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e-mail: andrzej.indrzejczak@filozof.uni.lodz.pl

Collecting Editors:

Patrick Blackburn Roskilde, Denmark

Janusz Czelakowski Opole, Poland
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Formal Methods and Science in Philosophy:
Introduction to the Special Issue

This special issue of the Bulletin of the Section of Logic contains five
papers, which were originally presented at the Formal Methods and Science
in Philosophy III conference, which was held at the Inter-University Centre,
Dubrovnik, Croatia, 11–13 April 2019. The two previous editions of this
meetings were held at the same location in 2015 and 2017, and as the third
call for papers made clear, the Dubrovnik meeting again emphasized:

Problems of philosophical ontology, epistemology, philosophy of
science, and philosophy of mind that are formulated or solved
using formal methods (as defined in logic, mathematics, formal
linguistics, theoretical computer science, information science,
AI) and/or with references to the results of natural and social
sciences.

The 2019 edition drew participants from Europe and further afield, and
during the three-day event, a total of 46 talks were presented. The keynote
talks were given by Christoph Benzmüller (Freie Universität Berlin), Maŕıa
Manzano (Universidad de Salamanca), and Edward Zalta (Stanford Univer-
sity), and plenary session talks were given by Patrick Blackburn (Roskilde
University), Elena Dragalina-Chernaya (National Research University, Mos-
cow), Robert Pi lat (Cardinal S. Wyszyński University, Warsaw), and Georg
Schiemer (University of Vienna). Twenty four other submitted talks were
presented across (sometimes two, sometimes three) parallel sessions, and
in addition there were fifteen talks spread over three special parallel ses-
sions for PhD students. The conference committee members were Gian-
franco Basti (Pontifical Lateran University, Vatican City), Grzegorz Buga-
jak (Cardinal S. Wyszyński University, Warsaw), Filip Grgić (Institute of
Philosophy, Zagreb), Srećko Kovač (Institute of Philosophy, Zagreb), and
Kordula Świe

ι
torzecka (Cardinal S. Wyszyński University, Warsaw). The
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institutions coordinating the event were the Institute of Philosophy (Za-
greb) and the Cardinal Stefan Wyszyński University (Warsaw).

The event was intense and lively, marked by spirited discussion: it has
clearly found its niche and its voice. On the last day of the meeting, par-
ticipants were offered the chance to submit a new version of their work for
a further round of refereeing. We hoped, in this way, to attract submis-
sions for a special issue that would convey something of the variety and
flavour of the Dubrovnik meeting, and we believe that we have succeeded.
Here you will find five papers drawing on mathematics, computer science,
philosophy, and linguistics, with approaches ranging technical, historical,
conceptual, or computational explanation. But as well as variety, there is
coherence: the coherence provided by the core of logic. Let us briefly note
what the five papers in this special issue discuss.

Vı́ctor Aranda (Universidad Autónoma de Madrid): Completeness, cat-
egoricity and imaginary numbers: the debate on Husserl.

This paper explores Husserl’s two notions of “definiteness”, notions
which had enabled him to clarify the extension of the number concept
through the realm of the imaginary. However the exact meaning of these
notions remains controversial. A “definite” axiom system has been inter-
preted as a syntactically complete theory, but also as a categorical one. Do
either of these readings successfully capture Husserl’s goal of elucidating
the status of imaginary numbers? The author raises objections to both
approaches, and then suggests an interpretation of “absolute definiteness”
as semantic completeness – an approach, he argues, that does not suffice
to explain Husserl’s solution.

Christoph Benzmüller and David Fuenmayor (Freie Universität Berlin):
Computer-supported analysis of positive properties, ultrafilters and modal
collapse in variants of Gödel’s ontological argument.

This paper reports the result of using the Isabelle/HOL proof-assistant,
coupled with shallow semantic embeddings of various logical embeddings,
to rigorously assess three versions of Gödel’s ontological argument. Two
of these versions prove the existence of a Godlike being, and avoid modal
collapse, but superficially they appear very different. This computational
experiments discussed in this paper, however, reveal an intriguing corre-
spondence between the two: both link the positive properties of Gödel’s
argument to the mathematical notion of a principal modal ultrafilter on
intensional properties.



Methods and Science in Philosophy: Introduction to the Special Issue 107

Piotr B laszczyk and Marlena Fila (Pedagogical University of Cracow):
Cantor on infinitesmals. Historical and modern perspective.

This paper discusses in detail Cantor’s attempt to prove that infinites-
mal numbers are inconsistent. Much of the paper is historical, reaching
back to Book V of Euclid’s Elements, covering the theory of magnitudes
in the late 19th century, and drawing attention to Cantor and Dedekind’s
mutual uncertainty as to whether their accounts of continuity for the real
numbers were equivalent. The paper concludes with a counterexample to
Cantor’s hypothesis about products of ordinal and infinitesmal numbers
that makes use of Conway numbers.

Zvonimir Šikić (University of Zagreb): Compounding objects.
Forming complex structures by building objects component-wise from

elements of simple structures (for example, to define R3 from R) is an
important technique. But this compounding process may destroy desirable
first-order properties (for example, when component-wise combined, the
total order on R yields a partial order on R3). In this short paper, the
author proves “a kind of converse” to the  Los Theorem, that characterizes
the properties of component-wise defined equality in terms of filters, proper
filters and ultrafilters.

Urszula Wybraniec-Skardowska (Cardinal Stefan Wyszyński Univer-
sity, Warsaw): What is the sense in logic and philosophy of language?

This paper characterizes and formalizes various notions of logical and
philosophical sense. The author distinguishes between syntactic, inten-
sional, and extensional sense. The approach is categorial, with functor-
argument syntactic structure linked to intensional and extensional mean-
ings of appropriate semantic categories. Three principles of compositional-
ity are derived and, together with generalized version of Ajdukiewicz-style
cancellation rules, are applied to the problem of determining the categories
of first-order quantifiers.

Acknowledgements. The special issue editors would like the thank the
participants and referees of the Dubrovnik 2019 meeting for providing in-
spiration, the authors and referees of this special issue for all their hard
work, and Andrzej Indrzejczak for saying “yes” to this project in the first
place.

Patrick Blackburn, Srećko Kovač, and Kordula Świeιtorzecka
Editors of the Special Issue
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Vı́ctor Aranda

COMPLETENESS, CATEGORICITY
AND IMAGINARY NUMBERS:
THE DEBATE ON HUSSERL1

Abstract

Husserl’s two notions of “definiteness” enabled him to clarify the problem of imag-

inary numbers. The exact meaning of these notions is a topic of much controversy.

A “definite” axiom system has been interpreted as a syntactically complete the-

ory, and also as a categorical one. I discuss whether and how far these readings

manage to capture Husserl’s goal of elucidating the problem of imaginary num-

bers, raising objections to both positions. Then, I suggest an interpretation of

“absolute definiteness” as semantic completeness and argue that this notion does

not suffice to explain Husserl’s solution to the problem of imaginary numbers.

Keywords: Husserl, completeness, categoricity, relative and absolute defi-
niteness, imaginary numbers.

1. Introduction

Since the publication of Hill [10] and Majer [17], much attention has been
devoted to Husserl’s two notions of “definiteness” (relative and absolute def-
initeness), which were introduced in a Double Lecture (henceforth, Dop-
pelvortrag) for the Göttingen Mathematical Society in 1901. These no-
tions enabled him “to clarify the logical sense of the computational tran-
sition through the ‘imaginary”’ and, in connection with that, to bring

1This work was supported by the Spanish Ministry of Education under the Grant
FPU15/00830. I thank the anonymous referee for his/her constructive comments and
suggestions.
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out the sound core of Hermann Hankel’s2 renowned, but logically un-
substantiated and unclear, “principle of the permanence of formal laws”
(Husserl [13], p. 97).

What Husserl describes as the “computational transition through the
‘imaginary’” is the extension of the number-concept3. The Principle of Per-
manence says that the progressive extension of the number-concept should
preserve (to the greatest extent possible) the arithmetical laws of the posi-
tive whole numbers. Strictly speaking, it asserts that the laws governing the
newly introduced numbers have to be consistent with the laws constraining
the old ones.

Husserl’s Doppelvortrag was an attempt to find a justification for this
Principle. A consensus has emerged that, according to Husserl, if every
level of the hierarchy of numbers has a definite axiom system, then the
extension of the number-concept can never lead to contradictions. There
is, however, disagreement in the literature as to the exact meaning of the
word “definite”. A passionate debate has opposed those like da Silva [4]
and [5], who read “definiteness” as syntactic completeness, and those like
Hartimo [8] and [9], who favor reading it in terms of categoricity. Cen-
trone [3] pointed out that Husserl himself seems to oscillate between both
characterizations.

In the present paper, I discuss the plausibility of the different interpre-
tations of “definiteness” in the literature. Is a syntactically complete axiom
system compatible with the extension of the number-concept? And a cate-
gorical one? I will provide a new interpretation of “absolute definiteness”4

(as semantic completeness) which is, I think, conceptually stronger. I will
also maintain that “definiteness” does not suffice to explain Husserl’s justi-
fication of the transition through the imaginary: the hierarchy of numbers
must contain a copy of the previous levels.

2Although the Principle of Permanence is discussed in Hankel [7], it was formulated
by Peacock.

3“Here I of course take the term ‘imaginary’ in the widest possible sense, according
to which also the negative, indeed even the fraction, the irrational number, and so forth,
can be regarded as imaginary” (Husserl [14], p. 412).

4In my opinion, a relatively definite theory is not semantically complete. However,
this would require a separate paper.
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2. State of the art

In the Doppelvortrag, Husserl’s notion of definiteness was introduced in a
twofold manner and served a double purpose. First of all, it shows the
perfect delimitation of a “domain” (or “sphere of existence”)5 by its axiom
system:

The further question: Would such a system be definite? It
would be definite if, for the demarcated sphere of existence,
for the given individuals, and for the individuals not given, no
further new axiom were possible (Husserl [14], p. 424).

Secondly, it guarantees that every meaningful proposition of the lan-
guage of the system is decided from the axioms:

A formal axiom system which contains no extra-essential closure
axiom is said to be a definite one if each proposition that has
a sense at all through the axiom system eo ipso falls under the
axiom system, be it as consequence or be it as contradiction
(Husserl [14], p. 431).

Almost thirty years after the Doppelvortrag, this duality between the
“full description of the domain” and “maximality of the axiom system”
remains invariable in Husserl’s definition of his central notion. He [13] ex-
plicitly asserted that, if a domain is wholly captured by an axiom system
(in modern terms, if a theory axiomatizes a structure), then every proposi-
tion constructed in the system has to be either a consequence of the axioms
or an “analytic contradiction” (see p. 96).

Husserl also split the notion of definiteness in relative (the axiom system
for “the whole and the fractional numbers”) and absolute definiteness6 (the
axiom system for the “continuous number sequence” i.e., for the reals) in
the context of the transition through the imaginary. The exact meaning of
these notions, as well as their role in the extension of the number-concept,
are matters of much controversy.

5Husserl speaks of “domain” (or “sphere of existence”) of a group of axioms in the
sense that a system of objects satisfies certain general laws. I will use the term “domain”
to refer to such a system of objects, because using the term “structure” seems quite
anachronistic (see Hodges [11] and Husserl [14], pp. 437–38).

6“Therefore, absolutely definite = complete, in Hilbert ’s sense” (Husserl [14], p. 127).
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2.1. Centrone

Centrone [3] maintained an interpretation of “relative definiteness” as syn-
tactic completeness and “absolute definiteness” as categoricity. Regarding
the extension of the number-concept, she makes the following claim:

The thesis that Husserl proposes in the Doppelvortrag is a con-
ditional claim: if T is consistent and syntactically complete
(definite) then every consistent extension of T is conservative,
so that the transition through the imaginary is justified (Cen-
trone [3], p. 178).

Syntactic completeness is a very unusual property of a set of sentences7,
because the set is so strong that, for every sentence ϕ of its language, either
ϕ or ¬ϕ has to be provable from the set. It follows that, if a sentence ψ
formulated in the language of a complete set T is not provable from T ,
then T ∪ {ψ} will be inconsistent. This property is often known as the
maximality of a consistent set.

But Centrone’s solution does not function. Suppose for the sake of
argument that T is a complete axiom system for the naturals. The sentence
ϕ := “there exists an x such that when added to 1 gives 0” is not provable
from T . Since T is complete, ¬ϕ has to be provable from T . Let T ′ be
an axiom system for the integers which is an extension of T . It is easy to
see that ϕ is a theorem of T ′, which means that the extension T ′ of T is
inconsistent. Thus, “definite” cannot be syntactically complete.

Furthermore, an extension T ′ of a theory T is conservative if T ′ is just
a theory containing T . More precisely, every sentence of the language of T
which is provable from T ′ is also a theorem of T . Is the extension of the
number-concept a conservative extension?

Let T and T ′ be the axiom systems for the fields of real and complex
numbers, respectively. While the reals can be ordered, there is no total or-
dering of the complexes that is compatible with the field operations. The
sentence ψ := “there exists an x such that x < 0 and −x < 0” is provable
from T ′ if we suppose that the complexes can be totally ordered. If Cen-
trone were right, then ψ would be also provable from T , which contradicts
the axioms of a total order. Consequently, the extension T ′ of T is not
conservative.

7A set of sentences is a theory (see Hodges [12], p. 33).
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Contrary to Centrone’s interpretation, Husserl did not believe that the
extension of the number-concept had to be conservative. In the double
lecture, he argued that the “expansion of the numbers series” leads to a
new domain in which new relations and elements may be defined:

The series of the positive whole numbers is a part of the series
of numbers that is infinite at both ends. This in turn is part
of the two-fold manifold of the complex numbers. The system
of the positive whole numbers is defined by certain elementary
relations. In these latter nothing is modified through expansion
of the number series [...] In the new domain new relations as well
as new elements may be defined. In the new domain there then
will be such conceivable relations as include the old elements
and old relations (Husserl [14], p. 457).

Husserl explicitly stated that a domain of numbers cannot be extended
in a way that the same axiom system describes the broader domain (see
[14], p. 427). If the same axiom system holds for both domains, then the
narrower domain will not be extended at all. New propositions must be
true in the broader domain (and hence the extension from T to T ′ cannot
be conservative).

2.2. Da Silva

Da Silva [4] and [5] read “relative definiteness” as syntactic completeness
relative to a particular set of expressions and “absolute definiteness” as
syntactic completeness. The former is the central notion for understanding
Husserl’s solution to the problem of imaginary numbers:

Husserl’s solution for the problem of imaginary elements has, I
believe, the following form: given systems A and B such that
A and B are consistent and B extends A, let D be the formal
manifold determined by A [...] and suppose that A is complete
relative to the assertions of LD(A), i.e., the assertions of L(A)
with all variables restricted to D. Now, if any of these assertions
(i.e., assertions of LD(A)) is proved byB, it can also be accepted
from the perspective of A (Da Silva [4], p. 423).

A theory is (syntactically) complete relative to a particular set of ex-
pressions ∆ of its language if, for every sentence ϕ ∈ ∆, either ϕ or ¬ϕ has
to be a theorem of the theory. Therefore, the set of expressions ∆ is the
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collection of all statements that the theory can either prove or disprove, and
it is called its apophantic domain8. This domain is obtained by restricting
quantification to the domain of D, so the sentences of ∆ refer exclusively to
the narrower domain (i.e., they do not contain terms denoting imaginary
numbers).

The restriction of syntactic completeness to a particular set of sentences
intends to avoid the difficulties of Centrone’s approach. The sentence ϕ :=
“there exists an x such that when added to 1 gives 0” is now undecidable
starting from the axioms of the natural numbers, because it refers to a
number which belongs to the integers. Theorems of T are preserved in
theories that extend T provided that they are about the narrower domain.
For this reason, the provability of ϕ by means of the axioms of the integers
does not imply a contradiction anymore. Does da Silva’s restriction explain
the transition through the imaginary?

Let T and T ′ be the axiom systems for the rationals and the reals, re-
spectively. The sentence θ := “

√
2 is an irrational number” does not belong

to the apophantic domain of T , as it refers to a number which is imagi-
nary from the point of view of T . If da Silva were right, then θ would be
undecidable starting from the axioms of the rationals. However, the proof
that shows the irrationality of

√
2 can be achieved by means of T and the

rational root theorem. Hence, da Silva’s restriction of syntactic complete-
ness to a particular set of sentences does not account for the extension of
the number-concept.

In the Doppelvortrag, Husserl claimed that the truth-value of an ex-
pression9 that alludes to a broader domain is decided on the basis of the
axioms for the narrower, for the reason that it is false in the old domain.

Let us consider, for example, the axiom system of the whole
numbers, positive and negative. Then x2 = −a, x = ±

√
−a

certainly has a sense. For square is defined, and −a, and =
also. But “in the domain” there exists no

√
−a. The equation

8“If an assertion belongs to the apophantic domain of a system, then it is either true
on the basis of the axioms of the system, if they can prove it, or it is false on the basis
of these axioms, if they can prove its negation” (Da Silva [4], p. 427).

9Since quantifiers had not been introduced in 1901, Husserl’s “expressions” are prob-
ably just equations or operations among numbers. However, in the scholarly debate on
Husserl these “expressions” are understood as “sentences” (in the modern sense). See,
for instance, da Silva [4] and da Silva [5].
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is false in the domain, inasmuch as such an equation cannot
hold at all in the domain (Husserl [14], pp. 438–39).

He also defended that an axiom system is definite if “it leaves open or
undecided no question related to the domain and meaningful in terms of
this system of axioms” ([14], pp. 438), which implies that no proposition
will be undecidable from a definite set of axioms.

2.3. Hartimo

Hartimo [8] and [9] interpreted “relative” and “absolute definiteness” as
categoricity. The usage of imaginary numbers in calculations is justified if
both the narrower and the broader domain are fully described by a cate-
gorical set of axioms.

Our suggestion is that Husserl’s remarks in the Doppelvortrag
are best understood if by the formal domain Husserl means
something like a domain of a categorical theory [...] Each ax-
iom system defines a unique formal domain that is included in
the unique formal domain of the more extended axiom system
(Hartimo [8], pp. 302–03).

A theory is categorical if for every pairM and N of its models there is
an isomorphism between M and N . In other words, a categorical theory
has exactly only one model. It still remains to be explained how cate-
goricity relates to justifying the extension of the number-concept. Hartimo
[8] suggested that, according to Husserl, categoricity implies some kind of
“maximality” which guarantees that the transition through the imaginary
can never lead to contradictions. She also [9] argued that this maximality
corresponds to syntactic completeness.

In favor of Hartimo’s reading, it has to be said that the axiomatically
constructed second-order arithmetic of natural numbers is categorical. But
it is also incomplete by Gödel’s theorems. Hartimo alleged that Husserl’s
view of “definiteness” combines expressive power (categoricity) and deduc-
tive power (syntactic completeness). Both ideals combined, which are not
simultaneously attainable in the interesting cases, were called “monomath-
ematics” by Tennant [23].

From these ideals, we can draw some important conclusions regarding
the problem of imaginary numbers. If a definite axiom system is categorical
and complete, then Hartimo’s proposal is open to the same objections as
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Centrone’s. If it is categorical and complete relative to a particular set of
expressions, then Hartimo is forced to address the objections against da
Silva.

In short, it seems that the interpretation of “definiteness” as syntactic
completeness (or implying syntactic completeness) does not make plausible
Husserl’s idea of how the number-concept should be extended.

3. Semantic completeness

In a lecture probably delivered in 1939, which Tarski never published and
entitled “On the Completeness and Categoricity of Deductive Systems”10,
he introduced the notion of “semantic completeness”. After remarking that
every theory affected by Gödel’s first incompleteness theorem is essentially
incomplete (i.e., it always contains undecidable propositions), Tarski aimed
to present semantic analogues of syntactic completeness (he called “abso-
lute completeness” to syntactic completeness):

On the basis of the foregoing we see that absolute complete-
ness occurs rather as an exception in the domain of the deduc-
tive sciences, and by no means can it be treated as a universal
methodological demand. In this connection, I want to call your
attention to certain concepts very closely related to the concept
of absolute completeness, which are the result of a weakening
of this concept and whose occurrence is not such an exceptional
phenomenon. (Tarski, [22], p. 488).

Tarski believed that the notion of provability developed in modern logic
was not the formal counterpart of the intuitive concept of consequence11.
For this reason, the notion of semantic completeness is obtained by replac-
ing “provability” with “logical consequence” in the definition of syntactic
completeness. A (consistent) theory is semantically complete if, for every
sentence ϕ of its language, ϕ or ¬ϕ is a logical consequence of the axioms.
Awodey and Reck [1] stated the following four equivalent conditions for
semantic completeness:

1. For all sentences ϕ and all modelsM and N of T , if |=M ϕ
then |=N ϕ.

10It is published in Mancosu [18].
11See Tarski [21], p. 409 and Tarski [22], p. 489.
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2. For all sentences ϕ, either T |= ϕ or T |= ¬ϕ.

3. For all sentences ϕ, either T |= ϕ or T ∪ {ϕ} is not satis-
fiable.

4. There is no sentence ϕ such that both T∪{ϕ} and T∪{¬ϕ}
are satisfiable (p. 3).

As Centrone [3] rightly noticed, one cannot seriously defend that Hus-
serl already distinguished between the syntactic notion of provability and
the semantic concept of logical consequence. However, the interpretation
of “definiteness” as semantic completeness, instead of syntactic complete-
ness, certainly makes more plausible Husserl’s attempts to link the full
description of a domain with the maximality of its axiom system.

To begin with, it is clear that a semantically complete theory is max-
imal in some general sense. Consider, for instance, the fourth condition
above. It corresponds to Carnap’s notion of “non-forkability”12, which was
identified by Fraenkel [6] and states that there is no sentence ϕ (of the lan-
guage of T ) such that T ∪{ϕ} and T ∪{¬ϕ} have a model. In other words,
a theory is non-forkable if it does not branch out to other sets of sentences
containing both ϕ and ¬ϕ. A proof of the implication from semantic com-
pleteness to relative completeness, which Tarski considered equivalent to
non-forkability, is given in Mancosu [18] (see pp. 457–58).

The implication from categoricity to semantic completeness also
holds13. We saw that reading (absolute and relative) definiteness as cate-
goricity implying syntactic completeness weakened Husserl’s position, be-
cause categoricity and syntactic completeness are not both simultaneously
attainable for the interesting cases. In contrast, Tarski [22] showed that
every categorical theory – semantically categorical, in Tarski’s terminology
– is semantically complete.

Finally, a few words about the transition through the imaginary. If ac-
cording to Husserl the axiom systems for the naturals, integers, rationals,
reals, and complexes must be definite, then these systems must be seman-
tically complete. Otherwise, my interpretation will be flawed. Fortunately:

We know many systems of sentences that are categorical; we
know, for instance, categorical systems of axioms for the arith-
metic of natural, integral, rational, real, and complex numbers,

12See Carnap [2], pp. 130–33.
13See Carnap [2], p. 138, and Lindenbaum and Tarski [15], pp. 390–92.
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for the metric, affine, projective geometry of any number of
dimensions etc [...] From theorems I and II, we see that all
mentioned systems are at the same time semantically or rela-
tively complete. Thus, in opposition to absolute completeness,
relative or semantical completeness occurs as a common phe-
nomenon (Tarski [22], p. 492).

For instance, from the categoricity of second-order Peano arithmetic
we conclude that this theory is semantically complete (see Manzano [19],
p. 128). One could be tempted to infer that the extension of the number-
concept will be justified if every logical consequence of T (the axiom system
for the narrower domain) is likewise a logical consequence of T ′ (the axiom
system for the broader one), but this is clearly not true. Instead, I will
argue that such an extension is permitted iff every sentence which is true
in the narrower domain M is also true in the copy of M contained in the
broader domain N . In model theory, we say that there is an embedding of
M in N .

4. Not a sufficient condition

The debate on Husserl’s notions of definiteness presupposes that a defi-
nite axiom system is a sufficient condition for the transition through the
imaginary. But there is another necessary condition that has not been em-
phasized as deserved in the literature. Let me quote the entire relevant
passage.

According to this the following general law seems to result: A
transition through the imaginary is permitted 1) if the imagi-
nary can be formally defined in a consistent and comprehensive
system of deduction, and 2) if the original domain of deduc-
tion when formalized has the property that every proposition
falling within that domain is either true on the basis of the ax-
ioms of that domain or else is false on the same basis (i.e., is
contradictory to the axioms).
However, it is easily seen that this formulation does not suffice,
although it already brings to expression the most essential part
of the truth [...]
But there is still the question whether the derived propositions
of the broader domain fall in this sense within the narrower
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domain. If that is not determined in advance, we can say abso-
lutely nothing about it (Husserl [14], pp. 428–29).

There are two points that are important here. First, Husserl highlights
the role of consistency and definiteness in the extension of the number-
concept. The axiom system for the original domain has to be consistent
and definite. Second, he claims that both requirements do not suffice.
Propositions about the narrower domain but obtained from the axioms of
the broader are permitted if they are true propositions in the narrower
domain14. The question is: How can such a result be established?

In the passages following the above, Husserl argues that this result
can be proved if the extension of the number-concept does not induce new
determinations on the old domain. For instance, the sentence χ := “there
exists an x whose square is −1”, which extends the number-concept when
added to the axiom system for the reals, does not define any arithmetical
law of the real numbers. Husserl believed that, “if I expand an M0 to M,
then theM0 remains inM thus as structure still anM0. It is not thereby
modified in species” (Husserl [14], p. 456).

Notice that for Husserl, the broader domain must contain a copy of the
narrower one. The textual evidence for this is given in the first appendix
of his Doppelvortrag :

ME is to be an expansion of M0. Thus ME consists of the
elements ofM0 plus other elements. But that does not suffice.
TheM0 must be a part ofME . ME has a part that falls under
the concept M0. But that too is not sufficient. The expansion
to ME must not disturb M0 as that which it is, and above all
must not specialize it (Husserl [14], p. 454).

If a manifold is given to me as anM0, thenM is an expansion
of M0 if M0 undergoes no further “specialization” within M
(Husserl [14], p. 456).

Furthermore, in the Doppelvortrag he stated that every domain of num-
bers of a lower level is completely contained in the higher levels. When a
domain is contained in another one, Husserl explicitly speaks about “ex-
pansion” of the narrower domain or “contraction” of the broader one (see

14“The inference from the imaginary is permitted in the singular case or for a class,
if we can know in advance and can see that for this case or for this class the inference is
decided by the narrower system” (Husserl [14], p. 437).
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[14], p. 421). If every object a of a domain M must occur in N , and if
every operation f defined onM must be defined on N , then, Husserl says,
M is contained in N . The inclusion of the narrower domain as a part of
the broader one “is the presupposition for the possibility of the transition
through the Imaginary” (Husserl [14], p. 451).

This “presupposition” is also coherent with the construction of num-
bers. As it is well-known, the hierarchy of numbers is formally expressed as
N ⊂ Z ⊂ Q ⊂ R ⊂ C. However, these inclusions are an abuse of notation
because the set of integers is a quotient set of N × N; the set of rationals
is a quotient set of Z × Z∗; the set of real numbers is the set of all the
Dedekind cuts; and the set of complex numbers is the set R × R. Let me
briefly explain why the construction of numbers speaks in favor of Husserl’s
presupposition.

The inclusion N ⊂ Z really expresses the identification of N with Z+,
which means that there is an isomorphism between N and the subset Z+

of Z. Therefore, we can put into one-one correspondence every number
n of the naturals with every number [(n, 0)] of Z+. Likewise, Q contains
an ordered ring isomorphic to the ordered ring of the integers, and so on.
Every level of the hierarchy of numbers contains a copy of the previous
levels, which is mathematically indistinguishable from them. Hence, the
extension of the number-concept does not introduce new determinations
on the narrower domains, just as Husserl required.

5. Isomorphism and elementary equivalence

At the beginning of the Doppelvortrag, Husserl faces the problem of cal-
culating with those numbers which are “absurd” or “imaginary” from the
point of view of the original domain15. The main challenge, related to the
Principle of Permanence, was introduced next.

How is it to be explained that one can operate with the absurd
according to rules, and that, if the absurd is then eliminated
from the propositions, the propositions obtained are correct?
(Husserl [14], p. 433).

15“Imaginary objects = objects which do not occur in A, are not defined there, are not
established by means of the axioms and existential definitions of A, so that, therefore,
if we regard A as the axiom system of a domain which has no other axioms – and thus
also no other objects – those objects are in fact ‘impossible”’ (Husserl [14], p. 433).
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Before looking at this passage in detail, I want to call your atten-
tion to Husserl’s concept of “proposition’.” He argued that the equation
“7 + 5 = 12” is a proposition, which is correct iff its truth necessarily fol-
lows from the definitions of the numbers “7’,”‘ ‘5,” and “12,” and from
the definition of addition (see Husserl [14], p. 194). If we extend the
number-concept to solve the equation “7 + 5 + x = 0’,” then our domain
of numbers must include the number “−12,”, which is “absurd” from the
point of view of the naturals. But we still can single out propositions about
the old domain (i.e., equations without imaginary numbers). The question
is: Why correct propositions about natural numbers, such as “7 + 5 = 12”,
are still correct if we restrict a broader domain of numbers to the copy of
the naturals contained in such a domain?

Consider, for instance, the truth of the proposition “7 + 5 = 12” in the
domain of the positive integers. This proposition is true in both the nat-
ural numbers and the positive integers because the result of adding “7Z”
(the equivalence class representing the number “7”) to “5Z” (the equiva-
lence class representing the number “5”) is “12Z” (the equivalence class
representing the number “12”). Let h be the isomorphism between N and
Z+. More formally, we would say that “7 + 5 = 12” is true in the positive
integers, for the reason that h(7) + h(5) = h(7 + 5).

We only need to generalize these reflections on the preservation of truth
to arrive at the solution of the problem quoted above. True propositions
of a certain domain must also be true propositions of every isomorphic
domain. In contemporary model theory, the isomorphism theorem16 states
that, if there is an isomorphism between M and N , then every formula ϕ
satisfied by M will be satisfied by N . Thus, every n-tuple a1, ..., an of M
satisfies ϕ if h(a1, ..., an) satisfies ϕ. It also establishes that, if a term t
denotes an individual a inM, then its denotation in N will be h(a), where
h is the isomorphism from M to N .

Although many commentators have read Husserl’s Doppelvortrag
through the glasses of modern logic (see, for instance, da Silva [5], p. 1928),
he never proved an isomorphism theorem. Since the oldest theorem of
model theory is probably due to Löwenheim [16], it would be anachronistic
to look for such a proof in the Doppelvortrag. However, Husserl felt that
this kind of result could be actually achieved.

16See Manzano [20], pp. 68–69.
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The utilization of a broader system in order to bring forth
propositions of the narrower one can only be permitted if we
possess some characterizing mark by which we recognize that
every proposition that has a sense in the narrower domain also
is decided in the broader one, thus must be its consequence or
its contradictory (Husserl [14], p. 437; my emphasis).

I claim that this “characterizing mark” is the fact that the isomorphism
between M and N implies elementary equivalence. For instance, the or-
dered ring Q contains an ordered ring isomorphic (and hence elementarily
equivalent) to Z. It follows that every sentence that is true in the narrower
ring is also true in its copy contained in the broader ring. “The laws of
the expanded domain include those of the narrower one, but in such a way,
however, that for the old domain no new laws are established” (Husserl
[14], p. 457).

Let me conclude by pointing out the main difference between the other
readings of Husserl’s Doppelvortrag and my own approach. Whereas the
justification of the transition through the imaginary has usually been asso-
ciated with the preservation of the theorems of a (syntactically) complete
theory, I have argued that it is better understood as the preservation of
the true sentences of certain isomorphic domains (N and Z+, and so on).

6. Conclusions

This paper began with a discussion of the recent contributions to the debate
on Husserl’s two notions of “definiteness”. We saw that the interpretation
of (relative) definiteness as syntactic completeness seems unsatisfactory,
because it presupposes that every extension from T (the axiom system for
the narrower domain) to T ′ (the axiom system for the broader) must be
conservative. Furthermore, if T is complete, then proper extensions of T
will be inconsistent. On the other hand, the interpretation of (relative) def-
initeness as syntactic completeness is relative to a set of sentences flaws,
for the reason that certain provable sentences (from the axioms of the old
domain) are considered to be undecidable. Finally, the reading of definite-
ness as categoricity implying syntactic completeness (due to a pre-gödelian
predicament which is called “monomathematics”) is open to the same con-
ceptual difficulties.
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I claimed that the interpretation of absolute definiteness as semantic
completeness makes Husserl’s position more plausible. There are categori-
cal axiom systems for the natural numbers, the integers, and so on, which
are also semantically complete, as categoricity implies semantic complete-
ness. Semantic completeness is not such an uncommon phenomenon. How-
ever, this implication does not suffice to explain Husserl’s justification of
the “transition through the imaginary”. He remarks that the extension of
the number-concept must not induce any new determinations on the nar-
rower domains. This necessary condition has not been fairly emphasized
in the literature.

I offered textual evidence in favor of understanding this requirement as
the fact that the highest domains of the hierarchy of numbers contain a copy
of the previous levels. For instance, the set of the integers includes a subset
that is mathematically indistinguishable from the natural numbers (N ∼=
Z+). There is also an isomorphism from the integers to a certain subset
of the rationals, and so on. Every true sentence of N is a true sentence of
Z+ by the isomorphism theorem, which explains that true formulas about
the naturals are preserved if we restrict the integers to the positive ones.
Husserl never proved such a result, but the fact that isomorphism implies
elementary equivalence enabled me to explain his solution (definiteness +
a hierarchy of numbers containing the lowest levels) to the problem of
imaginary numbers.
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Deptartamento de Lingǘıstica, Lenguas Modernas,
Lógica y Filosof́ıa de la Ciencia
Madrid, Spain
e-mail: victor.aranda@uam.es

victor.aranda@uam.es




Bulletin of the Section of Logic
Volume 49/2 (2020), pp. 127–148

http://dx.doi.org/10.18778/0138-0680.2020.08

Christoph Benzmüller, David Fuenmayor

COMPUTER-SUPPORTED ANALYSIS OF POSITIVE
PROPERTIES, ULTRAFILTERS AND MODAL COLLAPSE
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Abstract

Three variants of Kurt Gödel’s ontological argument, proposed by Dana Scott,

C. Anthony Anderson and Melvin Fitting, are encoded and rigorously assessed

on the computer. In contrast to Scott’s version of Gödel’s argument the two

variants contributed by Anderson and Fitting avoid modal collapse. Although

they appear quite different on a cursory reading they are in fact closely related.

This has been revealed in the computer-supported formal analysis presented in

this article. Key to our formal analysis is the utilization of suitably adapted

notions of (modal) ultrafilters, and a careful distinction between extensions and

intensions of positive properties.

Keywords: Computational metaphysics, ontological argument, higher-order
modal logic, higher-order logic, automated reasoning, modal ultrafilters.

1. Introduction

The premises of the variant of the modal ontological argument [20] which
was found in Kurt Gödel’s “Nachlass” are inconsistent; this holds already
in base modal logic K [11, 9]. The premises of Scott’s [28] variant of Gödel’s
work, in contrast, are consistent [9, 11], but they imply the modal collapse,
ϕ→ 2ϕ, which has by many philosophers been considered an undesirable
side effect; cf. Sobel [30] and the references therein.1

1The modal collapse was already noted by Sobel [29, 30]. One might conclude from
it, that the premises of Gödel’s argument imply that everything is determined, or alter-
natively, that there is no free will. Srećko Kovač [25] argues that modal collapse was
eventually intended by Gödel.

http://dx.doi.org/10.18778/0138-0680.2020.08
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In this article we formally encode and analyze, starting with Scott’s
variant, two prominent further emendations of Gödel’s work both of which
successfully avoid modal collapse. These two variants have been con-
tributed by C. Anthony Anderson [1, 2] and Melvin Fitting [16], and on a
cursory reading they appear quite different. Our formal analysis, however,
shows that from a certain mathematical perspective they are in fact closely
related.

Two notions are particularly important in our analysis. From set the-
ory, resp. topology, we borrow and suitably adapt, for use in our modal
logic context, the notion of ultrafilter and apply it in two different ver-
sions to the set of positive properties. From the philosophy of language
we adopt the distinction between intensions and extensions of (positive)
properties. Such a distinction has been suggested already by Fitting in his
book “Types, Tableaus and Gödel’s God” [16], which we take as a starting
point in our formalization work.

Utilizing these notions, and extending Fitting’s analysis, the modi-
fications as introduced by Anderson and Fitting to Gödel’s concept of
positive properties are formally studied and compared. Our computer-
supported analysis, which is carried out in the proof assistant system Is-
abelle/HOL [27], is technically enabled by the universal logical reason-
ing approach [4], which exploits shallow semantical embeddings (SSEs) of
various logics of interest – such as intensional higher-order modal logics
(IHOML) in the present article – in Church’s simple type theory [5], aka.
classical higher-order logic (HOL). This approach enables the reuse of ex-
isting, interactive and automated, theorem proving technology for HOL to
mechanize also non-classical higher-order reasoning.

Some of the findings reported in this article have, at an abstract level,
already been summarized in the literature before [24, 6, 17], but they have
not been published in full detail yet (for example, the notions of “modal”
ultrafilters, as employed in our analysis, have not been made precise in
these papers). This is the contribution of this article.

In fact, we present and explain in detail the SSE of intensional higher-
order modal logic (IHOML) in HOL (§3.1), the encoding of different types
of modal filters and modal ultrafilters in HOL (§3.2), and finally the en-
coding and analysis of the three mentioned variants of Gödel’s ontological
argument in HOL utilizing the SSE approach (§4, §5 and §6). We start out
(§2) by pointing to related prior work and by outlining the SSE approach.
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2. Prior Work and the SSE Approach

The key ideas of the shallow semantical embedding (SSE) approach, as
relevant for the remainder of this article, are briefly outlined. This section is
intended to make the article sufficiently self-contained and to give references
to related prior work. The presentation in this section is taken and adapted
from a recently published related article [24, §1.1]; readers already familiar
with the SSE approach may simply skip it, and those who need further
details may consult further related documents [7, 4].

Earlier papers, cf. [4] and the references therein, focused on the de-
velopment of SSEs. These papers show that the standard translation
from propositional modal logic to first-order logic can be concisely mod-
eled (i.e., embedded) within higher-order theorem provers, so that the
modal operator 2, for example, can be explicitly defined by the λ-term
λϕ.λw.∀v.(Rwv → ϕv), where R denotes the accessibility relation asso-
ciated with 2. Then one can construct first-order formulas involving 2ϕ
and use them to represent and proof theorems. Thus, in an SSE, the target
logic is internally represented using higher-order constructs in a proof assis-
tant system such as Isabelle/HOL. The first author, in collaboration with
Paulson [7], developed an SSE that captures quantified extensions of modal
logic (and other non-classical logics). For example, if ∀x.φx is shorthand in
higher-order logic (HOL) for Π(λx.φx), then 2∀xPx would be represented
as 2Π′(λx.λw.Pxw), where Π′ stands for the λ-term λΦ.λw.Π(λx.Φxw),
and the 2 gets resolved as described above.

To see how these expressions can be resolved to produce the right rep-
resentation, consider the following series of reductions:

2∀xPx ≡ 2Π′(λx.λw.Pxw)
≡ 2((λΦ.λw.Π(λx.Φxw))(λx.λw.Pxw))
≡ 2(λw.Π(λx.(λx.λw.Pxw)xw))
≡ 2(λw.Π(λx.Pxw))
≡ (λϕ.λw.∀v.(Rwv → ϕv))(λw.Π(λx.Pxw))
≡ (λϕ.λw.Π(λv.Rwv → ϕv))(λw.Π(λx.Pxw))
≡ (λw.Π(λv.Rwv → (λw.Π(λx.Pxw))v))
≡ (λw.Π(λv.Rwv → Π(λx.Pxv)))
≡ (λw.∀v.Rwv → ∀x.Pxv)
≡ (λw.∀vx.Rwv → Pxv)

Thus, we end up with a representation of 2∀xPx in HOL. Of course, types
are assigned to each term of the HOL language. More precisely, in the
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SSE presented in Fig. 1, we will assign individual terms (such as variable
x above) the type e, and terms denoting worlds (such as variable w above)
the type i. From such base choices, all other types in the above presenta-
tion can be inferred. While types have been omitted above, they will often
be given in the remainder of this article.

The SSE technique provided a fruitful starting point for a natural en-
coding of Gödel’s ontological argument in second-order modal logics S5
and KB [9]. Initial studies investigated Gödel’s and Scott’s variants of
the argument within the higher-order automated theorem prover (hence-
forth ATP) LEO-II [8]. Subsequent work deepened these assessment stud-
ies [11, 12]. Instead of using LEO-II, these studies utilized the higher-order
proof assistant Isabelle/HOL, which is interactive and which also supports
strong proof automation. Some experiments were also conducted with the
proof assistant Coq [10]. Further work (see the references in [24, 4]) con-
tributed a range of similar studies on variants of the modal ontological
argument that have been proposed by Anderson [1], Anderson and Get-
tings [2], Hájek [21, 22, 23], Fitting [16], and Lowe [26]. Particularly rele-
vant for this article is some prior formalization work by the authors that
has been presented in [18, 17]. The use of ultrafilters to study the distinc-
tion between extensional and intensional positive properties in the variants
of Scott, Anderson and Fitting has first been mentioned in invited keynotes
presented at the AISSQ-2018 [6] and the FMSPh-2019 [3] conferences.

3. Further Preliminaries

The formal analysis in this article takes Fitting’s book [16] as a starting
point; see also [18, 17]. Fitting suggests to carefully distinguish between
intensions and extensions of positive properties in the context of Gödel’s
argument, and, in order to do so within a single framework, he introduces
a sufficiently expressive higher-order modal logic enhanced with means for
the explicit representation of intensional terms and their extensions, which
we have termed intensional higher-order modal logic (IHOML) in previous
work [17]. The SSE of IHOML in HOL, that we utilize in the remainder
of this article, is presented in §3.1. Notions of ultrafilters on sets of in-
tensions, resp. extensions, of (positive) properties are then introduced in
§3.2. Since we develop, explain and discuss our formal encodings directly
in Isabelle/HOL [27], some familiarity with this proof assistant and its
background logic HOL [5] is assumed.
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3.1. Intensional Higher-Order Modal Logic in HOL

An encoding of IHOML in Isabelle/HOL utilizing the SSE approach, is
presented in Fig. 1. It starts in line 3 with the declaration of two base
types in HOL as mentioned before: type i stands for possible worlds and
type e for entities/individuals. To keep the encoding concise some type
synonyms are introduced in lines 4–7, which we explain next.

δ and σ abbreviate the types of predicates e⇒bool and i⇒bool, re-
spectively. Terms of type δ represent (extensional) properties of individ-
uals. Terms of type σ can be seen to represent world-lifted propositions,
i.e., truth-sets in Kripke’s modal relational semantics [19]. Note that the
explicit transition from modal propositions to terms (truth-sets) of type σ
is a key aspect in SSE approach; see the literature [4] for further details. In
the remainder of this article we make use of phrases such as “world-lifted”
or “σ-type” terms to emphasize this conversion in the SSE approach.

τ , which abbreviates the type i⇒i⇒bool, stands for the type of ac-
cessibility relations in modal relational semantics, and γ, which stands for
e⇒σ, is the type of world-lifted, intensional properties.

In lines 8–32 in Fig. 1 the modal logic connectives are introduced. For
example, in line 15 we find the definition of the world-lifted ∨-connective
(which is of type σ⇒σ⇒σ; type information is given here explicitly after the
::-token for ‘mor’, which is the ASCII-denominator for the infix-operator
∨ as introduced in parenthesis shortly after). ϕσ ∨ψσ is defined as abbre-
viation for the truth-set λwi.ϕσwi ∨ ψσwi (i.e., ∨ is associated with the
lambda-term λϕσ.λψσ.λwi.ϕσwi ∨ ψσwi). In the remainder we generally
use bold-face symbols for world-lifted connectives (such as ∨) in order to
rigorously distinguish them from their ordinary counterparts (such as ∨)
in the meta-logic HOL.

The world-lifted ¬-connective is introduced in line 11, ⊥ and> in lines
9–10, and respective further abbreviations for conjunction, implication and
equivalence are given in lines 14, 16 and 17, respectively. The operators ⇁
and ⇁, introduced in lines 12 and 13, negate properties of types δ and γ,
respectively; these operations occur in the premises in the works of Scott,
Anderson and Fitting which govern the definition of positive properties.

As we see in Fig. 1, types can often be omitted in Isabelle/HOL due to
the system’s internal type inference mechanism. This feature is exploited
in our formalization to some extend to improve readability. However, for
all new abbreviations and definitions, we always explicitly declare the types
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Fig. 1. Shallow semantical embedding of IHOML in HOL.

of the freshly introduced symbols; this not only supports a better intuitive
understanding of these notions but also reduces the number of polymor-
phic terms in the formalization (since polymorphism may generally cause
decreased proof automation performance).
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The world-lifted modal 2-operator and the polymorphic, world-lifted
universal quantifier ∀, as already discussed in §2, are introduced in lines
31 and 19, respectively (the ’a in the type declaration for ∀ represents a
type variable). In line 20, user-friendly binder-notation for ∀ is additionally
defined. In addition to the (polymorphic) possibilist quantifiers, ∀ and ∃,
defined this way in lines 19–22, further actualist quantifiers, ∀E and ∃E ,
are introduced in lines 24–28; their definition is guarded by an explicit,
possibly empty, existsAt predicate, which encodes whether an individual
object actually “exists” at a particular given world, or not. These ad-
ditional actualist quantifiers are declared non-polymorphic, so that they
support quantification over individuals only. In the subsequent analysis of
the variants of Gödel’s argument, as contributed by Scott, Anderson and
Fitting, we will indeed use ∀ and ∃ for different types in the type hierarchy
of HOL, while keeping ∀E and ∃E for quantification over individuals only.

The notion of global validity of a world-lifted formula ψσ, denoted as
bψc, is introduced in line 34 as an abbreviation for ∀wi.ψw.

Note that an (intensional) base modal logic K is introduced in the
theory IHOML (Fig. 1). In later sections we will switch to logics KB and S5
by postulating respective conditions (symmetry, and additionally reflexivity
and transitivity) on the accessibility relation r.

In lines 35–46 some further abbreviations are declared, which address
the mediation between intensions and extensions of properties. World-lifted
propositions and intensional properties are modeled as terms of types σ
and γ respectively, i.e., they are technically handled in HOL as functions
over worlds whose extensions are obtained by applying them to a given
world w in context. The operation LϕM in line 37 is trivially converting
a world-independent proposition of Boolean type into a rigid world-lifted
proposition of type σ; the rigid world-lifted propositions obtained from this
trivial conversion have identical evaluations in all worlds.

The ↓-operator in line 40, which is of type (γ⇒σ)⇒γ⇒σ, is slightly
more involved. It evaluates its second argument, which is a property P of
type γ, for a given world w, and it then rigidly intensionalizes the obtained
extension of P in w. For technical reasons, however, ↓ is introduced as
a binary operator, with its first argument being a world-lifted predicate
ϕγ⇒σ that is being applied to the rigidly intensionalized ↓Pγ ; in fact, all
occurrences of the ↓-operator in our subsequent sections will have this
binary pattern.
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The lemma statement in line 41 confirms that intensional properties Pγ
are generally different from their rigidly intensionalized counterparts ↓Pγ :
Isabelle/HOL’s model finder Nitpick [14] generates a countermodel to the
claim that they are (Leibniz-)equal.

A related (non-bold) binary operator ↓, of type (δ⇒σ)⇒γ⇒σ, is in-
troduced in line 44. Its first argument is a predicate ϕδ⇒σ applicable to
extensions of properties, and its second argument is an intensional prop-
erty. The ↓-operator evaluates its second argument Pγ in a given world w,
thereby obtaining an extension ↓Pγ of type δ, and then it applies its first ar-
gument ϕδ⇒σ to this extension. The ↓1-operator is analogous, but its first
argument ϕ is now of type δ⇒γ, which can be understood as world-lifted
binary predicate whose first argument is of type δ and its second argument
of type e. The ↓1-operator evaluates the intensional argument Pγ , given
to it in second position, in a given world w, and it then applies ϕδ⇒(e⇒σ)
to the result of this operation and subsequently to its (unmodified) second
argument ze.

In line 48, consistency of the introduced concepts is confirmed by the
model finder Nitpick [14]. Since only abbreviations and no axioms have
been introduced so far, the consistency of the Isabelle/HOL theory IHOML

in Fig. 3.1 is actually evident.

3.2. Filters and Ultrafilters

Two related world-lifted notions of modal filters and modal ultrafilters are
defined in Fig. 2; for a general introduction to filters and ultrafilters we
refer to the corresponding mathematical literature (e.g. [15]).

δ-Ultrafilters are introduced in line 26 as world-lifted characteristic
functions of type (δ⇒σ)⇒σ. They thus denote σ-sets of σ-sets of objects
of type δ. In other words, a δ-Ultrafilter is a σ-subset of the σ-powerset of
δ-type property extensions.

A δ-Ultrafilter φ is defined as a δ-Filter satisfying an additional max-
imality condition: ∀ϕ.ϕ ∈δ φ ∨ (−1δϕ) ∈δ φ, where ∈δ is elementhood of
δ-type objects in σ-sets of δ-type objects (see line 4), and where −1δ is the
relative set complement operation on sets of entities (see line 14).

The notion of δ-Filter is introduced in lines 17 and 18. A δ-Filter φ is
required to

• be large: Uδ ∈δ φ, where Uδ denotes the full set of δ-type objects
we start with (see line 8),
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Fig. 2. Definition of δ/γ-Filters and δ/γ-Ultrafilters.

• exclude the empty set: ∅δ 6∈δ φ, where ∅δ is the world-lifted empty
set of δ-type objects (see line 6),

• be closed under supersets: ∀ϕψ.(ϕ ∈δ φ ∧ ϕ ⊆δ ψ)→ ψ ∈δ φ (the
world-lifted subset relation ⊆δ is defined in line 10), and

• be closed under intersections: ∀ϕψ.(ϕ ∈δ φ∧ψ ∈δ φ)→ (ϕuδψ) ∈δ
φ (the intersection operation uδ is defined in line 12).

γ-Ultrafilters, which are of type (γ⇒σ)⇒σ, are analogously defined as
a σ-subset of the σ-powerset of γ-type property extensions.

The distinction of both notions of ultrafilters is needed in our subse-
quent investigation. This is because we will rigorously distinguish between
positive property intensions (as used by Scott and Anderson) and positive
property extensions (as utilized by Fitting).

By using polymorphic definitions, several “duplications” of abbrevi-
ations in the theory ModalUltrafilter (Fig. 2) could be avoided. To
support a more precise understanding of δ- and γ-Ultrafilters, and their
differences, however, we have decided to be very transparent and explicit
regarding type information in the provided definitions.
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4. Scott’s Variant of Gödel’s Argument

Scott’s variant of Gödel’s argument has been reproduced by Fitting in his
book [16]. It is Fitting’s formalization of Scott’s variant that we have
encoded and verified first in our computer-supported analysis of positive
properties, ultrafilters and modal collapse. This encoding of Scott’s variant
is presented in Fig. 3 and its presentation is continued in Fig. 4.

Part I of the argument is reconstructed in lines 4-11 of Fig. 3 and ver-
ified with automated reasoning tools.2 In this part we conclude from the
premises and definitions (lines 5–8) that a Godlike being possibly exists
(theorem T3 in line 11): b3∃EGc; this follows from theorems T1 and T2
that are proved in lines 9 and 10. Note that, using binder notation, b3∃EGc
can be more intuitively presented as b3∃Ex.Gxc. The most essential def-
inition, the definition of property G, which is of type γ and which defines
a Godlike being xe to possess all (intensional!) positive properties P, is
given in line 5. Premises that govern the notion of (intensional) positive
properties P are A1 (which is split into A1a and A1b), A2 and A3; see lines
6–8. Scott [28] actually avoids axiom A3 and instead directly postulates
T2 (the sole purpose of A3 is to support T2). Although we here explicitly
include the inference from A3 to T2, it could also be left out without any
implications for the rest of the proof.

Part II of the argument is presented in lines 12–20. In line 13 we
switch from base modal logic K to logic KB by postulating symmetry
of the accessibility relation r. Utilizing the same tools as before, and by
exploiting theorems T3, T4 and T5, we finally prove, in line 20, the main
theorem T6, which states that a Godlike being necessarily exists: b2∃EGc,
resp. b2∃Ex.Gxc using binder notation.

Consistency of the Isabelle/HOL theory ScottVariant, as introduced
up to here, is confirmed by the model finder Nitpick [14] in line 21 (which
constructs a model with one world and one Godlike entity).

2The automated reasoning tools that are integrated with Isabelle/HOL, and which
we utilize in this article, include metis, smt, simp, blast, force, and auto. In fact,
in each case where those occur in the presented Isabelle/HOL formalizations, we have
actually first used a generic hammer-tool, called sledgehammer [13], which calls state-
of-the-art ATPs to prove the statements in question fully automatically and without
the need for specifying the particularly required premises; sledgehammer, in case of
success, subsequently attempts to reconstruct the external proofs reported by the ATPs
in Isabelle/HOL’s trusted kernel by applying the mentioned automated reasoning tools.
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Scott’s Axioms and Definitions

(df.G) Gx ≡ ∀Yγ .P Y → Y x
(A1a) ∀X.P(⇁X)→ ¬(PX) where ⇁ is set/predicate negation
(A1b) ∀X.¬(PX)→ P(⇁X)
(A2) ∀XY.(PX ∧ 2(∀Ez.Xz → Y z))→ P Y
(A3) ∀ZX.((∀Y.Z Y → P Y ) ∧ 2(∀x.Xx↔ (∀Y.Z Y → Y x)))→ PX
(A4) ∀X.PX → 2(PX)
(df.E) E Y x ≡ Y x ∧ (∀Z.Zx→ 2(∀Ez.Y z → Zz))
(df.NE) NE x ≡ ∀Y.E Y x→ 2∃E Y
(A5) P NE

Fig. 3. Scott’s variant of Gödel’s argument, following Fitting [16].

In lines 23–29 modal collapse is proved. This is one of the rare cases
in our experiments where direct proof automation with Isabelle/HOL’s
integrated automated reasoning tools (incl. sledgehammer [13]) still fails.
A little interactive help is needed here to show that modal collapse indeed
follows from the premises in Scott’s variant of Gödel’s argument.



138 Christoph Benzmüller, David Fuenmayor

Fig. 4. Ultrafilter-analysis of Scott’s variant (continued from Fig. 3).

For more background information and details on the formalization of
Scott’s argument, and also on the arguments by Anderson and Fitting as
presented in the following sections, we refer to Fitting’s book [16, §11] and
our previous work [17].

4.1. Positive Properties and Ultrafilters: Scott

Interesting findings regarding positive properties and ultrafilters in Scott’s
variant are revealed in Fig. 4.

Theorem U1, which is proved in lines 32–37, states that the set of
positive properties P in Scott’s variant constitutes a γ-Ultrafilter.

In line 38, a modified notion of positive properties P ′ is defined as the
set of properties ϕ whose rigidly intensionalized extensions ↓ϕ are in P.
It is then shown in theorem U2 (lines 39–44), that also P ′ constitutes a
γ-Ultrafilter. And theorem U3 in line 45 shows that these two sets, P and
P ′, are in fact equal.

In line 47 we switch from logic KB to logic S5 by postulating reflexiv-
ity and transitivity of the accessibility relation r in addition to symmetry
(line 13 in Fig. 3); and we show consistency again (line 48). In the re-
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maining lines 49–53 in Fig. 4 we show that the Barcan and the converse
Barcan formulas are valid for types e and γ; we use for the former type
actualist quantifiers (as in the argument) and for the latter type possibilist
quantifiers.

5. Anderson’s Variant of Gödel’s Argument

Anderson’s variant of Gödel’s argument is presented in Fig. 5.
A central change in comparison to Scott’s variant concerns Scott’s

premises A1a and A1b. Anderson drops A1b and only keeps A1a: “If
a property is positive, then its negation is not positive”. This modifi-
cation, however, has the effect that the necessary existence of a Godlike
being would no longer follow (and the reasoning tools in Isabelle/HOL can
confirm this; not shown here). Anderson’s variant therefore introduces fur-
ther emendations: it strengthens the notions of Godlikeness (in line 5) and
essence (in line 14). The emended notions, referred to by GA and EA, are
as follows:

GA An individual x is Godlike GA if and only if all and only the neces-
sary/essential properties of x are positive, i.e., GAx ≡ ∀Y (P Y ↔
2(Y x)).

EA A property Y is an essence EA of an individual x if and only if all of
x’s necessary/essential properties are entailed by Y and (conversely)
all properties entailed by Y are necessary/essential properties of x.

As is shown in lines 3–19, no further modifications are required to ensure
that the intended theorem T6, the necessary existence of a GA-like being,
can (again) be proved.3

In line 20, the model finder Nitpick confirms that modal collapse is
indeed countersatisfiable in Anderson’s variant of Gödel’s argument. As
expected, the reported countermodel consists of two worlds and one entity.

Consistency of theory AndersonVariant is confirmed by Nitpick in line
21, by finding a model with only one world and one entity (not shown).

3In a very stringent interpretation this statement is not entirely true: Theorem T2 in
Scott’s argument, which was derived in Fig. 3 from axiom A3 and the definition of G, is
now directly postulated here (for simplicity reasons) and axiom A3, which had no other
purpose besides supporting T2, is dropped. This simplification, however, is obviously
independent from the aspects as discussed.
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Anderson’s Axioms and Definitions

(df.GA) GA x ≡ ∀Yγ .P Y ↔ 2(Y x)
(A1a) ∀X.P(⇁X)→ ¬(PX) where ⇁ is set/predicate negation
(A2) ∀XY.(PX ∧ 2(∀Ez.Xz → Y z))→ P Y
(T2) P GA

(A4) ∀X.PX → 2(PX)
(df.EA) EA Y x ≡ ∀Z.2(Zx)↔ 2(∀Ez.Y z → Zz)
(df.NEA) NEA x ≡ ∀Y.EA Y x→ 2∃E Y
(A5) P NEA

Fig. 5. Anderson’s variant of Gödel’s argument, following Fitting [16].
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5.1. Positive Properties and Ultrafilters: Anderson

Regarding positive properties and ultrafilters an interesting difference to
our prior observations for Scott’s version is revealed by the automated
reasoning tools: the set of positive properties P in Anderson’s variant does
not constitute a γ-Ultrafilter; Nitpick finds a countermodel to statement U1
in line 23 that consists of two worlds and one entity. However, the modified
notion P ′, i.e., the set of all properties ϕ, whose rigidly intensionalized
extensions are in P (line 24), still is a γ-Ultrafilter; see theorem U2, which
is proved in lines 25–30. Consequently, the sets P and P ′ are not generally
equal anymore and Nitpick reports a countermodel for statement U3 in
line 31.

In lines 32–40, we once again switch from logic KB to logic S5, we
again show consistency, and we again analyze the Barcan and the converse
Barcan formulas for types e and γ. In contrast to before, the Barcan
and converse Barcan formulas for type e, when formulated with actualist
quantifiers, are not valid anymore; Nitpick presents countermodels with
two worlds and two entities.

6. Fitting’s Variant of Gödel’s Argument

In Fitting’s variant of Gödel’s Argument, see Fig. 6, the notion of posi-
tive properties P in the definition of Godlikeness G ranges over extensions
of properties, i.e., over terms of type δ, and not over γ-type intensional
properties as in Scott’s and Anderson’s variants. In Fitting’s understand-
ing, positive properties are thus fixed from world to world, while they
are world-dependent in Scott’s and Anderson’s. In technical terms, Scott
(resp. Gödel) defines Gx as ∀Yγ .PY → Y x (line 5 in Fig. 3), whereas Fit-
ting modifies this into ∀Yδ.PY → LY xM (line 5 in Fig. 6). In an analogous
way, the notion of essence is emended by Fitting: in Scott’s variant, see line
15 in Fig. 3, E Y x is defined as Y x ∧ (∀Z.Zx → 2(∀Ez.Y z → Zz)), while
it becomes LY xM ∧ (∀Z.LZxM → 2(∀Ez.LY zM → LZzM) in Fitting’s variant
(see line 15 in Fig. 6).

The definition of necessary existence NE in line 17 is adapted accord-
ingly, and in several other places of Fitting’s variant respective emendations
are required to suitably address his alternative interpretation of Gödel’s no-
tion of positive properties (see, e.g., theorem T2 in line 9 or axiom A5 in
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Fitting’s Axioms and Definitions

(df.G) Gx ≡ ∀Yδ.P Y → LY xM
(A1a) ∀X.P(⇁X)→ ¬(PX) where ⇁ is set/predicate negation
(A1b) ∀X.¬(PX)→ P(⇁X)
(A2) ∀XY.(PX ∧ 2(∀Ez.LXzM→ LY zM))→ P Y
(T2) P↓G
(df.E) E Y x ≡ LY xM ∧ (∀Z.LZxM→ 2(∀Ez.LY zM→ LZzM)
(df.NE) NE x ≡ ∀Y.E Y x→ 2(∃E z.LY zM)
(A5) P↓NE

Fig. 6. Fitting’s variant of Gödel’s argument.
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line 18). Fitting’s expressive logical system (IHOML) also allows us to dis-
tinguish between de dicto and de re readings of theorems T3, T5, and T6.
Except for the de dicto reading of T3, which has a countermodel with two
worlds and two entities, all of these statements are proved automatically
by the reasoning tools integrated with Isabelle/HOL.

As intended by Fitting, modal collapse is not provable anymore, which
can be seen in line 25, where Nitpick reports a countermodel with two
worlds and one entity.

Consistency of the Isabelle/HOL theory FittingVariant, as intro-
duced up to here, is confirmed by Nitpick in line 26 (one world, one entity).

6.1. Positive Properties and Ultrafilters: Fitting

The type of P has changed in Fitting’s variant from the prior γ⇒σ to δ⇒σ.
Hence, in our ultrafilter analysis, the notion of a γ-Ultrafilter no longer
applies and we must consult the corresponding notion of a δ-Ultrafilter.
Theorem U1, which is proved in lines 28–33 of Fig. 6, confirms that Fitting’s
emended notion of P indeed constitutes a δ-Ultrafilter.

In line 35 we again switch from modal logic KB to logic S5. Consis-
tency of the Isabelle/HOL theory FittingVariant in S5 is confirmed in
line 36, and countersatisfiability of modal collapse is reconfirmed in line 37.

Moreover, like for Anderson’s variant before, we get a countermodel
for the Barcan formula and the converse Barcan formula on type e, when
formulated with actualist quantifiers. The Barcan formula and its converse
are proved valid for type γ.

7. Conclusion

Anderson and Fitting both succeed in altering Gödel’s modal ontological
argument in such a way that the intended result, the necessary existence of
a Godlike being, is maintained while modal collapse is avoided. And both
solutions, from a cursory reading, are quite different.

We conclude by rephrasing in more precise, technical terms what has
been mentioned at abstract level already in the mentioned related arti-
cle [24, §2.3]:

In order to compare the argument variants by Scott, Anderson, and
Fitting, two notions of ultrafilters were formalized in Isabelle/HOL: A δ-
Ultrafilter, of type (δ⇒σ)⇒σ, is defined on the powerset of individuals,
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i.e., on the set of rigid properties, and a γ-Ultrafilter, which is of type
(δ⇒σ)⇒σ, is defined on the powerset of concepts, i.e., on the set of non-
rigid, world-dependent properties. In our formalizations of the variants,
a careful distinction was made between the original notion of a positive
property P that applies to (intensional) properties and a restricted notion
P ′ that applies to properties whose rigidified extensions are P-positive.
Using these definitions the following results were proved computationally:

• In Scott’s variant both P and P ′ coincide, and both are γ-Ultrafilters.

• In Anderson’s variant P and P ′ do not coincide, and only P ′, but not
P, is a γ-Ultrafilter.

• In Fitting’s variant, the P in the sense of Scott and Anderson is not
considered an appropriate notion. However, Fitting’s emended notion
of a positive property P, which applies to extensions of properties,
corresponds to our definition of P ′ in Scott’s and Anderson’s variants;
and, as was to be expected, Fitting’s emended notion of P constitutes
a δ-Ultrafilter.

The presented computational experiments thus reveal an intriguing corre-
spondence between the variants of the ontological argument by Anderson
and Fitting, which otherwise seem quite different. The variants of Ander-
son and Fitting require that only the restricted notion of a positive property
is an ultrafilter.

The notion of positive properties in Gödel’s ontological argument is
thus aligned with the mathematical notion of a (principal) modal ultrafil-
ter on intensional properties, and to avoid modal collapse it is sufficient to
restrict the modal ultrafilter-criterion to property extensions. In a sense,
the notion of Godlike being “Gx” of Gödel is thus in close correspondence
to the x-object in a principal modal ultrafilter “Fx” of positive proper-
ties. This appears interesting and relevant, since metaphysical existence
of a Godlike being is now linked to existence of an abstract object in a
mathematical theory.

Further research could look into a formal analysis of monotheism and
polytheism for the studied variants of Gödel’s ontological argument. We
conjecture that different notions of equality will eventually support both
views, and a respective formal exploration study could take Kordula
Świe

ι
torzecka’s related work [31] as a starting point.
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& hpt Verlagsgesellschaft mbH, Wien (2001), pp. 325–336.
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CANTOR ON INFINITESIMALS
HISTORICAL AND MODERN PERSPECTIVE

Abstract

In his 1887’s Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove

inconsistency of infinitesimals. We provide a detailed analysis of his argument

from both historical and mathematical perspective. We show that while his

historical analysis are questionable, the mathematical part of the argument is

false.

Keywords: Infinitesimals, infinite numbers, real numbers, hyperreals, ordi-
nal numbers, Conway numbers.

1. Introduction

It is well-known that Cantor praised Bolzano for developing the arithmetic
of proper-infinite numbers. The famous quotation reads:

“Bolzano is perhaps the only one for whom the proper-infinite numbers
are legitimate (at any rate, he speaks about them a great deal); but I
absolutely do not agree with the manner in which he handles them without
being able to give a correct definition, and I regard, for example, §§ 29–33
of that book [Paradoxien des Unendlichen] as unsupported and erroneous.
The author lacks two things necessary for a genuine grasp of the concept
of determinate-infinite number: both the general concept of power and the
precise concept of Anzahl”.1

∗The first author is supported by the National Science Centre, Poland grant
2018/31/B/HS1/03896.

1[?, p. 181] translated by W. Ewald [?, p. 895, note in square brackets added].
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Interestingly, the specified paragraphs of Paradoxien develop calculus
in a way that appeals to Euler’s 1748 Introductio in Analysin Infinitorum,
i.e., calculus that employs infinitely small and infinitely large numbers along
with the relation is infinitely close. Euler’s masterpiece was written in
Latin, then it was translated into French by J. B. Labey in 1796, and into
German by J. A. C. Michelsen in 1788–1791, another German translation by
H. Maser was released in 1885. It was arguably one of the most important
18th century mathematical treaties. But there are only two significant
references to [?] in Cantor’s Gesammelte Abhandlungen: [?] and [?]. They
deal with a specific issue raised by Euler in the section § 328 called De
partitione numerorum. Any other references to Euler are also of minor
importance. Furthermore, in Cantor’s Briefe [?] the name Euler occurs
twice, and, again, in very short remarks. Quite strange.

Cantor has never addressed Euler’s technique of infinite numbers as em-
ployed in determining infinite sums and products. Whether knowingly or
unknowingly, or just by correcting supposed errors, in [?] and [?] he inter-
prets Euler’s infinite operations within the framework of standard analysis,
albeit limits do not occur in [?]. In [?] he discusses infinitesimals through
distinction actual vs. potential infinity.2 Due to the theory of limits, devel-
oped, among others, by Cauchy – Cantor argues – the mistake of ascribing
them actual infinity had been fixed. The letter to Mittag-Leffler dated
March 3, 1883 contains a hint that Euler’s and Bolzano’s infinite sums are
inconsistent.3 Notes such as these as well as concerning infinitesimals are
scattered all throughout Cantor’s papers, however he has never developed
them into a thorough criticism. Instead, they attest Cantor’s aversion to
infinitesimals – an aversion based on prejudices rather than concrete argu-
ments.

As to Euler, in [?], the number line is explicitly revealed as consisting
of infinitesimals, infinitely large numbers, and assignable quantities, i.e.,
numbers representing line segments, while infinite numbers are viewed as
inverses of infinitesimals. In [?], infinitesimals and infinitely large num-
bers are employed to expand sinx and cosx functions into series, and then
to derive the famous formula eix = cosx + i sinx, to mention the most
spectacular achievements. Thus, Euler’s infinite numbers provide a ma-

2See [?, p. 410].
3See [?, p. 117–118]. Another reference to Euler occurs in the letter to Lipschitz

dated October 18, 1885 [?, p. 247]; it regards an arithmetic problem.
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chinery which enable crucial mathematical results. And yet, there are no
references to this technique neither in Cantor’s papers, nor in his letters.
Why then, instead of referring to the mathematical treatise that explic-
itly develops the analysis of infinity, does Cantor prefer to discuss ancient
Greek and medieval philosophers? Moreover, whereas his theory of infin-
ity is formal, his philosophical considerations explore distinctions that he
could never formalize, namely actual infinity vs. potential infinity. Instead,
Euler’s approach to infinity builds on the easily formalized opposition of
finite vs. non-finite that turned out to be equivalent to the Archimedean
vs. non-Archimedean opposition.

We believe that the following quotation is crucial when it comes to
understanding Cantor’s perspective:

“The fact of actual infinite numbers is thus so little ground for the existence
of actual infinitely small magnitudes that, on the contrary, the impossibility
of the latter can be proven with the former”.4

In fact, there are many similar declarations scattered throughout Can-
tor’s papers, showing that he considered infinitesimals as the most serious
rival of his theory of infinite numbers.

Cantor’s position is more understandable when we realize that he was
absolutely certain about his characterization of infinity being the only pos-
sible characterization. Similarly, he was absolutely certain there was only
one possible domain to develop the calculus.5 This no-alternative philos-
ophy, whether applied to infinity or to a domain of calculus, motivated
Cantor’s struggle with infinitesimals.

In his 1887 paper Mitteilungen zur Lehre von Transfiniten, Cantor goes
beyond declarations and seeks to prove that infinitesimals are inconsistent.
The general idea of his argument is this: Let ζ be a positive infinitesimal,
which, for him, means it fulfills the condition (∀n ∈ N)(ζ < 1

n ), then for
any infinite ordinal number ν the product ζ · ν is smaller than any finite
magnitude, in symbols

(∀n ∈ N)(ζ < 1
n )⇒ (∀ν ∈ Ord)(∀n ∈ N)(ζ · ν < 1

n ), (1.1)

where Ord stands for the class of ordinal numbers. In other words, provided
ζ is infinitesimal, every product ζ · ν is also infinitesimal. Hereinafter, we
will also refer to the more suggestive and equivalent version of (1), namely

4[?, p. 408], translated by P. Enrlich [?, p. 42].
5See [?, pp. 233–236].
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(∀n ∈ N)(ζ < 1
n )⇒ (∀ν ∈ Ord)(ζ · ν < 1). (1.2)

Cantor’s argument looks like a reductio ad absurdum proof, while the
supposed contradiction is to consist of the following statements: ζ is a linear
magnitude, ζ cannot be made finite through any actual infinite multiplica-
tion. Arguably, to get a real contradiction, Cantor’s argument requires
interpretation. One has to decide (a) what is the meaning of the term
linear magnitude, (b) what does the product ζ · ν mean.

In this paper, we will provide a detailed analysis of Cantor’s argument
and will argue that linear magnitude means real numbers. We will also
present some modern interpretations of the product ζ · ν that do not entail
the conclusion (∀ν ∈ Ord)(ζ · ν < 1).

2. Linear magnitude and Archimedean property

Provided that Cantor’s linear magnitude means positive real numbers, his
proof of the inconsistency of infinitesimals aims to show that the concept
of linear magnitude implies the Archimedean property.

Indeed, Cantor’s definition of infinitesimals is the same as the one
provided in Bolzano’s Paradoxien, §§ 10, 16; it is, in fact, the same def-
inition as the modern one. Cantor, thus, sought to show that no in-
finitesimal is a real number. From the modern, axiomatic perspective,
it is an obvious observation, as the completeness of the field of real num-
bers implies the Archimedean property, and the Archimedean property
excludes infinitesimals. In fact, Cantor’s reasoning in its full version in-
volves the Archimedean property and can be paraphrased as follows: Lin-
ear magnitude has the Archimedean property, while infinitesimals and the
Archimedean property are mutually exclusive.

However, the argument is not that simple, as Cantor adopts a specific
interpretation of what we nowadays consider to be the Archimedean axiom,
AA in short. Namely, he allows multiplications by any ordinal rather than
any natural number. More importantly, his characteristic of real numbers
differs from our modern one. In the 1872’s Über die Ausdehnung eines
Satzes der Theorie der trigonometrischen Reihen, he identified the com-
pleteness (continuity) of real numbers with a condition currently called
Cauchy completeness, CC in short. While nowadays we know that AA
does not follow from CC, this was not the case at the turn of the 19th and
20th century.



Cantor on Infinitesimals. Historical and Modern Perspective 153

In 1887, neither Cantor nor Dedekind were quite sure whether their
versions of continuity of real numbers were equivalent. It was partly be-
cause there was no obvious framework that would enable to establish or
dismiss the equivalence of Cantor’s and Dedekind’s versions. Adopting a
modern perspective, we can say that in [?] Cantor sought to characterize
continuum as an ordered field (R,+, ·, 0, 1, <), in [?] as a subset of the
metric space Rn, and in [?] as a totally ordered set (R, <). The Dedekind
cut principle does not apply to the subsets of metric space; in the context
of totally ordered sets, it does not provide unique characteristics (i.e. up
to isomorphism); in the framework of an ordered field, the cut principle
implies CC, yet not vice versa.6 As all these facts were not clear at the
time, it is no wonder Cantor objected whether the Dedekind cut principle
really reveals the “essence of continuity”.7 Basically – in our interpretation
– it can-not be applied in every context he considered continuum.

In modern mathematics, the concept of an ordered field provides such
a framework, yet the concept itself was introduced only in Hilbert’s 1899
Grundlagen der Geometrie. The first widely-known proof that complete-
ness of real numbers implies the Archimedean axiom was given in 1901 by
Otto Hölder; to this end, he applied the Dedekind cut version of complete-
ness, and the result was established for an ordered group. In 1900’s Über
den Zahlbegriff, Hilbert presents the continuity of real numbers in the form
of a conjunction: AA plus Axiom of Completeness; the second condition
could be paraphrased as follows: Real numbers are the biggest Archimedean
field. In 1932’s Anschauliche Geometrie, Hilbert characterized the conti-
nuity of real numbers as a conjunction of AA plus the condition, which he
named Cantor’s axiom, namely: If (An) is a descending sequence of closed
line segments, then

⋂∞
n=1An 6= ∅.

In fact, we can not determine who was the first to show that CC does
not imply AA. [?] proves that the field of Laurent series over real numbers
is a non-Archimedean, Cauchy-complete field. [?] shows that Levi-Civita
fields are non-Archimedean and Cauchy-complete. We can show that the
field of hyperreals is yet another example of a non-Archimedean, Cauchy-
complete field. Still, these are relatively recent results.

In what follows, next to Cantor’s construction of real numbers and
its accompanied characteristics of continuity, we will also discuss Cantor’s

6We develop these claims in section 7.
7The very phrase occurs in [?].
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topological characterization of linear magnitude given in [?], as well as his
characterization of real numbers in terms of total order given in [?]. None of
these characteristics implies the Archimedean property. Nevertheless, sug-
gestions that the line of real numbers (R, <) has the Archimedean property
permeated Cantor’s milieu.

Indeed, there were some earlier attempts to prove the Archimedean
property in the 19th century. The first one we know of was made by
Bolzano in his Reine Zahlenlehre; yet the paper was published posthu-
mously in 1962.8 In 1817’s Rein analytischer Beweis, he applied the seem-
ingly self-evident condition lim

n→∞
1
n = 0; nowadays we know that it is but

another version of the Archimedean axiom. In 1885’s Vorlesungen über all-
gemeine Arithmetik, Stolz sought to show that the Archimedean property
follows from the Dedekind cut principle; his proof, however, proceeded in
a geometrical framework. In the 1890’s Teoria delle grandezze, Bottazzi
proved that in the abelian group the Dedekind cut principle implies the
Archimedean property.9

Whether correct or not, they were attempts to derive the Archimedean
property from the Dedekind cut principle.10 Since Cantor could not decide
whether his account of continuum differs from that proposed by Dedekind,
it is no wonder he was seeking his own proof of the Archimedean property.
Moreover, he knew that in some contexts, e.g. in a theory of totally or-
dered sets, the Dedekind cut principle was insufficient to characterize real
numbers up to isomorphism. This could be the reason behind his search
for a genuine proof.

The rest of paper is as follows: in section 3 we present basic mathe-
matical facts concerning infinitesimals, the Archimedean axiom, continuity
and related issues. Then, in subsequent sections, we provide a detailed
analysis of chapter VI of [?] which includes Cantor’s inconsistency proof of
infinitesimals.

8See [?, § 69] and [?, § 74]. There is, however, an alternative interpretation of
these paragraphs to the effect that instead of proving the Archimedean property of real
numbers, Bolzano sought to show that his measurable numbers had the Archimedean
property, and to this end he assumed that real numbers had the Archimedean property.
Then, Bolzano’s measurable numbers are viewed as assignable hyperreal numbers.

9See [?, p. 80].
10[?] identifies flaws in Stolz’s 1885 proof. In fact, [?] provides a corrected version of

his 1885 proof. Still, the 1902 proof is incomplete.
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3. Basic Facts

A commutative field (F,+, ·, 0, 1) together with a total order< is an ordered
field when the sums and products are compatible with the order, that is

x < y ⇒ x+ z < y + z, x < y, 0 < z ⇒ xz < yz.

In any ordered field we define in a usual way an absolute value, |x|, and
a limit of sequence, lim

n→∞
an. Note, however, that while in real analysis the

formula ∀ε > 0 stands for ∀ε ∈ R+, in an ordered field (F,+, ·, 0, 1, <) it
means ∀ε ∈ F+.

The term n is defined by

n =df 1 + 1 + ...+ 1︸ ︷︷ ︸
n−times

,

while n
m =df n · m−1. On this basis we assume that any ordered field

includes natural numbers N and rational numbers Q.
We define the following subsets of F:

L = {x ∈ F : (∃n ∈ N)(|x| < n)},
A = {x ∈ F : (∃n ∈ N)( 1

n < |x| < n)},
Ψ = {x ∈ F : (∀n ∈ N)(|x| > n)},
Ω = {x ∈ F : (∀n ∈ N)(|x| < 1

n )}.

The elements of these sets are called limited, assignable, infinitely large,
and infinitely small numbers respectively. Here are some obvious relation-
ships between these kinds of elements, we will call them ΩΨ rules,

(∀x, y ∈ Ω)(x+ y ∈ Ω, xy ∈ Ω),
(∀x ∈ Ω)(∀y ∈ L)(xy ∈ Ω),
(∀x)(x ∈ A⇒ x−1 ∈ A),
(∀x 6= 0)(x ∈ Ω⇔ x−1 ∈ Ψ).

Referring to the set Ω, an equivalence relation is defined by

x ≈ y ⇔ x− y ∈ Ω.

We say that x is infinitely close to y, when the relation x ≈ y holds.
Although we present the above relations within the modern framework,

all of them were explicitly discussed in [?, ch. 3].
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3.1. Archimedean axiom

Here are some equivalent forms of the Archimedean axiom:

(A1) (∀x, y ∈ F)(∃n ∈ N)(0 < x < y ⇒ nx > y),
(A2) (∀x ∈ F)(∃n ∈ N)(n > x),
(A3) lim

n→∞
1
n = 0,

(A4) (∀x, y ∈ F)(∃q ∈ Q)(x < y ⇒ x < q < y),
(A5) For any Dedekind cut (A,B) of (F, <) obtains11

(∀n ∈ N)(∃a ∈ A)(∃b ∈ B)(b− a < 1
n ),

(A6) Ω = {0}.
Versions A1 and A2 are well-known, both in the mathematical as well

as the historical context. In calculus courses, A3 is usually presented as
a theorem rather than an axiom, however the Archmimedean axiom fol-
lows from some versions of the continuity of real numbers, or is explicitly
included in other versions (see section 3.2. below). A6 reveals that in
a non-Archimedean field the set of infinitesimals Ω contains at least one
positive element, say ε. Then, by ΩΨ rules, ε

n , as well as, n · ε are also
infinitesimals.

The versions A1 to A6 above are equivalent within the framework of
an ordered field while some of them, for instance A1, apply to an ordered
group (G,+, <). Then, the term nx is defined by

nx =df x+ x+ ...+ x︸ ︷︷ ︸
n−times

.

We can also apply versions A4 and A5, provided the concept of fraction
is interpretable in a group. Versions A3 and A6 involve the concept of an
absolute value. While the very definition makes sense in any ordered group,
some properties of the absolute value, such as |x · y| = |x| · |y|, require the
order to be compatible both with sums and products. Hence, these versions
need to be applied carefully.

At the end of the 19th century, a few non-Archimedean structures were
introduced, however they contained rather exotic mathematical entities
that provoked distrust.12 We present a non-Archimedean group made up

11For the remainder, a pair (A,B) of non-empty sets is a Dedekind cut of a totally
ordered set (X,<) iff: (1) A ∪B = X, (2) (∀x ∈ A)(∀y ∈ B)(x < y).

12[?] provides a thorough overview of these structures.
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of then well-known objects, namely complex numbers; the simplicity of the
model makes us wonder why it was not involved in the dispute concerning
infinitesimals.

Let (C,+, 0,≺) be the additive group of complex numbers with the
lexicographical order, i.e.,

a+ bi ≺ c+ di⇔ a < c ∨ (a = c, b < d).

The order is compatible with sums, although not with products. One
can easily show that 0 ≺ i ≺ 1, moreover, for every natural number n the
inequality ni ≺ 1 holds. The set {ri : r ∈ R} includes infinitesimals of
the group (C,+, 0,≺).13

3.2. Real numbers

The field of real numbers is a commutative ordered field (F,+, · , 0, 1, <) in
which every Dedekind cut (L,U) of (F, <) satisfies the following condition:

(∃x ∈ F)(∀y ∈ L)(∀z ∈ U)(y ≤ x ≤ z). (C1)

Throughout the paper, we consider the condition C1 the Dedekind cut
principle. Here are some other equivalent forms of C1:

(C2) If A ⊂ F is a nonempty set which is bounded above, then there exists
a ∈ F such that a = supA.

(C3) The field is Archimedean and every Cauchy (fundamental) sequence
(an) ⊂ F has a limit in F.

(C4) The field is Archimedean and if
{
An| n ∈ N

}
⊂ F is a family of

descending, closed line segments, then
⋂
n∈N

An 6= ∅.

Any equivalent form of C1 usually gets the name of continuity or com-
pleteness, and then the real numbers system is called the continuous or-
dered field or the complete ordered field. The version C2 is also known as
Dedekind completeness or the least upper bound (LUB) principle, whereas
the second part of C3 is called Cauchy completeness. Since Dedekind and
Cauchy completeness are not equivalent, we prefer to use more specific
names like Dedekind cut or LUB principle.

13[?] provides historical account of the Archimedean axiom, from Euclid and
Archimedes, through Heiberg’s edition of Greek text, to the 19th century theories of
magnitudes developed by Stolz, Weber, Hölder and others.
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The above definition is based on the so called categoricity theorem
which states that every two ordered fields that satisfy C1 are isomorphic.
In that sense, the field of real numbers is the unique complete ordered field.

When dealing with non-Archimedean fields, the following theorem is of
crucial importance: The field of real numbers is the biggest Archimedean
field, that is, for any Archimedean field (A,+, ·, 0, 1, <), there is a subfield of
the field of real numbers that is isomorphic to (A,+, ·, 0, 1, <). As a result,
any field extension of the system of real numbers is a non-Archimedean
field and includes infinitely many infinitesimal numbers. Below we present
such an extension, namely the field of hyperreals (R∗,+, ·, 0, 1, <∗).

One way to obtain hyperreals is by the ultrapower construction. Here
is a sketch of that approach.14 Let (R,+, ·, 0, 1, <) be the field of real
numbers, let U be a nonprincipal ultrafilter on N. The set R∗ is defined as
the quotient class of RN with respect to the following relation

(rn)≡(sn)⇔ {n ∈ N : rn = sn} ∈ U ,

thus, R∗ = RN/U . New sums and products are defined pointwise, while the
total order is defined by

[(rn)] <∗ [(sn)]⇔ {n ∈ N : rn < sn} ∈ U .

Hence, the product of hyperreal [(r1, r2, ...)] and [(s1, s2, ...)] gives [(r1 ·
s1, r2 · s2, ...)], and the relation [(r1, r2, ...)] <

∗ [(s1, s2, ...)] holds when, for
example, the set {n ∈ N : rn < sn} equals N minus some finite set (though
the definition of order <∗ also includes other cases).

Standard real number, r ∈ R, is represented by the class [(r, r, r, ...)],
i.e., the class of a constant sequence (r, r, r, ...). Owing to these definitions,
we employ the same symbols for real numbers in the standard and non-
standard context; we will also employ the same symbols for sums, products
and order relation in the standard and non-standard context.

The equivalence class of the sequence ( 1
n ), i.e., the hyperreal number

ε = [( 1
n )], is a model example of infinitesimal. As another infinitesimal,

let us consider a hyperreal δ represented by the sequence ( 1
n2 ), that is

δ = [( 1
n2 )]. It is easy to check that 0 < δ < ε.

To study products of infinitely small and infinitely large numbers, let
us define two infinite numbers,

14For details, see [?, ?].
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K = [(n)] = [(1, 2, 3, ...)], L = [(n2)] = [(1, 4, 9, ...)].

Since products are defined pointwise, we easily obtain the following
equalities

K · ε = 1, L · ε = K, K · δ = ε.

Although K and L are not Cantor’s ordinal numbers, these results un-
dermine the seemingly obvious supposition that the product of an infinitely
large and infinitely small number has to be infinitesimal regardless of the
framework. In fact, within the field of hypereals we can realize all three
options: the product can be an appreciable, infinitely large, or infinitely
small number.

As already mentioned, in his argument Cantor employs the specific
interpretation of the Archimedean property. Namely, instead of sums, he
allows for multiplications.15 Adopting that perspective, axiom A1 will take
the following form

(A1∗) (∀x, y ∈ R∗)(∃n ∈ N∗)(0 < x < y ⇒ n · x > y),

where the set of hypernatural numbers N∗ is defined by

N∗ = {[(nj)] ∈ R∗ : (nj) ∈ NN}.

The field of hyperreals is non-Archimedean in the sense of A1, yet it
is Archimedean in the sense of A1∗. Indeed, for any positive hyperreal
numbers x = [(r1, r2, r3, ...)], y = [(s1, s2, s3, ...)], due to the Archimedean
property of real numbers, there is a sequence of natural numbers (nj) such
that nj · rj > sj . Thus, the hypernatural number K defined by K = [(nj)]
is such that K · x > y.

Finally, let us note that the set of assignable hyperreals (A,+, <) is
Archimedean in the sense A1, A2, A5, and non-Archimedean in the sense
A4, while versions A3 and A6 do not apply to this structure; (A,+, <) is
not an ordered group, not to mention an ordered field. Therefore to deal
with the Archimedean property we need a broader algebraic context.

15Under some interpretations, Cantor’s term ζν stands for specific infinite sum; see [?].
Whether it is a product or infinite sum, Cantor’s interpretation differs from our modern
understanding of A1, as well as from the version of the Archimedean property introduced
by [?]; see section 6 below.
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4. Cantor’s proof

Cantor’s proof was presented in his letter to Goldscheider (Cantor, 13 May,
1887). Its crucial part was also included in the letter to Weierstrass (Can-
tor, 16 May, 1887). Then the former letter was made into section VI of
the paper [?]. Below, we present the Philip Ehrlich translation of [?, ch.
VI, pp. 406–409]; numerals 1–11 as well as some Greek and German words
in square brackets are added; to enhance the numbered sentences, we also
changed the setting of original sections.

“You mention in your letter the question of actual infinitely small magni-
tudes [Grössen]. At several places of my works you will find expressed the
opinion that this is impossible, i.e., they are self-contradictory in thought,
and I already implied in my work “Foundations of a General Theory of
Manifolds”, p. 8, §4, even though still with a certain reserve, that a rig-
orous proof of this position could be derived from the theory of transfinite
numbers. During this winter, the time was first found to express my ideas
on this subject in the form of a formal proof. It concerns the theorem:

[1] Non-zero linear numbers ζ (i.e., numbers which may be regarded as
bounded, continuous lengths of straight lines) which would be smaller than
each arbitrarily small finite number do not exist, i.e., they contradict the
concept of linear numbers.

The thought process of my proof is simply as follows:
[2] I proceed from the assumption of a linear magnitude [linearen Grös-

sen] ζ which is so small that its n-fold product ζ · n is less than unity for
each whole number, and prove from the concept of linear magnitude with
the help of certain propositions of transfinite number theory,

[3] that even when ν is an arbitrarily large transfinite ordinal (i.e., the
order type of a well-ordered set) ζ · ν is smaller than any finite magnitude
that is as small as you please.

[4] This means that ζ cannot be made finite through any actual infinite
multiplication [Vervielfachung], and is therefore certainly not an element
of finite magnitude.

[5] Thus, the assumption we made contradicts the concept of a linear
magnitude, which is of the sort that, according to it each linear magnitude
must be thought of as an integral part of another, in particular of finite
linear magnitude. So nothing is left but to let go of the assumption that
there is a magnitude ζ which for any finite whole number n would be smaller
than 1

n , and with this our proposition has been proven.
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It seems to me that this is an important application of the theory of
transfinite numbers, which is capable of pushing aside widespread
prejudices.

[6] The fact of actual infinite numbers is thus so little ground for the
existence of actual infinitely small magnitudes that, on the contrary, the
impossibility of the latter can be proven with the former.

[7] I also don’t believe that this result can be reached fully and strictly
in any other way.

[8] The need of our theorem is especially clear for the purpose of op-
posing the newer attempts of O. Stolz and P. Dubois-Reymond to de-
rive the legitimacy of actual infinitely small magnitudes from the so-called
“Archimedean axiom” (cf. O. Stolz, “Zur Geometrie der Alten, insbeson-
dere über ein Axiom des Archimedes” 1881–1882, 1883; “Die unendlich
kleinen Grössen” 1884; “Vorlesungen über allgemeine Arithmetik”, Part 1,
Leipzig 1885, p. 205).

[9] Archimedes appears to be the first to remark that, the assertion used
in Euclid’s Elements, where upon from any arbitrarily small line segment
can be produced through sufficiently large multiplication [Vervielfachung]
an arbitrarily large line segment, requires proof, and for that reason he
believed that this assertion should be called an “Assumption”.

[10] (Cf. Euclid’s Elements, Book V, Definition 4: Magnitudes are
said to have a ratio to one another which are capable, when multiplied
[πολλαπλασιαζόμενα], of exceeding one another; also, especially Elements,
Book X, Proposition 1, Archimedes’ The Sphere and Cylinder I, Postulate
5 and the Introduction to his work: The Quadrature of the Parabola).

[11] Now it is the reasoning of those authors (O. Stolz loc. cit.), that
if one deletes this supposed “axiom”, the permissibility of actual infinitely
small magnitudes, which are there called “moments”, would emerge.

[12] But if the above theorem of mine is applied to the continuous
straight line, the necessity of the Euclidean assumption immediately fol-
lows”.

5. Magnitudes and Archimedean property in Greek
mathematics

Cantor’s sentences [9] and [10] as well as the bracketed apposition in sen-
tence [1] explicitly refer to Greek mathematics, therefore we dedicate this
section to ancient versions of the Archimedean property.
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We start with a brief description of the interest in ancient mathematics
prevalent in the second half of the 19th century. In the 1880s, Johan L.
Heiberg published Archimedis opera Omnia [?] and then Euclid’s Elements
[?]. They are both arranged in the same format: Greek text and Latin
translation authored by Heiberg are provided alternately page by page.
For the mathematicians of that time, these were standard source books for
Greek understanding of magnitude. Cantor, Peano, and Hilbert cite them
when discussing Euclid and Archimedes. However, the reading of ancient
texts hinges upon a philosophical disposition. While, for instance, Hilbert’s
Grundlagen der Geometrie provides an interpretation of Euclid’s Elements,
Cantor’s comments on the Archimedean property and the concept of mag-
nitude reveal his Platonic propensity and belief that with new definitions,
he complements the Greek idea of continuum rather than introducing a
new concept. The 19th-century renaissance of Greek mathematics, specifi-
cally mathematicians’ interest in the concept of magnitude and the theory
of proportion, was initiated by German mathematician and historian Her-
mann Hankel. In 1874’s Zur Geschichte der Mathematik in Altertum und
Mittelalter, he developed modern formalizations of books V and VI of the
Elements, and his symbolic representations of Euclid schematic phrases
were then adopted in Heiberg’s Latin translation.16

We must also note Hermann Grassmann’s Lehrbuch der Arithmetik,
published 1861. It was the first monograph dedicated to totally ordered
groups. The idea of an order compatible with sums was employed in every
axiomatic characteristic of a magnitude of that time, whereas Dedekind
employed the idea of a total order compatible with sums and products in
his definition of rational and real numbers, as developed in [?].

5.1. Book V of Euclid’s Elements

The term linear number as it occurs in the sentence [1] refers to a closed line
segment. The bracketed original German phrase reads: d.h. kurz gesagt,
solche Zahlgrößen, welche sich unter dem Bilde begrenzter geradliniger
stetiger Strecken vorstellen lassen. Thus, linear numbers are to represent
– unter dem Bilde [. . . ] vorstellen lassen – closed line segments, the model
example of ancient Greek magnitudes.

16See [?, pp. 389–404].
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To elaborate, the general term μέγεθος covers line segments, triangles,
convex polygons, circles, solids, angles, and arcs of circles. We formalize
(write down in symbols) Euclid’s magnitudes of the same kind (line seg-
ments being of one kind, triangles being of another, etc.) as an additive
semigroup with a total order, (M,+, <), characterized by the following five
axioms:

E1 (∀x, y)(∃n ∈ N)(nx > y),

E2 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

E3 (∀x, y, z)(x < y ⇒ x+ z < y + z),

E4 (∀x)(∀n ∈ N)(∃y)(x = ny),

E5 (∀x, y, z)(∃v)(x : y :: z : v).

The total order, both in book V as well as throughout the Elements,
is a primitive notion characterized by transitivity and the trichotomy law.
Unlike modern mathematics, in Greek mathematics it is applied not only
to line segments, but to figures at all, e.g. in proposition I.6, triangles are
compared in terms of lesser-greater.

E1 is Euclid definition 4 of book V. The sign :: represents proportion
as provided in definition 5 of book V. The fact that Greek line segments
are closed segments is explicated in definition 3 of book I, which reads:
“And the extremities of a line are points”. Moreover, all throughout the
Elements, line segments are represented by their end-points, such as A, B,
whether in the text as AB, or on diagrams, when A, B stand next to in-
tersections of lines, or next to short vertical lines depicting the ends of
segments; for instance, all throughout book V magnitudes are represented
by line segments with short, bounding vertical lines.

To be clear, we do not suggest that Cantor based his argument on
such exegesis. Our point is that over the course of history, from ancient
to modern times, line segments were considered what we now call closed
line segments, i.e., segments with their ends. In the second half of the
19th century, when the idea of totally ordered sets was introduced, it made
distinguishing between closed and open line segments easy. These new
concepts launched the mathematical career of open segments.

Throughout the ages, essentially owing to Descartes and Euler, the
structure of Greek magnitudes (M,+, <) was transformed into an ordered
field (M,+, ·, 0, 1, <), and then, a number line. In the late 19th century,
the number line was turned into the continuous line of real numbers. In
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this way, Cantor’s sentence [12] refers to the 19th century characteristics
of real numbers, rather than the ancient Greek structure of line segments.

In translations, the Greek word μέγεθος has been rendered in Latin
as quantitas, in English as quantity or magnitude, in French – as quantité
or grandeur, in German – as Quantität, or Grösse. In the 20th century
mathematics, the term magnitude was slowly replaced with real numbers;
still, in the late 40s, Nicolas Bourbaki used the term grandeur meaning real
numbers.17 In [?], the term Zahlengrössen stands for what we consider to
be real numbers, while already in [?] the term reellen Zahlen occurs.18 [?]
defines real numbers as all rational and irrational numbers: aller reellen,
d.h. aller rationalen und irrationalen Zahlen.

In sentence [10], Cantor cites the Greek text of definition V.4, how-
ever, in sentences [4] and [9], he interprets the word πολλαπλασιασμός as
Vervielfachung (multiplication). Euclid’s πολλαπλασιασμός means multi-
plicity rather than multiplication. Whereas multiplicity of a magnitude x
means the reiterated addition of that magnitude, that is x+ ...+ x, there
was no multiplication of any kind in Greek geometry. Although the read-
ing nx = x + ... + x was standard at that time, Cantor adopted a specific
interpretation of the Archimdean property, namely, at first, instead of nx
he assumed n · x, then in the place of (∀n ∈ N), he allowed (∀ν ∈ Ord).

In section 3.2 above, we have shown that by the same kind of inter-
pretation, when instead of nx we take n · x, and then change the range
of the variable n from N to N∗, we reach the conclusion that the field of
hyperreal numbers is Archimedean in the modified sense A1∗, although it
is non-Archimedean in the standard sense A1.

5.2. Archimedean property

There are two versions of the Archimedean property in the Opera omnia
[?]. In the treaty On spiral lines, Archimedes applies Euclid’s version E1,
although he calls it Lemma. In On the sphere and cylinder, the Lemma
reads:

“Further, of unequal lines, unequal surfaces, and unequal solids, the greater
exceeds the lesser by such a magnitude, as when added to itself, can be

17See. [?].
18See Section 7 below.
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made to exceed any assigned magnitude among those which are comparable
with and one another”.19

We formalize it with the following formula:

LA (∀x, y, z)(∃n ∈ N)(x < y → n(y − x) > z).

This version is placed among four lemmas, such as e.g. the following
one:

“Of all lines which have the same extremities the straight line is the least”.20

Clearly, Archimedes could not prove his lemmas. In fact, there is no
mention throughout the treaty that any proof was needed at all. Yet, when,
in the Quadrature of the parabola he reiterates the LA version, he also adds
this comment:

“The earlier geometers have also used this lemma; for it is by the use of
this same lemma that they have shown that circles are to one another in
the duplicate ratio of their diameters, and that spheres are to one another
in the triplicate ratio of their diameters, and further that every pyramid is
one third part of the prism which has the same base with the pyramid and
equal height; also, that every cone is one third part of the cylinder having
the same base as the cone and equal height they proved by assuming a
certain lemma similar to that aforesaid. And, in the result, each of the
aforesaid theorems has been accepted no less than those proved without
the lemma”.21

The results mentioned in this passage are Euclid’s propositions XII.2,
XII.18, XII.7, and XII.10 respectively. Archimedes, thus, evokes the au-
thority of Euclid to justify his reference to LA. Cantor could have consid-
ered Archimedes’ restraint revealed in these lines when he wrote: “Archimedes
appears to be the first to remark that, the assertion used in Euclid’s Ele-
ments [. . . ] requires proof”.

Viewed from the mathematical perspective, there were no other ax-
ioms, lemmas or definitions in Greek mathematics allowing to deduce the
Archimedean property. Book V of the Elements encapsulates all Greek
science of magnitudes, while in our axiomatic account of the theory, E1 is
an independent axiom.

19[?, p. 4].
20[?, p. 3].
21[?, p. 234].
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Archimedes was the unsurpassed champion of the exhaustion method,
he also contributed to the foundations of mathematics by expanding the
scope of the concept of magnitude to curve lines and surfaces. Nevertheless,
he certainly did not seek to prove the LA lemma.

To sum up, Cantor’s note in sentence [9] on Archimedes’ will to prove
LA reflects his attitude towards the Archimedean property rather than
historical facts.

Finally, let us note that it was Stolz who coined the name Archimedean
axiom. He referred to the lemma as presented in On the sphere and cylin-
der and Quadratura of the parabola as a model version of the axiom.22 The
name prevailed in mathematics due to his often-cited books Vorlesungen
über Allgemeine Arithmetik and Theoretische Arithmetik. On the other
hand, Heiberg, in his comment on the Archimedean lemma, cites Euclid’s
definition V.4 and notes that these two are the same axiom.23 This com-
ment of Heiberg, it seems, confirmed the name Archimedean axiom for
Euclid’s definition V.4.

6. Theory of magnitudes in the late 19th century

In sentences [8] and [11] Cantor refers to Stolz’s idea of introducing non-
Archimedean numbers via axioms for magnitudes, while sentences [9] and
[10] contain comments on Archimedes and Euclid. In fact, it was Stolz who
confirmed mathematical studies of the concept of magnitude, as opposed to
historical studies. Although many names were involved in this process, we
present the mathematical extracts of the concept of magnitude as developed
in [?, ?, ?, ?, ?]. This is how the movement has been characterized by
Hölder’s 1901 [?]:

“The theory of measurable magnitudes was developed to a high level by
Euclid. Recently, it has been treated in depth from a number of different
points of view. Nevertheless, it seems that the theory has not been treated
exhaustively; further, errors and obscurities have appeared in some of the
more recent treatments. This is why I think that a reformulation of this
important and fundamental theory will be profitable”.24

22See [?, pp. 70, 332].
23See [?, p. 11].
24[?, p. 238]. It is an English translation of [?] by J. Mitchell.



Cantor on Infinitesimals. Historical and Modern Perspective 167

In a way, [?] finished and crowned these studies. In 1899, in the first
edition of his Grundlagen der Geometrie, Hilbert provided axioms for an
ordered field. Then, in [?], he provided the first ever axioms for real num-
bers. From that moment on, the mathematical studies of the concept of
magnitude were redirected to axioms for real numbers, the continuity axiom
specifically.

In what follows, we present symbolic accounts of the concept of mag-
nitude. To be clear, no one in the 19th century applied such symbols.
We decided on that form of presentation to clarify the mathematical back-
ground of Cantor’s considerations. The common feature of all of these
accounts was that the structure of magnitudes is a totally ordered, semi-
group M = (M,+, <) equipped with different axioms depending on the
author.25

6.1. Du Bois-Reymond, 1882/1887

B1 (∀x)(∃y, z)(y < x ∧ z > x),

B2 (∀x, y)(x+ y > x),

B3 (∀x)(∀n ∈ N)(∃y)x = ny),

B4 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

B5 (∀x, y, z)(x < y ⇒ x+ z < y + z),

B6 (∀x, y)(∃n ∈ N)(x ≤ y ⇒ nx ≥ y),

B7 (∀x, y)(∀n ∈ N)(∃z)(z < y ∧ x = nz).

6.2. Otto Stolz, 1885

S1 (∀x, y)(∃n ∈ N)(x < y ⇒ nx > y),

S2 (∀x, y)(∃!z)(x < y ⇒ x+ z = y),

S3 (∀x, y, z)(x < y ⇒ x+ z < y + z),

S4 (∀x, y)(x+ y > x),

S5 (∀x)(∀n ∈ N)(∃y)(x = ny).

6.3. Heinrich Weber, 1895

W1 (∀x, y)(∃n ∈ N)(nx > y),

25For details, see [?].
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W2 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

W3 (∀x, y)(x+ y > x),

W4 The order < is dense and for every Dedekind cut (A,B) of (M,<),
obtains
(∃z)(∀x ∈ A)(∀y ∈ B)(x ≤ z ≤ y).

6.4. Otto Hölder, 1901

Hölder clarifies the concept of addition by following axioms:

M ×M 3 (x, y) 7→ x+ y ∈M .

(∀x, y, z)[(x+ y) + z = x+ (y + z)].

Specifically, he does not assume the commutativity of addition. As regards
the order <, his only assumption is the so called trichotomy law, namely

For every two elements x, y, one and only one of the three possibilities
obtains: x < y ∨ x = y ∨ x > y.

Here are his axioms.

H1 (∀x)(∃y)(y < x),

H2 (∀x)(∀y)(x+ y > x ∧ x+ y > y),

H3 (∀x, y)(∃z, w)(x < y ⇒ (x+ z = y ∧ w + x = y)),

H4 For every Dedekind cut (A,B) of the set (M,<), obtains
(∃z)(∀x ∈ A)(∀y ∈ B)(x ≤ z ≤ y).

Hölder managed to show that axioms H1-H4 entail the transitivity of
the order <, the commutativity of addition, and above all, the Archimedean
property.

6.5. Non-Archimedean group

As we can see, Du Bois-Reymond, Stolz, and Weber explicitly assume the
Archimedean property. These are axioms B6, S1, and W1 respectively.
When adopting their perspective, rejection of the Archimedean property
does not imply inconsistency; we could say it would lead to a concept of a
non-Archimedean ordered group.

Yet, in sentence [12], Cantor claims: “if the above theorem of mine
is applied to the continuous straight line, the necessity of the Euclidean
assumption immediately follows”. These are Hölder’s results that could
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support this belief, rather than Cantor’s alleged theorem given in sen-
tence [3]. Instead of infinitesimals, “continuous straight line” proved to be
the key concept in these considerations. However, Cantor never adopted
Dedekind’s version of continuity.

7. Cantor’s continuum

Neither Cantor, nor Dedekind was quite sure whether their versions of con-
tinuity of real numbers were equivalent. It was partly because there were
no obvious framework that would enable to establish or dismiss the equiv-
alence of Cantor’s and Dedekind’s versions of continuity. While Dedekind
Cut Principle applies to totally ordered sets, Cantor sought for universal
formula which could be applied in any framework. In fact, he considered
an ordered field, a metric space and a totally ordered set. In each context,
he tried to apply his newly discovered idea of derived set, P ′.

Nevertheless, both Cantor and Dedekind developments had a clear ref-
erence object: Euclid’s geometrical line.

7.1. Cantor on the field of real numbers

In [?], real numbers are made up of fundamental sequences (Cauchy se-
quences). Cantor managed to define field operations as well as the total
order of real numbers. Dealing with numbers, he applies the concept of
sequence limit. From the perspective of the continuity of real numbers, the
following sentence is crucial:

“While domains B and A are so related, that although each a is assigned
to a certain b, but not each b can be assigned to a, it turns out that both
b can be assigned to a certain c, and each c can be assigned to a certain
b”.26

The phrase “each a is assigned to a certain b” means that each rational
number can be represented as a Cauchy sequence of rational numbers. The
phrase “not every b can be assigned to any a” means that the space of
rational numbers is not Cauchy-complete. The phrase “each c can be
assigned to a certain b” means that the space of real numbers is Cauchy-
complete. It could be rendered as follows: A′ = B, B′ = B, where prime

26([?, p. 95]. Letters a, b, c stand for elements of the sets A, B, C respectively.
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represents Cantor’s derivative set. Cantor does not prove any of these
claims and – as far as we know – never returned to this issue.

At the end of section § 1, Cantor declares that he develops the results
of Book X of Euclid Elements. Interestingly, while integers and ratio-
nal numbers are called Zahlen, for real numbers Cantor adopted the term
Zahlengrössen, which could mean numbers assigned to magnitudes.

In the next section, Cantor introduces his famous axiom relating real
numbers and geometric line. First, he shows how to assign for a point on
the straight line a real number. To this end, he determines a unit segment
and assumes that any point on the line is in a rational (rationales Verhält-
nis) or irrational (im andern Falle) ratio to the unit. Due to this very
assumption he is really in the heir to Euclid, specifically in his understand-
ing of commensurable and in-commensurable line segments as presented in
Book X of the Elements.27

Then Cantor writes:

“To make complete the relationship of the domain of number magnitudes
[Zahhlengrössen] defined in §1 with straight line geometry outlined in this §,
I should only add an axiom, which is simply the converse, to every number
magnitude there corresponds a definite point of the line whose coordinate
is equal to that number magnitude, and equal in the sense as explained
herein §. I call this statement an axiom, because it is in its nature that it
is not generally provable”.28

When points on the straight line and real numbers are identified, Cantor
continues to study subsets of the line. Within the geometrical context, he
prefers to apply the derivative set P ′ of a set P , rather than the concept
of sequence limit, as defined in an ordered field. In fact, to define P ′ one
only needs a structure of open line segments, thus the idea of P ′ can be
transferred to a totally ordered set (X,<).

7.2. Correspondence with Dedekind

In [?, § 3], Dedekind coined his cut principle as the “essence of continuity”.
The Preface mentions [?] and reads:

27In terms of the unit segment, Cantor belongs to the tradition which goes back to [?].
There was, of course, no universal unit segment in Greek mathematics.

28[?, p. 97]. As for the last sentence, both Cantor’s axioms turned out to be theorems
within the framework of axiomatic account of Euclid’s geometry; see [?, § 20] or [?, § 21].
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“After a hasty reading, it seems to me that the axiom given in Section
II of that paper (except for the form of presentation) agrees with what I
designate in Section III as the essence of continuity”.29

Dedekind seems never had a time to study Cantor’s paper in depth and
decide whether their axioms really agree.

In the letter to Dedekind dated May 17, 1887, Cantor raised the ob-
jection that the cut principle applies both to integers and to real numbers:
“this property also holds of the system of all integers”.30 In the Post Scrip-
tum, he reiterated his objection by writing:

“you lay special emphasis on IV [i.e. the cut principle] because this prop-
erty distinguishes the complete domain of numbers from the domain of all
rational numbers; however it seems to me for the above reasons that one
cannot give property IV the name essence of continuity”.31

On May 17, 1887, Dedekind replied: “you worry that my exclusive
stressing of IV as the property in which the essence of continuity is ex-
pressed could lead to misunderstanding. I do not share this concern”.32

Then he adds that the cut principle is the essence of continuity when ap-
plied to a dense total order.

Cantor refers to Dedekind’s reply in the first sentences of the letter
dated June 20, 1887. It reads:

“Thank you for your letter of 18 May. I completely agree with its contents;
and I acknowledge that the difference in our opinion of view was merely
external”.33

In the rest of the letter Cantor presents his proof to the effect subsets
of R2 can be in one-to-one relation with “continuous line”.34

The standard reading of that exchange is that Cantor simply misin-
terpreted Dedekind by applying the cut principle to a totally ordered set,
rather than to a densely ordered set. Nevertheless in [?, § 9], Dedekind’s

29[?, p. 767].
30[?, p. 852].
31[?, p. 852]. [?, § 2] provides a characteristic of the total order of rational numbers,

R in his notation, which we paraphrase as follows: I transitivity, II density, III every
rational number determines Dedekind cut of the set (R,<). The cut principle, the
condition IV, occurs in section § 3 called Continuity of the Straight Line.

32[?, p. 852].
33[?, p. 853].
34[?, p. 853].
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construction of real numbers was perfectly summarized. Thus, there was
no misinterpretation. The point is a philosophical question: the “essence of
continuity”. Doubts whether Dedekind’s cut principle provides a universal
characteristic of the continuum have been voiced already in [?, § 10]. In
fact, they have never been dispelled.

7.3. Cantor on continuum in metric space

[?, § 9] summaries some 19th century theories of real numbers, namely:
Weierstrass’, as developed in 1872’ Kossak Die Elemente der Arithmetik,
Dedekind’s, as developed in [?], and Cantor’s, as developed in [?].

[?, § 10] is dedicated to the continuum. Tracing back the history of
this concept, Cantor discusses ancient Greek and Medieval philosophers.
He believes that “the underlying idea has taken on different meanings”.
Therefore, his definition could be compared with, for instance, Aristotle’s
ex partibus sine fine divisibilibus.35 This very section initiated a branch of
point-set topology, namely continuum theory, that is the study of compact
and connected spaces. Yet Cantor’s own definition is a bit different.

According to Cantor, a subset T of the space Rn with Euclidean metric
is connected if for any of its points t0 and t0 and any positive real number
ε there are finitely many points t1, t2, ..., tn of T such that the distances
d(t0, t1), d(t1, t2), ..., d(tn, t

0) are all less than ε.
T is perfect if T = T ′, where

x ∈ T ′ ⇔ lim
n→∞

xn = x,

for some (xn) ⊂ Rn\{x}; convergence of a sequence is defined in the metric
space Rn. The latter condition is equivalent to the following assertion:
Every convergent series (tn) ⊂ T has a limit in T , and for every t ∈ T ,
there exists a sequence (tn) ⊂ T such that lim

n→∞
tn = t.

Then comes the famous definition:

“I therefore define a point-continuum inside Gn [Rn in our notation] as a
perfect-connected”.36

35It is a scholastic version of Aristotles characterization of magnitude (μέγεθος) as
provided in Physics, VI: divisible into divisibles that are infinitely divisible. It can
be show that Aristole’s definition is compatible with Euclid’s characteristic of a line
segment; see [?].

36See [?, pp. 903–906].
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Based on this definition, Cantor rebukes definition of the continuum
as given in [?, § 38] and Dedekind’s cut principle. He claims that non-
connected sets exemplify Bolzano’s definition.37 As for Dedekind, Cantor
writes:

“Likewise, it seems to me that in the article (Continuity and irrational
numbers) only another property of the continuum has been one-sidedly
emphasized, namely, that property which it has in common with all ‘perfect’
sets”.38

7.4. Order type of linear continuum (Linearkontinuum)

[?, § 11] provides the order type characteristic of the segment [0, 1] of
numbers (reellen Zahlen) with their natural order (ihrer natürlichen Ran-
gordung).39 Cantor proves that any linearly ordered set (X,<) with the
first and the last element, that is (1) perfect, and (2) contains a subset
A ⊂ X which is dense in (X,<) and of cardinality ℵ0 is isomorphic to the
set ([0, 1], <).

Since in 1883 Cantor interprets Dedekind Cut Principle as a property of
perfect set, in 1895 he could be certain that Dedekind Cut Principle did not
provide the “essence of continuity”. Nowadays we can support his belief by
a simple example. Namely, let X = [0, 1]× [0, 1], be the Cartesian product
of real numbers segments with lexicographical order. The set (X,<) is
continuous in terms of the cut principle, however, it is not a separable
space.

8. Modern account of the product ζ · ν

In this section, we firstly provide an alternative arithmetic for Cantor’s
sums and products of ordinal numbers. Then, we introduce a non-Archime-
dean field ONAG which includes the class of ordinal numbers, Ord. As the
field ONAG includes both ordinal and infinitesimal numbers, we can show
that Cantor hypothesis concerning products of ordinal and infinitesimal
numbers, as presented in sentence [3], fails.

37Indeed, Bolzano definition of the continuum boils to the fact that the continuum
has no isolated points.

38[?, p. 906].
39Cantor had never explained what natural order means in mathematical terms.
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8.1. Normal sums and products of ordinal numbers

Let us start with a remainder of the normal form theorem [?]: For every
ordinal number α ∈ Ord, there are ordinal numbers η1, . . . , ηh, and natural
numbers h, pi ∈ N such that

α = ωη1 · p1 + . . .+ ωηh · ph,
where η1 > . . . > ηh.

This representation of α is unique. Moreover, it is finite, due to the
assumption concerning the index h.

Based on this theorem, [?] introduced the so-called normal sums and
products of ordinal numbers. Namely, for

α = ωη1 · p1 + . . .+ ωηh · ph, β = ωη1 · q1 + . . .+ ωηh · qh
their normal sum +n and normal product ·n is defined by40

α+n β =df ωη1 · (p1 + q1) + . . .+ ωηh · (ph + qh)

α ·n β =df

∑
1≤i,j≤h

ωηi+nηj · piqj

Contrary to Cantor’s sums and products of ordinal numbers, normal
sums and products are commutative and compatible with the standard
order of ordinal numbers, that is

α+n β = β +n α, α ·n β = β ·n α,
α < β ⇒ α+n γ < β +n γ, α < β ⇒ α ·n γ < β ·n γ.

Thus, the structure (Ord,+n, ·n, 0, 1, <) is an abelian semigroup.
Hence, e.g. since ω = ω · 1 + 0, and 1 = ω · 0 + 1, we calculate the

normal sums of ω +n 1 and 1 +n ω as follows,

1 +n ω = (ω · 0 + 1) +n (ω · 1 + 0) = ω · (0 + 1) + 1 = ω + 1,

ω +n 1 = (ω · 1 + 0) +n (ω · 0 + 1) = ω · (1 + 0) + 1 = ω + 1.

Similarly, we calculate

2 ·n ω = (ω · 0 + 2) ·n (ω · 1 + 0) = ω2 · 0 + ω · 2 + 0 = ω · 2,
ω ·n 2 = (ω · 1 + 0) ·n (ω · 0 + 2) = ω2 · 0 + ω · 2 + 0 = ω · 2.

As is well known, in Cantor’s arithmetic the inequalities hold 1 + ω <
ω + 1, and 2 · ω < ω · 2.

40We assume for the use of the definition, that some pi or qi could equal 0.
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8.2. Conway numbers

[?, ?] introduces a very special non-Archimedean ordered field; it is usually
called the field of surreal numbers or in short ONAG (the acronym for on
numbers and games). In fact, [?] proves that (ONAG,+.·, 0, 1, <) is the
biggest non-Archimedean field.

While Conway develops his theory beyond the framework of the set
theory, [?] manages to rediscover surreal numbers in the set theory, and
provides a suggestive representation. Namely, a surreal number is a func-
tion a from an ordinal α into the set {+,−}, that is

a : α 7→ {+,−}.

Hence, every ordinal number α is represented by the α-length string of
pluses

α ∼ (+ + ...︸ ︷︷ ︸
α

).

To compare surreal numbers a,b in terms of lesser-greater, when α < β,
where α and β are domains of a,b respectively, we make up the sequence
a by 0s, to the sequence of β-length. Then, the total order a < b is defined
by lexicographical order, given

− < 0 < + .

For example,

(−−) < (−) < (−+) < (+) < (+ +−) < (++).

We can show that the field ONAG includes the structure (Ord,+n, ·n,
0, 1, <). Therefore, within the framework of surreal numbers, Cantor’s
ordinal numbers are subject to field operations. Next to the ordinal number
ω, in the field ONAG, there are also elements such as

−ω, ω − 1,
ω

2
,

1

ω
.

Due to Gonshor’s development, we can represent these numbers as follows

−ω = (−− ....︸ ︷︷ ︸
ω

),

ω − 1 = (+ + +...︸ ︷︷ ︸
ω

−),
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ω
2 = (+ + +...︸ ︷︷ ︸

ω

−−−...︸ ︷︷ ︸
ω

),

1
ω = (+−−− ...︸ ︷︷ ︸

ω

).

Since every infinite ordinal number α is an infinite element of the field
ONAG, i.e. it is an element of the class Ψ, as defined in section 3 above,
the element α−1 is infinitesimal. In this way, the field of surreal numbers
provides a framework to test Cantor’s hypothesis concerning the products
of infinitesimal and ordinal numbers.

8.3. Falsifying Cantor’s hypothesis

Sentence [3] includes the key mathematical part of Cantor’s argument, we
call it the Infinitesimals Hypotheses (IH): when ζ is infinitesimal and ν “is
an arbitrarily large transfinite ordinal [...] ζ · ν is smaller than any finite
magnitude”, in symbols

(∀ν ∈ Ord)(ζ · ν < 1). (IH)

Cantor had never defined the product of infinitesimal and ordinal num-
bers, especially he had never proved the claim IH. The framework of surreal
numbers enables, both make sense of the product ζ ·ν, and falsify the claim
IH.

For the falsification part, let ζ be a positive infinitesimal. Then ζ−1 ∈
Ψ, i.e. ζ−1 is infinitely large number in the field ONAG. Due to Gon-
shor’s representation of surreal numbers, we can find and ordinal number
α greater than ζ−1. By the standard rules of an ordered field, we have

ζ−1 < α⇒ α−1 < ζ.

Similarly, by the standard rules of an ordered field

α−1 < ζ ⇒ α−1 · α < ζ · α.

Hence, the product ζ ·α is greater than 1. In the same manner, we can
show that the product ζ · α2 is an infinite surreal number, as it is greater
than α. �
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żych 2

30-084 Cracow, Poland
e-mail: {piotr.blaszczyk,marlena.fila}@up.krakow.pl

http://dx.doi.org/10.1017/CBO9780511801174
http://dx.doi.org/10.2168/LMCS-7(2:6)2011




Bulletin of the Section of Logic
Volume 49/2 (2020), pp. 181–184

http://dx.doi.org/10.18778/0138-0680.2020.10

Zvonimir Šikić

COMPOUNDING OBJECTS

Abstract

We prove a characterization theorem for filters, proper filters and ultrafilters

which is a kind of converse of  Loś’s theorem. It is more natural than the usual

intuition of these terms as large sets of coordinates, which is actually unconvincing

in the case of ultrafilters. As a bonus, we get a very simple proof of  Loś’s theorem.

Keywords:  Loś’s theorem, converse of  Loś’s theorem, filter, proper filter,
ultrafilter.

One of the useful methods in formal sciences is the construction of com-
plex structures by compounding objects of simpler structures. For exam-
ple, by compounding real numbers in triples we construct (R3,+3, <3) from
(R,+, <). The operation +3 and the relation <3 are defined coordinate-
wise e.g. (2, 3, 1) +3 (1,−1, 0) = (3, 2, 1) and (2, 3, 1) <3 (3, 4, 2), but
we have to be aware that the total order < turns into the partial order
<3 (e.g. neither (2, 3, 1) <3 (3, 2, 1) nor (3, 2, 1) <3 (2, 3, 1)). The inter-
esting question is whether it is possible to construct a compound system
with the same 1-order properties as the systems it is compound of. In
this way we could construct nonstandard models of standard (intended)
structures. For example, by compounding standard PA structures of natu-
ral numbers we could get a nonstandard (non-isomorphic) model of stan-
dard PA. For the systems Si = (Si, . . . , ◦i, . . . , Ri, . . .), i ∈ J , we may al-
ways construct the compound system ΠSi = (ΠSi, . . . ,Π◦i, . . . ,ΠRi, . . .) =
(S, . . . , ◦, . . . , R, . . .), with sequences a = (a1, a2, a3, . . .), ai ∈ Si, as ele-
ments of S and operations o and relations R defined coordinate-wise:

http://dx.doi.org/10.18778/0138-0680.2020.10
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a ◦ b = (a1, a2, a3, . . .) ◦ (b1, b2, b3, . . .) = (a1 ◦1 b1, a2 ◦2 b2, a3 ◦3 b3, . . .)

aRb ≡ ∀i(aiRibi) i.e. aRb ≡ {i : aiRibi} = J

But, as we have already pointed out, the compound system will not
share the properties of the components (compare the totality of < and the
partiality of <3). It could share them if instead of

aRb ≡ (∀i)(aiRibi) ≡ {i : aiRibi} = J

we define
aRb ≡ (∀i)(aiRibi) ≡ {i : aiRibi} ∈ B

with some appropriate B. We may think of B as a family of “big”
subsets of J and of ∀ as meaning “for almost all”. It means that something
is true ∀i ∈ J if and only if it is true on a big subset of J . It was proved by
 Loś (in the famous  Loś ’s Theorem) that the appropriate “big” families are
ultrafilters. Here we want to prove a kind of converse which is the following
characterization theorem for filters, proper filters and ultrafilters:

Theorem 1 (Characterization theorem).

(i) The equality in the compound system, defined by a = b ≡ {i : ai =
bi} ∈ B, is an equivalence relation if and only if B is a filter. More-
over, the equivalence relation is then a congruence i.e. if a = a∗ and
b = b∗ then a ◦ b = a∗ ◦ b∗.

(ii) The equality a = b ≡ {i : ai = bi} ∈ B is an equivalence relation
and obeys the principle of contradiction i.e. ¬((a = b) ∧ (a 6= b)) if
and only if B is a proper filter, where a 6= b if {i : ai 6= bi} ∈ B.
Furthermore, compound relations defined by aRb ≡ {i : aiRibi} ∈ B
then obey the principle of contradiction too i.e. ¬((aRb) ∧ (aR̂b)),
where aR̂b if {i : aiR̂ibi} ∈ B.

(iii) The equality a = b ≡ {i : ai = bi} ∈ B is an equivalence relation,
satisfies the principle of contradiction and obeys the principle of ex-
cluded middle i.e. (a = b) ∨ (a 6= b) if and only if B is an ultrafilter.
Furthermore, compound relations defined by aRb ≡ {i : aiRibi} ∈ B
then obey the principle of excluded middle too i.e. (aRb) ∨ (aR̂b).

From the characterization theorem it easily follows that ∀ distributes
through every truth-functional connective. Namely, if Xi and Yi are for-
mulae evaluated in the component Si, we have the following:
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Corollary 1.

1. (∀i)(Xi ∧ Yi) ≡ (∀i)Xi ∧ (∀i)Yi

2. (∀i)(¬Xi) ≡ ¬(∀i)Xi

Note that ∀ satisfies (1) but does not satisfy (2). Using this corollary
and the process of Skolemization, it is easy to prove  Loś’s Theorem.

Theorem 2 ( Loś’s Theorem). For every 1-order formula F, S |= F if and
only if (∀i)Si |= Fi, where every operation symbol ◦ and every relation
symbol R in F is replaced by the corresponding operation symbol ◦i and the
corresponding relation symbol Ri in Fi.

Proof of the characterization theorem: In what follows X = {i :
ai = bi}, Y = {i : bi = ci} and Z = {i : ai = ci}.
Proof of (i):

a = a if and only if {i : ai = ai} = J∈B

a = b ∧ b = c→ a = c if and only if X∈B ∧ Y ∈B → X ∩ Y ⊂ Z∈B if and
only if (X∈B ∧ Y ∈B → X ∩ Y ∈B) ∧ (Z∈B ∧ Z ⊂ U → U∈B).

But J ∈ B, (X∈B ∧ Y ∈B → X ∩ Y ∈B) and (Z∈B ∧ Z ⊂ U → U∈B)
define a filter. Furthermore, if a = a∗ ∧ b = b∗ then {i : ai = a∗i } ∈ B and
{i : bi = b∗i } ∈ B and it follows that {i : ai ◦ bi = a∗i ◦ b∗i } ∈ B because
{i : ai = a∗i } ∩ {i : bi = b∗i } ⊂ {i : ai ◦ bi = a∗i ◦ b∗i }. �

Proof of (ii):
¬((a = b)∧ (a 6= b)) if and only if ¬(X∈B∧Xc∈B) i.e. Xc∈B → ¬(X∈B)
i.e. the filter is proper. Furthermore, then ¬((aRb) ∧ ¬(aRb)) for every R
because ¬(X∈B ∧Xc∈B) for every X. �

Proof of (iii):
(a = b)∨(a 6= b) if and only if X∈B∨Xc∈B i.e. ¬(X∈B)→ Xc∈B i.e. the
filter is ultrafilter. Furthermore, then (aRb) ∨ ¬(aRb) for every R because
¬X ∈ B → Xc ∈ B for every X. �

Proof of the corollary: (1) is evidently true and (2) follows from
¬(X ∈ B)↔ Xc ∈ B. �

Proof of the  Loś’s theorem: For atomic formulae F , “S |= F if and
only if (∀i)Si |= Fi” is the definition of |=. For truth functional F we
have to prove that ∀ distributes through truth functional connectives and
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this follows from the corollary. For quantified F = ∃xG: S |=v ∃xG
means (∃a)S |=v(a/x) G. By induction S |=v(a/x) G↔ (∀i)Si |=vi(ai/x) Gi.
By skolemization (∃a)(∀i)Si |=vi(ai/x) Gi ↔ (∀i)(∃a)Si |=vi(ai/x) Gi. By
definition of |= this is equivalent to (∀i)Si |=vi

∃xGi. �
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Urszula Wybraniec-Skardowska

WHAT IS THE SENSE IN LOGIC
AND PHILOSOPHY OF LANGUAGE?1

Abstract

In the paper, various notions of the logical semiotic sense of linguistic

expressions – namely, syntactic and semantic, intensional and extensional – are

considered and formalised on the basis of a formal-logical conception of any lan-

guage L characterised categorially in the spirit of certain Husserl’s ideas of pure

grammar, Leśniewski-Ajdukiewicz’s theory of syntactic/semantic categories and,

in accordance with Frege’s ontological canons, Bocheński’s and some of Suszko’s

ideas of language adequacy of expressions of L. The adequacy ensures their un-

ambiguous syntactic and semantic senses and mutual, syntactic and semantic

correspondence guaranteed by the acceptance of a postulate of categorial com-

patibility of syntactic and semantic (extensional and intensional) categories of

expressions of L. This postulate defines the unification of these three logical

senses. There are three principles of compositionality which follow from this

postulate: one syntactic and two semantic ones already known to Frege. They

are treated as conditions of homomorphism of partial algebra of L into algebraic

models of L: syntactic, intensional and extensional. In the paper, they are ap-

plied to some expressions with quantifiers. Language adequacy connected with

the logical senses described in the logical conception of language L is, obviously,

an idealisation. The syntactic and semantic unambiguity of its expressions is not,

of course, a feature of natural languages, but every syntactically and semantically

ambiguous expression of such languages may be treated as a schema representing

all of its interpretations that are unambiguous expressions.

1The paper was delivered at the conference ,,Formal Methods and Science in Philos-
ophy III” at Inter-University Centre, Dubrovnik, Croatia, April 11–13, 2019. It is based
on results presented in the author’s papers [65, 66].
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1. Introduction

The word ‘sense’ has many meanings, and it appeals to us in many ways.
On the basis of philosophy (and/or theology), it is for centuries that we have
been trying to grasp and understand what the sense of our life is; likewise
the sense of existence, the sense of our action and endeavour, and what the
sense of the world is in general. From the point of view of philosophy, there
are various visions and many theories regarding the sense of the world, the
sense of life, our actions, etc. To discover their rational justifications, logical
knowledge is needed, but, obviously, it is not enough. This philosophical
meaning of the word ‘sense’ must clearly be distinguished from the logical,
semiotic one. In the philosophical meaning, the word ‘sense’ is used as a
certain property of extra-linguistic objects when it is said that something
has or does not have sense, while referring to such objects. It derives from
the basic, logical and semiotic meaning of this word, the meaning referring
to linguistic objects, verbal signs. It should be noted, however, that it is
not only the non-semiotic, but also the semiotic usage of the word ‘sense’
that is homogenous. Thus, one can speak of many notions of sense.

In this paper, we would like to characterise and formalise various no-
tions of the logical and philosophical sense of linguistic expressions; from
the viewpoint of logic, only these notions of sense can be of interest to us.
The contemporary logic, logic of language (logical semiotics) can define the
semiotic sense, logical sense strictly with regards to some general aspects of
developing the cognition of the world and, at the same time, contributing
to an explication of one of the most important traditional philosophical
problems: Language adequacy of our knowledge in relation to cognition of
reality, or, briefly: language adequacy. It is connected with the mutual rela-
tions between the three elements of the triad, reality–knowledge–language,
and an adequate reflection of fragments of reality via expressions of lan-
guage and inter-subjective knowledge of these fragments [67].



What Is the Sense in Logic and Philosophy of Language? 187

The above-mentioned adequacy requires, first of all, syntactic and se-
mantic characterisation of language expressions as generalised by a gram-
mar [57, 66]. Languages structured by grammar and logic are important
tools of thinking, cognition of reality and knowledge acquisition, which
stand for the foundations of our sense of existence [43]. In modern logic
and philosophy of language, an approach based on Frege functions. It is
implemented by the trend of formal and logical reflection on language and
Fregean senses.

Logical sense, in its different variants, is considered and formalised on
the basis of the conception of formalisation of language L, which is sketched
below. The syntactic sense of these expressions is defined on the basis of
language syntax and semantic senses – on the basis of bi-level language
semantic: intensional and extensional.

From the logical point of view, the three notions of the sense of expres-
sions of language L are understood as follows [62, 68] (see Fig. 1):

• syntactic sense is found in expressions of L which are well-formed; it
is their essence; it is defined in the syntax of L, and-in accordance
with Carnap’s distinction, intension-extension [21], or Frege’s differ-
entiation, Sinn-Bedeutung [23]–two kinds of semantic sense:

• intensional sense is proper to the expressions of L which have
a meaning, intension; it is defined in intensional semantics of L,

• extensional sense is proper to the expressions of L which have a
denotation, extension; it is defined in extensional semantics of L.

The syntactic and semantic notions of sense must be differentiated and
explicated. This is possible through a conceptualisation of these notions
that will lead to a formal-logical theory of syntax and semantics of language
L, which specifies and describes these notions.

There are different points of view on the grammar of language, its
syntax and semantics. In the paper, any language L, its syntax and bi-
level semantic: intensional and extensional, is characterised and formalised
categorially in the spirit of some ideas of Husserl (see [30]) and Leśniewski-
Ajdukiewicz’s theory of syntactic/semantic categories [3, 4, 36, 37], in ac-
cordance with Frege’s ontological canons [21], Bocheński’s motto, syntax
mirrors ontology [13], and some ideas of Suszko: language should be a
linguistic scheme of ontological reality and simultaneously a tool of its cog-
nition [50, 51, 52, 53].
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Fig. 1. Three notions of linguistic sense: essence, intension, extension.

2. Main ideas of the formalisation of categorial
language L

Categorial language L is defined if the set S of all well-formed expressions
(wfes) of L is determined. These expressions must satisfy the requirements
of categorial syntax and categorial semantics. The categorial syntax is
connected with generating the set S by the classical categorial grammar,
the idea of which originated from Ajdukiewicz [3, 4] under the influence
of Leśniewski’s theory of semantic (syntactic) categories in his systems of
protothetics and ontology [36, 37], under Husserl’s ideas of pure grammar
(see [30]), and under the influence of Russel’s theory of logical types. The
notion of categorial grammar was shaped by Bar-Hillel (see [6, 7, 8]) and
developed by Lambek, Montague, Cresswell, Buszkowski, Marciszewski,
Simons, Ta lasiewicz and others [14, 15, 16, 17, 18, 19, 20, 21, 34, 35, 38,
39, 40, 45, 46, 52].The first formalisation of languages generated by the
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aforementioned classical categorial grammar, the notion introduced and
explicated by Buszkowski was presented in the author’s book in Polish [55]
and its English translation, as well as some extension [56] (see also [63]).

In the categorial approach to language L, wfes of S should belong to ap-
propriate syntactic categories. A characteristic feature of categorial syntax
is that each composed wfe of the set S has a functor-argument structure,
so that it is possible to distinguish in it the main part (the so-called main
functor) and the other parts (called arguments of this functor), yet each
constituent of the wfe has a determined syntactic category. Categorial in-
tensional and extensional semantics is connected with meaning and denota-
tion of wfes of S and with their membership in appropriate semantic cate-
gories: intensional and extensional, respectively (see [25, 61, 63, 64, 65, 66]).
Each constituent of the composed wfe has a determined semantic (inten-
sional and extensional) category, can have a meaning (intension) assigned
to it, and thus also a category of knowledge (the category of constituents
of knowledge) and also denotation (extension), and thus – an ontological
category (the category of ontological objects).

The meanings (intensions) of wfes of L are treated as certain con-
stituents of inter-subjective knowledge: logical concepts, logical judgments,
operations on such notions or judgments, on the former and the latter, on
other operations.

Object references (references) of wfes of L, and also constituents of
knowledge, are objects of the cognised reality: individuals (concretes or
abstract), states of things, operation on the indicated objects, and the
like. Denotations (extensions) of wfes of L and constituents of knowledge
are sets of such objects. The compatibility of these denotations is called
semantic compatibility of L.

3. General assumption concerning the logical sense of
expressions of language L

In the logical conception of language L and the semiotic senses outlined
in the paper, expressions of L have syntactic, intensional and extensional
senses and satisfy some general conditions of the logical sense of these
expressions. Baseline conditions apply to syntactic and semantic unambi-
guity expressions of language L and the subsequent – relate to categorial
compatibility and structural compatibility.
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3.1. Syntactic and semantic unambiguity

The starting point is the syntactic and semantic unambiguity of the lan-
guage expressions of language L. They should be:

• syntactically coherent and wfes of the set S (its essences),

• structurally unambiguous: have one syntactic sense (essence), i.e. do
not contain amphiboly and have the one mentioned functor-argument
structure,

• semantically unambiguous: have one intension and one extension,
thus, one meaning and one denotation.

Remark 1. Syntactic and semantic unambiguity is not, of course, a fea-
ture of natural languages and not often of languages of non-exact sciences,
but every syntactically and semantically ambiguous expression of these
languages may be treated as a schema representing all of its interpreta-
tions that are unambiguous expressions (with exactly one syntactic and/or
semantic sense) and which serve for an adequate description of specified
fragments of reality.

For example, the sentence:

Teachers are tired because they teach students in various schools and they
have a lot of them.

is structurally ambiguous (contains amphiboly), but it can be treated as a
schema of two unambiguous sentences:

Teachers are tired because they teach students in various schools and they
have a lot of students.

and

Teachers are tired because they teach students in various schools and they
have a lot of schools.

On the other hand, the structurally unambiguous sentences

I came back tomorrow on foot on the colourful black-and-white train of
25:66.

She laughed with sweet tears which fell weightlessly onto the ceiling.

have no meaning or intensional and extensional sense; they are semantic
nonsense.
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In the categorial approach to language L, generated by the classical
categorial grammar, a categorial index (type) i(e) of a certain set T of types
is unambiguously assigned to every wfe e of the set S, and every composed
wfe of S has the functor-argument structure. Categorial indices (types)
were introduced into logical semiotics by Ajdukiewicz [3] with the goal of
determining the syntactic role of expressions and to examine their syntactic
connection, in compliance with the principle of syntactic connection (Sc)
which, in a free formulation, says that:
(Sc) The categorial type of the main functor of each functor-argument ex-
pression of language L is formed out of the categorial type of the expression
which the functor forms together with its arguments, as well as out of the
subsequent types’ arguments of this functor.

Every functor-argument expression e of L can be written in a functional-
argument form as follows:

e = f(e1, e2, . . . , en), (e)

where f is the main functor of e and e1, e2, . . . , en are its subsequent ar-
guments. Then, assuming that t is the type of e and t1, t2, . . . , tn are
successive types of its arguments, the type of the functor f satisfying the
principle (Sc) can be written in the following quasi-fractional form:

i(f) = i(e)/i(e1)i(e2) . . . i(en) = t/t1t2 . . . tn. (i(f))

Then, the set S of all wfes of L is defined as the smallest set including
the vocabulary V of L and closed under the principle (Sc):

Definition 1.

S =
⋂{

X : V ⊂ X ∧ ∀e = f(e1, e2, . . . , en)(Sc(e))→ e ∈ X
}

where,

Sc(e) = (i(e) = t ∧ ∀j = 1, 2, . . . n i(ej) = tj)→ i(f) = t/t1t2 . . . tn.

In the formal definition of set S, it is required that each functor-
argument constituent of the given expression should satisfy the
principle (Sc).

Every wfe e of S is a meaningful expression of L possessing one in-
tension, i.e. one meaning µ(e), where µ is the operation of indicating the
meaning defined on the set S:

µ : S → µ(S) = K.
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The meaning µ(e) of the wfe e of the set S may be intuitively under-
stood, in accordance with the understanding of meaning of expressions by
Ajdukiewicz [1, 2] and, independently, by Wittgenstein [55] as a common
property of all the wfes of S which possess the same manner of using as
does e by competent users of language L (cf. [41]). Formalisation of thus
conceived notion of meaning (and related notions) is given by Wybraniec-
Skardowska in [62]. In [62], its different philosophical conceptions, in partic-
ular those originating from Richard Montague, Donald Davison or Michael
Dummett, are sketched. In my approach to the meaning of an expression
of L, it is treated as a constituent of knowledge K = µ(S).

Every wfe e of S is a meaningful expression of L possessing one denota-
tion, extension δ(e), where δ is the operation of denoting defined on set S:

δ : S → δ(S) = O.

The notion of denoting can, however, be introduced also as the opera-
tion of denoting δK , defined on the set of constituents of knowledge K:

δK : K → δK(K) ⊆ O.

The denotation δ(e) of the meaningful expression e is defined as the
set of all ontological objects (or the ontological object) of the set O = δ(S),
whose occurrences the expression e refers to. The denotation δK(k) of
the constituent k of knowledge K is defined as the set of all extra linguistic,
ontological objects to which k refers. Semantic compatibility takes place
iff δ(S) = δK(K) = O (see Fig. 2).

3.2. Categorial compatibility

In the logical conception of language L, the three distinguished kinds of
logical sense of expressions of L must be compatible: any wfe of L having
the syntactic sense, essence (belonging to a syntactic category of the de-
fined kind), has a semantic, intensional sense (intension) and an extensional
sense (extension) and is, simultaneously, a meaningful expression of L be-
longing to a defined intensional and, respectively, to a defined extensional
semantic category. The logical sense of wfes of L is connected with the
compatibility of their syntactic and semantic, intensional and extensional
categories. In the categorial approach to language, the aforementioned
categories of wfes of L are determined by attributing to them, as to their



What Is the Sense in Logic and Philosophy of Language? 193

Knowledge

Language Reality

R
ep

re
se

n
ti

n
g C

ogn
izin

g

µ(S) = K

intensions
of expres-

sions

S

essences
of expres-

sions

extensions
of expres-

sions

δ(S)=δK(K)=O

µ
m

ea
n
in

g δ
K

K
-d

en
o
ta

tio
n

δ

Denoting

Fig. 2. Semantic compatibility and language adequacy.

expressions, categorial indices (types) of the set T . Compatible categories
have the same categorial type that unifies these three notions of sense (see
Fig. 3).

Categorial types play here the role of a tool coordinating meaningful
expressions and extralinguistic objects: intensions and extensions [4, 47,
50, 51, 52].

3.2.1. Postulate of categorial compatibility

The postulate of categorial compatibility of syntactic and semantic cate-
gories is one of the most important conditions of the logical sense of wfes
of language L. Here is a more formal description of this postulate. Let

1. S be the set of all wfes of L,

2. K – the set of all intensions of expressions of the set S;K = µ(S),

3. O – the set of all extensions of expressions of the set S;
O = δ(S) = δK(K).



194 Urszula Wybraniec-Skardowska

Acquired
Knowledge

Intensional
Semantics

intension

Well-formed
Expressions

essence

Syntax

Objects of
Reality

extension

Extensional
Semantics

t

R
ep

re
se

n
ti

n
g

R
efl

ec
ti

n
g

C
ogn

izin
g

D
iscoverin

g

Reflecting

Fig. 3. Type-unifying three notions of logical sense: essence, intension,
extension.

The above-discussed syntactic and semantic categories of meaningful
wfes of L are the following subsets of the set S:

Definition 2. Synt = {e ∈ S : i(e) = t}, where i : S → T ,

Definition 3. Intt = {e ∈ S : iK(µ(e)} = t}, where iK : K → T ,

Definition 4. Ekst = {e ∈ S : iO(δ(e)} = t}, where iO : O → T ,

The syntactic (resp. intensional, resp. extensional) category
with the index t is the set of all wfes of S that have the categorial index
t (resp. intensions of which, resp. extensions of which have the index t).

The postulate of categorial compatibility defining an aspect of the log-
ical sense of wfes of L has the following form [65, 66, 67]:

Synt = Intt = Ekst for any t ∈ T. AXIOM(P).
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3.2.2. Type-unifying logical senses

The formal postulate (P) does not grasp the problem of the logical sense
of language expressions of L adequately, because it does not show the rela-
tionships of the distinguished categories of wfes (essences) with the corre-
sponding extra-linguistic categories of intensions and ontological categories
of extensions in such a way that the mutual correspondence of elements
of the triad: reality–knowledge-language, and the language adequacy of
syntax with bi-level semantics, intensional and extensional, have been pre-
served (see Fig. 2).

As it was mentioned, unambiguous determined meanings (intensions)
and denotations (extensions) should be assigned to wfes of L. They belong,
respectively, to suitable extra linguistic categories of objects: categories of
meanings, intensions (e.g. logical notions, logical judgments, operations
on them) and ontological categories of denotations, extensions (e.g. indi-
viduals, set of individuals, states of affairs, or operations on them).

The categories of meanings, intensions, are subsets of the set K of
constituents of knowledge, and ontological categories – subsets of the set
O ontological objects. They are determined by categorial indices (types).
And so, for any type t ∈ T :

Definition 5. Kt = {m ∈ K : iK(m) = t},

Definition 6. Ot = {o ∈ O : iO(o) = t}.

Sematic categories (see Definitions 3 and 4) can by defined by formulas:

Corollary 1. Intt = {e ∈ S : µ(e) ∈ Kt},

Corollary 2. Extt = {e ∈ S : δ(e) ∈ Ot},

stating that the semantic intensional (resp. extensional) category with
the index t is the set of all wfes of L, the meanings, intensions (resp.
denotations, extensions) of which belong to the category of constituents of
knowledge (resp. to the ontological category) with the type t.

It is easy to prove that for any e ∈ S and t ∈ T , by Corollaries 1 and 2
we can state that the Axiom (P) of categorial compatibility can be replaced
by the following equivalent conditions:

Theorem 1. e ∈ Synt iff µ(e) ∈ Kt iff δ(e) ∈ Ot,

Theorem 2. i(e) = iK(µ(e)) = iO(δ(e)).
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So, we see that categorial types serve also as a tool coordinating wfes
of L and corresponding extra-linguistic objects, and that they unify the
three notions of logical sense (see Fig. 4).
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Fig. 4. Semantic compatibility and type – unifying the three notions of
sense.

The idea of unification of the type of the logical term of the natural
language, its intension and extension, is also one of the features of the
type-theoretic object theory of E. Zalta [70, 71].

3.2.3. Semantic compatibility

From Diagrams 2 and 4, we conclude that ontological objects of the set
O are not only denotations of wfes of the set S (its essences), but also
denotations of intensions of knowledge K corresponding to them.
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Semantic compatibility for language L is defined by the following
formula:

Definition 7. δ(e) = δK(µ(e) ∈ O,
where δK is the operation on intensions, meanings of knowledge K.

From Definition 7, it immediately follows that if two expressions of L
have the same meaning, then they have the same denotation:

Corollary 3. µ(e) = µ(e′)→ δ(e) = δ(e′).

It is well known that the reverse implication does not hold. For ex-
ample, the extensions of the terms ‘equilateral triangle’ and ‘equiangular
triangle’ are the same, but their intensions are not.

3.3. Structural compatibility

3.3.1. On the structure of expressions and their semantic
counterparts

The form of language expressions, their connectivity, well-formedness and
logical sense, are connected with the structure of our knowledge and the
structure of the cognising part of reality. Its language description is com-
posed of parts that can be separated. Some of them are independent or
relatively independent and are counted as basic language categories. In
categorial languages, these are names and sentences. Others are auxil-
iary, dependent constituents of language expressions, which allow for the
construction of more composed expressions from simpler ones. They are
functors.

The categorial approach to L allows us to define the structural compa-
tibility of its composed expressions and their corresponding meanings and
denotations. Every wfe of L has one functor-argument structure. Functors
of such expressions may be treated as partial functions defined on a proper
subset of the set S and with the values in this set. Language L can then
be characterised as the following partial algebra:

L = 〈S, F 〉, where F ⊂ S, and F is the set of all functors of L.

As we mentioned in Sec. 3.1, (e), every composed expression e of the
set S can be written in the functional-argument form:

e = f(e1, e2, . . . , en),

where f is the main functor and e1, e2, . . . , en its subsequent arguments.
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If the expression e is wfe of the set S, then – in accordance with the
principle of syntactic connection (Sc) – the index of its main functor f ,
formed from the type t of e and successive types t1, t2, . . . , tn of successive
arguments e1, e2, . . . , en of the functor f , can be written in the following
quasi-fractional form (i(f)):

i(f) = t/t1t2 . . . tn. (i(f))

The functor-function f corresponds to the function defined on mean-
ings (intensions), respectively denotations (extensions) of arguments of
this functor with subsequent types t1, t2, . . . , tn, the value of which is the
intension, respectively the extension, of the expression e, which the functor
f forms, with the type t.

If, in language L, we have two basic syntactic categories, names and
sentences with respective types n and s, then meanings, intensions – logical
notions with the type n – are assigned to names, and meanings, intensions
– logical judgments with the type s – are assigned to sentences. Denotations
of names are usually individuals or their sets, and denotations of sentences
(in situational semantics) are states of affairs, situations. They also have,
respectively, indices n and s.

Example. Let us consider the following sentence of a natural language:

Robert practices football. (i)

with the index s, the main functor of which is the word ‘practices’ of two
name arguments, ‘Robert’ and ‘football’, with the index n. The expression
(i) can be written in the following function-argument form:

practices(Robert, football). (ii)

The index of the functor ‘practices’ is s/nn. The meaning of the functor
(with the same index) is the function which, being defined on the notions
of ‘Robert’ and ‘football’ with the index n, as meanings (intensions) of
these names in the sentence (ii), has, as the value, its meaning, i.e. the
logical judgment with the index s stating that Robert practices football.
Denotation of the functor is the mapping which, being defined on denota-
tions (denotates) of names in (ii) with index n, so on person Robert and
the sport discipline football, has, as its value, the state of affairs: the fact
that Robert practices football, being the denotation of the sentence (ii); it
has, like the sentence, the index s.
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If somebody accepts, in accordance with Chomsky’s phrase-structural
grammar, that in (i) the main functor is ‘practices football’ (the predicate)
of one argument ‘Robert’, then the function-argument form of (i) is as
follows:

practices football (Robert) = (practices(football))(Robert) (iii)

The index of the composed functor ‘practices football’ is s/n, and the
index of the functor ‘practices’ in it is (s/n)/n. Then the meaning and the
denotation of the latter functor differ essentially from those used in (ii).

Remark 2. As we can see in a natural language, sentences may have a differ-
ent functor-argument structure, thus different semantic senses: intensions
and extensions. Therefore, they can be treated as skeletons, schemas which
represent unambiguous expressions with one functor-argument structure,
one meaning and one denotation.

3.3.2. Principles of compositionality

From the axiom (P) of categorial compatibility three principles of composi-
tionality follow [63, 64, 65, 66]: one syntactic (compositionality of essences,
syntactic forms) and two semantic: compositionality of meaning (inten-
sion) and compositionality of denotation (extension). For every composed
expression of L, the form e = f(e1, e2, . . . , en) and functions h = i, µ, δ,
their common schema has the form:

h(e) = h((f(e1, e2, . . . , en)) = h(f)(h(e1), h(e2), . . . , h(en)). (COMPh)

For h = i, we have the syntactic principle, for h = µ, δ we obtain the
semantic principles corresponding to the ones already known to Frege [23]
(cf. also [25, 31, 32, 39, 40, 42, 43, 26, 27, 28, 33]).

Speaking freely, these principles state that:
The categorial type (the syntactic form), resp. the meaning, resp. the
denotation of a well-formed functor-argument expression of language L is
the value of the function of the type, resp. the function of the meaning, resp.
the function of the denotation, of its main functor defined on types, resp.
on meanings, resp. on denotations subsequent arguments of this functor.
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3.3.3. Main properties of functions h(f)

The formulation of the principle (COMPh) defines h(f) as functions. In-
deed, index i(f) of functor f is the function:

i(f) : {(i(e1)} × {i(e2)} × . . .× {i(en))} → {i(e)},

which, defined on n-tuple indices (i(e1), i(e2), . . . , i(en)), has the value i(e);
hence there follows the syntactic principle of compositionality (COMPi).

Similarly, the meaning and the denotation of the functor f , defined on
meanings and, respectively, on denotations of its arguments, are functions
whose values are, respectively, meanings and denotations of the expression
e. However, let us remember that the same n argument functor (n ≥ 1),
e.g. ‘practices’ in (ii) of Example 3.3.1, may have different arguments,
though its meaning, respectively denotation, is uniquely determined.

Thus, for any wfe e = f(e1, e2, . . . , en) such that for types i(e) =
t, i(ek) = tk, where k = 1, . . . , n, µ(f), is the function:

µ(f) : Kt1 ×Kt2 × . . .×Ktn → Kt,

which for intensions of arguments of functor f has the value µ(e) compatible
with the principle (COMPµ), and δ(f) is the function:

δ(f) : Ot1 ×Ot2 × . . .×Otn → Ot,

which for denotations of arguments of functor f has the value δ(e) com-
patible with the principle (COMPδ).

Remark 3. Note that the logical sense of language expressions, including
functors, assumes that they have both intensions and extensions. Thus,
any functor f forming the complex expression e has the meaning µ(f) and
at the same time denotation (reference) δ(f), and its meaning and denota-
tion are functions that meet the conditions listed above in accordance with
the semantic principles of compatibility.
In semiotic literature, however, we encounter some controversy regarding
the sense of functors, which are predicates of name arguments in natural
language sentences. Debate on Geach-Dummet controversy about the sense
of a predicate is reconstructed by M. Ta lasiewicz [53]. For Peter T. Geach
sense of a predicate is its meaning and a function satisfying the principle of
compositionality of meaning, while for Michael Dummet the sense is rather
something that determines its denotation (reference). Ta lasiewicz in [53]
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proposed a solution giving predicates both semantic senses as functions ful-
filling the relevant conditions of semantic compositionality principles. This
solution is interesting because it allows us to maintain semantic compati-
bility (see Def. 7).

3.3.4. Generalisation of Ajdukiewicz’s cancellation principles

Just like the index of functor f in expression e = f(e1, e2, . . . , en) (see (i(f))
in Sec. 3.1), we write its meaning and denotation in a quasi-fractional form.
The general quasi-fractional form of the functions h(f), for h = i, µ, δ is
given as the schema:

h(f) = h(e)/h(e1)h(e2) . . . h(en). (h(f))

At the established quasi-fractional records (i(f)): the type of the functor
f, (µ(f)) of its meaning (intension) and (δ(f)) of its denotation (exten-
sion), some counterparts of Ajdukiewicz’s rules of cancellation of fractional
indices (types) that serve to check the syntactic connection of complex
expressions, correspond to the principles of compositionality (COMPh).
They follow from them. To justify these rules, it is sufficient to use the
equality (COMPh) from the left to the right and (h(f)). They allow us
to calculate types, meanings (intensions) and denotations (extensions) of
functor-argument expressions of L. Their schema, for h = i, µ, δ, can be
written in the following way:

h(e)/h(e1)h(e2) . . . h(en)(h(e1), h(e2), . . . , h(en)) = h(e). (CANCh)

Example. For the functor ‘practices’ in the functor-argument sentence

practices(Robert, football) (ii)

the cancellation principles for h = i, µ, δ have the forms:

s/nn(n, n) = s,

µ((ii))/µ(Robertµ(football)(µ(Robert), µ(football)) = µ((ii)),

δ((ii))/δ(Robert)δ(football)(δ(Robert, δ(football)) = δ((ii)),

while for the functor ‘practices football’ in the sentence

practices football(Robert) = (practices(football))(Robert) (iii)

the cancellation principles for h = i, µ are the following:
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((s/n)//n(n))(n) = s/n(n) = s,

µ(practices football(Robert)) = ((µ(practices(football))(µ(Robert)) =

= (µ(practices)(µ(football))(µ(Robert)) =

= (((µ(iii)/µ(Robert))//µ(football)(µ(football))(µ(Robert)) =

= ((µ(iii)/µ(Robert))(µ(Robert)) = µ(iii).

Similarly, for h = δ.
Let us observe that sentences (ii) and (iii) have the same categorial

type s, and, according to Theorem 2, their intensions and extensions also
have the type s. However, the appropriate constituents of these sentences
and their intensions and extensions have different categorial types.

3.3.5. Models of L and the notion of truth

The principles of compositionality can be considered as some conditions
of homomorphisms h = i, µ, δ of the syntactic algebra of language L into
algebras of its images h(L), i.e.

L = 〈S, F 〉 −→
h

h(L)〈h(S), h(F )〉,

where F is the set of all simple functor-partial functions mapping sub-
sets of set S into set S, and h(F ), for h = i, µ, δ, is the set of functions
corresponding to the functor-functions of set F .

Let us notice that the algebraisation of language can already be found
in Leibnitz’s papers. We can also find the algebraic approach to issues con-
nected with syntax, semantics and compositionality in Montague’s Univer-
sal Grammar [39] and in papers of Dutch logicians, especially in those by
J. van Benthem [9, 10, 11, 12] and T.M.V. Jansen [31, 32]. The difference
between their approaches and the approach which is presented here lies in
fact that carriers of the syntactic and semantic algebras include functors,
or, respectively, their suitable correlates, i.e. their i- or semantic-function
µ- and δ- images; simple functors and their suitable i-, µ-, δ- images are
simultaneously partial operations of this algebras. They are set-theoretical
functions, determining those operations.

The algebra i(L) = 〈i(S), i(F )〉 is called the syntactic model of language
L, while the algebras

µ(L) = 〈µ(S), µ(F )〉 = 〈K,µ(F )〉 and δ(L) = 〈δ(S), δ(F )〉 = 〈O, δ(F )〉
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are the semantic models for L; the first is called the intensional model for
L, the other one, the extensional model for L.

In the process of cognition of reality, we want the sentences of the
language L, representing the knowledge acquired about it, to be the carriers
of true information about cognised portion of reality; they should be true
in the above-mentioned models of L. Language as a tool for describing
reality must distinguish the category of sentences among its syntactic ca-
tegories. True sentences have informative content and allow us to enrich our
knowledge. If for h = i, µ, δ, it is the case that the sentence e of language
L is true in models h(L), we may say that our cognition by means of the
sentence e is true.

The notions of truthfulness in appropriate models are introduced
theoretically by means of three new primitive notions Th, satisfying for
h = i, µ, δ the schema of axioms:

∅ 6= Th ⊆ h(S) AXIOM(Th)

and are understood intuitively, respectively, as the singleton consisting of
the index of true sentences, the set of all true logical judgments, the set
composed of the states of affairs that take place (in situational semantics)
or the singleton composed of the value of truth (in Frege’s semantics).

For h = i, µ, δ, we assume that:

Definition 8. The sentence e of language L is true in the model h(L) iff
h(e) ∈ Th.
In particular, if h = δ, then we may state that the sentence e of L is true in
the extensional model iff its extension is the state of affairs that takes place
(in situational semantics), or it is the value of truth (in Fregean semantics).

3.3.6. Some remarks concerning the problem of categories of
first-order quantifiers

There is a well-known problem with determining syntactic and semantic
categories, and therefore a problem with categorial types of quantifiers,
and, in particular, of quantifiers of the first order language L1 and types
of their intensions and extensions. To solve this problem, we can apply
the principles of compositionality and the cancellation rules. Some general
findings relating to the solution to the problem of syntactic categories of
quantifiers, their denotation or/and meaning are presented in the following
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papers: [58, 59, 69, 70]. In this work, I will limit myself to dealing with
this problem for the quantifier in the simple formulas of L1.

Example. Let us consider the quantifier expressions:

(1) ∀xP (x) and (2) ∃xP (x),

in which P is an established one-argument predicate treated as a one-
argument functor-function, and the quantifiers ∀ and ∃ are treated as two-
argument functors-functions defined on a variable standing next to them
and a sentential function with a free variable bound by the given quantifier.
The categorial type for x is n1, i.e. i(x) = n1, the type for P is s1/n1, i.e.
i(P ) = s1/n1, because we assume that the type for the sentential function
P (x) is s1, since i(P (x)) = i(P )(i(x)) = s1/n1(n1) = s1. The type of
quantifiers ∀ and ∃ is then: s/n1s1, i.e. i(∀) = i(∃) = s/n1s1. Using the
principles of compositionality and cancellation, we can ‘compute’ the type
of the expression (1) in its functor-argument form:

i(∀(x, P (x)) = i(∀)(i(x), i(P (x))) = i(∀)(i(x), i(P )(i(x)))

= s/n1s1(n1, s1/n1(n1)) = s/n1s1(n1, s1) = s.

In a similar way, we ‘calculate’ the index of the expression (2) = ∃(x, P (x)).
Thus, expressions (1) and (2) are sentences.

We will now define the denotation of the discussed quantifiers in
Fregean semantics. We assume that δ(x) = U , where U is the universe
of individuals in an established model ML1; δ(P ) : U → δ(P (x)), where
δ(P (x)) = δ(P )(δ(x)) = {u ∈ U : δ(P (x/u)) = 1} and P (x/u) is a sen-
tence which we get for replacing in the sentential function P (x) its free
variable x by the name of the individual u, and 1 is the value truth. Then,

δ(∀xP (x)) = δ(∀)(δ(x), δ(P (x)) =

{
1 if δ(x) = U = δ(P (x))
0 if δ(x) = U 6= δ(P (x))

δ(∃xP (x)) = δ(∃)(δ(x), δ(P (x)) =

{
1 if δ(x) ∩ δ(P (x)) 6= ∅
0 if δ(x) ∩ δ(P (x)) = ∅.

So, the denotation δ(∀) (resp. δ(∃)) of the quantifier ∀(resp. ∃) is the
function which, for the universe U and the denotation of the scope of the
quantifier, has the truth value iff the denotation of its scope is the uni-
verse (resp. the denotation of this scope has at least one individual of the
universe).
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In a similar way, we define the meanings of the quantifiers ∀ and ∃ in
(1) and (2).

Example. It is obvious that the quantifiers ∀ and ∃ are typically ambigu-
ous in logic, depending on a type. In other contexts, e.g., in the expressions

(3) ∀x,yR(x, y) and (4) ∃x,yR(x, y) or

(5) ∀xR(x, y) and (6) ∃yR(x, y)

they have other categorial types, intensions and extensions. Their catego-
rial type in expressions (3) and (4) is s/n1n1s2, where s2 is the index of
the sentential function of two individual variables, while in expressions (5)
and (6) they have the type s1/n1s2. The predicate-functor’s R categorial
type is, of course, s2/n1n1.

It is easy to check and ‘compute’ that exemplary expressions are syn-
tactically connective, therefore wfes. The first of them, (3) and (4), are
sentences, because they have the index s, while the others, (5) and (6), are
sentential functions with one free variable, because they have the index s1.

4. Final remarks

The logical sense of language expressions is, of course, a kind of idealisa-
tion. In the logical and categorial conception of language, the sense of its
expressions, both syntactic and semantic, intensional and extensional, en-
sures their structural and semantic unambiguity and mutual syntactic and
semantic compatibility.

A natural language, and often also the scientific variation, is a living
creature, still developing. The degree of syntactic and semantic senses of its
expressions changes, it can be narrower or higher, depending on its skilful
precision. However, structural or semantically ambiguous expressions can
always be split into expressions having unambiguous syntactic and semantic
senses and be categorially analysed. Also, expressions that are imprecise
or vague can be replaced by sets of sentences with precise meanings and
denotations. Moreover, they can be considered separately with respect to
their categorial structure, because only expressions with a high degree of
logical sense, syntactical and semantical (intensional and extensional), get
closer to the sense and may, after a proper justification, become theorems of
a given discipline of knowledge and be a base for satisfactory interpersonal
communication about our world.
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Sciences and Humanities, vol. 89), Rodopi, Amsterdam–New York (2006),

pp. 269–288.

[62] U. Wybraniec-Skardowska, Meaning and Interpretation, Studia Logica,

vol. 85(1) (2007), pp. 105–132 (Part I), DOI: https://doi.org/10.1007/

s11225-007-9026-0; vol. 85(2) (2007), pp. 263–276 (Part II), DOI:

https://doi.org/10.1007/s11225-007-9031-3.

[63] U. Wybraniec-Skardowska, On Metaknowledge and Truth, [in:] D. Makin-

son, J. Malinowski and H. Wansing (eds.), Trends in Logic: Towards

Mathematical Philosophy, Springer, Berlin-Heidelberg (2009), pp. 319–

343, DOI: https://doi.org/10.1007%2F978-1-4020-9084-4 16

[64] U. Wybraniec-Skardowska, Three Principles of Compositionality, [in:]
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