collection of examples. In the present author’s view, this
is not so much due to the manipulation of negation as to the fact, that it is
both suppositional and, at least for the more elegant applications of RAAa,
goal-simplifying in the sense defined in section 2 and discussed further in
the section 4. On the negative side, reductio proofs for ∀∃ statements
are sometimes non-constructive (no witness provided for the existential
quantification) which, notoriously, makes them unfriendly to computation;
it has also sometimes given rise to philosophical doubts about its legitimacy
(see e.g. [12]).

For CPb, where the desired conclusion is of the form α→ β, the inferen-
tial convenience of ¬β as a supposition with ¬α as goal in the subordinate
inference can be greater, less, or about the same as, that of a corresponding
application of CPa where α is supposition and β is goal, depending on the
internal logical structure of those propositions.

The extent to which mathematicians use indirect inference is partly a
matter of personal style. Reticence about CPb is not common, but some
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prefer not to bring in the reductio artillery except when it provides major
benefits. On the other hand, others deploy it routinely. A mixed strategy
is to give an indirect inference if it is succinct and, if a witness is missing or
computation blocked, accompany it by a longer and perhaps more intricate
constructive argument, if one can be found.

Of course, direct second-level inference forms can always be rendered
indirect. For example, the first trick mentioned in section 2 for making UG
suppositional, adding ¬γ to the premises of the subordinate inference Γ ` γ,
at the same time makes it indirect. However, as mentioned there, this
manoeuvre does not correspond to mathematical practice, being artificial
with an unnecessary detour. One occasionally sees a less generic, but more
interesting, indirect variant of DP that eliminates one of the two disjuncts,
namely the rule: DPy : Γ∪{α} ` γ; Γ∪{β} ` δ; Γ∪{β} ` ¬δ/Γ, α∨β ` γ.
However, from a conceptual point of view, we see this as a combination
of standard DP with reductio and, for this reason, do not include it in
Table 1.

Why, then, have we given CPb a seat at that table, since it too can
be seen as conceptually composite, a combination of CPa with a first-level
inference? The reason is practical rather than formal: CPb is extremely
common in everyday mathematical reasoning, while the indirect form of
disjunctive proof is very much less so. But nothing prevents the reader
from extending Table 1 with rows for rules such as DPy, DPx (section 2)
or any other second-level inference forms that can reasonably claim to be
deployed in inferential practice.

4. Goal-simplification

In section 2, we observed in passing that although UG is not suppositional,
it is conclusion-simplifying (more briefly, goal-simplifying), in the sense that
the conclusion γ of the subordinate argument is strictly logically simpler
than the conclusion ∀x(γ) of the principal argument. Evidently, this prop-
erty facilitates inference, by reducing the complexity of what we have to
prove.

Not many patterns of second-level inference in everyday mathematical
reasoning have this property. DP and EI fail it, as the conclusions of their
subordinate inferences are the same as the conclusions of their respective
principal inferences, thus not strictly simpler. On the other hand, con-
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ditional proof is a big goal-simplifier. This is patently so in the case of
CPa, where the conclusion β of the subordinate inference is only the con-
sequent of the conclusion α→ β of the principal one. It is less clear for the
contrapositive version CPb, for the negation sign in the conclusion ¬α of
the subordinate inference does not appear in the conclusion α → β of the
principal one. However, the elimination of the arrow intuitively compen-
sates for the addition of a negation: we can understand logical complexity
in a way that gives arrows more weight than negations (as is sometimes
done when defining the notion of a subformula for inductive arguments in
proof-theory), thereby also treating CPb as goal-simplifying.

RAAa is not in general a goal-simplifier, but it is so in some instances.
The conclusions γ,¬γ of the two subordinate arguments may have any
complexity at all compared to the conclusion α of the principal inference
but, in practice, they are often simpler. As we are concerned with practice
as well as form, we put 0/1 in this cell of Table 1.

Thus, conditional proof in both forms CPa, CPb and RAAa (in some
of its applications) are the only second-level inference rules of Table 1 that
are both suppositional and goal-simplifying. The additional power brought
by the availability of a supposition, combined with the reduced complexity
obtained by goal-chipping, iterated as many times as occasion arises, can
transform a complex inferential task into a trivial one. That is surely part
of the reason why those three rules are such great work-horses, stars of the
second-level stable.

5. Goal-preservation and wlog reasoning

Call a second-level inference rule Γi ` γi(i ≤ n)/∆ ` δ conclusion-preser-
ving (briefly, goal-preserving) iff γi = δ for all i ≤ n. By definition, the goal-
preserving rules are disjoint from the goal-simplifying ones, which make the
conclusion strictly simpler. They are also disjoint from the indirect ones,
which radically modify the conclusion. Clearly, DP , EI and RAAb are
goal-preserving while UG, CPa, CPb and RAAa are not.

Thus, all of the goal-preserving rules for connectives that we consider
in Table 1 turn out to be suppositional. To find a non-suppositional goal-
preserving rule, one can turn to the connective-free rule of monotony. In-
deed, that is essentially the only manner in which the combination can
hold for, quite generally, a second-level rule Γi ` γi(i ≤ n)/∆ ` δ that is
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non-suppositional must have some Γj ⊆ ∆ while, if it is goal-preserving, it
must put each γi = δ. Thus, it must be of the form Γj ` δ; Γi ` δ(j 6= i ≤
n)/Γj∪Γ′ ` δ, which is just monotony possibly accompanied by additional,
but redundant, subordinate inferences.

Goal-preservation underlies a kind of reasoning that is familiar in math-
ematical practice but seldom discussed in logic textbooks. It is typically
introduced by a such as “assume without loss of generality that...”, abbre-
viated as “assume wlog that...”. This tells us that we are making a sup-
position in a (single) subordinate inference, with conclusion unchanged. In
general, the assumption is mathematically substantive.

A well-known example arises when one is working with well-ordered
sets. In that context, a standard wlog move is to say, when there is an x
with a certain property, that we can choose such an x and assume wlog
that it is least among them (or minimal among them, in the more general
case of well-founded sets).

Although content-specific, this example has an interesting parallel with
the logical rule EI. It may be understood as a second-level inference pat-
tern that is available when Γ tells us, inter alia, that the domain of discourse
is well-founded by a relation <:

EI< : Γ, α< ` γ/Γ,∃x(α) ` γ, when x has no free occurrences in Γ, γ.

Here α< abbreviates α ∧ ¬∃y(y < x ∧ αx:=y), where αx:=y is the result of
substituting a variable y not occurring in α, γ or Γ, for all free occurrences
of x in α. The only difference between this and EI as formulated earlier,
is that α< replaces α as premise of the subordinate inference. Trivially,
α< |= α, so EI< is more powerful than plain EI. It can be regarded as
running EI together with modus ponens in the context of a well-founded
domain, that is, where Γ |= ∃x(α) → ∃x(α<). The merging can render
presentation more elegant; in particular, it often permits us to halve the
number of different variables that are needed for clear exposition.

While the above example of wlog reasoning is closely related to EI,
there are many others that appear to be less so. For example, if we want
to show that every Boolean algebra has a certain property that we know
to be preserved under Boolean isomorphisms, then we may consider an
arbitrary Boolean algebra B and assume without loss of generality that it
is a field of sets. This is because we have a representation theorem telling
us that every Boolean algebra is isomorphic to some field of sets. However,
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care needs to be taken since, notoriously, some interesting properties of
Boolean algebras are not preserved under isomorphisms, for example, the
property of infinite distributivity (see e.g. [13, section 35]).

In this example, the parallel with EI reappears if the wlog step is made
in the course of an indirect proof: supposing that there is a Boolean algebra
B that lacks a certain property, we seek a contradiction; if the property is
preserved under isomorphism, then we may suppose wlog that B is a field
of sets, and continue to contradiction from there.

For examples further away from logic and set theory, see e.g. [2]. For
aficionados of non-classical logic, there is an interesting use of a wlog pro-
cedure in the construction of relevance-sensitive truth-trees. When the
arrow connective is understood as relevance-sensitive, then decomposition
of ¬(ϕ → ψ) into ϕ,¬ψ on a branch of a decomposition tree is no longer
an act of first-level inference, as it is for classical truth-trees; it is a wlog
second-level step. See [8, chapter 11], with a more detailed account in [9].

6. Premise-preservation

Evidently, one may define a dual to goal-preservation. Call a second-level
inference rules Γi ` γi(i ≤ n)/∆ ` δ premise-preserving iff ∆ ⊆ Γi for all
i ≤ n. In [8, chapter 10], this property was called “incrementality”.

Inspection of the rules in Table 1 shows that UG, CT , CP (both forms)
and RAA (both forms) are premise-preserving. On the other hand, EI and
DP are not since, in general, ∃x(α) 6∈ Γ∪{α} and α∨β 6∈ Γ∪{α},Γ∪{β}.

On the other hand, the rather special form of DP that we called DPx
(section 2) is premise-preserving. Moreover, since trivially α |= α ∨ β,
β |= α ∨ β, α |= ∃x(α), both DP and EI may both be formulated in
equivalent, but redundant, ways that are premise-preserving:

Γ ∪ {α ∨ β} ∪ {α} ` γ; Γ ∪ {α ∨ β} ∪ {β} ` γ /Γ ∪ {α ∨ β} ` γ

Γ ∪ {∃x(α)} ∪ {α} ` γ /Γ ∪ {∃x(α)} ` γ, when x has no free
occurrences in Γ, γ.

To mark the fact that these variant formulations of DP , EI are premise-
preserving while the standard forms are not, we write 0, 1 in the corre-
sponding cells of Table 1.

It is perhaps not immediately obvious, as it was with suppositionality
and goal simplification, how premise preservation can be of assistance in
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Table 1. Selected perfumes for familiar second-order rules

Supposi-
tional

Goal-
simpli-
fying

Indirect

Goal-
preser-
ving

Pre-
mise-
preser-
ving

UG,∀+ 0 1

0

0 1

DP,∨−

1

1
0, 1

EI, ∃− 0, 1

CP,→+ CPa
1

0
0CPb

1
RAA

RAAa 0/1

RAAb 0 1

Monotony
0 0 0

1 0

CT 0 1

The entries 0/1 and 0, 1 in certain cells are explained in the corresponding sections. The

acronym EI is for “existential instantiation”; the reader should be warned that some

textbook presentations of natural deduction use the same acronym for the first-level

rule of “existential introduction”.

the business of deduction. We suggest that it can be helpful, illustrating
with the premise-preserving rule CPa. Consider a situation where we are
working within a mathematical theory that is axiomatized by a set Γ of
propositions, from which a considerable number of consequences have been
derived by many hands over a long period of time, and that we wish to
prove a conditional proposition α→ γ. We take α as a supposition and seek
to get γ from it, making free use of anything that has already been obtained
from Γ. If we succeed, then we can apply CPa (along with implicit appeal
to cumulative transitivity and monotony) and we are done.
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But what would the situation be like if instead of CPa : Γ ∪ {α} `
γ/Γ ` α → γ we had a rule Γ′ ∪ {α} ` γ/Γ ` α → γ that is not-premise-
preserving, that is, where Γ 6⊆ Γ′? When carrying out the subordinate
inference Γ′ ∪ {α} ` γ, we would not know, without re-checking, which of
the many theorems already deduced from Γ are also available for use in
the sub-proof. In cases where there are elements of Γ that are not trivially
implied by Γ′, that checking could be arduous indeed.

7. Conclusion

Second-level inference rules come with or without various features that we
have dubbed ‘perfumes’: suppositionality, indirectness, goal-simplification,
goal-preservation and premise-preservation. The presence of these per-
fumes tends to confer practical advantages in the articulation and commu-
nication of mathematical inference, each perfume with its own advantage.
Familiar rules of mathematical practice, as recorded in Table 1, all have at
least one of the perfumes, sometimes more. Conditional proof in both its
direct and contraposed forms (CPa,CPb) as well as reductio ad absurdum
in its standard form (RAAa), are particularly well endowed in this respect,
which may explain why they are such great work-horses. Goal-preservation
is also an essential part of wlog reasoning in mathematics, with some ex-
amples having analogies to EI.
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drzej Indrzejczak, Alexei Muravitsky and Xavier Parent for vigorous com-
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to Jorge Luis Borges, for the title.
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FROM INTUITIONISM TO BROUWER’S MODAL
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Abstract

We try to translate the intuitionistic propositional logic INT into Brouwer’s

modal logic KTB. Our translation is motivated by intuitions behind Brouwer’s

axiom p → �♦p. The main idea is to interpret intuitionistic implication as modal

strict implication, whereas variables and other positive sentences remain as they

are. The proposed translation preserves fragments of the Rieger-Nishimura lattice

which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately,

INT is not embedded by this mapping into KTB.

Keywords: Intuitionistic logic, Kripke frames, Brouwer’s modal logic.

1. Introduction

Brouwer’s modal logic KTB is defined as the normal extension of the
minimal modal logic K with the axioms T = �p → p and B = p →
�♦p . The set of rules consists of the modus ponens, the rule of uniform
substitution and the rule of necessitation. KTB is complete with respect
to reflexive and symmetric Kripke frames. It has been known since the
1930’s when O. Becker [1], and C.I. Lewis and C.H. Langford [5] formulated
the strict form of the Brouwerian axiom p ≺ �♦p, and considered the
appropriate system of logic. It turned out that the Brouwer system is
stronger than the Lewis system S3 and weaker than S5.
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There are some connections between the intuitionistic logic and the
axiom B. For instance, let us quote G.E. Hughes and M.J. Cresswell
[4, p. 57]:

As it is known, L. Brouwer is the founder of the intuition-
ist school of mathematics. The law of double negation does
not hold in intuitionistic logic. Exactly it holds that (i) `INT

p → ¬¬p but (ii) 6`INT ¬¬p → p. Suppose that negation
has a stronger meaning – necessarily negative. Hence ¬p may
be translated as �¬p. The corresponding modal formula to
(i) is p → �¬�¬p, which gives us p → �♦p and obviously
`KTB p → �♦p. If we translate (ii) in this way, we obtain:
�♦p → p, which is not a thesis even of the system S5 defined
below. Hence 6`KTB �♦p→ p. (..) Thus although the connec-
tion with Brouwer is somewhat tenuous, historical usage has
continued to associate his name with this formula.

This motivation will be a starting point for our research. We define
a function t from the intuitionistic propositional language {→,∧,∨,⊥} into
the modal language {→,∧,∨,�,⊥}. Thus, let us define

Definition 1.1.

t(⊥) = ⊥, t(p) = p, t(α→ β) = �(t(α)→ t(β)),
t(α ∧ β) = t(α) ∧ t(β), t(α ∨ β) = t(α) ∨ t(β).

The function t will be the desired translation if the equivalence holds:

α ∈ INT iff t(α) ∈ KTB.

Our translation differs from the standard one (see, for instance,
[3, 7]), known as the Gödel-McKinsey-Tarski translation, for which S4
turns out to be a modal companion of the intuitionistic logic. Note that
the Gödel-McKinsey-Tarski translation maps p onto �p, instead of p, for
any propositional variable p. Nevertheless, we have t(¬p) = �¬p (as
¬p = p→ ⊥) and t(¬¬p) = �¬�¬p = �♦p.

Suppose a logic L is given (in the sequel we deal mainly with KTB).
We write φ =L ψ if both φ → ψ and ψ → ϕ are L–valid. We even
omit the subscript L, and write φ = ψ instead of φ =L ψ, if there is no
risk of misunderstanding. It does not mean, however, that we identify



From Intuitionism to Brouwer’s Modal Logic 345

L–equivalent formulas neither we regard any formula as its equivalence
class in the the so-called Lindenbaum-Tarski’s algebra of L.

In our paper we omit definitions of some logical concepts if they can be
found in standard text-books on modal logic, e.g., [2, 3]

2. Preliminaries

Our function t translates the intuitionistic law of doubled negation onto
Brouwer’s axiom:

t(p→ ¬¬p) = p→ �♦p.

We ask if other intuitionistic theorems are preserved. Let us consider
the law of contraposition in the form: [(p→ q)∧¬q]→ ¬p). After applying
t we get: �[[�(p→ q) ∧�¬q]→ �¬p]. We prove that

Lemma 2.1. �[[�(p→ q) ∧�¬q]→ �¬p] ∈ KTB.

Proof: Suppose that �[[�(p → q) ∧ �¬q] → �¬p] 6∈ KTB. Then exists
a KTB-model M = 〈W,R, V 〉 and a point x1 ∈W such that:

x1 |= �(p→ q) ∧�¬q (2.1)

x1 6|= �¬p (2.2)

From (2.2) there is another point, say x2 such that x1Rx2 and x2 6|= ¬p,
which means that x2 |= p. From (2.1) it follows that for all xi ∈ W such
that x1Rxi, we have: xi |= p→ q and xi |= ¬q. Hence it holds also at the
point x2. Then we obtain:

x2 |= (p→ q), x2 |= p, x2 |= ¬q . (2.3)

This is a contradiction.

On the other hand, one may notice that this contraposition law in the
form : (p→ q)→ (¬q → ¬p) after translation is not a theorem of KTB.

Lemma 2.2. �[�(p→ q)→ �(�¬q → �¬p)] 6∈ KTB.

Proof: Let us consider a KTB-model M = 〈W,R, v〉 such that W =
{x1, x2, x3}, xiRxj iff |i − j| ≤ 1 and v(p) = {x3} and v(q) = ∅. Then
we get x2 |= �¬q and x2 6|= �¬p. Hence x2 6|= �¬q → �¬p and x1 6|=
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�(�¬q → �¬p). Also xi |= p→ q for i = 1, 2. Then x1 |= �(p→ q).
Hence x1 6|= �(p→ q)→ �(�¬q → �¬p).

From the above, it follows that the law of importation: [p→ (q → r)]→
[(p∧q)→ r] is preserved but the exportation [(p∧q)→ r]→ [p→ (q → r)],
is not. The negative results for formulas in two and more variables make
us study the monadic fragment of intuitionistic logic. At least, the axiom
B is a formula in one variable and B turns out to be the translation of the
appropriate intutionistic law. Although the deficiency of the modal analog
of the exportation law in KTB will be an impediment, we might expect
that the monadic language is more fit for our translation.

3. Monadic formulas in KTB

As it is known, see for instance [10], intuitionistic formulas containing only
one variable, say p, may be enumerated as follows:

Definition 3.1.

α0 = ⊥, α1 = p, α2 = p→ ⊥,
α2n+1 = α2n ∨ α2n−1, α2n+2 = α2n → α2n−1, for any n ≥ 1

αω = p→ p.

Every monadic formula is equivalent in the intuitionistic logic to one
of the αm’s. Therefore, the formulas give rise to the so-called Rieger-
Nishimura algebra R, which is a single-generated free Heyting algebra (see
Figure 1). The order relation in the algebra may be defined as follows:

α ≤ β iff α→ β ∈ INT.

Our aim is to check if the algebra is preserved under the translation t
or, more specifically, whether the translations of the formulas αn give rise
to the same algebra in the logic KTB.

The translations of αn’s do not cover all monadic modal formulas which
means that there are monadic modal formulas, for instance ¬p or ♦p, which
are not equivalent to any t(αn). It will also turn out that the translation
t does not preserve the equivalence of (intuitionistic) formulas. We shall
start out, however, our considerations with the observation that the ”bot-
tom” fragment of the Rieger-Nishimura algebra, consisting of the formulas
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α0, α1, α2, α3, α4, is preserved under the translation. Thus, in KTB, all
”intuitionistic” relations between the formulas α0 − α4 are preserved:

Observation 1. p ∧�¬p = �♦p ∧�¬p = � ((p ∨�¬p)→ ⊥) = ⊥
�♦p ∧ (p ∨�¬p) = p
�(�♦p → ⊥) = �(�♦p → �¬p) = �(p → �¬p) = �((p ∨ �¬p) →
�¬p) = �(p→ ⊥) = �¬p
�(�¬p → ⊥) = �((p ∨ �¬p) → p) = �(�¬p → p) = �((p ∨ �¬p) →
�♦p) = �♦p

Adding t(α5) = �♦p ∨ �¬p destroys the → structure of the algebra.
In KTB, we do not have �[(�♦p ∨ �¬p) → p] = p though α5 → α1 is

αω

...

α13

α12 α11

α9 α10

α7α8

α5 α6

α3α4

α1 α2

α0

Figure 1
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�♦p p ∨�¬p

p �¬p

⊥

Figure 2

intuitionistically equivalent to α1. It is clear that we should not expect our
translation preserves →. Moreover, it is not true that

ϕ =INT ψ ⇒ t(ϕ) =KTB t(ψ).

Let us concentrate on the lattice structure of R and ask if the Rieger-
Nishimura lattice (not Heyting algebra) is preserved under the translation
t in KTB. Obviously, the fragment of the lattice consisting of α0 − α5 is
preserved. However, even such modified hypothesis turns out to be false as
adding t(α6) = �(�♦p → p) to the picture destroys the lattice structure.
In the Rieger-Nishimura lattice we have: α2n+3 ∧ α2n+4 = α2n+1, for any
n ≥ 0. We prove that t does not preserve this equation for n ≥ 1. First,
note that:

Lemma 3.2. t[(α2n+3 ∧ α2n+4)→ α2n+1] ∈ KTB, for any n ≥ 1.

Proof: We need to show:

{[t(α2n+1) ∨ t(α2n+2)] ∧�[t(α2n+2)→ t(α2n+1)]} → t(α2n+1) ∈ KTB

which is quite obvious.

Before we prove that

t[α2n+1 → (α2n+3 ∧ α2n+4)] 6∈ KTB, for any n ≥ 1 (3.1)

we shall consider the simplest case when n = 1.
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Lemma 3.3. t[α3 → (α5 ∧ α6)] 6∈ KTB.

Proof: We shall prove that t(α3)→ {�[t(α4)→ t(α3)] ∧ t(α5)} 6∈ KTB.
Let us take the model M1 = 〈W,R, v〉 where W = {x0, x1}, and R is the
total relation on W , and xi |= p iff i = 0.

Then we have x0 |= p, which gives x0 |= p∨�¬p and hence x0 |= t(α3).
Thus, x1 |= �♦p and this means that x1 |= t(α4). We have x1 6|= p and
x1 6|= �¬p. Hence we get x1 6|= p∨�¬p which shows x1 6|= t(α3). It means
that x1 6|= t(α4) → t(α3) and x0 6|= �[t(α4) → t(α3)]. Thus, we proved
x0 6|= t(α3)→ {�[t(α4)→ t(α3)] ∧ t(α5)}.

For proving (3.1), we shall define some special KTB-models which are
extensions of the above M1. Let

Definition 3.4. Mn = 〈Wn, Rn, vn〉, for n ≥ 2, where Wn = {x0, x1,
x2, ..., xn}, Rn is reflexive and symmetric on Wn, and

x0Rxi iff i 6= 1, for any i ≤ n; (3.2)

x1Rxi iff i 6∈ {0, 3}, for any i ≤ n; (3.3)

x2Rxi , for any i ≤ n; (3.4)

x3Rxi iff i 6∈ {1, 4}, for any i ≤ n; (3.5)

if 3 < k < n− 1, then xkRxi iff i 6∈ {k + 1, k − 1},
for any i ≤ n;

(3.6)

¬xn−1Rxn. (3.7)

The valuation vn is defined: vn(p) = {x0}. See Figure 3.

Observation 2. If i ≤ n, then in the model Mn it holds that

xi |= ♦p ⇔ i 6= 1 xi |= t(α2) ⇔ i = 1;

xi |= t(α3) ⇔ i = 0, 1 xi |= t(α4) ⇔ i = 0, 3;

xi |= t(α5) ⇔ i = 0, 1, 3 xi |= t(α6) ⇔ i = 1, 4;

xi |= t(α7) ⇔ i = 0, 1, 3, 4 xi |= t(α8) ⇔ i = 3, 5.
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Figure 3. The frame of M7

Further:

xi 6|= t(α4)→ t(α3) ⇔ i = 3; xi |= �[t(α4)→ t(α3)] ⇔ i = 1, 4;

xi 6|= t(α6)→ t(α5) ⇔ i = 4; xi |= �[t(α6)→ t(α5)] ⇔ i = 3, 5;

xi 6|= t(α8)→ t(α7) ⇔ i = 5; xi |= �[t(α8)→ t(α7)] ⇔ i = 4, 6.

Then we get:

Lemma 3.5. If 2 ≤ n ≤ k and i ≤ n , then in the model Mk it holds that

(i) xi |= t(α2n+1) iff i ≤ n+ 1 and i 6= 2;

(ii) xi 6|= t(α2n)→ t(α2n−1) iff i = n+ 1;

(iii) xi |= �[t(α2n)→ t(α2n−1)] iff i = n or i = n+ 2, (for n ≥ 3).

Proof: We prove it by induction on n. Let n = 2. Then, from Obser-
vation 1, we get: xi |= t(α5) iff i = 0, 1, 3. Also xi 6|= t(α4) → t(α3) iff
i = 3. Further xi |= �[t(α4)→ t(α3)] iff i = 1 or i = 4. For n = 3, from
Observation 1, we get xi |= t(α7) iff i = 0, 1, 3, 4, and xi 6|= t(α6) → t(α5)
iff i = 4, and xi |= �[t(α6)→ t(α5)] iff i = 3 or i = 5.

Assume our lemma holds for n and prove it also holds for n + 1. We
have t(α2n+3) = t(α2n+2)∨t(α2n+1) and t(α2n+2) = �(t(α2n)→ t(α2n−1)).
From our inductive hypothesis (i) and (ii), we get xi |= t(α2n+3) iff i ≤ n+2
and i 6= 2.
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Let us consider t(α2n+2) → t(α2n+1). As t(α2n+2) = �[t(α2n) →
t(α2n−1)], we get xi 6|= t(α2n+2)→ t(α2n+1) iff i = n+ 2, by our inductive
hypothesis (i) and (iii).

From the above and the definition of the relation Rn, it follows that
xi |= �[t(α2n+2)→ t(α2n+1)] iff i = n+ 1 or i = n+ 3.

Then we may prove that (3.1) holds.

Lemma 3.6. For any n ≥ 2 we get

t[α2n+1 → (α2n+3 ∧ α2n+4)] 6∈ KTB

Proof: We take advantage of the model Mn. From Lemma 3.5 we get
xn |= t(α2n+1) and xn 6|= t(α2n+4), for any n ≥ 2.

We see that the Rieger-Nishimura lattice loses, after the translation t,
some meets of classes of formulas. Since the joins are preserved by the
definition of the translation, we conclude that the obtained structure is
a join semi-lattice, only. Figure 3 presents the diagram of the (Rieger-
Nishimura) join semi-lattice which is preserved under the translation t.
Note that the received structure is infinite as from Lemma 3.5 we get

Corollary 3.7. For any n ≥ 1, we have t(α2n−1) → t(α2n+1) ∈ KTB
and t(α2n+1)→ t(α2n−1) 6∈ KTB.

We also conclude that the function t is a translation for some classes of
formulas.

Corollary 3.8. For any n, k ≥ 1, we have:

1. α2n−1 → α2k−1 ∈ INT iff t(α2n−1)→ t(α2k−1) ∈ KTB,

2. α2n−2 → α2k−1 ∈ INT iff t(α2n−2)→ t(α2k−1) ∈ KTB.

3.1. Modal counterpart of Glivienko’s theorem

Glivienko’s theorem says that the double negation of any classically valid
propositional formula is intuitionistically valid. Its analog for the modal
logics S5 and S4 states that α ∈ S5 iff ♦�α ∈ S4, see [6]. There are
other results in this subject e.g Rybakov [8] proved that �♦α → �♦β ∈
K4 iff ♦α → ♦β ∈ S5. Recently Shapirovsky [9] generalizes Glivenko’s
translation for logics of arbitrary finite height.
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αω

...

α13

α12 α11

α9 α10

α7α8

α5 α6

α3α4

α1 α2

α0

Figure 4

Our approach to Glivienko’s theorem is more elementary. The trans-
lation t examined in this paper suggests a modal version of this theorem.
One could think that it suffices to take �♦α, instead of the double negation
of the classically valid formula α, to obtain the modal version of Glivienko’s
theorem.

Certainly, it holds for some monadic formulas.

Lemma 3.9. For any n ≥ 1, we have �♦t(α2n+1) ∈ KTB.

Proof: By Corollary 3.7, it suffices to show that �♦t(α3) ∈ KTB which
would be tantamount to prove that ♦(�¬p∨p) ∈ KTB. But in any modal
logic ♦(�¬p ∨ p) = �♦p→ ♦p and �♦p→ ♦p is KT valid.
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One could expect that, for any n ≥ 3, we also have �♦t(α2n) ∈ KTB.
But it is not the case. For instance, using the model M1 (defined in the
proof of Lemma 3.3) one easily shows �♦t(α6) 6∈ KTB.

3.2. From INT into KTB.Altn

We may also consider some extensions of the logic KTB. Let KTB.Altn,
for n ≥ 2, be such an extension with

altn = �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ pn)→ pn+1).

Logics KTB.Altn are characterized by reflexive and symmetric Kripke
frames, in which one point has at most n successors (including itself),
see [3, p. 82]. We show that there is a simple correlation between the
degree of branching and the possibility of falsifying the formula t(α2n+1).
Namely, we get:

Lemma 3.10. For each n ≥ 2, the model Mn is a minimal KTB-model fal-
sifying t(α2n+1) (which means that any model falsifying this formula con-
tains Mn as a submodel).

Proof: By induction on n. We construct a KTB-model falsifying t(α3).
Because t(α3) = p ∨�¬p then in some point x falsifying t(α3) we have

x 6|= p, (3.8)

x 6|= �¬p. (3.9)

From (3.9) we get that x |= ♦p. Then there must exist a point x∗ ∈ W
such that xRx∗ and x∗ |= p. By (3.8) we know that x∗ 6= x. Then we
obtain two-point model which is isomorphic to M1.

Before we start doing the induction step, we show how the model rises
if we want to falsify the formula t(α5). Because t(α5) = p ∨ �¬p ∨ �♦p
then at the point x we get (3.8), (3.9) and

x 6|= �♦p. (3.10)

From (3.8) and (3.9) we obtain the existence of another point x∗ such
that xRx∗ and x∗ |= p. Also x∗ 6= x. From (3.10) we see that there
must exist another point, say x∗∗ ∈ W such that xRx∗∗ and x∗∗ 6|= ♦p.
Hence x∗∗ 6|= p and x 6|= p. Also x∗∗ 6= x and x∗∗ 6= x∗. We conclude
that ¬x∗Rx∗∗. Then the falsifying model has to have at least three points.
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It is not a cluster and the point x sees two others. Since the situation is
analogous to the one described in M2 we may substitute: x := x2, x

∗ := x0
and x∗∗ := x1. We really have got a minimal model falsifying t(α5).

Let us try to falsify the formula t(α7) = t(α5) ∨ t(α6). For falsifying
t(α5) we need the model M2. Then we try to falsify t(α6) at x2 which is
x2 6|= �[t(α4) → t(α3)]. Then there must exist a point, say x3, x2Rx3,
such that x3 6|= t(α4)→ t(α3) what provides to:

x3 |= �♦p, (3.11)

x3 6|= p ∨�¬p. (3.12)

Because (3.12) holds then x3 6= xi for i = 0, 1. Because of (3.11) we get
x3 6= x2. We need a successor of x3 in which p is validated. We may take
x3Rx0. Further, we know that ¬x3Rx1. One should remember that the
relation R is reflexive and symmetric. Then we see that the minimal model
for falsifying t(α7) has to have four points with the relations and valuation
as in M3.

Suppose that our thesis holds for n. Then we know that Mn is a minimal
KTB-model falsifying t(α2n+1) and we take advantage of Observation 1
and Lemma 3.5.

We show that the thesis holds for n+ 1.
We have t(α2n+3) = t(α2n+1)∨t(α2n+2). We want to falsify the formula

at the point x2. For falsifying t(α2n+1) the assumption works and we
get a model Mn such that (Mn, x2) 6|= t(α2n+1). Then we want to get
(Mn, x2) 6|= t(α2n+2) that is (Mn, x2) 6|= �[t(α2n)→ t(α2n−1)].

There must exist a new point, say xn+1 such that x2Rxn+1 and

xn+1 6|= t(α2n)→ t(α2n−1), (3.13)

From Lemma 3.5 we know that the point xn+1 is a new point dif-
ferent from the others. Also x2Rxn+1. Because xn+1 |= t(α2n) and
xn 6|= t(α2n−2) → t(α2n−3) then ¬xnRxn+1. We also conclude that xn+1

sees all other points xi for i 6= n because we want to have xn+1 6|= t(α2n)
for k < n.

Then, adding a new point xn+1 to Mn, with the suitable relations, we
obtain Mn+1.

A correlation between the degree of branching of a frame and the va-
lidity of the formula t(α2n+1) is as follows:
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Theorem 3.11. For each n ≥ 2, t(α2n+1) ∈ KTB.Alti iff i ≤ n.

Proof: If t(α2n+1) 6∈ KTB.Alti then from Lemma 3.10 we conclude that
the minimal model falsifying this formula contains the model Mn+1. In
this model (see Definition 3.4) the point x2 sees all other points (including
itself), hence the degree of branching of Mn+1 is equal to n + 1. Then
i > n. On the other hand, if i > n then among the models for KTB.Alti
is the model Mi, falsifying t(α2n+1).

One may notice that the formulas t(α2n+1), n ≥ 1 written in one vari-
able, have a similar significance as the formulas altn, at least in KTB-
frames.

Corollary 3.12. KTB.Alti = KTB⊕ t(α2n+1) for any n ≥ 1.

4. Specific questions

The main problem concerning our translation is the fact that it does not
preserve the intuitionistic equivalence of formulas. More specifically, it is
not true that

α→ β ∈ INT ⇒ t(α)→ t(β) ∈ KTB.

We suppose our problem might be solved if we significantly modify our
approach. It would be required to opt out from the attempts to define intu-
itionistic connectives in KTB but to translate each formula in its specific
way. Technically, it will relay on adding �k, for some k, to the predecessor
of t(α) → t(β). The number k depends on the difference of modal de-
grees of the antecedent and consequent of the implication. Let us consider
the formula �(t(α4) → t(α3)) ∧ t(α5) = t(α3) which is not theorem of
KTB because the reverse implication is not. See Lemma 3.3. The simple
implication:

(�(t(α4)→ t(α3)) ∧ t(α5))→ t(α3)

which is

{�[�♦p→ (p ∨�¬p)] ∧ (�♦p ∨ p ∨�¬p)} → (p ∨�¬p)

is a theorem of KTB. We see that md{�[�♦p→ (p∨�¬p)]∧ (�♦p∨ p∨
�¬p)} = 3 and md(p ∨ �¬p) = 1. Hence modal degree of the antecedent
is larger than the degree of the consequent.
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In the reverse implication the situation is opposite and we have t(α3)→
[�(t(α4)→ t(α3))∧t(α5)] 6∈ KTB. We propose the following strengthening
of the above formula.

Since md{[�[t(α4)→ t(α3)]∧ t(α5)]}−md(t(α3)) = 2 then we consider
the formula �3t(α3)→ [�(t(α4)→ t(α3)) ∧ t(α5)] and obtain:

Lemma 4.1. The formula �3t(α3)→ [�(t(α4)→ t(α3)) ∧ t(α5)] is a theo-
rem of KTB.

Proof: Suppose that �3t(α3) → [�(t(α4) → t(α3)) ∧ t(α5)] 6∈ KTB.
Then there exists a model M = 〈W,R, v〉 and a point x ∈W such that

x |= �3t(α3) (4.1)

x 6|= �(t(α4)→ t(α3)) ∧ t(α5) (4.2)

From (4.2) we know that x 6|= �(t(α4)→ t(α3)) or x 6|= t(α5).
I. If x 6|= �(t(α4) → t(α3)) then there is another point, say x2, xRx2

such that x2 6|= t(α4)→ t(α3) what means that

x2 |= t(α4) (4.3)

x2 6|= t(α3) (4.4)

But from (4.1) and from reflexivity of R we know that x2 |= t(α3). This
is a contradiction.

II. If x 6|= t(α5) then since α5 = α3 ∨ α4 then x 6|= t(α3) and x 6|= t(α4).
But x 6|= t(α3) is in contradiction with (4.1).

Despite the above example, one should not expect the following holds:
if α→ β ∈ INT, then

1. if md(t(α)) > md(t(β)) then t(α)→ t(β) ∈ KTB,

2. if md(t(β))−md(t(α)) = k ≥ 0 then �k+1t(α)→ t(β) ∈ KTB.

We show that this is false (even for formulas in one variable). The coun-
terexample is the formula �♦t(α6) = �[�(t(α6)→ ⊥)→ ⊥]. We see that
�[�(t(α6)→ ⊥)→ ⊥] ∈ KTB iff �(t(α6)→ ⊥)→ ⊥ ∈ KTB. Obviously
md(�(t(α6) → ⊥)) > md(⊥). Let us take the model M1, see Definition
3.4. One may easily obtain that M1 6|= �♦t(α6). Hence �♦t(α6) 6∈ KTB.
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Now, let us consider the implication:

t(α)→ t(β) ∈ KTB ⇒ α→ β ∈ INT.

We show that it is false. The counterexample is the following formula
α = ¬¬(T → p) → (T → p) which is equivalent to the strong law of
doubled negation. Obviously α 6∈ INT. But we shall prove that:

Lemma 4.2. t(α) ∈ KTB.

Proof: Let us write the formula t(α) = �[�♦�(T → p) → �(T → p)].
By Brouwer’s axiom we have: ♦�(T → p) → (T → p) ∈ KTB. Then
by the rule of necessitation and the axiom K we obtain �♦�(T → p) →
�(T → p) ∈ KTB. Again by the rule of necessitation we get: �[�♦�(T →
p)→ �(T → p)] ∈ KTB.

5. Conclusions

Since we see that t(INT) 6⊂ KTB, we would like to know what is the
image of INT by the function t.

As it was mentioned above the formula �♦t(α6) 6∈ KTB and moreover
the model falsifying it is the model M1, see Definition 3.4. Actually, M1 is
a two-element cluster. One easily conclude that �♦t(α6) 6∈ S5. Hence it
must be �♦t(α6) ∈ Triv. It means that the least modal logic containing
t(INT) is Triv which is highly unsatisfactory.

Let us add that we do not decide if there is any other translation from
INT into KTB. We leave this problem open. It seems that the intuition-
istic logic is too strong for being translated into any intransitive modal
logic.
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EMPIRICAL NEGATION, CO-NEGATION
AND THE CONTRAPOSITION RULE II:

PROOF-THEORETICAL INVESTIGATIONS

Abstract

We continue the investigation of the first paper where we studied logics with

various negations including empirical negation and co-negation. We established

how such logics can be treated uniformly with R. Sylvan’s CCω as the basis. In

this paper we use this result to obtain cut-free labelled sequent calculi for the

logics.

Keywords: Empirical negation, co-negation, labelled sequent calculus,

intuitionism.

1. Introduction

In the first paper, we semantically investigated how some logics with non-
standard negation (IPC∼ [1, 2], TCCω [4], daC [9] and CCω [10]) are
related to each other. In particular, we noted how the difference between
IPC∼ and TCCω can be understood as the difference between Kripke and
Beth semantics. We also observed, by giving a uniform axiomatisation,
how other logics can be captured in the semantics of CCω in terms of
frame conditions. These frames conditions will play an essential role in the
proof-theoretical investigation of the present paper.

In this paper, we first re-introduce some definitions and results from the
first paper. Then we formulate labelled sequent calculi for the logics, and
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show cut-admissibility and the equivalence of the calculi with Hilbert-style
formulations. Finally we have discussions about some topics related to the
contents of the two papers.

2. Preliminaries

Let us use the following notations for metavariables.

• p, q, r, . . . for propositional variables.

• A,B,C, . . . for formulae.

In this paper, we shall consider the following propositional language

L ::= p | (A ∧B) | (A ∨B)| (A→ B) | ∼A.

Parentheses will be omitted if there is no fear of ambiguity. We shall use
the convention A↔ B := (A→ B) ∧ (B → A).

We shall give Hilbert-style proof systems for CCω, daC, TCCω and
IPC∼, using the uniform axiomatisations we established in the first paper.
We identify the systems with the logics themselves for convenience, and
denote them simply as CCω, daC etc..

Definition 2.1. We will consider following axiom schemata and rules.

Axioms

[Ax1] A→ (B → A)

[Ax2] (A→ (B → C))→ ((A→ B)→ (A→ C))

[Ax3] (A ∧B)→ A

[Ax4] (A ∧B)→ B

[Ax5] (C → A)→ ((C → B)→ (C → (A ∧B)))

[Ax6] A→ (A ∨B)

[Ax7] B → (A ∨B)

[Ax8] (A→ C)→ ((B → C)→ ((A ∨B)→ C))

[Ax9] A ∨ ∼A
[Ax10] ∼A→ (∼∼A→ B)

[Ax11] ∼∼A→ A
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[Ax12] ∼(∼(A ∨B) ∨A)→ B

[Ax13] (∼A ∧ ∼B)→ ∼(A ∨B)

Rules

A A→ B[MP]
B

A→ B[RC] ∼B → ∼A

The logics CCω, daC, TCCω and IPC∼ are each defined by [MP],
[RC] and the following axioms.

CCω: [Ax1]–[Ax9] and [Ax11].

daC: [Ax1]–[Ax9] and [Ax12].

TCCω: [Ax1]–[Ax10].

IPC∼: [Ax1]–[Ax10] and [Ax13].

The derivability in CCω is denoted by `c. We recall that IPC∼ and
CCω are the strongest and the weakest of the four systems, and daC and
TCCω lie somewhere between the two, while being mutually incomparable.

Semantically, the Kripke semantics of CCω gives the basis for our in-
quiry.

Definition 2.2 (Semantics of CCω). A Kripke frame Fc
K for CCω is a

triple (W,≤, S), where S ⊆ W ×W is a reflexive and symmetric (acces-
sibility) relation such that u ≤ v and uSw implies vSw, i.e. S is upward
closed. A Kripke modelMc

K for CCω a pair (Fc
K,V), where V is a mapping

that assigns a set of worlds V(p) ⊆W to each propositional variable p. We
assume V to be monotone, viz. w ∈ V(p) and w′ ≥ w implies w′ ∈ V(p).
To denote a model, we shall use both Mc

K and (Fc
K,V) interchangeably.

Given Mc
K, the forcing (or valuation) of a formula in a world, denoted

Mc
K, w Kc A, is inductively defined as follows.

Mc
K, w Kc p ⇐⇒ w ∈ V(p).

Mc
K, w Kc A ∧B ⇐⇒ Mc

K, w Kc A and Mc
K, w Kc B.

Mc
K, w Kc A ∨B ⇐⇒ Mc

K, w Kc A or Mc
K, w Kc B.

Mc
K, w Kc A→ B ⇐⇒ for all w′ ≥ w, if Mc

K, w
′ Kc A,

then Mc
K, w

′ Kc B.

Mc
K, w Kc ∼A ⇐⇒ Mc

K, w
′ 1Kc A for some w′ such that wSw′.
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We shall occasionally denote uSv also by vS−1u. As S is symmetric in
CCω, this distinction is not quite necessary. This however clarifies appeals
to symmetry in proofs, which becomes significant in a broader context.

Now the following gives the summary of semantical characterisations
for our logics.

Theorem 2.3. Let Fc
K be a CCω-frame. Then the following conditions are

equivalent:

(i) CCω is sound and weakly complete with respect to the class of all
CCω-frames.

(ii) daC is sound and weakly complete with respect to the class of CCω-
frames satisfying the condition

∀u, v(uSv implies ∃wS−1v(w ≤ u and w ≤ v)).

(iii) TCCω is sound and weakly complete with respect to CCω-frames
where S is transitive.

(iv) IPC∼ is sound and strongly complete with respect to CCω-frames
where S is transitive and satisfying the condition

∀u, v, w(uSv and uSw implies ∃xS−1u(v ≥ x and w ≥ x).

Proof: (i) and (iii) are established in [10] and [4], respectively. (ii) is
Corollary 5.2 of the first paper, and (iv) is a consequence of Proposition
5.6 of the same paper, as discussed thereafter.

3. Labelled sequent calculus

In this section, we define a labelled sequent calculus for some of the logics
we have treated (CCω,TCCω,daC, IPC∼), with the aid of the insights
obtained in the last section regarding their relationship. We shall show the
admissibility of cut and the correspondence with the Hilbert-style system.

A labelled formula is an expression of the form x : A, where A is a
formula and x is a label. We shall use x, y, z . . . for labels. We shall ad-
ditionally consider relational atoms, which either have the form xSy, or
x ≤ y. An item is either a labelled formula or a relational atom. We
denote items by α, β, . . .. A sequent has the form Γ ⇒ ∆, where Γ and ∆
are finite multisets of items.
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We shall consider the following calculus G3ccω.

Definition 3.1 (G3ccω).

x ≤ y, x : p,Γ⇒ ∆, y : p (Ax1) x ≤ y,Γ⇒ ∆, x ≤ y (Ax2)

xSy,Γ⇒ ∆, xSy (Ax3)

x : A, x : B,Γ⇒ ∆
(L∧)

x : A ∧B,Γ⇒ ∆

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
(R∧)

Γ⇒ ∆, x : A ∧B
x : A,Γ⇒ ∆ x : B,Γ⇒ ∆

(L∨)
x : A ∨B,Γ⇒ ∆

Γ⇒ ∆, x : A, x : B
(R∨)

Γ⇒ ∆, x : A ∨B

x ≤ y, x : A→ B,Γ⇒ ∆, y : A x ≤ y, x : A→ B, y : B,Γ⇒ ∆
(L→)

x ≤ y, x : A→ B,Γ⇒ ∆

x ≤ y∗, y∗ : A,Γ⇒ ∆, y∗ : B
(R→)

Γ⇒ ∆, x : A→ B

xSy∗,Γ⇒ ∆, y∗ : A
(L∼)

x : ∼A,Γ⇒ ∆

xSy, y : A,Γ⇒ ∆, x : ∼A
(R∼)

xSy,Γ⇒ ∆, x : ∼A

x ≤ x,Γ⇒ ∆
(Ref)

Γ⇒ ∆

x ≤ z, x ≤ y, y ≤ z,Γ⇒ ∆
(Trans)

x ≤ y, y ≤ z,Γ⇒ ∆

xSx,Γ⇒ ∆
(RefS)

Γ⇒ ∆

xSy, ySx,Γ⇒ ∆
(SymS)

xSy,Γ⇒ ∆

x ≤ y, xSz, ySz,Γ⇒ ∆
(Up)

x ≤ y, xSz,Γ⇒ ∆

A proof (derivation/deduction) of a sequent Γ ⇒ ∆ in G3ccω (to be
denoted `Gc Γ ⇒ ∆) is a tree whose root is the sequent, whose nodes are
applications of rules, and whose leaves are axioms (0-premise rules).

In the rules, variables indicated by * are eigenvariables, meaning that
they cannot occur in the conclusion of the rules. Γ, ∆ are called contexts,
and non-context items in the conclusion are called principal. The calculus
is in a large part an amalgamation of the labelled calculus for modal logic
[6] and intuitionistic logic [7]. It has the rules (RefS) and (SymS) corre-
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sponding to the reflexivity and symmetry in CCω. Additionally, it has the
rule (Up) corresponding to the condition for upward closure in CCω.

We shall also consider the following additional rules, corresponding to
the additional frame conditions for daC, TCCω and IPC∼, to G3ccω.

Definition 3.2.

xSy, ySz∗, z∗ ≤ x, z∗ ≤ y,Γ⇒ ∆
(Pr)

xSy,Γ⇒ ∆

xSz, xSy, ySz,Γ⇒ ∆
(TransS)

xSy, ySz,Γ⇒ ∆

xSy, xSz, t∗ ≤ y, t∗ ≤ z, xSt∗,Γ⇒ ∆
(De)

xSy, xSz,Γ⇒ ∆

Where, as before, labels indicted with * are eigenvariables. The intention
is that the addition of (Pr) should correspond to daC, (TransS) to TCCω,
and (TransS) and (De) to IPC∼. We shall denote the addition of some of
these rules to G3ccω by G3cc+ω , and the deducibility is denoted by `Gc+.

We shall later observe how the sequent calculi correspond to the Hilbert-
style systems. We now proceed with checking some standard properties of
the calculi.

Proposition 3.3. `Gc x ≤ y, x : A,Γ⇒ ∆, y : A

Proof: By [8, Lemma 12.25], we only have to consider the case for ∼.
When A ≡ ∼B,

z ≤ z, z : B, xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(Ref)

z : B, xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(R∼)

xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(Up)

xSz, x ≤ y,Γ⇒ ∆, y : ∼B, z : B
(L∼)

x ≤ y, x : ∼B,Γ⇒ ∆, y : ∼B
where the first line is obtained from the inductive hypothesis.

Definition 3.4 (substitution of labels). We define the substitution of
a label by another label x[z/w], substitution for an item α[z/w] and for
a multiset Γ[z/w] by the following clauses. (◦ ∈ {≤, S})

x[z/w] ≡ w if x ≡ z.
x[z/w] ≡ x if x 6≡ z.
α[z/w] ≡ x[z/w] ◦ y[z/w] if α ≡ x ◦ y.
α[z/w] ≡ x[z/w] : A if α ≡ x : A.

Γ[z/w] ≡ {α[z/w] : α ∈ Γ}
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We shall denote instances of substitution by (Sub). In addition, we
shall write G3cc+ω `n Γ ⇒ ∆ if the sequent has a derivation whose depth
is less than n. We say a rule is depth-preserving admissible (dp-admissible)
if and only if: if there are derivations of the premises of the rule each with
the depth less than n, then there exists a derivation of the conclusion
with the depth less than n. If the depth is not preserved, we just say the
rule is admissible. We shall indicate an application of an admissible rule
by a dashed line.

Proposition 3.5 (dp-admissibility of substitution).

The rule
Γ⇒ ∆ (Sub)

Γ[z/w]⇒ ∆[z/w]
is dp-admissible in G3cc+ω .

Proof: We argue by induction on the depth of deduction. The intuition-
istic rules are already treated in [8, Lemma 12.26]. For others, the case for
(Ax2) is immediate, since the result of the substitution is also an instance
of (Ax2). The case for (L∼) and (R∼) are similar to those of R� and
L� in modal calculi, respectively; c.f. [8, Lemma 11.4]. The other rules
are instances of either the scheme for mathematical rules or the geometric
rule scheme [8, pp. 98, 134], so can be dealt with by the methodology of
[8, Lemma 11.4].

We shall now move on to consider structural rules.

Definition 3.6 (structural rules).

Γ⇒ ∆ (LW)
α,Γ⇒ ∆

Γ⇒ ∆ (RW)
Γ⇒ ∆, α

α, α,Γ⇒ ∆
(LC)

α,Γ⇒ ∆

Γ⇒ ∆, α, α
(RC)

Γ⇒ ∆, α

Γ⇒ ∆, α α,Γ′ ⇒ ∆′
(Cut)

Γ,Γ′ ⇒ ∆,∆′

Our goal is to prove that (Cut) is admissible. For this purpose we
check that the rules of Weakening (LW,RW) and Contraction (LC,RC) are
dp-admissible. We start with Weakening.

Proposition 3.7 (dp-admissibility of Weakening). (LW) and (RW) are
dp-admissible in G3cc+ω .



366 Satoru Niki

Proof: The proof is by induction on the depth of deduction. In cases of
applications of (Ax1)-(Ax3), the result of Weakening is again an instance
of the axiom. For other rules, we apply the inductive hypothesis to the
premises of the rule, and thereafter apply the rule to obtain the desired
sequent; however for rules involving eigenvariables, we first need to apply
dp-admissible substitution (Proposition 3.5) to substitute the eigenvariable
with a fresh variable, so as to avoid the clash of variables. Then we apply
the above procedure.

For Contraction, we first need to demonstrate that the rules of G3cc+ω
are dp-invertible: that is, given a derivation of the conclusion of a rule, we
can find a depth-preserving derivation of the premises.

Lemma 3.8. The rules of G3cc+ω are dp-invertible.

Proof: We argue by induction on the depth of deduction. For the intu-
itionistic rules, we refer to [8, Theorem 12.28]. For the rules (R∼), (Up),
(RefS), (SymS), (TransS), (Pr) and (De), we can invert the sequent by
dp-admissible weakening.

The case for (L∼) is quite similar to that of R� for modal logic
[8, Lemma 11.7]. If `0 x : ∼A,Γ ⇒ ∆, then the derivation is an in-
stance of (Ax1), (Ax2) or (Ax3). In each case, xSy,Γ⇒ ∆, y : A is also an
instance of the same axiom. If `n+1 x : ∼A,Γ ⇒ ∆, then if it is obtained
by (L∼) with x : ∼A principal, i.e. it is of the form

`n xSz,Γ⇒ ∆, z : A
(L∼)`n+1 x : ∼A,Γ⇒ ∆

where z does not occur in the conclusion; then by dp-admissible substitu-
tion, `n xSy,Γ⇒ ∆, y : A (where y is a fresh variable).

We exemplify with (R→) the case where x : ∼A is obtained by a rule
with eigenvalue condition in which it is not principal

`n z ≤ t, t : C, x : ∼A,Γ′ ⇒ ∆′, t : D
(R→)

`n+1 x : ∼A,Γ′ ⇒ ∆′, z : C → D

then by dp-substitution, `n z ≤ t′, t′ : C, x : ∼A,Γ′ ⇒ ∆′, t′ : D, where t′ 6≡
y. (Note that y is fixed beforehand.) By I.H., `n z ≤ t′, t′ : C, xSy,Γ′ ⇒
∆′, y : A, t′ : D. So by (R→), `n+1 xSy,Γ

′ ⇒ ∆′, y : A, z : C → D.
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If it is obtained by a rule without eigenvariable condition, then apply
I.H. to the premise and apply the same rule.

Proposition 3.9 (dp-admissibility of Contraction). (LC) and (RC) are
dp-admissible in G3cc+ω .

Proof: We argue by simultaneous induction ((LC),(RC)) on the depth of
the deduction. General outline is as in [8, Theorem 12.28]. As an example,
suppose `n+1 x : ∼A, x : ∼A,Γ ⇒ ∆ and the last step is an instance of
(L∼) with x : ∼A principal.

`n xSy, x : ∼A,Γ⇒ ∆, y : A
(L∼)`n+1 x : ∼A, x : ∼A,Γ⇒ ∆

Then by dp-admissible invertibility of (L∼),

`n xSy, xSy,Γ⇒ ∆, y : A, y : A

So by I.H.
`n xSy,Γ⇒ ∆, y : A

Thus by (L∼)
`n+1 x : ∼A,Γ⇒ ∆

We are now ready to prove the admissibility of (Cut). We shall call the
item to be eliminated in (Cut) the cut-item.

Theorem 3.10 (admissibility of Cut). (Cut) is admissible in G3cc+ω .

Proof: We argue by induction on the complexity of cut-items, with a
subinduction on the level (the sum of the depths of the deductions of the
premises) of (Cut). Again the outline is the same as that of the intuitionistic
case [8, Theorem 12.30]. In particular, rules that are mathematical or
geometric are treated similarly to those of intermediate axioms.

Here we shall consider the case where the cut-item is principal in both
of the premises, and has the form x : ∼A. We have

`m−1 xSy, y : A,Γ⇒ ∆, x : ∼A
(R∼)`m xSy,Γ⇒ ∆, x : ∼A

`n−1 xSz,Γ′ ⇒ ∆′, z : A
(L∼)

`n x : ∼A,Γ′ ⇒ ∆′
(Cut)

` xSy,ΓΓ′ ⇒ ∆∆′
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Then

`n−1 xSz,Γ′ ⇒ ∆′, z : A
(Sub)

`n−1 xSy,Γ′ ⇒ ∆′, y : A

(note that z is an eigenvariable, so cannot occur in Γ′,∆′). Moreover, by
I.H. the following cut of a lower level (m+ n− 1 < m+ n) is admissible:

`m−1 xSy, y : A,Γ⇒ ∆, x : ∼A `n x : ∼A,Γ′ ⇒ ∆′
(I.H.)

` xSy, y : A,ΓΓ′ ⇒ ∆∆′

From these, and a cut of lower complexity (admissible by I.H.), we obtain

`n−1 xSy,Γ′ ⇒ ∆′, y : A ` xSy, y : A,ΓΓ′ ⇒ ∆∆′
(I.H.)

` xSy, xSy,ΓΓ′Γ′ ⇒ ∆∆′∆′
(Contraction)

` xSy,ΓΓ′ ⇒ ∆∆′

Next we observe that G3ccω and calculi in G3cc+ω indeed correspond
to CCω, daC, TCCω and IPC∼.

Proposition 3.11.

(i) `c A implies `Gc ⇒ x : A.

(ii) If we add (Pr)/(transS) to the calculus, then the axioms of
daC/TCCω become derivable. If we add (transS) and (De), the
axioms of IPC∼ become derivable.

Proof:

(i) For CCω, the positive axioms can be shown to be derivable as in the
intuitionistic case. We need to check [Ax9],[Ax10] and [RC].

[Ax9]

x ≤ x, xSx, x : A⇒ x : A, x : ∼A
(Ref)

xSx, x : A⇒ x : A, x : ∼A
(R∼)

xSx⇒ x : A, x : ∼A
(RefS)⇒ x : A, x : ∼A

(R∨)⇒ x : A ∨ ∼A
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[Ax10]

y ≤ y, x ≤ y, ySz, zSy, y : A⇒ z : ∼A, y : A
(Ref)

x ≤ y, ySz, zSy, y : A⇒ z : ∼A, y : A
(R∼)

x ≤ y, ySz, zSy ⇒ z : ∼A, y : A
(SymS)

x ≤ y, ySz ⇒ z : ∼A, y : A
(L∼)

x ≤ y, y : ∼∼A⇒ y : A
(R→)⇒ x : ∼∼A→ A

[RC]

We first observe that x : A→ B, x : A⇒ x : B is derivable:

x ≤ x, x : A→ B, x : A⇒ x : A x ≤ x, x : A→ B, x : B ⇒ x : B
(L→)

x ≤ x, x : A→ B, x : A⇒ x : B
(Ref)

x : A→ B, x : A⇒ x : B

Then

⇒ x : A→ B x : A→ B, x : A⇒ x : B
(Cut)

x : A⇒ x : B (Weakening)
y ≤ z, zSx, x : A⇒ x : B, z : ∼A

(R∼)
y ≤ z, zSx⇒ x : B, z : ∼A

(L∼)
y ≤ z, z : ∼B ⇒ z : ∼A

(R→)⇒ y : ∼B → ∼A
(Sub)⇒ x : ∼B → ∼A

(ii) We need to check each of the additional axioms are derivable in the
corresponding calculi.

daC

First we apply (L∨) to

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A⇒ z : ∼(A ∨B), z : A, y : B;

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : B ⇒ z : ∼(A ∨B), z : A, y : B
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to obtain

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A ∨B ⇒ z : ∼(A ∨B), z : A, y : B

Then,

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A ∨B ⇒ z : ∼(A ∨B), z : A, y : B
(R∼)

x ≤ y, ySz, zSt, t ≤ y, t ≤ z ⇒ z : ∼(A ∨B), z : A, y : B
(Pr)

x ≤ y, ySz ⇒ z : ∼(A ∨B), z : A, y : B
(R∨)

x ≤ y, ySz ⇒ z : ∼(A ∨B) ∨A, y : B
(L∼)

x ≤ y, y : ∼(∼(A ∨B) ∨A)⇒ y : B
(R→)

⇒ x : ∼(∼(A ∨B) ∨ ∼A)→ B

TCCω

u ≤ u, y ≤ z, ySu, zSv, zSu, vSz, vSu, u : A⇒ u : A, v : ∼A
(Ref)

y ≤ z, ySu, zSv, zSu, vSz, vSu, u : A⇒ u : A, v : ∼A
(R∼)

y ≤ z, ySu, zSv, zSu, vSz, vSu⇒ u : A, v : ∼A
(TransS)

y ≤ z, ySu, zSv, zSu, vSz ⇒ u : A, v : ∼A
(SymS)

y ≤ z, ySu, zSv, zSu⇒ u : A, v : ∼A
(Up)

y ≤ z, ySu, zSv ⇒ u : A, v : ∼A
(L∼)

y ≤ z, ySu, z : ∼∼A⇒ u : A
(L∼)

y ≤ z, y : ∼A, z : ∼∼A⇒
(Weakening)

x ≤ y, y ≤ z, y : ∼A, z : ∼∼A⇒ z : B
(R→)

x ≤ y, y : ∼A⇒ y : ∼∼A→ B
(R→)

x : ∼A→ (∼∼A→ B)

IPC∼

First we apply (L∨) to

ySz, ySt, w : A,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B);

ySz, ySt, w : B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)

to obtain

ySz, ySt, w : A ∨B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
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Then

ySz, ySt, w : A ∨B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
(R∼)

ySz, ySt, w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
(De)

ySz, ySt⇒ z : A, t : B, y : ∼(A ∨B)
(L∼)

ySz, y : ∼B ⇒ z : A, y : ∼(A ∨B)
(L∼)

y : ∼A, y : ∼B ⇒ y : ∼(A ∨B)
(L∧)

y : ∼A ∧ ∼B ⇒ y : ∼(A ∨B)
(Weakening)

x ≤ y, y : ∼A ∧ ∼B ⇒ y : ∼(A ∨B)
(R→)

⇒ x : (∼A ∧ ∼B)→ ∼(A ∨B)

For the converse direction, we argue via completeness of the Hilbert-
style systems with respect to Kripke semantics. For this purpose the notion
of valuation has to be modified in the style of [8, Definition 11.25-26], to
accommodate labelled formulae and relational atoms.

Definition 3.12 (modified valuation for CCω-model). Let Fc
K be a CCω-

frame. A modified valuation Vm is a pair (V, l), where V is the ordinary
valuation for Fc

K introduced before, and l maps each label x into to a world
l(x)of Fc

K.
We say an item α is valid in a modified model Mmc

K = (Fc
K,Vm) (denoted

Mmc
K m

Kc α), when

• l(x) ≤ l(y) (or l(x)Sl(y)) in Fc
K, if α ≡ x ≤ y (or xSy).

• (Fc
K,V), l(x) Kc A, if α ≡ x : A.

We say a sequent Γ ⇒ ∆ is valid in Mmc
K (denoted Mmc

K �m
Kc Γ ⇒ ∆), if

Mmc
K m

Kc α for all α ∈ Γ implies Mmc
K m

Kc β for some β ∈ ∆. If Mmc
K is

arbitrary, we say Γ⇒ ∆ is valid and write �m
Kc Γ⇒ ∆.

Note that �m
Kc ⇒ x : A is valid if and only if �Kc A. Similar statements

hold when we restrict the class of frames. We now wish to demonstrate the
following.

Proposition 3.13.

(i) `Gc Γ⇒ ∆ implies �m
Kc Γ⇒ ∆.

(ii) (Pr)/(TransS)/(De) become sound if we restrict consideration to the
corresponding classes of frames.
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Proof:

(i) We argue by induction on the depth of deductions. The cases for the
intuitionistic rules follow straightforwardly from the definition of intuition-
istic Kripke models. We shall look at the cases for (L∼), (R∼). The other
cases are straightforward. In each case, we consider an arbitrary modified
model Mmc

K = (Fc
K,Vm) with Vm = (V, l).

(L∼) SupposeMmc
K m

Kc α for all α ∈ {x : ∼A}∪Γ. Then (Fc
K,V), l(x) Kc

∼A. So there is w such that l(x)Sw and (Fc
K,V), w 1Kc A. Take

V ′m = (V, l′) where l′ = l except l′(y) = w. Note, since y does not
occur in Γ and ∆, l and l′ evaluate them in the same way. Thus
(Fc
K,V ′m) m

Kc α for all α ∈ {xSy} ∪ Γ. So by I.H., (Fc
K,V ′m) m

Kc β
for some β ∈ {y : A} ∪ ∆. If it validates y : A, however, then
(Fc
K,V), l′(y) Kc A, a contradiction. Therefore (Fc

K,Vm) m
Kc β for

some β ∈ ∆. Since Mmc
K is arbitrary, �m

Kc x : ∼A,Γ⇒ ∆.

(R∼) Suppose Mmc
K m

Kc α for all α ∈ {xSy} ∪ Γ. If l(y) 1Kc A, then
l(x) Kc ∼A. Otherwise, l(y) Kc A, so by I.H., Mmc

K m
Kc α for

all α ∈ {xSy, y : A} ∪ Γ. So in either case (the latter with I.H.),
Mmc
K m

Kc β for some β ∈ ∆ ∪ {x : ∼A}.

(ii) The case for (TransS) is straightforward and (Pr), (De) are similar
to the case for (L∼); one needs to appeal to the frame condition to pick out
a world satisfying the desired order relation; then define a new modified
valuation which is identical to the original except it assigns the world to
the eigenvariable; then the rest follows as in the case for (L∼).

This allows us to conclude the other direction.

Corollary 3.14.

(i) `Gc ⇒ x : A implies `c A.

(ii) `Gc+ is sound with respect to the corresponding logics
(daC,TCCω,IPC∼).

Proof:

(i) If `Gc ⇒ x : A, then by the previous proposition, �m
Kc ⇒ x : A. Then

as we remarked before, �Kc A. Thus by the completeness of CCω, `c A.

(ii) Similar.
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4. Discussion

We have seen that TCCω can be regarded as the logic of empirical and co-
negation for Beth semantics, which differs from IPC∼ and daC for Kripke
semantics. According to the interpretation in [11, p.679], the difference
between Kripke and Beth semantics is the treatment of time. A node in
Kripke models signifies a state of information, whereas in Beth models it
signifies a moment in time. So for instance, to decide the forcing of a
disjunction in a Kripke model, one can stay in a world as much as one
likes, until one learns which of the disjuncts is true. In comparison, in
Beth models this waiting time is expressed by posterior nodes, so we need
to refer to those other worlds to decide the forcing of the disjunction in
the original world. The two kinds of empirical and co-negation can be
interpreted similarly.

The question remains, however, which empirical (or co- ) negation one
actually means in an assertion of negation. For example, if one says “There
is no proof of P=NP”, does it mean there is no proof at the present state
of information, or there is no proof at the present moment?

Changing perspective, from an intuitionistic viewpoint there is a cer-
tain advantage in considering Beth semantics. There is a relatively simple
proof of intuitionistic completeness (proving completeness with only intu-
itionistically accepted principles) for intuitionistic logic [3, 11]. The intu-
itionistic completeness proof for Kripke semantics [12] gives a more refined
result, but is comparatively more involved. A possible future direction is to
show the intuitionistic completeness for TCCω. An obstacle would be the
treatment of excluded middle, but classical logic also has an intuitionistic
completeness proof [5], so possibly this may be overcome. An intuitionistic
completeness would be desirable if one is a full-fledged intuitionist, espe-
cially when the logic is motivated from the semantics, rather than from the
syntax.
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1. Introduction

The intuitionistic fuzzy set, which has been introduced by Atanassov [1],
consider both truth-membership and falsity membership. The neutrosophic
set developed by Smarandache [6, 7, 8] is a formal framework which gen-
eralizes the concept of the classic set, fuzzy set, interval valued fuzzy set,
intuitionistic fuzzy set, interval valued intuitionistic fuzzy set and paracon-
sistent set etc. Neutrosophic set theory is applied to various part, includ-
ing algebra, topology, control theory, decision making problems, medicines
and in many real life problems. Wang et al. [9, 11] presented the con-
cept of interval neutrosophic sets, which is more precise and more flex-
ible than the single-valued neutrosophic set. An interval-valued neutro-
sophic set is a generalization of the concept of single-valued neutrosophic
set, in which three membership (t, i, f) functions are independent, and
their values belong to the unit interval [0, 1]. The interval neutrosophic
set can represent uncertain, imprecise, incomplete and inconsistent in-
formation which exists in real world. Jun et al. [4] discussed interval
neutrosophic sets in BCK/BCI-algebras. They introduced the notion of
(T (i, j), I(k, l), F (m,n))-interval neutrosophic subalgebras in BCK/BCI-
algebras for i, j, k, l,m, n ∈ {1, 2, 3, 4}, and investigated several properties
and relations. They also introduced the notion of interval neutrosophic
length of an interval neutrosophic set, and investigated related properties.

In this paper, we introduce the notion of (i, j, k)-length neutrosophic
subalgebras in BCK/BCI-algebras for i, j, k ∈ {1, 2, 3, 4}, and investigate
several properties. We consider relations of (i, j, k)-length neutrosophic
subalgebras, and discuss characterizations of (i, j, k)-length neutrosophic
subalgebras. Using subalgebras of a BCK-algebra, we construct (i, j, k)-
length neutrosophic subalgebras for i, j, k ∈ {1, 4}. We consider conditions
for level sets of interval neutrosophic set to be subalgebras of a BCK/BCI-
algebra.

2. Preliminaries

By a BCI-algebra we mean a system X := (X, ∗, 0) ∈ K(τ) in which the
following axioms hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(II) (x ∗ (x ∗ y)) ∗ y = 0,
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(III) x ∗ x = 0,

(IV) x ∗ y = y ∗ x = 0 ⇒ x = y

for all x, y, z ∈ X. If a BCI-algebra X satisfies 0∗x = 0 for all x ∈ X, then
we say that X is a BCK-algebra.

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra
of X if x ∗ y ∈ S for all x, y ∈ S.

The collection of all BCK-algebras and all BCI-algebras are denoted
by BK(X) and BI(X), respectively. Also B(X) := BK(X) ∪ BI(X).

We refer the reader to the books [2] and [5] for further information
regarding BCK/BCI-algebras.

By a fuzzy structure over a nonempty set X we mean an ordered pair
(X, ρ) of X and a fuzzy set ρ on X.

Definition 2.1 ([3]). For any (X, ∗, 0) ∈ B(X), a fuzzy structure (X,µ)
over (X, ∗, 0) is called a

• fuzzy subalgebra of (X, ∗, 0) with type 1 (briefly, 1-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≥ min{µ(x), µ(y)}) , (2.1)

• fuzzy subalgebra of (X, ∗, 0) with type 2 (briefly, 2-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≤ min{µ(x), µ(y)}) , (2.2)

• fuzzy subalgebra of (X, ∗, 0) with type 3 (briefly, 3-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≥ max{µ(x), µ(y)}) , (2.3)

• fuzzy subalgebra of (X, ∗, 0) with type 4 (briefly, 4-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≤ max{µ(x), µ(y)}) . (2.4)
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Let X be a non-empty set. A neutrosophic set (NS) in X (see [7]) is a
structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1]
is an indeterminate membership function, and AF : X → [0, 1] is a false
membership function.

An interval neutrosophic set (INS) A in X is characterized by truth-
membership function TA, indeterminacy membership function IA and falsi-
ty-membership function FA. For each point x in X, TA(x), IA(x), FA(x) ∈
[0, 1] (see [11, 10]).

In what follows, let (X, ∗, 0) ∈ B(X) and P∗([0, 1]) be the family of all
subintervals of [0, 1] unless otherwise specified.

Definition 2.2 ([11, 10]). An interval neutrosophic set in a nonempty set
X is a structure of the form:

I := {〈x, I[T ](x), I[I](x), I[F ](x)〉 | x ∈ X}

where

I[T ] : X → P∗([0, 1])

which is called interval truth-membership function,

I[I] : X → P∗([0, 1])

which is called interval indeterminacy-membership function, and

I[F ] : X → P∗([0, 1])

which is called interval falsity-membership function.

For the sake of simplicity, we will use the notation I := (I[T ], I[I], I[F ])
for the interval neutrosophic set

I := {〈x, I[T ](x), I[I](x), I[F ](x)〉 | x ∈ X}.

Given an interval neutrosophic set I := (I[T ], I[I], I[F ]) in X, we con-
sider the following functions (see [4]):
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I[T ]inf : X → [0, 1], x 7→ inf{I[T ](x)}
I[I]inf : X → [0, 1], x 7→ inf{I[I](x)}
I[F ]inf : X → [0, 1], x 7→ inf{I[F ](x)}

and

I[T ]sup : X → [0, 1], x 7→ sup{I[T ](x)}
I[I]sup : X → [0, 1], x 7→ sup{I[I](x)}
I[F ]sup : X → [0, 1], x 7→ sup{I[F ](x)}.

Definition 2.3 ([4]). Given an interval neutrosophic set I := (I[T ], I[I],
I[F ]) in X, we define the interval neutrosophic length of I as an ordered
triple I` := (I[T ]`, I[I]`, I[F ]`) where

I[T ]` : X → [0, 1], x 7→ I[T ]sup(x)− I[T ]inf(x),

I[I]` : X → [0, 1], x 7→ I[I]sup(x)− I[I]inf(x),

and

I[F ]` : X → [0, 1], x 7→ I[F ]sup(x)− I[F ]inf(x),

which are called interval neutrosophic T -length, interval neutrosophic
I-length and interval neutrosophic F -length of I, respectively.

3. Length neutrosophic subalgebras

Definition 3.1. Given i, j, k ∈ {1, 2, 3, 4}, an interval neutrosophic set
I := (I[T ], I[I], I[F ]) in X is called an (i, j, k)-length neutrosophic sub-
algebra of (X, ∗, 0) if the interval neutrosophic T -length of I is an i-fuzzy
subalgebra of (X, ∗, 0), the interval neutrosophic I-length of I is a j-fuzzy
subalgebra of (X, ∗, 0), and the interval neutrosophic F -length of I is a
k-fuzzy subalgebra of (X, ∗, 0).

Example 3.2. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the binary
operation ∗ which is given in Table 1 (see [5]).
Let I := (I[T ], I[I], I[F ]) be an interval neutrosophic set in (X, ∗, 0) where
I[T ], I[I] and I[F ] are given as follows:
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Table 1. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 3 4 1 0

I[T ] : X → P∗([0, 1]), x 7→


[0.1, 0.8) if x = 0,
(0.3, 0.7] if x = 1,
[0.0, 0.6] if x = 2,
[0.4, 0.8] if x = 3,
[0.2, 0.5] if x = 4,

I[I] : X → P∗([0, 1]), x 7→


[0.2, 0.8) if x = 0,
(0.4, 0.8] if x = 1,
[0.1, 0.6] if x = 2,
[0.6, 0.9] if x = 3,
[0.3, 0.5] if x = 4,

and

I[F ] : X → P∗([0, 1]), x 7→


[0.1, 0.4) if x = 0,
(0.4, 0.8] if x = 1,
[0.1, 0.5] if x = 2,
[0.2, 0.7) if x = 3,
[0.3, 0.9] if x = 4.

Then the interval neutrosophic length I` := (I[T ]`, I[I]`, I[F ]`) of I is
given by Table 2.
It is routine to verify that I := (I[T ], I[I], I[F ]) is a (1, 1, 4)-length neu-
trosophic subalgebra of (X, ∗, 0).
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Table 2. Interval neutrosophic length of I

X I[T ]` I[I]` I[F ]`
0 0.7 0.6 0.3
1 0.4 0.4 0.4
2 0.6 0.5 0.4
3 0.4 0.3 0.5
4 0.3 0.2 0.6

Proposition 3.3. Given an (i, j, k)-length neutrosophic subalgebra I :=
(I[T ], I[I], I[F ]) of (X, ∗, 0), we have the following assertions.

(1) If i, j, k ∈ {1, 3}, then

(∀x ∈ X)(I[T ]`(0) ≥ I[T ]`(x), I[I]`(0) ≥ I[I]`(x), I[F ]`(0)

≥ I[F ]`(x)).
(3.1)

(2) If i, j, k ∈ {2, 4}, then

(∀x ∈ X)(I[T ]`(0) ≤ I[T ]`(x), I[I]`(0) ≤ I[I]`(x), I[F ]`(0)

≤ I[F ]`(x)).
(3.2)

(3) If i, j ∈ {1, 3} and k ∈ {2, 4}, then

(∀x ∈ X)(I[T ]`(0) ≥ I[T ]`(x), I[I]`(0) ≥ I[I]`(x), I[F ]`(0)

≤ I[F ]`(x)).
(3.3)

(4) If i, j ∈ {2, 4} and k ∈ {1, 3}, then

(∀x ∈ X)(I[T ]`(0) ≤ I[T ]`(x), I[I]`(0) ≤ I[I]`(x), I[F ]`(0)

≥ I[F ]`(x)).
(3.4)

Proof: Let I := (I[T ], I[I], I[F ]) be an (i, j, k)-length neutrosophic sub-
algebra of (X, ∗, 0). If (i, j, k) = (1, 3, 1), then

I[T ]`(0) = I[T ]`(x ∗ x) ≥ min{I[T ]`(x), I[T ]`(x)} = I[T ]`(x)
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I[I]`(0) = I[I]`(x ∗ x) ≥ max{I[I]`(x), I[I]`(x)} = I[I]`(x)

I[F ]`(0) = I[F ]`(x ∗ x) ≥ min{I[F ]`(x), I[F ]`(x)} = I[F ]`(x)

for all x ∈ X. Similarly, we can verify that (3.1) is true for other cases of
(i, j, k). Using the similar way to the proof of (1), we can prove that (2),
(3) and (4) hold.

Theorem 3.4. Given a subalgebra S of (X, ∗, 0) and A1, A2, B1, B2,
C1, C2 ∈ P∗([0, 1]), let I := (I[T ], I[I], I[F ]) be an interval neutrosophic
set in (X, ∗, 0) given by

I[T ] : X → P∗([0, 1]), x 7→
{
A2 if x ∈ S,
A1 otherwise,

(3.5)

I[I] : X → P∗([0, 1]), x 7→
{
B2 if x ∈ S,
B1 otherwise,

(3.6)

I[F ] : X → P∗([0, 1]), x 7→
{
C2 if x ∈ S,
C1 otherwise.

(3.7)

(1) If A1 ( A2, B1 ( B2 and C1 ( C2, then I := (I[T ], I[I], I[F ]) is a
(1, 1, 1)-length neutrosophic subalgebra of (X, ∗, 0).

(2) If A1 ) A2, B1 ) B2 and C1 ) C2, then I := (I[T ], I[I], I[F ]) is a
(4, 4, 4)-length neutrosophic subalgebra of (X, ∗, 0).

(3) If A1 ( A2, B1 ) B2 and C1 ( C2, then I := (I[T ], I[I], I[F ]) is a
(1, 4, 1)-length neutrosophic subalgebra of (X, ∗, 0).

(4) If A1 ) A2, B1 ( B2 and C1 ) C2, then I := (I[T ], I[I], I[F ]) is a
(4, 1, 4)-length neutrosophic subalgebra of (X, ∗, 0).

(5) If A1 ( A2, B1 ( B2 and C1 ) C2, then I := (I[T ], I[I], I[F ]) is a
(1, 1, 4)-length neutrosophic subalgebra of (X, ∗, 0).

(6) If A1 ) A2, B1 ) B2 and C1 ( C2, then I := (I[T ], I[I], I[F ]) is a
(4, 4, 1)-length neutrosophic subalgebra of (X, ∗, 0).

Proof: We will prove (3) only, and others can be obtained by the similar
way. Assume that A1 ( A2, B1 ) B2 and C1 ( C2. If x ∈ S, then
I[T ](x) = A2, I[I](x) = B2 and I[F ](x) = C2. Hence
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I[T ]`(x) = I[T ]sup(x)− I[T ]inf(x) = sup{A2} − inf{A2},
I[I]`(x) = I[I]sup(x)− I[I]inf(x) = sup{B2} − inf{B2},
I[F ]`(x) = I[F ]sup(x)− I[F ]inf(x) = sup{C2} − inf{C2}.

If x /∈ S, then I[T ](x) = A1, I[I](x) = B1 and I[F ](x) = C1, and so

I[T ]`(x) = I[T ]sup(x)− I[T ]inf(x) = sup{A1} − inf{A1},
I[I]`(x) = I[I]sup(x)− I[I]inf(x) = sup{B1} − inf{B1},
I[F ]`(x) = I[F ]sup(x)− I[F ]inf(x) = sup{C1} − inf{C1}.

Since A1 ( A2, B1 ) B2 and C1 ( C2, we have

sup{A2} − inf{A2} ≥ sup{A1} − inf{A1},
sup{B2} − inf{B2} ≤ sup{B1} − inf{B1},
sup{C2} − inf{C2} ≥ sup{C1} − inf{C1}.

Let x, y ∈ X. If x, y ∈ S, then x ∗ y ∈ S and so

I[T ]`(x ∗ y) = sup{A2} − inf{A2} = min{I[T ]`(x), I[T ]`(y)},
I[I]`(x ∗ y) = sup{B2} − inf{B2} = max{I[I]`(x), I[I]`(y)},
I[F ]`(x ∗ y) = sup{C2} − inf{C2} = min{I[F ]`(x), I[F ]`(y)}.

If x, y /∈ S, then

I[T ]`(x ∗ y) ≥ sup{A1} − inf{A1} = min{I[T ]`(x), I[T ]`(y)},
I[I]`(x ∗ y) ≤ sup{B1} − inf{B1} = max{I[I]`(x), I[I]`(y)},
I[F ]`(x ∗ y) ≥ sup{C1} − inf{C1} = min{I[F ]`(x), I[F ]`(y)}.

Assume that x ∈ S and y /∈ S (or, x /∈ S and y ∈ S). Then

I[T ]`(x ∗ y) ≥ sup{A1} − inf{A1} = min{I[T ]`(x), I[T ]`(y)},
I[I]`(x ∗ y) ≤ sup{B1} − inf{B1} = max{I[I]`(x), I[I]`(y)},
I[F ]`(x ∗ y) ≥ sup{C1} − inf{C1} = min{I[F ]`(x), I[F ]`(y)}.

Therefore I := (I[T ], I[I], I[F ]) is a (1, 4, 1)-length neutrosophic subalge-
bra of (X, ∗, 0).
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Remark 3.5. We have the following relations.

(1) Every (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for i, j, k ∈
{1, 3} is a (1, 1, 1)-length neutrosophic subalgebra of (X, ∗, 0).

(2) Every (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for i, j, k ∈
{2, 4} is a (4, 4, 4)-length neutrosophic subalgebra of (X, ∗, 0).

(3) Every (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for i, j ∈
{1, 3} and k ∈ {2, 4} is a (1, 1, 4)-length neutrosophic subalgebra of
(X, ∗, 0).

(4) Every (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for i, j ∈
{2, 4} and k ∈ {1, 3} is a (4, 4, 1)-length neutrosophic subalgebra of
(X, ∗, 0).

(5) Every (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for i, k ∈
{2, 4} and j ∈ {1, 3} is a (4, 1, 4)-length neutrosophic subalgebra of
(X, ∗, 0).

(6) Every (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for i, k ∈
{1, 3} and j ∈ {2, 4} is a (1, 4, 1)-length neutrosophic subalgebra of
(X, ∗, 0).

The following example shows that the converse in Remark 3.5 is not
true in general. We consider the cases (5) and (6) only in Remark 3.5.

Example 3.6. Consider the BCK-algebra (X, ∗, 0) in Example 3.2. Given
a subalgebra S = {0, 1, 2} of (X, ∗, 0), let I := (I[T ], I[I], I[F ]) be an
interval neutrosophic set in (X, ∗, 0) given by

I[T ] : X → P∗([0, 1]), x 7→
{

[0.2, 0.7) if x ∈ S,
(0.1, 0.8] otherwise,

I[I] : X → P∗([0, 1]), x 7→
{

[0.2, 0.9) if x ∈ S,
(0.3, 0.7] otherwise,

and

I[F ] : X → P∗([0, 1]), x 7→
{

[0.4, 0.5) if x ∈ S,
(0.3, 0.6] otherwise.

Then I := (I[T ], I[I], I[F ]) is a (4, 1, 4)-length neutrosophic subalgebra
of (X, ∗, 0) by Theorem 3.4(4). Since
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I[I]`(2) = I[I]sup(2)− I[I]inf(2) = 0.9− 0.2 = 0.7

and

I[I]`(3 ∗ 2) = I[I]`(3) = I[I]sup(3)− I[I]inf(3) = 0.7− 0.3 = 0.4,

we have I[I]`(3 ∗ 2) = 0.4 < 0.7 = max{I[I]`(3), I[I]`(2)}. Hence I :=
(I[T ], I[I], I[F ]) is not an (i, 3, k)-length neutrosophic subalgebra of
(X, ∗, 0) for i, k ∈ {2, 4}. Given a subalgebra S = {0, 1, 2, 3} of (X, ∗, 0),
let I := (I[T ], I[I], I[F ]) be an interval neutrosophic set in (X, ∗, 0) given
by

I[T ] : X → P∗([0, 1]), x 7→
{

[0.2, 0.7) if x ∈ S,
(0.3, 0.5] otherwise,

I[I] : X → P∗([0, 1]), x 7→
{

[0.4, 0.6) if x ∈ S,
(0.3, 0.8] otherwise,

and

I[F ] : X → P∗([0, 1]), x 7→
{

[0.2, 0.8) if x ∈ S,
(0.3, 0.6] otherwise.

Then I := (I[T ], I[I], I[F ]) is a (1, 4, 1)-length neutrosophic subalgebra of
(X, ∗, 0) by Theorem 3.4(3). But it is not an (i, 2, k)-length neutrosophic
subalgebra of (X, ∗, 0) for i, k ∈ {1, 3} since

I[I]`(4 ∗ 2) = I[I]`(4) = 0.5 > 0.2 = min{I[I]`(4), I[I]`(2)}.

Given an interval neutrosophic set I := (I[T ], I[I], I[F ]) in (X, ∗, 0),
we consider the following level sets:

U`(I[T ];αT ) := {x ∈ X | I[T ]`(x) ≥ αT },
U`(I[I];αI) := {x ∈ X | I[I]`(x) ≥ αI},
U`(I[F ];αF ) := {x ∈ X | I[F ]`(x) ≥ αF },

and

L`(I[T ];βT ) := {x ∈ X | I[T ]`(x) ≤ βT },
L`(I[I];βI) := {x ∈ X | I[I]`(x) ≤ βI},
L`(I[F ];βF ) := {x ∈ X | I[F ]`(x) ≤ βF }.
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Theorem 3.7. Given an interval neutrosophic set I := (I[T ], I[I], I[F ])
in (X, ∗, 0) and for any αT , αI , αF ∈ [0, 1], the following assertions are
equivalent.

(1) I := (I[T ], I[I], I[F ]) is a (1, 1, 1)-length neutrosophic subalgebra of
(X, ∗, 0).

(2) U`(I[T ];αT ), U`(I[I];αI) and U`(I[F ];αF ) are subalgebras of
(X, ∗, 0) whenever they are nonempty.

Proof: Assume that I := (I[T ], I[I], I[F ]) is a (1, 1, 1)-length neutro-
sophic subalgebra of (X, ∗, 0) and let αT , αI , αF ∈ [0, 1] be such that
U`(I[T ];αT ), U`(I[I];αI) and U`(I[F ];αF ) are nonempty. If x, y ∈
U`(I[T ];αT ), then I[T ]`(x) ≥ αT and I[T ]`(y) ≥ αT . Hence

I[T ]`(x ∗ y) ≥ min{I[T ]`(x), I[T ]`(y)} ≥ αT ,

that is, x∗y ∈ U`(I[T ];αT ). Similarly, we can see that if x, y ∈ U`(I[I];αI),
then x ∗ y ∈ U`(I[I];αI), and if x, y ∈ U`(I[F ];αF ), then x ∗ y
∈ U`(I[F ];αF ). Therefore U`(I[T ];αT ), U`(I[I];αI) and U`(I[F ];αF ) are
subalgebras of (X, ∗, 0).

Conversely, suppose that (2) is valid. If there exist a, b ∈ X such that

I[T ]`(a ∗ b) < min{I[T ]`(a), I[T ]`(b)},

then a, b ∈ U`(I[T ];αT ) by taking αT = min{I[T ]`(a), I[T ]`(b)}, and so
a ∗ b ∈ U`(I[T ];αT ). It follows that I[T ]`(a ∗ b) ≥ αT , a contradiction.
Hence

I[T ]`(x ∗ y) ≥ min{I[T ]`(x), I[T ]`(y)}

for all x, y ∈ X. Similarly, we can check that

I[I]`(x ∗ y) ≥ min{I[I]`(x), I[I]`(y)}

and

I[F ]`(x ∗ y) ≥ min{I[F ]`(x), I[F ]`(y)}

for all x, y ∈ X. Thus I := (I[T ], I[I], I[F ]) is a (1, 1, 1)-length neutro-
sophic subalgebra of (X, ∗, 0).
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Corollary 3.8. If I := (I[T ], I[I], I[F ]) is an (i, j, k)-length neutro-
sophic subalgebra of (X, ∗, 0) for i, j, k ∈ {1, 3}, then U`(I[T ];αT ),
U`(I[I];αI) and U`(I[F ];αF ) are subalgebras of (X, ∗, 0) whenever they
are nonempty for all αT , αI , αF ∈ [0, 1].

The following example shows that the converse of Corollary 3.8 is not
true.

Example 3.9. Consider a BCI-algebra X = {0, 1, 2, a, b} with the binary
operation ∗ which is given in Table 3 (see [5]).

Table 3. Cayley table for the binary operation “∗”

∗ 0 1 2 a b
0 0 0 0 a a
1 1 0 1 b a
2 2 2 0 a a
a a a a 0 0
b b a b 1 0

Let I := (I[T ], I[I], I[F ]) be an interval neutrosophic set in (X, ∗, 0) given
by

I[T ] : X → P∗([0, 1]), x 7→


[0.3, 0.9) if x = 0,
(0.5, 0.7] if x = 1,
[0.1, 0.6] if x = 2,
[0.4, 0.7] if x = a,
(0.3, 0.5] if x = b,

I[I] : X → P∗([0, 1]), x 7→


[0.2, 0.9) if x = 0,
(0.1, 0.8] if x = 1,
[0.5, 0.9] if x = 2,
[0.4, 0.7] if x = a,
(0.4, 0.7] if x = b,
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and

I[F ] : X → P∗([0, 1]), x 7→


[0.1, 0.6) if x = 0,
(0.6, 0.9) if x = 1,
(0.4, 0.8] if x = 2,
[0.5, 0.7] if x = a,
(0.5, 0.7] if x = b.

Then the interval neutrosophic length I` := (I[T ]`, I[I]`, I[F ]`) of I is
given by Table 4.

Table 4. Interval neutrosophic length of I

X I[T ]` I[I]` I[F ]`
0 0.6 0.7 0.5
1 0.2 0.7 0.3
2 0.5 0.4 0.4
a 0.3 0.3 0.2
b 0.2 0.3 0.2

Hence we have

U`(I[T ];αT ) =


∅ if αT ∈ (0.6, 1],
{0} if αT ∈ (0.5, 0.6],
{0, 2} if αT ∈ (0.3, 0.5],
{0, 2, a} if αT ∈ (0.2, 0.3],
X if αT ∈ [0, 0.2],

U`(I[I];αI) =


∅ if αI ∈ (0.7, 1],
{0, 1} if αI ∈ (0.4, 0.7],
{0, 1, 2} if αI ∈ (0.3, 0.4],
X if αI ∈ [0, 0.3],
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and

U`(I[F ];αF ) =


∅ if αF ∈ (0.5, 1],
{0} if αF ∈ (0.4, 0.5],
{0, 2} if αF ∈ (0.3, 0.4],
{0, 1, 2} if αF ∈ (0.2, 0.3],
X if αF ∈ [0, 0.2],

and so U`(I[T ];αT ), U`(I[I];αI) and U`(I[F ];αF ) are subalgebras of
(X, ∗, 0) for all αT , αI , αF ∈ [0, 1] such that U`(I[T ];αT ), U`(I[I];αI) and
U`(I[F ];αF ) are nonempty. But I := (I[T ], I[I], I[F ]) is not an (i, j, k)-
length neutrosophic subalgebra of (X, ∗, 0) for i, j, k ∈ {1, 3} with (i, j, k) 6=
(1, 1, 1) since

I[T ]`(b ∗ 2) = I[T ]`(b) = 0.2 � 0.5 = max{I[T ]`(b), I[T ]`(2)},

I[I]`(a ∗ 1) = I[I]`(a) = 0.3 � 0.7 = max{I[I]`(a), I[I]`(1)},

and/or

I[F ]`(b ∗ 1) = I[F ]`(a) = 0.2 � 0.3 = max{I[F ]`(b), I[F ]`(1)}.

Theorem 3.10. Given an interval neutrosophic set I := (I[T ], I[I], I[F ])
in (X, ∗, 0) and for any βT , βI , βF ∈ [0, 1], the following assertions are
equivalent.

(1) I := (I[T ], I[I], I[F ]) is a (4, 4, 4)-length neutrosophic subalgebra of
(X, ∗, 0).

(2) L`(I[T ];βT ), L`(I[I];βI) and L`(I[F ];βF ) are subalgebras of (X, ∗, 0)
whenever they are nonempty.

Proof: Suppose that I := (I[T ], I[I], I[F ]) is a (4, 4, 4)-length neutro-
sophic subalgebra of (X, ∗, 0) and let βT , βI , βF ∈ [0, 1] be such that
L`(I[T ];βT ), L`(I[I];βI) and L`(I[F ];βF ) are nonempty. For any x, y ∈
X, if x, y ∈ L`(I[T ];βT ), then I[T ]`(x) ≤ βT and I[T ]`(y) ≤ βT . It follows
that

I[T ]`(x ∗ y) ≤ max{I[T ]`(x), I[T ]`(y)} ≤ βT

and so that x ∗ y ∈ L`(I[T ];βT ). Similarly, if x, y ∈ L`(I[I];βI), then
x ∗ y ∈ L`(I[I];βI), and if x, y ∈ L`(I[F ];βF ), then x ∗ y ∈ L`(I[F ];βF ).



392 Young Bae Jun, Madad Khan, Florentin Smarandache, Seok-Zun Song

Therefore (2) is valid.
Conversely, assume that L`(I[T ];βT ), L`(I[I];βI) and L`(I[F ];βF ) are

subalgebras of (X, ∗, 0) whenever they are nonempty for all βT , βI , βF ∈
[0, 1]. If there are a, b ∈ X such that

I[F ]`(a ∗ b) > max{I[F ]`(a), I[F ]`(b)},

then a, b ∈ L`(I[F ];βF ) by taking βF = max{I[F ]`(a), I[F ]`(b)}. Thus
a ∗ b ∈ L`(I[F ];βF ), which implies that I[F ]`(a ∗ b) ≤ βF . This is a
contradiction, and so

I[F ]`(x ∗ y) ≤ max{I[F ]`(x), I[F ]`(y)}

for all x, y ∈ X. Similarly, we get

I[T ]`(x ∗ y) ≤ max{I[T ]`(x), I[T ]`(y)}

and

I[I]`(x ∗ y) ≤ max{I[I]`(x), I[I]`(y)}

for all x, y ∈ X. Consequently, I := (I[T ], I[I], I[F ]) is a (4, 4, 4)-length
neutrosophic subalgebra of (X, ∗, 0).

Corollary 3.11. If I := (I[T ], I[I], I[F ]) is an (i, j, k)-length neu-
trosophic subalgebra of (X, ∗, 0) for i, j, k ∈ {2, 4}, then L`(I[T ];βT ),
L`(I[I];βI) and L`(I[F ];βF ) are subalgebras of (X, ∗, 0) whenever they
are nonempty for all βT , βI , βF ∈ [0, 1].

The following example shows that the converse of Corollary 3.11 is not
true.

Example 3.12. Consider the BCI-algebra X = {0, 1, 2, a, b} in Example 3.9
and let I := (I[T ], I[I], I[F ]) be an interval neutrosophic set in (X, ∗, 0)
given by

I[T ] : X → P∗([0, 1]), x 7→


[0.5, 0.7) if x = 0,
(0.2, 0.6] if x = 1,
[0.3, 0.6] if x = 2,
[0.1, 0.7] if x = a,
(0.2, 0.8] if x = b,
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I[I] : X → P∗([0, 1]), x 7→


[0.66, 0.99) if x = 0,
(0.15, 0.59] if x = 1,
[0.22, 0.88) if x = 2,
(0.35, 0.90] if x = a,
(0.20, 0.75) if x = b,

and

I[F ] : X → P∗([0, 1]), x 7→


[0.75, 0.90) if x = 0,
(0.45, 0.90) if x = 1,
(0.25, 0.50] if x = 2,
[0.50, 0.85] if x = a,
(0.15, 0.60] if x = b.

Then the interval neutrosophic length I` := (I[T ]`, I[I]`, I[F ]`) of I is
given by Table 5.

Table 5. Interval neutrosophic length of I

X I[T ]` I[I]` I[F ]`
0 0.2 0.33 0.15
1 0.4 0.44 0.45
2 0.3 0.66 0.25
a 0.6 0.55 0.35
b 0.6 0.55 0.45

Hence we have

L`(I[T ];βT ) =


∅ if βT ∈ [0, 0.2),
{0} if βT ∈ [0.2, 0.3),
{0, 2} if βT ∈ [0.3, 0.4),
{0, 1, 2} if βT ∈ [0.4, 0.6),
X if βT ∈ [0.6, 1],

L`(I[I];βI) =


∅ if βI ∈ [0, 0.33),
{0} if βI ∈ [0.33, 0.44),
{0, 1} if βI ∈ [0.44, 0.55),
{0, 1, a, b} if βI ∈ [0.55, 0.66),
X if βI ∈ [0.66, 1],
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and

L`(I[F ];βF ) =


∅ if βF ∈ [0, 0.15),
{0} if βF ∈ [0.15, 0.25),
{0, 2} if βF ∈ [0.25, 0.35),
{0, 2, a} if βF ∈ [0.35, 0.45),
X if βF ∈ [0.45, 1],

which are subalgebras of (X, ∗, 0) for all βT , βI , βF ∈ [0, 1] such that
L`(I[T ];βT ), L`(I[I];βI) and L`(I[F ];βF ) are nonempty. But I := (I[T ],
I[I], I[F ]) is not an (i, j, k)-length neutrosophic subalgebra of (X, ∗, 0) for
i, j, k ∈ {2, 4} with (i, j, k) 6= (4, 4, 4) since

I[T ]`(a ∗ 1) = 0.6 � 0.4 = min{I[T ]`(a), I[T ]`(1)},

I[I]`(a ∗ 0) = 0.55 � 0.33 = min{I[I]`(a), I[I]`(0)},

and/or

I[F ]`(2 ∗ a) = 0.35 � 0.25 = min{I[F ]`(2), I[F ]`(a)}.

Using the similar way to the proofs of Theorems 3.7 and 3.10, we have
the following theorem.

Theorem 3.13. Given an (i, j, k)-length neutrosophic subalgebra I := (I[T ],
I[I], I[F ]) of (X, ∗, 0) for i, j, k ∈ {1, 2, 3, 4}, the following assertions are
valid.

(1) If i, j ∈ {1, 3} and k ∈ {2, 4}, then U`(I[T ];αT ), U`(I[I];αI) and
L`(I[F ];βF ) are subalgebras of (X, ∗, 0) whenever they are nonempty.

(2) If i, k ∈ {1, 3} and j ∈ {2, 4}, then U`(I[T ];αT ), L`(I[I];βI) and
U`(I[F ];αF ) are subalgebras of (X, ∗, 0) whenever they are nonempty.

(3) If i ∈ {2, 4} and j, k ∈ {1, 3}, then L`(I[T ];βT ), U`(I[I];αI) and
U`(I[F ];αF ) are subalgebras of (X, ∗, 0) whenever they are nonempty.

(4) If i, j ∈ {2, 4} and k ∈ {1, 3}, then L`(I[T ];βT ), L`(I[I];βI) and
U`(I[F ];αF ) are subalgebras of (X, ∗, 0) whenever they are nonempty.
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(5) If i, k ∈ {2, 4} and j ∈ {1, 3}, then L`(I[T ];βT ), U`(I[I];αI) and
L`(I[F ];βF ) are subalgebras of (X, ∗, 0) whenever they are nonempty.

(6) If i ∈ {1, 3} and j, k ∈ {2, 4}, then U`(I[T ];αT ), L`(I[I];βI) and
L`(I[F ];βF ) are subalgebras of (X, ∗, 0) whenever they are nonempty.

Theorem 3.14. If an interval neutrosophic set I := (I[T ], I[I], I[F ]) is
a (2, 3, 2)-length neutrosophic subalgebra of (X, ∗, 0), then U`(I[T ];αT )c,
L`(I[I];βI)c and U`(I[F ];αF )c are subalgebras of (X, ∗, 0) whenever they
are nonempty for all αT , βI , αF ∈ [0, 1].

Proof: Assume that I := (I[T ], I[I], I[F ]) is a (2, 3, 2)-length neu-
trosophic subalgebra of (X, ∗, 0). Let αT , βI , αF ∈ [0, 1] be such that
U`(I[T ];αT )c, L`(I[I];βI)c and U`(I[F ];αF )c are nonempty. If x, y ∈
U`(I[T ];αT )c, then I[T ]`(x) < αT and I[T ]`(y) < αT . Hence

I[T ]`(x ∗ y) ≤ min{I[T ]`(x), I[T ]`(y)} < αT ,

and so x∗y ∈ U`(I[T ];αT )c. If x, y ∈ L`(I[I];βI)c, then I[I]`(x) > βI and
I[I]`(y) > βI . Thus

I[I]`(x ∗ y) ≥ max{I[I]`(x), I[I]`(y)} > βI ,

which implies that x ∗ y ∈ L`(I[I];βI)c. Let x, y ∈ U`(I[F ];αF )c. Then
I[F ]`(x) < αF and I[F ]`(y) < αF . Hence

I[F ]`(x ∗ y) ≤ min{I[F ]`(x), I[F ]`(y)} < αF ,

and so x ∗ y ∈ U`(I[F ];αF )c. Therefore U`(I[T ];αT )c, L`(I[I];βI)c and
U`(I[F ];αF )c are subalgebras of (X, ∗, 0) for all αT , βI , αF ∈ [0, 1].

The converse of Theorem 3.14 is not true in general as seen in the
following example.

Example 3.15. Consider a BCI-algebra X = {0, 1, a, b, c} with the binary
operation ∗ which is given in Table 6 (see [5]).
Let I := (I[T ], I[I], I[F ]) be an interval neutrosophic set in (X, ∗, 0) given
by
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Table 6. Cayley table for the binary operation “∗”

∗ 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

I[T ] : X → P∗([0, 1]), x 7→


[0.50, 0.75) if x = 0,
(0.25, 0.70] if x = 1,
[0.10, 0.65] if x = a,
[0.05, 0.70) if x = b,
(0.10, 0.75] if x = c,

I[I] : X → P∗([0, 1]), x 7→


[0.05, 0.80] if x = 0,
(0.10, 0.80) if x = 1,
[0.26, 0.89] if x = a,
(0.16, 0.79) if x = b,
(0.07, 0.75] if x = c,

and

I[F ] : X → P∗([0, 1]), x 7→


[0.23, 0.67) if x = 0,
(0.03, 0.58] if x = 1,
(0.18, 0.73) if x = a,
[0.14, 0.80] if x = b,
(0.07, 0.73] if x = c.

Then the interval neutrosophic length I` := (I[T ]`, I[I]`, I[F ]`) of I is
given by Table 7.
Then

U`(I[T ];αT )c =


∅ if αT ∈ [0, 0.25],
{0} if αT ∈ (0.25, 0.45],
{0, 1} if αT ∈ (0.45, 0.55],
{0, 1, a} if αT ∈ (0.55, 0.65],
X if αT ∈ (0.65, 1],
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Table 7. Interval neutrosophic length of I

X I[T ]` I[I]` I[F ]`
0 0.25 0.75 0.44
1 0.45 0.70 0.55
a 0.55 0.63 0.55
b 0.65 0.63 0.66
c 0.65 0.68 0.66

L`(I[I];βI)c =


∅ if βI ∈ [0.75, 1],
{0} if βI ∈ [0.70, 0.75),
{0, 1} if βI ∈ [0.68, 0.70),
{0, 1, c} if βI ∈ [0.63, 0.68),
X if βI ∈ [0, 0.63),

and

U`(I[F ];αF )c =


∅ if αF ∈ [0, 0.44],
{0} if αF ∈ (0.44, 0.55],
{0, 1, a} if αF ∈ (0.55, 0.66],
X if αF ∈ (0.66, 1]

are subalgebras of (X, ∗, 0) whenever they are nonempty for all αT , βI ,
αF ∈ [0, 1]. But I := (I[T ], I[I], I[F ]) is not a (2, 3, 2)-length neutrosophic
subalgebra of (X, ∗, 0) since

I[T ]`(b ∗ a) = I[T ]`(c) = 0.65 > 0.55 = min{I[T ]`(b), I[T ]`(a)},

I[I]`(b ∗ c) = I[I]`(a) = 0.63 < 0.68 = max{I[I]`(b), I[I]`(c)},

and/or

I[F ]`(b ∗ a) = I[F ]`(c) = 0.66 > 0.55 = min{I[F ]`(b), I[F ]`(a)}.

By the similar way to the proof of Theorem 3.14, we have the following
theorem.

Theorem 3.16. Given an (i, j, k)-length neutrosophic subalgebra I := (I[T ],
I[I], I[F ]) of (X, ∗, 0), the following assertions are valid.
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(1) If (i, j, k) = (2, 2, 2), then U`(I[T ];αT )c, U`(I[I];αI)c and
U`(I[F ];αF )c are subalgebras of (X, ∗, 0) whenever they are nonemp-
ty for all αT , αI , αF ∈ [0, 1].

(2) If (i, j, k) = (2, 2, 3), then U`(I[T ];αT )c, U`(I[I];αI)c

and L`(I[F ];βF )c are subalgebras of (X, ∗, 0) whenever they are non-
empty for all αT , αI , βF ∈ [0, 1].

(3) If (i, j, k) = (2, 3, 3), then U`(I[T ];αT )c, L`(I[I];βI)c

and L`(I[F ];βF )c are subalgebras of (X, ∗, 0) whenever they are non-
empty for all αT , βI , βF ∈ [0, 1].

(4) If (i, j, k) = (3, 2, 2), then L`(I[T ];βT )c, U`(I[I];αI)c

and U`(I[F ];αF )c are subalgebras of (X, ∗, 0) whenever they are non-
empty for all βT , αI , αF ∈ [0, 1].

(5) If (i, j, k) = (3, 2, 3), then L`(I[T ];βT )c, U`(I[I];αI)c

and L`(I[F ];βF )c are subalgebras of (X, ∗, 0) whenever they are non-
empty for all βT , αI , βF ∈ [0, 1].

(6) If (i, j, k) = (3, 3, 2), then L`(I[T ];βT )c, L`(I[I];βI)c

and U`(I[F ];αF )c are subalgebras of (X, ∗, 0) whenever they are non-
empty for all βT , βI , αF ∈ [0, 1].

(7) If (i, j, k) = (3, 3, 3), then L`(I[T ];βT )c, L`(I[I];βI)c

and L`(I[F ];βF )c are subalgebras of (X, ∗, 0) whenever they are non-
empty for all βT , βI , βF ∈ [0, 1].
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1. Introduction

Dunn-Belnap’s four-valued logic (cf. [5] and [3]) arising as the logic of first-
degree entailment (FDE, for short) in relevance logic R has been naturally
expanded by additional connectives in [11]. The present paper, equally
belonging to General Logic, pursues this line of research in the follow-
ing generic respects in addition to those of functional completeness and
both sequential and equational axiomatizations comprehensively explored
therein.

First of all, the most natural way of expanding FDE consists in ex-
panding the matrix DM4 defining FDE by additional connectives. This
inevitably raises the question which exactly expansions of FDE are covered
by such approach. As we argue here, these are exactly all four-valued ones
(that excludes E and R). And what is more, any four-valued expansion of
FDE is defined by a unique expansion of DM4.

In addition, as a by-product of auxiliary results, we prove that any
four-valued expansion of FDE is defined by no matrix with either a unique
(non-)distinguished value or less than four values and has no proper exten-
sion satisfying Variable Sharing Property (VSP, for short; cf. [1]), according
to which any entailment φ→ ψ holds only if φ and ψ have a propositional
variable in common, that is one of the most fundamental peculiarities of
FDE, quite independently from whether the expansion itself satisfies VSP.
The latter result has been proved for FDE alone in [9] and means, per-
haps, a principal maximality of expansions of FDE. In this connection, we
find purely algebraic criteria of a FDE expansion’s satisfying VSP, being
[inferentially] maximal in the sense of not having a proper [inferentially]
consistent extension,1 being a sublogic of a definitional copy of the clas-
sical logic and being maximally paraconsistent in the sense of [10] (viz.,
having no proper paraconsistent extension).

After all, we study the issue of axiomatic extensions within the frame-
work of FDE expansions.

The rest of the paper is as follows. The exposition of the material of
the paper is entirely self-contained (of course, modulo very basic issues
concerning Set Theory, Lattice Theory, Universal Algebra, Model Theory
and Mathematical Logic not specified here explicitly, to be found, e.g., in

1It is the absence of theorems in FDE, being an inevitable consequence of VSP,
that makes “inferential” versions of standard conceptions of consistency and maximality
acute within the framework of FDE expansions to be equally void of theorems.
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standard mathematical handbooks like [2] and [7]). Section 2 is a concise
summary of basic issues underlying the paper, most of which have actually
become a part of logical and algebraic folklore. Section 3 is devoted to
certain key preliminary issues concerning equality determinants (in the
sense of [13]), implicative matrices and De Morgan lattices. In Section 4
we formulate and prove main results of the paper described above. Then, in
Section 5 we apply general results of previous two sections to three generic –
classically-negative, bilattice and implicative – classes of FDE expansions.

2. Basic issues

Standard notations like img, dom, ker, hom, πi, Con, et. al., as well as
related notions are supposed to be clear.

2.1. Set-theoretical background

We follow the standard convention (among other things, contracting cum-
bersome finite sequence notations), according to which natural numbers
(including 0) are treated as finite ordinals (viz., sets of lesser natural num-
bers), the ordinal of all them being denoted by ω. The proper class of
all ordinals is denoted by ∞. Likewise, functions are viewed as binary
relations. In addition, singletons are often identified with their unique
elements, unless any confusion is possible.

Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞]2

is denoted by ℘[K](S). A subset T ⊆ S is said to be proper, if T 6= S.
Further, given any equivalence relation θ on S, as usual, by νθ we denote
the function with domain S defined by νθ(a) , θ[{a}], for all a ∈ S, in
which case ker νθ = θ, whereas we set (T/θ) , νθ[T ], for every T ⊆ S.
Next, S-tuples (viz., functions with domain S) are often written in either
sequence t̄ or vector ~t forms, its s-th component (viz., the value under
argument s), where s ∈ S, being written as either ts or ts. Given two
more sets A and B, any relation R ⊆ (A × B) (in particular, a mapping
R : A→ B) determines the equally-denoted relation R ⊆ (AS×BS) (resp.,
mapping R : AS → BS) point-wise, that is, R , {〈ā, b̄〉 ∈ (AS×BS) | ∀s ∈
S : as R bs}. Likewise, given a set A, an S-tuple B of sets and any

2As usual, parentheses as well as both square, figure and angle brackets are often
used for surrounding a (possibly, multiple) optional content.
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f̄ ∈ (
∏
s∈S B

A
s ), put (

∏
f̄) : A → (

∏
B), a 7→ 〈fs(a)〉s∈S . (In case I = 2,

f0×f1 stands for (
∏
f̄).) Further, a lower cone of a T ⊆ ℘(S) is any L ⊆ T

such that, for each X ∈ L, (℘(X)∩T ) ⊆ L. Likewise, an anti-chain of T is
any A ⊆ T such that max(A) = A. (Clearly, in case S is finite, the unary
operations A 7→ (T ∩

⋃
{℘(X) | X ∈ A}) and L 7→ max(L) on ℘(℘(S))

form inverse to one another bijections between the sets of all anti-chains
and all lower cones of T .) Furthermore, set ∆S , {〈a, a〉|a ∈ S}, functions
of such a kind being referred to as diagonal. Finally, given any R ⊆ S2,
Tr(R) , {〈π0(π0(r̄)), π1(πl−1(r̄))〉|r̄ ∈ Rl, l ∈ (ω \ 1)} is the least transitive
binary relation on S including R, known as the transitive closure of R.

2.2. Algebraic background

Unless otherwise specified, abstract algebras are denoted by Fraktur let-
ters (possibly, with indices/prefixes/suffixes), their carriers (viz., under-
lying sets) being denoted by corresponding Italic letters (with same in-
dices/prefixes/suffixes, if any).

A (propositional/sentential) language/signature is any algebraic (viz.,
functional) signature Σ (to be dealt with by default throughout the paper)
constituted by function (viz., operation) symbols of finite arity to be treated
as (propositional/sentential) connectives. Given any α ∈ ℘∞\1(ω), put

Vα , {xβ |β ∈ α}, elements of which being viewed as (propositional/sen-
tential) variables of rank α. Then, we have the absolutely-free Σ-algebra
FmαΣ freely-generated by the set Vα, referred to as the formula Σ-algebra
of rank α, its endomorphisms/elements of its carrier Fmα

Σ (viz., Σ-terms of
rank α) being called (propositional/sentential) Σ-substitutions/-formulas
of rank α. (In general, the reservation “of rank α” is normally omitted,
whenever α = ω.) Given a Σ-formula ϕ, Var(ϕ) denotes the set of all
variables actually occurring in ϕ.

Recall the following useful well-known algebraic fact:

Lemma 2.1. Let A and B be Σ-algebras and h ∈ hom(A,B). [Suppose
(img h) = B.] Then, for every ϑ ∈ Con(B), h−1[ϑ] ∈ {θ ∈ Con(A) |
(kerh) ⊆ θ} [whereas h[h−1[ϑ]] = ϑ, while, conversely, for every θ ∈
Con(A) such that (kerh) ⊆ θ, h[θ] ∈ Con(B), whereas h−1[h[θ]] = θ].
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2.3. Propositional logics and matrices

A [finitary] Σ-rule is any couple 〈Γ, ϕ〉, where (Γ ∪ {ϕ}) ∈ ℘[ω](Fmω
Σ),

normally written in the standard sequent form Γ ` ϕ, ϕ/any element of
Γ being referred to as the/a conclusion/premise of it. A (substitutional)
Σ-instance of it is then any Σ-rule of the form σ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)),
where σ is a Σ-substitution. As usual, Σ-rules without premises are called
Σ-axioms and are identified with their conclusions. A[n] [axiomatic] (fini-
tary) Σ-calculus is any set of (finitary) Σ-rules[-axioms].

A (propositional/sentential) Σ-logic (cf., e.g., [6]) is any closure opera-
tor C over Fmω

Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]),
for all X ⊆ Fmω

Σ and all σ ∈ hom(FmωΣ,Fm
ω
Σ). A(n) (in)consistent set of

C is any X ⊆ Fmω
Σ such that C(X) 6= (=) Fmω

Σ. Then, C is said to be [in-
ferentially] (in)consistent, provided ∅[∪{x0}] is a(n in)consistent set of C
or, equivalently, in view of the structurality of C, x1 6∈ (∈)C(∅[∪{x0}]). A
Σ-rule Γ ` ϕ is said to be satisfied in C, provided ϕ ∈ C(Γ), Σ-axioms satis-
fied in C being called its theorems. A [proper] extension of C is any Σ-logic
C ′ ⊇ C [distinct from C], in which case C is said to be a [proper] sublogic of
C ′. Then, an extension C ′ of C is said to be axiomatized by a Σ-calculus C
relatively to C, provided it is the least extension of C satisfying each rule of
C. Furthermore, an extension C ′ of C is said to be axiomatic, whenever it is
relatively axiomatized by an axiomatic Σ-calculus. Next, C is said to be [in-
ferentially] maximal(ly consistent), whenever it is [inferentially] consistent
and has no proper [inferentially] consistent extension. Further, C is said
to be �-conjunctive, where � is a (possibly, secondary) binary connective of
Σ, provided C(φ � ψ) = C({φ, ψ}), for all φ, ψ ∈ Fmω

Σ, in which case any
extension of C is so. Likewise, C is said to be [maximally] o-paraconsistent,
where o is a unary connective of Σ, provided x1 6∈ C({x0, ox0}) [and C has
no proper o-paraconsistent extension]. In addition, C is said to be theorem-
less, provided C(∅) = ∅. Finally, Variable Sharing Property (VSP, for
short; cf. [1]) is said to hold/be satisfied for C, provided, for all φ ∈ Fmω

Σ

and all ψ ∈ C(φ), it holds that (Var(φ)∩Var(ψ)) 6= ∅, in which case C has
neither a theorem nor an inconsistent formula, in view of the finiteness of
the set Var(ϕ), where ϕ ∈ Fmω

Σ.
A (logical) Σ-matrix (cf. [6]) is any couple of the form A = 〈A, DA〉,

where A is a Σ-algebra, called the underlying algebra of A, while DA ⊆ A
is called the truth predicate of A, elements of which being referred to
as distinguished values of A. (In general, matrices are denoted by Cal-
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ligraphic letters [possibly, with indices/prefixes/suffixes], their underlying
algebras being denoted by corresponding Fraktur letters [with same in-
dices/prefixes/suffixes, if any].) This is said to be n-valued/truth[-non]-
empty/(in)consistent/false-singular/truth-singular, where n ∈ ω, provided
|A| = n/DA = [6=]∅/DA 6= (=)A/|A \ DA| ∈ 2/|DA| ∈ 2. Next, given
any Σ′ ⊆ Σ, put (A�Σ′) , 〈A�Σ′, DA〉, in which case A is said to be a
( Σ-)expansion of A�Σ′. (Any notation, being specified for single matrices,
is supposed to be extended to classes of matrices member-wise.)

A Σ-matrix A is said to be finite/finitely-generated/generated by a B ⊆
A, whenever A is so. Then, A is said to be K-generated, where K ⊆ ∞,
whenever it is generated by a B ∈ ℘K(A).

As usual, Σ-matrices are treated as first-order model structures (viz.,
algebraic systems; cf. [7]) of the first-order signature Σ ∪ {D} with unary
predicate D, any [finitary] Σ-rule Γ ` φ being viewed as the [first-order]
Horn formula (

∧
Γ) → φ under the standard identification of any propo-

sitional Σ-formula ψ with the first-order atomic formula D(ψ). Then, the
class of all models of a Σ-calculus C is denoted by Mod(C). In that case,
given any class of Σ-matrices M, C is said to axiomatize M ∩Mod(C) rela-
tively to M.

Given any α ∈ ℘∞\1(ω) and any class M of Σ-matrices, we have the clo-

sure operator CnαM over Fmα
Σ defined by CnαM(X) , (Fmα

Σ ∩⋂
{h−1[DA]|A ∈ M, h ∈ hom(FmαΣ,A), h[X] ⊆ DA}, for all X ⊆ Fmα

Σ,
in which case we have:

CnαM(X) = (Fmα
Σ ∩CnωM(X)), (2.1)

because hom(FmαΣ,A) = {h�Fmα
Σ |h ∈ hom(FmωΣ,A)}, for any Σ-algeb-

ra A, as A 6= ∅. (Note that CnαM(∅) = ∅, whenever M has a truth-
empty member.) Then, CnωM is a Σ-logic called the one of M. Next, a
Σ-logic C is said to be K-defined by M, where K ⊆ ∞, if (C�℘K(Fmω

Σ)) =
(CnωM �℘K(Fmω

Σ)). (As usual, “finitely-” stands for “ω-”. Likewise, “∞-”
is normally omitted, whenever no confusion is possible.) A Σ-logic C is
said to be [minimally] n-valued, where n ∈ ω, whenever it is defined by an
n-valued Σ-matrix [but by no m-valued one, where m ∈ n], in which case
C is finitary (cf. [6]). A Σ-matrix A is said to be o-paraconsistent, where o
is a unary connective of Σ, whenever the logic of A is so. (Clearly, the logic
of any class of matrices is [inferentially] consistent iff the class contains a
consistent [truth-non-empty] member.)
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Let A and B be two Σ-matrices. A (strict) [surjective] homomorphism
from A [on]to B is any h ∈ hom(A,B) such that [h[A] = B and] DA ⊆
(=)h−1[DB], the set of all them being denoted by hom

[S]
(S)(A,B). Recall

that ∀h ∈ hom(A,B) : [((img h) = B) ⇒](hom(FmαΣ,B) ⊇ [=]{h ◦ g|g ∈
hom(FmαΣ,A)}), and so we have:

(∃h ∈ hom
[S]
S (A,B))⇒(CnαB ⊆ [=] CnαA), (2.2)

(∃h ∈ homS(A,B))⇒(CnαA(∅) ⊆ CnαB(∅)), (2.3)

for all α ∈ ℘∞\1(ω). Then, A is said to be a [proper] submatrix of B,

whenever ∆A ∈ homS(A,B) [and A 6= B], in which case we set (B�A) , A.
Injective/bijective strict homomorphisms from A to B are referred to as
embeddings/isomorphisms of/from A into/onto B, in case of existence of
which A is said to be embeddable/isomorphic into/to B.

Let A be a Σ-matrix. Elements of Con(A) , {θ ∈ Con(A)|θ[DA] ⊆
DA} 3 ∆A are called congruences of A. Given any ∅ 6= Θ ⊆ Con(A) ⊆
Con(A), Tr(

⋃
Θ), being well-known to be a congruence of A, is then easily

seen to be a congruence of A. Therefore, a(A) , (
⋃

Con(A)) ∈ Con(A), in
which case this is the greatest congruence of A (it is this fact that justifies
using the symbol a). Then, A is said to be simple/irreducible, provided
a(A) = ∆A. Given any θ ∈ Con(A[A]), we have the quotient Σ-matrix
(A/θ) , 〈A/θ,DA/θ〉, in which case νθ ∈ homS

[S](A,A/θ). The quotient

<(A) , (A/a(A)) is called the reduction of A.
A Σ-matrix A is said to be a model of a Σ-logic C, provided C ⊆ CnωA,

the class of all [irreducible of] them being denoted by Mod[=](C). Next,
A is said to be �-conjunctive, where � is a (possibly, secondary) binary
connective of Σ, provided ({a, b} ⊆ DA)⇔ ((a�A b) ∈ DA), for all a, b ∈ A,
that is, CnωA is �-conjunctive.

Remark 2.2. As an immediate consequence of Lemma 2.1, given any

Σ-matrices A and B and any h ∈ hom
[S]
S (A,B), for every ϑ ∈ Con(B),

h−1[ϑ] ∈ {θ ∈ Con(A) | (kerh) ⊆ θ} [whereas h[h−1[ϑ]] = ϑ, while, con-
versely, for every θ ∈ Con(A) such that (kerh) ⊆ θ, h[θ] ∈ Con(B), whereas
h−1[h[θ]] = θ].

By Remark 2.2, we immediately have:

Corollary 2.3. Let A and B be Σ-matrices and h ∈ homS(A,B). Sup-
pose A is simple. Then, h is injective.
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Remark 2.4 (Matrix Homomorphism Theorem). As an immediate conse-
quence of the Algebra Homomorphism Theorem, given any Σ-matrices

A, B and C, any f ∈ homS
S(A,B) and any g ∈ hom

(S)
[S] (A, C) such that

(ker f) ⊆ {=}(ker g), it holds that (g ◦ f−1) ∈ hom
(S)
[S] (B, C) {is injec-

tive}.

Proposition 2.5. Let A and B be two Σ-matrices and h ∈ homS
S(A,B).

Then, a(A) = h−1[a(B)] and a(B) = h[a(A)].

Proof: As ∆B ∈ Con(B), by Remark 2.2, we have kerh = h−1[∆B ] ∈
Con(A), and so kerh ⊆ a(A), in which case, by Remark 2.2, we get:

h−1[a(B)] ⊆ a(A),

h[h−1[a(B)]] = a(B),

h[a(A)] ⊆ a(B),

h−1[h[a(A)]] = a(A).

These collectively imply the equalities to be proved, as required.

Since, for any equivalence θ on any set A, it holds that νθ[θ] = ∆A/θ,
as an immediate consequence of Proposition 2.5, we also have:

Corollary 2.6. Let A be a Σ-matrix. Then, A/a(A) is simple.

Given a set I and an I-tuple A of Σ-matrices, the Σ-matrix (
∏
i∈I Ai)

, 〈
∏
i∈I Ai, (

∏
i∈I Ai) ∩

⋂
i∈I π

−1
i [DAi ]〉 is called the direct product of A.

(As usual, when I = 2, A0 × A1 stands for the direct product involved.
Likewise, if (imgA) ⊆ {A}, where A is a Σ-matrix, AI stands for the
direct product involved.) Any submatrix B of the direct product involved is
referred to as a subdirect product of A, whenever, for each i ∈ I, πi[B] = Ai.

Lemma 2.7 (Subdirect Product Lemma). Let M be a [finite] class of [finite]
Σ-matrices and A a {truth-non-empty} (simple) ([ω∩](ω + 1))-generated
model of the logic of M. Then, there is some strict surjective homomor-
phism from a subdirect product of a [finite] tuple constituted by members of

S
{∗}
∗ (M) onto A/a(A) (resp., onto A itself).

Proof: Take any A′ ∈ ℘[ω∩](ω+1)(A) generating A and any a ∈ A 6= ∅,

in which case A′′ , (A′ ∪ {a}) ∈ ℘([ω∩](ω+1))\1(A) generates A, and so

α , |A′′| ∈ (([ω∩](ω + 1)) \ 1) ⊆ ℘∞\1(ω). Next, take any bijection from
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Vα onto A′′ to be extended to a surjective h ∈ hom(Fmα
Σ,A), in which case

it is a surjective strict homomorphism from B , 〈Fmα
Σ, X〉, where {∅ 6=

}X , h−1[DA], onto A, and so, by (2.2), B is a {truth-non-empty} model
of the logic of M. Then, applying (2.1) twice, we get CnαM(X) ⊆ CnαB(X) ⊆
X ⊆ CnαM(X). Furthermore, we have the [finite] set I , {〈h′,D〉 | h′ ∈
hom(B,D),D ∈ M, (img h′) * DD}, in which case, for every i ∈ I, we set

hi , π0(i), and so Ci , (π1(i)�(img hi)) is a consistent {truth-non-empty}
submatrix of π1(i) ∈ M. Clearly, X = CnαM(X) = (Fmα

Σ ∩
⋂
i∈I h

−1
i [DCi ]).

Therefore, the mapping g , (
∏
i∈I hi) : Fmα

Σ → (
∏
i∈I Ci) is a strict

homomorphism from B to
∏
i∈I Ci such that, for each i ∈ I, (πi ◦ g) = hi,

in which case πi[g[Fmα
Σ]] = hi[Fmα

Σ] = Ci, and so g is a surjective strict
homomorphism from B onto the subdirect product E , ((

∏
i∈I Ci)�(img g))

of C. Put θ , a(A)(= ∆A) and F , (A/θ). Then, f , (νθ ◦ h) ∈
homS

S(B,F). Therefore, by Remark 2.2, Proposition 2.5 and Corollary 2.6,
we have (ker g) = g−1[∆E ] ⊆ a(B) = f−1[∆F ] = (ker f), in which case, by
Remark 2.4, e , (f ◦ g−1) ∈ homS

S(E ,F) (and so (ν−1
θ ◦ e) ∈ homS

S(E ,A)),
as required.

Given a class M of Σ-matrices, the class of all (truth-non-empty) [con-

sistent] submatrices of members of M is denoted by S
(∗)
[∗] (M). Likewise, the

class of all [sub]direct products of tuples (of cardinality ∈ K ⊆ ∞) consti-

tuted by members of M is denoted by P
[SD]
(K) (M). Clearly, model classes are

closed under P.

Theorem 2.8. Let K and M be classes of Σ-matrices, C the logic of M
and C ′ an extension of C. Suppose (both M and all members of it are
finite and) [<](PSD

(ω)(S∗(M))) ⊆ K {in particular, [<](S(P(ω)(M))) ⊆ K 〈in
particular, K ⊇ M is closed under both S and P(ω) [as well as <]〉}. Then,

C ′ is (finitely-)defined by S , (Mod[=](C
′) ∩ K).

Proof: Clearly, C ′ ⊆ CnωS , for S ⊆ Mod(C ′). Conversely, consider any
(Γ ∪ {ϕ}) ∈ ℘(ω)(Fmω

Σ), in which case (there is some α′ ∈ (ω \ 1) such

that (Γ ∪ {ϕ}) ⊆ Fmα′

Σ , and so) (Γ ∪ {ϕ}) ⊆ Fmα
Σ, where α , ((α′∩)ω) ∈

℘∞\1(ω), such that ϕ 6∈ C ′(Γ). Then, by the structurality of C ′,
〈FmωΣ, C ′(Γ)〉 is a model of C ′ {in particular, of C}, and so is its (α + 1)-
generated (and so ω-generated) submatrix A , 〈FmαΣ, C ′(Γ) ∩ Fmα

Σ〉, in
view of (2.2), in which case ϕ 6∈ CnαA(Γ), and so ϕ 6∈ CnωA(Γ), in view of
(2.1). Therefore, by Lemma 2.7, there are some B ∈ PSD

(ω)(S∗(M)), in which
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case D , [<](B) ∈ [<](PSD
(ω)(S∗(M))) ⊆ K, and some g ∈ homS

S(B,A/a(A)).

Then, by (2.2), CnωD = CnωA, in which case [by Corollary 2.6] D ∈ S, and
so ϕ 6∈ CnωS (Γ), as required.

Corollary 2.9. Let M be a class of Σ-matrices and A an axiomatic
Σ-calculus. Then, the axiomatic extension C ′ of the logic C of M rela-
tively axiomatized by A is defined by S∗(M) ∩Mod(A).

Proof: Then, Mod(C ′) = (Mod(C) ∩ Mod(A)), and so (2.2), (2.3) and
Theorem 2.8 with K , PSD

(ω)(S∗(M)) ⊆ Mod(C), in which case (Mod(C ′) ∩
K) = (Mod(A)∩K) = PSD

(ω)(S∗(M)∩Mod(A)), complete the argument.

Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ ⊆ Fmα

Σ′ and
hom(FmαΣ′ ,FmαΣ′) = {h�Fmα

Σ′ |h ∈ hom(FmαΣ,Fm
α
Σ), h[Fmα

Σ′ ] ⊆ Fmα
Σ′}, for

all α ∈ ℘∞\1(ω), we have the Σ′-logic C ′, defined by C ′(X) ,
(Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ , called the Σ′-fragment of C, in which

case C is said to be a ( Σ-)expansion of C ′. In that case, given also any
class M of Σ-matrices defining C, C ′ is, in its turn, defined by M�Σ′.

2.3.1. Classical matrices and logics

Let o ∈ Σ be unary.
A two-valued consistent Σ-matrix A is said to be o-classical, provided,

for all a ∈ A, (a ∈ DA)⇔ (oAa 6∈ DA), in which case it is truth-non-empty,
and so both false- and truth-singular, but is not o-paraconsistent.

A Σ-logic is said to be o-[sub]classical, whenever it is [a sublogic of] the
logic of a o-classical Σ-matrix.

3. Preliminary key issues

3.1. Equality determinants

According to [13], an equality determinant for a Σ-matrix A is any Υ ⊆
Fm1

Σ such that any a, b ∈ A are equal, whenever, for all υ ∈ Υ, υA(a) ∈ DA
iff υA(b) ∈ DA.

Example 3.1. {x0} is an equality determinant for any consistent truth-non-
empty two-valued (in particular, classical) matrix.
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Lemma 3.2. Let A be a Σ-matrix and Υ an equality determinant for A.
Then, A is simple.

Proof: Consider any θ ∈ Con(A) and any 〈a, b〉 ∈ θ. Then, for each
υ ∈ Υ, υA(a) θ υA(b), in which case (υA(a) ∈ DA) ⇔ (υA(b) ∈ DA), and
so a = b, as required.

Lemma 3.3. Let A and B be Σ-matrices, Υ an equality determinant for
B and e ∈ homS(A,B). Suppose e is injective. Then, Υ is an equality
determinant for A.

Proof: In that case, for all a ∈ A and every υ ∈ Υ, it holds that υA(a) ∈
DA iff υB(e(a)) = e(υA(a)) ∈ DB, and so the injectivity of e completes the
argument.

3.2. Implicative matrices with equality determinant

Let � and Y be (possibly, secondary) binary connectives of Σ.
A Σ-matrix A is said to be �-implicative/-disjunctive, provided, for all

a, b ∈ A, it holds that ((a ∈ / 6∈ DA) ⇒ (b ∈ DA)) ⇔ ((a �A b) ∈ DA), in
which case it is ∨�-disjunctive, where (x0 ∨� x1) , ((x0 � x1) � x1).

Lemma 3.4. Let A be a finite �-implicative and Y-disjunctive (in particu-
lar, Y = ∨�) Σ-matrix with equality determinant Υ, S ⊆ S(A), n , |S| and
B ∈ S∗(A). Suppose B 6∈ S(S). Then, there is some Σ-axiom in Fmn+1

Σ ,
which is true in S but is not true in B.

Proof: Take any bijection C : n → S. Consider any i ∈ n, in which case
B * Ci, and so there is some ai ∈ (B \ Ci) 6= ∅. Define a ψi ∈ Fm2

Σ

as follows. Take any bijection c̄ : m , |Ci| → Ci. By induction on any
j ∈ (m+1), define a φj ∈ Fm2

Σ such that, for all b ∈ (A\DA), it holds that
φAj [x0/ai, x1/b] 6∈ DA, while, providing x1 ∈ Var(φj), for all a ∈ A and all

d ∈ DA, it holds that φAj [x0/a, x1/d] ∈ DA, whereas, for all k ∈ j and all

a ∈ A, it holds that φAj [x0/ck, x1/a] ∈ DA, as follows. First, put φj , x1,
if j = 0. Otherwise, (j − 1) ∈ m ⊆ (m + 1), in which case cj−1 6= ai, for
cj−1 ∈ Ci 63 ai, and so there is some υ ∈ Υ such that υA(ai) ∈ DA iff
υA(cj−1) 6∈ DA. Then, set:
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φj ,



υ � φj−1 if υA(ai) ∈ DA,
∃a ∈ A : φAj−1[x0/cj−1, x1/a] 6∈ DA,

υ Y φj−1 if x1 6∈ Var(φj−1), υA(ai) 6∈ DA,
∃a ∈ A : φAj−1[x0/cj−1, x1/a] 6∈ DA,

ϕj−1[x1/υ] if x1 ∈ Var(φj−1), υA(ai) 6∈ DA,
∃a ∈ A : φAj−1[x0/cj−1, x1/a] 6∈ DA,

φj−1 otherwise.

In this way, ψi , φm ∈ Fm2
Σ is true in Ci, while, for all b ∈ (A\DA), it holds

that ψA
i [x0/ai, x1/b] 6∈ DA, whereas, providing x1 ∈ Var(ψi), for all a ∈ A

and all d ∈ DA, it holds that ψA
i [x0/a, x1/d] ∈ DA. Finally, by induction

on any l ∈ (n + 1), define a ϕl ∈ Fml+1
Σ such that for all b ∈ (A \ DA),

it holds that ϕA
l [xk+1/ak, x0/b]k∈l 6∈ DA, while, providing x0 ∈ Var(ϕl),

for all c̄ ∈ Al and all d ∈ DA, it holds that ϕA
l [x0/d, xk+1/ck]k∈l ∈ DA,

whereas, for all k ∈ l, Ck |= ϕl, as follows. First, put ϕl , x0, if l = 0.
Otherwise, (l − 1) ∈ n ⊆ (n+ 1), so set:

ϕl ,



ψl−1[x1/ϕl−1, x0/xl] if x1 ∈ Var(ψl−1), Cl−1 6|= ϕl−1,

ϕl−1[x0/(ψl−1[x0/xl])] if x0 ∈ Var(ϕl−1),

x1 6∈ Var(ψl−1), Cl−1 6|= ϕl−1,

ϕl−1 Y (ψl−1[x0/xl]) if x0 6∈ Var(ϕl−1),

x1 6∈ Var(ψl−1), Cl−1 6|= ϕl−1,

ϕl−1 otherwise.

Thus, ϕn ∈ Fmn+1
Σ is true in S but B 6|= ϕn[xi+1/ai;x0/b]i∈n, where b ∈

(B \DA) 6= ∅, for B is consistent, as required.

Since model classes are closed under S (cf. (2.2)), while any axiomatic
extension of a logic is relatively axiomatized by the set of all its theorems,
whereas lower cones sets are closed under intersections and unions, com-
bining Corollary 2.9 and Lemma 3.4, we eventually get:

Theorem 3.5. Let A be a finite �-implicative Σ-matrix with equality de-
terminant and S , S∗(A). Then, the mappings:

C 7→ (Mod(C) ∩ S) = (Mod(C(∅)) ∩ S),

C 7→ CnωC



Four-valued Expansions of Dunn-Belnap’s Logic (I). . . 413

are inverse to one another dual isomorphisms between the lattices of all
axiomatic extensions of the logic of A and of all lower cones of S (un-
der identification of submatrices of A with the carriers of their underlying
algebras), corresponding axiomatic extensions of the logic of A and lower
cones of S having same axiomatic relative axiomatizations, both lattices be-
ing distributive. Moreover, for every M ⊆ S, the logic of M is the axiomatic
extension of the logic of A corresponding to S∗(M).

It is remarkable that the proof of Lemma 3.4 is constructive, so, in case
Σ is finite, it collectively with Theorem 3.5 yield an effective procedure of
finding the lattice of axiomatic extensions of the logic of A collectively with
their finite relative axiomatizations and finite anti-chain matrix semantics.
In this connection, we should like to highlight that the effective procedure
of finding relative axiomatizations of axiomatic extensions to be extracted
from the constructive proof of Lemma 3.4 is definitely and obviously much
less computationally complex than the straightforward one of direct search
among all finite sets of formulas.

3.3. Distributive and De Morgan lattices

Let Σ+[01] , ({∧,∨}[∪{⊥,>}]) be the [bounded] lattice signature with
binary ∧ (conjunction) and ∨ (disjunction) [as well as nullary ⊥ and >
(falsehood/zero and truth/unit constants, respectively)].

Then, given any Σ-algebra A such that Σ+ ⊆ Σ and A�Σ+ is a lattice,
the partial ordering of A�Σ+ is denoted by 6A.

Given any n ∈ (ω \ 1), by Dn[01] we denote the [bounded] distributive
lattice given by the chain n ordered by the natural ordering.

We also deal with the signature Σ∼[01] , (Σ+[01] ∪ {∼}) with unary ∼
(weak negation).

A [bounded] De Morgan lattice (cf. [11]; bounded De Morgan lattices
are also traditionally called De Morgan algebras - cf., e.g., [2]) is any Σ∼[01]-
algebra A such that A�Σ+[01] is a [bounded] distributive lattice (cf. [2]) and
the following Σ∼-identities are true in A:

∼∼x0 ≈ x0, (3.1)

∼(x0 ∨ x1) ≈ ∼x0 ∧ ∼x1, (3.2)

the variety of all them being denoted by [B]DML.
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By DM4[01] we denote the [bounded] De Morgan lattice such that

(DM4[01]�Σ+[01]) , D2
2[01] and ∼DM4[01]~a , 〈1−a1−i〉i∈2, for all ~a ∈ 22. In

this connection, we use the following abbreviations going back to [3]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉.

In addition, set µ : 22 → 22, 〈a, b〉 7→ 〈b, a〉. Finally, an n-ary operation f
on B ⊆ 22, where n ∈ ω, is said to be regular, provided it is monotonic

with respect to the partial ordering v on 22 defined by (~a v ~b) def⇐⇒ ((a0 6
b0)&(b1 6 a1)), for all ~a,~b ∈ 22, in the sense that, for all ā, b̄ ∈ Bn such
that ai v bi, for each i ∈ n, it holds that f(ā) v f(b̄).

Remark 3.6. Clearly, {b, t} is a prime filter of D2
2, in which case, in par-

ticular, DM4[01] , 〈DM4[01], {b, t}〉 is ∧-conjunctive and ∨-disjunctive.
Moreover, {x0,∼x0} is an equality determinant for it.

Recall also the following well-known algebraic fact:

Lemma 3.7. Let B be a subalgebra of DM4. Then, Con(B) ⊆ {∆B , B
2}.

Theorem 3.8. Let A be a Σ∼-algebra and (H ∪ {h}) ∈ ℘ω(hom(A,
DM4)). Suppose (

⋂
{ker g | g ∈ H}) ⊆ (kerh) 6= A2. Then, (kerh) =

(ker g), for some g ∈ H.

Proof: In that case, combining Lemma 11 and Claim on p. 300 (inside the
proof of Lemma 10) of [13] with Remark 3.6, we first conclude that (ker g) ⊆
(kerh), for some g ∈ H, in which case g is a surjective homomorphism
from A onto the subalgebra B , (DM4�(img g)) of DM4, and so, by the
Algebra Homomorphism Theorem, f , (h ◦ g−1) ∈ hom(B,DM4). Hence,
by Lemma 2.1, (ker f) ∈ Con(B). Moreover, (ker f) 6= B2, for (kerh) 6=
A2. Therefore, by Lemma 3.7, f is injective. Thus, (kerh) ⊆ (ker g), as
required.

4. Main results

Fix any language Σ ⊇ Σ∼[01] such that either {⊥,>} ⊆ Σ or ({⊥,>}
∩ Σ) = ∅ and any Σ-algebra A such that (A�Σ∼[01]) = DM4[01]. Put

A , 〈A, {b, t}]〉. Since [the bounded version of] Dunn-Belnap’s four-valued
logic [5] (cf. [3]), denoted by C[B]DB from now on, is defined by DM4[01] =
(A�Σ∼[01]) (cf. [9]), the logic C of A is a four-valued expansion of C[B]DB.



Four-valued Expansions of Dunn-Belnap’s Logic (I). . . 415

A subalgebra B of A is said to be specular, whenever (µ�B) ∈ hom(B,A).
Likewise, it is said to be regular, whenever its primary operations are so, in
which case its secondary ones are so as well. (Clearly, B is specular/regular,
whenever A is so. Moreover, DM4[01] is both specular and regular.)

4.1. Characteristic matrix expansions

Lemma 4.1. Let I be a set, C ∈ S(A)I , B a Σ-matrix and e an embedding
of B into

∏
i∈I Ci. Suppose {f, b, t} forms a subalgebra of A, {I × {d} |

d ∈ {f, t}} ⊆ e[B] and, for each i ∈ I, both {f, b, t} ∪ Ci forms a regular
subalgebra of A and either n 6∈ Ci or A�{f, b, t} is specular. Then, (Bu2) ,
((B × {b}) ∪ {〈e−1(I × {d}), d〉 | d ∈ {f, t}}) forms a subalgebra of B ×
(A�{f, b, t}), in which case π0�(Bu 2) is a surjective strict homomorphism
from (B u 2) , ((B × (A�{f, b, t}))�(B u 2)) onto B.

Proof: Consider any ς ∈ Σ of arity n ∈ ω and any b̄ ∈ (B u 2)n. In
case ςA(ā) = b, where ā , (π1 ◦ b̄) ∈ {f, b, t}n, we clearly have ςB×A(b̄) =
〈ςB(π0 ◦ b̄), ςA(ā)〉 = 〈ςB(π0 ◦ b̄), b〉 ∈ (B × {b}) ⊆ (B u 2). Otherwise,
since {f, b, t} forms a subalgebra of A, we have ςA(ā) ∈ {f, t}. Put N ,
{k ∈ n | ak = b}. Consider any i ∈ I. Put c̄ , (πi ◦ e ◦ π0 ◦ b̄) ∈ Cni .
Then, for every j ∈ (n \N), it holds that cj = aj ∈ {f, t}. Hence, cj v aj ,
for all j ∈ n. Therefore, by the regularity of A�({f, b, t} ∪ Ci), we have
ςA(c̄) v ςA(ā). Consider the following complementary cases:

1. n ∈ Ci.
Then, µ(aj) v cj , for all j ∈ n. Therefore, as, in that case, A�{f, b, t}
is specular, by the regularity of (A�({f, b, t} ∪ Ci)) = A, we have
ςA(ā) = µ(ςA(ā)) = ςA(µ ◦ ā) v ςA(c̄), and so we get ςA(c̄) = ςA(ā).

2. n 6∈ Ci.
Then, ςA(c̄) ∈ Ci ⊆ {f, b, t}. Therefore, since both f and t are mini-
mal elements of the poset {f, b, t} ordered by v, we get ςA(c̄) = ςA(ā).

Thus, in any case, we have ςA(c̄) = ςA(ā), and so, since e is an embed-
ding of B into

∏
i∈I Ci, we get ςB×A(b̄) = 〈e−1(I × {ςA(ā)}), ςA(ā)〉 ∈

{〈e−1(I × {d}), d〉 | d ∈ {f, t}} ⊆ (B u 2), as required.
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Lemma 4.2. Let B be a model of C. Suppose either {b} forms a subalgebra
of A or both A is regular and {f, b, t} forms a specular subalgebra of A (in
particular, Σ = Σ∼[01]), while the rule:

{x0,∼x0} ` (x1 ∨ ∼x1) (4.1)

is not true in B. Then, there is some submatrix D of B such that A is
isomorphic to <(D).

Proof: In that case, there are some a, b ∈ B such that (4.1) is not true
in B under [x0/a, x1/b]. Then, in view of (2.2), the submatrix E of B
generated by {a, b} is a finitely-generated model of C, in which (4.1) is
not true under [x0/a, x1/b] as well. Hence, by Lemma 2.7 with M = {A},
there are some set I, some I-tuple C constituted by submatrices of A, some
subdirect product F of C, in which case (F�Σ∼) ∈ DML, for DML 3 DM4

is a variety, and some g ∈ homS
S(F ,<(E)), in which case, by (2.2), F is

a model of C, in which case it is ∧-conjunctive, for A is so (cf. Remark
3.6), but is not a model of (4.1), in which case there are some c, d ∈ F
such that {c,∼Fc} ⊆ DF 63 d >F ∼Fd. Then, c = (I × {b}), in which case
∼Fc = c, and so (F \ DF ) 3 e , ((c ∧F d) ∨F ∼Fd) = ∼Fe 6F d. Hence,
e ∈ {b, n}I , while J , {i ∈ I | πi(e) = n} 6= ∅. Given any ā ∈ A2, set
(a0|a1) , ((J × {a0}) ∪ ((I \ J)× {a1})) ∈ AI . In this way, we have:

F 3 c = (b|b), (4.2)

F 3 e = (n|b), (4.3)

F 3 (c ∧F e) = (f|b), (4.4)

F 3 (c ∨F e) = (t|b). (4.5)

Consider the following complementary cases:

1. either {b} forms a subalgebra of A or J = I.
Then, by (4.2), (4.3), (4.4) and (4.5), f , {〈x, (x|b)〉 | x ∈ A} is an
embedding of A into F , in which case g′ , (g ◦ f) ∈ homS(A,<(E)),
and so, by Corollary 2.3, Lemma 3.2 and Remark 3.6, g′ is injective.
In this way, g′ is an isomorphism from A onto the submatrix G ,
(<(E)�(img g′)) of <(E), and so h , g′−1 ∈ homS

S(G,A).

2. {b} does not form a subalgebra of A and J 6= I.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case
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φA(b) = f and ψA(b) = t, where φ , (x0 ∧ (ϕ ∧ ∼ϕ)) and ψ ,
(x0 ∨ (ϕ ∨ ∼ϕ)), and so, by (4.2), we get:

F 3 φF(c) = (f|f), (4.6)

F 3 ψF(c) = (t|t). (4.7)

Moreover, in that case, both A is regular and {f, b, t} forms a specular
subalgebra of A. And what is more, e′ , {〈a′, 1× {a′}〉
| a′ ∈ A} is an embedding of A into A1 such that {1 × {x} |
x ∈ {f, t}} = e′[{f, t}] ⊆ e′[A]. In this way, Lemma 4.1 with 1,
A and e′ instead of I, B and e, respectively, used tacitly through-
out the rest of the proof, is well-applicable to A. Then, since J 6=
∅ 6= (I \ J), by (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7), we see
that f , {〈〈x, y〉, (x|y)〉 | 〈x, y〉 ∈ (A u 2)} is an embedding of
H , (A u 2) into F , while h′ , (π0�(A u 2)) ∈ homS

S(H,A). Then,
g′ , (g◦f) ∈ homS(H,<(E)), and so g′ is a surjective strict homomor-
phism from H onto the submatrix G , (<(E)�(img g′)) of <(E). And
what is more, by Lemma 3.2 and Remark 3.6, A is simple. Hence, by
Remark 2.2 and Proposition 2.5, we get (ker g′) ⊆ a(H) = (kerh′).

Therefore, by Remark 2.4, h , (h′ ◦ g′−1
) ∈ homS

S(G,A).

Thus, in any case, there are some submatrix G of E/θ, where θ , a(E),
and some h ∈ homS

S(G,A). Then, D , (E�ν−1
θ [G]), being a submatrix of

E , is so of B, in which case h′′ , (νθ�D) ∈ homS(D,G) is surjective, and
so is h′′′ , (h ◦ h′′) ∈ homS(D,A). On the other hand, by Lemma 3.2 and
Remark 3.6, A is simple. Hence, by Proposition 2.5, ϑ , a(D) = (kerh′′′).

Therefore, by Remark 2.4, νϑ ◦h′′′−1
is an isomorphism from A onto <(D),

as required.

Corollary 4.3. Let C ′ be an extension of C. Suppose either {b} forms
a subalgebra of A or both A is regular and {f, b, t} forms a specular subal-
gebra of A (in particular, Σ = Σ∼[01]), while the rule (4.1) is not satisfied
in C ′. Then, C ′ = C.

Proof: In that case, (x1 ∨ ∼x1) 6∈ T , C ′({x0,∼x0}), so, by the struc-
turality of C ′, 〈FmωΣ, T 〉 is a model of C ′ (in particular, of C), in which
(4.1) is not true under the diagonal Σ-substitution. In this way, (2.2) and
Lemma 4.2 complete the argument.
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Proposition 4.4. Let M be a class of Σ∼-matrices. Suppose CDB is de-
fined by M. Then, there are some B ∈ M and some submatrix D of B such
that DM4 is isomorphic to D/a(D).

Proof: Note that the rule (4.1) is not satisfied in CDB, because it is not
true in DM4 under [x0/b, x1/n]. Therefore, as CDB is defined by M, there
is some model B ∈ M of CDB not being a model of (4.1), in which case
Lemma 4.2 completes the argument.

Now, we are in a position to argue several interesting corollaries of
Proposition 4.4:

Corollary 4.5. Let M be a class of Σ-matrices. Suppose the logic of
M is an expansion of CDB (in particular, Σ = Σ∼ and the logic of M is
CDB itself). Then, some B ∈ M is not truth-/false-singular. In particular,
any four-valued expansion of CDB (including CDB itself) is defined by no
truth-/false-singular matrix.

Proof: By contradiction. For suppose every member of M is truth-/false-
singular. Then, M�Σ∼ is a class of truth-/false-singular Σ∼-matrices defin-
ing CDB. Then, by Proposition 4.4, there are some B ∈ (M�Σ∼) and some
submatrix D of B such that DM4 is isomorphic to E , (D/θ), where
θ , a(D), in which case E is truth-/false-singular, for D is so, because
B is so/, while ((D/θ) \ (DD/θ)) ⊆ ((D \ DD)/θ), and so is DM4. This
contradiction completes the argument.

Corollary 4.6. Any four-valued Σ∼-matrix B defining CDB is isomorphic
to DM4.

Proof: By Proposition 4.4, there are then some submatrix D of B and
some isomorphism e from DM4 onto D/θ, where θ , a(D), in which case
4 = |DM4| = |D/θ| 6 |D| 6 |B| = 4, in which case 4 = |D/θ| = |D| = |B|,
and so νθ is injective, while D = B. In this way, e−1 ◦νθ is an isomorphism
from B onto DM4, as required.

This, in its turn, enables us to prove:

Theorem 4.7. Any four-valued Σ-expansion of CDB is defined by a
Σ-expansion of DM4.

Proof: Let B be a four-valued Σ-matrix defining an expansion of CDB.
Then, B�Σ∼ is a four-valued Σ∼-matrix defining CDB itself. Hence, by
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Corollary 4.6, there is an isomorphism e from B�Σ∼ onto DM4. In that
case, e is an isomorphism from B onto the Σ-expansion 〈e[B], e[DB]〉 of
DM4. In this way, (2.2) completes the argument.

Thus, the natural way of construction of four-valued expansions chosen
above does exhaust all of them. And what is more, any of them is defined
by a unique expansion of DM4, as it follows from:

Theorem 4.8. Let B be a Σ-matrix. Suppose (B�Σ∼) = DM4 and B is a
model of C (in particular, C is defined by B). Then, B = A.

Proof: In that case, B, being finite, is finitely-generated. In addition,
by Lemma 3.2 and Remark 3.6, it is simple. Therefore, as A is finite, by
Lemma 2.7 with M = {A}, there are some finite set I, some I-tuple C
constituted by submatrices of A, some subdirect product D of C and some
g ∈ homS

S(D,B) ⊆ hom(D�Σ∼,DM4), in which case, as | img g| = |B| =
4 6= 1, (

⋂
i∈I ker(πi�D)) = ∆D ⊆ (ker g) 6= D2, while {πi�D | i ∈ I} ∈

℘ω(hom(D�Σ∼,DM4)), and so, by Theorem 3.8, there is some i ∈ I such
that ker(πi�D) = (ker g). Hence, as (πi�D) ∈ hom(D, Ci), by Remark 2.4,
e , ((πi�D) ◦ g−1) ∈ hom(B, Ci) ⊆ hom(B,A) is injective, in which case
e[{n, b}] ⊆ {n, b} and e[{f, t}] ⊆ {f, t}, because ∼DM4a = a iff a ∈ {n, b},
for all a ∈ DM4, and so e is diagonal, for (DDM4 ∩ {n, b}) = {b} and
(DDM4 ∩ {f, t}) = {t}. In this way, B = A, for B = A and DB = DA, as
required.

In view of Theorem 4.8, A is said to be characteristic for/of C.

Corollary 4.9. Let Σ′ ⊇ Σ be a signature and C ′ a four-valued
Σ′-expansion of C. Then, C ′ is defined by a unique Σ′-expansion of A.

Proof: Then, by Theorem 4.7, C ′ is defined by a Σ′-expansion A′ of
DM4, in which case C is defined by the Σ-expansion A′�Σ of DM4, and
so (A′�Σ) = A, in view of Theorem 4.8. In this way, Theorem 4.8 completes
the argument.

4.1.1. Minimal four-valuedness

As a one more interesting consequence of Proposition 4.4, we have:

Theorem 4.10. Let M be a class of Σ-matrices. Suppose the logic of M
is an expansion of CDB (in particular, Σ = Σ∼ and the logic of M is CDB
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itself). Then, 4 6 |B|, for some B ∈ M. In particular, any four-valued
expansion of CDB (including CDB itself) is minimally four-valued.

Proof: In that case, CDB is defined by M�Σ∼, and so, by Proposition 4.4,
there are some B ∈ M and some submatrix D of B�Σ∼ such that DM4 is
isomorphic to D/θ, where θ , a(D). In this way, 4 = |DM4| = |D/θ| 6
|D| 6 |B|, as required.

4.2. Variable sharing property

Lemma 4.11. C is theorem-less iff {n} forms a subalgebra of A.

Proof: First, assume {n} forms a subalgebra of A, in which case A�{n} is
a truth-empty submatrix of A, and so C is theorem-less, in view of (2.2).

Conversely, assume {n} does not form a subalgebra of A. Then, there is
some ϕ ∈ Fm1

Σ such that ϕA(n) 6= n, in which case (ϕA(n) ∨A ∼AϕA(n)) ∈
DA, and so ((x0 ∨ ∼x0) ∨ (ϕ ∨ ∼ϕ)) ∈ C(∅), as required.

Lemma 4.12. C has no inconsistent formula iff {b} forms a subalgebra
of A.

Proof: First, assume {b} does not form a subalgebra of A. Then, there is
some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case (ϕA(b) ∧A ∼AϕA(b)) 6∈
DA, and so ((x0 ∧ ∼x0) ∧ (ϕ ∧ ∼ϕ)) is an inconsistent formula of C.

Conversely, assume {b} forms a subalgebra of A. Let us prove, by
contradiction, that C has no inconsistent formula. For suppose some ϕ ∈
Fmω

Σ is an inconsistent formula of C, in which case ϕ ∈ Fmα
Σ, for some

α ∈ (ω \ 1), while xα ∈ C(ϕ). Let h ∈ hom(FmωΣ,A) extend (Vα × {b}) ∪
(Vω\α × {f}). Then, h(ϕ) = b ∈ DA, whereas h(xα) = f 6∈ DA. This
contradiction completes the argument.

Theorem 4.13. The following are equivalent:

(i) C satisfies VSP;

(ii) C has neither a theorem nor an inconsistent formula;

(iii) both {n} and {b} form subalgebras of A.

Proof: First, (ii) is a particular case of (i). Next, (ii)⇒(iii) is by Lemmas
4.11 and 4.12.
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Finally, assume (iii) holds. Consider any φ, ψ ∈ Fmω
Σ such that V ,

Var(φ) and Var(ψ) are disjoint. Let h ∈ hom(FmωΣ,A) extend (V × {b}) ∪
((Vω \ V ) × {n}). Then, h(φ) = b ∈ DA, whereas h(ψ) = n 6∈ DA. Thus,
6∈ C(φ), and so (i) holds, as required.

Corollary 4.14 (cf. Theorem 4.2 of [9] for the case Σ = Σ∼). C has no
proper extension satisfying VSP.

Proof: Consider any extension C ′ of C satisfying VSP, in which case C,
being a sublogic of C ′, does so as well, and so, by Theorem 4.13(i)⇒(iii),
{b} forms a subalgebra of A. Moreover, as C ′ is ∧-conjunctive, for A is so
(cf. Remark 3.6), (4.1) is not satisfied in C ′, for Var(x0 ∧∼x0) = {x0} and
Var(x1 ∨ ∼x1) = {x1} are disjoint. In this way, Corollary 4.3 completes
the argument.

Perhaps, this is the principal specific maximality of C in addition to
the standard one studied in the next subsection.

4.3. Maximality

Lemma 4.15. Any proper submatrix B of A defines a proper extension C ′

of C.

Proof: For consider the following complementary cases:

1. b ∈ B.
Then, n 6∈ B, for B 6= A, while (n ∧B b) = f, whereas (n ∨B b) = t.
In that case, (x0 ∨ ∼x0) ∈ (C ′(∅) \ C(∅)).

2. b 6∈ B.
Then, B is not ∼-paraconsistent, as opposed to A, and so is C ′, as
opposed to C.

Thus, in any case, C ′ 6= C, as required, in view of (2.2).

Clearly, A is consistent (and truth-non-empty), and so C is (inferen-
tially) consistent. In this connection, we have:

Theorem 4.16. C is [inferentially] maximal iff A has no proper consistent
[truth-non-empty] submatrix.

Proof: First, consider any proper consistent [truth-non-empty] submatrix
B of A. Then, by Lemma 4.15, the logic C ′ of B is a[n inferentially]
consistent proper extension of C, and so C is not [inferentially] maximal.
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Conversely, assume A has no proper consistent [truth-non-empty] sub-
matrix. Consider any [inferentially] consistent extension C ′ of C. Then,
x0 6∈ T , C ′(∅[∪{x1})[3 x1], while, by the structurality of C ′, 〈FmωΣ, T 〉
is a model of C ′ (in particular, of C), and so is its consistent [truth-non-
empty] finitely-generated submatrix B = 〈Fm2

Σ,Fm2
Σ ∩T 〉, in view of (2.2).

Hence, by Lemma 2.7 with M = {A}, there are some finite set I, some
I-tuple C constituted by consistent [truth-non-empty] submatrices of A,
some subdirect product D of C, and some g ∈ homS

S(D,B/a(B)), in which
case, by (2.2), D is a consistent model of C ′, and so, in particular, I 6= ∅.
Moreover, for any i ∈ I, as Ci is consistent [and truth-non-empty] subma-
trix of A, Ci = A is truth non-empty anyway. Hence, by the following
claim, both D 3 a , (I × {f}) and D 3 b , (I × {t}}):

Claim 4.17. Let I be a finite set, C ∈ S∗∗(A)I and B a subdirect product
of C. Then, {I × {f}, I × {t}} ⊆ B.

Proof: In that case, B�Σ+ is a finite lattice, so it has both a zero a
and a unit b. Consider any i ∈ I. Then, as Ci is both consistent and
truth-non-empty, by the following claim, we have {f, t} ⊆ Ci:

Claim 4.18. Let D ∈ S∗∗(A). Then, {f, t} ⊆ D.

Proof: In that case, we have ({f, n}∩D) 6= ∅ 6= ({b, t}∩D). In this way,
the fact that (n ∧A b) = f, while ∼Af = t, whereas ∼At = f, completes the
argument.

Therefore, since πi[B] = Ci, there are some c, d ∈ B, such that πi(c) = f
and πi(d) = t, in which case we have (c∧B a) = a and (d∨D b) = b, and so,
as (πi�B) ∈ hom(B�Σ+,Ci�Σ+), we eventually get πi(a) = (f ∧A πi(a)) = f
and πi(b) = (t∨Aπi(b)) = t. Thus, B 3 a = (I×{f}) and B 3 b = (I×{t}),
as required.

Next, if {f, t} ( A [distinct from {n}] did form a subalgebra of A,
A�{f, t} would be a proper consistent [truth-non-empty] submatrix of A.
Therefore, there are some φ ∈ Fm2

Σ and j ∈ 2 such that φA(f, t) = 〈j, 1− j〉.
Likewise, if {f, 〈j, 1− j〉, t} ( A [distinct from {n}] did form a subal-
gebra of A, A�{f, 〈j, 1− j〉, t} would be a proper consistent [truth-non-
empty] submatrix of A. Therefore, there is some ψ ∈ Fm3

Σ such that
ψA(f, 〈j, 1− j〉, t) = 〈1− j, j〉. In this way, {φA(f, t), ψA(f, φA(f, t), t)} =
{n, b}. Then, D ⊇ {φD(a, b), ψD(a, φD(a, b), b)} = {I×{n}, I×{b}}. Thus,
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{I × {c} | c ∈ A} ⊆ D. Hence, as I 6= ∅, {〈c, I × {c}〉 | c ∈ A} is an em-
bedding of A into D, in which case, by (2.2), C is an extension of C ′, and
so C ′ = C, as required.

4.4. Subclassical expansions

Lemma 4.19. Let B be a (simple) finitely-generated consistent truth-non-
empty model of C. Then, the following hold:

(i) B is ∼-paraconsistent, if ∼(x0 ∧ ∼x0) is true in B and {f, t} does
not form a subalgebra of A;

(ii) A�{f, t} is embeddable into B/a(B) (resp., into B itself), if {f, t}
forms a subalgebra of A.

Proof: Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.7 with M =
{A}, there are some finite set I, some I-tuple C constituted by consistent
truth-non-empty submatrices of A, some subdirect product D of C and
some g ∈ homS

S(D, E), in which case, by (2.2), D is consistent, and so, in
particular, I 6= ∅. Hence, by Claim 4.17, both D 3 a , (I × {f}) and
D 3 b , (I × {t}}). Consider the following respective cases:

(i) ∼(x0 ∧∼x0) is true in B and {f, t} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(f, t) ∈ {n, b}. Take
any i ∈ I 6= ∅. Then, {f, t} = πi[{a, b}] ⊆ Ci. Moreover, (πi�D) ∈
homS(D, Ci), in which case, by (2.2) and (2.3), Ci is a model of ∼(x0∧
∼x0), and so n 6∈ Ci, for ∼A(n∧A∼An) = n 6∈ DA. And what is more,
Ci is a subalgebra of A. Hence, ϕA(f, t) ∈ Ci, and so ϕA(f, t) = b,
for n 6∈ Ci. Then, D 3 c , ϕD(a, b) = (I × {b}), in which case
∼Dc = c ∈ DD, and so D, being consistent, is ∼-paraconsistent, and
so is B, in view of (2.2), as required.

(ii) {f, t} forms a subalgebra of A.
Then, F , (A�{f, t}) is∼-classical, and so simple, in view of Example
3.1 and Lemma 3.2. Finally, as {I × {d} | d ∈ F} ⊆ D and I 6=
∅, e , {〈d, I × {d}〉 | d ∈ F} is an embedding of F into D, in
which case, (g ◦ e) ∈ homS(F , E), and so Corollary 2.3 completes the
argument.
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Theorem 4.20. C is ∼-subclassical iff {f, t} forms a subalgebra of A, in
which case A�{f, t} is isomorphic to any ∼-classical model of C, and so its
logic is the only ∼-classical extension of C.

Proof: Let B be a ∼-classical model of C, in which case it is simple (cf.
Example 3.1 and Lemma 3.2) and finite (in particular, finitely-generated)
but is not ∼-paraconsistent.

First, consider any a ∈ B. Then, {a,∼Ba} 6⊆ DB, for B is ∼-classical,
in which case (a ∧B ∼Ba) 6∈ DB, for B is ∧-conjunctive, because C is so,
since A is so (cf. Remark 3.6), and so ∼B(a ∧B ∼Ba) ∈ DB, for B is
∼-classical. Thus, ∼(x0 ∧ ∼x0) is true in B. Hence, by Lemma 4.19(i),
{f, t} forms a subalgebra of A.

Conversely, assume {f, t} forms a subalgebra of A, in which case D ,
(A�{f, t}) is a ∼-classical model of C, by (2.2), and embeddable into B,
by Lemma 4.19(ii), so is isomorphic to B, for |D| = 2 = |B|. Then, (2.2)
completes the argument.

In view of Theorem 4.20, the unique ∼-classical extension of a ∼-
subclassical four-valued expansion C of CDB is said to be characteristic
for C and denoted by CPC. Its specific maximality feature is as follows:

Theorem 4.21. Let C ′ be an inferentially consistent extension of C. Sup-
pose {f, t} forms a subalgebra of A. Then, A�{f, t} is a model of C ′.

Proof: Then, x1 6∈ C ′(x0) 3 x0, while, by the structurality of C ′,
〈FmωΣ, C ′(x0)〉 is a model of C ′ (in particular, of C), and so is its consis-
tent truth-non-empty finitely-generated submatrix 〈Fm2

Σ,Fm2
Σ ∩C ′(x0)〉, in

view of (2.2). In this way, (2.2) and Lemma 4.19(ii) complete the argu-
ment.

On the other hand, the reservation “inferentially” cannot, generally
speaking, be omitted in the formulation of Theorem 4.21, as it ensues
from:

Example 4.22. When Σ = Σ∼, {n} forms a subalgebra of A, in which
case B , (A�{n}) is a consistent truth-empty submatrix of A, and so,
by (2.2), the logic C ′ of B is a consistent but inferentially inconsistent
extension of C. Then, C ′ is not subclassical, because any classical logic
is inferentially consistent, for any classical matrix is both consistent and
truth-non-empty.
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4.5. Axiomatic extensions

Lemma 4.23. Suppose A is regular and {f, t} forms a subalgebra of it.
Then, so does {f, b, t}.

Proof: By contradiction. For suppose {f, b, t} does not form a subalgebra
of A, in which case there is some ϕ ∈ Fm3

Σ such that ϕA(f, b, t) = n.
Therefore, as t v b, by the regularity of A and the reflexivity of v, we
get ϕA(f, t, t) v n. Hence, ϕA(f, t, t) = n 6∈ {f, t}. This contradicts to the
assumption that {f, t} forms a subalgebra of A, as required.

Lemma 4.24 (cf. Lemma 4.14 of [12] for the case B = {f, t} and Σ = Σ∼).
Let B ∈ S(A). Suppose B ∪ {b} forms a regular subalgebra of A. Then,
any Σ-axiom, being true in B, is so in A�(B ∪ {b}).

Proof: Consider any ϕ ∈ FmΣ not true in A�(B ∪ {b}), in which case
there is some h ∈ hom(FmωΣ,A�(B ∪ {b})) such that h(ϕ) ∈ {f, n}, and so
h(ϕ) v f. Take any b ∈ B 6= ∅. Define a g : Vω → B by setting:

g(v) ,

{
b if h(v) = b,

h(v) otherwise,

for all v ∈ Vω. Let e ∈ hom(FmωΣ,B) ⊆ hom(FmωΣ,A�(B ∪ {b})) extend g.
Then, e(v) = g(v) v h(v), for all v ∈ Vω, in which case, by the regularity
of A�(B ∪ {b}), we have e(ϕ) v h(ϕ) v f, and so we eventually get e(ϕ) ∈
{f, n}, as required.

Lemma 4.25 (cf. Corollary 5.3 of [9] for the case Σ = Σ∼). Suppose {f, b, t}
forms a subalgebra of A/ {f, t}[∪{b}] does [not] form a subalgebra of A.
Then, the logic of A6n/ 6n 6b , (A�({f, b, t}/{f, t})) is the proper consistent
axiomatic extension of C relatively axiomatized by

x1 ∨ ∼x1. (4.8)

Proof: In that case, (Mod (4.8)∩S∗(A)) = S∗(A6n/ 6n 6b). In this way, (2.2),
Corollary 2.9, the consistency of A6n/ 6n 6b and the fact that (4.8) is not true
in A under [x1/n] complete the argument.

Theorem 4.26. [Providing A is regular/has no three-element subalgebra]
C has a proper consistent axiomatic extension if[f ] {f, b, t}/{f, t} forms a
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subalgebra of A [in which case the logic of A6n/6n6b is the only proper consis-
tent axiomatic extension of C and is relatively axiomatized by (4.8)].

Proof: The “if” part is by Lemma 4.25. [Conversely, assume A is regu-
lar/has no three-element subalgebra. Consider any A ⊆ FmΣ such that the
axiomatic extension C ′ of C relatively axiomatized by A is both proper,
in which case A 6= ∅, and consistent, in which case, by Corollary 2.9, C ′

is the logic of S , (Mod(A) ∩ S∗(A)), and so A 6∈ S 6= ∅. Take any
B ∈ S, in which case it is both consistent and, as A 6= ∅, truth-non-empty.
Hence, by Claim 4.18, we have {f, t} ⊆ B. Therefore, if n was in B, then
(B ∪ {b}) would be equal to A/B would belong to {{f, n, t}, A}, in which
case, by Lemma 4.24/the fact that {f, n, t}, being three-element, does not
form a subalgebra of A, A would belong to S. Thus, B ∈ {{f, t}, {f, b, t}}.
Then, by Lemma 4.23/the fact that {f, b, t}, being three-element, does not
form a subalgebra of A, we conclude that {f, b, t}/{f, t} forms a subalge-
bra of A. And what is more, in that case, by Lemma 4.24/the fact that
{f, b, t}, being three-element, does not form a subalgebra of A, we have
A6n/6n6b ∈ S ⊆ S∗(A6n/6n6b), and so, by (2.2), C ′ is equal to the logic of A6n/6n6b.
In this way, Lemma 4.25 completes the argument.]

The logic of DM4[01],6n is [the bounded version of] the logic of paradox
LP[01] [8] (cf. [10]; viz., in the “unbounded” case, the implication-less
fragment of any paraconsistent Dunn’s RM{(2 · n) + 3} {where n ∈ ω}
– cf. [4] and the proof of Corollary 4.15 of [12]). Therefore, in view of the
regularity of DM4[01], Theorem 4.26 immediately yields:

Corollary 4.27. LP[01] is the only proper consistent axiomatic extension
of C[B]DB and is relatively axiomatized by (4.8).

In Section 5 we consider more classes of expansions of FDE in this
connection.

4.6. Maximal paraconsistency versus paracompleteness

The axiomatic extension of C relatively axiomatized by (4.8) is denoted
by CEM. An/A extension/model of C is said to be paracomplete, provided
it is not that of CEM. Clearly, a submatrix B of A is paracomplete/∼-
paraconsistent iff n ∈ B/both b ∈ B and (B ∩ {n, f}) 6= ∅. In particular,
A is both ∼-paraconsistent and paracomplete, and so is C.
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By A−n we denote the submatrix of A generated by {f, b, t} — this
the least ∼-paraconsistent submatrix of A, the logic of it being denoted by
C−n. (Clearly, A−n = A6n, whenever {f, b, t} forms a subalgebra of A, and
A−n = A, otherwise.)

Lemma 4.28. Let B be a ∼-paraconsistent model of C. Then, there is some
submatrix D of B such that A−n is embeddable into D/a(D).

Proof: In that case, there are some a ∈ DB such that ∼Ba ∈ DB and
some b ∈ (B \DB). Then, in view of (2.2), the submatrix D of B generated
by {a, b} is a ∼-paraconsistent finitely-generated model of C. Hence, by
Lemma 2.7 with M = {A}, there are some finite set I, some I-tuple C
constituted by consistent submatrices of A, some subdirect product E of C
and some g ∈ homS

S(E ,D/a(D)). Hence, by (2.2), E is ∼-paraconsistent,
in which case it is consistent, and so I 6= ∅. Take any a ∈ DE such that
∼Ea ∈ DE . Then, E 3 a = (I × {b}), in which case, for each i ∈ I,
DCi 3 πi(a), and so Ci is truth-non-empty. Therefore, by Claim 4.17, we
also have both E 3 b , (I × {f}) and E 3 c , (I × {t}). Consider the
following complementary cases:

1. {f, b, t} does not form a subalgebra of A.
Then, A−n = A and there is some ϕ ∈ Fm3

Σ such that ϕA(f, b, t)
= n, in which case E 3 ϕE(b, a, c) = (I × {ϕA(f, b, t)}) = (I × {n}),
and so {I × {d} | d ∈ A−n} ⊆ E.

2. {f, b, t} forms a subalgebra of A.
Then, A−n = {f, b, t}, and so {I × {d} | d ∈ A−n} ⊆ E.

Thus, in any case, {I × {d} | d ∈ A−n} ⊆ E. Then, as I 6= ∅, e ,
{〈d, I × {d}〉 | d ∈ A−n} is an embedding of A−n into E , in which case
(g ◦ e) ∈ homS(A−n,D/a(D)), and so Corollary 2.3, Lemmas 3.2, 3.3 and
Remark 3.6 complete the argument.

Theorem 4.29. A−n is a model of any ∼-paraconsistent extension of C.
In particular, C−n is the greatest ∼-paraconsistent extension of C, and
so maximally ∼-paraconsistent, in which case an extension of C is ∼-
paraconsistent iff it is a sublogic of C−n.
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Proof: Consider any ∼-paraconsistent extension C ′ of C, in which case
x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality of C ′, 〈FmωΣ, T 〉 is a
∼-paraconsistent model of C ′, and so of C. Then, (2.2) and Lemma 4.28
complete the argument.

Corollary 4.30 (cf. the reference [Pyn 95b] of [10]). Let B be a Σ-ex-
pansion of DM4,6n. Then, the logic of B is maximally ∼-paraconsistent.

Proof: In that case, there is clearly a Σ-expansion A′ of DM4 such that
B is a submatrix of A′, so Theorem 4.29 completes the argument.

Corollary 4.30 [with Σ = Σ∼] covers Dunn’s RM3 [4] [subsumes Theo-
rem 2.1 of [10]].

Theorem 4.31. The following are equivalent:

(i) C is maximally ∼-paraconsistent;

(ii) C = C−n;

(iii) CEM 6= C−n;

(iv) {f, b, t} does not form a subalgebra of A;

(v) CEM is not ∼-paraconsistent;

(vi) CEM is not maximally ∼-paraconsistent;

(vii) any ∼-paraconsistent extension of C is paracomplete;

(viii) no expansion of LP is an extension of C;

(ix) CEM is not an expansion of LP ;

(x) C−n is paracomplete;

(xi) A has no proper ∼-paraconsistent submatrix;

(xii) any ∼-paraconsistent submatrix of A is paracomplete;

(xiii) CEM is either ∼-classical, if C is ∼-subclassical, or inconsistent,
otherwise;

(xiv) any consistent non-∼-classical extension of C is paracomplete.
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Proof: First, (i)⇒(ii) is by (2.2). Next, both (ii)⇒(i), (vi)⇒(iii) and
(x)⇒(vii) are by Theorem 4.29. Moreover, (ii)⇒(x) is by the paracom-
pleteness of C. In addition, (xiii)⇒(xiv) is by Theorems 4.20 and 4.21,
because any consistent logic with theorems is inferentially consistent.

Further, assume {f, b, t} forms a subalgebra of A, in which case A−n =
A 6n, and so, by Lemma 4.25, CEM = C−n is an expansion of LP . Thus,
both (iii)⇒(iv) and (ix)⇒(iv) hold.

Conversely, assume (iv) holds. Let S be the set of all non-paracomp-
lete consistent submatrices of A, in which case, by Corollary 2.9, CEM is
defined by S. Consider any B ∈ S. Since it is not paracomplete, we have
n 6∈ B, in which case f ∈ B, for it is consistent, and so t = ∼Af ∈ B.
Therefore, by (iv), b 6∈ B, for {f, t} ⊆ B 63 n. Thus, B = {f, t}. In this way,
by Theorem 4.20, either S = {B}, in which case CEM is ∼-classical, if C
is ∼-subclassical, or S = ∅, in which case CEM is inconsistent, otherwise.
Thus, (xiii) holds.

Furthermore, (xii)⇔(xi)⇔(x)⇔(iv)⇒(ii) are immediate.
Finally, (ix/viii) is a particular case of (viii/vii). Likewise, (vi) is a

particular case of (v), while (v) is a particular case of (vii), whereas (vii)
is a particular case of (xiv), as required.

It is Theorem 4.31(i)⇔(iv) that provides a quite useful algebraic cri-
terion of the maximal ∼-paraconsistency of C inherited by its four-valued
expansions, in view of Corollary 4.9, applications of which are demonstrated
in Section 5.

Combining Lemmas 4.23, 4.24, Theorems 4.20, 4.31 and (2.2), we im-
mediately get:

Corollary 4.32. Suppose C is ∼-subclassical and A is regular. Then, C
is not maximally ∼-paraconsistent and CPC(∅) = CEM(∅).

Concluding this subsection, we explore the least non-∼-paraconsistent
extension CEM+NP of CEM, viz., that which is relatively axiomatized by
the Ex Contradictione Quodlibet rule:

{x0,∼x0} ` x1. (4.9)

Lemma 4.33. Let I be a finite set, C ∈ {A, 〈A, {t, n}〉, 〈A, {t}〉}I and B a
consistent non-∼-paraconsistent submatrix of

∏
i∈I Ci. Then,

hom(B, 〈A, {t}〉) 6= ∅.
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Proof: Consider the following complementary cases:

· B is truth-empty.
Take any i ∈ I 6= ∅, for B is consistent. Then, h , (πi�B) ∈ hom(B,A).
Moreover, DB = ∅ ⊆ h−1[{t}]. Hence, h ∈ hom(B, 〈A, {t}〉), as required.

· B is truth-non-empty.
Then, B ⊆ AI is finite, for both I and A are so, and so is DB ⊆ B.
Hence, as B�Σ+ is a lattice, DB, being non-empty, has a least element a,
in which case, as B is consistent but not ∼-paraconsistent, ∼Ba 6∈ DB,
and so there is some i ∈ I, in which case h , (πi�B) ∈ hom(B, Ci), such
that h(∼Ba) 6∈ DCi . If there was some b ∈ DB such that h(b) 6= t, we
would have Ci ∈ {A, 〈A, {t, n}〉} and ({b, n} ∩ DCi) 3 h(b) 6A h(a) 6A

h(b), for DB 3 a 6B b, in which case we would get h(a) = h(b), and so
h(∼Ba) = ∼Ah(a) = ∼Ah(b) = h(b) ∈ DCi . Thus, h ∈ hom(B, 〈A, {t}〉),
as required.

Corollary 4.34. Let I be a finite set, C ∈ {A, 〈A, {t, n}〉, 〈A, {t}〉}I and B
a consistent non-∼-paraconsistent non-paracomplete submatrix of

∏
i∈I Ci.

Then, {f, t} forms a subalgebra of A and hom(B,A6n6b) 6= ∅.

Proof: Then, by Lemma 4.33, there is some h ∈ hom(B, 〈A, {t}〉) 6= ∅, in
which case D , (img h) forms a subalgebra of A, and so h ∈ homS(B,D),
where D , (〈A, {t}〉�D). Hence, by (2.3), D is not paracomplete. There-
fore, as (4.8) is true in 〈A, {t}〉 under neither [x1/b] nor [x1/n], we have
(D∩{b, n}) = ∅. On the other hand, D, being non-paracomplete, is truth-
non-empty, for D 6= ∅. Therefore, t ∈ D, in which case f = ∼At ∈ D, and
so D = {f, t}, in which case D = (A�D) = A6n6b, as required.

Theorem 4.35. Suppose C is [not] maximally ∼-paraconsistent. Then,
CEM+NP is consistent iff C is ∼-subclassical, in which case CEM+NP is
defined by [A6n×]A6n6b.

Proof: First, assume CEM+NP is consistent, in which case x0 6∈ T ,
CEM+NP(∅), while, by the structurality of CEM+NP, 〈FmωΣ, T 〉 is a model
of CEM+NP (in particular, of C), and so is its consistent finitely-generated
submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.2). Hence, by Lemma 2.7,

there are some finite set I, some C ∈ S(A)I , some subdirect product D of
it, in which case this is a submatrix of AI , and some h ∈ homS

S(D,<(B)),
in which case, by (2.2), D is a consistent model of CEM+NP, so it is neither
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∼-paraconsistent nor paracomplete. Thus, by Corollary 4.34 and Theorem
4.20, C is ∼-subclassical.

Conversely, assume C is ∼-subclassical. Consider the following comple-
mentary cases:

· C is maximally ∼-paraconsistent.
Then, by Theorems 4.20 and 4.31(i)⇒(v,xiii) CEM+NP = CEM = CPC

is defined by the consistent A6n 6b, and so, in particular, is consistent, as
required.

· C is not maximally ∼-paraconsistent.
Then, by Theorem 4.31(iii/iv)⇒(i), CEM is defined by A−n = A6n. More-
over, by Theorem 4.20, {f, t} forms a subalgebra of A, and so of A6n, in which

case A6n 6b is a submatrix of A6n, and so, by (2.2), B , (A6n×A6n 6b) is a model
of CEM. Moreover, {a,∼Aa} ⊆ {t}, for no a ∈ {f, t}. Therefore, B is not ∼-
paraconsistent, so it is a model of CEM+NP. Conversely, consider any finite
set I, any C ∈ S(A6n)I and any subdirect product D ∈ Mod(CEM+NP) of C,
in which case D is a non-∼-paraconsistent non-paracomplete submatrix of
AI . Put J , hom(D,B). Consider any a ∈ (D \DD), in which case D is
consistent, and so, by Corollary 4.34, there is some g ∈ hom(D,A6n 6b) 6= ∅.

Moreover, there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A6n),
such that f(a) 6∈ DA6n . Then, h , (f × g) ∈ J and h(a) 6∈ DB. In this
way, (

∏
∆J) ∈ homS(D,BJ). Thus, by (2.2) and Theorem 2.8, CEM+NP

is finitely-defined by the consistent six-valued B, and so is consistent and,
being finitary, for both (4.8) and (4.9) are finitary, while the four-valued C
is finitary, is defined by B, as required.

Corollary 4.36 (cf. the last assertion of Theorem 4.13 of [12] for the case
Σ = Σ∼). Let B be a Σ-expansion of DM4,6n. Suppose {f, t} forms a sub-
algebra of B. Then, the extension of the logic of B relatively axiomatized
by (4.9) is defined by B × (B�{f, t}).

Proof: In that case, there is clearly a Σ-expansion A′ of DM4 such that
B is a submatrix of A′, so Theorems 4.20, 4.31 and 4.35 complete the
argument.

This is equally applicable to, in particular, RM3 [4] and subsumes
specific results concerning purely-implicative expansions of C[B]DB obtained
ad hoc in [14] (cf. the last paragraph of Subsection 5.3).
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5. Miscellaneous examples

We entirely follow notations of the previous sections.

5.1. Classically-negative expansions

Here, it is supposed that Σ contains a unary connective ¬ (classical nega-
tion), while ¬A〈i, j〉 , 〈1− i, 1− j〉, for all i, j ∈ 2, in which case
¬A〈k, 1− k〉 = 〈1− k, k〉, for each k ∈ 2, and so ¬A is not regular, for
b 6v n v b. Then, {f, t} is the only proper subset of A which may form a
subalgebra of A. Thus, by Theorems 4.16, 4.20, 4.26 and 4.31, we have:

Corollary 5.1. C:

(i) has no, if it is not ∼-subclassical, in which case it is maximal, and,
otherwise (in particular, when Σ = (Σ∼[01] ∪ {¬})), a unique proper
consistent axiomatic extension, in which case this is equal to CPC =
CEM;

(ii) is maximally ∼-paraconsistent.

This provides an application of the “non-regular” particular case of
Theorem 4.26. (Another one is provided by the next subsection.) On the
other hand, A is (¬x0 ∨ x1)-implicative. Therefore, in view of Remark
3.6, Corollary 5.1(i) (but the maximality reservation) equally ensues from
Theorem 3.5. After all, Corollary 5.1(ii) provides examples of maximally
paraconsistent four -valued logics. (Others are provided by the next sub-
section.)

5.2. Bilattice expansions

Here, it is supposed that Σ contains binary connectives u and t (knowledge
conjunction and disjunction, respectively), while

(〈i, j〉(u/t)A〈k, l〉) , 〈(min /max)(i, k), (max /min)(j, l)〉,

for all i, j, k, l ∈ 2 (cf., e.g., [11]), in which case (f(u/t)At) = (n/b), and
so, since any non-one-element subalgebra of DM4 contains both f and t, A
has no proper non-one-element subalgebra. Hence, by Theorems 4.16, 4.26
and 4.31, we have:
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{f, t}

{f, b, t}

A

{f, n, t}

Figure 1. The poset S∗(A).

Corollary 5.2. C is inferentially maximal, and so both has no proper
consistent axiomatic extension and is maximally ∼-paraconsistent.

This provides both a one more application of the “non-regular” partic-
ular case of Theorem 4.26 and more examples of maximally paraconsistent
four -valued logics. Moreover, it is bilattice expansions that justify studying
the maximality issue within the framework of FDE expansions.

5.3. Implicative expansions

Here, it is supposed that Σ contains a binary connective ⊃ (implication),
while:

(~a ⊃A ~b) ,

{
~b if a0 = 1,

t otherwise,

for all ~a,~b ∈ 22 (cf. [11]), in which case A is ⊃-implicative, while (f ⊃A f) =
t, whereas (b ⊃A f) = f, and so ⊃A is not regular, for t 6v f v b. From now
on, it is supposed that Σ = (Σ∼[01] ∪ {⊃}) (the opposite case is considered
in a similar way ad hoc, depending upon which of the four subsets of A
depicted at Figure 1 form subalgebras of A). Moreover, submatrices of A
are identified with the carriers of their underlying algebras. Then, since
DM4�{b} is not consistent, while (n ⊃A n) = t 6= n, in which case {n} does
not form a subalgebra of A, the poset S∗(A) forms the diamond depicted
at Figure 1, so, in particular, by Theorems 4.16, 4.20 and 4.31, we have:
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{A \ {n}, A \ {b}}

{A \ {n}}

{f, t}

{A \ {b}}

Figure 2. Proper consistent axiomatic extensions of C.

Corollary 5.3. C is ∼-subclassical but not maximal(ly ∼-paraconsis-
tent).

Note that
∼x1 ⊃ (x1 ⊃ (x2 ∨ ∼x2)) (5.1)

is true in {{f, n, t}, {f, b, t}} but is not true in A under [x1/b, x2/n]. More-
over,

∼x1 ⊃ (x1 ⊃ x0) (5.2)

is true in {f, n, t} but is not true in {f, b, t} under [x1/b, x0/f]. Finally,
(4.8) is satisfied in {f, b, t} but is not satisfied in {f, n, t} under [x1/n]. In
this way, by Theorem 3.5 and Remark 3.6, we eventually get:

Corollary 5.4. Proper consistent axiomatic extensions of C (given by
defining matrix anti-chains) form the diamond depicted at Figure 2 and
are relatively axiomatized as follows (actually, according to the constructive
proof of Lemma 3.4):

{A \ {n}, A \ {b}} : (5.1),

{A \ {b}} : (5.2),

{A \ {n}} : (4.8),

{{f, t}} : {(5.2), (4.8)}.
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This, in particular, shows that the optional precondition in the formu-
lation of Theorem 4.26 is essential for the uniqueness of a proper consistent
axiomatic extension of C.

Concluding this discussion, recall that the [four-element chain] lattice of
all extensions of C [EM] [being a definitional copy of Dunn’s RM3 [4] in the
“unbounded” case] has been found in [14] – taking the general preliminary
part of [12] into account – with using an equally automated method but
as for merely defining matrices. However, the mentioned study does not at
all subsume Corollary 5.4 because of not implying the fact that there is no
more proper consistent axiomatic extension of C other than the four ones
depicted at Figure 2. This goes without saying that the present study has
provided relative axiomatizations quite effectively.

6. Conclusions

Aside from the general results and their numerous generic illustrative ap-
plications, the present paper demonstrates a special value of the conception
of equality determinant studied in [13].

And what is more, the methodological algebraic result of Theorem 3.8,
in its turn, based upon the apparatus of equality determinant well-advanced
in [13], has found more applications within the general topic of FDE ex-
pansions, being however beyond the scopes of the present paper and going
to be discussed elsewhere.

In general, the topic of [extensions of] expansions of Dunn-Belnap’s
four-valued logic is too inexhaustible to be studied within a single paper
comprehensively. The present paper constitutes just a first part of it. Oth-
ers are going to be presented elsewhere.

Acknowledgements. The author is grateful to J. M. Dunn and the
anonymous referee for their comments and our discussions on previous ver-
sions of the paper that have helped improve it.
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