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Hitoshi Omori

A NOTE ON CIUCIURA’S mbC1

Abstract

This note offers a non-deterministic semantics for mbC1, introduced by Janusz

Ciuciura, and establishes soundness and (strong) completeness results with re-

spect to the Hilbert-style proof system. Moreover, based on the new semantics,

we briefly discuss an unexplored variant of mbC1 which has a contra-classical

flavor.

Keywords : paraconsistent logic, non-deterministic semantics contra-classi-
cal logic

1. Introduction

In [10], Janusz Ciuciura introduces a system mbC1 of paraconsistent logic,
formulated in the language of classical logic. The aim of this note is to
present a non-deterministic semantics for mbC1, different from the seman-
tics presented in [10], and prove its soundness and (strong) completeness.
And in view of this new semantics, we will briefly discuss, in the last section,
an unexplored variant of mbC1 which has a contra-classical flavor.

2. Proof system for mbC1

Let the languages L and L◦ consist of a finite set {∼,∧,∨,→} and {∼, ◦,∧,
∨,→} of propositional connectives respectively and a countable set Prop

of propositional variables which we denote by p, q, etc. Furthermore, we
denote by Form and Form◦ the sets of formulas defined as usual in L and
L◦ respectively. We denote a formula of the languages by A,B,C, etc. and
a set of formulas of the languages by Γ, ∆, Σ, etc.
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First, we introduce CLuN which is the common core of many systems
of paraconsistent logic, including mbC1.

Definition 1. The system CLuN consists of the following axioms and a
rule of inference.

A → (B → A) (A1)

(A → (B → C)) → ((A → B) → (A → C)) (A2)

((A → B) → A) → A (A3)

A → (A ∨B) (A4)

B → (A ∨B) (A5)

(A → C) → ((B → C) → ((A ∨B) → C)) (A6)

(A ∧B) → A (A7)

(A ∧B) → B (A8)

(C → A) → ((C → B) → (C → (A ∧B))) (A9)

A ∨ ∼A (A10)

A A → B

B
(MP)

Moreover, we write Γ ⊢CLuN A if there is a sequence of formulas
B1, . . . , Bn, A, n ≥ 0, such that every formula in the sequence B1, . . . , Bn, A

either (i) belongs to Γ; (ii) is an axiom of CLuN; (iii) is obtained by (MP)
from formulas preceding it in sequence.

Second, we introducembC1 and, for the sake of comparison, mbC, one
of the basic systems within the family of Logics of Formal Inconsistency
(cf. [8, 7]).

Definition 2. The system mbC1 is formulated in L and obtained by
adding the following formula to CLuN.

A → (∼A → (∼∼A → B)) (∗)

Moreover, the system mbC is formulated in L◦ and obtained by adding
the following formula to CLuN.

◦A → (A → (∼A → B))

We then define ⊢mbC1 and ⊢mbC in a similar manner.

Here are two remarks on the relation between mbC1 and mbC.
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Remark 3. Ciuciura notes that mbC1 is “an axiomatization of mbC
formulated directly in the language of classical propositional logic” ([10,
p. 173]). This is, however, not true due to the following result:

6⊢mbC p → (∼p → (∼∼p → q)).

This may be observed by the following truth table for LFI1, an extension
of mbC, introduced in [9].

A ∼A ◦A
t f t
b b f
f t t

A∧B t b f
t t b f
b b b f
f f f f

A∨B t b f
t t t t
b t b b
f t b f

A→B t b f
t t b f
b t b f
f t t t

Note here that both t and b are designated values. Then, the axioms of
mbC are all validated, and designated values are preserved by the above
truth table. However, the concerned formula takes the non-designated
value f when we assign b and f to p and q respectively.

Remark 4. Note that if one takes the consistency to be defined as ◦A =def.

A→∼∼A, thenmbC with this definition of consistency becomes equivalent
to mbC1 since A∧◦A is equivalent to A∧∼∼A under the above definition
of ◦. For a system of paraconsistent logic having this kind of definition of
consistency, see [22, 21].

3. Non-deterministic semantics for mbC1

In [10], Ciuciura already offers a semantics for mbC1 along the line of what
is sometimes called the bivaluational semantics which has been one of the
most popular semantics for a wide range of LFIs. However, there is another
semantics known in the literature of LFIs, namely the non-deterministic
semantics, established systematically by Arnon Avron and Iddo Lev in [4]
(see [5] for a survey on non-deterministic semantics). The semantics has a
nice feature being an intuitive generalization of many-valued semantics. In
this section, we present non-deterministic semantics for mbC1.

Definition 5. A mbC1-non-deterministic matrix (Nmatrix for short) for
L is a tuple M = 〈V,D,O〉, where:

(a) V = {t,b, f},

(b) D = {t,b},
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(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary
function ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for
sets):

A ∼̃A

t f
b t
f t,b

A∧̃B t b f
t t,b t,b f
b t,b t,b f
f f f f

A∨̃B t b f
t t,b t,b t,b
b t,b t,b t,b
f t,b t,b f

A→̃B t b f
t t,b t,b f
b t,b t,b f
f t,b t,b t,b

A legal mbC1-valuation in an mbC1-Nmatrix M is a function v :Form→V
that satisfies the following condition for every n-ary connective ∗ of L and
A1, . . . , An ∈ Form:

v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An)).

Finally, A is a legal mbC1consequence of Γ (Γ |=mbC1 A) iff for every legal
mbC1-valuation v, if v(B) ∈ D for every B ∈ Γ then v(A) ∈ D.

Remark 6. Note that a three-valued non-deterministic semantics for
CLuN is introduced in [2] by Avron. The only difference is that the table
for negation is replaced by the following table:

A ∼̃A

t f
b t,b
f t,b

That is, there is one more non-determinacy when the negated sentence
receives the value b. Furthermore, there is also a two-valued non-determi-
nistic semantics for CLuN devised in [3]. Note also that non-deterministic
semantics for mbC and its extensions are considered in [1] (the system
mbC is referred to asB in [1]). However, the above matrix is not considered
in the literature, at least to the best of author’s knowledge.

Remark 7. The system mbC1 may be seen as a generalization of Sette’s
P1 developed in [19]. Indeed, the addition of the following formulas will
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eliminate the nonclassical value in the non-deterministic bits in the above
matrix and give us the system P1.

• ∼∼A → A

• (A ∗B) → ∼∼(A ∗B) where ∗ ∈ {∧,∨,→}

For a recent discussion on discussive semantics for P1, see [16].

4. Soundness and completeness

We now turn to prove the soundness and completeness. The proof will
be rather simple if the reader is already familiar with non-deterministic
semantics, but for the purpose of making this note self-contained as much
as possible, I will spell them out in some details.

The soundness is easy as usual.

Proposition 1 (Soundness). If Γ ⊢mbC1 A then Γ |=mbC1 A.

Proof: Straightforward. �

For the completeness result, we first list some formulas that are provable
in mbC1.

Proposition 2. The following formulas are provable in mbC1:

A ∨ (A → B) (4.1)

A → (B → (A ∧B)) (4.2)

Proof: We safely leave the details to the readers. �

Second, we introduce the following standard notions.

Definition 8. Let Σ be a set of formulas. Then,

• Σ is a theory iff it is closed under ⊢, i.e., if Σ ⊢ A then A ∈ Σ for any
formula A;

• Σ is prime iff A ∨ B ∈ Σ implies that A ∈ Σ or B ∈ Σ for any A

and B;

• Σ is non-trivial iff for some formula A, A 6∈ Σ.

Remark 9. Strictly speaking, we do need to specify the consequence rela-
tion in defining theories. However, in the following, we will omit that since
contexts will disambiguate.

The following lemma is the well-known lemma of Lindenbaum.
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Lemma 1. For any Σ∪{A} ⊆ Form, if Σ 6⊢ A then, there is a prime theory

Π ⊇ Σ such that Π 6⊢ A.

Moreover, we need the following lemma.

Lemma 2. Let Σ be a non-trivial prime theory, and define a function v0
from Form to V as follows.

v0(B) :=











t if Σ ⊢mbC1 B and Σ 6⊢mbC1 ∼B

b if Σ ⊢mbC1 B and Σ ⊢mbC1 ∼B

f if Σ 6⊢mbC1 B

Then, v0 is a legal mbC1-valuation.

Proof: By induction on the number n of connectives.
(Base): for atomic formulas, it immediately follows that v0 is a function.
(Induction step): We split the cases based on the connectives.
Case 1. If B = ∼C, then we have the following three cases.

Cases v(C) condition for C v(B) condition for B i.e. ∼C

(i) t Σ ⊢ C and Σ 6⊢ ∼C f Σ 6⊢ ∼C

(ii) b Σ ⊢ C and Σ ⊢ ∼C t Σ ⊢ ∼C and Σ 6⊢ ∼∼C

(iii) f Σ 6⊢ C t,b Σ ⊢ ∼C

By induction hypothesis, we have the conditions for C, and it is easy to
see that the conditions for B i.e. ∼C are provable. Indeed, (i) is obvious.
For (ii), note that we have (∗) and that Σ is non-trivial. Finally, for (iii),
note that we have (A10) and that Σ is prime.
Case 2. If B = C ∨D, then we have the following three cases.

Cases v(C)
condition
for C

v(D)
condition
for D

v(B)

condition
for B i.e.
C ∨D

(i) t,b Σ ⊢ C any — t,b Σ ⊢ C ∨D

(ii) any — t,b Σ ⊢ D t,b Σ ⊢ C ∨D

(iii) f Σ 6⊢ C f Σ 6⊢ D f Σ 6⊢ C ∨D

By induction hypothesis, we have the conditions for C and D, and we can
see that the conditions for B i.e. C ∨D are provable in view of (A4), (A5)
and that Σ is a prime theory for (i), (ii) and (iii) respectively.
Case 3. If B = C ∧D, then we have the following three cases.
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Cases v(C)
condition
for C

v(D)
condition
for D

v(B)

condition
for B i.e.
C ∧D

(i) f Σ 6⊢ C any — f Σ 6⊢ C ∧D

(ii) any — f Σ 6⊢ D f Σ 6⊢ C ∧D

(iii) t,b Σ ⊢ C t,b Σ ⊢ D f Σ ⊢ C ∧D

By induction hypothesis, we have the conditions for C and D, and we can
see that the conditions for B i.e. C ∧D are provable in view of (A7), (A8)
and (4.2) for (i), (ii) and (iii) respectively.
Case 4. If B = C → D, then we have the following three cases.

Cases v(C)
condition
for C

v(D)
condition
for D

v(B)

condition
for B i.e.
C → D

(i) f Σ 6⊢ C any — t,b Σ ⊢ C → D

(ii) any — t,b Σ ⊢ D t,b Σ ⊢ C → D

(iii) t,b Σ ⊢ C f Σ 6⊢ D f Σ 6⊢ C → D

By induction hypothesis, we have the conditions for C and D, and we can
see that the conditions for B i.e. C → D are provable in view of (4.1) and
that Σ is prime, (A1) and (MP) for (i), (ii) and (iii) respectively.

This completes the proof. �

We are now ready to prove the completeness result.

Theorem 1 (Completeness). If Γ |=mbC1 A then Γ ⊢mbC1 A.

Proof: We prove the contrapositive. Suppose that Γ 6⊢mbC1 A. Then by
Lemma 1, we have a non-trivial prime theory Σ0 such that Γ ⊆ Σ0 and
Σ0 6⊢mbC1 A. In view of Lemma 2, we can define a legal valuation v0. Since
we have v0(Γ) ∈ D and v0(A) 6∈ D, we obtain Γ 6|=mbC1 A, as desired. �

Remark 10. Note that Ciuciura develops a hierarchy of systems mbCn

obtained by adding the following axiom scheme to CLuN:

A → (∼A → (∼∼A → (· · · → (∼n+1A → B) . . . ))

where ∼n+1A abbreviates the formula with n+ 1 iterated ∼ in front of A.
The task of devising a non-deterministic semantics for mbCn is left for
interested readers.
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5. Concluding remarks: a contra-classical variant of

mbC1

Let us assume the three-valued non-deterministic semantics forCLuN, and
in particular, focus on the table for negation. Then, there are two cases
with non-deterministic values. Avron already observed in [2] the following.

• The refinement ∼̃b = {b} corresponds to the addition of A → ∼∼A.

• The refinement ∼̃f = {t} corresponds to the addition of ∼∼A → A.

Moreover, we observed in this note the following through the systemmbC1.

• The refinement ∼̃b = {t} corresponds to the addition of A → (∼A →
(∼∼A → B)).

Then, from a purely combinatoric perspective, one may wonder what kind
of formula is required in order to obtain a refinement of the three-valued
non-deterministic matrix for CLuN with ∼̃f = {b}. Quick answer: A ∨
∼∼A. What we need to check are the following two items.

• A ∨ ∼∼A is validated in the refined matrix, and;

• (iii) of Case 1 in Lemma 2 holds for the modified case.

The first item is easy to check, and for the second item, we may confirm
that if Σ is a non-trivial prime theory, then Σ 6⊢ C implies Σ ⊢ ∼∼C thanks
to the presence of A ∨ ∼∼A and that Σ is prime.

Therefore, what we obtain by the unexplored refinement is a contra-
classical logic obtained by adding the formula A ∨ ∼∼A to CLuN. Note
here that a logic is contra-classical “just in case not everything provable in
the logic is provable in classical logic” ([12, p.438]). Moreover, the formula
A ∨ ∼∼A is not discussed here for the first time, but already discussed in
the literature, for example, in [11, 13, 17, 18].

Finally, it is not the case that we obtain contra-classical refinements
only through negation. For example, the following truth table can be seen
as a refinement of the conditional of CLuN.

A → B t b f
t t b f
b t b f
f b b b

If we combine this conditional with the negation of the Logic of Paradox,
one of the refinements of the negation of CLuN, then the above condi-
tional is connexive in the sense that theses of Aristotle (i.e. ∼(A→∼A)
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and ∼(∼A→A)) and Boethius (i.e. (A→B)→∼(A→∼B) and (A→∼B)
→∼(A→B)) are validated. And, connexive logics are of course one of the
families of contra-classical logics (see [20] for connexive logics in general,
and [6, 14, 15] for systems of connexive logic with the above conditional).

A more systematic study of contra-classicality in the context of non-
deterministic semantics, possibly starting with a weaker language, is yet
to be seen, even for three- and four-valued logics. However, this goes
well beyond the scope of this note, and I will need to leave it for another
occasion.
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COMPLEX FUZZY SETS WITH APPLICATION

IN BCK/BCI-ALGEBRAS

Abstract

As a generation of fuzzy set, the notion of complex fuzzy set which is an innovative

concept is introduced by Ramot, Milo, Friedman and Kandel. The purpose of

this article is to apply complex fuzzy set to BCK/BCI-algebras. The notions of

a complex subalgebra and a complex left (right) reduced ideal in a BCK/BCI-

algebra are introduced, and related properties are investigated. Characterizations

of a complex subalgebra are provided, and the homomorphic image (preimage)

of a complex subalgebra and a complex left (right) reduced ideal.

Keywords: complex t-norm, min-complex t-norm, complex subalgebra, com-
plex left (right) reduced ideal, complex characteristic function.

Mathematics Subject Classification (2010): 06F35, 03E72, 08A72.

1. Introduction

The extension of crisp sets to fuzzy sets, in terms of membership functions,
is mathematically comparable to the extension of the set of integers, Z, to
the set of real numbers, R. That is, expanding the range of the member-
ship function, µA(x), from {0, 1} to [0, 1] is mathematically analogous to
the extension of Z to R. Another extension of fuzzy set theory, Romat et
al. [1] introduced the innovative complex fuzzy set. The complex fuzzy set,
A, is characterized by a membership function, µA, whose range is not lim-
ited to [0, 1] but extended to the unit circle in the complex plane. Hence,

∗Corresponding author.
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µA(x) is a complex valued function that assigns a grade of membership of
the form rA · ejωA(x), where j =

√
−1, to any element x in the universe of

discourse. The value of µA(x) is defined by the two variables, rA(x) and
ωA(x), both real-valued, with rA(x) ∈ [0, 1]. Tamir and Kandel [2] pro-
posed an axiomatic framework for first order predicate complex fuzzy logic
and use this framework for axiomatic definition of complex fuzzy classes.
Al-Qudah and Hassan [3] introduced the concept of complex multi-fuzzy
sets as a generalization of the concept of multi-fuzzy sets by adding the
phase term to the definition of multi-fuzzy sets, and provided the structure
of distance measure on complex multi-fuzzy sets by extending the structure
of distance measure of complex fuzzy sets.

The aim of this paper is to apply the notion of complex fuzzy sets to
BCK/BCI-algebras, and to generalize the fuzzy set theory in BCK/BCI-
algebras. We introduce the notion of a complex subalgebra and a complex
reduced left (right) ideal in a BCK/BCI-algebra, and investigate related
properties. We provide characterizations of a complex subalgebra. We
discuss the homomorphic image (preimage) of a complex subalgebra and a
complex left (right) reduced ideal.

2. Preliminaries

By a BCI-algebra, we mean an algebra (X, ∗, 0) of type (2, 0) satisfying
the axioms:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = y ∗ x = 0 ⇒ x = y).

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. If a
BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X is a
BCK-algebra. A nonempty subset L of a BCK/BCI-algebra X is called
a subalgebra of X if x ∗ y ∈ L for all x, y ∈ L. We refer the reader to the
books [4, 5] for further information regarding BCK/BCI-algebras.

In 2011, Azam et al. [6] introduced the notion of complex valued metric
space which is a generalization of the classical metric space, by defining the
partial order “�” on the set of complex numbers.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial
order “� ” on C as follows:
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z1 � z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2),

that is, z1 � z2 if one of the following holds

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2),

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2),

(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2),

(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

Ramot et al. [1] introduced the notion of complex fuzzy sets.
A complex fuzzy set A, defined on a universe of discourse X, is charac-

terized by a membership function µA(x) that assigns any element x ∈ X a
complex valued grade of membership in X, that is, the complex fuzzy set
A may be represented as the set of ordered pairs

A = {(x, µA(x)) | x ∈ X}, (2.1)

where µA(x) = rA(x) · ejωA(x), j =
√
−1, rA(x) and ωA(x) are both real-

valued, and rA(x) ∈ [0, 1]. Evidently, each complex grade of membership
is defined by an amplitude term rA(x) and a phase term ωA(x).

3. Complex subalgebras

Let A and B be complex fuzzy sets on X with complex valued membership
functions µA and µB , respectively. We define

µA(y) ⊙ µB(z) = [rA(y) ⋄ rB(z)] · ej[ωA(y) ⋄̄ ωB(z)], (3.1)

for all y, z ∈ X where ⋄ is a t-norm and ⋄̄ is a function

⋄̄ : [0, π]× [0, π] → [0, π]

satisfying the following conditions.

1. (a ⋄̄ b) ⋄̄ c = a ⋄̄ (b ⋄̄ c),

2. a ⋄̄ b = b ⋄̄ a,

3. b ≤ c ⇒ a ⋄̄ b ≤ a ⋄̄ c,

4. a ⋄̄ π = a,

where a, b and c are elements of [0, π]. We say that the function ⋄̄ is an
extended t-norm, and the operation ⊙ is the complex t-norm.



176 Young Bae Jun and Xiao Long Xin

In what follows, let X be a BCK/BCI-algebra and consider a complex
fuzzy set A on X with complex valued membership function

(∀x ∈ X)
(

µA(x) = rA(x) · ejωA(x)
)

where j =
√
−1, rA(x) ∈ [0, 1] and ωA(x) ∈ [0, π]. It will be denoted by

A = {(x, µA(x)) | x ∈ X}.

For any δ = r · ejω with r ∈ [0, 1] and ω ∈ [0, π], the δ-level set of A is
denoted by [A]δ and is defined to be the set

[A]δ := {x ∈ X | µA(x) � δ}.

If, in the complex t-norm ⊙, both the t-norm and extended t-norm are
considered as “min”, it is denoted by ⊙min and is called the min-complex
t-norm.

Definition 3.1. A complex fuzzy set A = {(x, µA(x)) | x ∈ X} on X is
called a complex subalgebra of X if

{

Re (µA(x ∗ y)) ≥ Re (µA(x) ⊙ µA(y)) ,
Im (µA(x ∗ y)) ≥ Im (µA(x) ⊙ µA(y))

(3.2)

or, equivalently, µA(x ∗ y) � µA(x) ⊙ µA(y) for all x, y ∈ X.

Note that the condition (3.2) is equivalent to the following condition:
{

rA(x ∗ y) · cosωA(x ∗ y) ≥ (rA(x) ⋄ rA(y)) · cos(ωA(x) ⋄̄ ωA(y)),
rA(x ∗ y) · sinωA(x ∗ y) ≥ (rA(x) ⋄ rA(y)) · sin(ωA(x) ⋄̄ ωA(y))

(3.3)

Example 3.2. Let X = {0, a, b, c} be a BCK-algebra with the operation
∗ which is described by Table 1 (see [5]).
Let A be a complex fuzzy set on X with the complex valued membership
function µA defined by

µA(x) =































0.7ej
3π
8 if x = 0,

0.5ej
3π
8 if x = a,

0.3ej
3π
8 if x = b,

0.1ej
3π
8 if x = c.
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Table 1. Cayley table of the operation ∗

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 b
c c c c 0

It is routine to verify that A = {(x, µA(x)) | x ∈ X} is a complex subalgebra
of X.

Example 3.3. Let X = {0, 1, a, b, c} be a BCI-algebra in which the oper-
ation ∗ is described by Table 2 (see [5]).

Table 2. Cayley table of the operation ∗

∗ 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Let A be a complex fuzzy set on X with the complex valued membership
function µA defined by

µA(x) =































0.7ej
π
8 if x = 0,

0.7ej
3π
16 if x = 1,

0.7ej
π
4 if x = b,

0.7ej
5π
16 if x ∈ {a, c}.

If we use the lexicographical order, denoted by ≺l, on C, that is, for any
two complex numbers z1 = a1 + jb1 and z2 = a2 + jb2,

z1 ≺l z2 provided either a1 < a2 or a1 = a2 and b1 < b2,

then A = {(x, µA(x)) | x ∈ X} is a complex subalgebra of X.
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Proposition 3.4. Let A = {(x, µA(x)) | x ∈ X} be a complex subalgebra of
a BCK-algebra X. If we use the min-complex t-norm, then µA(0) � µA(x)
for all x ∈ X.

Proof: Let x ∈ X. Using the conditions (III) and (3.3), we have

Re(µA(0)) = rA(0) · cosωA(0) = rA(x ∗ x) · cosωA(x ∗ x)
≥ (rA(x) ⋄ rA(x)) · cos(ωA(x) ⋄̄ ωA(x))

= rA(x) · cosωA(x) = Re(µA(x))

and

Im(µA(0)) = rA(0) · sinωA(0) = rA(x ∗ x) · sinωA(x ∗ x)
≥ (rA(x) ⋄ rA(x)) · sin(ωA(x) ⋄̄ ωA(x))

= rA(x) · sinωA(x) = Im(µA(x)).

Therefore µA(0) � µA(x) for all x ∈ X. �

Proposition 3.5. Let A = {(x, µA(x)) | x ∈ X} be a complex subalgebra
of a BCK-algebra X in which µA is increasing. If we use the min-complex
t-norm, then µA is constant.

Proof: Straightforward. �

Theorem 3.6. Let A = {(x, µA(x)) | x ∈ X} be a complex subalgebra of
X in which

µA(x) = rA(x) · ejωA(x)

with j =
√
−1, rA(x) ∈ [0, 1] and ωA(x) ∈ [π2 , π]. If we use the min-complex

t-norm, then the δ-level set [A]δ of A is a subalgebra of X for all δ := r ·ejω
with r ∈ [0, 1], ω ∈ [π2 , π] and [A]δ 6= ∅.
Proof: Assume that A = {(x, µA(x)) | x ∈ X} is a complex subalgebra
of X. Let x, y ∈ [A]δ. Then µA(x) � δ and µA(y) � δ. Thus

Re(µA(x)) = rA(x) · cosωA(x) ≥ r · cosω,
Im(µA(x)) = rA(x) · sinωA(x) ≥ r · sinω,
Re(µA(y)) = rA(y) · cosωA(y) ≥ r · cosω,
Im(µA(y)) = rA(y) · sinωA(y) ≥ r · sinω.

Now, we consider the following four cases.

(1) rA(x) ≥ rA(y) and ωA(x) ≥ ωA(y),

(2) rA(x) ≥ rA(y) and ωA(x) < ωA(y),

(3) rA(x) < rA(y) and ωA(x) ≥ ωA(y),

(4) rA(x) < rA(y) and ωA(x) < ωA(y).
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The case (1) implies that

(rA(x) ⋄ rA(y)) · cos(ωA(x) ⋄̄ ωA(y)) = rA(y) · cosωA(y) ≥ r · cosω
and

(rA(x) ⋄ rA(y)) · sin(ωA(x) ⋄̄ ωA(y)) = rA(y) · sinωA(y) ≥ r · sinω.
For the case (2), we have

(rA(x) ⋄ rA(y)) · cos(ωA(x) ⋄̄ ωA(y)) = rA(y) · cosωA(x)

≥ rA(y) · cosωA(y) ≥ r · cosω
and

(rA(x) ⋄ rA(y)) · sin(ωA(x) ⋄̄ ωA(y)) = rA(y) · sinωA(x)

≥ rA(y) · sinωA(y) ≥ r · sinω
since cosωA(y) ≤ cosωA(x) and sinωA(y) ≤ sinωA(x). The case (3) in-
duces

(rA(x) ⋄ rA(y)) · cos(ωA(x) ⋄̄ ωA(y)) = rA(x) · cosωA(y)

≥ rA(x) · cosωA(x) ≥ r · cosω

and

(rA(x) ⋄ rA(y)) · sin(ωA(x) ⋄̄ ωA(y)) = rA(x) · sinωA(y)

≥ rA(x) · sinωA(x) ≥ r · sinω.
From the case (4), we have

(rA(x) ⋄ rA(y)) · cos(ωA(x) ⋄̄ ωA(y)) = rA(x) · cosωA(x) ≥ r · cosω

and

(rA(x) ⋄ rA(y)) · sin(ωA(x) ⋄̄ ωA(y)) = rA(x) · sinωA(x) ≥ r · sinω.

It follows from (3.2) that

rA(x ∗ y) · cosωA(x ∗ y) ≥ (rA(x) ⋄ rA(y)) · cos(ωA(x) ⋄̄ ωA(y)) ≥ r · cosω
and
rA(x ∗ y) · sinωA(x ∗ y) ≥ (rA(x) ⋄ rA(y)) · sin(ωA(x) ⋄̄ ωA(y)) ≥ r · sinω.
Hence µA(x ∗ y) � δ, and so x ∗ y ∈ [A]δ. Therefore [A]δ is a subalgebra
of X. �
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Corollary 3.7. Let A = {(x, µA(x)) | x ∈ X} be a complex subalgebra of
a BCK-algebra X in which

µA(x) = rA(x) · ejωA(x)

with j =
√
−1, rA(x) ∈ [0, 1] and ωA(x) ∈ [π2 , π]. If we use the min-complex

t-norm, then the set

[X] := {x ∈ X | µA(x) = µA(0)}
is a subalgebra of X.

Proof: Since µA(0) � µA(x) for all x ∈ X by Proposition 3.4, we have

[A]µA(0) = {x ∈ X | µA(x) � µA(0)} = {x ∈ X | µA(x) = µA(0)} = [X].

It follows from Theorem 3.6 that [X] is a subalgebra of X. �

Theorem 3.8. Let A = {(x, µA(x)) | x ∈ X} be a complex fuzzy set on X
such that the δ-level set [A]δ of A is a subalgebra of X for all δ := r · ejω
with r ∈ [0, 1], ω ∈ [0, π] and [A]δ 6= ∅. If we use the min-complex t-norm,
then A = {(x, µA(x)) | x ∈ X} is a complex subalgebra of X.

Proof: Suppose that the δ-level set [A]δ of A is a subalgebra of X for all
δ := r · ejω with r ∈ [0, 1] and ω ∈ [0, π]. Assume that there exist a, b ∈ X
such that

µA(a ∗ b) ≺ µA(a) ⊙ µA(b).
We take δ := r · ejω with r ∈ [0, 1] and ω ∈ [0, π] such that

µA(a ∗ b) ≺ δ � µA(a) ⊙ µA(b).

Then a ∗ b /∈ [A]δ,

(rA(a) ⋄ rA(b))·cos(ωA(a) ⋄̄ ωA(b)) = Re(µA(a)⊙µA(b)) ≥ Re(δ) = r·cosω
and

(rA(a) ⋄ rA(b))·sin(ωA(a) ⋄̄ ωA(b)) = Im(µA(a)⊙µA(b)) ≥ Im(δ) = r·sinω.
It follows that

rA(a) · cosωA(a) ≥ r · cosω, rA(a) · sinωA(a) ≥ r · sinω
and

rA(b) · cosωA(b) ≥ r · cosω, rA(b) · sinωA(b) ≥ r · sinω.
This shows that a, b ∈ [A]δ and this is a contradiction. Therefore µA(x∗y) �
µA(x) ⊙µA(y) for all x, y ∈ X, and A = {(x, µA(x)) | x ∈ X} is a complex
subalgebra of X. �
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Corollary 3.9. For any subset L of X, let A = {(x, µA(x)) | x ∈ X} be a
complex fuzzy set on a BCK-algebra X with the complex valued membership
function µA defined by

µA(x) =

{

r1 · ejω1 if x ∈ L,
r2 · ejω2 otherwise

where r1 · ejω1 � r2 · ejω2 . If L is a subalgebra of X and we use the min-
complex t-norm, then A = {(x, µA(x)) | x ∈ X} is a complex subalgebra
of X.
Theorem 3.10. Let δ1, δ2, · · · , δn, · · · be a strictly increasing sequence of
complex numbers, where δk = rk · ejωk with rk ∈ [0, 1] and ωk ∈ [π2 , π]. For
a strictly decreasing sequences L1(= X), L2, · · · , Ln, · · · of subalgebras of
X, there is a complex subalgebra A = {(x, µA(x)) | x ∈ X} of X in which

µA(x) = rA(x) · ejωA(x)

with j =
√
−1, rA(x) ∈ [0, 1] and ωA(x) ∈ [π2 , π] such that [A]δn = Ln for

n ∈ N if we use the min-complex t-norm.

Proof: Define a complex fuzzy set A on X with the complex valued mem-
bership function µA defined by

µA(x) =

{

δn if x ∈ Ln \ Ln+1,
lim
n→∞

δn if x ∈ ∩∞
n=1Ln.

It is easy to verify that A = {(x, µA(x)) | x ∈ X} is a complex subalgebra
of X and [A]δn = Ln for n = 1, 2, · · · . �

Let f : X → Y be a mapping of sets. If B is a complex fuzzy set
on Y with the complex valued membership function µB , then the preim-
age of B under f , denoted by f−1(B), is also a complex fuzzy set on X
with the complex valued membership function µf−1(B) which is defined by
µf−1(B)(x) = µB(f(x)) for all x ∈ X.
Theorem 3.11. Let f :X→Y be a homomorphism from X to a BCK/BCI-
algebra Y . If B is a complex subalgebra of Y with the complex valued mem-
bership function µB, then the homomorphic preimage f−1(B) of B under f
is a complex subalgebra of X with the complex valued membership function
µf−1(B).

Proof: Assume that B is a complex subalgebra of Y with the complex
valued membership function µB . For any x, y ∈ X, we have
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Re
(

µf−1(B)(x ∗ y)
)

= Re (µB(f(x ∗ y))) = Re (µB(f(x) ∗ f(y)))
≥ Re (µB(f(x)) ⊙ µB(f(y)))

= Re
(

µf−1(B)(x) ⊙ µf−1(B)(y)
)

and

Im
(

µf−1(B)(x ∗ y)
)

= Im (µB(f(x ∗ y))) = Im (µB(f(x) ∗ f(y)))
≥ Im (µB(f(x)) ⊙ µB(f(y)))

= Im
(

µf−1(B)(x) ⊙ µf−1(B)(y)
)

.

Therefore the homomorphic preimage f−1(B) of B under f is a complex
subalgebra of X with the complex valued membership function µf−1(B).�

Theorem 3.12. Let f be an endomorphism of X. If A is a complex sub-
algebra of X with the complex valued membership function µA, then the
complex fuzzy set A[f ] on X with the complex valued membership function
µA[f ] defined by

µA[f ](x) = µA(f(x))

for all x ∈ X is a complex subalgebra of X.

Proof: Let A be a complex subalgebra of X with the complex valued
membership function µA. For any x, y ∈ X, we get

Re
(

µA[f ](x ∗ y)
)

= Re (µA(f(x ∗ y))) = Re (µA(f(x) ∗ f(y)))
≥ Re (µA(f(x)) ⊙ µA(f(y)))

= Re
(

µA[f ](x) ⊙ µA[f ](y)
)

and

Im
(

µA[f ](x ∗ y)
)

= Im (µA(f(x ∗ y))) = Im (µA(f(x) ∗ f(y)))
≥ Im (µA(f(x)) ⊙ µA(f(y)))

= Im
(

µA[f ](x) ⊙ µA[f ](y)
)

.

Therefore µA[f ] is a complex subalgebra of X. �

Definition 3.13. A complex fuzzy set A = {(x, µA(x)) | x ∈ X} on X is
called a complex left reduced ideal of X if

Re(µA(x ∗ y)) ≥ Re(µA(y)) and Im(µA(x ∗ y)) ≥ Im(µA(y)) (3.4)

for all x, y ∈ X. If A = {(x, µA(x)) | x ∈ X} satisfies the condition
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Re(µA(x ∗ y)) ≥ Re(µA(x)) and Im(µA(x ∗ y)) ≥ Im(µA(x))

for all x, y ∈ X, then we say A = {(x, µA(x)) | x ∈ X} is a complex right
reduced ideal of X.
Theorem 3.14. Let A = {(x, µA(x)) | x ∈ X} be a complex subalgebra of
a BCK-algebra X. If we use the min-complex t-norm, then A is a complex
left reduced ideal of X if and only if the complex valued membership function
µA of A is constant, that is, µA(0) = µA(x) for all x ∈ X.

Proof: The sufficiency is clear. Assume that A is a complex left reduced
ideal of X. For any x ∈ X, we have

Re(µA(x)) = Re(µA(x ∗ 0)) ≥ Re(µA(0))

and

Im(µA(x)) = Im(µA(x ∗ 0)) ≥ Im(µA(0)).

Since x ∗x = 0 for all x ∈ X, the condition (3.4) implies that Re(µA(x)) ≤
Re(µA(x ∗ x)) = Re(µA(0)) and Im(µA(x)) ≤ Im(µA(x ∗ x)) = Im(µA(0)).
Therefore µA(0) = µA(x) for all x ∈ X, that is, the complex valued mem-
bership function µA of A is constant. �

The proof of the following two theorems is the same as the proof of
Theorems 3.11 and 3.12.
Theorem 3.15. Let f :X→Y be a homomorphism from X to a BCK/BCI-
algebra Y . If B is a complex left (resp. right) reduced ideal of Y with the
complex valued membership function µB, then the homomorphic preimage
f−1(B) of B under f is a complex left (resp. right) reduced ideal of X with
the complex valued membership function µf−1(B).
Theorem 3.16. Let f be an endomorphism of X. If A is a complex left
(resp. right) reduced ideal of X with the complex valued membership func-
tion µA, then the complex fuzzy set A[f ] on X with the complex valued
membership function µA[f ] defined by

µA[f ](x) = µA(f(x))

for all x ∈ X is a complex left (resp. right) reduced ideal of X.
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integers) to R (; the set of real numbers). That is, expanding the range
of the membership function from {0, 1} to the unit interval [0, 1] is math-
ematically analogous to the extension of Z to R. The development of the
number set did not end with real numbers. Historically, the introduction
of real numbers was followed by their extension to the set of complex num-
bers, C. Hence, it may be suggested that a further development of fuzzy
set theory should be based on this extension. In the context of set theory,
the result of such an extension is the complex fuzzy set, i.e., a fuzzy set
characterized by a complex-valued membership function. Based on such
background, Ramot et al. introduced complex fuzzy set in their paper [1].
The complex fuzzy set is characterized by a membership function µ whose
range is not limited to [0, 1] but extended to the unit circle in the complex
plane. In this paper, we have used complex fuzzy sets to obtain the gen-
eralization of fuzzy set theory in BCK/BCI-algebras. We have introduced
the notion of a complex subalgebra and a complex reduced left (right) ideal
in a BCK/BCI-algebra, and have investigated related properties. We have
provided characterizations of a complex subalgebra, and have discussed the
homomorphic image (preimage) of a complex subalgebra and a complex left
(right) reduced ideal. We will use the ideas and results of this paper to
study various types of sub-structure in algebras in the future.
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TOPOLOGICAL AND MULTI-TOPOLOGICAL FRAMES

IN THE CONTEXT OF INTUITIONISTIC MODAL LOGIC

Abstract

We present three examples of topological semantics for intuitionistic modal logic

with one modal operator �. We show that it is possible to treat neighborhood

models, introduced earlier, as topological or multi-topological. From the neigh-

borhood point of view, our method is based on differences between properties of

minimal and maximal neighborhoods. Also we propose transformation of multi-

topological spaces into the neighborhood structures.
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1. Introduction

Neighborhood semantics for intuitionistic propositional logic has been pre-
sented by Moniri and Maleki in [9]. Not surprisingly, it turned to be quite
similar to the neighborhood semantics for classical modal logic S4 . More-
over, the above-mentioned authors proved that their structures correspond
to the well-known relational (Kripke) models for intuitionism. It seems
that later they became interested rather in neighborhood semantics for
subintuitionistic systems (see [7] and [8]).

Nonetheless, even in the context of relatively strong logic like intu-
itionism, neighborhoods still can provoke certain intuitions. For instance,
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Moniri and Maleki spoke aboutminimal neighborhoods (which can be iden-
tified with upper closed sets in Kripke frames). Hence, it is quite natural
to ask also about maximal neighborhoods, i.e. to deny superset axiom.
Informally speaking, in this way a place is created for modality. We can
assume that necessity means satisfiability in maximal neighborhood.

This assumption led us (see [14]) to the intuitionistic logic with one
modal operator �, axiomatized by the rule of necessity and two axioms
(K and T ). Such system has been investigated by Božic and Došen in [1]
but with reference to the bi-relational frames. As we have shown, there
is a strict correspondence between their setting and our neighborhood ap-
proach.

It is well-known (see [10] for more detailed survey) that neighborhood
frames for S4 logic behave just like topological structures. This adequacy is
true also for intuitionistic neighborhood frames, as it was proved in [9]. For
this reason, it is reasonable to look for analogous results for modal logics
based on intuitionism. Even if our frames can be presented as bi-relational,
we still believe that neighborhoods give us better topological intuitions. In
addition, they can be useful when speaking about certain generalizations
of topology for weak modal logics (see [13] for details).

Topological semantics for (normal) intuitionistic modal logics has been
investigated by Davoren in [4], [5] and Davoren et al. in [6]. Those authors
referred to the bi-relational structures with Fischer-Servi conditions (which
are not satisfied in our framework). They use specific binary relations
between points of topological space. Our idea is different: we do not use any
special relation. We limit ourselves to some basic notions like topological
neighborhood or open set.

Another concept has been developed by Collinson et al. in [3]. It is
based on the notion of topological p-morphism. These authors started from
the relational structures and they used some methods of category theory.
As for the topological p-morphism, we do not use this tool in the present
work. However, we adapted it to the case of generalized topologies in [13].

In [11] we can find some considerations about neighborhood, topological
and relational frames for intuitionistic systems with modality. Sotirov as-
sumed that his topological spaces should be equipped with two operations.
One of them behaves like interior and is responsible for the intuitionistic
features of the logic in question. The second is used to model necessity.

In this research we present different approach. Our first intuition was
that neighborhood systems assigned to the particular worlds (i.e. sys-
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tems consisting of minimal and maximal neighborhood) behave like distinct
topological spaces in a kind of “meta-universe”. We show initial conclu-
sions of this observation. However, in some cases it is better to assume that
all these systems are in fact subspaces of one topological space. Hence, we
can use the notion of induced topology.

We concentrate only on the basic features of structures mentioned
above. In particular, we do not obtain topological completeness because our
translations between neighborhood structures (for which we have complete-
ness) and topological spaces (which are defined in three slightly different
ways) are one-way. Thus, this paper can be considered as a first step in
further studies.

2. Alphabet and language

Our basic system is named IKT� . It has rather standard syntax (i.e.
alphabet and language). We use the following notations:

1. PV is a fixed denumerable set of propositional variables p, q, r, s, ...

2. Logical connectives and operators are ∧, ∨, →, ⊥, �.

3. The only derived connective is ¬ (which means that ¬ϕ is a shortcut
for ϕ→ ⊥).

Formulas are generated recursively in a standard manner: if ϕ, ψ are
wff’s then also ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ and �ϕ. Semantic interpretation
of propositional variables and all the connectives introduced above will be
presented in the next section. Attention: ⇐,⇒ and ⇔ are used only on
the level of (classical) meta-language.

3. Neighborhood semantics

3.1. The definition of structure

Our basic structure is an intuitionistic neighborhood modal frame (n2 -
frame) defined as it follows:

Definition 3.1. n2 -frame is an ordered pair 〈W,N〉 where:

1. W is a non-empty set (of worlds, states or points)

2. N is a function from W into P (P (W )) such that:
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(a) w ∈
⋂

Nw

(b)
⋂

Nw ∈ Nw

(c) u ∈
⋂

Nw ⇒
⋂

Nu ⊆
⋂

Nw (→-condition)
(d) X ⊆

⋃

Nw and
⋂

Nw ⊆ X ⇒ X ∈ Nw (relativized superset
axiom)

(e) u ∈
⋂

Nw ⇒
⋃

Nu ⊆
⋃

Nw (�-condition)
(f) v ∈

⋃

Nw ⇒
⋂

Nv ⊆
⋃

Nw (t-condition)

The first three conditions are in fact taken from pure intuitionism and
refer to the features of partial order in relational frames. For instance,
→-condition guarantees that forcing of implication is monotone. As for
the relativized superset axiom, it creates place for modality. �-condition
is necessary to assure that forcing of modal formulas is also monotone.
Significance of the last restriction will be pointed out later.

3.2. Valuation and model

Definition 3.2. Neighborhood n2 -model is a triple FN = 〈W,N , VN 〉,
where 〈W,N〉 is an n2 -frame and VN is a function from PV into P (W )
satisfying the following condition: if w ∈ VN (q) then

⋂

Nw ⊆ VN (q).

Definition 3.3. For every n2 -model MN = 〈W,N , VN 〉, forcing of for-
mulas in a world w ∈W is defined inductively:

1. w 1 ⊥

2. w  q ⇔ w ∈ VN (q) for any q ∈ PV

3. w  ϕ ∨ ψ ⇔ w  ϕ or w  ψ

4. w  ϕ ∧ ψ ⇔ w  ϕ and w  ψ

5. w  ϕ→ ψ ⇔
⋂

Nw ⊆ {v ∈W ; v 1 ϕ or v  ψ}

6. w  �ϕ ⇔
⋃

Nw ⊆ {v ∈W ; v  ϕ}.

As we said, ¬ϕ is a shortcut for ϕ → ⊥. Thus, w  ¬ϕ ⇔
⋂

Nw ⊆
{v ∈W ; v 1 ϕ}.

As usual, we say that formula ϕ is satisfied in a modelMN =〈W,N , VN 〉
when w  ϕ for every w ∈W . It is true (tautology) when it is satisfied in
each n2 -model.
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4. Neigborhood completeness

In [14] we have shown (using slightly different symbols) that n2 -frames are
sound and complete semantics for the logic IKT� defined as the following
set of formulas and rules: IPC ∪ {K ,T ,RN ,MP }, where:

1. IPC is the set of all intuitionistic axiom schemes

2. K is the axiom scheme �(ϕ→ ψ) → (�ϕ→ �ψ)

3. T is the axiom scheme �ϕ→ ϕ

4. RN is the rule of necessity: ϕ ⊢ �ϕ

5. MP is modus ponens: ϕ,ϕ→ ψ ⊢ ψ

Completeness result has been established in two ways. First, directly
– by means of prime theories and canonical model. Second, indirectly –
by the transformation into certain class of bi-relational frames, introduced
by Božić and Došen in [1] who proved its completeness. Basically, they
used different set of axioms.

5. Multi-topological frames

5.1. The definition of structure and model

In this section we introduce the notion of multi-topological frame (model).
Such structure can be roughly described as a collection of topological spaces
with one valuation based on open sets. Each space has its distinguished
open set which plays crucial role in the proof of translation between neigh-
borhood and multi-topological settings.

Definition 5.1. mtD -model with distinguished sets is an ordered triple
Mt = 〈W,W, Vt〉 where:

1. W 6= ∅.

2. W = {〈T, τ,Dτ 〉 : T ⊆W , τ is a topology on T , Dτ ∈ τ,Dτ 6= ∅}

3. W =
⋃

T , where T = {T : 〈T, τ,Dτ 〉 ∈ W}.

4. Vt is a function from PV into P (W ) satisfying the following condition:
Vt(q) =

⋃

X where X ⊆ {X ⊆ W ; there is 〈T, τ,Dτ 〉 ∈ W for which
X ∈ τ}.

The third condition can be formulated also as follows: for each w ∈W
there is 〈T, τ,Dτ 〉 ∈ W such that w ∈ T . Hence, each point of W is at
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least in one topological space. We can consider the whole structure as a
universe with many generalized topologies1.

For convenience, we shall often identify each 〈T, τ,Dτ 〉 simply with τ .
As for the valuation of complex formulas, it is based on the valuation of
propositional variables and defined inductively:

Definition 5.2. For every mtD -model Mt = 〈W,W, Vt〉, valuation of
formulas is defined as such:

1. Vt(ϕ ∧ ψ) = Vt(ϕ) ∩ Vt(ψ)

2. Vt(ϕ ∨ ψ) = Vt(ϕ) ∪ Vt(ψ)

3. Vt(ϕ→ ψ) =
⋃

τ
Intτ (−Vt(ϕ) ∪ Vt(ψ))

4. Vt(�ϕ) =
⋃

X where X = {X ⊆ W such that X = Dτ for at least
one τ in W such that T ⊆ Vt(ϕ)}.

A few words of comment should be made. We assume that Vt(q) is a
union of sets which are open at least in one topology. Concerning value of
implication, we look for −Vt(ϕ)∪Vt(ψ) and then we sum up all τ -interiors
of this set. The last important thing is modality: we check which universes
are wholly contained in Vt(ϕ) and then we take union of their distinguished
sets. We say that formula ϕ is true iff in eachmtD -modelMt = 〈W,W, Vt〉
we have Vt(ϕ) =W .

This class of models is based on the observation described above: that
we have multiverse of spaces. However, our definition of forcing appears
to be too weak (even if we assumed that valuation is based on unions of
τ -open sets). Hence, mtD -structures in their most general form are not
sound with respect to intuitionism. We did not develop detailed hypothesis
about the logic determined by this class of frames. Certainly, some very
basic axioms hold. Among them there are: ϕ→ ϕ, ϕ ∧ ψ → ψ, ϕ→ ϕ ∨ ψ
and ψ → ϕ∨ψ. Also ϕ→ (ψ → ψ) is true. Let us check this fact. Assume
that there is a model with a world w such that w 1 ϕ → (ψ → ψ). It
means that for each τ , w /∈ Intτ (−Vt(ϕ) ∪ (−Vt(ψ) ∪ Vt(ϕ))). However,
the whole expression in brackets is just W ∪ −Vt(ψ) = W . When we take
τ -interior of W , we obtain subset T . Hence, w is beyond any T . But this
is contradiction.

On the other hand, it is possible that x 1 (ϕ→ ψ∧ψ → γ) → (ϕ→ γ),
i.e. for each τ , x /∈ Intτ (−(−Vt(ϕ)∪Vt(ψ))∩ (−Vt(ψ)∪Vt(γ)))∪ (−Vt(ϕ)∪

1Generalized in the sense of Császár (see [2]) but with closure under finite intersec-
tions.
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Vt(γ)). After some computations the whole expression can be written as
−W ∪ (−Vt(ϕ) ∪ Vt(γ)) = −Vt(ϕ) ∪ Vt(γ). Now take W = {w, v, u, z},
τ1 = {∅, {w, v}}, τ2 = {∅, {u, z}}, Vt(ϕ) = {w, v}, distinguished sets are
arbitrary, Vt(ϕ) = {u, z}, Vt(ψ) = Vt(γ) = ∅. Now v does not force the for-
mula in question. Let us check it: Intτ1(−Vt(ϕ)∪Vt(γ)) = Intτ1({u, z}) =
∅ 6∋ v. Moreover, Intτ2(−Vt(ϕ) ∪ Vt(γ)) = {u, z} 6∋ v.

Also we can easily build a counter-model where Vt(ϕ ∧ ψ) * Vt(⊤ →
ϕ ∧ ψ)2.

As for the modal formulas: we can easily prove that axiom T (i.e.
�ϕ → ϕ) is always true. Assume that there is a model with w such that
w 1 T . Hence, for any τ , w /∈ Intτ (−Vt(�ϕ) ∪ Vt(ϕ)) = Intτ (−

⋃

X ∪
Vt(ϕ)), where X = {X ⊆W such that X = Dτ for at least one τ in W such
that T ⊆ Vt(ϕ)}. Clearly,

⋃

X ⊆ Vt(ϕ). Hence, −Vt(ϕ) ⊆ −
⋃

X which
gives us that −

⋃

X ∪ Vt(ϕ) =W . Again, we obtain impossible result that
w /∈ T for any 〈T, τ,Dτ 〉 ∈ W.

On the other hand, axiom 4 (i.e. �ϕ → ��ϕ) can be falsified. Take
W = {w, v, u}, τ1 = {∅, {w, v}, {w, v, u}}, Dτ1 = {w, v}, τ2 = {∅, {v}},
Dτ2 = {v}, Vt(ϕ) = W . Now Vt(�ϕ) = Dτ1 ∪ Dτ2 = {w, v}, V (��ϕ) =
Dτ2 = {v}, −Vt(�ϕ) ∪ Vt(��ϕ) = {u, v}. Hence, Intτ1({u, v}) = ∅,
Intτ2({u, v}) = {v}. Clearly, u is beyond those interiors, so u 1 4 .

We see that the logic ofmtD -frames is a kind of unknown subintuition-
istic modal logic. We conjecture that it may be fruitful to study general
multi-topological structures and to look for any regularities depending on
mutual location of spaces or their topological properties. We signalize this
possibility but it is beyond the scope of present paper. And so, overall
here, we shall work only with a certain subclass of these structures, namely
i-mtD -frames.

Definition 5.3. We say that mtD -frame is i-mtD iff there is an Alexan-
drov topology µ on W such that for each τ ∈ W, τ is a subspace topology
induced by µ.

If we speak about Alexandrov topology, it means that arbitrary inter-
sections of open sets are also open. If τ on T is induced by µ, then each
U ∈ τ can be presented as T ∩ A for certain A ∈ µ. On the other hand, if
A ∈ µ, then T ∩ A ∈ τ . This subclass of models is sound with respect to

2We are grateful to the anonymous reviewer for this example and some other impor-
tant comments.
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intuitionism what can be manually checked. It is well-known fact that sub-
spaces of Alexandrov space also have Alexandrov property (see Theorem 7
in [12]).

6. From neighborhood frames to multi-topological

structures

6.1. Basic notions

In this section we show that it is possible to treat neighborhood models as
multi-topological. First, let us introduce the notion of w-open sets.

Definition 6.1. We say that set X ⊆ W is w-open in n2 -frame iff X ⊆
⋃

Nw and for every v ∈ X we have
⋂

Nv ⊆ X. We define Ow as {X ⊆
W : X are w-open} and call it w-topology.

Let us check that this definition is useful for our needs.

Theorem 6.2. Assume that we have n2 -frame FN = 〈W,N〉. Then Ow

is a topological space for every w ∈W .

Proof: Let us check standard properties of topology.

1. Take empty set. We can say that ∅ ∈ Ow because ∅ ⊆
⋃

Nw and
there are no any v in ∅.

2. Consider
⋃

Nw. Clearly this set is contained in itself and because of
T -condition we have that for every v ∈

⋃

Nw the second condition
holds:

⋂

Nv ⊆
⋃

Nw.

3. Consider X ⊆ Ow. We show that
⋂

X ∈ Ow. The first condition
is simple: every element of X belongs to Ow so it is contained in
⋃

Nw. The same holds of course for intersection of all such elements.
Now let v ∈

⋂

X . By the definition we have that
⋂

Nv ⊆ X for
every X ∈ X . Then

⋂

Nv ⊆
⋂

X .

4. In the last case we deal with arbitrary unions. Suppose that X ⊆ Ow

and consider
⋃

X . Surely this union is contained in
⋃

Nw. Now let
us take an arbitrary v ∈

⋃

X . We know that
⋂

Nv ⊆ X for some
X ∈ X (in fact, it holds for every X which contains v). Then clearly
⋂

Nv ⊆
⋃

X . �

One thing should be noted. Clearly, we used t-condition to assure that
the whole maximal w-neighborhood is w-open. Basically, in [14], we worked
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with structures without t-condition (we may call them n1 -frames). Com-
pleteness theorem holds also for them – but it would be at least problematic
to treat those frames as multi-topological.

⋃

Nw

w
⋂

Nw

⋂

Nw

X

Y

Fig. 1. Topology Ow. X, Y are w-open.

Theorem 6.3. Assume that we have MN = 〈W,N , VN 〉 and we define
topology µ on W in the following way: if A ⊆ W , then A ∈ µ ⇔ for any
v ∈ A,

⋂

Nv ⊆ A. Then, for any w ∈ W , Ow is induced by µ (i.e. Ow is
subspace topology).

Proof: Let us take w ∈ W . We shall prove that Ow consists strictly of
intersections of

⋃

Nw and τ -open sets.
If U ∈ Ow then U ∈ µ (this is clear) and U = U ∩

⋃

Nw. Assume now
that A is µ-open and consider Z = A ∩

⋃

Nw. Let us check that this set
belongs to Ow. Of course it is contained in

⋃

Nw. Suppose that there is
z ∈ Z such that

⋂

Nz * Z. But
⋂

Nz ⊆ A (because A is τ -open) and
⋂

Nz ⊆
⋃

Nw (because of t-condition). This is contradiction.
Additionally, one can easily check that µ is Alexandrov. �

6.2. Transformation

Theorem 6.4. For each n2 -modelMN = 〈W,N , VN 〉 there exists i-mtD -
model Mt = 〈W,W, Vt〉 which is pointwise equivalent to MN , i.e. w  ϕ⇔
w ∈ Vt(ϕ).

Proof: Assume that we have MN = 〈W,N , VN 〉. Now let us consider the
following structure: Mt = 〈W,W, Vt〉 where:

1. W = {〈
⋃

Nw,Ow,
⋂

Nw〉;w ∈W}

2. for each q ∈ PV , Vt(q) = VN (q)
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We shall identify each 〈
⋃

Nw,Ow,
⋂

Nw〉 just with Ow. It is easy to
check that this is well-defined i-mtD -frame. For each w ∈W we can treat
⋃

Nw as a universe of topological subspace. Thus
⋂

Nw can be treated as
distinguished set in this particular subspace.

Fig. 2. From neighborhoods to multi-topological space with distinguished
sets.

Now let us prove pointwise equivalency. Here we use induction by the
complexity of formulas.

1. →:
(⇒) Suppose that w  ϕ→ ψ. We want to show there exists certain
〈
⋃

Nx,Ox,
⋂

Nx〉 ∈ W such that w ∈ Intx((−Vt(ϕ) ∪ Vt(ψ)).
We can say that w ∈

⋂

Nw ⊆ {x ∈ W ;x 1 ϕ or x  ψ}. By
induction hypothesis, this set can be written as {x ∈ W ;x /∈ Vt(ϕ)
or x ∈ Vt(ψ)} = −Vt(ϕ)∪ Vt(ψ). Recall the fact that

⋂

Nw ⊆
⋃

Nw.
Thus w ∈

⋂

Nw ⊆ (−Vt(ϕ)∪ Vt(ψ))∩
⋃

Nw. But
⋂

Nw is w-open so
it is contained in Intw(−Vt(ϕ) ∪ Vt(ψ)). We see that we could treat
w as our x.
(⇐) Now we assume that w ∈ Vt(ϕ → ψ). Thus we have certain
Ox such that w ∈ Intx((−Vt(ϕ) ∩ Vt(ψ)). By induction hypothesis,
w ∈ Intx({z ∈W ; z 1 ϕ or z  ψ}). Hence, w belongs to the biggest
x-open set X such that X ⊆ {z ∈ W ; z 1 ϕ or z  ψ}. But if X is
x-open then

⋂

Nw ⊆ X. Thus w  ϕ→ ψ.

2. �:
(⇒) Assume that w  �ϕ. We want to show that w ∈ Vt(�ϕ), i.e.
that there is X ⊆ W such that w ∈ X and for certain Ox we have:
X =

⋂

Nx,
⋃

Nx ⊆ Vt(ϕ).
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Surely, we can take x = w. Now, if w  �ϕ, then
⋃

Nw ⊆ VN (ϕ).
By induction hypothesis,

⋃

Nw ⊆ Vt(ϕ).
(⇐) Suppose that w ∈ Vt(�ϕ). Thus w ∈ X ⊆ W such that for
certain Ox we can say that X =

⋂

Nx and
⋃

Nx ⊆ Vt(ϕ).
If

⋃

Ns ⊆ Vt(ϕ), then (by induction hypothesis)
⋃

Nx ⊆ VN (ϕ).
Thus x  �ϕ. But w ∈

⋂

Nx. Thus, by the monotonicity of intu-
itionistic forcing, w  �ϕ. �

7. From multi-topological structures to neighborhood

structures

In the former section we used multi-topological structures with distin-
guished open sets Dτ . Those sets are equivalents of minimal w-neighbor-
hoods (while subspaces played the role of maximal w-neighborhoods). We
used such unconventional approach mainly because our topology Ow does
not “recognize” minimal neighborhoods. Thus, if we have

⋃

Nw, then from
the neighborhood point of view

⋂

Nw is specific – but as w-open set it is
not distinguished in any way from other w-open sets. But we need such
distinction to establish correspondence between VN and Vt.

Now we are on the other side: we start from topological structures but
defined in slightly different way. Here we do not have Dτ sets. We have
the following definition (of frame):
Definition 7.1. t2 -frame is an ordered pair 〈W,W〉 where:

1. W 6= ∅

2. W = {〈T, τ〉 : T ⊆W , τ is an Alexandrov topology on T}.

3. W =
⋃

T , where T = {T ; 〈T, τ〉 ∈ W}

Each 〈T, τ〉 is an Alexandrov space, so each w ∈ T has its minimal
τ -open neighborhood. If we denote the family of τ -open w-neighborhoods
as Ow

τ
, then we can introduce the following notation:

⋂

Ow

τ
= minOw

τ
.

Our definition of frame is very similar to Def. 5.1 but now we deny
distinguished sets. However, in the definition of model there are bigger
differences. In fact, we shall define forcing after introducing specific kind
of neighborhoods in our topological environment.

Now let us think about intersection of all minimal τ -open w-neighbor-
hoods. It will be denoted as

⋂

〈T,τ〉∈T w{minOw

τ
} or shortly by

⋂

τ∈T w{minOw

τ
}, where T w = {〈T, τ〉 ∈ W : w ∈ T} . Below we de-

fine neighborhoods in the sense mentioned above.
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Definition 7.2. Assume that we have t2 -frame 〈W,W〉. Then for each
w ∈W we define:

1.
⋂

N t

w
=

⋂

τ∈T w{minOw

τ
}

2.
⋃

N t

w
=

⋂

T w

3. X ∈ N t

w
⊆ P (P (W )) ⇔

⋂

N t

w
⊆ X ⊆

⋃

N t

w

Theorem 7.3. Assume that we have t2 -frame 〈W,W〉 with N t

w
defined as

in Def. 7.2. We state that for each w ∈ U , N t

w
has all the properties of

neighborhood family in n2 -frame.

Proof: We must check five conditions:

1. w ∈
⋂

N t

w
. This is simple because

⋂

N t

w
is defined as an intersection

of all τ -open w-neighborhoods (for every τ in T w) and certainly w is
in each such neighborhood.

2.
⋂

N t

w
∈ N t

w
. This is obvious by the very definition of N t

w
.

3. v ∈
⋂

N t

w
⇒

⋂

N t

v
⊆

⋂

N t

w
. Let us note two facts. First, v is at least

in all those spaces, in which w is (because it is in the intersection
of all minimal w-neighborhoods). Thus, we can say that

⋂

N t

v
=

⋂

τ∈T v{minOv

τ
} ⊆

⋂

τ∈T w{minOv

τ
}.

Second, suppose for a moment that we work with one particular
Alexandrov topological space ρ. Assume that v belongs to the min-
imal ρ-open neighborhood of w. Of course v has its own minimal
ρ-open neighborhood – but let us suppose that minOv

ρ
* minOw

ρ
.

Now – from the basic properties of topology and the fact that at least
v belongs to minOw

ρ
– we state that minOv

ρ
∩minOw

ρ
is ρ-open. Of

course, this intersection is contained in minOw

ρ
. Thus, we have con-

tradiction with the assumption that minimal ρ-open v-neighborhood
is not contained in minOw

ρ
.

Now let us go back to the main part of the proof. The second fact
allows us to say that

⋂

τ∈T w{minOv

τ
} ⊆

⋂

τ∈T w{minOw

τ
} =

⋂

N t

w
.

4. v ∈
⋂

N t

w
⇒

⋃

N t

v
⊆

⋃

N t

w
. As earlier, we say that v is at least in

each space which belongs to T w. Thus
⋃

N t

v
=

⋂

T v =
⋂

{〈T, τ〉 ∈
W : v ∈ T} ⊆

⋂

{〈T, τ〉 ∈ W : w ∈ T} =
⋃

N t

w
.

5. v ∈
⋃

N t

w
⇒

⋂

N t

v
⊆

⋃

N t

w
. Suppose that v ∈

⋃

N t

w
defined as in

Def. 7.2. Thus v ∈
⋂

T w which means in particular that v is in all
those universes, in which w is. Now it is clear that

⋂

N t

v
– defined

as an intersection of all τ -open minimal v-neighborhoods – must be
contained at least in each element of T w, i.e. in

⋃

N t

w
. �
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Fig. 3. Maximal and minimal neighborhoods in multi-topological space.

We have transformed our initial multi-topological structure into the
neighborhood frame. Note that it is possible that for certain (and even
for each) τ the set

⋂

N t

w
is not τ -open. We do not expect this. It is

just intersection of all minimal w-neighborhoods. Now we shall introduce
valuation and rules of forcing – thus obtaining logical model.

Definition 7.4. Assume that we have t2 -frame 〈W,W〉. Suppose that
for each w ∈ W we defined N t

w
as in Def. 7.2. We define valuation Vt

as a function from PV into P (W ) satisfying the following condition: if
w ∈ Vt(q) then

⋂

N t

w
⊆ Vt(q). The whole triple 〈W,W, Vt〉 is called t2 -

model.

Definition 7.5. For every t2 -model Mt = 〈W,W, Vt〉, valuation of for-
mulas is defined as such:

1. Vt(ϕ ∧ ψ) = Vt(ϕ) ∩ Vt(ψ)

2. Vt(ϕ ∨ ψ) = Vt(ϕ) ∪ Vt(ψ)

3. Vt(ϕ → ψ) =
⋃

x∈I
{
⋂

N t

x
} where I = {x ∈ W :

⋂

N t

x
⊆ −Vt(ϕ) ∪

Vt(ψ)}

4. Vt(�ϕ) =
⋃

x∈M
{
⋂

N t

x
} where M = {x ∈W :

⋃

N t

x
⊆ Vt(ϕ)}

We say that formula ϕ is true iff in each t2 -model Mt = 〈W,W, Vt〉
we have Vt(ϕ) =W .

The next theorem is crucial for our considerations.

Theorem 7.6. For each t2 -model Mt = 〈W,W, Vt〉 there exists n2 -model
MN = 〈W,N , VN 〉 which is pointwise equivalent to Mt, i.e. w  ϕ ⇔ w ∈
Vt(ϕ).

Proof: Let us take Mt and introduce N t

w
for each w ∈ W just like in

Def. 7.2. We define VN : PV → P (W ) in the following way: VN = Vt.
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Now the structure MN = 〈W,N t, VN 〉 is a proper neighborhood model. In
fact, we have already shown that it is n2 -frame. By the definition of Vt we
know that it is monotone in n2 -frame. Let us check pointwise equivalency
between both structures.

1. →
(⇒) Suppose that w  ϕ → ψ. Thus

⋂

N t

w
⊆ {v ∈ W ; v 1 ϕ or

v  ψ} = −VN (ϕ)∪VN (ψ). By induction this last set can be written
as −Vt(ϕ)∪ Vt(ψ). Thus, we can say that w belongs to I defined as
in Def. 7.2. Of course w ∈

⋂

N t

w
. Hence, w ∈ Vt(ϕ→ ψ).

(⇐) Assume that w ∈ Vt(ϕ → ψ). This means that there is at least
one point x ∈ I such that w ∈

⋂

N t

x
. But if

⋂

N t

x
⊆ −Vt(ϕ)∪Vt(ψ)

then we can say that
⋂

N t

x
⊆ −VN (ϕ)∪VN (ψ) (by induction). Hence,

x  ϕ→ ψ. The same can be said about w (because w ∈
⋂

N t

x
).

2. �

(⇒) Suppose that w  �ϕ. Thus
⋃

Nw ⊆ VN (ϕ) = Vt(ϕ). The
last equivalence is a result of induction hypothesis. Now we see that
w ∈ M . Of course w ∈

⋂

N t

w
. Then w ∈ Vt(�ϕ).

(⇐) Assume that w ∈ Vt(�ϕ). Hence, there is at least one world
x ∈ M such that w ∈

⋂

N t

x
. But if

⋃

N t

x
⊆ Vt(ϕ), then by induction

⋃

N t

x
⊆ VN (ϕ). This means that x  �ϕ. By monotonicity of forcing

in
⋂

N t

x
we can say that w  �ϕ. �

8. Alternative approach

Let us go to back to the n2 -frames. We shall define topology in a slightly
different way than in Def. 6.1. Now we assume that

⋂

Nw is always
contained in each w-open set.

Definition 8.1. Suppose that we have n2 -frame MN = 〈W,N〉. We say
that X ⊆ W is wmin-open in n2 -structure iff X = ∅ or X ⊆

⋃

Nw,
⋂

Nw ⊆ X and for every v ∈ X we have
⋂

Nv ⊆ X. We denote Qw =
{X ⊆W : X are wmin-open } ∪ ∅ and call it wmin-topology.

Theorem 8.2. Assume that we have n2 -frame FN = 〈W,N〉. Then
〈
⋃

Nw,Qw〉 is a topological space (for every w ∈W ).

Proof: It is easy to check conditions of well-defined topology – just as in
Th. 6.2. We leave details to the reader. �
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Y

X

w

⋂

Nw

Fig. 4. Topology Qw. X, Y are w-open.

8.1. From neighborhood frames to multi-topological structures
once again

Let us introduce the new type of multi-topological structures. In fact, they
are t2 -frames but with valuation defined in a different way. Recall that
Ow

τ
denotes the family of all τ -open w-neighborhoods and minOw

τ
is an

intersection of such family.

Definition 8.3. t3 -model is an ordered triple Mt = 〈W,W, V 〉 where
〈W,W〉 is a t2 -frame and Vt is a function from PV into P (W ) satisfying the
following condition: Vt(q) =

⋃

X where X ⊆ {X ⊆W ; there is 〈T, τ〉 ∈ W

and w ∈ T such that X = minOw

τ
}.

Definition 8.4. For every t3 -model Mt = 〈W,W, Vt〉, valuation of for-
mulas is defined as such:

1. Vt(ϕ ∧ ψ) = Vt(ϕ) ∩ Vt(ψ)

2. Vt(ϕ ∨ ψ) = Vt(ϕ) ∪ Vt(ψ)

3. Vt(ϕ → ψ) =
⋃

X , where X = {X ⊆ W such that X ⊆ −Vt(ϕ) ∪
Vt(ψ) and there are 〈T, τ〉 ∈ W, x ∈ T for which X = minOx

τ
}.

4. Vt(�ϕ) =
⋃

X , where X = {X ⊆W such that there are 〈T, τ〉 ∈ W,
x ∈ T for which X = minOx

τ
and T ⊆ Vt(ϕ)}.

We say that formula ϕ is true iff in each t3 -model Mt = 〈W,W, Vt〉
we have Vt(ϕ) =W .
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that from section 5. The main difference is that we can work with minimal
τ -open sets, i.e. with minOw

τ
.

Theorem 8.5. For each n2 -model MN = 〈W,N , VN 〉 there exists t3 -
model Mt = 〈W,W, Vt〉 which is pointwise equivalent to MN , i.e. w  ϕ⇔
w ∈ Vt(ϕ).

Proof: Assume that we have MN = 〈W,N , VN 〉. Now let us consider the
following structure: Mt = 〈W,W, Vt〉 where:

1. W = {〈
⋃

Nw,Qw〉 : w ∈W}

2. for each q ∈ PV , Vt(q) = VN (q)

It is easy to check that 〈W,W〉 is a well-defined t2 -frame. Let us prove
pointwise equivalency by means of induction.

→
(⇒) Suppose that w  ϕ → ψ. Thus

⋂

Nw ⊆ {v ∈ W ; v 1 ϕ or
v  ψ}. The last set – by induction hypothesis – is equal to −Vt(ϕ)∪Vt(ψ).
Moreover,

⋂

Nw is an intersection of all wmin-open sets (recall Def. 8.1)
and w ∈

⋂

Nw ⊆
⋃

Nw. Thus w ∈ Vt(ϕ→ ψ).
(⇐) Assume that w ∈ Vt(ϕ → ψ). First, there is X ⊆ W such that

w ∈ X andX ⊆ −Vt(ϕ)∪Vt(ψ). Second, there is 〈
⋃

Nx,Qx〉 ∈ W such that
X is minimal Qx-open x-neighborhood. In fact, it means that X =

⋂

Nx.
So

⋂

Nx ⊆ −Vt(ϕ) ∪ Vt(ψ) =[ind. hyp.]−VN (ϕ) ∪ VN (ψ) = {z ∈W ; z 1 ϕ
or z  ψ}. Then, in particular, x  ϕ → ψ and also w  ϕ → ψ (because
w ∈

⋂

Nx and we have intuitionistic monotonicity of forcing).

�

(⇒) Suppose that w  �ϕ. Thus
⋃

Nw ⊆ {v ∈ W ; v  ϕ}. The
last set is – by induction hypothesis – equal to Vt(ϕ). We can say that
conditions from Def. 8.4 are satisfied: our X is

⋂

Nw and our topological
space is 〈

⋃

Nw,Qw〉. Thus w ∈ Vt(�ϕ).
(⇐) Assume that w ∈ Vt(�ϕ). Thus, we have X ⊆W such that w ∈ X

and there are x ∈ W , 〈
⋃

Nx,Qx〉 ∈ W such that X is
⋂

Nx (i.e. minimal
Qx-open x-neighborhood) and

⋃

Nx ⊆ Vt(ϕ). By induction hypothesis
⋃

Nx ⊆ VN (ϕ). Thus, x  �ϕ. By monotonicity of forcing, w  ϕ. �

One can see that in some sense we composed earlier definitions of multi-
topological frames, valuations and models. Now our situation is similar to
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we used the notion of neighborhood in three ways. First, we spoke about
the class of all neighborhood structures (n2 -frames). Second, we made
references to neighborhoods in the standard topological sense. Third, we
used those topological neighborhoods to transform multi-topological frame
into certain specific n2 -frame. Hence, we shall repeat the most important
things and sum up our considerations.

In section 3 we have described neighborhood semantics for intuitionistic
modal logic. It is based on the notions of minimal (“intuitionistic”) and
maximal (“modal”) neighborhoods.

In section 5 we have introduced mtD -frames (models). They are col-
lections of topological spaces. These spaces can intersect or form unions.
We assumed that each space 〈T, τ〉 has certain distinguished open set Dτ .
Then we have shown how it is possible to treat n2 -frames as mtD -frames.
Shortly speaking, the main idea is to make connection between maximal
(resp. minimal) neighborhoods and universes T (resp. distinguished sets).

In section 7 we spoke about t2 -frames (models). They are similar to
the class of mtD but each topology is Alexandrov and we do not intro-
duce distinguished sets anymore. We have shown how to transform those
structures into neighborhood models. Let us repeat main steps of this rea-
soning. Assume that W is the whole universe of a given t2 -frame. Now
let us take an arbitrary w ∈ W . For each topology τ we have minimal
τ -open w-neighborhood (because of Alexandrov property). We take inter-
section of all such minimal neighborhoods and treat it as

⋂

Nw (as the
minimal w-neighborhood in the sense of n2 -frames). Then we take inter-
section of all topological spaces to which w belongs and this is our maximal
neighborhood.

In section 8.1 we came back to n2 -frames but we introduced another
topology in those structures (different than in section 5). It is possible to
transform n2 -models with this topology into t3 -multi-topological models –
which are based on t2 -frames but with different valuation than in section 7.

9. Summary

In this paper we used a lot of notions and symbols. We have introduced
three different concepts of multi-topological frames (models). Moreover,
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A NOTE ON DISTRIBUTIVE TRIPLES

Abstract

Even if a lattice L is not distributive, it is still possible that for particular elements

x, y, z ∈ L it holds (x∨y)∧z = (x∧z)∨(y∧z). If this is the case, we say that the

triple (x, y, z) is distributive. In this note we provide some sufficient conditions

for the distributivity of a given triple.

Keywords : Distributive triple, dually distributive triple, covering diamond.

Standard lattice-theoretic notions can be found in [3]. Let us recall
basic definitions and facts. If L is a lattice and a, b ∈ L, then the set
[a, b] = {c ∈ L : a 6 c 6 b} is called an interval (in L). Clearly, any interval
is a sublattice of L. If X ⊆ L, then [X] stands for the sublattice generated
by X, i.e., the smallest sublattice of L, which contains the subset X. For
any subset X ⊆ L and for any interval [a, b] we define

[[a, b]]X := [a, b] ∩ [X].

In particular, if X = {x, y, z}, then [[x ∧ y ∧ z, x ∨ y ∨ z]]X = [X].
A lattice L is said to be modular if x 6 z implies (x∨y)∧z = x∨(y∧z),

for all x, y, z ∈ L. Moreover, L is called distributive if (x ∨ y) ∧ z =
(x∧z)∨(y∧z), for all x, y, z ∈ L. The Dedekind–Birkhoff Theorem (cf. [3],
p. 59) states that a lattice L is modular if and only if L does not contain
a sublattice isomorphic to N5 (so-called pentagon), and moreover, and L

is distributive if and only if L does not contain a sublattice isomorphic to
N5 nor M3 (so-called diamond).
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Let L be an arbitrary lattice and x, y, z ∈ L. We say that (x, y, z) is a
distributive triple, (x, y, z)D in symbols, if (x∨y)∧z = (x∧z)∨(y∧z). Sim-
ilarly, (x, y, z) is called a dually distributive triple, (x, y, z)D∗ in symbols, if
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) (cf. [7], p. 761). Clearly, L is distributive if
and only if (x, y, z)D, for all x, y, z. G. Birkhoff proved the following

Theorem 1 ([1], Theorem II.12). Let L be a modular lattice and X =
{x, y, z} ⊆ L. Then:

(i) [[x ∧ y ∧ z, x ∨ y ∨ z]]X is distributive if and only if (x, y, z)D,

(ii) [[x ∧ y ∧ z, x ∨ y ∨ z]]X is distributive if and only if (x, y, z)D∗.

The Dedekind–Birkhoff Theorem shows that the hypothesis of modu-
larity is necessary as well as sufficient in Theorem 1 (cf. the lattice (a) in
Figure 1).

x

y
z

(a)

z

y

x

(b)

y

z

x

(c)

yx
z

(d)

y
z x

(e)

Fig. 1. Non-modular lattices satisfying (x, y, z)D or (x, y, z)D∗.

Our result is the following

Theorem 2. Let L be an arbitrary lattice and X = {x, y, z} ⊆ L. Then:

(i) if [[x ∧ z, x ∨ y ∨ z]]X and [[y ∧ z, x ∨ y ∨ z]]X are distributive, then

(x, y, z)D,

(ii) if [[x ∧ y ∧ z, x ∨ y]]X is distributive, then (x, y, z)D.

Proof: To prove (i), assume that [[x∧ z, x∨y∨ z]]X and [[y∧ z, x∨y∨ z]]X
are distributive sublattices of L. Then

1Note that Birkhoff in [1], p. 37, provides a different definition: a three-element subset
{x, y, z} of a lattice L is a distributive triple if [{x, y, z}] is a distributive sublattice of L.



A Note on Distributive Triples 209

z ∧ (x ∨ y) = z ∧
(

x ∨
(

y ∨ (x ∧ z)
)

)

= (z ∧ x) ∨
(

z ∧
(

y ∨ (x ∧ z)
)

)

(by the 1st assumption)

= z ∧
(

y ∨ (x ∧ z)
)

= z ∧
(

y ∨
(

(x ∧ z) ∨ (y ∧ z)
)

)

= (z ∧ y) ∨
(

z ∧
(

(x ∧ z) ∨ (y ∧ z)
)

)

(by the 2nd assumption)

= (z ∧ y) ∨
(

(x ∧ z) ∨ (y ∧ z)
)

= (z ∧ y) ∨ (x ∧ z),

which completes the proof of (i).
For (ii), we assume that [[x∧ y∧ z, x∨ y]]X is distributive and calculate

as follows:

z ∧ (x ∨ y) =
(

z ∧ (x ∨ y)
)

∧ (x ∨ y)

=
(

(

z ∧ (x ∨ y)
)

∧ x
)

∨
(

(

z ∧ (x ∨ y)
)

∧ y
)

(by the assumption)

= (z ∧ x) ∨ (z ∧ y).

�

By the duality principle we obtain
Theorem 3. Let L be an arbitrary lattice and X = {x, y, z} ⊆ L. Then:

(i) if [[x ∧ y ∧ z, x ∨ z]]X and [[x ∧ y ∧ z, y ∨ z]]X are distributive, then

(x, y, z)D∗,

(ii) if [[x ∧ y, x ∨ y ∨ z]]X is distributive, then (x, y, z)D∗.

Remark 1. Lattices (b) and (c) in Figure 1 disprove the converses of

Theorems 2 and 3, respectively.

Remark 2. Theorem 2 allows the conclusion that (x, y, z)D in lattices (d)

and (e) in Figure 1. On the other hand, this fact cannot be justified on the

basis of Theorem 1.

In order to illustrate a possible use of Theorem 2 we will provide an
easy inductive proof of the following
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Theorem 4. Let L be a lattice of finite length. If L is modular but non-

distributive lattice, then L contains a covering diamond, i.e., a diamond

D = {o, a, b, c, i}, such that o ≺ a, b, c ≺ i.

In the literature of lattice theory the preceding theorem is known as
“folklore” (cf. [4], p. 111, or [2], p. 270). This theorem easily follows
from [5] (cf. Theorem 1.4 for the case n = 2), or from [3] (cf. Lemma 8,
p. 247). Note that [6] generalizes the theorem to the class of weakly atomic
lattices.

Proof of Theorem 4: Induction on l(L)—the length of L. If l(L) = 1
or l(L) = 2 the theorem is obvious. For the induction step, assume that
for any modular, non-distributive lattice K if l(K) < n, then K contains a
covering diamond. Moreover, fix a modular, non-distributive lattice L such
that l(L) = n > 3. Then, by Dedekind–Birkhoff Theorem, L contains a
diamond D = {o, a, b, c, i}. If 0 < o or i < 1, then [o, i] satisfies premises of
our induction hypothesis, thus it contains a covering diamond, so L does.
If not, i.e., D = {0, a, b, c, 1}, since l(L) > 3 there exists some intermediate
element x 6∈ D; we may assume without loss of generality that b < x < 1.

Let us observe that a ∧ x > 0, because if not, the set {0, a, x, b, 1}
would be a pentagon. For similar reasons, c ∧ x > 0. Now, consider
intervals [a∧ x, 1] and [c∧ x, 1]. If one of them is non-distributive, then by
the induction hypothesis, it contains a covering diamond, so L does. On
the other hand, if both intervals are distributive, then by Theorem 2, the
triple (a, c, x) is distributive, thus we obtain

(a ∧ x) ∨ (c ∧ x) = (a ∨ c) ∧ x = 1 ∧ x = x.

Moreover, by modularity, we get (a ∧ x) ∨ b = x and (c ∧ x) ∨ b = x,
and obviously (a ∧ x) ∧ (c ∧ x) = (a ∧ x) ∧ b = (c ∧ x) ∧ b = 0, so the
set {0, a ∧ x, b, c ∧ x, x} forms a diamond. Therefore, by the induction
hypothesis, the interval [0, x] contains a covering diamond, and hence L

does. �

Acknowledgements. I am grateful to the anonymous referees for their
remarks, in particular, for drawing my attention to the paper [5], and the
significant simplification of the proof of Theorem 2.
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MODAL BOOLEAN CONNEXIVE LOGICS:

SEMANTICS AND TABLEAU APPROACH

Abstract

In this paper we investigate Boolean connexive logics in a language with modal

operators: �, ♦. In such logics, negation, conjunction, and disjunction behave in

a classical, Boolean way. Only implication is non-classical. We construct these

logics by mixing relating semantics with possible worlds. This way, we obtain

connexive counterparts of basic normal modal logics. However, most of their

traditional axioms formulated in terms of modalities and implication do not hold

anymore without additional constraints, since our implication is weaker than the

material one. In the final section, we present a tableau approach to the discussed

modal logics.

Keywords: Boolean connexive logics, connexive logic, modal Boolean con-
nexive logics, modal logics, normal modal logics, possible worlds semantics,
relatedness, relating logic, relating semantics, tableau methods.

1. Introduction

Aristotle’s and Boethius’ laws are of fundamental significance for the con-
nexive logics. Negation and implication are the only connectives involved
in them:

(A1) ∼ (A ⇒∼ A)

(A2) ∼ (∼ A ⇒ A)
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(B1) (A ⇒ B) ⇒ ∼ (A ⇒ ∼ B)

(B2) (A ⇒ ∼ B) ⇒∼ (A ⇒ B)

If we add any of these laws to the classical logic then by applying the modus
ponens rule and substitution we obtain trivial, inconsistent logic – a set of
all formulas. For this reason, in order to investigate connexive logics we
need to interpret the negation or implication in a non-classical way. On
the other hand, it is a natural idea to keep as close as possible to the
classical logic while investigating the connexive logics by interpreting the
Aristotelian and Boethian laws. This very idea guided us in our research
published in paper [6]. There, we interpreted negation, conjunction, and
disjunction in the classical Boolean way, leaving at the same time aside a
broad spectrum of possible interpretations of implication by application of
relating semantics to it. In the analyzed approach, the truth conditions for
the implication consist not only of classical requirement that a antecedent
is false or a consequent is true. There is an additional requirement that
antecedent and consequent are interrelated by some binary relation R.

In [6] we constructed 32 logics by determining respective classes of
relations R. In two of them Aristotelian and Boethian laws hold and at the
same time the negation, conjunction, and disjunction preserve the Boolean
meaning. That is why we proposed the name Boolean connexive logics for
such logics.

It is well known that a logical system solely based on the Aristotle’s
and Boethius’ theses allows strange interpretations either of implication or
of negation, which makes it far to weak for any reasonable applications.
See [9] for historical review of this subject.

In the literature one could distinguish three approaches to the connex-
ivity. The first one consists of proposals of specific logical systems designed
for a given intended aims, such as [12], where connexive systems of condi-
tionals are investigated. In the second approach, such as [7] and [8], some
additional conditions are proposed to distinguish the well behaving con-
nexive logics. One could also find the third approach, such as [10], where
a comparison of different connexive logics is conducted. In the present pa-
per we understand the connexive logic in a very general way, just as any
set of sentences closed under substitution and modus ponens containing
the Aristotle’s and Boethian laws. This way, we investigate the structural
properties of a broad spectrum of the sentential connexive logics.
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In a general way, the relating semantics was proposed in paper [4]. Its
main notion – a relating relation – can be equipped with a large number of
philosophical and not only philosophical motivations and interpretations.
Two formulas can be related by R in many ways. For example, they could be
related analytically, causally, thematically, temporally, etc. In this paper,
the relating semantics is directly applied to the connexive implication. As
a consequence, in this approach the connexive implication is true iff a
antecedent is false or a consequent is true and simultaneously both are
connected in some way. In the semantics, this connection is expressed by
the relating relation.

In the present paper, we continue the investigations initiated in [6]
by generalizing its results towards the area of modal logics. In a natural
way, by modal Boolean connexive logics we mean a logic formulated in the
sentential language with implication, classical negation, classical disjunc-
tion, classical conjunction, necessity and possibility operators satisfying the
Aristotle’s and Boethius’ laws.

To express this in a short way: the modal Boolean connexive logic is
a Boolean connexive logic defined in a modal language. The semantics
considered here is a kind of combination of possible worlds semantics and
relating semantics. As a consequence, we have two types of binary re-
lations: a relating relation between formulas determining the meaning of
implication and an accessibility relation on possible worlds defining modal
operators. It appears that both kinds of relations affect each other and to
some extent limit the traditional modal laws. A motivation for considering
this particular combination of two semantics is natural. Since in [6] we
considered the connexive logics without possible worlds, here we extend
our ideas onto the possible worlds framework.

We define a number of connexive counterparts of the basic normal
modal logics. However, most of their traditional axioms formulated in
terms of modalities and implication do not hold anymore, since our im-
plication is weaker than the material one. To make them valid we must
impose some additional constraints on the relating semantics. In particu-
lar, we propose that modal operators have no influence on being related.
We show the correspondence between both: relating as well as accessibility
relations and modal axioms in all presented variants.

Additionally, as a decision procedure, in the last section we propose
tableau methods for the connexive modal systems that constructed here.
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2. Relating logics: syntax and semantics

Let us consider the set of formulas ForCPL of Classical Propositional Logic
(CPL), made up in a standard manner from: variables Var = {p, q, r, p1,
q1, r1, . . . }, one unary connective: ¬, four binary connectives: ∧, ∨, →, ↔,
and brackets: ), (. Let |=

CPL
be a consequence relation of CPL defined on

ForCPL by the set of all classical valuations of formulas from ForCPL.
Whereas the set of formulas of Relating Logic (RL) ForRL is generated

with Var, negation ¬, four binary connectives: ∧, ∨, →, ↔ and four binary
relating connectives that are relating counterparts of classical connectives:
∧w, ∨w, →w, ↔w, and brackets: ), (. Thus, ForCPL ⊂ ForRL.

A model for the relating formulas is pair 〈v, R〉, where v : Var Ô→ {0, 1}
and R ⊆ ForRL × ForRL. Function v to any variable assigns either truth
or falsity. Relation R is called relating relation. We have the following,
general truth conditions for the relating formulas:

〈v, R〉 |= A iff v(A) = 1, if A ∈ Var

〈v, R〉 |= ¬A iff 〈v, R〉 Ó|= A

〈v, R〉 |= A ∧w B iff 〈v, R〉 |= A & 〈v, R〉 |= B & R(A, B)

〈v, R〉 |= A ∨w B iff [〈v, R〉 |= A or 〈v, R〉 |= B] & R(A, B)

〈v, R〉 |= A →w B iff [〈v, R〉 Ó|= A or 〈v, R〉 |= B] & R(A, B)

〈v, R〉 |= A ↔w B iff [〈v, R〉 |= A iff 〈v, R〉 |= B] & R(A, B).

As we can see, the relating connectives have intensional, and even hyper-
intensional character, since the Boolean conditions are not sufficient.

The set of all models for RL will be denoted by MRL. By taking any
subset M of MRL in the standard way, we define relating logic |=M:

X |=M A iff for all M ∈ M, if M |= X, then M |= A.

The smallest relating logic is defined modulo all models. It is called RF
in [4].

The first relating logic was probably proposed in [1], [2], [11]. However,
in those studies, the authors analyzed a special kind of relating logics, called
relatedness logic. There was considered a specific relation needed to define
an extraordinary kind of content-related implication. On the other hand,
the approach to the relating logics initiated in [4] is more general. We find
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the relatedness logic as a part of a much wider class of the relating logics
with the multi-domain of applications. In principle, we could apply the
relating semantics to any logic. Considering the formal conditions defining
the classes of relating relations, one could determine the subclasses of MRL,
and in consequence, define a multitude of specific relating logics.

However, if we only take account of the relating binary part of RL
formulas, meaning the smallest subset of ForRL closed under Var, ¬, ∧w,
∨w, →w, ↔w, and brackets ), (, we shall get set Forw

RL ⊂ ForRL that
is structurally identical to ForCPL. Then we could get just CPL, if as
models we assumed all models 〈v, R〉, where R is a universal relation, so
R = Forw

RL × Forw

RL.
In order to simplify the notation, we define the language of Boolean

connexive logics as identical to ForCPL. Although in [6] we used the lan-
guage generated with: variables Var = {p, q, r, p1, q1, r1, . . . }; one unary
connective: ¬; three binary connectives: ∧, ∨, →w and brackets ), (. Also
for the sake of simplicity, here instead of symbol →w we shall use symbol
→. The obtained set, will be denoted by ForCF (connexive formulas), so
in fact ForCF = ForCPL.

Now, implication → is intended to behave like a relating connective,
while the other ones hold the classical, Boolean meaning.

Basic semantics for the Boolean connexive logics can be defined by the
following truth conditions. Extensional for the Boolean operators:

〈v, R〉 |= A iff v(A) = 1, if A ∈ Var

〈v, R〉 |= ¬A iff 〈v, R〉 Ó|= A

〈v, R〉 |= A ∧ B iff 〈v, R〉 |= A & 〈v, R〉 |= B

〈v, R〉 |= A ∨ B iff 〈v, R〉 |= A or 〈v, R〉 |= B

and the intensional condition for relating implication →:

〈v, R〉 |= A → B iff [〈v, R〉 Ó|= A or 〈v, R〉 |= B] & R(A, B).

Similarly, as in the modal logic, we treat R as a structure of given
model. So, we assume: R |= A iff for all valuations of letters v, 〈v, R〉 |= A.
Obviously, in order to accomodate the specific connexive laws, we had to
distinguish some class of models.
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3. Quasi–connexive and connexive Boolean logics

Before we propose some extension of Boolean connexive logic to the modal
language, let us recapitulate the basic facts from [6].

Let For2
CF denote ForCF × ForCF. Let R ⊆ For2

CF. To define suitable
classes of models for the Boolean connexive logics, we require the comple-
ment of relating relation R. AR̃B means that the relation ARB does not
hold.

We define some classes of relations R determined by the following con-
ditions:

(a1) R is (a1) iff for all A ∈ ForCF, AR̃¬A

(a2) R is (a2) iff for all A ∈ ForCF, ¬AR̃A

(b1) R is (b1) iff for all A, B ∈ ForCF:

• if ARB, then AR̃¬B

• (A → B)R¬(A → ¬B)

(b2) R is (b2) iff for all A, B ∈ ForCF:

• if ARB, then AR̃¬B

• (A → ¬B)R¬(A → B)

(c1) R is (c1) iff for all A, B ∈ ForCF, if ARB then ¬AR¬A.

If R is (c1), it is often called closed under negation.
In paper [6] we showed that conditions (a1), (a2), (b1), (b2), (c1) were

independent. Moreover, we proved the following theorem:

Theorem 3.1 (Correspondence theorem). Let R ⊆ For2
CF satisfy (c1).

Then:

R is (a1) ⇔ R |= ¬(A → ¬A)

R is (a2) ⇔ R |= ¬(¬A → A)

R is (b1) ⇔ R |= (A → B) → ¬(A → ¬B)

R is (b2) ⇔ R |= (A → ¬B) → ¬(A → B).

Condition (c1) is needed there only for proving the inference from the
left to right-hand side part of each condition, hence we have the following:

Theorem 3.2. Suppose that R ⊆ For2
CF:

(1) R is (a1) ⇒ R |= ¬(A → ¬A)

(2) R is (a2) ⇒ R |= ¬(¬A → A)
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(3) R is (b1) ⇒ R |= (A → B) → ¬(A → ¬B)

(4) R is (b2) ⇒ R |= (A → ¬B) → ¬(A → B).

The theorems above allow us to construct a dozen of logical systems
by imposing some limitations on the relating models. Some of them are
Boolean connexive logics, other are not. Since the conditions from set
{(a1), (a2), (b1), (b2), (c1)} are independent, then any two of its subsets
determine different logical systems. Since there are 25 = 32 subsets, so the
combinations of conditions determine 32 different logical systems. Among
them, two logics are Boolean connexive logics: determined by (a1), (a2),
(b1), (b2) in one case, determined by (a1), (a2), (b1), (b2), (c1) in the
other. The logic determined by conditions (a1), (a2), (b1), (b2) is the least
Boolean connexive logic.

Let us assume that by Boolean quasi-connexive logic we mean a logic
determined by set of all models satisfying at least one, but not all of con-
ditions: (a1), (a2), (b1), (b2). Then among 32 logics determined by the
above models: (i) two are neither connexive, nor quasi-connexive – zero of
Aristotelian or Boethian conditions are satisfied; (ii) 28 logics are quasi-
connexive – at least one, but not all conditions are satisfied.

4. Emerging modal Boolean connexive logics

Now we extend the language ForCF by closing it additionally under two
unary modal operators � and ♦. The language constructed this way will
be denoted by ForCMF (connexive modal formulas).

By a model for ForCMF we mean quadruple 〈W, Q, {Rw}w∈W , v〉 where:

• W is a non empty set of “possible worlds”

• Q ⊆ W × W is an accessibility relation

• {Rw}w∈W is a family of relations that contsists of Rw ⊆ ForCMF ×
ForCMF, for any w ∈ W , so a particular Rw is a relating relation, for
any possible world w ∈ W

• v : W × Var −→ {0, 1} v is a valuation of sentential letters in worlds.

Let us note again that a model contains two types of binary relations.
Relation Q is a standard accessibility relation between possible words, while
indexed R is a binary relation between formulas, one for each possible world
w in W .
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For any model M = 〈W, Q, {Rw}w∈W , v〉 and any w ∈ W , we define a
satisfaction relation in the following way:

M, w |= A iff v(w, A) = 1, if A ∈ Var

M, w |= ¬A iff M, w Ó|= A

M, w |= A ∧ B iff M, w |= A & M, w |= B

M, w |= A ∨ B iff M, w |= A or M, w |= B

M, w |= �A iff ∀u∈W (wQu ⇒ M, u |= A)

M, w |= ♦A iff ∃u∈W (wQu &M, u |= A)

M, w |= A → B iff [M, w Ó|= A or M, w |= B] & ARwB.

Let M = 〈W, Q, {Rw}w∈W , v〉. We will say that formula A is true in
model M (in symbols: M |= A) iff for any possible world w in
W : M, w |= A. If X ⊆ ForCMF and w ∈ W , then we say that M, w |= X
iff for all A ∈ X: M, w |= A.

Given class of models C and X∪{A} ⊆ ForCF, we will say that X entails
A modulo C (in symbols X |=C A) iff for all M = 〈W, Q, {Rw}w∈W , v〉 ∈ C
and all w ∈ W : if M, w |= X, then M, w |= A. Clearly, A is a tautology of
C iff ∅ |=C A (in short: |=C A), where ∅ is an empty set. Traditionally, we
say that model M = 〈W, Q, {Rw}w∈W , v〉 is based on 〈W, Q〉.

Now, we do not deal with a single relation, but with a family of rela-
tions. So, the relating structure is 〈W, {Rw}w∈W 〉, instead of a single R.
But, since it is clear that set W indexes a set of relations, therefore it can
be reduced to {Rw}w∈W = {Rw : w ∈ W}, for some W .

Taking a modal frame 〈W, Q〉, we can mix it with relating structures,
and vice versa. However, if we do not impose any constraints on accessi-
bility relation Q, we can talk only of a family of relating relations. Con-
sequently, we assume a definition of being true in the mixed structure and
separately in the relating structure:

〈W, Q, {Rw}w∈W 〉 |= A iff 〈W, Q, {Rw}w∈W , v〉 |= A, for all valuations
of letters v in W

{Rw}w∈W |= A iff 〈W, Q, {Rw}w∈W , v〉 |= A, for all accessibility rela-
tions Q ∈ W × W of some kind (in some class of accessibility relations)
and all valuations of letters v in W .
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Below, we define some properties of relation R corresponding to the
Aristotle’s and Boethius’ theses. They are natural modal counterparts of
conditions (a1), (a2), (b1), (b2), (c1) from [6], extended to each family of
relations indexed by worlds from some W . So, let {Rw}w∈W be a family
of relating relations indexed by worlds from some W .

(Ma1) {Rw}w∈W is (Ma1) iff for all A ∈ ForCMF, ∀w∈W AR̃w¬A

(Ma2) {Rw}w∈W is (Ma2) iff for all A ∈ ForCMF, ∀w∈W ¬AR̃wA

(Mb1) {Rw}w∈W is (Mb1) iff for all A, B ∈ ForCMF, ∀w∈W :

• if ARwB, then AR̃w¬B
• (A → B)Rw¬(A → ¬B)

(Mb2) {Rw}w∈W is (Mb2) iff for all A, B ∈ ForCMF, ∀w∈W :

• if ARwB, then AR̃w¬B

• (A → ¬B)Rw¬(A → B)

(Mc1) {Rw}w∈W is (Mc1) iff for all A, B ∈ ForCMF, ∀w∈W (ARwB ⇒
¬ARw¬B).

Clearly, if we say that a model satisfies one (or more) of the above
conditions, we mean that in fact its family of relating relations does it, and
the model inherits this property. For example, model 〈W, Q, {Rw}w∈W , v〉
is (Mb2) iff {Rw}w∈W is (Mb2) etc. Let us assume that the remark applies
to all properties we introduce in the paper here and further.

We have a similar theorem to the Correspondence Theorem in [6]. This
time, it is extended to the modal context.

Theorem 4.1 (Modal Correspondence Theorem). Let {Rw}w∈W be a fam-
ily of relating relations for some W .

If {Rw}w∈W is (Mc1), then:

{Rw}w∈W is (Ma1) iff {Rw}w∈W |= ¬(A → ¬A)

{Rw}w∈W is (Ma2) iff {Rw}w∈W |= ¬(¬A → A)

{Rw}w∈W is (Mb1) iff {Rw}w∈W |= (A → B) → ¬(A → ¬B)

{Rw}w∈W is (Mb2) iff {Rw}w∈W |= (A → ¬B) → ¬(A → B).

Proof: The proof is similar to the proof of theorem 6.1 in [6], where
we proved the Correspondence Theorem for conditions (a1), (a2), (b1),
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(b2), (c1). In fact, we show the equivalences for all relations belonging to
{Rw}w∈W in the identical ways as we did in [6]. �

Similarly as in the non-modal case, condition (Mc1) is necessary only
to prove the inference from the left to the right part of each condition.
Hence, by definitions of the conditions we have:

Theorem 4.2. Let {Rw}w∈W be a family of relating relations for some set
W . Then:

{Rw}w∈W is (Ma1) ⇒ {Rw}w∈W |= ¬(A → ¬A)

{Rw}w∈W is (Ma2) ⇒ {Rw}w∈W |= ¬(¬A → A)

{Rw}w∈W is (Mb1) ⇒ {Rw}w∈W |= (A → B) → ¬(A → ¬B)

{Rw}w∈W is (Mb2) ⇒ {Rw}w∈W |= (A → ¬B) → ¬(A → B).

Here, we can repeat the maneuver we did in [6]. So, first we have some
theorem on the independence of modal versions of the connexive conditions.

Theorem 4.3. The conditions (Ma1), (Ma2), (Mb1), (Mb2), (Mc1) are
independent.

Proof: Since non-modal conditions (a1), (a2), (b1), (b2), (c1) are inde-
pendent (theorem 6.2 in [6]), so (Ma1), (Ma2), (Mb1), (Mb2), (Mc1) are
also independent, which is established by singletons W = {w} and {Rw}.
However, if a model requires more worlds (for example, because of some
special requirements put on the accessibility relation Q), then since relating
relations included in one model are independent from each other, so we can
extend the singleton models to models with a bigger cardinality, properly.
�

Secondly, similarly as in the non-modal case, since the conditions (Ma1),
(Ma2), (Mb1), (Mb2), (Mc1) are independent, then each subset of set
{(Ma1), (Ma2), (Mb1), (Mb2), (Mc1)} determines a different family of re-
lations {Rw}w∈W , i.e. we have 25 = 32 of families of such kind. Each of
them determines a different logical system.

Among these 32 logics determined by these models: one is neither con-
nexive, nor quasi-connexive; 29 logics are quasi-connexive – at least one,
but not all connexive laws are valid; but two logics are really connexive
– their models satisfy conditions (Ma1), (Ma2), (Mb1), (Mb2) and possi-
bly also (Mc1). The logic determined only by conditions (Ma1), (Ma2),
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(Mb1), (Mb2) is the least modal Boolean connexive logic. Surely, the top
of this lattice is the inconsistent logic defined on ForCF by an empty set of
models. Let us note that these are basic variants, since by imposing some
requirements on accessibility relation Q we probably multiply the number
of logics.

5. Modal aspect of the Boolean connexive logics

The very interesting question is whether our modal Boolean connexive
logics are normal as modal logics. It is widely accepted that a modal
logic is normal iff it is closed under necessitation rule: |= A ⇒|= �A and
contains axiom K: �(A → B) → (�A → �B). However, since in the
language we have classical negation ¬ and diamond ♦, hence also the so
called dual should be satisfied: ¬♦¬A → �A and �A → ¬♦¬A (we do not
dispose of the equivalence in the language, then the dual must be expressed
as two opposite implications). As we know, our relating implication is
much weaker than the material one. This is the reason why our modal
Boolean connexive logics are not normal in the given sense. Also, if we
limit the class of models by imposing specific conditions on accessibility
relation Q (imposing reflexivity, transitivity or symmetry etc.), we do not
get axioms that are characteristic for the extensions of the normal modal
logic, expressed as the appropriate implications. The next claim states this.

Claim 5.1. If C is a class of all models that satisfy a subset of set of
conditions {(Ma1), (Ma2), (Mb1), (Mb2), (Mc1)}, then the following facts
hold:

(a) |=C A ⇒ |=C �A Necessitation rule holds

(b) Ó|=C �A → ¬♦¬A Dual does not hold

(c) Ó|=C ¬♦¬A → �A Dual does not hold

(d) Ó|=C �(A → B) → (�A → �B) axiom K does not hold

(e) Ó|=C �A → ♦A axiom D does not hold, even with serial Q

(f) Ó|=C �A → A axiom T does not hold, even with reflexive Q

(g) Ó|=C �A → ��A axiom 4 does not hold, even with transitive Q

(h) Ó|=C A → �♦A axiom B does not hold, even with symmetrical Q

(i) Ó|=C ♦A → �♦A axiom 5 does not hold, even with Euclidean Q.

Proof: We take class of models C, consequence relation |=C, and formulas
A, B ∈ ForCMF.
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For (a) let us assume that |=C A. Given model M = 〈W, Q,
{Rw}w∈W , v〉 ∈ C and world w ∈ W . M, w |= �A iff for all u ∈ W :
wQw′ ⇒ M, u |= A. So we take any such u ∈ W that wQu. However,
by the assumption, in all models M

′ = 〈W ′, Q′, {Rw}w∈W ′ , v′〉 in C, all
worlds w′ in W ′: M

′, w′ |= A. Therefore, M′, u |= A, and by arbitrariness
of model and world: |=C �A.

For (b) we take model M = 〈W, Q, {Rw}w∈W , v〉, where for some world

w ∈ W : �AR̃w¬♦¬A. By definition, class of models C consists of all
models of some kind that does not exclude such models. In consequence,
M, w Ó|= �A → ¬♦¬A, so M Ó|= �A → ¬♦¬A, and finally Ó|=C �A →
¬♦¬A.

For (d) Ó|=C �(A → B) → (�A → �B), it is enough to take model M =

〈W, Q, {Rw}w∈W , v〉, where for some world w ∈ W : �(A → B)R̃w(�A →
�B), so axiom K does not hold.

For (i) Ó|=C ♦A → �♦A, we take model M = 〈W, Q, {Rw}w∈W , v〉,

where for some world w ∈ W : ♦AR̃w�♦A. Since relation Q is Euclidean, so
M, w |=C ♦A implies M, w |=C �♦A. However, Ó|=C ♦A → �♦A, because

♦AR̃w�♦A. Hence, axiom 5 does not hold, even with Euclidean Q.
The remaining cases we prove in a very similar way, by indicating coun-

terexamples. They all base upon the fact that to falsify implication it is
enough to find such a relating relation satisfying the conditions (Ma1),
(Ma2), (Mb1), (Mb2), (Mc1) that the implication antecedent and the im-
plication consequent do not relate. �

Now, we would like to enhance our logics a bit, by making all of the
mentioned formulas true. One of the possibilities is to impose more condi-
tions. Sometimes they turn out to correspond with the appropriate formu-
las, but not always is this a case. Let us start with axiom K. We can state
the sufficient, but not necessary conditions for it. Beforehand, we assume
some notation. We assume that if M = 〈W, Q, {Rw}w∈W , v〉 is a model for
language ForCMF, then WM = W , QM = Q.

Claim 5.2. Let C be a class of all models such that for all M = 〈W, Q,
{Rw}w∈W , v〉 ∈ C, for all w ∈ W , for all A, B ∈ ForCMF:

(K):

(1) �(A → B)Rw(�A → �B)

(2) ∀u∈W (wQu ⇒ ARuB) ⇒ �ARw�B.
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Then:

|=C �(A → B) → (�A → �B).

Proof: Given any model M ∈ C satisfying (1) and (2), we will show that
for any possible world w ∈ W : M, w |= �(A → B) → (�A → �B).
From (1) and definition of satisfaction relation it is enough to show that
if M, w |= �(A → B) then: a) �ARw�B and b) if M, w |= �A, then
M, w |= �B.

a) From M, w |= �(A → B) we have then for all u ∈ W such that wQu
M, u |= A → B, hence ARuB, then from (2) �ARw�B.

b) Suppose that M, w |= �(A → B) and M, w |= �A, then for any u ∈ W
such that wQu, M, u |= A → B and M, u |= A, hence M, w |= �B. �

Obviously condition axiom K entails (1) however it does not entail (2).
Let us take the following model M = 〈W, Q, {Rw}w∈W , v〉, where W =
{w}, Q = {〈w, w〉}, and Rw = {〈p ∨ ¬p, p ∧ ¬p〉} ∪ {〈�(A → B),�A →
�B〉 : A, B ∈ ForCMF} ∪ {〈�A,�B〉 : A, B ∈ ForCMF and A Ó= p ∨ ¬p or
B Ó= p ∧ ¬p}, and v(w, x) = 1, for all x ∈ Var.

We can see that M, w |= �(A → B) → (�A → �B), for all A, B ∈
ForCMF. However, condition (2) is falsified because ∀u∈W (wQu ⇒ p ∨

¬pRup ∧ ¬p), but �(p ∨ ¬p)R̃w�(p ∧ ¬p).

For the remaining formulas we have sufficient as well as necessary con-
ditions. The notations on the right denote conditions for the appropriate
axioms on the left.

Claim 5.3. Let C be a class of models. The following conditions are ful-
filled:

(Du1) |=C �A → ¬♦¬A iff ∀M∈C ∀w∈WM �ARw¬♦¬A

(Du2) |=C ¬♦¬A → �A iff ∀M∈C ∀w∈WM ¬♦¬ARw�A

(D) if C is based on serial frames, then:
|=C �A → ♦A iff ∀M∈C ∀w∈WM �ARw♦A

(T) if C is based on reflexive frames, then:
|=C �A → A iff ∀M∈C ∀w∈WM �ARwA
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(4) if C is based on transitive frames, then:
|=C �A → ��A iff ∀M∈C ∀w∈WM �ARw��A

(B) if C is based on symmetrical frames, then:
|=C A → �♦A iff ∀M∈C ∀w∈WM ARw�♦A

(5) if C is based on Euclidean frames, then:
|=C ♦A → �♦A iff ∀M∈C ∀w∈WM ♦ARw�♦A.

Proof: Please note that in each case above the right-hand side condition
grants that the antecedent and the consequent of implication on the left-
hand side relate with respect to the relating relation. It directly shows
that each right-hand side is a necessary condition. To prove that each
right-hand side condition is sufficient it is enough to note that each left-
hand side condition is true if we replace → by teh material implication.
�

The conditions presented in the latter fact may seem to be rather nat-
ural syntactic conditions. It is the case – we believe – because we treat
modalities very literally. However there exists another option, much less
obvious that is formally reduced to the demodalization.

6. Demodalization and double negation

Any modality can be treated – due to the Latin etymology of the word
”modality” – as the way a modalized proposition holds. Term modality
comes from the Latin world modus which means a way; a way that some-
thing happens.

An option of non–treating modalities literally is to assume that modal-
ities �, ♦ add nothing to the content of propositions modalized by them.
For some people it may sound controversial, but modus means a way, not
a content.

We begin by considering an example. Below, we have two non-modal
propositions:

p := Nicolaus Copernicus was born in Toruń

q := Toruń is in Poland.
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It is obvious that p and q are connected somehow (for example, by sharing
the city):

pRq.

The question may appear if when we add modalities to them, will they still
be connected? Insisting on the option that modalities bring nothing to the
content, but only change the way or the status of proposition, it does not
seem strange that one can find sentences ♦p and �q still connected. Also
the subsequent iterations should not change this situation, if ♦pR�q, then
by adding the successive modalities we get the pair of connected proposi-
tions: �♦pR��q etc. The inverse direction should be treated as intuitive,
too. Why? Because if we think the modalities bring nothing to the content,
then the two modalized propositions are connected through the fact their
non-modal components are connected. If so, then we assume generally:

pRq ⇐⇒ ◦1, . . . , ◦npR•1, . . . , •mq

where 1 ≤ n, m and ◦1, . . . , ◦n, •1, . . . , •m ∈ {�,♦}.
Since the initial, non-modal sentences can be more complex than only

sentential letters, we introduce a special function that removes modalities
from the structure of sentences. By demodalization we mean mapping
d : ForCMF −→ ForCPL, determined by conditions:

d(A) = A A ∈ Var

d(¬A) = ¬d(A)

d(A ∗ B) = d(A) ∗ d(B) ∗ ∈ {∧, ∨, →}

d(◦A) = d(A) ◦ ∈ {�,♦}.1

Claim 6.1. Let C be a class of models such that for all M ∈ C and for all
A, B ∈ ForCMF:

(d) ∀w∈WM(ARwB ⇐⇒ d(A)Rwd(B)),

1It is worth to mention that in [5] we introduced a very similar demodalization
function. It was in the context of deontic logic while our aim was to underline and
preserve the deontic relationships between the sentences related to different changing
possible deontic worlds. We assumed that such relationship did not depend on the
modal status, but on what a content of sentences was.
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Then the following conditions are fulfilled:

(K+(d)) |=C �(A → B) → (�A → �B) iff
∀M∈C ∀w∈WM d(A → B)Rwd(A → B)

(Du1+(d)) |=C �A → ¬♦¬A iff ∀M∈C ∀w∈WM d(A)Rwd(¬¬A)

(Du2+(d)) |=C ¬♦¬A → �A iff ∀M∈C ∀w∈WM d(¬¬A)Rwd(A)

(D+(d)) if C is based on serial frames, then:
|=C �A → ♦A iff ∀M∈C ∀w∈WM d(A)Rwd(A)

(T+(d)) if C is based on reflexive frames, then:
|=C �A → A iff ∀M∈C ∀w∈WM d(A)Rwd(A)

(4+(d)) if C is based on transitive frames, then:
|=C �A → ��A iff ∀M∈C ∀w∈WM d(A)Rwd(A)

(B+(d)) if C is based on symmetrical frames, then:
|=C A → �♦A iff ∀M∈C ∀w∈WM d(A)Rwd(A)

(5+(d)) if C is based on Euclidean frames, then:
|=C ♦A → �♦A iff ∀M∈C ∀w∈WM d(A)Rwd(A).

Proof: Let us assume a class of all models C that all satisfy a subset of
set of conditions {(Ma1), (Ma2), (Mb1), (Mb2), (Mc1)}, and additionally
let all M ∈ C satisfy condition (d).

We will prove (Du1+(d)) and (5+(d)) as examples. The remaining
cases can be shown in a similar way. Let us take A ∈ ForCMF.

(Du1+(d)) We assume |=C �A → ¬♦¬A, then ∀M∈C ∀w∈WMM, w |=
�A → ¬♦¬A, and �ARw¬♦¬A. Therefore, by (d), d(A)Rwd(¬¬A). On
the other hand, suppose ∀M∈C ∀w∈WM d(A)Rwd(¬¬A). Given a model
M ∈ C and any w ∈ WM, obviously, as in the classical modal logics
M, w Ó|= �A or M, w |= ¬♦¬A. As d(A)Rwd(¬¬A), from (d) we have
�ARw¬♦¬A, which shows that M, w |= �A → ¬♦¬A. Hence |=C �A →
¬♦¬A.

(5+(d)) Assume C is based on the Euclidean frames. Suppose |=C

♦A → �♦A, then ∀M∈C ∀w∈WMM, w |= ♦A → �♦A, and ♦ARw�♦A.
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Therefore, by (d), d(A)Rwd(A). On the other hand, suppose ∀M∈C ∀w∈WM

d(A)Rwd(A). Given model M and any w ∈ WM. As QM is Euclidean then
as in the classical modal logics M, w Ó|= ♦A or M, w |= �♦A. As ARwA,
from (d) we have ♦ARw�♦A, which shows that M, w |= ♦A → �♦ A.
Hence |=C ♦A → �♦A. �

The above claim introduces different conditions imposed on relation R
than the former ones. They are located on the right-side of the parts of the
claim. We would like to point out some interesting things. It seems that a
further refinement could be imposing on models the constraint of reflexivity
of relation R in all worlds, since most of the cases state reflexivity for in
d(ForCMF) = ForCF as a sufficient and necessary condition. But most is
not all. In three cases we have exceptions.

First, axiom K does not imply general reflexivity ARwA, but its special
instance (A → B)Rw(A → B). It shows its extraordinary status in the
modal logic.

Second, both forms of dual Du1, Du2 are equivalent with almost reflex-
ivity condition: ARw¬¬A, ¬¬ARwA. Although formulas: A and ¬¬A are
different from the syntactic point of view, let us note that we operate with
the classical, Boolean negation ¬. So it looks reasonable to add as the next
constraint:

(¬¬) ARwB ⇐⇒ ¬¬ARwB ⇐⇒ ARw¬¬B.

It says that double (classical!) negation has no influence on being
connected. Condition (¬¬) imposed on the models could be the next en-
hancement of our modal Boolean connexive logics, of course.

Finally, we may take connexive models M = 〈W, Q, {Rw}w∈W , v〉 de-
fined by (Ma1), (Ma2), (Mb1), (Mb2) (or additionally by (Mc1)) and by
one of the weaker conditions:

(d1) ARwB ⇒ d(A)Rwd(B) for all w ∈ WM

(d2) d(A)Rwd(B) ⇒ ARwB for all w ∈ WM.

Both, (d1) and (d2), put together are equivalent to condition (d). Sep-
arately, they make equivalences in claim 6.1 invalid, reducing it to the
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suitable implications. The logics we obtain by exactly one of conditions
(d1) or (d2) are probably stronger then the logics without the demodaliza-
tion function, but weaker than the logics determined by models satisfying
condition (d). The issue needs a further examination.

By CONST (constraints) we will denote the set of all conditions (with-
out (d1) and (d2), separately) imposed on models 〈W, Q, {Rw}w∈W , v〉 we
have introduced so far. Hence, CONST consists of (Ma1), (Ma2), (Mb1),
(Mb2), (Mc1), (K), (Du1), (Du2), (D), (T), (4), (B), (5), (d), (K+(d)),
(Du1+(d)), (Du2+(d)), (D+(d)), (T+(d)), (4+(d)), (B+(d)), (5+(d)).

7. Tableaux for the modal Boolean connexive logics

Now, we shall outline the tableau approach to our logics in a similar way we
do it in [6]. Also similarly, we will be governed here by a strategy adopted
in paper [3] which introduced a formalized tableau theory from some modal
logics. Let us, however, disregard the formal concepts in favour of stress-
ing the crucial points which determine the completeness of the tableau
approach related to the semantically designated consequence relations.

To this end, we shall need a new language – a language of tableau
proofs. We assume as a set of expressions Ex union of four sets. They are
in turn:

• {irj : i, j ∈ N}

• {〈A, i〉 : A ∈ ForCMF, i ∈ N}

• {〈ARB, i〉 : A, B ∈ ForCMF, i ∈ N}

• {〈A/RB, i〉 : A, B ∈ ForCMF, i ∈ N}.

We use notation R instead of R on purpose, to differentiate the tableau
language notation R from the relation in model R. Intuitively, r is a tableau
counterpart of the accessibility relation, so for the world denoted by i there
is an accessible world denoted by j. Next, 〈A, i〉 means that formula A is
true at possible world i, 〈ARB, i〉 means that the relating relation holds
between A and B at world i, while 〈A/RB, i〉 that it does not.

Now, all tableau proofs are carried out in language Ex. Usually, we
remove external, square brackets, so instead of 〈A, i〉, 〈ARB, i〉, 〈A/RB, i〉,
we just write: A, i; ARB, i; A/RB, i, respectively.

As a tableau inconsistent set of expressions (that closes given branch)
we treat one comprising at least one of the pairs: A, i and ¬A, i or ARB, i
and A/RB, i, for some A, B ∈ ForCMF and i ∈ N. Clearly, a set is a tableau



Modal Boolean Connexive Logics: Semantics and Tableau Approach 231

consistent set of expressions iff it is not a tableau inconsistent set of ex-
pressions.

Let us go to the tableau rules. For the formulas with the main Boolean
connectives: ¬, ∧, ∨, we shall assume the standard tableau rules in the
modal context, so with label i ∈ N:

(∧)
A ∧ B, i

A, i; B, i
(¬∧)

¬(A ∧ B), i

¬A, i|¬B, i

(∨)
A ∨ B, i

A, i|B, i
(¬∨)

¬(A ∨ B), i

¬A, i; ¬B, i
(¬¬)

¬¬A, i

A, i

Let us remind that the formulas do not include ones with a material
implication. For the relating implication, as the main connective, we as-
sume the tableau rules introduced in [4] also modified to the modal context.
So, let i ∈ N:

(→)
A → B, i

ARB, i; ¬A, i|ARB, i; B, i
(¬→)

¬(A → B), i

A, i; ¬B, i|A/RB, i
.

Next, we add standard tableau rules for ♦, � and their interactions
with ¬.

(�)
�A, i; irj

A, j
(¬�)

¬�A, i

♦¬A, i
(♦)

♦A, i

irj; A, j
(¬♦)

¬♦A, i

¬�A, i

where i, j ∈ N and in the case of tableau rule (♦) index j does not appear
on the branch.

The rules we have considered so far form the base for any modal
Boolean connexive logic, we call the set of them BTR (basic tableau rules).

Now we add also well known rules for some extensions of the normal
modal logics. They will be mixed with specific rules for connexive prop-
erties that are given in the further part. We assume tableau rules for the
following properties of relation of accessibility Q in a model, respectively
for: seriality, reflexivity, transitivity, symmetry, and Euclidean property:
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(ser)
irj

(ref)
iri

(tran)
irj; jrk

irk

(symm)
irj

jri
(eucl)

irj; irk

jrk

for all i, j, k ∈ N. Surely, in the case of (ser) i appeared on the branch,
where j is new; in the case of (ref) i just appeared on the branch.

The next rules will be given for the specific conditions we introduced.
First we reformulate to the modal context tableau rules for the Aristotelian
and Boethian conditions given in [6]. Hence rules (Ra1), (Ra2), (Rb1),
(Rb1’), (Rb2), (Rb2’), (Rc1) proposed in [6] are remade by adding indexes
to the expressions. Later, in the presentation of all succeeding rules we
always assume that i ∈ N.

For the logics defined by conditions (Ma1), (Ma2) we have rules:

(RMa1)
AR¬A, i

A/R¬A, i
(RMa2)

¬ARA, i

¬A/RA, i

For the logics defined by condition (Mb1) we have two tableau rules:

(RMb1)
ARB, i

A/R¬B, i

(RMb1’)
(A → B)/R¬(A → ¬B), i

(A → B)R¬(A → ¬B), i

For the logics defined by condition (Mb2) we also have two rules that
work together as well:

(RMb2)
AR¬B, i

A/RB, i

(RMb2’)
(A → ¬B)/R¬(A → B), i

(A → ¬B)R¬(A → B), i

In fact, both (RMb1’) and (RMb2’) work in a similar way, since con-
ditions (Mb1) and (Mb2) feature a common property: if ARwB, then
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AR̃w¬B. Hence, when dealing with a logic defined in this paper by condi-
tions (Mb1) and (Mb2) we only adopt one rule. And finally, we also have
a rule for the logic defined by condition (Mc1):

(RMc1)
¬A/R¬B, i

A/RB, i
.

Below, we have tableau rules for the suitable semantic conditions of
the modal axioms that are related to claim 5.2 and claim 5.3, before the
demodalization strategy.

For (K) we have two tableau rules:

(RK1)
�(A → B)/R�A → �B, i

�(A → B)R�A → �B, i
(RK2)

�A/R�B, i

irj; A/RB, j

In the case of (RK2) label j must be new.

For (Du1), (Du2), we have only one tableau rule for each:

(RDu1)
�A/R¬♦¬A, i

�AR¬♦¬A, i
(RDu2)

¬♦¬A/R�A, i

¬♦¬AR�A, i

For (D), (T), (4), (B), (5) we have two tableau rules for each: one for
the relating relation, one for accessibility Q, in turn:

(RD)
�A/R♦A, i

�AR♦A, i
(ser)

(RT)
�A/RA, i

�ARA, i
(ref)

(R4)
��A/RA, i

��AR�A, i
(tran)

(RB)
A/R�♦A, i

AR�♦A, i
(symm)

(R5)
♦A/R�♦A, i

♦AR�♦A, i
(eucl)
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After assuming the demodalization property (condition (d)) (claim 5.3),
we must add different tableau rules. The demodalization itself requires:

(Rd⇒)
ARB, i

d(A)Rd(B), i
(Rd⇐)

A/RB, i

d(A)/Rd(B), i

For conditions (K+(d)), (Du1+(d)), (Du2+(d)), we additionally have:

(RKd)
(A → B)/R(A → B), i

(A → B)R(A → B), i

(RDu1d)
A/R¬¬A, i

AR¬¬A, i
(RDu2d)

¬¬A/RA, i

¬¬ARA, i

For the remaining conditions we assume reflexivity of Rw, for all worlds
in the model, so we have a specific tableau rule:

(RrefR)
A/RA, i

ARA, i

Finally, we can formulate the tableau rules for (D+(d)), (T+(d)),
(4+(d)), (B+(d)), (5+(d)), so D, T, 4, B, 5 under demodalization (d).
They are combined with (RrefR) and a suitable condition on accessibility
and relating R:

(D+(d)): (ser), (RrefR)

(T+(d)): (ref), (RrefR)

(4+(d)): (tran), (RrefR)

(B+(d)): (symm), (RrefR)

(5+(d)): (eucl), (RrefR).

For simplification, let us call the expressions in the tableau rule numerator
input, while those in denominator output. Some rules, e.g. (→), (¬ →) and
those for the Boolean connectives may have more than one output.
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Now let set TRCONST (tableau rules for constraints) contain tableau
rules introduced for particular conditions: (ser), (ref), (tran), (symm),
(eucl), (RMa1), (RMa2), (RMb1), (RMb1’), (RMb2), (RMb2’), (RMc1),
(RK1), (RK2), (RDu1), (RDu2), (RD), (RT), (R4), (RB), (R5), (Rd⇒),
(Rd⇐), (RKd), (RDu1d), (RDu2d), (RrefR).

Let us now introduce a concept which is important for the tableau
issues, which in a certain sense is an extension of the concept of truthness
in model from the formulas on all expressions from Ex.

Definition 7.1. [Set of indexes] By function Ind : {X : X ⊆ Ex} −→ P(N)
we mean a mapping for all i, j ∈ N and for all X ⊆ Ex satisfying conditions:

• if X = {irj}, then Ind(X) = {i, j},

• for all A, B ∈ ForCMF:

∗ if X = {〈A, i〉}, then Ind(X) = {i},
∗ if X = {〈ARB, i〉}, then Ind(X) = {i},
∗ if X = {〈A/RB, i〉}, then Ind(X) = {i},

• Ind(X) =
⋃

{Ind({y}) : y ∈ X}.

Function Ind collects indexes contained in expressions from a given subset
of Ex.

Definition 7.2 (Model suitable to the set of expressions). Let M =
〈W, Q, {Rw}w∈W , v〉 be a model and X ⊆ Ex. Model M is suitable to
X iff there exists a function g from the set of indexes contained in expres-
sions from X to W , i.e. g : Ind(X) −→ W , such that, for any A ∈ ForCMF

and i, j ∈ N:

• if irj ∈ X, then Q(g(i), g(j))

• if 〈ARB, i〉 ∈ X, then ARg(i)B

• if 〈A/RB, i〉 ∈ X, then AR̃g(i)B

• if 〈A, i〉 ∈ X, then M, g(i) � A.

Making use of the provided concept of suitable model and conducting
the inspection of the provided tableau rules, we are able to demonstrate
that if model 〈W, Q, {Rw}w∈W , v〉 of given type, fulfilling some of the con-
ditions in CONST, is suitable to set of expressions X ⊆ Ex, then application
of a selected tableau rule relevant to the conditions extends set X to add
expressions for which 〈W, Q, {Rw}w∈W , v〉 is still suitable.
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For convenience with formulation of the further theorems, let us in-
troduce certain function. Now we define: f : CONST −→ {Z : Z ⊆
TRCONST} which to each condition assigns the corresponding tableau
rules, thus:

f((Ma1)) = {(RMa1)}
f((Ma2)) = {(RMa2)}

f((Mb1)) = {(RMb1), (RMb1’)}
f((Mb2)) = {(RMb2), (RMb2’)}

f((Mc1)) = {(RMc1)}
f((K)) = {(RK1), (RK2)}

f((Du1)) = {(RDu1)}
f((Du2)) = {(RDu2)}

f((D)) = {(RD), (ser)}
f((T)) = {(RT), (ref)}
f((4)) = {(R4), (tran)}

f((B)) = {(RB), (symm)}
f((5)) = {(R5), (eucl)}

f((d)) = {(Rd⇒), (Rd⇐)}
f((K+(d))) = {(Rd⇒), (Rd⇐), (RKd)}

f((Du1+(d))) = {(Rd⇒), (Rd⇐), (RDu1d)}
f((Du2+(d))) = {(Rd⇒), (Rd⇐), (RDu2d)}

f((D+(d))) = {(Rd⇒), (Rd⇐), (RrefR), (ser)}
f((T+(d))) = {(Rd⇒), (Rd⇐), (RrefR), (ref)}
f((4+(d))) = {(Rd⇒), (Rd⇐), (RrefR), (tran)}

f((B+(d))) = {(Rd⇒), (Rd⇐),(RrefR), (symm)}
f((5+(d))) = {(Rd⇒), (Rd⇐), (RrefR), (eucl)}.

Let us now phrase a proposition.

Claim 7.1 (Rules sound to model). Let X ⊆ Ex and U ⊆ CONST. Let
〈W, Q, {Rw}w∈W , v〉 be a model for ForCMF defined by set of conditions U .
Let 〈W, Q, {Rw}w∈W , v〉 be suitable to X. If some of the tableau rules that
belong to:

1. BTR

2.
⋃

f(U)

were applied to set X, then 〈W, Q, {Rw}w∈W , v〉 is suitable at least to one
output obtained through the application of this rule.
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Proof: Let X ⊆ Ex and model M = 〈W, Q, {Rw}w∈W , v〉, for some U ⊆
CONST, satisfy the above assumptions. If M is suitable to X, then there ex-
ists function g : Ind(X) −→ W that satisfies conditions from definition 7.2.

The thesis for the rules from BTR follows from the definition of truth-
ness for ForCMF, thus the proposition thesis occurs for 1, and is examined
several times (see for example [3]), [4]).

The claim also holds for specific rules from TRCONST. Most of them
are negative. It means that if we use one of them we immediately obtain a
tableau inconsistent set. So they are inapplicable in these instances as they
would contradict the assumption. For instance, if X comprised expression
〈AR¬A, i〉, then the model could not be suitable for X, if it meets condition
(Ma1) and rule:

(RMa1)
AR¬A, i

A/R¬A, i

would introduce the tableau inconsistency to the proof.
Only rules (RMb1), (RMb2), (RMc1), (RK2), (Rd⇒), (Rd⇐) (taking

into account set TRCONST) are positive. Thus they do not introduce the
tableau inconsistency directly. The non-modal counterparts of (RMb1),
(RMb2), (RMc1) we examined in [6]. Let us consider (RK2) and for exam-
ple (Rd⇒) (checking of the other direction (Rd⇐) is similar).

Tableau rule:

(RK2)
�A/R�B, i

irj; A/RB, j

where label j must be new, corresponds to condition (2) ∀u∈W (wQu ⇒
ARuB) ⇒ �ARw�B, from claim 5.2.

So, let us assume that (RK2) was applied to X. Then, 〈�A/R�B, i〉 ∈

X, and �AR̃g(i)�B in our model M. The application of the rule introduced
two expressions: irj and 〈A/RB, j〉, where j is new in the proof. But, by
the assumption that M satisfies condition (2) ∀u∈W (wQu ⇒ ARuB) ⇒

�ARw�B, there must exist such world u ∈ W that g(i)Qu and AR̃uB.
So, we extend function g, taking g′ : Ind(X) ∪ {j} −→ W , with:
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g′(k) =

{
g(k), if k ∈ Ind(X)

u, if k = j.

Therefore, after application of (RK2) to X we obtain a set to which model

M is still suitable, because g′(i)Qg′(j) and AR̃g′(j)B.
Now we will consider one of the rules for the demodalization:

(Rd⇒)
ARB, i

d(A)Rd(B), i

The rule corresponds to the “from-left-to-right implication” in the condition
from claim 6.1:

(d) ∀w∈WM(ARwB ⇐⇒ d(A)Rwd(B)).

Let us assume that our model M satisfies the condition. At the same time
(Rd⇒) was applied to set X. It means that 〈ARB, i〉 ∈ X, and after the
application there appeared 〈d(A)Rd(B), i〉. However, since ARg(i)B in the
model, so by condition (d), d(A)Rg(i)d(B), too. Hence the model is suitable
to X ∪ {〈d(A)Rd(B), i〉}. �

The proof of completeness of our tableau methods in relation to the
presented semantics still requires a converse proposition in a sense. Let us
introduce the concept of model produced by set of expressions.

Definition 7.3 (Model generated by branch). Let X ⊆ Ex. Model 〈W, Q,
{Rw}w∈W , v〉 is generated by X iff

• W = Ind(X)

• iQj iff irj ∈ X, for all i, j ∈ W

• ARiB iff 〈ARB, i〉 ∈ X, for all A, B ∈ ForCMF, i ∈ W

• v(i, x) = 1 iff 〈x, i〉 ∈ X, for all x ∈ Var, i ∈ W .

Assume we have a set of tableau rules that comprises:

1. BTR

2. set of tableau rules
⋃

f(U) specified by given set of constraints U ⊆
CONST.



Modal Boolean Connexive Logics: Semantics and Tableau Approach 239

If we now take a set of expressions X ⊆ Ex such that:

i) it is closed under all of those rules – for all expressions from X to which
one of the rules is applicable, there exists one output in X

ii) X is not a tableau inconsistent set of expressions.

then there exists a model 〈W, Q, {Rw}w∈W , v〉 generated by that set (the
set will be called minimal closure iff it is a minimal one that satisfies i), ii);
for details see [3]). It does not need to satisfy constraints U ⊆ CONST,
but it can be enhanced. In general, it is a model for language ForCMF.
Therefore, we have one more proposition.

Claim 7.2 (Model sound to rules). Let U ⊆ CONST. Let X be:

• a tableau consistent set of expressions

• closed under BTR ∪
⋃

f(U), for some set of constraints U .

Then there exists a model 〈W, Q, {Rw}w∈W , v〉 such that:

1. W = Ind(X)

2. for all formulas A ∈ ForCMF and index i ∈ W :

〈A, i〉 ∈ X ⇒ 〈W, Q, {Rw}w∈W , v〉, i |= A

3. model 〈W, Q, {Rw}w∈W , v〉 meets conditions U .

Proof: Let us make all the above assumptions. We know that set X
generates a model. Let M = 〈W, Q, {Rw}w∈W , v〉 be a model generated by
X. Surely, W = Ind(X), by definition of generated model.

Now the second point:

〈A, i〉 ∈ X ⇒ M, i |= A,

for all A ∈ ForCMF, i ∈ W . This part of the proof is inductive.
For variables x ∈ Var and negation of variables ¬x, the thesis is true

by definition of generated model 7.2.
For more complex expressions through examination whether the tab-

leau rules from set BTR ∪
⋃

f(U) introduce expressions that are sufficient
for constitution of a model. For the rules from BTR it is self-explanatory.
The Boolean and modal rules were examined e.g. in [3]. (It is the same in
the case of the rules for the specific properties of the accessibility relation,
but it concerns point three of the thesis.) And the rules for the relating
implication and its negation were examined in [4]. By virtue of the truth
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conditions for the combined formulas (section 4) they introduce elements
that are sufficient for the construction of a verification model in the context
of any possible world.

In turn, the majority of the remaining tableau rules are negative in
nature or concern the character of relation R in possible worlds.

For example rules: (RMa1), (RMa2), (RMb1’), (RMb2’), (RK1),
(RDu1), (RDu2), (RD), (RT), (R4), (RB), (R5), (RKd), (RDu1d),
(RDu2d), (RrefR) are meant to close branches within proofs rather than
to validate the verification formulas. They were not even applied to the
expressions from X as X is not a tableau inconsistent set of expressions by
the assumption.

So, only tableau rules (RMb1), (RMb2), (RMc1), (RK2), (Rd⇒)
(Rd⇐) are worth checking here. This way, we are starting the examination
of the final part of claim 7.2: if M meets conditions U .

Rules (RMb1), (RMb2), (RMc1) in non-modal versions were checked
in [6], but we will have a look at their modal versions here. If rule:

(RMb1)
ARB, i

A/R¬B, i

was applied then ARiB and so AR̃i¬B, by definition of generated model 7.3,
as condition (Mb1) states, since 〈ARB, i〉, 〈A/R¬B, i〉 ∈ X. But it is simi-
larly in the case of:

(RMb2)
AR¬B, i

A/RB, i

If it was applied then ARi¬B, so AR̃iB in M, by definition of generated
model 7.3, as condition (Mb2) states, since 〈AR¬B, i〉, 〈A/RB, i〉 ∈ X. For
rule:

(RMc1)
¬A/R¬B, i

A/RB, i

we proceed similarly. If (RMc1) was applied to X, then 〈¬A/R¬B, i〉,

〈A/RB, i〉 ∈ X, by definition of generated model 7.3, ¬AR̃i¬B and AR̃iB
in M, as condition (Mc1) states that (ARiB ⇒ ¬AR¬B).
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The next rule corresponds to the second constraint in (K):

(RK2)
�A/R�B, i

irj; A/RB, j
, where j is new on the branch.

Let us assume that 〈�A/R�B, i〉 ∈ X. By definition of generated

model 7.3, �AR̃i�B in M. But since (RK2) was applied to X, then
irj ∈ X and 〈A/RB, j〉 ∈ X, where j is a new index. Again from the

definition of generated model 7.3, we get: iQj and AR̃jB in model M.
However, after transposition this exactly states the second constraint in
(K): �AR̃w�B ⇒ ∃u∈W (wQu & AR̃uB).

Now, let us look at the rules for demodalization condition (d).

(Rd⇒)
ARB, i

d(A)Rd(B), i
(Rd⇐)

A/RB, i

d(A)/Rd(B), i

Since X does not include all expressions Ex (it is tableau consistent),
even if it is closed under the above two rules the generated model does not
satisfy condition (d), since some formulas did not appear in the closure of
X. So if we want to have a model that satisfies (d), we must close family
{Rw}w∈W in model M under (d). The same we have to do for the remaining
conditions: (Mb1’), (Mb2’), both points of (K), (Du1), (Du2),(D), (T), (4),
(B), (5).

Next, if a model has to satisfy (K+(d)), we must close it under (d) and
(K+(d)). The same applies to (Du1+(d)), (Du2+(d)).

For the rest of conditions (D+(d)), (T+(d)), (4+(d)), (B+(d)), (5+(d))
we close the model under (d) and reflexivity of {Rw}w∈W , so for all w ∈ W
and all A ∈ ForCMF we put ARwA. Surely, each of the conditions also
contains a modal component of the accessibility relation Q. But since a
proper rule ((ser), (ref), (tran), (symm), or (eucl)) for it was used to X,
so relation Q in the generated model M has a suitable property as it is a
standard knowledge [3], because Q can be fully defined by X.

Summing up, when we close the relations {Rw}w∈W in model 〈W, Q,
{Rw}w∈W , v〉 under conditions from U , we obtain model M

′ = 〈W, Q,
{Rw}′

w∈W , v〉 which meets conditions U . In this model, all formulas that
are true at world i in the model based on {Rw}w∈W are true at i as well,
for all i ∈ W . �
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Finally, we have the theorem on the completeness of tableaux and re-
lating semantics for the discussed connexive models.

Theorem 7.3 (Completeness theorem). Let U ⊆ CONST. Let
|=⊆ P(ForCMF) × ForCMF be the consequence relation defined by the set of
all models designated by set of conditions U . Then for any X ⊆ ForCMF,
A ∈ ForCMF the following facts are equivalent:

1. X |= A

2. there exists a finite subset Y ⊆ X and some i ∈ N such that each
minimal closure of set {〈B, i〉 : B ∈ Y ∪ {¬A}} under set of tableau
rules BTR ∪

⋃
f(U) is a tableau inconsistent set of expressions.

Proof: Let us adopt the assumptions. In the theorem proof, we make use
of the prior propositions. For implication 1 ⇒ 2 claim 7.2 is sufficient. In
turn, for implication 2 ⇒ 1 claim 7.1 is sufficient. �
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