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Lew Gordeev∗

Edward Hermann Haeusler

PROOF COMPRESSION AND
NP VERSUS PSPACE II1

Abstract

We upgrade [3] to a complete proof of the conjecture NP = PSPACE that is

known as one of the fundamental open problems in the mathematical theory of

computational complexity; this proof is based on [2]. Since minimal propositional

logic is known to be PSPACE complete, while PSPACE to include NP, it suffices

to show that every valid purely implicational formula ρ has a proof whose weight

(= total number of symbols) and time complexity of the provability involved are

both polynomial in the weight of ρ. As is [3], we use proof theoretic approach.

Recall that in [3] we considered any valid ρ in question that had (by the definition

of validity) a “short” tree-like proof π in the Hudelmaier-style cutfree sequent

calculus for minimal logic. The “shortness” means that the height of π and the

total weight of different formulas occurring in it are both polynomial in the weight

of ρ. However, the size (= total number of nodes), and hence also the weight,

of π could be exponential in that of ρ. To overcome this trouble we embedded

π into Prawitz’s proof system of natural deductions containing single formulas,

instead of sequents. As in π, the height and the total weight of different formulas
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of the resulting tree-like natural deduction ∂1 were polynomial, although the size

of ∂1 still could be exponential, in the weight of ρ. In our next, crucial move, ∂1
was deterministically compressed into a “small”, although multipremise, dag-like

deduction ∂ whose horizontal levels contained only mutually different formulas,
which made the whole weight polynomial in that of ρ. However, ∂ required a

more complicated verification of the underlying provability of ρ. In this paper

we present a nondeterministic compression of ∂ into a desired standard dag-like

deduction ∂0 that deterministically proves ρ in time and space polynomial in the

weight of ρ.2 Together with [3] this completes the proof of NP = PSPACE.

Natural deductions are essential for our proof. Tree-to-dag horizontal com-

pression of π merging equal sequents, instead of formulas, is (possible but) not

sufficient, since the total number of different sequents in π might be exponential

in the weight of ρ – even assuming that all formulas occurring in sequents are

subformulas of ρ. On the other hand, we need Hudelmaier’s cutfree sequent cal-

culus in order to control both the height and total weight of different formulas

of the initial tree-like proof π, since standard Prawitz’s normalization although

providing natural deductions with the subformula property does not preserve

polynomial heights. It is not clear yet if we can omit references to π even in the

proof of the weaker result NP = coNP.

Keywords: Natural deduction, sequent calculus, minimal logic, computational

complexity.

1. Introduction

In [3] we presented a dag-like version of Prawitz’s [9] tree-like natural deduc-
tion calculus for minimal logic, NM→, and left open a problem of computa-
tional complexity of the dag-like provability involved ([3, Problem 22]). In
this paper we show a solution that proves the conjecture NP = PSPACE.
To explain it briefly first consider standard notion of provability. Recall
that our basic deduction calculus NM→ includes two basic inferences

(→ I) :

[α]
...
β

α→ β
, (→ E) :

α α→ β

β

2It is doubtful that ∂ is convertible into ∂0 by a polynomial-time deterministic TM.
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and one auxiliary repetition rule (R) :
α

α
, where [α] in (→ I) indicates

that all α-leaves occurring above β-node exposed are discharged assump-
tions.

Definition 1.1. A given (whether tree- or dag-like) NM→-deduction ∂
proves its root-formula ρ (abbr.: ∂ ` ρ) iff every maximal thread connecting
the root with a leaf labeled α is closed (= discharged), i.e. it contains a
(→ I) with conclusion α→ β, for some β. A purely implicational formula
ρ is valid in minimal logic iff there exists a tree-like NM→-deduction ∂ that
proves ρ;3 such ∂ is called a proof of ρ.

Remark 1.2. Tree-like constraint in the definition of validity is inessential.
That is, for any dag-like ∂ ∈NM→ with root-formula ρ, if ∂ ` ρ then

ρ is valid in minimal logic. Because any given dag-like ∂ can be unfolded
into a tree-like deduction ∂′ by straightforward thread-preserving bottom-
up recursion. To this end every node x ∈ ∂ with n > 1 distinct conclusions
has to be replaced by n distinct nodes x1, · · · , xn ∈ ∂′ with correspond-
ing single-node conclusions and identical premises of x. This operation
obviously preserves the closure of threads, i.e. ∂ ` ρ infers ∂′ ` ρ.

Formal verification of the assertion ∂ ` ρ is simple, as follows – whether
for tree-like or generally dag-like ∂. Every node x ∈ ∂ is assigned, by
descending recursion, a set of assumptions A (x) such that:

1. A (x) := {α} if x is a leaf labeled α,

2. A (x) := A (y) if x is the conclusion of (R) with premise y,

3. A (x) := A (y) \ {α} if x is the conclusion of (→ I) with label α→ β
and premise y,

4. A (x) := A (y) ∪ A (z) if x is the conclusion of (→ E) with premises
y, z.

This easily yields

Lemma 1.3. Let ∂ ∈NM→ (whether tree- or dag-like). Then ∂ ` ρ ⇔
A (r) = ∅ holds with respect to standard set-theoretic interpretations of ∪

3Equivalently: ρis valid in minimal logic iff it is deducible in Hilbert-style cal-
culus with axioms α → (β → α), (α→ (β → γ)) → ((α→ β)→ (α→ γ)) and
inference (→ E), also known as modus (ponendo) ponens; the equivalence follows from
corresponding deduction theorem.



216 Lew Gordeev, Edward Hermann Haeusler

and \ in A (r), where r and ρ are the root and root-formula of ∂, respec-

tively. Moreover, A (r)
?
= ∅ is verifiable by a deterministic TM in |∂|-

polynomial time, where by |∂| we denote the weight of (i.e. total number of
symbols occurring in) ∂.4

Now let us upgrade NM→ to NM[
→ by adding a new separation rule (S)

(→ S) :

n times︷ ︸︸ ︷
α · · · α

α
(n arbitrary)

whose identical premises are understood disjunctively: “if at least one
premise is proved then so is the conclusion” (in contrast to ordinary con-
junctive inference: “if all premises are proved then so is the conclusion”).
Note that in dag-like deductions the nodes might have several conclusions
(unlike in tree-like ones). The modified assignment A in NM[

→ (that works
in both tree-like and dag-like cases) is defined by adding to old recursive
clauses 1–4 (see above) a new clause 5 with new separation symbol s:

5. A (x) = s (A (y1) , · · · , A (yn)) if x is the conclusion of (S) with
premises y1, · · · , yn.

Claim 1.4. For any dag-like deduction ∂ ∈NM[
→ whose root r is labeled ρ,

ρ is valid in minimal logic, provided that A (r) reduces to ∅ (abbr.: A (r) B
∅) by standard set-theoretic interpretations of ∪, \ and nondeterministic
disjunctive valuation s (t1, · · · , tn) := ti, for any chosen i ∈ {1, · · · , n}.
Moreover, the assertion A (r) B ∅ (that is also referred to as ‘∂ proves ρ’)
can be confirmed by a nondeterministic TM in |∂|-polynomial time.

This claim reduces to its trivial NM→ case (see above). For suppose
that A (r) B ∅ holds with respect to a successive nondeterministic valuation
of the occurrences s. This reduction determines a successive ascending
(i.e. bottom-up) thinning of ∂ that results in a “cleansed” (S)-free dag-
like deduction ∂0 ∈NM[

→, while A (r) B ∅ in ∂ implies A (r) = ∅ in ∂0.
Since (S) does not occur in ∂0 anymore, we have ∂0 ∈NM→. By previous
considerations with regard to NM→ we conclude that ρ is valid in minimal
logic, which can be confirmed in |∂|-polynomial time, as required.

4The latter is completely analogous to the well-known polynomial-time decidability
of the circuit value problem (see also Appendix).
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Since minimal logic is PSPACE complete ([11, 12]), in order to arrive
at the desired conclusion NP = PSPACE it will suffice to show that for
any valid ρ there is a modified dag-like deduction ∂ ∈NM[

→ of ρ satisfying
A (r) B ∅, and hence a dag-like deduction ∂0 ∈NM→ satisfying A (r) = ∅,
whose size and maximal formula weight are polynomial in |ρ|. But this is
a consequence of [3] that formalized basic theory of dag-like deducibility
in question (elaborated by the first author). For in [3] we presented a de-
terministic tree-to-dag horizontal compression of a given “short” tree-like
deduction of ρ in NM→ that is obtained by embedding a derivation of ρ
in a Hudelmaier-style [5] cutfree sequent calculus. It resulted in a suitable
|ρ|-polynomial dag-like deduction frame together with a |ρ|-exponential lo-
cally coherent set of maximal threads, in the multipremise expansion of
NM→ (called NM∗→; multiple premises involved arise by merging equal
conclusions of different rules). In this paper we observe that such a pair
determines a deduction in NM[

→ that admits a fundamental set of chains
(see below). Moreover, we show that such NM[

→-deduction is convertible
by the appropriate nondeterministic dag-to-dag horizontal cleansing into
the required NM→ deduction satisfying A (r) = ∅.5

1.1. Recollection of [3]

Recall that ρ is called dag-like provable in NM∗→ iff there is a locally correct

(with respect to inferences of NM∗→) labeled regular dag D̃ = 〈D, s, `f〉
(that may have arbitrary many premises and/or conclusions) with root-
formula ρ, together with a locally coherent mapping G :

−→
e (D) → {0, 1}

that determines a set of threads that confirms alleged validity of ρ, where
−→
e (D) denotes the set of edge-chains in D (see reference in Lemma 5 be-

low). Such D̃ and a pair ∂ =
〈
D̃,G

〉
are called respectively a deduction

frame (or just NM∗→-deduction) and a dag-like proof of ρ in NM∗→.6 In [3]
we proved that the latter notion of dag-like provability of ρ is equivalent
to the validity of ρ in minimal logic (cf. Definition 1). Without loss of

generality we assume that D̃ is horizontally compressed, i.e. `f(x) 6= `f(y)

for all x 6= y on the same level in D, and the weight of D̃ is polynomial
in |ρ| (see [3] and below). Such compression runs by bottom-up recursion

5This yields a “short” certificate for the local coherence statement that itself requires
exponentially many bits to even describe (cf. [1, 4.3.2]).

6Here and below basic notions and notations are imported from [3].
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on the height of a given “short” tree-like deduction with root-formula ρ
by successively merging all nodes with identical formulas occurring in the
corresponding horizontal sections; thus the weight of resulting dag-like de-
duction is polynomial in |ρ|, since so are the height of, and total weight of
different formulas occurring in, the “short” tree-like NM→-input in ques-
tion ( [3]: Ch. 3). We noticed that the local correctness of D̃ is verifiable
in |ρ|-polynomial time, whereas the local coherence of G has no obvious
low-complexity upper bound, as

−→
e (D) is generally exponential (cf. foot-

note 5). The currently proposed upgrade is based on the fundamental sets
of threads, instead of G and

−→
e (D), as follows.

1.2. Upgrade in NM∗
→

Let D̃ = 〈D, s, `f〉 be a given locally correct deduction frame with root-
formula ρ = `f (r), K(D) be the set of maximal ascending chains (also
called threads) consisting of nodes (vertices) u ∈v(D) connecting root r
with leaves. A given set F ⊂K(D) is a fundamental set of threads (abbr.:

fst) in D̃ if the following three conditions are satisfied, where for any Θ =[
r = x0, · · · , xh(D)

]
∈K(D) and i ≤ h (D) we let Θ�xi

:= [x0, · · · , xi].

1. F is dense in D, i.e. (∀u ∈ v (D)) (∃Θ ∈ F) (u ∈ Θ).

2. Every Θ ∈ F is closed, i.e. its leaf-formula `f
(
xh(D)

)
is discharged in

Θ.

3. F preserves (→ E), i.e.

(∀Θ ∈ F) (∀u ∈ Θ) (∀v 6= w ∈ v (D) : 〈u, v〉, 〈u,w〉 ∈ e (D) ∧ v ∈ Θ)
(∃Θ′ ∈ F) (w ∈ Θ′ ∧Θ�u= Θ′ �u) .

Lemma 1.5. Let D̃ be as above and suppose that there exists a fst F in D̃.
Then ρ is dag-like provable in NM∗→.

Proof: Define G :
−→
e (D)→ {0, 1} by G (−→e ) := 1 iff

(
∃
−→
f ⊇ −→e

)
Θ
[−→
f
]
∈

K (D) ∩ F , where Θ
[−→
f
]

contains all nodes occurring in the canonical

thread-expansion of
−→
f . Then ∂ =

〈
D̃,G

〉
is a dag-like proof of ρ. The
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local coherence conditions 1, 2, 4, 5 (cf. [3]: Definition 6) are easily verified.
In particular, 4 follows from the third fst condition with respect to F .

Lemma 1.6. For any dag-like proof
〈
D̃,G

〉
of ρ there are D0 ⊆ D, G0 :

−→
e (D0) → {0, 1}, F ⊂K(D0) and a dag-like proof

〈
D̃0, G0

〉
of ρ such that

F is a fst in D̃0.

Proof: Let F := {Θ ∈ K (D) : G (−→e [Θ]) = 1} for −→e [Θ] := −→em ∈ −→e (D)
determined by Θ as specified in [3]: Definition 8. It is readily seen that

such F is a fst in D̃. The crucial condition 3 follows directly from the
corresponding local coherence condition 4 (cf. [3]: Definition 6). Let D0 ⊆
D be the minimum sub-dag containing every edge occurring in

⋃
Θ∈F

Θ and

let D̃0 = 〈D0, s, `
f〉 be the corresponding sub-frame of D̃. Obviously D̃0 is

locally correct. Define G0 :
−→
e (D0) → {0, 1} as in the previous lema with

respect to D0, instead of D. Then ∂ =
〈
D̃0, G0

〉
is a dag-like proof of

ρ. The crucial density of F in D0 obviously follows from definitions of D0

and G0, as every edge in D0 occurs in some thread from F , while for any
−→e ∈ −→e (D0) we have G0 (−→e ) = 1 iff Θ [−→e ] ∈ F .

Together with [3]: Corollaries 15, 20 these lemmata yield

Corollary 1.7. Any given ρ is valid in minimal logic iff there exists a pair〈
D̃,F

〉
such that D̃ is a locally correct deduction frame with root-formula

ρ = `f (r) and F being a fst in D̃. We can just as well assume that D̃ is
horizontally compressed and its weight is polynomial in that of ρ.

Remark 1.8. We can’t afford F to be polynomial in ρ. However, the exis-
tence of F enables a nondeterministic polytime verification of A (r) B ∅ in
the corresponding modified dag-like formalism, as follows. This collapsing
makes the trick.

2. Modified dag-like calculus NM[
→

As mentioned above, our modified dag-like deduction calculus, NM[
→, in-

cludes inference rules (→ I), (→ E), (R), (S) (see Introduction). (→ I),
(R) and (→ E) have one and two premises, respectively, whereas (S) has
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two or more ones. NM[
→-deductions are graphically interpreted as labeled

rooted regular dags (abbr.: redags, cf. [3]) ∂ = 〈v (∂) ,e (∂)〉 , whose nodes
may have arbitrary many parents (conclusions) – and children (premises),
just in the case (S), – if any at all. The nodes (x, y, z, ...) are la-
beled by `f with purely implicational formulas (α, β, γ, ρ, ...). For the
sake of brevity we’ll assume that nodes x are supplied with auxiliary
height numbers h (x) ∈ N, while all inner nodes also have special labels
`n (x) ∈ {i, e, r, s} showing the names of the inference rules (→ I), (→ E),
(R), (S) with conclusion x. The roots and root-formulas are always desig-

nated r and ρ := `f (r), respectively. The edges 〈x, y〉 ∈e(∂) ⊂v(∂)
2

are
directed upwards (thus r is the lowest node in ∂) in which x and y are called
parents and children of each other, respectively. The leaves l(∂) ⊆v(∂)
are the nodes without children. Tree-like NM[

→-deductions are those ones
whose redags are trees (whose nodes have at most one parent).

Definition 2.1. A given NM[
→-deduction ∂ is locally correct if conditions

1–2 are satisfied, for arbitrary nodes x, y, z, u.

1. ∂ is regular (cf. [3]), i.e.

(a) if 〈x, y〉 ∈e(∂) then x /∈ l(∂) and y 6= r,

(b) h (r) = 0,

(c) if 〈x, y〉 , 〈x, z〉 ∈e(∂) then h (y) = h (z) = h (x) + 1.

2. ∂ formalizes the inference rules, i.e.

(a) if `n (x) =r and 〈x, y〉 , 〈x, z〉 ∈e(∂) then y = z and `f (y) =
`f (x) [: rule (R)],

(b) if `n (x) = i and 〈x, y〉 , 〈x, z〉 ∈e(∂) then y = z and `f (x) =
α→ `f (y) for some (uniquely determined) α [: rule (→ I)],

(c) if `n (x) =e and 〈x, y〉 , 〈x, z〉 , 〈x, u〉 ∈e(∂) then |{y, z, u}| = 2
and if y 6= z then either `f (z) = `f (y) → `f (x) or else `f (y) =
`f (z)→ `f (x) [: rule (→ E)],

(d) if `n (x) = s and 〈x, y〉 ∈e(∂) then `f (y) = `f (x) and `n (y) 6= s
[: rule (S)].

NM∗→ is easily embeddable into NM[
→. Namely, consider a locally

correct NM∗→-deduction frame D̃ = 〈D, s, `f〉.7 The corresponding locally

7For brevity we omit h, as every h (x) is uniquely determined by x.
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correct dag-like NM[
→-deduction ∂ arises from D by ascending recursion

on the height. The root and basic configurations of types (→ I), (→ E),

(R) in D̃ should remain unchanged. Furthermore, if x has several groups of
premises in D, i.e. |s (x,D)| > 1 (cf. [3]) then in ∂ we separate these groups
via (S) with |s (x,D)| identical premises; for example this multipremise

NM∗→-configuration in D̃

β γ γ → (α→ β)

α→ β

γ → (α→ β)

goes to this NM[
→ -configuration in ∂

(→ I)

(S)

(→ I)
β

α→ β
(→ E)

γ γ → (α→ β)

α→ β

α→ β

γ → (α→ β)
.

Corresponding `f- and `n-labels are induced in an obvious way. Note that
the weight of ∂ is linear in that of D̃.8

Now suppose that there is a fst F in a chosen NM∗→-deduction frame

D̃, and let F [ be the image of F in ∂. It is readily seen that F [ is also a
dense and (→ E) preserving set of closed threads in ∂ (see NM∗→-clauses
1–3 in Ch. 1.2). That is, F [ is a dense set of closed threads in ∂ such that
for every Θ ∈ F [ and (→ E)-conclusion x ∈ Θ, `n (x) =e→, with premises
y and z, if y ∈ Θ then there is a Θ′ ∈ F [ such that z ∈ Θ′ and Θ coincides
with Θ′ below x.

2.1. Modified dag-like provability

We formalize in NM[
→ the modified assignment A : ∂ 3 x ↪→ A (x) ⊆

FOR (∂).

Definition 2.2 (Assignment A). Let ∂ be any locally correct dag-like
NM[

→-deduction. We assign nodes x ∈ ∂ with terms A (x) by descending
recursion 1–5.

8Recall that according to [3] we can just as well assume that D̃ is horizontally
compressed and its weight is polynomial in that of ρ.



222 Lew Gordeev, Edward Hermann Haeusler

1. A (x) := {α} if x is a leaf and `f (x) = α.

2. A (x) := A (y) if `n (x) = r and 〈x, y〉 ∈e(∂).

3. A (x) := A (y)\{α} if `n (x) = i, 〈x, y〉 ∈e(∂) and `f (x) = α→ `f (y).

4. A (x) := A (y) ∪A (z) if `n (x) = e and 〈x, y〉 , 〈x, z〉 ∈ e (∂).

5. A (x) := s (A(y1) , · · · , A(yn)) if `n (x) = s and (∀i∈ [1, n]) 〈x, yi〉 ∈
e(∂).

Definition 2.3 (Nondeterministic reduction). Let ∂ and A be as above, r
the root of ∂, S a set of formulas occurring in ∂. We say that A (r) reduces
to S (abbr.: A (r) B S) if S arises from A (r) by successive (in a left-to-
right direction) substitutions A (u) = s (A (v1) , · · · , A (vn)) := A (vi), for
a fixed chosen i ∈ {1, · · · , n} and for any occurrence A (u) in A (w) and in
A (w′), for every w′ below w, provided that u is a premise of w such that
`n (u) = s,9 while using ordinary set-theoretic interpretations of ∪ and \.
We call ∂ a modified dag-like proof of ρ = `f (r) (abbr.: ∂ ` ρ) if A (r) B ∅
holds.10

Example 2.4. Previously shown configuration yields a ∂ such that ∂ 0 ρ :

β ;A = {β}
α→ β : i ;A = {β}

γ ;A = {γ} γ → (α→ β) ;A = {γ → (α→ β)}
α→ β : e ;A = {γ, γ → (α→ β)}

α→ β : s ;A = s ({β} , {γ, γ → (α→ β)})
γ → (α→ β) : i ;A = s ({β} , {γ → (α→ β)})

where `n (r) = i, `f (r) = ρ = γ → (α→ β) and A (r) = s({β},
{γ → (α→ β)}). Note that A (r) B {β} and A (r) B {γ → (α→ β)},
although A (r) 7 ∅.

To obtain an analogous dag-like proof of (say) ρ′ := β → (γ → (α→ β))
we’ll upgrade ∂ to such ∂′ :

9This operation is graphically interpreted by deleting u along with vj for all j 6= i.
10The nondeterminism in question is encoded in s of Clause 5.
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β ;A={β}
α→ β : i ;A={β}

γ ;A={γ} γ → (α→ β) ;A={γ → (α→ β)}
α→ β : e ;A={γ, γ → (α→ β)}

α→ β : s ;A = s ({β} , {γ, γ → (α→ β)})
γ → (α→ β) : i ;A = s ({β} , {γ → (α→ β)}) \ {γ}

β → (γ → (α→ β)) : i ;A = s ({β} , {γ → (α→ β)}) \ {γ} \ {β}

and let s ({β} , {γ, γ → (α→ β)}) := {β}. Then A (r) B ∅ , i.e. ∂′ ` ρ′
holds.

Lemma 2.5. Every modified dag-like proof of ρ is convertible to a dag-like
NM→-proof of ρ.

Proof: Let ∂ be a given NM[
→-proof of ρ. Its NM→-conversion is defined

by a simple ascending recursion, as follows. Each time we arrive at a w
whose premise u is a conclusion of (S), we replace u by its premise that
is “guessed” by a given nondeterministic reduction leading to A (r) B ∅
– alternatively, we can replace this (S) by the corresponding repetition
(R). It is readily seen that the resulting dag-like deduction ∂0 with the
same root-formula ρ is locally correct and (S)-free, and hence it belongs
to NM→. Obviously A (r) B ∅ in ∂ infers A (r) = ∅ in ∂0, and hence ∂0

proves ρ in NM→.

This lemma is generalized by

Lemma 2.6. Let D̃ be any locally correct deduction frame in NM∗→ with
root-formula ρ that admits some fst. There exists a dag-like NM→-proof
of ρ whose weight does not exceed that of D̃.

Proof: Let ∂ be the NM[
→-deduction of ρ induced by D̃ and F any fst

in D̃. Furthermore, let F [ be the image of F in ∂ (see above). We will
show that F [ determines successive left-to-right s-eliminations
s (A (y1) , · · · , A (yn)) ↪→A (yi) inside A (r) leading to a desired reduction
A (r) B ∅. These eliminations together with a suitable sub-fst F [0 ⊆ F [
arise as follows by ascending recursion along F [. Let x with `n (x) = e be
a chosen lowest conclusion of (→ E) in ∂, if any exists. By the density of
F [, there exists Θ ∈ F [ with x ∈ Θ; we let Θ ∈ F [0. Let y and z be the
two premises of x and suppose that y ∈ Θ. By the third fst condition there
exists a Θ′ ∈ F [ with z ∈ Θ′ and Θ�x= Θ′ �x; so let Θ′ ∈ F [0 be the corre-
sponding “upgrade”of Θ. In the case z ∈ Θ we let Θ′ := Θ. Note that Θ�x
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determines substitutions A (u) = s (A (v1) , · · · , A (vn)) := A (vi) in all
parents of (S)-conclusions u occurring in both Θ and Θ′ below x (cf. Defi-
nitions 10, 11), if any exist, and hence also s-eliminations A (u) ↪→ A (vi)
in the corresponding subterms of A (r). The same procedure is applied to
the nodes occurring in Θ and Θ′ between x and the next lowest conclu-
sions of (→ E); this yields new “upgraded” threads Θ′′,Θ′′′, · · · ∈ F [0 and
s-eliminations in the corresponding initial fragments of A (r). We keep
doing this recursively until the list of remaining s-occurrences in Θ ∈ F [0
is empty. The final “cleansed” s-free form of A (r) is represented by a set
of formulas that easily reduces to ∅ by ordinary set-theoretic interpretation
of the remaining operations ∪ and \, since every Θ ∈ F [0 involved is closed.
That is, the correlated “cleansed” deduction ∂0 is a locally correct dag-like
deduction of ρ in the (S)-free fragment of NM[

→, and hence it belongs to
NM→; moreover the set of ascending threads in ∂0 is uniquely determined
by the remaining rules (R), (→ I), (→ E) (cf. analogous passage in the
previous proof). Now by the definition these “cleansed” ascending threads
are all included in F [0 and hence closed with respect to (→ I).11 This yields
a desired reduction A (r) B ∅, i.e. A (r) = ∅, in ∂0. Hence ∂0 proves ρ in

NM→. Obviously the weight of ∂0 does not exceed the weight of D̃.

Operation ∂ ↪→ ∂0 is referred to as horizontal cleansing (cf. Introduc-
tion). Together with Remark 2 and Corollary 7 this yields

Corollary 2.7. Any given ρ is valid in minimal logic iff it is provable in
NM→ by a dag-like deduction ∂0 whose weight is polynomial in |ρ| and
such that ∂0 ` ρ can be confirmed by a deterministic TM in |ρ|-polynomial
time.12

Theorem 2.8. PSPACE ⊆ NP and hence NP = PSPACE.

Proof: Minimal propositional logic is PSPACE-complete (cf. e.g. [7, 11,
12]). Hence PSPACE ⊆ NP directly follows from Corollary 15. Note
that in contrast to [3] here we use nondeterministic arguments twice. First
we “guess” the existence of “short” Hudelmaier-style cutfree sequential de-
duction of ρ that leads (by deterministic compression) to a “small” natural

deduction frame D̃ that is supposed to have a fst F . Then we “guess”

11These threads may be exponential in number, but our nondeterministic algorithm
runs on the polynomial set of nodes.

12See Appendix for a more exhaustive presentation.
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the existence of a “cleansed” modified subdeduction that confirms in |ρ|-
polynomial time the provability of ρ with regard to

〈
D̃,F

〉
.

Corollary 2.9. NP = coNP and hence the polynomial hierarchy col-
lapses to the first level.

Proof: NP=PSPACE implies coNP=coPSPACE=PSPACE=NP
(see also [8, 1]).

Corollary 2.10. PSPACE (in particular NP) problems are nondetermin-
istically decidable in polynomial time. To put it more precisely, for any
given PSPACE language L ⊆ {0, 1}∗ there exists a polynomial p : N→ N
and a polynomial-time TM M such that for every x ∈ {0, 1}∗ there ex-

ists u ∈ {0, 1}p(|x|) satisfying x ∈ L ⇔ M(x, u) = 1 (i.e.: “u provides a
polynomial test for x ∈?L”).13

Proof: By theorem 16, it suffices to deal with the NP-complete problem
of boolean satisfiability. Let ϕ (−→v ) be a given boolean formula, where −→v
is a list of propositional variables that is encoded by x ∈ {0, 1}∗. Let
x ∈ L abbreviate ϕ (−→v ) ∈ SAT, then x /∈ L ⇔ ¬ϕ (−→v ) ∈ VAL. By
Corollary 17, SAT and VAL are both in NP. This yields the result by an
obvious nondeterministic combination of standard NP-verifications of both
conjectures x ∈ L and x /∈ L.

Remark 2.11 (“Hilbert-paradise” of PSPACE world). Corollary 18 yields
a following broad conclusion. PSPACE problems are closed under proposi-
tional operations and provability (by Savitch’s theorem) while being (non-
deterministic) decidable in polynomial time (: “in PSPACE there is no
polytime ignorabimus”).

13That is, we rewrite NP condition

(∀x ∈ {0, 1}∗)
(
x ∈ L⇔

(
∃u ∈ {0, 1}p(|x|)

)
M(x, u) = 1

)
(cf. e.g. [1, 2.1]) to

(∀x ∈ {0, 1}∗)
(
∃u ∈ {0, 1}p(|x|)

)
(x ∈ L⇔M(x, u) = 1)

or, more precisely, to

(∀x ∈ {0, 1}∗)
(
¬¬∃u ∈ {0, 1}p(|x|)

)
(x ∈ L⇔M(x, u) = 1) .
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Appendix: rough complexity estimate

Dag-like proof system NM→

We regard NM→ as NM[
→ without separation rule (S). Moreover, without

loss of generality we suppose that dag-like NM→-deductions ∂ of root-

formulas ρ have polynomial total number of vertices |v (∂)| = O
(
|ρ|4
)

while the weights of formulas and the height numbers involved are bounded
by 2 |ρ| and |v (∂)|, respectively (cf. [3]).

Let LC (∂) and PROV (∂) be abbreviations for ‘∂ is locally correct ’ and
‘∂ proves ρ’, respectively, and let PROOF (∂) := LC (∂) & PROV (∂). We
wish to validate the assertion PROOF (∂) in polynomial time (and space)
by a suitable deterministic TM M . For technical reasons we choose a
formalization of ∂ in which edges are redefined as pairs 〈parent, child〉.
Let ρ, χρ ∈ {i, e}, a = 2 |ρ| and 0 < r < b = O

(
|ρ|4
)

be fixed.

Input of M : List t consisting of tuples t (x) = [x, y1, y2, h, h1, h2, χ, γ,
β1, β2], for all 0 < x ≤ b, where χ ∈ {r, i, e, l} (l stands for ‘leaf’),
while x, y1, y2 ≤ b, h, h1, h2 ≤ b and γ, β1, β2 ≤ a are natural numbers (in
binary) which are thought to encode nodes, nodes’ heights and formulas,
respectively (0 encodes ∅).

The weight of t is O
(
|ρ|4 log |ρ|

)
< O

(
|ρ|5
)

. LC (∂) and PROV (∂)

are verified by M as follows while assuming that: x are parents of yi > 0,
h := h (x), hi := h (yi), γ := `f (x), βi := `f (yi) (i ∈ {1, 2}) and χ := `n (x)
if x is not a leaf, else χ := l.

Local correctness

LC (∂) is equivalent to conjunction of the following conditions 1–8 on t
that (according to above assumptions) uniquely determines the underlying
locally correct NM→-deduction ∂ by ascending induction on h.

http://dx.doi.org/10.1007/s00153-003-0179-x
http://dx.doi.org/10.1145/1039488.1039493
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1. If x = x′ then t (x) = t (x′).

2. If t (x) = [x, y1, y2, h, h1, h2, χ, γ, β1, β2] and x′ = yi > 0 (i ∈ {1, 2})
for t (x′) = [x′, y′1, y

′
2, h
′, h′1, h

′
2, χ
′, χ′1, χ

′
2, γ
′, β′1, β

′
2], then h′ = hi and

γ′ = βi.

3. If x = r then h = 0, γ = ρ and χ = χρ.

4. If χ = l then y1 = y2 = β1 = β2 = 0 [: case x ∈ l(∂)].

5. If χ 6= l then y1 + y2 > 0 and h1 = h2 = h+ 1.

6. If χ =r then y2 + β2 = 0 < y1 and γ = β1 [: rule (R)].

7. If χ = i then γ = α→ β1 (for some α) [: rule (→ I)].

8. If χ =e then β2 = β1 → γ [: rule (→ E)].

The verification of conditions 1–8 requires O
(
|ρ|5
)

iterations of basic

queries χ
?
= χ′, u

?
= v, δ

?
= σ, (∃?α) γ = α → β for χ, χ′ ∈ {r, i, e, l},

u, v ≤ b and β, γ, δ, σ ≤ a that are solvable in O (|ρ|) time (note that
α→ β =→αβ in the  Lukasiewicz prefix notation). Summing up there is a

deterministic TM M that verifies LC (∂) in O
(
|ρ|5 · |ρ|

)
= O

(
|ρ|6
)

time

and O
(
|ρ|5
)

space.

Assignment A

A given locally correct NM→-deduction ∂ determines an assignment

A : 0 < x ≤ b ↪→ A (x) ⊆ FOR (∂)

that is defined by the following recursive clauses 1–4 for input t satisfying
above conditions 1–8, where as above t (x) = [x, y1, y2, h, h1, h2, χ, γ, β1, β2],
for all 0 < x ≤ b.

1. A (x) := {γ} if χ = l.

2. A (x) := A (y1) if χ =r.

3. A (x) := A (y1) \ {α} if χ = i and γ = α→ β1.

4. A (x) := A (y1) ∪A (y2) if χ = e.
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The length of recursion 1–4 is b = O
(
|ρ|4
)

. Recursion steps produce

(say, sorted) lists of formulas A (x), |A (x)| ≤ b using set-theoretic unions
A ∪B and subtractions A \ {α}. Each recursion step requires O (b · |ρ|) =

O
(
|ρ|5
)

steps of computation. This yields upper bound O
(
|ρ|4 · |ρ|5

)
=

O
(
|ρ|9
)

for A (r)
?
= ∅. Thus PROV (∂) is verifiable in O

(
|ρ|9
)

time and

O (|ρ|) space. Hence by the above estimate of LC (∂) we can safely assume

that PROOF (∂) is verifiable by a deterministic TM M in O
(
|ρ|9
)

time

and O
(
|ρ|5
)

space.

Conclusion 2.12. There exist polynomials p, q, r of degrees 5, 9, 5, respec-
tively, and a deterministic boolean-valued TM M such that for any purely
implicational formula ρ the following holds: ρ is valid in minimal logic iff

there exists a u ∈ {0, 1}p(|ρ|) such that M (ρ, u) yields 1 after q (|ρ|+ |u|)
steps of computation in space r (|ρ|+ |u|). Analogous polynomial esti-
mates of the intuitionistic and/or classical propositional and even quan-
tified boolean validity are easily obtained by familiar syntactic interpreta-
tions within minimal logic (cf. e.g. [6, 10, 12]).

Remark 2.13. Recall that PROV (∂) is equivalent to theassertionthatmax-
imal threads in ∂ are closed. This in turn is equivalent to a variant of
non-reachability assertion: ‘r is not connected to any leaf z in a subgraph
of ∂ that is obtained by deleting all edges 〈x, y〉 with `n (x) = i and `f (x) =
`f (z) → `f (y)’, which we’ll abbreviate by PROV1(∂). Now PROV1(∂) is

verifiable by a deterministic TM in O (|v (∂)| · |e (∂)|) = O
(
|ρ|12

)
time

and O (|ρ| · |v (∂)|) = O
(
|ρ|5
)

space (cf. e.g. [8]). However this does not

improve our upper bound for PROOF (∂). Actually there are known much
better estimates of the reachability problem (cf. e.g. [13, 4]), but at this
stage we are not interested in a more precise analysis.
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EMPIRICAL NEGATION, CO-NEGATION
AND THE CONTRAPOSITION RULE I:

SEMANTICAL INVESTIGATIONS

Abstract

We investigate the relationship between M. De’s empirical negation in Kripke

and Beth Semantics. It turns out empirical negation, as well as co-negation,

corresponds to different logics under different semantics. We then establish the

relationship between logics related to these negations under unified syntax and

semantics based on R. Sylvan’s CCω.

Keywords: Empirical negation, co-negation, Beth semantics, Kripke semantics,

intuitionism.

1. Introduction

The philosophy of Intuitionism has long acknowledged that there is more
to negation than the customary, reduction to absurdity. Brouwer [1] has al-
ready introduced the notion of apartness as a positive version of inequality,
such that from two apart objects (e.g. points, sequences) one can learn not
only they are unequal, but also how much or where they are different. (cf.
[19, pp.319–320]). He also introduced the notion of weak counterexample,
in which a statement is reduced to a constructively unacceptable principle,
to conclude we cannot expect to prove the statement [17].
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Another type of negation was discussed in the dialogue of Heyting
[8, pp. 17–19]. In it mathematical negation characterised by reduction
to absurdity is distinguished from factual negation, which concerns the
present state of our knowledge. In the dialogue it is emphasised that only
the former type of negation has a part in mathematics, on the ground that
the latter does not have the form of a mathematical assertion, i.e. asser-
tion of a mental construction. Nevertheless it remains the case that factual
negation has a place in his theoretical framework.

One formalisation of logic with this “negation at the present stage of
knowledge” was given by De [3] and axiomatised by De and Omori [4],
under the name of empirical negation. The central idea of IPC∼ is seman-
tic: the Kripke semantics of IPC∼ is taken to be rooted, with the root
being understood as representing the present moment. Then the empirical
negation ∼A is defined to be forced at a world, if A is not forced at the
root.

Yet another type of negation in the intuitionistic framework is co-
negation introduced by Rauszer [12, 13]. Seen from Kripke semantics, a
co-negation ∼A is forced at a world, if there is a preceding world in which
A is not forced. This is dual to the forcing of intuitionistic negation ¬A,
which requires A not being forced at all succeeding nodes. Co-negation was
originally defined in terms of co-implication, but the co-negative fragment
was extracted by Priest [11], to define a logic named daC.

In both empirical and co- negation, the semantic formulation arguably
gives a more fundamental motivation than the syntactic formulation. In
particular, in case of empirical negation, it is of essential importance that
a Kripke frame can be understood as giving the progression of growth of
knowledge. It may be noted, however, that Kripke semantics is not the only
semantics to give this kind of picture. Beth semantics is another semantics
whose frames represent the growth of knowledge. It then appears a natural
question to ask, whether the same forcing condition of empirical/co- nega-
tion gives rise to the same logic. That is to say, whether IPC∼ and daC
will be sound and complete with respect to Beth semantics. Indeed, for
co-implication, a similar question was asked by Restall [14]. There it was
found out that one needs to alter the forcing condition to get a complete
semantics.

In this paper, we shall observe that another logic called TCCω, intro-
duced by Gordienko [7], becomes sound and complete with Beth models
with the forcing conditions of empirical and co- negation (which turn out
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to coincide). This is of significant interest for those who advocate empirical
or co- negation from a semantic motivation, as it will provide a choice in
the logic to which they should adhere.

This is followed by another observation about the axiomatisation of
IPC∼ and daC, which employ the disjunctive syllogism rule [RP]. In con-
trast, the axiomatisation of of TCCω and a related system CCω of Sylvan
[15], which is a subsystem of the other three, use the contraposition rule
[RC]. We shall observe that this difference in rules can be eliminated, by
replacing [RP] with [RC] and an additional axiom. This will give a com-
pleteness proof of daC with respect to the semantics of CCω, and thus the
semantics of Došen [5]. It will also provide a more unified viewpoint of the
logics related to CCω as defined by extra axioms with no change in rules.

We shall continue our investigation proof-theoretically in a sequel. In
the second paper, using the obtained frame properties we shall formulate
labelled sequent calculi for the logics considered so far (CCω, daC, TCCω

and IPC∼). We shall prove the admissibility of structural rules including
cut, and then show the correspondence with Hilbert-style calculi.

2. Preliminaries

We shall employ the following notations (taken from [17]) for sequences
and related notions.

• α, β, . . .: infinite sequences of the form 〈b1, b2, . . .〉 of natural numbers.

• 〈〉: the empty sequence.

• b, b′, . . .: finite sequences of the form 〈b1, . . . , bn〉 of natural numbers.

• b ∗ b′: b concatenated with b′.

• lh(b): the length of b.

• b � b′: b ∗ b′′ = b′ for some b′′.

• b ≺ b′: b � b′ and b 6= b′.

• ᾱn: α’s initial segment up to the nth element.

• α ∈ b: b is α’s initial segment.

We define a tree to be a set T of finite sequences of natural number such
that 〈〉 ∈ T , b ∈ T ∨ b /∈ T and b ∈ T ∧ b′ ≺ b→ b′ ∈ T . We call each finite
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sequence in T a node and 〈〉 the root. A successor of a node b is a node
of the form b ∗ 〈x〉. By leaves of T , we mean the nodes of T which do not
have a successor, i.e. nodes b such that ¬∃x(b ∗ 〈x〉) ∈ T . A spread then is
a tree whose nodes always have a successor, i.e. ∀b ∈ T∃x(b ∗ 〈x〉 ∈ T ).

A clarification: whilst 〈b, b, . . .〉 denotes an infinite sequence consisting
just of bs, 〈b, . . . , b〉 denotes a finite sequence consisting just of bs.

3. Empirical negation in Kripke Semantics

Let us use the following notations for metavariables.

• p, q, r, . . . for propositional variables.

• A,B,C, . . . for formulae.

In this paper, we shall consider the following propositional language

L ::= p | (A ∧B) | (A ∨B)| (A→ B) | ∼A.

Parentheses will be omitted if there is no fear of ambiguity. We shall use
the convention A↔ B := (A→ B) ∧ (B → A).

To begin with, we look at the Kripke semantics for the intuitionistic
logic with empirical negation IPC∼ given in [4]. Recall that a reflexive,
anti-symmetric and transitive ordering is called a partial order.

Definition 3.1 (Kripke model for IPC∼). A Kripke Frame F∼K for IPC∼

is a partially ordered set (W,≤) with a root r ∈ W such that r ≤ w for
all w ∈ W . We shall call each w ∈ W a world. A Kripke model M∼K for
IPC∼ is a pair (F∼K ,V), where V is a mapping that assigns a set of worlds
V(p) ⊆W to each propositional variable p. We assume V to be monotone,
viz. w ∈ V(p) and w′ ≥ w implies w′ ∈ V(p). To denote a model, we
shall use bothM∼K and (F∼K ,V) interchangeably. Similar remarks apply to
different notions of model in the later sections.

Given M∼K, the forcing (or valuation) of a formula in a world, denoted
M∼K, w 
K A, is inductively defined as follows.
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M∼K, w 
K p ⇐⇒ w ∈ V(p).

M∼K, w 
K A ∧B ⇐⇒M∼K, w 
K A and M∼K, w 
K B.

M∼K, w 
K A ∨B ⇐⇒M∼K, w 
K A or M∼K, w 
K B.

M∼K, w 
K A→ B ⇐⇒ for all w′ ≥ w, if M∼K, w′ 
K A,
then M∼K, w′ 
K B.

M∼K, w 
K ∼A ⇐⇒M∼K, r 1K A.

We shall occasionally avoid denoting models explicitly when it is apparent
from the context. If M∼K, w 
K A for all w ∈ W , we write M∼K �K A and
say A is valid in M∼K. For a set of formulae Γ, if M∼K �K C for all C ∈ Γ
impliesM∼K �K A, then we write Γ �K A and say A is a consequence of Γ.
If Γ is empty, we simply write �K A and say A is valid (in IPC∼).

A Hilbert-style proof system for IPC∼ is established in [4], which we
identify here with the logic itself for convenience, and denote it simply as
IPC∼. We shall apply the same convention to other logics in later sections.

Definition 3.2 (IPC∼).
The logic IPC∼ is defined by the following axiom schemata and rules.

Axioms

[Ax1] A→ (B → A)

[Ax2] (A→ (B → C))→ ((A→ B)→ (A→ C))

[Ax3] (A ∧B)→ A

[Ax4] (A ∧B)→ B

[Ax5] (C → A)→ ((C → B)→ (C → (A ∧B)))

[Ax6] A→ (A ∨B)

[Ax7] B → (A ∨B)

[Ax8] (A→ C)→ ((B → C)→ ((A ∨B)→ C))

[Ax9] A ∨ ∼A
[Ax10] ∼A→ (∼∼A→ B)

Rules
A A→ B[MP]

B
A ∨B[RP] ∼A→ B
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We followed [4] in the labelling of the axioms and the rules. A proof
(or deduction/derivation) of A from a (possibly infinite) set of formulae Γ
(which we denote by Γ `∼ A) in IPC∼ is a finite tree with the number
of branching at each node less than or equal two, and whose nodes are
labelled by formulae of L such that

• The formulae in the leaves are either instances of axioms, or from a
specified finite subset Γ′ of Γ.

• Each formula in non-leaf nodes is obtained from the formulae in the
successor nodes by an application of a rule.

• The root of the tree is A.

Then it has been shown by De and Omori that IPC∼ is sound and
complete with the Kripke semantics.

Theorem 3.3 (Kripke completeness of IPC∼). Γ `∼ A⇐⇒ Γ �K A.

Proof: Cf. [4].

4. Empirical negation in Beth Semantics

4.1. Beth semantics and IPC∼

Let us turn our attention to Beth models in this section. Our formalisation
will be based on that of [16, 18]. If we apply to the forcing of ∼ the same
criterion as to the Kripke semantics above, then we obtain the following
semantics.

Definition 4.1 (Beth model). A Beth frame FB is a pair (W,�) that
defines a spread. Then A Beth model MB is a pair (FB,V), where V is an
assignment of propositional variables to the nodes such that:

b ∈ V(p)⇔ ∀α ∈ b∃m(ᾱm ∈ V(p)). [covering]

(The left-to-right direction is trivial, and it is straightforward to see that a
covering assignment is monotone.)

The forcing relation 
B A for a Beth model is defined by the following
clauses.
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MB, b 
B p ⇐⇒ b ∈ V(p).

MB, b 
B A ∧B ⇐⇒MB, b 
B A and MB, b 
B B.
MB, b 
B A ∨B ⇐⇒ ∀α ∈ b∃n(MB, ᾱn 
B A or MB, ᾱn 
B B).

MB, b 
B A→ B ⇐⇒ for all b′ � b, if MB, b′ 
B A, then MB, b′ 
B B.
MB, b 
B ∼A ⇐⇒MB, 〈〉 1B A.

Proposition 4.2.

(i) b 
B A if and only if ∀α ∈ b∃n(ᾱn 
B A). (covering property)

(ii) b′ � b and b 
B A implies b′ 
B A. (monotonicity)

Proof: We prove (i) by induction on the complexity of formulae. If b 
B
A, then trivially ∀α ∈ b∃n(ᾱn 
B A). For the converse direction, we show
by induction on the complexity of A. Because (i) holds in Beth models
for intuitionistic logic, it suffices to check the case where A ≡ ∼B. If
∀α ∈ b∃n(ᾱn 
B ∼B), then by definition ∀α ∈ b∃n(〈〉 1B B); i.e. 〈〉 1B B.
Thus by definition again, b 
B ∼B.

(ii) is an immediate consequence of (i).

How does this semantics relate to IPC∼? In considering this ques-
tion, we first look at how to embed Kripke models into Beth models, in
accordance with the method outlined in [18].

Given a Kripke model M∼K = (WK ,≤,VK) for IPC∼, we construct a
corresponding Beth model MB = (WB ,�,VB) with the following stipula-
tions.

• WB is the set of finite nondecreasing sequences of worlds (i.e. each
w in a sequence is followed by w′ s.t. w ≤ w′) from the root r in
(WK ,≤) with length > 0.

• � is defined accordingly.

• 〈w0, . . . , wn〉 ∈ VB(p) if and only if wn ∈ VK(p).

The resulting WB is a spread, because the reflexivity of ≤ assures that
〈w0, . . . , wn〉 ∈WB implies 〈w0, . . . , wn, wn〉 ∈WB . Note that w0 is always
the root r in M∼K, and 〈w0〉 is the root of MB. The latter slightly differs
from our definition of Beth model: we can fit the model to the definition
if we reinterpret the sequences as mere labels for the tree, and the actual
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tree is constructed in such a way that 〈w0〉 is the label for the node 〈〉,
〈w0, w1, . . . , wn〉 is the label for the node 〈w1, . . . , wn〉. We can also adopt
a different embedding, which we shall see later.

For any Kripke model, because we can concatenate the same element in-
definitely many times, we can also consider infinite nondecreasing sequences
of worlds. This fact will be used in the next lemma.

Lemma 4.3 (embeddability of Kripke models for IPC∼).

(i) MB is indeed a Beth model.

(ii) M∼K �K A if and only MB �B A.

Proof: For (i), we need to check that VB is a covering assignment. If ∀α ∈
〈w0, . . . , wn〉∃m(ᾱm ∈ VB(p)), then in particular, α0 := 〈w0, . . . , wn〉 ∗
〈wn, wn, . . .〉 ∈ 〈w0, . . . , wn〉. So there is an m such that ᾱ0m ∈ VB(p).
If m ≤ n + 1 = lh(〈w0, . . . , wn〉), then by the monotonicity of VB (which
follows from that of VK , and the fact that VB only looks at the last element
of a sequence) we have 〈w0, . . . , wn〉 ∈ VB(p). Otherwise, by definition of
VB , wn ∈ VK(p); hence 〈w0, . . . , wn〉 ∈ VB(p).

For (ii), it suffices to show wn 
K A ⇔ 〈w0, . . . , wn〉 
B A. We
prove this by induction on the complexity of formulae. Given the result
for intuitionistic logic, we only need to check for A ≡ ∼B. In this case,
wn 
K ∼B ⇔ w0 1K B ⇔ 〈w0〉 1B B ⇔ 〈w0, . . . , wn〉 
B ∼B.

Let Q be the class of Beth models obtained by the above embedding.
We shall denote Beth validity with respect to Q as �Q.

Theorem 4.4 (Beth completeness of IPC∼ with respect to Q). Γ `∼ A if
and only if Γ �Q A.

Proof: Because of Theorem 3.3, Γ `∼ A if and only if Γ �K A. Also by
the preceding lemma, Γ �K A if and only if Γ �Q A.

4.2. Beth Semantics and TCCω

The above theorem shows that IPC∼ is sound and complete with respect to
a certain class of Beth models. The question remains, however, of whether
it is sound and complete with respect to all Beth models. A problem lies
in the soundness direction, of the validity of [RP]. In a Beth model, it
is possible that a disjunction is forced at a world whilst neither of the
disjuncts is.
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This is contrastable with an admissible [4] rule
A→ B[RC] ∼B → ∼A of

IPC∼. Given any Beth model and assuming A → B is valid, if ∼B is
forced at a node b′ � b given an arbitrary b, then 〈〉 does not force B, so
〈〉 cannot force A either; thus we can conclude b′ forces ∼A and so b forces
∼B → ∼A, i.e. ∼B → ∼A is valid.

This admissibility of [RC] in Beth models motivates us to consider a
variant of IPC∼ in which [RP] is replaced with [RC]. As already men-
tioned in [4], such a logic is known under the name TCCω, formulated by
Gordienko in [7].

Definition 4.5 (TCCω). TCCω is defined by axioms [Ax1] to [Ax10],

and rules [MP] and
A→ B[RC] ∼B → ∼A .

We shall denote the provability in TCCω by `t. We shall prove the
soundness and completeness of TCCω with respect to all Beth models.
Again we want to embed Kripke models into Beth models; but as we see
below, the Kripke models for TCCω are not necessarily rooted. So we shall
embed models in a slightly different way.

Definition 4.6 (Kripke model for TCCω). A Kripke Frame F t
K = (W,≤)

for TCCω is a non-empty partially ordered set. A Kripke model Mt
K for

TCCω is a pair (F t
K,V), where V is a monotone mapping that assigns a

set of worlds V(p) ⊆W for each propositional variable p.
GivenMt

K, The forcing of a formula in a world, denotedMt
K, w 
Kt A,

is inductively defined as follows.

Mt
K, w 
Kt p ⇐⇒ w ∈ V(p).

Mt
K, w 
Kt A ∧B ⇐⇒Mt

K, w 
Kt A and Mt
K, w 
Kt B.

Mt
K, w 
Kt A ∨B ⇐⇒Mt

K, w 
Kt A or Mt
K, w 
Kt B.

Mt
K, w 
Kt A→ B ⇐⇒ for all w′ ≥ w, if Mt

K, w
′ 
Kt A,

then Mt
K, w

′ 
Kt B.

Mt
K, w 
Kt ∼A ⇐⇒Mt

K, w
′ 1Kt A for some w′.

Theorem 4.7 (Kripke completeness for TCCω). `t A if and only if �Kt A.

Proof: Cf. [7]

Given a Kripke model Mt
K = (WK ,≤,VK) for TCCω, we construct a

corresponding Beth model MB = (WB ,�,VB) with the following stipula-
tion.
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• WB is the set of finite nondecreasing sequences in (WK ,≤) of length
≥ 0.

• � is defined accordingly.

• Define an auxiliary valuation V̄B(p) s.t. 〈w0, . . . wn〉 ∈ V̄B(p) if and
only if wn ∈ VK(p).

• Then VB(p) = V̄B(p)∪{〈〉} if VK(p) = WK ; otherwise VB(p) = V̄B(p).

Lemma 4.8 (embeddability of Kripke models for TCCω).

(i) MB is indeed a Beth model.

(ii) Mt
K �Kt A if and only MB �B A.

Proof: In the following, we shall occasionally write 〈b0, . . . , b−1〉 to mean
〈〉. (This is purely a conventional notation to simplify the exposition, and
should not be confused with the notation in the definition of V̄B(p), in
which n cannot be −1.)

(i) We need to show that the assignment is covering. Suppose 〈b0, . . . , bn〉
∈ VB(p). If n = −1, then 〈〉 ∈ VB(p). So by definition of VB ,
w ∈ VK(p) for all w ∈ WK . Hence for each α = 〈w, . . .〉 ∈ 〈〉, 〈w〉 ∈
VB(p); so ∃m(ᾱm ∈ VB(p)). If n > −1, then 〈b0, . . . , bn〉 ∈ VB(p)
immediately implies ∀α ∈ 〈b0, . . . , bn〉∃m(ᾱm ∈ VB(p)).

Conversely, suppose ∀α ∈ 〈b0, . . . , bn〉∃m(ᾱm ∈ VB(p)). If n = −1,
then for any w ∈ WK , 〈w,w, . . .〉 ∈ 〈〉. By our supposition, either
〈〉 ∈ VB(p) or 〈w,w, . . . , w〉 ∈ VB(p). In both cases, w ∈ VK(p).
Hence WK = VK(p). Thus 〈〉 ∈ VB(p), as required. If n > −1, then
〈b0, . . . , bn, bn, . . .〉 ∈ 〈b0, . . . , bn〉. So either 〈〉 ∈ VB(p), 〈b0, . . . , bi〉 ∈
VB(p) for i < n, or 〈b0, . . . , bn, bn, . . . , bn〉 ∈ VB(p). In the first case,
bn ∈ VK(p). In the second case, bi ∈ VK(p), so by the monotonicity
of VK , bn ∈ VK . In the last case, bn ∈ VK(p). So in any case,
〈b0, . . . , bn〉 ∈ VB(p).

(ii) It suffices to show:

(a) 〈〉 
B A if and only if Mt
K �Kt A.

(b) 〈b0, . . . , bn〉 
B A if and only if bn 
Kt A. (where n > −1)

We prove these by simultaneous induction on the complexity of A.



Empirical Negation, Co-negation and the Contraposition Rule I. . . 241

If A ≡ p, then 1. and 2. follow by definition.

If A ≡ A1 ∧A2, then for 1. 〈〉 
B A1 ∧A2 if and only if 〈〉 
B A1 and
〈〉 
B A2 By I.H. this is equivalent to Mt

K �Kt A1 and Mt
K �Kt A2,

which in turn is equivalent toMt
K �Kt A1∧A2. For 2., 〈b0, . . . , bn〉 
B

A1 ∧A2 if and only if 〈b0, . . . , bn〉 
B A1 and 〈b0, . . . , bn〉 
B A2. By
I.H. this is equivalent to bn 
Kt A1 and bn 
Kt A2, which in turn is
equivalent to bn 
Kt A1 ∧A2.

If A ≡ A1 ∨ A2, then for 1., 〈〉 
B A1 ∨ A2 if and only if ∀α ∈
〈〉∃m(ᾱm 
B A1 or ᾱm 
B A2). For each w ∈ WK , 〈w,w, . . .〉 ∈ 〈〉,
so either 〈〉 
B A1, 〈〉 
B A2, 〈w, . . . , w〉 
B A1 or 〈w, . . . , w〉 
B A2.
If one of the former two cases holds, then by I.H.Mt

K �Kt Ai, for one
of i ∈ {1, 2}; so w 
Kt A1∨A2. If one of the latter two cases hold, then
by I.H. w 
Kt Ai for one of i ∈ {1, 2}; so w 
Kt A1 ∨ A2. Hence we
conclude w 
Kt A1∨A2 for all w ∈WK , i.e. Mt

K �Kt A1∨A2. For the
converse direction, assumeMt

K �Kt A1∨A2 and let α = 〈w, . . .〉 ∈ 〈〉.
Then since w 
Kt A1 or w 
Kt A2, 〈w〉 
B A1 or 〈w〉 
B A2 by I.H..
Thus ∀α ∈ 〈〉∃m(ᾱm 
B A1 or ᾱm 
B A2). Hence 〈〉 
B A1 ∨A2.

For 2. If 〈b0, . . . , bn〉 
B A1 ∨ A2, then for all α ∈ 〈b0, . . . , bn〉 there
exists m s.t. ᾱm 
B A1 or ᾱm 
B A2. As 〈b0, . . . , bn, bn, . . .〉 ∈
〈b0, . . . , bn〉, we have, for i ∈ {1, 2}, either 〈〉 
B Ai, 〈b0, . . . , bl〉 
B Ai

for l ≤ n, or 〈b0, . . . , bn, bn, . . . , bn〉 
B Ai. In each case bn 
Kt Ai by
I.H.; so bn 
Kt A1∨A2. Conversely, if bn 
Kt A1∨A2, then bn 
Kt A1

or bn 
Kt A2. So by I.H. 〈b0, . . . , bn〉 
B A1 or 〈b0, . . . , bn〉 
B A2.
Hence immediately ∀α ∈ 〈b0, . . . , bn〉∃m(ᾱm 
B A1 or ᾱm 
B A2),
i.e. 〈b0, . . . , bn〉 
B A1 ∨A2.

If A ≡ A1 → A2, then for 1., suppose 〈〉 
B A1 → A2. Let w ∈
WK and w′ ≥ w. If w′ 
Kt A1, then 〈w′〉 
B A1 by I.H.. So
〈w′〉 
B A2 and thus w′ 
Kt A2. Consequently w 
Kt A1 → A2

and so Mt
K �Kt A1 → A2. Conversely, suppose Mt

K �Kt A1 → A2.
Let 〈b0, . . . , bn〉 
B A1. If n = −1, then by I.H. Mt

K �Kt A1, so
Mt
K �Kt A2. Hence 〈b0, . . . , bn〉 
B A2 again by I.H.. If n > −1,

then bn 
Kt A1, so bn 
Kt A2. Hence 〈b0, . . . , bn〉 
B A2. Thus
〈〉 
B A1 → A2.
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For 2., suppose 〈b0, . . . , bn〉 
B A1 → A2 and let bn′ ≥ bn. If bn′ 
Kt
A1, then by I.H. 〈b0, . . . , bn, bn′〉 
B A1; so 〈b0, . . . , bn, bn′〉 
B A2.
Thus bn′ 
Kt A2. Hence bn 
Kt A1 → A2. Conversely, suppose
bn 
Kt A1 → A2. Assume 〈b0, . . . , bn, . . . , bn′〉 
B A1. Then bn ≤ bn′

and bn′ 
Kt A1. So bn′ 
Kt A2. Thus 〈b0, . . . , bn, . . . , bn′〉 
B A2.
Therefore 〈b0, . . . , bn〉 
B A1 → A2.

If A ≡ ∼A1, then for 1., suppose 〈〉 
B ∼A1. Then 〈〉 1B A1. So
Mt
K 2Kt A1 by I.H.. Hence w 1Kt A1 for some w ∈ WK . Thus

u 
Kt ∼A for all u ∈ WK . Thus Mt
K �Kt ∼A. Conversely, suppose

Mt
K �Kt ∼A. Take w ∈ WK . Then w 
Kt ∼A, so u 1Kt A for some

u ∈WK . HenceMt
K 2Kt A, so 〈〉 1B A by I.H.. Therefore 〈〉 
B ∼A.

For 2., suppose 〈b0, . . . , bn〉 
B ∼A. Then 〈〉 1B A. So Mt
K 2Kt

A. Hence for some w ∈ WK , w 1Kt A. Therefore bn 
Kt ∼A.
Conversely, if bn 
Kt ∼A, then w 1Kt A for some w ∈ WK . By I.H.
〈w〉 1B A. Thus 〈〉 1B A. Therefore 〈b0, . . . , bn〉 
B ∼A.

Theorem 4.9 (soundness and weak completeness of TCCω with Beth
semantics). `t A if and only if �B A.

Proof: We first show the soundness by induction on the depth of de-
ductions. We check [Ax9],[Ax10] and [RC]. Let MB = (WB ,�,VB) be a
Beth model. By monotonicity, it suffices to check the root. For [Ax9],
either 〈〉 
B A or 〈〉 1B A. If the latter, 〈〉 
B ∼A. So in either case,
〈〉 
B A ∨ ∼A. For [Ax10], if b 
B ∼A for b � 〈〉, then if b′ 
B ∼∼A for
b′ � b, then 〈〉 1B ∼A and 〈〉 1B A. But the former implies 〈〉 
B A, a
contradiction. Therefore b′ 
B B; so 〈〉 
B ∼A→ (∼∼A→ B). For [RC],
by I.H., �B A→ B and in particular,MB �B A→ B. If for b � 〈〉 we have
b 
B ∼B, then 〈〉 1B B. Now if 〈〉 
B A, then as 〈〉 
B A → B, 〈〉 
B B,
a contradiction. Thus 〈〉 1B A; hence b 
B ∼A. So 〈〉 
B ∼B → ∼A.

The completeness follows from the previous lemma and the Kripke com-
pleteness of TCCω [7, Theorem 4.5].

4.3. Classical Logic and TCCω

The fact that Kripke and Beth semantics differ on the forcing of disjunction
is well-reflected in the following translation of classical logic (CPC) into
TCCω.
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Definition 4.10 (CPC). CPC is defined by Axioms [Ax1]-[Ax9] and
∼A→ (A→ B) ([Ax10’]), plus the rule [MP].

We denote the derivability in CPC by `CL

Definition 4.11 (()t). We inductively define ()t to be a mapping between
formulae in L.

pt ≡ p
(A ∧B)t ≡ At ∧Bt.

(A ∨B)t ≡ ∼∼At ∨ ∼∼Bt.

(A→ B)t ≡ ∼∼At → ∼∼Bt.

(∼A)t ≡ ∼At.

Beth-semantically speaking, ()t restricts our attention to the root world,
when it comes to disjunction and implication. This is related to the con-
nection between empirical negation (of IPC∼) and classical negation, as
observed in [3] and [4]. A new point for TCCω is that the restriction ap-
plies not only to implication but also to disjunction. This corresponds to
the fact that in Beth semantics, both disjunction and implication look at
other worlds, whereas in Kripke semantics, only the latter does so.

In the following, we make a heavy use of easily checkable equivalences
in Beth semantics.

• b 
B ∼∼A⇐⇒ 〈〉 
B A.

• b 
B ∼∼A ∨ ∼∼B ⇐⇒ 〈〉 
B A or 〈〉 
B B.

• b 
B ∼∼A→ ∼∼B ⇐⇒ 〈〉 
B A implies 〈〉 
B B.

Let us use the notation Γt := {Bt : B ∈ Γ}. We shall henceforth ab-
breviate ∼∼A as ≈A. Metalinguistic ‘implies’ (⇒) should not be confused
with → in the proof below.

Proposition 4.12 (faithful embedding of CPC into TCCω). Γ `CL A if
and only if Γt `t At.

Proof: The left-to-right direction is shown by induction on the depth of
deductions. If A is an assumption, then correspondingly At ∈ Γt.
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If A is an axiom, we exemplify by the case for the axiom (A → C) →
((B → C)→ (A ∨B → C)). ((A→ C)→ ((B → C)→ (A ∨B → C)))t is

≈(≈At → ≈Ct)→ ≈(≈(≈Bt → ≈Ct)→ ≈(≈(≈At ∨ ≈Bt)→ ≈Ct)).

Using Beth completeness, it is sufficient to show,

b 
B ≈(≈At → ≈Ct)→ ≈(≈(≈Bt → ≈Ct)→ ≈(≈(≈At ∨ ≈Bt → ≈Ct)))

holds for any b in an arbitrary Beth model. This is equivalent to

〈〉 
B ≈At → ≈Ct

implies 〈〉 
B ≈(≈Bt → ≈Ct)→ ≈(≈(≈At ∨ ≈Bt)→ ≈Ct)

by one of the above equivalences; this is further equivalent to

〈〉 
B At ⇒ 〈〉 
B Ct

implies (〈〉 
B ≈Bt → ≈Ct)⇒ (〈〉 
B ≈(≈(≈At ∨ ≈Bt)→ ≈Ct))

and to

〈〉 
B At ⇒ 〈〉 
B Ct

implies (〈〉 
B Bt ⇒ 〈〉 
B Ct)⇒ (〈〉 
B ≈At ∨ ≈Bt ⇒ 〈〉 
B Ct)

and to

(〈〉 
B At ⇒ 〈〉 
B Ct) and (〈〉 
B Bt ⇒ 〈〉 
B Ct)

implies ((〈〉 
B At or 〈〉 
B Bt)⇒ 〈〉 
B Ct))

and this holds. Here, if it were the case that (A ∨ B)t ≡ (At ∨ Bt), then
we would get 〈〉 
B At ∨ Bt instead of 〈〉 
B ≈At ∨ ≈Bt, and the formula
fails to hold.

If the deduction ends with an application of [MP]
B B → A

A
,

then by I.H., Γt `t Bt and Γt `t ∼∼Bt → ∼∼At. In [4, Lemma 2.8] the

rule
A [RD]∼∼A is shown to be derivable from [RC] in IPC∼. The proof

appeals to [RP] only non-essentially (it is used to derive ∼∼A→ A, which
is obtainable from [Ax9] and [Ax10] alone), and so [RD] is also derivable
in TCCω. Thus we obtain Γt `t ∼∼Bt. So by [MP], Γt `t ∼∼At; hence
Γt `t At by double negation elimination.
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The right-to-left direction follows from the easily noticeable equivalence
that `CL A↔ At.

Before moving on, we shall mention that there exists another reading
of the negation in the Beth semantics for TCCω. Because the models
are rooted, for any b, ∃b′ ≤ b(b′ 1 A) ⇔ 〈〉 1 A. From this viewpoint
the negation of TCCω can be understood as co-negation as well. For
Kripke semantics, the logic of co-negation is the logic daC of Priest [11].
A Hilbert-style axiomatisation of daC was first formulated by Castiglioni
et al. [2]. This axiomatisation is obtained from that of IPC∼ by removing
[Ax10]. If we further replace [RP] with [RC], and add an axiom ∼∼A→ A
(a theorem of daC), we obtain the logic CCω of Sylvan [15]. Note CCω

can be strengthened to TCCω by adding [Ax10] and dropping ∼∼A→ A,
which becomes redundant.

5. Eliminating [RP]

The last section made clear that the negations of IPC∼ and TCCω are
characterised by the same valuation, but with respect to different semantics:
Kripke and Beth. We may understand them as representing different types
of experience, and thus different empirical negations. We can make an
analogous remark for co-negation. This case is perhaps more interesting,
for TCCω and daC are not comparable [10]. In any case, these curious
effects of “same forcing-condition in two similar semantics” encourage a
further analysis.

Proof-theoretically, however, there is an obstacle in comparing the log-
ics, in that TCCω and CCω employ the rule [RC], whereas daC and IPC∼

employ the stronger [RP].
We would like, therefore, to have a new axiomatisation of IPC∼ and

daC with [RC], rather than [RP]. We can expect such conversion would
allow us to analyse and understand the logics from a more unified perspec-
tive.

We shall start such an attempt with IPC∼, using a provable formula
of IPC∼, (∼A ∧ ∼B)→ ∼(A ∨B) [4, Proposition 2.14].

Proposition 5.1. The addition of (∼A ∧ ∼B) → ∼(A ∨ B) to TCCω

derives [RP].
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Proof: In TCCω, assuming (A ∨ B) we can derive ∼∼(A ∨ B) by [RD].
So we have ∼B → (∼A→ ∼∼(A∨B)). Also we infer from ∼B → (∼A→
(∼A ∧∼B)) and (∼A ∧∼B)→ ∼(A ∨B) that ∼B → (∼A→ ∼(A ∨B)).
Thus ∼B → (∼A→ (∼(A∨B)∧∼∼(A∨B))). Also by [Ax10], ∼(A∨B)→
(∼∼(A ∨ B) → B). Combine the two and we obtain ∼B → (∼A → B).
Then as B → (∼A → B) follows from [Ax1], and B ∨ ∼B follows from
[Ax9], we conclude ∼A→ B.

Hence we have obtained an alternative axiomatisation of IPC∼

with [RC].
It is stated in [4] that TCCω is a strict subsystem of IPC∼, but no

specific example is shown. As a side remark, we can use (∼A ∧ ∼B) →
∼(A ∨B) to observe the following.

Proposition 5.2. (∼A ∧ ∼B)→ ∼(A ∨B) is underivable in TCCω.

Proof: We prove it via Beth completeness. Let FB = (W,�) be the
set of finite binary sequences ordered by the initial segment relation. Let
MB = (FB,V) be a model such that b ∈ V(p) ⇔ 〈0〉 � b and b ∈ V(q) ⇔
〈1〉 � b. Then it is straightforward to see that this assignment is covering:
e.g. if ∀α ∈ b∃m(ᾱm 
B p), then clearly 〈0〉 � b. Now MB, 〈〉 1B p and
MB, 〈〉 1B q, so MB, 〈〉 
B ∼p ∧ ∼q; but since ∀α ∈ 〈〉(ᾱ1 
B p or ᾱ1 
B
q), we haveMB, 〈〉 
B p∨q, i.e. MB, 〈〉 1B ∼(p∨q). ThereforeMB, 〈〉 1B
(∼p ∧ ∼q)→ ∼(p ∨ q).

Corollary 5.3 (failure of soundness for IPC∼ with all Beth models).
`∼ A;�B A.

Proof: Otherwise `∼ A⇒�B A⇔`t A, which is absurd.

Ferguson [6, Theorem 2.3] gives the frame property of (∼A ∧ ∼B) →
∼(A∨B) with respect to daC. We just mention a quite similar observation
can be made for the Kripke models for CCω.

Definition 5.4 (Semantics of CCω). A Kripke frame Fc
K for CCω is a

triple (W,≤, S), where S ⊂ W ×W is a reflexive and symmetric (acces-
sibility) relation such that u ≤ v and uSw implies vSw, i.e. S is upward
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closed. A Kripke model Mc
K for CCω is defined as usual, except for the

forcing condition (
Kc) of negation, which is

Mc
K, w 
Kc ∼A⇐⇒Mc

K, w
′ 1Kc A for some w′ such that wSw′.

Note if S = W × W , then a CCω-frame (model) is a TCCω-frame
(model) [7]. Indeed, what is shown in [7] is that TCCω is sound and com-
plete with the class of CCω-frames where S is transitive, and in particular
the frames with S = W ×W is sufficient for this. We shall occasionally
denote uSv also by vS−1u. As S is symmetric in CCω, this distinction is
not quite necessary. This however clarifies appeals to symmetry in proofs,
which becomes significant in a broader context.

Proposition 5.5. Let Fc
K be a CCω-frame. Then the following conditions

are equivalent:

(i) Fc
K �Kc (∼A ∧ ∼B)→ ∼(A ∨B) for all A,B.

(ii) Fc
K satisfies ∀u, v, w(uSv and uSw implies ∃xS−1u(v≥x and w≥x).

Proof: We shall first see (i) implies (ii). Suppose uSv and uSw. Let
V(p) = {x : v � x} and V(q) = {x : w � x}. Now if w ∈ V(p) and x′ ≥ x,
then v ≥ x′ implies v ≥ x, a contradiction. So v � x′, and thus x′ ∈ V(p).
Hence V(p) is upward closed. Similarly V(q) is upward closed. Now since
v ≥ v and w ≥ w, v 1Kc p and w 1Kc q. So u 
Kc ∼p ∧ ∼q. Hence by
assumption u 
Kc ∼(p ∨ q). So there is an xS−1u such that x 1Kc p (i.e.
v ≥ x) and x 1Kc q (i.e. w ≥ x), as we desired.

Next we shall see (ii) implies (i). Assume Fc
K satisfies (ii) and V, u0 be

arbitrary. If (Fc
K,V), u 
Kc ∼A ∧ ∼B for u ≥ u0, then there are vS−1u

and wS−1u such that v 1Kc A and w 1Kc B. By (ii), there is xS−1u such
that v ≥ x and w ≥ x. Now x 1Kc A ∨ B. Hence u 
Kc ∼(A ∨ B). So
(Fc
K,V), u0 
Kc (∼A ∧ ∼B) → ∼(A ∨ B). Since w and V are arbitrary,

Fc
K �Kc (∼A ∧ ∼B)→ ∼(A ∨B).

Given a Kripke frame for IPC∼, we can regard it as a frame of TCCω

with S = W ×W ; i.e. there is an embedding. Then it is immediately seen
that such a frame satisfies the above condition, because it is rooted. This
means the class of Kripke frames for TCCω satisfying the above condition
is complete with respect to IPC∼, for if a formula is validated by each such
frame, then it must be validated by each frame of IPC∼.
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Next we consider daC. The formula ∼A ∧ ∼B → ∼(A ∨ B) used for
IPC∼ cannot be used for daC, because it is not a theorem of daC [9, Table
3]. We instead have to look at another formula ∼(∼(A ∨B) ∨A)→ B.

Proposition 5.6. CCω +∼(∼(A ∨B) ∨A)→ B = daC.

Proof: It has been observed in [9, Theorem 3.13] that ∼(∼(A∨B)∨A)→
B is a theorem of daC. So we only have to check [RP] is admissible in

CCω + ∼(∼(A ∨ B) ∨ A) → B. We first note
A

∼A→ B
is derivable in

CCω by the same argument as in [10, Theorem 4.3]. Assuming A ∨ B is
derivable, from this we see ∼(A ∨B)→ A is derivable. By [Ax8], we infer
(∼(A ∨B) ∨A)→ A, and then by [RC], ∼A→ ∼(∼(A ∨B) ∨A). On the
other hand, ∼(∼(A ∨B) ∨A)→ B is the added axiom. Thus we conclude
∼A→ B.

∼(∼(A ∨ B) ∨ A) → B is used in [9, theorem 3.13] to establish that
daC strictly contains another logic daC’, axiomatised by replacing [RP]

with a weaker rule
A ∨ ∼B [wRP]∼ A→∼ B . We shall note [wRP] in daC′ is

similarly reducible to an axiom ∼(∼(A ∨ ∼B) ∨A)→ ∼B.

Proposition 5.7. CCω +∼(∼(A ∨ ∼B) ∨A)→ ∼B = daC′

Proof: It has been observed in [10, Lemma 3.2] that ∼(∼(A ∨ ∼B) ∨
A) → ∼B is a theorem of daC′. So we only have to check [wRP] is
admissible in CCω + ∼(∼(A ∨ ∼B) ∨ A) → ∼B. This is proved as in the
previous proposition, except that we infer ∼A → ∼(∼(A ∨ ∼B) ∨ A) and
∼(∼(A ∨ ∼B) ∨A)→ ∼B to conclude ∼A→ ∼B.

Next, we turn our attention to the semantic side. Our goal will be to
establish a connection between the Kripke semantics of CCω and daC. For
this we shall first consider the frame condition for ∼(∼(A ∨B) ∨A)→ B.

Proposition 5.8. Let Fc
K be a CCω-frame. Then the following conditions

are equivalent:

(i) Fc
K �Kc ∼(∼(A ∨B) ∨A)→ B for all A,B.

(ii) Fc
K satisfies ∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Proof: We shall first see (i) implies (ii). We shall show the contrapositive.
So suppose for some u and v, uSv holds but ¬∃wS−1v(w ≤ u and w ≤
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v). Choose V s.t. V(p) = {w : w � v} and V(q) = {w : w � u}. It
is straightforward to see V(p) and V(q) are upward closed. Now since
∀wS−1v(w � u or w � v), we have ∀wS−1v(w 
Kc p or w 
Kc q). So
v 1Kc ∼(p ∨ q). In addition, v ≤ v means v 1Kc p. Thus u 
Kc ∼(∼(p ∨
q) ∨ p). On the other hand, u ≤ u implies u 1Kc q. Thus u 1Kc ∼(∼(p ∨
q) ∨ p)→ q. Therefore Fc

K 2Kc ∼(∼(p ∨ q) ∨ p)→ q.
Next we shall see (ii) implies (i). Assume ∀u, v(uSv → ∃wS−1v(w ≤

u and w ≤ v)). Let V and u be arbitrary, and for v ≥ u, suppose
(Fc
K,V), v 
Kc ∼(∼(A∨B)∨A). Then for some wS−1v, w 1Kc ∼(A∨B)∨A.

Thus w 1Kc A and ∀xS−1w(x 
Kc A ∨ B). Now by assumption, from
vSw we infer ∃yS−1w(y ≤ v and y ≤ w). From our observation above,
we know y 
Kc A ∨ B. If y 
Kc A, then y ≤ w implies w 
Kc A, a
contradiction. So y 
Kc B, which with y ≤ v implies v 
Kc B. Thus
(Fc
K,V), u 
Kc ∼(∼(A ∨ B) ∨ A) → B. Since V and u are arbitrary,

Fc
K �Kc ∼(∼(A ∨B) ∨A)→ B.

Note that in the proof no appeal is made to neither the reflexivity nor
symmetry of S. Thus we see the correspondence holds for a weaker setting
of one of Došen’s systems in [5, p.81–83] (under what he calls condensed
frames). It has the same forcing condition, but the accessibility relation
there is not assumed to be reflexive nor symmetric.

With the frame condition at hand, we can now translate back and forth
the frames of CCω and daC.

Definition 5.9 (semantics of daC). A Kripke frame Fd
K for daC is a pair

(W,≤), and a Kripke model Md
K for daC is defined as usual, except for

the forcing condition (
Kc) of negation, which is

Md
K, w 
Kd ∼A⇐⇒Md

K, w
′ 1Kd A for some w′ ≤ w.

Proposition 5.10.

(i) Let Fc
K = (W,≤, S) be a frame of CCω satisfying ∀u, v(uSv →

∃wS−1v(w ≤ u and w ≤ v)). Define Φ(Fc
K) = (W,≤). Then for

any V and w, (Fc
K,V), w 
Kc A⇔ (Φ(Fc

K),V), w 
Kd A.

(ii) Let Fd
K be a frame of daC. Define S = {(u, v) : ∃w(w ≤ u and w ≤

v))}. and Ψ(Fd
K) = (W,≤, S). Then for any V and w, (Fd

K,V), w 
Kd
A⇔ (Ψ(Fd

K),V), w 
Kc A.

(iii) Ψ = Φ−1 for the above Φ and Ψ.
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Note the S defined in (ii) is well-defined: it is easy to check it is reflexive,
symmetric and satisfies ∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Proof: In (i) and (ii), we only have to consider the case for negation.
For (i), if (Fc

K,V), w 
Kc ∼A, then for some w′S−1w, (Fc
K,V), w′1Kc A.

By the frame condition, there is xS−1w such that x ≤ w and x ≤ w′.
Because of the latter, (Fc

K,V), x 1Kc A. By I.H., (Φ(Fc
K),V), x 1Kd

A. Since x ≤ w, (Φ(Fc
K),V), w 
Kd ∼A. For the converse direction, if

(Φ(Fc
K),V), w 
Kd ∼A then for some w′ ≤ w, (Φ(Fc

K),V), w′ 1Kd A. By
I.H., (Fc

K,V), w′ 1Kc A. Here, since w′Sw′ by reflexivity and w′ ≤ w, we
have w′Sw, so by symmetry wSw′. Thus (Fc

K,V), w 
Kc ∼A.
For (ii), if (Fd

K,V), w 
Kd ∼A, then for some w′ ≤ w, (Fd
K,V), w′ 1Kd

A. By I.H., (Ψ(Fd
K),V), w′ 1Kc A. Now as w′ ≤ w and w′Sw′, wSw′. So

(Ψ(Fd
K),V), w 
Kc ∼A. For the converse direction, if (Ψ(Fd

K),V), w 
Kc
∼A, then for some w′S−1w, (Ψ(Fd

K),V), w′ 1Kc A. Thus there is an x such
that x ≤ w and x ≤ w′. We have (Ψ(Fd

K),V), x 1Kc A by the latter. By
I.H., (Fd

K,V), x 1Kd A. Therefore (Fd
K,V), w 
Kd ∼A.

For (iii), it is immediate to see that Φ(Ψ(Fd
K)) = Fd

K, as the mappings
do not alter (W,≤). As for Ψ(Φ(Fc

K)) = Fc
K, we need to check the original

S in Fc
K and the defined S′ in Ψ(Φ(Fc

K)). It is easy from the frame condition
that S ⊆ S′. Further, if ∃x(x ≤ w and x ≤ w′), then xSw′ by reflexivity,
symmetry and upward closure of S. Thus again by upward closure of S,
wSw′; so S ⊇ S′.

This allows us to conclude the following completeness of daC with
respect to the frames of CCω: let us denote the derivability in daC by `d.

Corollary 5.11. `d A if and only if Fc
K �Kc A for all Fc

K satisfying
∀u, v(uSv → ∃wS−1v(w ≤ u and w ≤ v)).

Proof: The last proposition established a bijection of frames agreeing in
forcing. Thus the statement follows from the completeness of daC with
respect to its models [11].

We now look at the frame condition for ∼(∼(A ∨ ∼B) ∨A)→ ∼B.

Proposition 5.12. Let F be a CCω-frame. Then the following conditions
are equivalent.

(i) F �Kc ∼(∼(A ∨ ∼B) ∨A)→ ∼B for all A,B.



Empirical Negation, Co-negation and the Contraposition Rule I. . . 251

(ii) F satisfies ∀u, v(uSv → ∃wS−1v(w ≤ v and ∀x(wSx→ uSx))).

Proof: We shall first see (i) implies (ii). We show this by contraposition.
Assume uSv but ¬∃wS−1v(w ≤ v and ∀x(wSx → uSx)). Choose V such
that V(p) = {w : w � v} and V(q) = {w : uSw}. Again the former set
is upward closed, and the latter set is upward closed because of symmetry
and upward closure of S. Now since ∀wS−1v(w � v or ¬∀x(wSx→ uSx)),
if the former disjunct holds then w ∈ V(p). And if the latter disjunct holds,
then ∃x(wSx and ¬uSx). So if x 
Kc q, then uSx, a contradiction. Thus
x 1Kc q and consequently, w 
Kc ∼q. Thus ∀wS−1v(w 
Kc p or w 
Kc
∼q). Also if v 
Kc p, then v � v, a contradiction. So v 1Kc p; hence
u 
Kc ∼(∼(p∨∼q)∨p). But if u 
Kc ∼q, then ∃xS−1u(x 1Kc q). So ¬uSx,
a contradiction. Hence u 1Kc ∼q. Thus u 1Kc ∼(∼(p ∨ ∼q) ∨ p) → ∼q.
Therefore 2Kc ∼(∼(p ∨ ∼q) ∨ p)→ ∼q.

To see (ii) implies (i), let v ≥ u for arbitrary and assume v 
Kc ∼(∼(A∨
∼B) ∨ A). We want to show v 
Kc ∼B. By definition, ∃wS−1v(w 1Kc
∼(A ∨ ∼B) ∨ A). So ∀xS−1w(x 
Kc A ∨ ∼B) (*) and w 1Kc A. By the
frame condition, there is xS−1w such that x ≤ w and ∀y(xSy → vSy).
From (*) we infer x 
Kc A or x 
Kc ∼B. If the former, then w 
Kc A, a
contradiction. So x 
Kc ∼B. But then for some yS−1x, y 1Kc B. Thus
vSy by the frame condition. So v 
Kc ∼B. Hence u 
Kc ∼(∼(A ∨ ∼B) ∨
A)→ ∼B. Since u is arbitrary, �Kc ∼(∼(A ∨ ∼B) ∨A)→ ∼B.

Note that contrary to the last case, in this proof we appealed to the
symmetry of S in CCω.

6. Conclusion

We have looked at a family of logics related to IPC∼. In the fourth sec-
tion we observed how Kripke and Beth semantics respectively reflected the
(empirical) negations of IPC∼ and TCCω, and a translation of classical
logic into the latter which highlights the difference. In the fifth section, we
clarified how we can eliminate the rule [RP] in IPC∼ and daC, and how
we can capture the latter logic in the setting of CCω. This result is further
developed in the sequel, where we formulate labelled sequent calculi for the
systems treated in this paper.
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NEW MODIFICATION OF THE SUBFORMULA
PROPERTY FOR A MODAL LOGIC

Abstract

A modified subformula property for the modal logic KD with the additional

axiom �♦(A ∨ B) ⊃ �♦A ∨ �♦B is shown. A new modification of the notion

of subformula is proposed for this purpose. This modification forms a natural

extension of our former one on which modified subformula property for the modal

logics K5, K5D and S4.2 has been shown ([2] and [4]). The finite model property

as well as decidability for the logic follows from this.

Keywords: Subformula property, modal logic, scope of �, sequent calculus.

1. Introduction

The modal logic KD (= K + �A ⊃ ♦A) is characterized by the class of
the serial frames, where a serial frame is a (relational) frame 〈W,R〉 that
satisfies the condition (∀x)(∃y)xRy, that is, each world can see at least one
world (Hughes-Cresswell [1, p. 45]).

Our target is the modal logic

KD# = KD + �♦(A ∨B)⊃�♦A ∨�♦B,

which is characterized by the class of the frames that enjoy the property

(∀x)(∃y)[xRy & (∀x′)(∀y′)(xRx′ & yRy′ =⇒ x′Ry′)], (#)

that is, each world x can see at least one world y such that any world that
can be seen by x can see any world that can be seen by y.
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The purpose of this article is to show a modified subformula property
for this logic. Precisely, a sequent calculus for the logic and the new modi-
fication of the notion of subformula which we call nested K5-subformula are
introduced, and it is shown that in that calculus, every provable sequent
has a proof in which only nested K5-subformulas of some formula in the
sequent occur. The finite model property as well as decidability of KD#
follows from this.

The notion of nested K5-subformula forms a natural extension of our
former one, called K5-subformula, on which modified subformula property
for the modal logics K5, K5D and S4.2 has been shown (Takano [2], [4]).
As an example of the modifications, think of the subformulas of ���p,
where p is a propositional letter.

• The subformulas (in the original sense) are ���p, ��p, �p and p.

• The K5-subformulas are �¬��p, ¬��p �¬�p and ¬�p as well as
the subformulas above. The reason why the first two (the last two,
resp.) formulas are incorporated is that ��p (�p, resp.) is in the
scope of the necessity symbol � in ���p.

• The nested K5-subformulas are �¬�¬�p and ¬�¬�p as well as the
K5-subformulas above. The reason why these two formulas are in-
corporated is that �p is in the scope of two occurrences of �; one
is the leftmost occurrence of � in ���p whose scope is ��p, and
another is the second occurrence whose scope is �p itself. If �p were
in the scope of three occurrences of � moreover, �¬�¬�¬�p and
¬�¬�¬�p would be incorporated as well.

Formulas are constructed from propositional letters by means of the
logical symbols ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⊃ (impli-
cation) and � (necessity). The possibility symbol ♦ is considered as an
abbreviation of the concatenation ¬�¬, and (�¬)n designates n succes-
sions of �¬. Propositional letters and formulas are denoted by p, q, r, . . .
and A,B,C, . . ., respectively. A sequent is an expression of the form Γ→ Θ,
where the antecedent Γ and the succedent Θ are finite sequences of formu-
las. But, for convenience, the antecedent and succedent of the sequent are
recognized as sets also. Finite sequences (sets) of formulas are denoted by
Γ,Θ,∆,Λ, . . . . We mean by �Γ the sequence (set) {�A | A ∈ Γ}, and
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similarly for �¬�Γ. In describing formal proofs in sequent calculi, appli-
cations of the structural rules except the cut-rule are frequently neglected,
and consecutive applications of logical rules are often combined into one.

In the next section, the sequent calculus GKD# for the logic KD#
is presented, and it is exemplified that the subformula property (in the
original sense) fails to hold for GKD#, and so it is necessary to modify the
notion of subformula to get a kind of subformula property. In accordance
with this situation, the new modification of the notion of subformula, nested
K5-subformula, is proposed in Section 3. In the succeeding section, our
theorem which asserts the modified subformula property for the calculus
GKD# (and so for the logic KD#) on the nested K5-subformulas is stated,
and is turned into the lemma for the convenience of proof. The simpler
parts of the lemma are demonstrated in the same section, while Sections 5
and 6 are devoted to the proof of the remainder.

2. Sequent calculus GKD#

This section is devoted to present the sequent calculus GKD# for our
target logic KD#, which is KD added by the additional axiom �♦(A ∨
B) ⊃ �♦A ∨ �♦B, and to exemplify that modification of the notion of
subformula is necessary to get a kind of subformula property for GKD#.

It is well-known that the modal logic KD is formulated as the sequent
calculus, say GKD, which is obtained from the calculus LK for the classical
propositional logic by adding the following two inference rules:

(K)
Γ→ A

�Γ→ �A
(D)

Γ→
�Γ→

Our sequent calculus GKD# is obtained from GKD by modifying the
rule (D) into the following one:

(D)#
�∆,Γ→

�Γ→ �¬�∆

By the following proposition, GKD# certainly is a sequent calculus for
KD#, that is, a sequent Γ → Θ is GKD#-provable iff the corresponding
formula

∧
Γ⊃

∨
Θ is provable in KD#.
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Proposition 2.1. A sequent is GKD#-provable iff it is GKD+-provable,
where GKD+ is GKD added by the initial sequent of the form �♦(A∨B)→
�♦A,�♦B.

Proof: The ‘if ’ part: It suffices to show that the additional initial sequent
is GKD#-provable.

A→ A B → B

¬A,¬B → ¬(A ∨B)

�¬A,�¬B → �¬(A ∨B)
(K)

�¬A,�¬B,♦(A ∨B)→
�♦(A ∨B)→ �♦A,�♦B

(D)#

The ‘only if ’ part: It suffices to show that GKD+-provability of the
upper sequent �A1, . . . ,�An,Γ → of the rule (D)# implies that of the
lower sequent �Γ→ �¬�A1, . . . ,�¬�An. When n = 0, 1, this is justified
by the following GKD+-proofs:

.... GKD+-proof

Γ→
�Γ→

(D)

.... GKD+-proof

�A1,Γ→
Γ→ ¬�A1

�Γ→ �¬�A1
(K)

On the other hand, when n ≥ 2, it is certified by applying (cut)’s to
the following proofs P , Q and Ri (i = 1, . . . , n).


Ai → Ai

¬
∨n

k=1 ¬Ak → Ai

�¬
∨n

k=1 ¬Ak → �Ai

(K)


i=1,...,n

.... GKD+-proof

�A1, . . . ,�An,Γ→
�¬

∨n
k=1 ¬Ak,Γ→

(cut)’s

Γ→ ♦
∨n

k=1 ¬Ak

�Γ→ �♦
∨n

k=1 ¬Ak

(K)

Figure 1. GKD+-proof P
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{
additional initial sequent

�♦
∨i+1

k=1 ¬Ak → �♦
∨i

k=1 ¬Ak,�♦¬Ai+1

}
i=1,...,n−1

�♦
∨n

k=1 ¬Ak → �♦¬A1, . . . ,�♦¬An

(cut)’s

Figure 2. GKD+-proof Q

Ai → Ai

Ai → ¬¬Ai

�Ai → �¬¬Ai
(K)

♦¬Ai → ¬�Ai

�♦¬Ai → �¬�Ai
(K)

Figure 3. GKD+-proof Ri (i = 1, . . . , n)

Though the calculus GKD admits cut-elimination and so enjoys the
subformula property, our GKD# lacks both of these properties. In fact,
the end-sequent of the following GKD#-proof, for example, has neither a
cut-free one nor a proof that consists solely of subformulas of some formula
in the sequent.

p→ p

¬p, p→
�¬p,�p→

(D)#

→ �¬�¬p,�¬�p
(D)#

�p→ �p

¬�p→ �p⊃ q

�¬�p→ �(�p⊃ q)
(K)

→ �¬�¬p,�(�p⊃ q)
(cut)

So, it is inevitable to modify the notion of subformula to get a kind of
subformula property for GKD#.

3. Nested K5-subformulas

In this section, our new modification of the notion of subformula is pro-
posed, and it is shown that the new notion is (not only reflexive but)
transitive.
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The followings are our new and former modifications, respectively.

Definition 3.1.

(1) A nested internal subformula of depth n of A is a formula which has
an occurrence in A that lies in the scope of exactly n occurrences of
the necessity symbol �.

(2) A nested K5-subformula of A is either a subformula of A or the for-
mula of the form (�¬)n�B or ¬(�¬)n−1�B, where �B is a nested
internal subformula of depth ≥ n of A, and n ≥ 1.

Definition 3.2 ([2, Definition 1]).

(1) An internal subformula of A is a subformula of some formula C such
that �C is a subformula of A.

(2) A K5-subformula of A is either a subformula of A or the formula of
the form �¬�B or ¬�B, where �B is an internal subformula of A.

Obviously, the internal subformulas are nothing but the nested internal
subformulas of depth ≥ 1, and the K5-subformulas are the nested K5-
subformulas which are restricted to the case n = 1. So, it seems that the
notion of nested K5-subformula forms a natural extension of that of K5-
subformula. Furthermore, the number of the nested K5-subformulas of a
formula is finite.

The sets of all the subformulas, all the nested internal subformulas of
depth ≥ n and all the nested K5-subformulas of A are denoted by Sf(A),
InSfn(A) and SfN.K5(A), respectively. Moreover, put Sf(Γ) =

⋃
{Sf(A) |

A ∈ Γ}, and similarly for InSfn(Γ) and SfN.K5(Γ).
Evidently, the relation ‘being a nested K5-subformula of ’ between for-

mulas is reflexive; besides it is transitive too, as the following proposition
shows.

Proposition 3.3.

(1) Suppose n, k ≥ 1. Then, �B ∈ InSfn(A) and �C ∈ InSfk((�¬)n�B)
imply (�¬)k�C, ¬(�¬)k−1�C ∈ SfN.K5(A).

(2) B ∈ SfN.K5(A) and C ∈ SfN.K5(B) imply C ∈ SfN.K5(A).

Proof:

(1) Suppose that �C be a nested internal subformula of depth k′ of
(�¬)n�B. Then k′ ≥ k. The case where k′ ≤ n: �C is (�¬)n−k

′
�B.
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From n ≥ k+(n−k′), it follows �B ∈ InSfn(A) ⊆ InSfk+(n−k′)(A), and so
both (�¬)k+(n−k′)�B and ¬(�¬)(k−1)+(n−k′)�B, namely (�¬)k�C and
¬(�¬)k−1�C, are in SfN.K5(A). The case where k′ > n: �C is a nested

internal subformula of depth k′ − n of �B, So, �C ∈ InSfk
′−n(�B) ⊆

InSfk
′−n(InSfn(A)) ⊆ InSfk

′
(A) ⊆ InSfk(A), and so both (�¬)k�C and

¬(�¬)k−1�C are in SfN.K5(A).

(2) By the assumption, either (B1) B ∈ Sf(A) or (B2) B is (�¬)n�B′

or ¬(�¬)n−1�B′ and �B′ ∈ InSfn(A) for some B′ and n ≥ 1, and either
(C1) C ∈ Sf(B) or (C2) C is (�¬)k�C ′ or ¬(�¬)k−1�C ′ and �C ′ ∈
InSfk(B) for some C ′ and k ≥ 1. The case where (B1) and (C1) hold: C ∈
Sf(Sf(A)) ⊆ Sf(A) ⊆ SfN.K5(A). The case where (B1) and (C2) hold: C ∈
SfN.K5(A) follows from �C ′ ∈ InSfk(Sf(A)) ⊆ InSfk(A). The case where
(B2) and (C1) hold: Either C is (�¬)m�B′ or ¬(�¬)m−1�B′ for some m
such that 1 ≤ m ≤ n, or C ∈ Sf(�B′). In the former case, C ∈ SfN.K5(A)
follows from �B′ ∈ InSfn(A) ⊆ InSfm(A). In the latter case, on the other
hand, C ∈ Sf(InSfn(A)) ⊆ Sf(A) ⊆ SfN.K5(A). The case where (B2) and
(C2) hold: If B is (�¬)n�B′, then C ∈ SfN.K5(A) by (1). So, suppose
that B is ¬(�¬)n−1�B′. If n ≥ 2, then C ∈ SfN.K5(A) follows from �B′ ∈
InSfn(A) ⊆ InSfn−1(A) and �C ′ ∈ InSfk(B) = InSfk((�¬)n−1�B′) by
(1). If n = 1, then C ∈ SfN.K5(A) follows from �C ′ ∈ InSfk(¬�B′) ⊆
InSfk(InSf1(A)) ⊆ InSfk(A).

Though the following proposition is useless for this article, it shows
a characteristic property of the nested K5-subformulas (cf. Corollary 5.4
below).

Proposition 3.4. �A ∈ SfN.K5(InSfn(Γ)) implies (�¬)n�A ∈ SfN.K5(Γ),
where n ≥ 1.

Proof: �A ∈ SfN.K5(B) for some B ∈ InSfn(Γ) by the assumption. The
case where �A ∈ Sf(B): It follows �A ∈ InSfn(Γ), and so (�¬)n�A ∈
SfN.K5(Γ). The case where �A is (�¬)k�A′ and �A′ ∈ InSfk(B) for some
A′ and k ≥ 1: It follows �A′ ∈ InSfn+k(Γ), and so (�¬)n+k�A′, namely
(�¬)n�A, is in SfN.K5(Γ).
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4. Statements of Theorem and Lemma

In this section, our theorem, which forms a modified subformula property
for GKD# is stated, and is turned into the lemma which is convenient for
proof.

Theorem 4.1. Every GKD#-provable sequent Γ→ Θ has a GKD#-proof
that consists solely of the nested K5-subformulas of some formula in Γ∪Θ.

This theorem is proved through Lemma 4.2 below.
For the convenience of proof, our sequent calculus GKD# is adjusted

by the following two changes.

• To restrict the cut-rule to the following one:

(cut)N.K5
Γ→ Θ, (�¬)n�A (�¬)n�A,∆→ Λ

Γ,∆→ Θ,Λ
,

where �A ∈ InSfn(Γ ∪Θ ∪∆ ∪ Λ) and n ≥ 1.

• To modify the rule (K) into the following one:

(K)#
{�∆′,Γ→ �(∆\∆′), A}∆′⊆∆

�Γ→ �¬�∆,�A

Let’s call this adjusted calculus as aGKD#. The rule (cut)N.K5 re-
stricted to the case n = 1 is the rule (cut)K5, which was utilized in
Takano [4] to show the modified subformula property for the logic S4.2
on the K5-subformulas.

Remark that the rule (K)# can be seen as an abbreviation for the
following inference:

{�∆′,Γ→ �(∆\∆′), A}∆′⊆∆

Γ→ A
(cut)’s

�Γ→ �A
(K)

�Γ→ �¬�∆,�A

So, aGKD#-provable sequents are GKD#-provable. Moreover, since
the relation ‘being a nested K5-subformula of ’ is reflexive and transitive
(Proposition 3.3 (2)), every formula occurring in an aGKD#-proof is a
nested K5-subformula of some formula occurring in the end-sequent. Hence,
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it suffices to show that GKD#-provability implies aGKD#-provability, for
the proof of Theorem 4.1. We will prove this in the following form.

Lemma 4.2. The following three conditions on a sequent are mutually
equivalent.

(i) It is GKD#-provable.

(ii) It is aGKD#-provable.

(iii) It is valid on every frame with the property (#).

The ‘(ii) implies (i)’-part of this lemma has been remarked above, the
‘(i) implies (iii)’-part is shown as Proposition 4.3 below, and the ‘(iii)
implies (ii)’-part will be shown as Proposition 6.7 after necessary prelimi-
naries.

Proposition 4.3. GKD#-provable sequents are valid on every frame with
the property (#).

Proof: It suffices to show that the rule (D)# preserves validity. Let |=
be the satisfaction relation derived from a model 〈W,R, V 〉 with (#). Sup-
pose x (∈ W ) rejects the lower sequent �Γ → �¬�∆ of (D)#; that is,
x |= �A for every A ∈ Γ, while x 6|= �¬�B for every B ∈ ∆. By (#),
(∀x′)(∀y′)(xRx′ & yRy′ =⇒ x′Ry′) for some y such that xRy. We will
show that this y rejects the upper sequent �∆,Γ → , and this concludes
the proof that (D)# preserves validity. First, y |= A for every A ∈ Γ, since
this follows from x |= �A and xRy. On the other hand, let B ∈ ∆. From
x 6|= �¬�B, it follows xB |= �B for some xB such that xRxB . Then, for
every y′ such that yRy′, it follows xBRy′ and so y′ |= B; hence y |= �B.
So y rejects �∆,Γ→ .

5. N.K5-analytically saturated sequents

In this section, preparatory to the proof of the ‘(iii) implies (ii)’-part of
Lemma 4.2, the notion of N.K5-analytically saturated sequent is intro-
duced.

It is to be remembered that in this section, (un)provability means
aGKD#-(un)provability.
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Definition 5.1. A sequent Γ → Θ is N.K5-analytically saturated, iff the
following properties hold (cf. Takano [3, Definition 1.1]):

(5.1-a) Γ→ Θ is unprovable.

(5.1-b) Suppose A ∈ SfN.K5(Γ ∪ Θ). If A,Γ → Θ is unprovable then
A ∈ Γ; while if Γ→ Θ, A is unprovable then A ∈ Θ.

N.K5-analytically saturated sequents are denoted by u, v, w, . . . ; be-
sides, a(u) and s(u) denote the antecedent and succedent of u, respectively.

Owing to the initial sequents and the inference rules for the proposi-
tional connectives, the following proposition holds.

Proposition 5.2. For every u,A and B, the following properties hold:

(1) a(u) ∩ s(u) = ∅.

(2) ¬A ∈ a(u) implies A ∈ s(u); ¬A ∈ s(u) implies A ∈ a(u).

(3) A ∧ B ∈ a(u) implies A,B ∈ a(u); A ∧ B ∈ s(u) implies A ∈ s(u) or
B ∈ s(u).

(4) A ∨ B ∈ a(u) implies A ∈ a(u) or B ∈ a(u); A ∨ B ∈ s(u) implies
A,B ∈ s(u).

(5) A ⊃ B ∈ a(u) implies A ∈ s(u) or B ∈ a(u); A ⊃ B ∈ s(u) implies
A ∈ a(u) and B ∈ s(u).

Similarly, thanks to the rule (cut)N.K5, the following proposition holds
too.

Proposition 5.3. �A ∈ InSfn(a(u)∪s(u)) implies (�¬)n�A ∈ a(u)∪s(u),
where n ≥ 1.

Corollary 5.4. �A ∈ SfN.K5(InSfn(a(u) ∪ s(u))) implies (�¬)n�A ∈
a(u) ∪ s(u), where n ≥ 1.

Proof: �A ∈ SfN.K5(B) for some B ∈ InSfn(a(u) ∪ s(u)) by the assump-
tion. The case where �A ∈ Sf(B): It follows �A ∈ InSfn(a(u) ∪ s(u)),
and so (�¬)n�A ∈ a(u) ∪ s(u) by the proposition. The case where �A
is (�¬)k�A′ and �A′ ∈ InSfk(B) for some A′ and k ≥ 1: It follows
�A′ ∈ InSfn+k(a(u) ∪ s(u)), and so (�¬)n+k�A′, namely (�¬)n�A, is in
a(u) ∪ s(u) by the proposition again.
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Proposition 5.5. If Γ → Θ is unprovable, then Γ ⊆ a(u), Θ ⊆ s(u) and
a(u) ∪ s(u) ⊆ SfN.K5(Γ ∪Θ) for some u.

Proof: Let A1, . . . , An be an enumeration of all the formulas of SfN.K5(Γ∪
Θ). Put Γ1 = Γ and Θ1 = Θ. Suppose that Γk and Θk have been defined
(1 ≤ k ≤ n). If Γk → Θk, Ak is unprovable, then put Γk+1 = Γk and
Θk+1 = Θk∪{Ak}; if Γk → Θk, Ak is provable but Ak,Γk → Θk is unprov-
able, then put Γk+1 = Γk ∪ {Ak} and Θk+1 = Θk; if both Γk → Θk, Ak

and Ak,Γk → Θk are provable, then put Γk+1 = Γk and Θk+1 = Θk.
Then it is easily shown that Γn+1 → Θn+1 is the desired u. (See the

proof of Takano [3, Lemma 1.3].)

6. Canonical model

The ‘(iii) implies (ii)’-part of Lemma 4.2 is shown in this section. For this
purpose, the canonical model for GKD# is introduced.

Definition 6.1 (Canonical model 〈W,R, V 〉). W is the set of all the N.K5-
analytically saturated sequents, the binary relation R on W is defined by:
uRv iff the following properties hold for every B,

(6.1-a) �B ∈ a(u) implies B ∈ a(v),

(6.1-b) �B ∈ a(v) ∪ s(v) implies �¬�B ∈ a(u) ∪ s(u), and conversely,

and V is the function of the propositional letters to the subsets of W such
that V (p) = {u ∈W | p ∈ a(u)} for every p.

Remark 6.2. For an GKD#-unprovable sequent Γ→ Θ, if W is restricted
to those u’s such that a(u)∪ s(u) ⊆ SfN.K5(Γ∪Θ), the following argument
remains valid. So, the finite model property as well as decidability for KD#
follows, since the restricted W is finite.

We have the following three propositions which concern the canonical
frame 〈W,R〉.

Proposition 6.3. �A ∈ a(u) implies (∀v)(uRv =⇒ A ∈ a(v)).

Proof: Immediate by (6.1-a).

Proposition 6.4. �A ∈ s(u) implies (∃v)(uRv & A ∈ s(v)).

Proof: Suppose �A ∈ s(u). Put Γ = {B | �B ∈ a(u)} and ∆ = {B |
�¬�B ∈ s(u)}. Then �Γ → �¬�∆,�A is aGKD#-unprovable, since
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�Γ ⊆ a(u) and �¬�∆ ∪ {�A} ⊆ s(u). According to the rule (K)#, the
sequent �∆′,Γ → �(∆\∆′), A is unprovable for some ∆′ ⊆ ∆. Then by
Proposition 5.5, �∆′ ∪ Γ ⊆ a(v), �(∆\∆′) ∪ {A} ⊆ s(v) and a(v) ∪ s(v) ⊆
SfN.K5(�∆′ ∪ Γ ∪ �(∆\∆′) ∪ {A}) for some v. Since A ∈ s(v), it suffices
to show uRv, which will be shown by checking (6.1-a) and (6.1-b). Check
of (6.1-a): If �B ∈ a(u), then B ∈ Γ ⊆ a(v). Check of (6.1-b): Suppose
�B ∈ a(v) ∪ s(v). Since �∆′ ∪ Γ ∪ �(∆\∆′) ∪ {A} ⊆ InSf1(a(u) ∪ s(u)),
it follows �B ∈ a(v) ∪ s(v) ⊆ SfN.K5(InSf1(a(u) ∪ s(u))), and so �¬�B ∈
a(u) ∪ s(u) by Corollary 5.4. Conversely, suppose �¬�B ∈ a(u) ∪ s(u). If
�¬�B ∈ a(u), then ¬�B ∈ Γ ⊆ a(v), and so �B ∈ s(v) ⊆ a(v) ∪ s(v)
by Proposition 5.2 (2). If �¬�B ∈ s(u), on the other hand, �B ∈ �∆ =
�∆′ ∪�(∆\∆′) ⊆ a(v) ∪ s(v).

Proposition 6.5. The canonical frame 〈W,R〉 enjoys the property (#),
that is, (∀u)(∃v)[uRv & (∀u′)(∀v′)(uRu′ & vRv′ =⇒ u′Rv′)].

Proof: Suppose that u is given. Put Γ = {B | �B ∈ a(u)} and ∆ = {B |
�¬�B ∈ s(u)}. Since �Γ → �¬�∆ is aGKD#-unprovable, �∆,Γ → is
unprovable too by the rule (D)#. So by Proposition 5.5, �∆ ∪ Γ ⊆ a(v)
and a(v) ∪ s(v) ⊆ SfN.K5(�∆ ∪ Γ) for some v.

Since uRv can be shown similarly to the proof of Proposition 6.4, it is
left to show the property that uRu′ and vRv′ imply u′Rv′. So, suppose
uRu′ and vRv′. We will infer u′Rv′ by checking (6.1-a) and (6.1-b). Check
of (6.1-a) for u′Rv′: Suppose �B ∈ a(u′). By (6.1-b) for uRu′, it follows
�¬�B ∈ a(u)∪s(u). But if �¬�B ∈ a(u), then ¬�B ∈ a(u′) by (6.1-a) for
uRu′, which contradicts �B ∈ a(u′); so �¬�B ∈ s(u). Then �B ∈ �∆ ⊆
a(v), and so B ∈ a(v′) by (6.1-a) for vRv′. Check of (6.1-b) for u′Rv′:
�B ∈ a(v′) ∪ s(v′) iff �¬�B ∈ a(v) ∪ s(v) iff �¬�¬�B ∈ a(u) ∪ s(u) iff
�¬�B ∈ a(u′)∪ s(u′) by (6.1-b) for vRv′, uRv and uRu′, respectively.

Thanks to Propositions 6.3 and 6.4 as well as Proposition 5.2, the fol-
lowing proposition is shown by induction on the construction of formulas.

Proposition 6.6. Let |= be the satisfaction relation derived from the
canonical model 〈W,R, V 〉. Then, A ∈ a(u) implies u |= A, while A ∈ s(u)
implies u 6|= A, for every u and A.

Finally, we are ready to show the following proposition which forms the
‘(iii) implies (ii)’-part of Lemma 4.2.
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Proposition 6.7. Those sequents that are valid on every frame with the
property (#) are aGKD#-provable.

Proof: Suppose that a sequent Γ → Θ is valid on every frame with (#),
but is aGKD#-unprovable. Then by Proposition 5.5, Γ ⊆ a(u) and Θ ⊆
s(u) for some u. It follows by Proposition 6.6 that, this u rejects Γ →
Θ on the canonical model 〈W,R, V 〉. This together with Proposition 6.5
contradicts the assumption.

7. Concluding remarks

To get a kind of subformula property for the modal logic KD#, we proposed
a new modification of the notion of subformula, nested K5-subformula,
which forms a natural extension of our former modification, K5-subformula.
Then we showed by means of the sequential version GKD# that, the nested
K5-subformulas suffice though the subformulas (in the original sense) do
not.

But the author wonders whether the nested K5-subformulas are really
necessary. Possibly the K5-subformulas suffice. These problems are left for
further consideration.
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Abstract

In this paper, by considering the notions of effect algebra and product effect alge-

bra, we define the concept of effect module. Then we investigate some properties

of effect modules, and we present some examples on them. Finally, we introduce

some topologies on effect modules.
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1. Introduction

In 1994, Foulis and Bennett [16] introduced the concept of effect algebras
with a partially defined addition “+” in order to axiomatize some quantum
measurements. They are additive counterparts to D-posets introduced by
Kôpka and Chovanec (1994), where the subtraction of comparable elements
is a primary notion. They met interest of mathematicians physicits while
they give a common base for algebraic as well as fuzzy set properties of
the system ε(H) of all effects of a Hilbert space H, i.e., of all Hermitian
operators A on H such that O ≤ A ≤ I, where O and I are the null and
the identity operators on H. In many cases, effect algebras are intervals
in unital po-groups, e.g., ε(H) is the interval in the po-group β(H) of all
Hermitian operators on H; this group is of great importance for physics.

Effect algebras generalize many examples of quantum structures, like
Boolean algebras, orthomodular lattices or posets, orthoalgebras, MV -
algebras and etc. We recall that MV -algebras are algebraic counterparts
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of the many-valued reasoning, and they appeared in mathematics under
many different names, situations and motivations. Even in the theory of
effect algebras, they were defined in an equivalent way as phi-symmetric
effect algebras [1]. The monograph [2, 11] can serve as a basic source of
information about effect algebras. Product effect algebras, were introduced
by Anatolij Dvurecenskij [12]. He proved every product effect algebra with
the Riesz decomposition property (RDP ) is an interval in an Abelian uni-
tal interpolation po-ring, and he showed that the category of product effect
algebras with the RDP is categorically equivalent with the category of uni-
tal Abelian interpolation po-rings. Recently, some researchers worked on
modular structures (see, for instance, [3, 4, 9, 10, 17]). Effect modules have
been introduced in theoretical physics in the mid-1990 for quantum prob-
ability. These structures are effect algebras with a scalar multiplication,
with scalars from [0, 1], i.e., an effect module M is an effect algebra with
an action [0, 1] ×M −→ M that it is an special case. In this paper, we
try to present more complete definition than the previous definition. We
define effect modules on product effect algebras as an extension of effect
algebras.

In the study of effect algebras (or more general, quantum structures) as
carriers of states and probability measures, an important tool is the study
of topologies on them. In fact, algebra and topology, the two fundamen-
tal domains of mathematics, play complementary roles. Topology studies
continuity and convergence, and it provides a general framework to study
the concept of a limit. Algebra studies all kinds of operations and pro-
vides a basis for algorithms and calculations. Because of this difference in
nature, algebra and topology to have a strong tendency to develop indepen-
dently, not in direct contact with each other. However, in applications, in
higher level domains of mathematics, such as functional analysis, dynami-
cal systems, representation theory and others, topology and algebra come
in contact most naturally. Recently, many mathematicians have studied
properties of some algebraic structures endowed with a topology (see, for
instance, [5, 6, 7, 15, 18]). We have studied and try to introduce some
topologies on effect modules. In fact, we wish to open new fields to anyone
that is interested to studying and development of effect algebras and effect
modules.
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2. Preliminaries

In this section, we review some definitions and related lemmas and theorems
that we use in the next sections.

Definition 2.1 ([16]). An effect algebra is a partial algebra E = (E; +, 0, 1)
with a partially defined operation “ + ” and two constant elements 0 and
1 such that, for all a, b, c ∈ E,

(E1) Commutative Law: if a + b is defined in E, then b + a is defined
in E, and in such the case a+ b = b+ a;

(E2) Associative Law: if a+(b+c) and b+c are defined in E, then a+b
and (a + b) + c are defined in E, and in such the case a + (b + c) =
(a+ b) + c;

(E3) Orthocomplementation Law: for any a ∈ E, there exists a unique
element a′ ∈ E such that a+ a′ = 1;

(E4) Zero-Unit Law: if a+ 1 is defined in E, then a = 0.

The algebraic structure (E; +, 0) is called an extended effect algebra if

(GE1) E is a partial commutative monoid;

(GE2) x+ z = x+ y implies z = y;

(GE3) x+ y = 0 implies x = y = 0, for every x, y, z ∈ E (see [11]).

Let E be an effect algebra. If we define a ≤ b if and only if there exists an
element c ∈ E such that a + c = b, then ≤ is a partial ordering, and we
write c := b − a. A nonempty subset I of E is said to be an ideal of E if
the following conditions are satisfied: (Id1) If x ∈ I and y ≤ x, then y ∈ I,
(Id2) if x− y ∈ I and y ∈ I, then x ∈ I, for any x, y ∈ E. Recall that a set
Q ⊆ E is called a sub-effect algebra of the effect algebra E, if 1 ∈ Q and
if out of elements a, b, c ∈ E with a+ b = c two are in Q, then a, b, c ∈ Q.
Let F be another effect algebra. A mapping h : E −→ F is said to be a
homomorphism of effect algebras (or E-homomorphism) if h(1) = 1 and
h(a+ b) = h(a) + h(b), for any a, b ∈ E whenever a+ b is defined in E.

We say E fulfills the strong Riesz Decomposition Property, (RDP2) for
short, if a1, a2, b1, b2 ∈ P such that a1 + a2 = b1 + b2, then there are
d1, d2, d3, d4 ∈ P such that (i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1,
d2 + d4 = b2, and (ii) d2 ∧ d3 = 0 (see [13]).
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Definition 2.2 ([12]). A product on effect algebra E = (E; +, 0, 1) is any
total binary operation “.” on E such that for all a, b, c ∈ E, the following
holds:
If a+ b is defined in E, then a.c+ b.c and c.a+ c.b exist in E and

(a+ b).c = a.c+ b.c, c.(a+ b) = c.a+ c.b.

Now, an effect algebra E with a product “.” is called a product effect
algebra.

The product “.” on E is associative if (a.b).c = a.(b.c), for every
a, b, c ∈ E.

A mapping h : E −→ F is said to be a homomorphism of product effect
algebras (or P -homomorphism) if h ia an E-homomorphism and h(a.b) =
h(a).h(b), for every a, b ∈ P .

Proposition 2.3 ([16]). The following properties hold for any effect alge-
bra E:

(i) a′′ = a,

(ii) 1′ = 0 and 0′ = 1,

(iii) 0 ≤ a ≤ 1,

(iv) a+ 0 = a,

(v) a+ b = 0⇒ a = b = 0,

(vi) a ≤ a+ b,

(vii) a ≤ b⇒ b′ ≤ a′,

(viii) b− a = (a+ b′)′,

(ix) a+ b′ = (b− a)′,

(x) a = a− 0,

(xi) a− a = 0,

(xii) a′ = 1− a and a = 1− a′, for every a, b ∈ E.

Definition 2.4 ([8]). An MV-algebra is a structure M = (M,⊕,′ , 0) of
type (2, 1, 0) that satisfies the following axioms:

(MV 1) (M,⊕, 0) is an Abelian monoid,
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(MV 2) (a′)′ = a,

(MV 3) 0′ ⊕ a = 0′,

(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a.

An l-group is an algebra (G,+,−, 0,∨,∧), where the following proper-
ties hold:

(a) (G,+,−, 0) is a group,

(b) (G,∨,∧) is a lattice,

(c) x ≤ y implies that b+ x+ a ≤ b+ y + a, for any x, y, a, b ∈ G.

A strong unit u > 0 is a positive element with property that for any g ∈ G
there exits n ∈ ω such that g ≤ nu. The Abelian l-groups with a strong
unit will be simply called lu-groups.

The category whose objects are MV -algebras and whose homomor-
phisms are MV -homomorphisms is denoted by MV. The category whose
objects are pairs (G, u), where G is an Abelian l-group and u is a strong unit
of G and whose homomorphisms are l-group homomorphisms is denoted
by Ug. The functor that establishes the categorical equivalence between
MV and Ug is

Γ : Ug −→ MV,

where Γ(G, u) = [0, u]G, for every lu-group (G, u) and Γ(h) = h|[0,u], for
every lu-group homomorphism h. The above results allows us to consider
an MV -algebra, when necessary, as an interval in the positive cone of an
l-group.

Definition 2.5 ([9]). A product MV -algebra (or PMV -algebra, for short)
is a structure A = (A,⊕, .,′ , 0), where (A,⊕,′ , 0) is an MV -algebra and “.”
is a binary associative operation on A such that the following property is
satisfied: if x + y is defined, then x.z + y.z and z.x + z.y are defined and
(x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every x, y, z ∈ A, where
“ + ” is the partial addition on A.

Let A = (A,⊕, .,′ , 0) be a PMV -algebra, M = (M,⊕,′ , 0) be an MV -
algebra and the operation Φ : A ×M −→ M be defined by Φ(a, x) =: ax,
which satisfies the following axioms:

(AM1) If x+y is defined in M , then ax+ay is defined in M and a(x+y) =
ax+ ay,



274 Simin Saidi Goraghani, Rajab Ali Borzooei

(AM2) If a+b is defined in A, then ax+bx is defined in M and (a+b)x =
ax+ bx,

(AM3) (a.b)x = a(bx), for every a, b ∈ A and x, y ∈M .

Then M is called a (left) MV -module over A or briefly an A-module.
We say that M is a unitary MV -module if A has a unity for the product

and

(AM4) 1Ax = x, for every x ∈M .

3. Effect modules

In this section, we present the definition of an effect module in effect alge-
bras and state some results on them.

Definition 3.1. Let P = (P ; +, ., 0, 1) be a product effect algebra and
E = (E; +, 0, 1) be an effect algebra. Then we say that E is an effect module
over P or P -module if there is an external operation ϕ : P ×E −→ E, with
ϕ(a, x) =: ax such that for any x, y ∈ E and a, b ∈ P , the following
properties hold:

(PE1) If a+ b is defined, then ax+ bx is defined and (a+ b)x = ax+ bx.

(PE2) If x+y is defined, then ax+ay is defined and a(x+y) = ax+ay.

(PE3) (a.b)x = a(bx).

Moreover, if ϕ(1, x) = 1x = x, for every x ∈ E, then E is called a
unitary P -module.

Example 3.2.

(i) Let P be a product effect algebra and E be an effect algebra. If we
define ϕ(a, x) = 0, for any a ∈ P and x ∈ E, then E becomes a
P -module.

(ii) Consider the real unit interval [0, 1]. Let x⊕y = min{x+y, 1}, for all
x, y ∈ [0, 1]. Then ([0, 1],⊕, 0, 1) is an effect algebra, where “ + ” and
“− ” are the ordinary operations in R. Moreover, consider ab = a.b,
for every a, b ∈ [0, 1], where “.” is the ordinary operation in R. Then
[0, 1] is a [0, 1]-module.
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(iii) Let E = {0, 1, 2, 3} and the operation “+” is defined on P as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 − 3 −
2 2 3 − −
3 3 − − −

Then (E; +, 0, 3) is an effect algebra. If we define operation “.” by

. 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

then P = (E; +, ., 0, 3) is a product effect algebra. Consider φ(a, x) =
a.x, for every a, x ∈ E. Then E is a P -module.

(iv) Let L = {0, x, 1}, P = {0, 1} and operations + and +′ is defined on
L and P , respectively, as follows:

+ 0 x 1
0 0 x 1
x x 1 −
1 1 − −

+′ 0 1
0 0 1
1 1 −

Then (L; +, 0, 1) is an effect algebra and (P ; +′, ., 0, 1) is a product
effect algebra, where “.” is the ordinary operation in R. Consider
E = L × L. Then (E;⊕, (0, 0), (1, 1)) is an effect algebra, where
(e1, e2)⊕ (b1, b2) = (e1 + b1, e2 + b2), for every e1, e2, b1, b2 ∈ L. Now,
for any a ∈ P and (e1, e2) ∈ E, we consider ϕ(a, (e1, e2)) = (ae1, ae2),
where for every e ∈ L,

ae =

{
0 a = 0
e a = 1

Then E is a P -module.

Lemma 3.3. Every associative product effect algebra (P,+, ., 0, 1) is a P -
module.



276 Simin Saidi Goraghani, Rajab Ali Borzooei

Proof: If we define φ(a, b) = a.b, for every a, b ∈ P , then it is easy to see
that P is a P -module.

Proposition 3.4. Let E be an effect algebra such that for every a, b ∈ E,
a′ + (b+ a′)′ = b′ + (a+ b′)′. Then E can become an E-module.

Proof: If we define a.b = (a ∗ b)′, where a ∗ b = a′ + (b + a′)′, then in a
straightforward way, E is an associative product effect algebra and so by
Lemma 3.3, E is an E-module.

Note. Let E = (E; +, 0, 1) be an effect algebra. Then for any a, b ∈ E,
a ≤ b′ if and only if a+ b is defined in E.

Lemma 3.5. Let E = (E; +, 0, 1) be an effect algebra. Then the set of

End(E) = {f : E → E : f is an E-homomorphism}

is a product effect algebra.

Proof: We consider f + g : E → E, by (f + g)(x) = f(x) + g(x), where
f(x) + g(x) is defined in E and (f + g)(x) = 0, where f(x) + g(x) is not
defined in E. Also, we consider f ◦ g : E → E, by (f ◦ g)(x) = f(g(x)).
Let x + y be defined in E. Since f, g are E-homomorphism, f(x) + f(y)
and g(x) + g(y) are defined and so it is easy to see that f + g and f ◦ g
are E-homomorphism. Thus, it is routine to see that (End(E),+, ◦, I, O)
is an effect algebra, where I : E → E and O : E → E are identity E-
homomorphism and zero E-homomorphism, respectively.

Theorem 3.6. Let E = (E; +, 0, 1) be an effect algebra and P be a product
effect algebra. Then E is a unitary P -module if and only if there exists a
P -homomorphism ϕ : P → End(E).

Proof: Let E be a unitary P -module with module multiplication ψ :
P × E → E, by ψ(a, x) = ax, for every a ∈ P and x ∈ E. By Lemma
3.5, End(E) is a product effect algebra. We consider the function ϕ : P →
End(E), by a→ ϕ(a), where ϕ(a) : E → E is defined by ϕ(a)(x) = ax, for
every a ∈ P and x ∈ E. We show that ϕ is a homomorphism of product
effect algebras. Let a+ b be defined in P , for any a, b ∈ P . Then we have

ϕ(a+ b)(x) = (a+ b)x = ax+ bx = ϕ(a)(x) + ϕ(b)(x) = (ϕ(a) + ϕ(b))(x)

for every x ∈ E. It results that ϕ(a + b) = ϕ(a) + ϕ(b). Now, for every
a, b ∈ P , since
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ϕ(a.b)(x) = (a.b)x = a(bx) = a(ϕ(b)(x)) = ϕ(a)(ϕ(b)(x)) = (ϕ(a)◦ϕ(b))(x)

for every x ∈ E, we have ϕ(a.b) = ϕ(a) ◦ϕ(b). Also, ϕ(1)(x) = 1x = x, for
every x ∈ E and so ϕ(1) = I.
Conversely, let there is a P -homomorphism ϕ : P → End(E). We define
ψ : P ×E → E, by ψ(a, x) = ax = ϕ(a)(x), for every a ∈ P and x ∈ E. It
is easy to see that ψ is well defined.

(PE1) Let a + b be defined in P . Then a ≤ b′ and so ax ≤ b′x. We
must show that ax + bx is defined in E. The first, we show that
b′x ≤ (bx)′. Since x ≤ x, hence x′ + x is defined and so

b(x+ x′) = ψ(b)(x′ + x) = ψ(b)(x′) + ψ(b)(x) = bx′ + bx

Then
bx′ + bx = b(x+ x′) = b1 ≤ 1 = (bx)′ + bx

and so b′x ≤ (bx)′. Thus, ax ≤ b′x ≤ (bx)′ and so ax+ bx is defined.
Hence, it is easy to see that (a+ b)x = ax+ bx.

(PE2) Let x+y be defined in E. Similar to (PE1), we can show that
a(x+ y) = ax+ ay.

(PE3) Let a, b ∈ P and x ∈ E. Then

(a.b)x = ψ(a.b)(x) = (ψ(a) ◦ ψ(b))(x) = ψ(a)(ψ(b)(x)) = ψ(a)(bx)

= a(bx)

Moreover, 1x = ψ(1)(x) = x, for every x ∈ E. Therefore, E is a
unitary P -module.

Theorem 3.7.

(i) Every MV -module can be transformed into an effect module.

(ii) Every effect module satisfying (RDP2) can be transformed into an
MV -module.

Proof:

(i) Let M be an A-module, where A is a PMV -algebra. We can consider
M = Γ(G, u), where G is an Abelian l-group and u is a strong unit
of G. Define “ + ” to be a partial operation on M that is defined
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for elements a, b ∈ M if and only if a ≤ b′, and in that case let
a+ b := a⊕ b. Then (M,+, 0, 1) is an effect algebra. Similarly, A can
be transformed into a product effect algebra. Now, by MV -module
multiplication, M will be an effect module.

(ii) Let E be a P -module satisfying (RDP2). By ([14], Theorem 8.8), E
and P are MV -algebras. If we consider a•b = a.b, for every a, b ∈ P ,
where “.” is the product operation in P , then P is a PMV -algebra.
Now, by effect module multiplication, E can be transformed into an
MV -module.

In the rest of this paper, we let P be a product effect algebra and E be
an effect algebra, unless otherwise specified. Also, if we are not sure that
a+ b is defined in effect algebra E, then we denote a⊕ b instead of a+ b,
for any a, b ∈ E.

4. Some topologies on effect modules

In this section, we introduce five topologies on effect modules.

Definition 4.1. Let E be a P -module. Then ∅ 6= I ⊆ E is called a
submodule of E if it satisfies the following conditions, for every a ∈ P and
x, y ∈ E:

(I1) If x, y ∈ I and x+ y is defined in E, then x+ y ∈ I.

(I2) If x ≤ y and y ∈ I, then x ∈ I.

(I3) If x ∈ I, then ax ∈ I.

I ⊆ E is called a W -submodule (weak submodule) of E if it satisfying (I3).
I ⊆ E is called an E-ideal of E if it satisfying (I1) and (I2).

We denote by SbP (E) and WSbP (E), respectively, the set of all sub-
modules of P -module E and the set of all W -submodules of P -module E.

Example 4.2.

(i) For every effect module E, {0} and E are trivial submodules of E.

(ii) In Example 3.2 (iii), I = {0, 1} and J = {0, 2} are submodules of E.

(iii) Every submodule of E is a W -submodule ( an E-ideal) of E.
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For every subset I of E, we denote

UI = {ϕ(a, x) : a ∈ (I : E) or x ∈ I},

where (I : E) = {x ∈ P : xE ⊆ I}.

Proposition 4.3. Let E be a P -module. Then

(i) If I ⊆ J , then (I : E) ⊆ (J : E), where I, J be subsets of E.

(ii)
⋂
i∈I(Ji : E) = (

⋂
i∈I Ji : E), where Ji is a subset of E, for every i ∈

I.

(iii) If I is a submodule of E, then (I : E) is an ideal of P .

If I is a W -submodule of P as P -module, where P is an associative product
effect algebra, then

(iv) I ⊆ (I : P ).

(v) (v) (I : P )P ⊆ I.

Proof: The proof is easy.

Theorem 4.4. Let E be a unitary P -module and a.a = a, for every a ∈ P .
Then Γ = {UI : I ∈WSbP (E)} is a topology on E.

Proof: Let E be a P -module, a.a = a, for every a ∈ P and I, J ∈
WSbP (E). First we prove that:

(i) U∅ = ∅ and UE = E.

(ii) UI ∩ UJ = UI∩J .

(iii) UI ∪ UJ = UI∪J .

The proof of (i) is clear. For the proof of (ii), since I∩J ⊆ I and I∩J ⊆ J ,
it is easy to see that UI∩J ⊆ UI ∩UJ . Let φ(a, x) ∈ UI ∩UJ . Then ax ∈ UI
and ax ∈ UJ . It results that a ∈ (I : E) or x ∈ I and a ∈ (J : E) or x ∈ J .
There are four possible cases:

(1) If a ∈ (I : E) and a ∈ (J : E), then it is easy to see that a ∈ (I∩J : E)
and so φ(a, x) = ax ∈ UI∩J .

(2) If x ∈ I and x ∈ J , then x ∈ I ∩ J and so ax ∈ UI∩J .
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(3) Let a ∈ (I : E) and x ∈ J . Then aE ⊆ I and so ax ∈ I. Since J is a
W -submodule of E, ax ∈ J , too. Hence φ(a, x) = ax ∈ I ∩ J and so
a(ax) = φ(a, ax) ∈ UI∩J . It results that by (PE3),

φ(a, x) = ax = (a.a)x = a(ax) ∈ UI∩J

(4) If x ∈ I and a ∈ (J : E), then similar to (3), we have ax ∈ UI∩J .
Therefore, UI ∩ UJ ⊆ UI∩J .

(iii) Since I ⊆ I∪J and J ⊆ I∪J , it is easy to show that UI∪UJ ⊆ UI∪J .
Let φ(a, x) ∈ UI∪J . Then a ∈ (I ∪ J : E) or x ∈ I ∪ J . If a ∈ (I ∪ J : E),
then aE ⊆ I ∪ J and so ax ∈ I ∪ J . Thus, ax ∈ I or ax ∈ J and so
ax = a(ax) ∈ UI or ax = a(ax) ∈ UJ . It follows that ax ∈ UI ∪ UJ . Now,
let x ∈ I ∪J . Then x ∈ I or x ∈ J . It results that ax ∈ UI or ax ∈ UJ and
so ax ∈ UI ∪ UJ . Hence UI ∪ UJ = UI∪J .

Therefore, by (i), (ii) and (iii), we obtain that Γ is a topology on E.

Next, we present definition of linear submodules of an effect module
and introduce another topology on E.

Definition 4.5. Let I be an E-ideal of E. Then I is called a linear E-ideal
of E if I is also a total order set.

Example 4.6. In Example 4.2 (ii), I and J are linear E-ideals of E.

For every subset I of E, we denote

LI = {(x, y) ∈ E × E : x+ y is defined and ∃c ∈ I that x+ c = y

or ∃d ∈ I that y + d = x}.

Let L,K ⊆ E × E such that x + y be defined in them, for every x, y in
them. Then we denote

L−1 = {(y, x) : (x, y) ∈ L} , L(y) = {x : (y, x) ∈ L, for every y ∈ E}

and

L ◦K = {(x, z) : ∃y ∈ E such that (x, y) ∈ L and (y, z) ∈ K}.
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Lemma 4.7. Let I and J be subsets of E.

(i) If I ⊆ J , then LI ⊆ LJ .

If E is an extended effect algebra and I, J are E-ideals of E, then

(ii) LI ∩ LJ = LI∩J .

(iii) LI ∪ LJ ⊆ LI ◦ LJ .

If E is an extended effect algebra and I, J are linear E-ideals of E, then

(iv) I ∩ J is a linear E-ideal of E;

(v) LI ◦ LI = LI .

Proof:

(i) The proof is clear.

(ii) Let (x, y) ∈ LI ∩ LJ . Then (x, y) ∈ LI and (x, y) ∈ LJ and so
(x + c1 = y or y + d1 = x) and (x + c2 = y or y + d2 = x), for
c1, d1 ∈ I and c2, d2 ∈ J . There are four possible cases:

Case (1): Let x+ c1 = y and x+ c2 = y. Then x+ c1 = x+ c2. Since
“ + ” is cancellative, we have c1 = c2 ∈ I ∩ J and so (x, y) ∈ LI∩J .

Case (2): Let x+ c1 = y and y + d2 = x. Then x ≤ y and y ≤ x and
so x = y. It means that c1 = d2 = 0 ∈ I ∩ J and so (x, y) ∈ LI∩J .

Case (3): Let y + d1 = x and y + d2 = x. The proof of this case is
similar to the case (1).

Case (4): Let y + d1 = x and x + c2 = y. The proof of this case is
similar to the case (2). Hence LI ∩ LJ ⊆ LI∩J . It is easy to show
that LI∩J ⊆ LI ∩ LJ . Therefore, LI ∩ LJ = LI∩J .

(iii) Let (x, y) ∈ LI∪LJ . Then (x, y) ∈ LI or (x, y) ∈ LJ . Let (x, y) ∈ LI .
Since (y, y) ∈ L{0} ⊆ LJ , we have (x, y) ∈ LI ◦ LJ . Similarly, if
(x, y) ∈ LJ , then (x, y) ∈ LI ◦ LJ . Thus, LI ∪ LJ ⊆ LI ◦ LJ .

(iv) The proof is clear.

(v) Let (x, z) ∈ LI ◦ LI . Then there is y ∈ E such that (x, y) ∈ LI and
(y, z) ∈ LI . Thus, (x + c1 = y or y + d1 = x) and (x + c2 = z or
z + d2 = y), for c1, d1, c2, d2 ∈ I. There are four possible cases:
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(1) Let x + c1 = y and y + c2 = z. Then x + c1 + c2 = z. Since
c1 + c2 ∈ I, we have (x, z) ∈ LI .

(2) Let x + c1 = y and z + d2 = y. Since I is a linear set, we
have c1 ≤ d2 or d2 ≤ c1. If c1 ≤ d2, then there is e ∈ E such
that c1 + e = d2, thus e ≤ d2 ∈ I, so e ∈ I. Also, we have
z + c1 + e = x + c1. So z + e = x and so (z, x) ∈ LI . Then
(x, z) ∈ (LI)

−1 = LI .

(3) Let y+d1 = x and y+c2 = z. Then similar to (2), we can prove
that (x, z) ∈ (LI)

−1 = LI .

(4) y + d1 = x and z + d2 = y. Similar to (1), we prove that
LI ◦ LI ⊆ LI .
On the other hand, by (iii), it is clear that LI ⊆ LI ◦LI . There-
fore, LI ◦ LI = LI .

Theorem 4.8. Let E be an extended effect algebra, I be a family of all
linear E-ideals of E, K0 = {LI : I ∈ I} and

K = {V ⊆ E × E : x+ y is defined for every (x, y) ∈ V
and ∃LI ∈ K0 such that LI ⊆ V }.

Then

(1) If V ∈ K, then V −1 ∈ K.

(2) For every V ∈ K, there is L ∈ K0 such that L ◦ L ⊆ V .

(3) For every V,L ∈ K, we have L ∩ V ∈ K.

(4) If L ∈ K and L ⊆ V ⊆ E × E such that for any (x, y) ∈ V , x+ y is
defined, then V ∈ K.

Proof: By Lemma 4.7, the result can obtain immediately.

Corollary 4.9. Consider the set K in Theorem 4.8 and T = {LI(x) : I ∈
I, x ∈ E}. Then

(i) K is a base of a topology of E × E.

(ii) T is a base of a topology of E.



Module Structure on Effect Algebras 283

Proof:

(i) We should proof that (1) E × E =
⋃
V ∈K V ; (2) for any V1, V2 ∈ K

and x ∈ V1 ∩ V2, there exists V ∈ K such that x ∈ V ⊆ V1 ∩ V2.

(1) Let (x, y) ∈ E×E. Then we can consider V = LI(x)×LI(y) =
{(a, b) : (x, a) ∈ LI(x) and (y, b) ∈ LI(y)}. Since (x, x) ∈
LI(x) and (y, y) ∈ LI(y), we have (x, y) ∈ V and so E × E ⊆⋃
V ∈K V . Hence E × E =

⋃
V ∈K V .

(2) Let V1, V2 ∈ K and x ∈ V1 ∩ V2. Then by Theorem 4.8 (3), we
have V1 ∩ V2 ∈ K and so we consider V = V1 ∩ V2. Therefore,
K is a base of a topology of E × E.

(ii) Similar to proof (i), we should prove that E =
⋃
x∈E LI(x) and there

exists V ∈ T with similar condition (2) in proof (i). Let x ∈ E.
Since x = x + 0, we have x ∈ LI(x). Then E ⊆

⋃
x∈E LI(x) and so

E =
⋃
x∈E LI(x). Also, for LI(x), LI(y) ∈ T and x ∈ LI(x) ∩ LI(y),

by Lemma 4.7 (ii), we have LI∩J = LI(x)∩LI(y) and so we consider
V = LI(x) ∩ LI(y). Therefore, T is a base of a topology of E.

In following, we present definition of effect topological modules and we
give a general example about them.

Definition 4.10. Let E be a P -module. If f : E × E −→ E (defined by
f(e, e′) = e+ e′, for every e, e′ ∈ E, where E×E is multiplicative topology
in E) and µx : E −→ E (defined by µx(e) = xe, for every e ∈ E and x ∈ P )
are continuous under some topology τ , then (E, τ) is called a topological
effect module.

Example 4.11. Let E be a P -module and {En : En ⊇ En+1, n ∈ N} be a
decreasing sequence of proper submodules of E. Then it is routine to see
that the collection

τ = {V ⊆ E : ∀v ∈ V ∃n ∈ N such that v + En ⊆ V },

where V + En = {v + e : v + e is defined in E} forms a topology on E.
Also, Bτ = {x + En : x ∈ E, n ∈ N} forms a base for τ . Now, we show
that the addition “ + ” and the effect module multiplication are continuous
under topology τ . Consider f : E × E −→ E defined by f(e, e′) = e + e′,
for e, e′ ∈ E and a basic open set e + En ∈ Bτ . If f−1(e + En) = ∅, then
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result holds trivially. If f−1(e + En) 6= ∅, then it is easy to prove that
f−1(e+En) is open and so f is continuous. Finally, it is easy to show that
the mapping µx : E −→ E defined by µx(e) = xe is continuous, for every
x ∈ P . Therefore, τ force E to be a topological effect module.

Next, we present definition of prime submodules in effect modules and
we present two topology on them.

Definition 4.12. Let E be a P -module and I be a proper submodule of
E. Then I is called a prime submodule of E if it satisfies in the following
condition:

If ax ∈ I, then a ∈ (I : E) or x ∈ I, for any a ∈ P and x ∈ E.

The set of all prime submodules of E is denoted by SpecP (E).

Example 4.13. In Example 3.2 (iii), I = {0, 1} and J = {0, 2} are prime
submodules of E and {0} is not a prime submodule of E. Note that
SpecP (E) = {I, J}.

Definition 4.14. Let E be a P -module and T (E) = {V(I) : I ∈ SbP (E)},
where V(I) = {P ∈ SpecP (E) : I ⊆ P}. If T (E) is closed under finite
union, then E is called a Top P -module.

Example 4.15.

(i) If E is a P -module and SpecP (E) = ∅, then E is a Top P -module.

(ii) By Example 4.13, SpecP (E)={I, J} and T (E)={∅,{I},{J},{I, J}}.
It is easy to see that E is a Top P -module.

(iii) By Example 3.2 (iv), It is easy to see that I = {(0, 0)}, J = {(0, 0),
(0, x), (0, 1)} and K = {(0, 0), (x, 0), (1, 0)} are prime submodules of
E. We have V(I) = {I}, V(J) = {J} and V(K) = {K}. It is routine
to see that E is not a Top P -module.

Proposition 4.16. Let E be a Top P -module. Then T (E) satisfies the
axioms for closed sets in a topological space.

Proof: Clearly, V(E) = ∅ and V({0}) = SpecP (E). It is enough to
show that

⋂
i∈I V(Ii) = V(

∨
i∈I Ii), where

∨
i∈I Ii = Sup{Ii : i ∈ I}. Let

P ∈
⋂
i∈I V(Ii). Then P ∈ V(Ii) and so Ii ⊆ P , for every i ∈ I. Hence∨

i∈I Ii ⊆ P and so P ∈ V(
∨
i∈I Ii). Thus

⋂
i∈I V(Ii) ⊆ V(

∨
i∈I Ii). On
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the other hand, we have V(
∨
i∈I Ii) ⊆

⋂
i∈I V(Ii). Therefore,

⋂
i∈I V(Ii) =

V(
∨
i∈I Ii).

Remark 4.17. Let E be a Top P -module. Then By Proposition 4.16, TE =
{V(I)c : I ∈ SbP (E)} is a topology on SpecP (E).

Definition 4.18. Let E be a P -module and K be a submodule of E. If
K is an intersection of some prime submodules of E, then K is called a
semiprime submodule of E.

Definition 4.19. Let E and F be two effect algebras. A mapping f :
E −→ F is said to be a P -homomorphism if (i) f is a homomorphism; (ii)
f(ax) = af(x), for any a ∈ P and x ∈ E. If f is one to one (onto), then f
is called a P -monomorphism (P -epimorphism) and if f is onto and one to
one, then f is called a P -isomorphism.

Lemma 4.20.

(i) E is a Top P -module if and only if for every prime submodule K of
E, N ∩ L ⊆ K implies that N ⊆ K or L ⊆ K (∗), where N,L are
semiprime submodules of E.

(ii) Let E and F be two P -modules, f : E −→ F be a P -isomorphism
and G be a prime submodule of F satisfying (∗). Then f−1(G) is a
prime submodule of E satisfying (∗).

Proof:

(i) Let K be a prime submodule of E, N and L be semiprime submodules
of K such that N ∩ L ⊆ K. Since E is a Top P -module, there
exists a submodule J of E such that V(N) ∪ V(L) = V(J). Since
N is a semiprime submodule of E, N =

⋂
i∈I Pi, where {Pi}i∈I is a

family of prime submodules of E. Then Pi ∈ V(N), for any i ∈ I.
Since V(N) ⊆ V(J), we have Pi ∈ V(J). Hence J ⊆ N and J ⊆ L
and so J ⊆ N ∩ L. It follows that V(N ∩ L) ⊆ V(J). Now, we
have V(N) ∪ V(L) ⊆ V(N ∩ L) ⊆ V(J) = V(N) ∪ V(L) and so
V(N)∪V(L) = V(N ∩L). It means that K ∈ V(N) or K ∈ V(L) and
so N ⊆ K or L ⊆ K. The proof of converse is routine.

(ii) The proof is routine.
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Theorem 4.21. Let E and F be two P -modules and f : E −→ F be a
P -isomorphism. If TF is a topology on SpecP (F ), then T −1E = {V (N)c :
N ∈ SpecP (E)} is a topology on SpecP (E), where

V (I) = {f−1(K) : K ∈ SpecP (F ) and f(I) ⊆ K},

for every I ⊆ F .

Proof: Since TF is a topology on SpecP (F ), T (F ) is closed under finite
union and so by Lemma 4.20 (i), N∩L ⊆ K implies that N ⊆ K or L ⊆ K,
for every prime submodule K of F , where N,L are semiprime submodules
of F . We claim that T −1(E) = {V (N) : N ∈ SpecP (E)} is closed under
finite unions. By Lemma 4.20 (ii), f−1(K) is a prime submodule of E, for
every K ∈ SpecP (F ). The first, we prove that f(G) ∈ SpecP (F ), for every
G ∈ SpecP (E). Let x, y ∈ f(G) and x + y be defined in F . Clearly, there
are m,n ∈ G such that x = f(m), y = f(n) and f(m) + f(n) is defined in
F . Since f−1 is a P -homomorphism and f(m) + f(n) is defined in F , we
result that f−1(f(m)) + f−1(f(n)) is defined in E and so m+ n is defined
in E. It means that

x+ y = f(m) + f(n) = f(m+ n) ∈ f(G).

Now, let x ≤ y and y ∈ f(G), for any x, y ∈ F . Then there are m ∈ G
and n ∈ E such that x = f(m) and y = f(n). Since f(m) ≤ f(n),
there is f(r) = c ∈ F such that f(m) + f(r) = f(n), for r ∈ E and so
f(m+r) = f(n). Hence m+r = n and so m ≤ n ∈ G. It means that m ∈ G
and so x = f(m) ∈ G. Thus, f(G) is a submodule of F . It is routine to
show that f(G) is a prime submodule of F , for every G ∈ SpecP (E). Then
f(N) =

⋂
G∈SpecP (E) f(G) and f(L) =

⋂
G′∈SpecP (E) f(G′) are semiprime

submodules of F . Hence by Lemma 4.20, N ∩ L ⊆ f−1(G) implies that
N ⊆ f−1(G) or L ⊆ f−1(G). Now, it is routine to see that V (N)∪V (L) =
V (N∩L), for every semiprime submodules of E and so by a straightforward
way, we conclud that T −1(E) is closed under finite unions. Therefore,

T −1E = {V (N)c : N ∈ SpecP (E)}

is a topology on SpecP (E).

In following, we present topology on SpecP (E) that is coarser than TE .
Let E be a P -module, N be a submodule of E and J ⊆ P . Then we denote:
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W (N) = {P ∈ SpecP (E) : (N : E) ⊆ (P : E)},
ΥE = {W (N)c : N ∈ SbP (E)}
JE = {x∈E :x≤a1x1 + · · ·+ anxn, s.t. ∃a1 · · · , an∈J, x1, · · · , xn∈E :

a1x1 + · · ·+ anxn is defined in E}

Lemma 4.22. Let E be a P -module and N be a submodule of E. Then
a.b ∈ (N : E), for every a ∈ P and b ∈ (N : E).

Proof: Let a ∈ P and b ∈ (N : E). Then bE ⊆ N and so be ∈ N , for
every e ∈ N . Hence (a.b)e = a(be) ∈ N and so a.b ∈ (N : E).

Theorem 4.23. Let E be a P -module. Then ΥE is a topology on SpecP (E).

Proof: It is clear that W (N) = ∅ and W ({0}) = SpecP (E). It is routine
to see that W (N) ∪W (M) = W (N ∩M), for every N,M ∈ SbP (E). We
show that

⋂
i∈IW (Ni) = W (JE), where J =

∨
i∈I(Ni : E). The first, we

prove that JE is a submodule of E. Let a, b ∈ JE and a+ b is defined in
E. Then

a ≤ a1x1 + · · ·+ anxn and b ≤ b1y1 + · · ·+ bmym

where a1x1 + · · ·+ anxn and b1y1 + · · ·+ bmym are defined in E, for some
a1, · · · , an, b1, · · · , bm ∈ J and x1, · · · , xn, y1, · · · , ym ∈ E. So

a+ b ≤ a1x1 + · · ·+ anxn + b1y1 + · · ·+ bmym

If a1x1 + · · ·+ anxn + b1y1 + · · ·+ bmym is not defined in E, then we can
rewrite it by new ai’s and bi’s such that is defined in E (since a+b is defined
in E, it is possible). Thus, I1 is true. Note that (I2) is clear. Now, let e ∈ P
and a ∈ JE. Then a ≤ a1x1+· · ·+anxn, where a1x1+· · ·+anxn is defined,
for any a1, · · · , an ∈ J and x1, · · · , xn ∈ E. Since a ≤ a1x1 + · · · + anxn,
there is c ∈ E such that a + c = a1x1 + · · · + anxn and so by (PE2) and
(PE3),

ea+ ec = (e.a1)x1 + · · ·+ (e.an)xn

It means that ea ≤ (e.a1)x1 + · · · + (e.an)xn, where by Lemma 4.22,
(e.a1), · · · , (e.an) ∈ J and so ea ∈ JE. Hence JE is a submodule of
E. Now, it is routine to see that

⋂
i∈IW (Ni) = W (JE). Therefore, ΥE

satisfies the axioms of topology defined by open sets.
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Example 4.24.

(i) In Example 3.2 (iii), we have SpecP (E) = {I, J}. Then W (I) = {I},
W (J) = {J}, W (∅) = SpecP (E) and W (E) = {∅}. Then ΥE =
{∅, {I}, {J}, {I, J}} is topology on SpecP (E).

(ii) In Example 4.15 (iii), we have SpecP (E) = {I, J, K}. Then
W (E) = ∅,

W (I) = W (J) = W (K) = SpecP (E) , ΥE = {∅, SpecP (E)}.

Therefore, ΥE is topology on SpecP (E).

5. Conclusion

Effect algebras generalize many examples of quantum structures, like
Boolean algebras, orthomodular lattices or posets, orthoalgebras, MV -
algebras, etc. Recently, module structures have been defined over some
algebraic structures, and some researches have been interested in this topic.
We presented definition of effect modules. Next researchers can study free
effect modules, projective (injective) modules and many of the other con-
cepts of modules. In the study of effect algebras (or more general, quantum
structures) as carriers of states and probability measures, an important tool
is the study of topologies on them. Also, the studying of certain topological
properties of algebraic structures characterize also their certain algebraic
properties. We studied and introduced some topologies on effect modules.
We wish that the obtained results can encourage us to continue this long
way. In fact, we hope that we could open new fields to anyone that is
interested to studying and development of modules.
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EQUALITY LOGIC

Abstract

In this paper, we introduce and study a corresponding logic to equality-algebras

and obtain some basic properties of this logic. We prove the soundness and com-

pleteness of this logic based on equality-algebras and local deduction theorem.

We show that this logic is regularly algebraizable with respect to the variety of

equality-algebras but it is not Fregean. Then we introduce the concept of (prelin-

ear) equality4-algebras and investigate some related properties. Also, we study

4-deductive systems of equality4-algebras. In particular, we prove that every

prelinear equality4-algebra is a subdirect product of linearly ordered equality4-

algebras. Finally, we construct prelinear equality4 logic and prove the soundness

and strong completeness of this logic respect to prelinear equality4-algebras.

Keywords: Many-valued logic, equality logic, completness, prelinear equality4-

algebra, prelinear equality4 logic.

1. Introduction

Novák introduced the concept of EQ-algebras in [17] as candidates for a
possible algebraic semantics of fuzzy-type theory (see [16]). These algebras
are meet semilattices endowed with two additional binary operations: fuzzy
equality and multiplication. Implication is derived from the fuzzy equality
and it is not a residuation with respect to multiplication. Consequently,
EQ-algebras is a generalization of residuated lattices in the sense that each
residuated lattice is an EQ-algebra but not vice-versa.
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Dyba and Novák introduced EQ-logic in [9] as a specific formal logic in
which the basic connective is fuzzy equality and the implication is derived
from the fuzzy equality. They formulated the basic EQ-logic and proved
the completeness of this logic. Also, see [19, 10, 11].

Recently, Dyba and et all in [8], introduced and studied the prelinear
EQ4-algebras and the corresponding propositional EQ4-logic.

As Jenei mentioned in [13], if the product operation in EQ-algebras
is replaced by another binary operation smaller or equal than the origi-
nal (viewed as a two-place function) we still obtain an EQ-algebra. This
fact might make it difficult to obtain certain algebraic results. For this
reason, Jenei introduced a new structure in [13], called equality-algebra,
to find something similar to EQ-algebras but without a product. The
equality-algebras have two binary operations meet and equivalence, and
a constant 1. Jenei proved the term equivalence of the closed algebras
to BCK-meet-semilattices. In [23], F. Zebardast and et all studied and
proved that there are relations among equality algebras and some of other
logical algebras such as residuated lattice, MTL-algebra, BL-algebra, MV-
algebra, Hertz-algebra, Heyting-algebra, Boolean-algebra, EQ-algebra and
hoop-algebra. Some types of filters of equality algebras are introduced in
[3]. Since then many researchers have worked on this area (see [4, 6, 14, 12]).

In this paper, we will show that equality-algebras are semantics of fuzzy-
type theory. In the next section, we review some notions which are needed
in the sequel. In section 3, the corresponding equality logic is constructed
and some related properties are proved. Also, the soundness and complete-
ness of this logic are proved. We prove that this logic is regularly alge-
braizable with respect to the variety of the equality-algebras. In section 4,
we investigate (prelinear) equality4-algebras and 4-deductive systems on
equality4-algebras. We obtain some related results. Finally in section 5,
we introduce prelinear equality4 logic and prove strong completeness.

2. Preliminaries

In this section, we recall the basic definitions and some known results about
equality-algebras that we need in the rest of the paper.

Definition 2.1 ([13]). An equality-algebra is an algebra A = (A,∧,∼, 1)
of the type (2, 2, 0) such that satisfies the following axioms for all x, y, z ∈
A:
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(E1) (A,∧, 1) is a meet-semilattice with top element 1,

(E2) x ∼ y = y ∼ x,

(E3) x ∼ x = 1,

(E4) x ∼ 1 = x,

(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y,

(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z),

(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).
The operation ∧ is called meet (infimum) and∼ is an equality operation.

We write x ≤ y (and y ≥ x) iff x∧ y = x. Define the following two derived
operations, the implication and the equivalence operation of the equality-
algebra A by

(I) x→ y = x ∼ (x ∧ y),

(II) x↔ y = (x→ y) ∧ (y → x).

An equality-algebra A = (A,∧,∼, 1) is bounded if there exists an element
0 ∈ A such that 0 ≤ x, for all x ∈ A.

Proposition 2.2 ([13]). Let A = (A,∧,∼, 1) be an equality-algebra and
consider

(E5a) x ∼ (x ∧ y ∧ z) ≤ x ∼ (x ∧ y),

(E5a’) x→ (y ∧ z) ≤ x→ y,

Then (E5) is equivalent to (E5a), which in turn is equivalent to (E5a’).

Definition 2.3 ([23]). Let A = (A,∧,∼, 1) be an equality-algebra.

(1) Then A is called prelinear, if 1 is the unique upper bound of the set
{x→ y, y → x} for all x, y ∈ A.

(2) A lattice equality-algebra is an equality-algebra which is a lattice.

Theorem 2.4 ([8]). Any prelinear equality -algebra is a distributive lattice.
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Proposition 2.5 ([13, 23]). Let A = (A,∧,∼, 1) be an equality-algebra.
Then the following hold for all x, y, z ∈ A:

(1) x ∼ y ≤ x↔ y ≤ x→ y,

(2) x ≤ (x ∼ y) ∼ y,

(3) x ∼ y = 1 iff x = y,

(4) x→ y = 1 iff x ≤ y,

(5) x→ y = 1 and y → x = 1 implies x = y,

(6) 1→ x = x, x→ 1 = 1and x→ x = 1,

(7) x ≤ y → x,

(8) x ≤ (x→ y)→ y,

(9) x→ y ≤ (y → z)→ (x→ z),

(10) x ≤ y → z iff y ≤ x→ z,

(11) x→ (y → z) = y → (x→ z),

(12) x↔ x = 1, 1↔ x = x,

(13) x ≤ y implies x↔ y = y → x = y ∼ x,

(14) x ≤ y implies x ≤ x ∼ y,

(15) x ≤ y implies that z → x ≤ z → y and y → z ≤ x→ z,

(16) ifA is a lattice equality-algebra, then (x∨y)→ z = (x→ z)∧(y → z),

(17) if A is a prelinear equality-algebra, then x ∼ y = (x→ y) ∧ (y → x).

Definition 2.6 ([13]). Let A = (A,∧,∼, 1) be an equality-algebra and
F be a subset of A. Then F is called a deductive system of A if for all
x, y ∈ A,

(i) 1 ∈ F ,

(ii) if x ∈ F and x ≤ y, then y ∈ F ,

(iii) if x ∈ F and x ∼ y ∈ F , then y ∈ F .
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Proposition 2.7 ([13]). Let A = (A,∧,∼, 1) be an equality-algebra and
F be a subset of A. Then F is a deductive system of A if and only if

(i) 1 ∈ F ,

(ii) if x ∈ F and x→ y ∈ F , then y ∈ F .

A deductive system F of an equality-algebra A = (A,∧,∼, 1) is called a
proper deductive system if F 6= A. If A is a bounded equality-algebra, then
a deductive system is proper if and only if it does not contain 0 (see [3]).

Definition 2.8 ([13]). An equivalence relation θ on an equality-algebra
A = (A,∧,∼, 1) is called congruence, if (x, z), (y, w) ∈ θ, then (x ∼ y,
z ∼ w), (x ∧ y, z ∧ w) ∈ θ.

Proposition 2.9 ([6, 13]). Let F be a deductive system of an equality-
algebra A = (A,∧,∼, 1). Define the relation θ−→

F
and θF as follows:

(x, y) ∈ θ−→
F

iff {x→ y, y → x} ⊆ F

and
(x, y) ∈ θF iff x ∼ y ∈ F,

then θ−→
F

and θF are congruence and θ−→
F

= θF .

Proposition 2.10 ([6, 13]). Let F be a deductive system of an equality-
algebra A = (A,∧,∼, 1) and A/θF = {[x] : x ∈ A}, where [x] = {y ∈ A :
(x, y) ∈ θF }. Then A/θF = (A/θF ,∧,∼, 1) is an equality-algebra, where
for every x, y ∈ A, 1 := [1], [x] ∧ [y] := [x ∧ y] and [x] ∼ [y] := [x ∼ y].

Definition 2.11 ([3]). A proper deductive system F of an equality-algebra
A = (A,∧,∼, 1) is called a prime deductive system if x → y ∈ F or
y → x ∈ F for all x, y ∈ A.

Theorem 2.12 ([3]). Let F be a proper deductive system of prelinear equa-
lity-algebra A = (A,∧,∼, 1). Then the following statements are equivalent:

(i) F is a prime deductive system,

(ii) for each x, y ∈ A, if x ∨ y ∈ F , then x ∈ F or y ∈ F ,

(iii) A/θF is a chain.
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Definition 2.13 ([21]). Let A = (A,∧,∼, 1) be an equality-algebra. The
mapping τ : A→ A is called a very true operator, if it satisfies the following
conditions:

(V 1) τ(1) = 1,

(V 2) τ(x) ≤ x,

(V 3) τ(x) ≤ τ(τ(x)),

(V 4) τ(x ∼ y) ≤ τ(x) ∼ τ(y),

(V 5) τ(x ∧ y) = τ(x) ∧ τ(y).

3. Equality logic

In this section, we introduce and study a propositional equality logic and
we obtain some its properties.

Definition 3.1.

(i) The language of propositional equality logic EL has propositional
variables p, q, r,... binary connectives u, ≡ and a truth (logical)
constant >.

(ii) Formulas of EL are defined in the following way: each propositional
variable is a formula, > is a formula and if ϕ, ψ are formulas, then ϕu
ψ (conjunction) and ϕ ≡ ψ are formulas. Implication and equivalence
connectives are defined as the following short:

ϕ⇒ ψ := (ϕ u ψ) ≡ ϕ, ϕ⇔ ψ := (ϕ⇒ ψ) u (ψ ⇒ ϕ).

The set of all formulas of EL is denoted by F .

(iii) The following formulas are axioms of EL:

(EL1) ϕ u ϕ ≡ ϕ,

(EL2) ϕ u ψ ≡ ψ u ϕ,

(EL3) (ϕ u ψ) u χ ≡ ϕ u (ψ u χ),

(EL4) ϕ u > ≡ ϕ,

(EL5) (ϕ ≡ >) ≡ ϕ,

(EL6) (ϕ ≡ ψ) ≡ (ψ ≡ ϕ),
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(EL7) ((ϕ u ψ u χ) ≡ ϕ)⇒ ((ϕ u ψ) ≡ ϕ),

(EL8) (ϕ ≡ ψ)⇒ (ϕ u χ ≡ ψ u χ),

(EL9) (ϕ ≡ ψ)⇒ ((ϕ ≡ χ) ≡ (ψ ≡ χ)).

(iv) The inference rules are :

(EA) from ψ and ϕ ≡ ψ, we infer ϕ,

(MP) from ϕ and ϕ⇒ ψ, we infer ψ.

The rule (EA) is the equanimity rule (cf. [18]) and (MP) is the modus
ponens rule for formulas.

Definition 3.2. Let A = (A,∧,∼, 1) be an equality-algebra. An A-
evaluation of formulas is a mapping e : F → A, defined as follows:

(1) e(>) = 1,

(2) e(ϕ u ψ) = e(ϕ) ∧ e(ψ),

(3) e(ϕ ≡ ψ) = e(ϕ) ∼ e(ψ),

for all formulas ϕ,ψ ∈ F . A formula ϕ is a A-tautology if e(ϕ) = 1 for
each A- evaluation e : F → A.

Lemma 3.3. All axioms of EL are A-tautologies for all equality-algebra
A = (A,∧,∼, 1).

Proof: Suppose that A = (A,∧,∼, 1) is an arbitrary equality-algebra and
e : F → A is an arbitrary A-evaluation.

(EL1) By (E1) and (E2), we have e(ϕ u ϕ ≡ ϕ) = e(ϕ u ϕ) ∼ e(ϕ) =
(e(ϕ) ∧ e(ϕ)) ∼ e(ϕ) = e(ϕ) ∼ e(ϕ) = 1.

(EL2) Using (E1) and (E3), e(ϕ u > ≡ ϕ) = e(ϕ u >) ∼ e(ϕ) = (e(ϕ) ∧
e(>)) ∼ e(ϕ) = (e(ϕ) ∧ 1) ∼ e(ϕ) = e(ϕ) ∼ e(ϕ) = 1 by (A2).

Similarly, we can prove the (EL3)–(EL9).

Lemma 3.4. The inference rules of propositional equality logic EL sound
in the following sense: Let e : F → A be an A-evaluation where A is an
equality-algebra:

(1) if ϕ and ϕ ≡ ψ are A-tautology, then ψ is also A-tautology,

(2) if ϕ and ϕ⇒ ψ are A-tautology, then ψ is also A-tautology.
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Proof:

(1) Suppose that e(ϕ) = 1 and e(ϕ ≡ ψ) = 1. Then 1 = e(ψ) ∼ 1 = e(ψ)
by (E4).

Similarly, we can prove (2).

Theorem 3.5 (Soundness). The propositional equality logic EL is sound.

Proof: It follows from Lemma 3.3 and Lemma 3.4.

A proof in propositional equality logic EL is a sequence ϕ1, . . . , ϕn of
formulas such that each ϕi either is an axiom of EL or follows from some
preceding ϕj , ϕk(j, k < i) by inference rules. A formula is provable (nota-
tion ` ϕ ) if it is the least member a proof in propositional equality logic
EL. By Theorem 3.5, each provable formula in propositional equality logic
EL is A-tautology for all equality-algebra A.

A theory over propositional equality logic EL is any subset Γ ⊆ F . A
proof in a theory Γ is a sequence ϕ1, . . . , ϕn of formulas whose each member
is either an axiom EL or a member of Γ (spacial axiom) or follows from
some preceding members of the sequence using the inference rules. Γ ` ϕ
means that ϕ is provable in Γ, that is the last member of a proof in Γ. An
A-evaluation e is a model of Γ, if e(ϕ) = 1 for each ϕ ∈ Γ. If Γ = {ϕ},
then we write ϕ ` ψ instead of {ϕ} ` ψ.

In the following, we will verify provability of several formulas in propo-
sitional equality logic EL.

Proposition 3.6. Let ϕ,ψ, χ ∈ F be formulas. EL proves the following
properties of equality:

(1) ` ϕ ≡ ϕ,

(2) ϕ ` ϕ ≡ >,

(3) ϕ ≡ > ` ϕ,

(4) ϕ ≡ ψ ` ψ ≡ ϕ,

(5) ϕ u ψ ≡ χ ` ψ u ϕ ≡ χ,

(6) ϕ ≡ ψ ` (ϕ ≡ χ) ≡ (ψ ≡ χ),

(7) {ϕ ≡ ψ,ψ ≡ χ} ` ϕ ≡ χ,
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(8) ϕ ≡ ψ ` (χ ≡ ϕ) ≡ (χ ≡ ψ),

(9) ϕ ≡ ψ ` (χ u ϕ) ≡ (χ u ψ),

(10) {ψ,ψ ≡ ϕ} ` ϕ.

Proof:

(1) We have ` (ϕ u ϕ ≡ ϕ) ⇒ ((ϕ u ϕ ≡ ϕ) ≡ (ϕ ≡ ϕ)) by (EL9).
Applying (EL1) and (MP), we get ` (ϕ u ϕ ≡ ϕ) ≡ (ϕ ≡ ϕ). Using
(EL1) and (EA), we obtain ` ϕ ≡ ϕ.

(2) By (EL6), we have ` ((ϕ ≡ >) ≡ ϕ) ≡ (ϕ ≡ (ϕ ≡ >)). Applying
(EL5) and then (EA), we obtain ` ϕ ≡ (ϕ ≡ >). Using assumption
and (EA), we get the result.

(3) It follows from (EL5), assumption and (EA).

(4) By assumption, (EL6) and (EA), we obtain the result.

(5) Using (EL9), we have ` (ϕuψ ≡ ψuϕ)⇒ ((ϕuψ ≡ χ) ≡ (ψuϕ ≡ χ)).
Applying (EL2) and (MP), we get ` (ϕuψ ≡ χ) ≡ (ψuϕ ≡ χ). Using
assumption and (EA), we have ϕ u ψ ≡ χ ` ψ u ϕ ≡ χ.

(6) It is immediate consequence of (EL9).

(7) We have ϕ ≡ ψ ` (ϕ ≡ χ) ≡ (ψ ≡ χ) by assumption and part (6).
Using part (4), we get ϕ ≡ ψ ` (ψ ≡ χ) ≡ (ϕ ≡ χ). By assumption
and (EA), we get the result.

(8) By assumption, part (4) and then part (6), we have ϕ ≡ ψ ` (ψ ≡
χ) ≡ (ϕ ≡ χ). Since we have ` ((ψ ≡ χ) ≡ (ϕ ≡ χ))⇒ (((ψ ≡ χ) ≡
(χ ≡ ψ)) ≡ ((ϕ ≡ χ) ≡ (χ ≡ ψ))) by (EL9), then ` ((ψ ≡ χ) ≡
(χ ≡ ψ)) ≡ ((ϕ ≡ χ) ≡ (χ ≡ ψ)) by (MP). Using (EL6), we have
` (ψ ≡ χ) ≡ (χ ≡ ψ). So by (EA), we get ` (ϕ ≡ χ) ≡ (χ ≡ ψ).
Applying (EL9) ` ((ϕ ≡ χ) ≡ (χ ≡ ϕ)) ⇒ (((ϕ ≡ χ) ≡ (χ ≡ ψ)) ≡
((χ ≡ ϕ) ≡ (χ ≡ ψ))). By (EL6) ` (ϕ ≡ χ) ≡ (χ ≡ ϕ) and (MP), we
get ` ((ϕ ≡ χ) ≡ (χ ≡ ψ)) ≡ ((χ ≡ ϕ) ≡ (χ ≡ ψ)). Hence by (EA),
we obtain ϕ ≡ ψ ` (χ ≡ ϕ) ≡ (χ ≡ ψ).

(9) It follows from (EL8), (EL2) and part (8).

(10) Using assumptions, part (4) and (EA), we get result.
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Proposition 3.7. Let ϕ,ϕ1, ψ, ψ1, χ, χ1 ∈ F be formulas. EL proves the
following:

(1) {ϕ u ψ ≡ χ, ϕ ≡ ϕ1} ` ϕ1 u ψ ≡ χ,

(2) {(ϕ ≡ ψ) ≡ χ, ϕ ≡ ϕ1} ` (ϕ1 ≡ ψ) ≡ χ,

(3) {ϕ⇒ (ψ ≡ χ), ψ ≡ ψ1} ` ϕ⇒ (ψ1 ≡ χ),

(4) {ϕ⇒ (ψ ≡ χ), χ ≡ χ1} ` ϕ⇒ (ψ ≡ χ1),

(5) {ϕ⇒ ψ,ϕ ≡ ϕ1} ` ϕ1 ⇒ ψ,

(6) {ϕ⇒ (ψ ≡ χ), ψ} ` ϕ⇒ χ,

(7) {ϕ,ψ} ` ϕ u ψ,

(8) ϕ ≡ ψ ` ϕ⇒ ψ,

(9) {(ϕ ≡ ψ)⇒ χ, ϕ ≡ ϕ1} ` (ϕ1 ≡ ψ)⇒ χ.

Proof:

(1) Suppose that Γ = {ϕ u ψ,ϕ ≡ ϕ1}. By assumption Γ ` ϕ ≡ ϕ1,
(EL8) and (MP), we obtain Γ ` (ϕ u ψ) ≡ (ϕ1 u ψ). Using (EL9),
` ((ϕ u ψ) ≡ (ϕ1 u ψ)) ⇒ ((ϕ u ψ ≡ χ) ≡ (ϕ1 u ψ ≡ χ)) and (MP),
we have Γ ` (ϕ u ψ ≡ χ) ≡ (ϕ1 u ψ ≡ χ). Applying assumption
Γ ` ϕ u ψ ≡ χ and (EA), we get the result.

(2) Let Γ = {(ϕ ≡ ψ) ≡ χ, ϕ ≡ ϕ1}. Using assumption Γ ` ϕ ≡
ϕ1, (EL9) and (MP), we have Γ ` (ϕ ≡ ψ) ≡ (ϕ1 ≡ ψ). Since
` ((ϕ ≡ ψ) ≡ (ϕ1 ≡ ψ)) ≡ ((ϕ ≡ ψ) ≡ χ) ≡ ((ϕ1 ≡ ψ) ≡ χ))
by (EL9), then Γ ` (ϕ ≡ ψ) ≡ χ) ≡ ((ϕ1 ≡ ψ) ≡ χ). Applying
assumption Γ ` (ϕ ≡ ψ) ≡ χ and (EA), we have Γ ` ((ϕ1 ≡ ψ) ≡ χ).

(3) Suppose that Γ = {ϕ ⇒ (ψ ≡ χ), ψ ≡ ψ1}. Since Γ ` ψ ≡ ψ1,
then Γ ` (ψ ≡ χ) ≡ (ψ1 ≡ χ) by Proposition 3.6 part (6). We have
Γ ` (ϕu (ψ ≡ χ)) ≡ ϕ by assumption. Hence Γ ` (ϕu (ψ1 ≡ χ)) ≡ ϕ
by part (1), that is Γ ` ϕ⇒ (ψ1 ≡ χ).

(4) Let Γ = {ϕ ⇒ (ψ ≡ χ), χ ≡ χ1}. By assumption Γ ` χ ≡ χ1

and Proposition 3.6 part (8) we get Γ ` (ψ ≡ χ) ≡ (ψ ≡ χ1).
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Applying part (1) and assumption Γ ` (ϕ u (ψ ≡ χ)) ≡ ϕ, we obtain
Γ ` (ϕ u (ψ ≡ χ1)) ≡ ϕ. Hence Γ ` ϕ⇒ (ψ ≡ χ1).

(5) It follows from assumptions and part (1).

(6) Suppose that Γ = {ϕ ⇒ (ψ ≡ χ), ψ}. By assumption Γ ` ψ and
Proposition 3.6 part (2), we obtain Γ ` ψ ≡ >. Using Proposition 3.6
part (6), we get Γ ` (ψ ≡ χ) ≡ (> ≡ χ). By Proposition 3.6
part (9) and (MP), we have Γ ` ϕ u (ψ ≡ χ) ≡ ϕ u (> ≡ χ).
Applying (EL5) and part (1), we obtain Γ ` ϕ u (ψ ≡ χ) ≡ ϕ u χ.
Thus ` ϕ u χ ≡ ϕ u (ψ ≡ χ) by Proposition 3.6 part (4). Using
assumption Γ ` ϕ u (ψ ≡ χ) ≡ ϕ and Proposition 3.6 part (7), we
have Γ ` ϕ u χ ≡ ϕ, that is Γ ` ϕ⇒ χ.

(7) Let Γ = {ϕ,ψ}. By assumption Γ ` ϕ, Proposition 3.6 part (2),
(EL8) and (EA), we have Γ ` (ϕ u ψ) ≡ (> u ψ). By assumption
Γ ` ψ, (EL4) and (EA), we get Γ ` ψ u >. Thus Γ ` > u ψ by
Proposition 3.6 part (4). By Proposition 3.6 part (10), we get result.

(8) By assumption and Proposition 3.6 part (9), we have ϕ ≡ ψ ` (ϕ u
ϕ) ≡ (ϕ u ψ). Since Γ ` ((ϕ u ϕ) ≡ (ϕ u ψ)) ⇒ ((ϕ u ϕ) ≡ ϕ) ≡
(ϕ u ψ) ≡ ϕ)) by (EL9), then Γ ` ((ϕ u ϕ) ≡ ϕ) ≡ ((ϕ u ψ) ≡ ϕ).
Applying (EL1) and (EA), we have Γ ` (ϕ u ψ) ≡ ϕ, that is (6)
ϕ ≡ ψ ` ϕ⇒ ψ.

(9) Suppose that Γ = {(ϕ ≡ ψ) ⇒ χ, ϕ ≡ ϕ1}. By assumption Γ ` ϕ ≡
ϕ1 and Proposition 3.6 part (6), we have ` (ϕ ≡ ψ) ≡ (ϕ1 ≡ ψ).
Applying (EL8), we obtain Γ ` ((ϕ ≡ ψ) u χ) ≡ ((ϕ1 ≡ ψ) u χ).
Thus Γ ` ((ϕ1 ≡ ψ) u χ) ≡ ((ϕ ≡ ψ) u χ) by Proposition 3.6 part
(4). Also, using assumption Γ ` ((ϕ ≡ ψ) u χ) ≡ (ϕ ≡ ψ) and twice
Proposition 3.6 part (7), we get Γ ` ((ϕ1 ≡ ψ)u χ) ≡ (ϕ1 ≡ ψ), that
is Γ ` (ϕ1 ≡ ψ)⇒ χ.

Proposition 3.8. Let ϕ,ψ, χ ∈ F be formulas. EL proves the following
properties of implication:

(1) ` ϕ⇒ ϕ,

(2) ` (> ⇒ ϕ) ≡ ϕ,

(3) ` (ϕ⇒ ψ)⇒ ((ϕ u χ)⇒ ψ),
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(4) ` ϕ⇒ (ψ ⇒ ϕ),

(5) ` ϕ⇒ (ϕ ≡ >),

(6) ` (ϕ u ψ)⇒ ϕ, ` (ϕ u ψ)⇒ ψ,

(7) {ϕ⇒ ψ,ψ ⇒ χ} ` ϕ⇒ χ,

(8) ` (ϕ⇒ ψ)⇒ ((ϕ u χ)⇒ ψ).

Proof:

(1) It follows from (EL1).

(2) The proof is straightforward by (EL5), (EL4) and Proposition 3.7
part (1).

(3) We have ` ((ϕuψ) ≡ ϕ)⇒ (((ϕuψ)uχ) ≡ (ϕuχ)) by (EL8). Using
(EL2), (EL3) and Proposition 3.7 part (2), we obtain ` ((ϕ u ψ) ≡
ϕ)⇒ (((ϕ u χ) u ψ) ≡ (ϕ u χ)). Hence ` (ϕ⇒ ψ)⇒ ((ϕ u χ)⇒ ψ)
by definition ⇒.

(4) We have ` (> ⇒ ϕ)⇒ ((>uψ)⇒ ϕ) by part (3). Since ` (> ⇒ ϕ) ≡
ϕ by part (2), then ` ϕ⇒ ((>uψ)⇒ ϕ) by Proposition 3.7 part (5).
By definition implication, ` ϕ ⇒ (((> u ψ) u ϕ) ≡ (> u ψ)). Using
(EL4) and Proposition 3.7 part (4), we obtain ` ϕ⇒ (((>uψ)uϕ) ≡
ψ). Applying (EL4), (EL8) and (MP), we have ` ((> u ψ) u ϕ) ≡
(ψ u ϕ). Hence ` ϕ ⇒ (((ψ u ϕ) ≡ ψ) by Proposition 3.7 part (3),
that is ` ϕ⇒ (ψ ⇒ ϕ).

(5) Applying (EL5), (EL8), we have ` (ϕu(ϕ ≡ >)) ≡ (ϕuϕ). By (EL1)
and Proposition 3.6 part (7), we get ` (ϕ u (ϕ ≡ >)) ≡ ϕ. Hence
` ϕ⇒ (ϕ ≡ >).

(6) By (EL9), We have ` (((ϕuϕ)uψ) ≡ (ϕu(ϕuψ)))⇒ (((ϕuϕ)uψ ≡
(ϕ u ψ)) ≡ (ϕ u (ϕ u ψ) ≡ (ϕ u ψ))). Using (EL3) and (MP), we
get ` ((ϕ u ϕ) u ψ ≡ (ϕ u ψ)) ≡ (ϕ u (ϕ u ψ) ≡ (ϕ u ψ)). We
have ` (ϕ u ϕ) u ψ ≡ (ϕ u ψ) by (EL1), (EL8) and (MP). Thus
` ϕ u (ϕ u ψ) ≡ (ϕ u ψ) by (EA). Hence ` (ϕ u ψ)⇒ ϕ by definition
of implication.
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(7) By assumptions, definition of implication and Proposition 3.6 part
(4), we have ` (ψuϕ) ≡ ϕ and ` ψ ≡ (ψuχ). Using Proposition 3.7
part (1), we obtain ` ((ψ uχ)uϕ) ≡ ϕ. By Proposition 3.6 part (5),
` ϕ u (ψ u χ) ≡ ϕ. Hence we get the result by (EL7) and (MP).

(8) It follows from (EL8) and definition ⇒.

In the following, we will use the standard Lindenbaum Tarski technique
to show that propositional equality logic EL.

Lemma 3.9. Let ϕ1, ϕ2, ψ1, ψ2 ∈ F be formulas. EL proves the following
properties:

(1) {ϕ1 ≡ ψ1, ϕ2 ≡ ψ2} ` (ϕ1 u ϕ2) ≡ (ψ1 u ψ2),

(2) {ϕ1 ≡ ψ1, ϕ2 ≡ ψ2} ` (ϕ1 ≡ ϕ2) ≡ (ψ1 ≡ ψ2).

Proof: Suppose that Γ = {ϕ1 ≡ ψ1, ϕ2 ≡ ψ2}.

(1) By assumption Γ ` ϕ1 ≡ ψ1, (EL8) and (MP), we have Γ ` (ϕ1 u
ϕ2) ≡ (ψ1uϕ2). By Proposition 3.6 part (9) we obtan Γ ` (ψ1uϕ2) ≡
(ψ1 u ψ2). By Proposition 3.6 part (7), we get Γ ` (ϕ1 u ϕ2) ≡
(ψ1 u ψ2).

(2) Using assumption Γ ` ϕ1 ≡ ψ1, (EL9) and (MP), we have Γ ` (ϕ1 ≡
ϕ2) ≡ (ψ1 ≡ ϕ2). Applying assumption Γ ` ϕ2 ≡ ψ2, Proposition 3.6
part (8) and (MP), we obtain Γ ` (ψ1 ≡ ϕ2) ≡ (ψ1 ≡ ψ2). Therefore
Γ ` (ϕ1 ≡ ϕ2) ≡ (ψ1 ≡ ψ2) by Proposition 3.6 part (7).

Proposition 3.10. Let Γ be a theory over the propositional equality logic
EL. Put ϕ ≈Γ ψ iff Γ ` ϕ ≡ ψ. Then ≈Γ is an equivalence relation on F .

Proof: It follows from Proposition 3.6 part (1), part (4) and part (7) that
≈Γ is an equivalence on relation on F .

Let Γ be a theory over the propositional equality logic EL. Denote MΓ =
{[ϕ]Γ : ϕ ∈ F} where [ϕ]Γ = {ψ ∈ F|ϕ ≈Γ ψ}. Finally, we define

[ϕ]Γ ∧ [ψ]Γ = [ϕ u ψ]Γ,

[ϕ]Γ ∼ [ψ]Γ = [ϕ ≡ ψ]Γ,

1 = [>]Γ.
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Proposition 3.11. The algebraMΓ = (MΓ,∧,∼, 1) is an equality-algebra.

Proof: By Lemma 3.9, we know that the operations ∧ and ∼ are well
defined. By (EL1)–(EL4), we can see that (MΓ,∧,∼, 1) i a meet-semilattice
with top element 1. Now, we will show that [ϕ]Γ ≤ [ψ]Γ iff T ` ϕ ⇒ ψ.
Suppose that Γ ` ϕ ⇒ ψ. Then Γ ` (ϕ u ψ) ≡ ϕ. So [ϕ]Γ ∧ [ψ]Γ = [ϕ]Γ.
Hence [ϕ]Γ ≤ [ψ]Γ. Similarly, we can prove if [ϕ]Γ ≤ [ψ]Γ, then Γ ` ϕ⇒ ψ.
The proof of (EL5)–(EL9) is straightforward.

Theorem 3.12 (Completeness). The propositional equality logic EL is com-
plete, i.e. the following are equivalent:

(i) ` ϕ,

(ii) for every equality-algebra A = (A,∧,∼, 1), ϕ is an A-tautology.

Proof: (i)⇒ (ii) follows from Theorem 3.5. Conversely, for every theory Γ
of the propositional equality logic EL, MΓ = (MT ,∧,∼, 1) is an equality-
algebra. Let Γ to be the set of all axioms of EL. Thus ϕ is an MΓ-
tautology by assumption. Consider the mapping e defined by e(p) = [p]Γ
for all propositional variables p. Then e is a M-evaluation from F to the
equality-algebraM. By Definition 3.2, e(ϕ) = [1]Γ. Then [ϕ]Γ = [1]Γ, that
is Γ ` ϕ ≡ >. Hence ` ϕ.

Now, we will show the locally deduction theorem for the propositional
equality logic EL. For this, we need the following proposition.

For convenience, we shall abbreviate the formulas ϕ ≡ (· · · ≡ (ϕ ≡
ψ) · · · ) and ϕ ⇒ (· · · ⇒ (ϕ ⇒ ψ) · · · ) by ϕ ≡n ψ and ϕ ⇒n ψ, n ∈ N0

indicating the number of occurrences of ϕ.

Proposition 3.13. Let ϕ,ψ, χ ∈ F be formulas. EL proves the following:

(1) ϕ⇒ ψ ` (χ⇒ ϕ)⇒ (χ⇒ ψ),

(2) ϕ⇒ ψ ` (ψ ⇒ χ)⇒ (ϕ⇒ χ),

(3) ` ϕ⇒ [(ψ ≡ ϕ) ≡ ψ],

(4) ` (ϕ ≡ ψ)⇒ (ϕ⇒ ψ),

(5) ` ϕ⇒ ((ϕ⇒ ψ)⇒ ψ),

(6) ` (ϕ⇒ ψ)⇒ [(ψ ⇒ χ)⇒ (ϕ⇒ χ)],

(7) ` (χ⇒ (ϕ⇒ ψ))⇒ (ϕ⇒ (χ⇒ ψ)),
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(8) ` (ϕ⇒n (ψ ⇒ χ))⇒ (ψ ⇒ (ϕ⇒n χ)),

(9) ` (ϕ⇒ ψ)⇒ ((ψ ⇒ ϕ)⇒ (ϕ ≡ ψ)),

(10) {ϕ⇒ χ, ϕ⇒ ψ} ` ϕ⇒ (ψ u χ),

(11) ` (ϕ ≡ ψ)⇒ ((ϕ⇒ ψ) u (ψ ⇒ ϕ)).

Proof:

(1) Let Γ = {ϕ ⇒ ψ}. Applying (EL7) and definition ⇒, we obtain
` ((ϕ u ψ u χ) ≡ χ) ⇒ (χ ⇒ ψ). By assumption, (EL8) and (MP),
we get Γ ` (ϕuψ uχ) ≡ ϕuχ. By Proposition 3.7 part (9), we have
Γ ` ((ϕ u χ) ≡ χ)⇒ (χ⇒ ψ), that is Γ ` (χ⇒ ϕ)⇒ (χ⇒ ψ).

(2) Let Γ = {ϕ⇒ ψ}. We have ` ((ψuχ) ≡ ψ)⇒ ((ϕu(ψuχ)) ≡ (ϕuψ))
by (EL8)and Γ ` (ϕ u ψ) ≡ ϕ by assumption. Using Proposition 3.7
part (4), we get Γ ` ((ψuχ) ≡ ψ)⇒ ((ϕuψuχ) ≡ ϕ). By (EL7) and
Proposition 3.8 part (7), we obtain Γ ` ((ψuχ) ≡ ψ)⇒ ((ϕuχ) ≡ ϕ).
Hence Γ ` (ψ ⇒ χ)⇒ (ϕ⇒ χ).

(3) We have ` (ϕ ≡ >)⇒ ((ϕ ≡ ψ) ≡ (> ≡ ψ)) and ` (ψ ≡ >) ≡ ψ) by
(EL9) and (EL5) respectively. Therefore ` (ϕ ≡ >)⇒ ((ψ ≡ ϕ) ≡ ψ)
by Proposition 3.7 part (4). Again by (EL5) and Proposition 3.7 part
(5), we get ` ϕ⇒ [(ψ ≡ ϕ) ≡ ψ].

(4) Applying (EL8), (EL1) and Proposition 3.7 part (4), we have ` (ϕ ≡
ψ)⇒ ((ϕ u ψ) ≡ ψ), that is ` (ϕ ≡ ψ)⇒ (ϕ⇒ ψ).

(5) By part (3) and definition ⇒, we have ` ϕ ⇒ ((ϕ ⇒ ψ) ≡ (ϕ u ψ)).
By part (4) and Proposition 3.8 part (7), we get ` ϕ⇒ ((ϕ⇒ ψ)⇒
(ϕ u ψ)). By Proposition 3.8 part (6) and then part (1), we obtain
` ((ϕ ⇒ ψ) ⇒ (ϕ u ψ)) ⇒ ((ϕ ⇒ ψ) ⇒ ψ). Using Proposition 3.8
part (7), we obtain the result.

(6) By (EL8) and part (2), we have ` [((ϕ u ψ) ≡ (ϕ u ψ u χ)) ⇒ (ϕ ≡
(ϕuψuχ))]⇒ [(ψuχ) ≡ ψ)⇒ (ϕ ≡ (ϕuψuχ))]. By (EL7) and part
(1), we have ` [((ψuχ) ≡ ψ)⇒ (ϕ ≡ (ϕuψuχ))]⇒ [((ψuχ) ≡ ψ)⇒
((ϕ u χ) ≡ χ)]. By (EL9), we have ` ((ϕ u ψ) ≡ ϕ) ⇒ [((ϕ u ψ) ≡
(ϕ u ψ u χ)) ⇒ ((ϕ u ψ u χ)) ≡ ϕ]. Using Proposition 3.8 part (7)
twice, we obtain ` ((ϕuψ) ≡ ϕ)⇒ [((ψ uχ) ≡ ψ)⇒ ((ϕuχ) ≡ χ)].
Hence ` (ϕ⇒ ψ)⇒ [(ψ ⇒ χ)⇒ (ϕ⇒ χ)].
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(7) By part (7), we have ` (χ ⇒ (ϕ ⇒ ψ)) ⇒ [((ϕ ⇒ ψ) ⇒ ψ) ⇒ (χ ⇒
ψ)]. By part (5) and then part (2), we have ` [((ϕ ⇒ ψ) ⇒ ψ) ⇒
(χ ⇒ ψ)] ⇒ [ϕ ⇒ (χ ⇒ ψ)]. Using Proposition 3.8 part (6), we
obtain the result.

(8) It can be proved by part (7) and induction.

(9) It follows from (EL9) and part (4).

(10) Let Γ = {ϕ ⇒ χ, ϕ ⇒ ψ}. By assumption Γ ` ϕ ⇒ χ, (EL8)
and (MP), we get Γ ` ((ϕ u χ) u ψ) ≡ (ϕ u ψ). Using assumption
Γ ` ϕ⇒ ψ and (EL9), we obtain the result.

(11) It follows from part (4) and part (10).

Theorem 3.14 (Local Deduction Theorem). Let Γ be a theory over the
propositional equality logic EL and ϕ, ψ be formulas. Then Γ ∪ {ϕ} ` ψ if
and only if Γ ` ϕ⇒n ψ where n ∈ N0.

Proof: Suppose that Γ ∪ {ϕ} ` ψ. We will prove it by induction on the
number of formulas on the sequence of deduction of ψ from Γ ∪ {ϕ}. Let
χ1, χ2, . . . , χk be a corresponding Γ ∪ {ϕ}-proof of ψ. We should consider
four cases:

Case 1: ψ is an axiom of EL or ψ ∈ Γ. By Proposition 3.8 part (4) and
(MP), we obtain Γ ` ϕ⇒ ψ.

Case 2: ψ is ϕ. By Proposition 3.8 part (1), we have Γ ` ϕ⇒ ϕ.

Case 3: ψ is obtained from two pervious formulas on the corresponding
Γ ∪ {ϕ}-proof of ψ by an application (MP). These two formulas must
have the form χi and χi ⇒ ψ where 1 < i < k. By the induction
hypothesis, there exist n,m ∈ N0 such that T ` ϕ ⇒n χi and Γ `
ϕ⇒m (χi ⇒ ψ).
By Proposition 3.13 part (8) and (MP), we get Γ ` χi ⇒ (ϕ ⇒m χ).
Using Proposition 3.13 part (1), we have Γ ` (ϕ ⇒n χi) ⇒ (ϕ ⇒n

(ϕ ⇒m ψ)). Applying (MP), we obtain Γ ` ϕ ⇒n (ϕ ⇒m ψ). Hence
Γ ` ϕ⇒n+m ψ.

Case 4: ψ results by (EA) from pervious member χi and χi ≡ ψ (1 < i < k)
of the corresponding Γ∪{ϕ}-proof of ψ. Thus Γ∪{ϕ} ` χi and T∪{ϕ} `
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χi ≡ ψ. By Proposition 3.7 part (8), we have Γ ∪ {ϕ} ` χi ⇒ ψ. As
Case 3 above, we can show that Γ ` ϕ⇒n+m ψ.

Conversely, suppose that Γ ` ϕ ⇒n ψ for n > 1. Then Γ ` ϕ ⇒ (ϕ ⇒n−1

ψ). Thus Γ∪{ϕ} ` ϕ⇒n−1 ψ. Replacing this, we obtain Γ∪{ϕ} ` ϕ⇒ ψ.
Hence Γ ∪ {ϕ} ` ψ.

Remark. The deduction theorem in the form of Γ∪{ϕ} ` ψ if and only if Γ `
ϕ⇒ ψ does not hold in the propositional equality logic EL. Suppose that it
holds and ϕ ∈ F be arbitrary formula. Then {ϕ,ϕ⇒ (ϕ⇒ ψ)} ` ϕ. Hence
` (ϕ ⇒ (ϕ ⇒ ψ)) ⇒ (ϕ ⇒ ψ). Therefore (ϕ ⇒ (ϕ ⇒ ψ)) ⇒ (ϕ ⇒ ψ) is
an A-tautology for every equality-algebra A = (A,∃,∀) by Theorem 3.12.
Now, consider equality-algebra in Example 4.7 and define e(ϕ) = a and
e(ψ) = b. Then (e(ϕ) → (e(ϕ) → e(ψ))) → (e(ϕ) → e(ψ)) = 1 → d = d
which is a contradiction.

In the following, we will show that the propositional equality logic EL
algebraizable with respect to the variety of equality-algebras in the sense
of [1] (Also see [2]).

Theorem 3.15. The propositional equality logic EL is algebraizable with
the defining equation ϕ = > and the equivalence formulas {ϕ ≡ ψ}.

Proof: Suppose that ϕ∆ψ = {ϕ ≡ ψ}, δ(ϕ) = ϕ and ε(ϕ) = >. By the
intrinsic characterization given by Blok and Pigozzi [1, Theorem 4.7], it is
sufficient to check that the following conditions hold for all formulas:

(1) ` ϕ∆ϕ,

(2) ϕ∆ψ ` ψ∆ϕ,

(3) ϕ∆ψ,ψ∆χ ` ϕ∆χ,

(4) ϕ1∆ψ1, ϕ2∆ψ2 ` (ϕ1 u ϕ2)∆(ψ1 u ψ2),

(5) ϕ1∆ψ1, ϕ2∆ψ2 ` (ϕ1 ≡ ϕ2)∆(ψ1 ≡ ψ2),

(6) ϕ a` δ(ϕ)∆ε(ϕ).

Now, we will prove them as follows:

(1) Since ϕ∆ϕ = {ϕ ≡ ϕ}, then ` ϕ∆ϕ by Proposition 3.6 part (1).



308 Shokoofeh Ghorbani

(2) By Proposition 3.6 part (4), ϕ ≡ ψ ` ψ ≡ ϕ. Hence ϕ∆ψ ` ψ∆ϕ.

(3) It follows from Proposition 3.6 part (7).

(4) and (5) We obtain them by Lemma 3.9.

(6) Applying Proposition 3.6 part (2) and part (3), we have ϕ a` ϕ ≡ >.
Hence ϕ a` δ(ϕ)∆ε(ϕ).

Theorem 3.16. The propositional equality logic EL is algebraizable with
respect to the variety of equality-algebras, with equivalence formulas {ϕ ≡
ψ} and defining equation ϕ = >.

Proof: Let Alg∗EL be the algebraic semantics of the propositional equal-
ity logic EL. By Theorem 3.15, it exists and we can take {ϕ ≡ ψ} for the
equivalence formulas, and δ(p) = p, ε(p) = > for the defining equation. By
[1, Theorem 2.17], the variety Alg∗EL is axiomatized as follows:

(1) (x ∧ x) ∼ x = 1.

(2) (x ∧ y) ∼ (y ∧ x) = 1,

(3) ((x ∧ y) ∧ z) ∼ (x ∧ (y ∧ z)) = 1.

(4) ((x ∧ 1) ∼ x) = 1,

(5) (x ∼ 1) ∼ x = 1,

(6) (x ∼ y) ∼ (y ∼ x) = 1,

(7) ((x ∧ y ∧ z) ∼ x)→ ((x ∧ y) ∼ x) = 1,

(8) (x ∼ y)→ ((x ∧ z) ∼ (y ∧ z)) = 1,

(9) (x ∼ y)→ ((x ∼ z) ∼ (y ∼ z)) = 1,

(10) x = 1 and x ∼ y = 1 imply y = 1,

(11) x = 1 and x→ y = 1 imply y = 1,

(12) x ∼ y = 1 imply x = y.

It is obvious that every equality-algebra satisfies (1)–(12). Hence the vari-
ety of equality-algebras is included in Alg∗EL. Conversely, let
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A = (A,∧,∼, 1) be an algebra belonging to Alg∗EL. Then (A,∧, 1) is a
meet-semilattice with top element 1 by part (1)–(5) and part (12).
(E5) follows from part (7) and Proposition 2.2. It is clear that A satis-
fies the other conditions of Definition 2.1.

Therefore We conclude that Alg∗EL is precisely the variety of all
equality-algebras.

In 1990, Skolem semilattices were defined by Büchi and Owens (see [5]).
Let x, y be arbitrary elements of a meet-semilattice (S,∧, 1) with the great-
est element 1. If the largest element of the set {z ∈ S : a∧x = b∧x} exists,
then it is called the symmetric relative pseudo-complement (the symmetric
RPC) of x and y, and is denoted by x↔s y. If the the symmetric RPC ex-
ists for every pair of elements x, y, then the enriched structure (S,∧,↔s, 1)
is called a Skolem semilattice.

The class of Skolem semilattices is a strongly point-regular and forms a
Hilbertian variety and hence Fregean. Skolem semilattices form the alge-
braic semantics of the conjunctive-equivalential fragment of intuitionistic
logic ([7]).

Proposition 3.17. The Skolem semilattices form a proper subvariety of
the variety of the equality algebras.

Proof: Let x, y be arbitrary elements of the Skolem semilattice
(S,∧,↔s, 1). We define x ∼ y := x ↔s y.Then (E2)–(E4) hold by
parts (1)–(3) of Theorem 6.5.2 in [7]. The proof of (E5) and (E6) is
easy. Let t ∈ S such that t ∧ x = t ∧ x. By part of (4) of Theo-
rem 6.5.2 in [7], we have t ∧ (x ↔s z) = t ∧ ((x ∧ t) ↔s z). Thus
t ∧ (x ∼ z) = t ∧ ((x ∧ t) ∼ z) = t ∧ ((y ∧ t) ∼ z) = t ∧ (y ∼ z). We
obtain t ≤ sup{w ∈ S : w ∧ (x ∼ z) = w ∧ (x ∼ z)} = (x ∼ z) ∼ (y ∼ z).
Then (E7) hold. Hence (S,∧,∼, 1) is an equality algebra. It follows that
Skolem semilattices form a subvariety of the variety of the equality alge-
bras. This inclusion is proper, because the logic determined by Skolem
semilattice admits the standard deduction theorem while the logic deter-
mined by equality algebras admits merely a local deduction theorem by
Theorem 3.14.

Corollary 3.18. The propositional equality logic EL with respect to the
variety of equality-algebras is regularly algebraizable but it is not Fregean.

Proof: Let E(ϕ,ψ) := {ϕ ≡ ψ}. Then E(ϕ,ψ) is a (finite) system of
equivalence sentences for EL and the G-rule determined by E is valid in



310 Shokoofeh Ghorbani

EL. Thus EL is finitely regularly algebraizable. By Corollary 6.5.11 in [7]
and Theorem 3.15, we conclude that EL is not Fregean.

In 1966, famous Polish logician Roman Suszko create a new logical
calculus called by him Non-Fregean Logic (see [20]). He introduced the
identity connective to metalogic and, relying on Wittgenstein’s writings, he
has initiated systematic investigations of deductive systems endowed with
identity. By the above corollary, the equality algebras are the algebraic
counterparts of a strengthening of the pure Suszko logic with identity and
additionally equipped with the connective that possesses the properties of
conjunction.

4. Equality4-algebras

In this section, the concept of (prelinear) equality4-algebra is introduced
and some related properties are investigated.

Definition 4.1. An equality4-algebra is an algebra (A,∧,∼,4, 0, 1) of
type (2, 2, 1, 0, 0) where (A,∧,∼, 0, 1) is a bounded equality-algebra ex-
panded by a unary operation 4 : A→ A satisfying the following:

(41) 41 = 1,

(42) 4x ≤ x,

(43) 4x ≤ 44x,

(44) 4(x ∼ y) ≤ 4x ∼ 4y,

(45) 4(x ∧ y) = 4x ∧4y,

(46) if x ∨ y and 4x ∨4y exist, then 4(x ∨ y) ≤ 4x ∨4y,

(47) 4x∨¬4x = 1, that is 1 is unique upper bound of the set {4x,¬4x}
in A.

Example 4.2.

(1) Let (A,∧,∼, 0, 1) be a bounded equality-algebra. Define 4 : A→ A
by 41 = 1 and 4x = 0 for any x < 0. Then (A,∧,∼,4, 0, 1) is an
equality4-algebra.

(2) Let A = {0, a, b, c, d, 1} be a lattice in Fig. 1. Consider the operations
∼ and → given by the following tables:
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∼ 0 a b c d 1
0 1 d c b a 0
a d 1 a d c a
b c a 1 0 d b
c b d 0 1 a c
d a c d a 1 d
1 1 1 1 1 1 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

1

c a

d b

0

Figure 1

Then A = (A,∧,∼, 0, 1) is a bounded equality-algebra ([22]). Define
the unary operation 4 on A as 40 = 4d = 0, 4a = 4b = b, 4c = c
and 41 = 1. Then (A,∧,∼,4, 0, 1) is an equality4-algebra.

Remark 4.3. It is obvious that every equality4-algebra is a true equality al-
gebra. But the converse may not be true in general. Consider the following
example:

Example 4.4. Let A = {0, a, b, 1} be a chain such that 0 < a < b < 1.
Consider the operations ∼ and → given by the following tables:

∼ 0 a b 1
0 1 a a 0
a 1 1 a a
b 1 1 1 b
1 1 1 1 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then A = (A,∧,∼, 0, 1) is a bounded equality-algebra ([8]). Define the
unary operation τ on A as follows:

τ(0) = 0, τ(a) = τ(b) = a and τ(1) = 1.
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Then τ is a very true operation on A ([21]). Since τ(a) ∨ ¬τ(a) = a 6= 1,
then τ is not (A,∧,∼, τ, 0, 1) is not an equality4-algebra.

Proposition 4.5. Let (A,∧,∼,4, 0, 1) be an equality4-algebra. Then the
following properties hold, for all x, y, z ∈ A:

(1) 4x = 1 if and only if x = 1,

(2) x ≤ y implies 4x ≤ 4y,

(3) 44x = 4x,

(4) 4x ≤ y if and only if 4x ≤ 4y,

(5) Im(4) = Fix(4) where Fix(4) = {x ∈ A : 4x = x},

(6) if 4 is surjective, then 4 = IdA,

(7) Ker(4) = {1}, where Ker(4) = {x ∈ A : 4x = 1},

(8) Ker(4) is a deductive system of A,

(9) 4(x→ y) ≤ 4x→4y,

(10) if x ∨ y and 4x ∨4y exist, then 4(x ∨ y) = 4x ∨4y.

Proof: Since every equality4-algebra is a very true equality-algebra, then
part (1)–(9) follow from Proposition in [21]. (10) follows from (46) and
part (2).

Definition 4.6. A prelinear equality4-algebra is an equality4-algebra
(A,∧,∼,4, 0, 1) satisfies the following: for all x, y, z ∈ A
(48) 4(x→ y)→ z ≤ (4(y → x)→ z)→ z.

Example 4.7.

(1) An equality4-algebra in Example 4.2 part (2) is a prelinear equality4-
algebra.

(2) Let A = {0, a, b, c, d, 1} be a lattice in Fig. 2. Consider the operations
∼ and → given by the following tables:
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∼ 0 a b c d 1
0 1 d d d c 0
a d 1 c d c a
b d c 1 d c b
c d d d 1 d c
d c c c d 1 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b d d 1 1 1 1
c d d d 1 1 1
d c c c d 1 1
1 0 a b c d 1

1

d

c

a b

0

Figure 2

Then A = (A,∧,∼, 0, 1) is a bounded equality-algebra ([22]). Define
the unary operation 4 on A as 40 = 4a = 4b = 4c = 4d = 0
and 41 = 1. Then (A,∧,∼,4, 0, 1) is an equality4-algebra but it is
not a prelinear equality4-algebra because 4(a → b) → c = 1 6≤ c =
(4(b→ y)→ c)→ c.

(3) Let (A,∧,∼, 0, 1) be a prelinear bounded equality-algebra. Define
4 : A → A by 41 = 1 and 4x = 0 for any x < 0. Then (A,∧,∼
,4, 0, 1) is a prelinear equality4-algebra.

The proof of the following proposition is similar to Lemma 8 in [8].

Proposition 4.8. Let 4 be a unary operation on a bounded equality-
algebra A = (A,∧,∼, 0, 1) such that satisfies (41), (42), (48) and

(49) 4(x→ y) ≤ 4x→4y.
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Then, we have

(1) 4(x→ y) ∨4(y → x) = 1,

(2) if x ≤ y, then 4x ≤ 4y,

(3) (x→ y) ∨ (y → x) = 1.

(4) 4(x ∧ y) = 4x ∧4y,

(5) if x ∨ y and 4x ∨4y exist, then 4(x ∨ y) = 4x ∨4y,

(6) 4(x ∼ y) ≤ 4x ∼ 4y.

Proof:

(1) Suppose that u is an upper bound of the set {4(x→ y),4(y → x)}.
By (48), Proposition 2.5 part (15) and part (6), we get 1 = (x →
y)→ u ≤ ((x→ y)→ u)→ u = 1→ u = u. Hence u = 1.

(2) It follows from Proposition 2.5 part (4), (49) and (41).

(3) Suppose that u is an upper bound of the set {x → y, y → x}. Then
4(x → y) ≤ 4u and 4(y → x) ≤ 4u by part (2). By part (1), we
obtain 4u = 1. Hence u = 1 by (42).

(4) By part (2), we have 4(x ∧ y) ≤ 4x ∧ 4y. On the other hand,
by Proposition 2.5 part (17), (49) and Proposition 2.5 part (16)
1 = 4(x → y) ∨ 4(y → x) = 4(x → (x ∧ y)) ∨ 4(y → (x ∧ y)) ≤
(4x→4(x∧y))∨ (4y →4(x∧y)) = (4x∧4y)→4(x∧y). Thus
(4x ∧4y) ≤ 4(x ∧ y).

(5) By part (2), we have 4x ∨ 4y ≤ 4(x ∨ y). On the other hand, by
part (4), (49), Proposition 2.5 part (15) and part (16), we obtain

4(x ∨ y) = 4(((x→ y)→ y) ∧ ((y → x)→ x))

≤ ((4(x→ y)→4y) ∧ (4(y → x)→4x))

≤ ((4(x→ y)→ (4x ∨4y)) ∧ (4(y → x)→ (4x ∨4y))

≤ (4(x→ y) ∨4(y → x))→ (4x ∨4y) = (4x ∨4y).

(6) It follows from Proposition 2.5 part (7),(49), part (4) and part (2).
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Corollary 4.9. Let 4 be a unary operation on bounded equality-algebra
A = (A,∧,∼, 0, 1). Then (A,∧,∼,4, 0, 1) is a prelinear equality4- algebra
if and only if it satisfies, for all x, y, z ∈ A.

(41) 41 = 1,

(42) 4x ≤ x,

(43) 4x ≤ 44x,

(48) 4(x→ y)→ z ≤ (4(y → x)→ z)→ z,

(49) 4(x→ y) ≤ 4x→4y,

(47) 4x∨¬4x = 1, that is 1 is unique upper bound of the set {4x,¬4x}
in A.

Proof: It follows from Proposition 4.5 and Proposition 4.8.

Corollary 4.10. A prelinear equality4-algebra is an equality4-algebra
satisfying the prelinearity. Moreover, it is a distributive lattice.

Proof: It follows from Proposition 4.8 part (3) an Theorem 2.4.

Definition 4.11. A 4-deductive system of an equality4-algebra
(A,∧,∼,4, 0, 1) is a deductive system F of (A,∧,∼, 0, 1) that satisfies for
all x ∈ F , 4x ∈ F .

Example 4.12. Consider the prelinear equality4-algebra (A,∧,∼,4, 0, 1)
in Example 4.2 part (2). It is easy to see that F1 = {c, 1} is a 4-deductive
system of A. Also, F2 = {c, 1} is a deductive system of A but it is not a
4-deductive system.

Let (A,∧,∼,4, 0, 1) be an equality4-algebra and X be a nonempty
subset of A. We denote by 〈X〉4 the 4-deductive system of A generated
by X, that is, 〈X〉4 is the smallest 4-deductive system of A containing X.
If F is a 4-deductive system of A and x 6∈ F , then 〈F, x〉4 := 〈F ∪{x}〉4.

Theorem 4.13. Let X be a nonempty subset of an equality4-algebra
(A,∧,∼,4, 0, 1). Then

(i) 〈X〉4 = {x ∈ A|∃n ∈ N, y1, ..., yn ∈ A 3 4y1 → (4y2 → ...(4yn →
x)...) = 1},
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(ii) If F is a deductive system of A and S ⊆ A, then 〈F ∪ S〉4 = {x ∈
A|∃n ∈ N, s1, ..., sn ∈ S 3 4s1 → (4s2 → ...(4sn → x)...) ∈ F},

(iii) 〈a〉4 = {x ∈ A|∃n ∈ N,4x→n a = 1}.

Proof: The proof is straightforward.

Definition 4.14. Let A4 = (A,∧,∼,4, 0, 1) be an equality4-algebra and
θ be a congruence on an equality-algebra (A,∧,∼, 0, 1). Then θ is called a
4-congruence on A4, if (x, y) ∈ θ, then (4x,4y) ∈ θ, for any x, y ∈ A.

Proposition 4.15. Let A4 = (A,∧,∼,4, 0, 1) be an equality4-algebra
and let F be a 4-deductive system. Put (x, y) ∈ θF iff x ∼ y ∈ F . Then

(i) θF is a 4-congruence and the corresponding quotient algebra
(A/θF )4 = (A/θF ,∧,∼,4, 1) is an equality4-algebra, where for ev-
ery x, y ∈ A, [x] ∧ [y] := [x ∧ y], [x] ∼ [y] := [x ∼ y], 4[x] := [4x]
and 1 := [1].

(ii) (A/θF )4 is linearly ordered iff F is a prime 4-deductive system of
A.

(iii) if A4 is a prelinear equality4-algebra, then (A/θF )4 is a prelinear
equality4-algebra.

Proof: The proof is straightforward.

Let A = (A,∧,∼, 0, 1) be an equality-algebra. For x, y ∈ A and n ∈ N0,
we define x→n y inductively as follows:

x→0 y = y,

x→n y = x→ (x→n−1 y) for n ≥ 1.

The proof of the following lemma is similar to the proof of lemma 3.3 in [15].

Lemma 4.16. Let A4 = (A,∧,∼,4, 0, 1) be an equality4-algebra satisfying
prelinearity and P be a prime 4-deductive system of A. If x →n z ∈ P
and y →m z ∈ P for m,n ∈ N, then (x ∨ y)→r z ∈ P for some r ∈ N.

Proof: Suppose that l = max{n,m}. Then x→l z, y →l z ∈ P . We will
prove by induction on l. For l = 1, we have (x ∨ y)→ z = (x→ z) ∧ (y →
z) ∈ P by Proposition 2.5 part (16). Thus r = 1.
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Now, suppose that the statement holds for all k ∈ N with k ≤ l and
x→l+1 z, y →l+1 z ∈ P . Since

y →l+1 z ≤ x→l (y →l+1 z) = x→l (y → (y →l z))

= y → (x→l (y →l+1 z)),

x→l+1 z ≤ x→l+1 (y →l z) = x→ (x→l (y →l z),

then y → (x →l (y →l+1 z)), x → (x →l (y →l z) ∈ P . Using Proposi-
tion 2.5 part (11) and part (16), we get

x→ (x→l−1 (y →l ((x ∨ y)→ z))) = (x ∨ y)→ ((x→l (y →l z)

= [y → (x→l (y →l+1 z))] ∧ [x→ (x→l (y →l z)] ∈ P. (2.1)

By Proposition 2.5 part (15)

y →l+1 z ≤ y →l+1 ((x ∨ y)→ z)

≤ x→l−1 (y →l+1 ((x ∨ y)→ z))

= y → (x→l−1 (y →l ((x ∨ y)→ z)).

Thus
y → (x→l−1 (y →l ((x ∨ y)→ z)) ∈ P. (2.2)

By Proposition 2.5 part (11) and part (16), (2.1) and (2.2), we get
x→ (x→l−2 (y →l ((x∨y)→2 z))) = (x∨y)→ ((x→l−1 (y →l (x∨y)→
z)) = [y → (x →l−1 (y →l ((x ∨ y) → z))) ∧ x] → [(x →l−1 (y →l−1

((x ∨ y)→ z))] ∈ P. By repeating this, we get

y →l ((x ∨ y)→l+1 z)) ∈ P. (2.3)

by interchanging x, y, we obtain

x→l ((x ∨ y)→l+1 z)) ∈ P. (2.4)

Using induction hypothesi to (2.3) and (2.4), there exists s ∈ N such that
(x∨y)→s+l+1 z = (x∨y)→s ((x∨y)→l+1 z) ∈ P. Hence r = s+l+1.

Proposition 4.17. Let (A,∧,∼,4, 0, 1) be a prelinear equality4-algebra
and let a ∈ A, a 6= 1. Then there is a prime 4-deductive system F on A
not containing a.
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Proof: Suppose that P = {F : F is a proper 4-deductive system and
a 6∈ F}. Then P is a partially set under inclusion relation. Since {1} ∈ P,
then P is a nonempty set. It is easy to see that every chain in P has an
upper bound in P. By Zorn’s Lemma, there exists a maximal element P
in P. Since P ∈ P, then P is a 4-deductive system of A not containing a.
We will prove that P is prime. If P is not prime, then there exist x, y ∈ A
such that x → y, y → x 6∈ P . Since P is strictly contained in 〈P, x → y〉4
and 〈P, y → x〉4, then 〈P, x → y〉4 6∈ P and 〈P, y → x〉4 6∈ P by the
maximality of P . Thus a ∈ 〈P, y → x〉4 and a ∈ 〈P, x→ y〉4. Then there
exist n,m ∈ N such that 4(x → y) →n a ∈ P and 4(y → x) →m a ∈ P
by Theorem 4.13 part (iii). By Lemma 4.16, there exists r ∈ N such that
(4(x→ y)∨4(y → x))→r a ∈ P . By Proposition 4.8 part (1), we obtain
a ∈ P which is a contradiction.

Proposition 4.18. Each prelinear equality4-algebra is a subalgebra of the
direct product of a system of linearly ordered equality4-algebra.

Proof: Suppose that P is the class of all prime 4-deductive systems of
a prelinear equality4-algebra (A,∧,∼,4, 0, 1). Then B =

∏
θ∈P A/θF is a

direct product of linearly ordered equality4- algebra by Proposition 4.15
part (iii). Define f : A → B by f(x) = {x/θF : F ∈ P}. It is easy to
prove that f preserves operations. We will prove that f is one to one.
Suppose that x, y ∈ A such that x 6= y. Then x 6≤ y or y 6≤ x. Suppose
that x 6≤ y. Then x → y 6= 1. By Proposition 4.17, there exists a prime
4-deductive system F such that x→ y 6∈ F . Thus x/θF 6≤ y/θF in A/θF .
So x/θF 6= y/θF in A/θF . Hence f(x) 6= f(y).

5. Prelinear equality4 logic

In this section, we introduce the logic corresponding to prelinear equality4-
algebras and prove that the resulting logic, i.e. propositional prelinear
equality4 logic EL4 is sound and complete with respect to the variety of
prelinear equality4-algebras.

Definition 5.1.

(i) The language of propositional prelinear equality4 logic EL4 is the
language of propositional equality logic EL expanded by the unary
connective ∆ and the truth constant ⊥.



Equality Logic 319

(ii) Formulas of EL4 are defined in the following way:
each formula of EL is a formula of EL4, ⊥ is a formula and if ϕ is a
formula, then ∆(ϕ) is a formula. Disjunction and negation connec-
tives are defined as the following short:

ϕ t ψ := ((ϕ⇒ ψ)⇒ ψ) u ((ψ ⇒ ϕ)⇒ ϕ), ¬ϕ =: ϕ⇒ ⊥.

The set of all formulas of EL4 is denoted by F4.

(iii) The logical axioms of EL4 consist of the logical axioms of EL plus
the following axioms :

(E10) (ϕ u ⊥) ≡ ⊥,

(E∆1) ∆>,

(E∆2) ∆ϕ⇒ ϕ,

(E∆3) ∆ϕ⇒ ∆∆ϕ,

(E∆4) (∆(ϕ⇒ ψ)⇒ χ)⇒ ((∆(ψ ⇒ ϕ)⇒ χ)⇒ χ),

(E∆5) ∆(ϕ⇒ ψ)⇒ (∆ϕ⇒ ∆ψ),

(E∆6) (∆ϕ⇒ ¬∆ϕ)⇒ ¬∆ϕ,

(E∆7) (¬∆ϕ⇒ ∆ϕ)⇒ ∆ϕ.

(iv) The inference rules of EL4 are (EA), (MP) and generalization (Gen):
from ϕ derive ∆ϕ.

Definition 5.2. Let A4 = (A,∧,∼,4, 0, 1) be a prelinear equality4-
algebra. An A4-evaluation of formulas is a mapping e : F4 → A, defined
as follows:

(1) e(⊥) = 0,

(2) e(>) = 1,

(3) e(∆ϕ) = 4e(ϕ),

(4) e(ϕ u ψ) = e(ϕ) ∧ e(ψ),

(5) e(ϕ ≡ ψ) = e(ϕ) ∼ e(ψ),

for all formulas ϕ,ψ ∈ F4. A formula ϕ is a A4-tautology if e(ϕ) = 1 for
each A4- evaluation e : F4 → A. If an A4-evaluation e satisfies e(ϕ) = 1
for every ϕ in theory Γ, then it is called an A4-model of Γ.

The propositional prelinear equality4 logic EL4 is an extension of the
propositional equality logic EL. Thus every the theorems and inferences of
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EL is valid in EL4. In the following Lemma, we prove properties that we
will use in the strong completeness of EL4.

Lemma 5.3. Let ϕ,ψ, χ ∈ F be formulas. EL4 proves the following prop-
erties:

(1) {∆(ϕ⇒ ψ)⇒ χ,∆(ψ ⇒ ϕ)⇒ χ} ` χ,

(2) {(ϕ⇒ ψ)⇒ χ, (ψ ⇒ ϕ)⇒ χ} ` χ,

(3) ` ((ϕ⇒ ψ) u (ψ ⇒ ϕ))⇒ (ϕ ≡ ψ),

(4) ` ϕ ≡ ψ ` ∆ϕ ≡ ∆ψ,

(5) ` ∆> ≡ >.

Proof:

(i) The results follows from assumptions, (E∆4) and (MP).

(ii) Suppose that Γ = {(ϕ ⇒ ψ) ⇒ χ, (ψ ⇒ ϕ) ⇒ χ}. By assumption,
(Gen), (E∆5) and (MP), we have Γ ` ∆(ϕ ⇒ ψ) ⇒ ∆χ and Γ `
∆(ψ ⇒ ϕ)⇒ ∆χ. Using part (1), we obtain Γ ` χ.

(iii) Using Proposition 3.13 part (9), Proposition 3.8 part (8) and part
(7), we get ` (ϕ ⇒ ψ) ⇒ [((ϕ ⇒ ψ) u (ψ ⇒ ϕ)) ⇒ (ϕ ≡ ψ)],
` (ψ ⇒ ϕ)⇒ [((ϕ⇒ ψ) u (ψ ⇒ ϕ))⇒ (ϕ ≡ ψ)]. Applying part (2),
the result is obtained.

(iv) It is easy to prove by assumption, Proposition 3.13 part (11) , (Gen),
(E∆5), (MP), Proposition 3.7 part (7) and then part (3) and (MP).

(v) Using (EL5), we have ` (∆> ≡ >) ≡ ∆>. By (EL6) and (EA),
we obtain ` ∆> ≡ (∆> ≡ >). Applying (E∆1) and (EA), we have
` ∆> ≡ >.

Proposition 5.4. Let Γ be a theory over the propositional equality logic
EL4. Then algebra MΓ = (MΓ,∧,∼,4, 0, 1) is a prelinear equality4-
algebra where 1 = [>]Γ, 0 = [⊥]Γ, 4[ψ]Γ := [∆(ϕ)]Γ, [ϕ]Γ∧ [ψ]Γ := [ϕuψ]Γ
and [ϕ]Γ ∼ [ψ]Γ := [ϕ ≡ ψ]Γ.

Proof: Let Γ be a theory over the propositional equality logic EL4. Since
Γ be a theory over the propositional equality logic EL,
then (MΓ,∧,∼, 1) is an equality algebra by Proposition 3.11. By (E10),
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(MΓ,∧,∼, 0, 1) is bounded. By Lemma 5.3, 4 is well defined. Using
Lemma 5.3 and Corollary 4.9, it is easy to prove MΓ = (MΓ,∧,∼,4, 0, 1)
is a prelinear equality4- algebra.

Definition 5.5. Let Γ be a theory over the propositional equality logic EL4.

(1) A theory Γ is contradictory if for some ϕ, Γ proves ϕ and Γ proves
¬ϕ. Γ is consistent if it is not contradictory.

(2) Γ is complete if for every pair ϕ and ψ of formulas, then Γ ` ϕ⇒ ψ
or Γ ` ψ ⇒ ϕ.

Lemma 5.6. Let Γ be a theory over the propositional equality logic EL4.

(1) Γ is complete iff the prelinear equality4-algebra MΓ is linearly or-
dered.

(2) If Γ 6` ϕ, then there exists a consistent complete supertheory T ⊆ T ′

such that T ′ 6` ϕ.

Proof:

(1) It is obvious.

(2) It follows similarly with the proof of Proposition 4.17.

Theorem 5.7 (Strong completeness). Let Γ be a theory over EL4 and ϕ
be a formula. Then the following are equivalent:

(i) `EL4 ϕ,

(ii) For each linearly ordered equality4-algebra A and each A-model e of
Γ, e(ϕ) = 1,

(iii) For each prelinear equality4-algebra A and each A-model e of
Γ, e(ϕ) = 1.

Proof:

(i) ⇒ (ii) This is because all axioms of EL4 are true in all A-models of Γ,
axioms of Γ are true in all models of Γ by the definition of a model and
the inference rules of EL4 are sound in the following sense:

(1) If for all prelinear equality4-algebra A and for all A-model e of Γ,
e(ϕ) = 1 and e(ϕ ≡ ψ) = 1, then for all prelinear equality4-algebra
A and for all A-model e of Γ, e(ψ) = 1.
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(2) If for all prelinear equality4-algebra A and for all A-model e of Γ,
e(ϕ) = 1 and e(ϕ⇒ ψ) = 1, then for all prelinear equality4-algebra
A and for all A-model e of Γ, e(ψ) = 1.

(3) If for all prelinear equality4-algebra A and for all A-model e of
Γ, e(ϕ) = 1, then for all prelinear equality4-algebra A and for all
A-model e of Γ, e(∆(ϕ)) = 1.

(ii) ⇒ (i) Suppose that Γ 6` ϕ. Then then there exists a consistent complete
supertheory Γ ⊆ Γ′ such that Γ′ 6` ϕ by Lemma 5.6 part (2). Since Γ′ is
complete, then the prelinear equality4- algebraMΓ is linearly ordered.
For each propositional variable p, define e(ψ) = [ψ]Γ′ . Then we have
an MΓ-model of Γ such that e(ϕ) < 1, which is a contradiction.

(ii) ⇒ (iii) follows from Proposition 4.17.

(iii) ⇒ (ii) is obvious.

Acknowledgements The author would like to thank the referees for a
number of helpful comments and suggestions.

References

[1] W. J. Blok, D. Pigozzi, Algebraizable logics, vol. 77, American Mathe-

matical Society (1989), DOI: http://dx.doi.org/10.1090/memo/0396.

[2] W. J. Blok, D. Pigozzi, Abstract algebraic logic and the deduc-

tion theorem (2001), URL: https://orion.math.iastate.edu/dpigozzi/papers/

aaldedth.pdf.

[3] R. Borzooei, F. Zebardast, M. Aaly Kologani, Some types of filters in equal-

ity algebras, Categories and General Algebraic Structures with Ap-

plications, vol. 7 (Special Issue on the Occasion of Banaschewski’s 90th

Birthday (II)) (2017), pp. 33–55, DOI: http://dx.doi.org/10.1007/s00500-

005-0534-4.

[4] R. A. Borzooei, M. Zarean, O. Zahiri, Involutive equality algebras, Soft

Computing, vol. 22(22) (2018), pp. 7505–7517, DOI: http://dx.doi.org/10.

1007/s00500-018-3032-1.
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