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Rajeev Goré Canberra, Australia

Joanna Grygiel Czȩstochowa, Poland
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Nils Kürbis

A BINARY QUANTIFIER FOR DEFINITE

DESCRIPTIONS IN INTUITIONIST NEGATIVE FREE

LOGIC: NATURAL DEDUCTION AND NORMALISATION

Abstract

This paper presents a way of formalising definite descriptions with a binary quan-

tifier ι, where ιxrF,Gs is read as ‘The F is G’. Introduction and elimination rules

for ι in a system of intuitionist negative free logic are formulated. Procedures for

removing maximal formulas of the form ιxrF,Gs are given, and it is shown that

deductions in the system can be brought into normal form.

Keywords: definite descriptions, negative intuitionist free logic, natural

deduction, normalization.

1. Introduction

The definite description operator ι, the formal analogue of the definite

article ‘the’, is usually taken to be a term forming operator: if A is a

predicate, then ιxA is a term denoting the sole A, if there is one, or nothing

or an arbitrary object if there is no or more than one A. This paper

follows a different approach to definite descriptions by formalising them

instead with a primitive binary quantifier: ι forms a formula from two

predicates, and ‘The F is G’ is formalised as ιxrFx,Gxs. The notation, and
the way of treating definite descriptions that comes with it, was suggested

by Dummett [2, p.162].1

1Bostock considers a similar approach and explains definite descriptions as a special
case of restricted quantification, where the restriction is to a single object. [1, Sec. 8.4]
Bostock writes pIx : Fxq Gx for ‘The F is G’, but prefers to treat definite descriptions
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The current paper treats definite descriptions purely proof theoretically.

The proof theory of a term forming ι operator has been investigated in

the context of sequent calculi for classical free logic by Indrzejczak [3, 4].

Tennant gives rules for such an operator in natural deduction [7, p.110].2

The approach followed here may be new to the literature.

In this paper, I investigate the binary quantifier ι in the context of a

system of natural deduction for intuitionist negative free logic. The appli-

cation of the present treatment of definite descriptions to other systems of

logic and their comparisons to systems known from the literature are left

for further papers. To anticipate, using a negative free logic, the approach

proposed here lends itself to a natural formalisation of a Russellian theory

of definite descriptions, while it provides a natural formalisation of Lam-

bert’s minimal theory of definite descriptions when the logic is positive and

free.

First, notation. I will use Ax
t to denote the result of replacing all

free occurrences of the variable x in the formula A by the term t or the

result of substituting t for the free variable x in A. t is free for x in A

means that no (free) occurrences of a variable in t become bound by a

quantifier in A after substitution. In using the notation Ax
t I assume that

t is free for x in A or that the bound variables of A have been renamed to

allow for substitution without ‘clashes’ of variables, but for clarity I also

often mention the condition that t is free for x in A explicitly. I also use

the notation Ax to indicate that x is free in A, and At for the result of

substituting t for x in A.

2. Natural Deduction for ι in Intuitionist Logic

The introduction and elimination rules for the propositional logical con-

stants of intuitionist logic I are:

A B
^I:

A ^ B
A ^ B

^E:
A

A ^ B
B

with a term forming operator. I owe the reference to Bostock to a referee for this journal,
who also pointed me to the paper by Scott to be referred to in footnote 4 and made
valuable comments on this paper.

2Tennant is not explicit whether the logic in this paper is classical or intuitionist.
However, as he is partial to anti-realism and constructive mathematics, we are justified
in assuming that his preferred route is to add these rules to a system of intuitionist free
logic. The rules are also in [8, Ch. 7.10], where the logic is classical.
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i
A

Π

B
Ñ I: i

A Ñ B

A Ñ B A
Ñ E:

B

A
_I:

A _ B
B

A _ B A _ B

i
A

Π

C

i
B

Σ

C
_E: i

C

K
KE:

B

where the conclusion B of KE is restricted to atomic formulas.

The introduction and elimination rules for the quantifiers of I are:

Ax
y

@I:
@xA

@xA
@E:

Ax
t

where in @I, y is not free in any undischarged assumptions that Ax
y depends

on, and either y is the same as x or y is not free in A; and in @E, t is free

for x in A.

Ax
t

DI:
DxA DxA

i
Ax

y

Π

C
DE: i

C

where in DI, t is free for x in A; and in DE, y is not free in C nor any

undischarged assumptions it depends on in Π except Ax
y , and either y is

the same as x or it is not free in A.

The introduction and elimination rules for identity are:

“ I:
t “ t

t1 “ t2 Ax
t1

“ E:
Ax

t2

where A is an atomic formula. To exclude vacuous applications of “ E, we

can require that x is free in A and that t1 and t2 are different. An induction

over the complexity of formulas shows that the rule holds for formulas of

any complexity.
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To formalise definite descriptions, one could add the binary quantifier

ι to I. Its introduction and elimination rules would be:

F x
t Gx

t

i
F x
z

Π
z “ t

ιI : i
ιxrF,Gs

where t is free for x in F and in G, and z is different from x, not free in t

and does not occur free in any undischarged assumptions in Π except F x
z .

3

ιxrF,Gs

F x
z

i
, Gx

z

i

loooooomoooooon

Π

C
ιE1 : i

C

where z is not free in C nor any undischarged assumptions it depends on

except F x
z and Gx

z , and either z is the same as x or it is not free in F nor

in G.

ιxrF,Gs F x
t1

F x
t2

ιE2 : t1 “ t2

where t1 and t2 are free for x in F .

For simplicity we could require that x occurs free in F and G. If we don’t,

the truth or falsity of ιxrF,Gs may depend on properties of the domain of

quantification: if F is true and does not contain x free, then ιxrF,Gs is

false if there is more than one thing in the domain of quantification, and

it is true if there is only one thing and G is true (of the one thing, if x is

free in G).

ιxrF,Gs and DxpF ^ @ypF x
y Ñ y “ xq ^ Gq are interderivable. Notice

that the rules for identity are not applied in the two deductions to follow.

3A more precise and general statement of the introduction rule for ι would result if
we were to require Π to be a deduction of py “ tqyz from pFx

y
qyz , where y is different from

x and not free in t, and either z is the same as y or z is not free in Fx
y

nor in y “ t.
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1. ιxrF,Gs $ DxpF ^ @ypF x
y Ñ y “ xq ^ Gq

Let y be different from x and not free in F or G:

ιxrF,Gs

ιxrF,Gs
1

F x
y

2
F

ιE2

y “ x
1

pF x
y Ñ y “ xq

@ypF x
y Ñ y “ xq

2
F

F ^ @ypF x
y Ñ y “ xq

2
G

pF ^ @ypF x
y Ñ y “ xq ^ Gq

DxpF ^ @ypF x
y Ñ y “ xq ^ Gq

2 ιE1

DxpF ^ @ypF x
y Ñ y “ xq ^ Gq

2. DxpF ^ @ypF x
y Ñ y “ xq ^ Gq $ ιxrF,Gs

Let y be different from x and not free in F or G, and let
Ç

be the formula

pF ^ @ypF x
y Ñ y “ xq ^ Gq:

Dx
Ç

2Ç

F

2Ç

G

2Ç

@ypF x
y Ñ y “ xq

F x
y Ñ y “ x

1
F x
y

y “ x
1 ιI

ιxrF,Gs
2

ιxrF,Gs

3. Intuitionist Free Logic

It is more interesting to add the ι quantifier to a free logic. I will use

formalisations of intuitionist free logic with a primitive predicate D!, to be

interpreted as ‘x exists’ or ‘x refers’ or ‘x denotes’. The introduction and

elimination rules for the quantifiers are:
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i
D!y

Π

Ax
y

@I : i
@xA

@xA D!t
@E :

Ax
t

where in @I, y does not occur free in any undischarged assumptions of Π

except D!y, and either y is the same as x or y is not free in A; and in @E,

t is free for x in A.

Ax
t D!t

DI :
DxA

DxA

Ax
y

i
, D!y

i

looooomooooon

Π

C
DE : i

C

where in DI, t is free for x in A; and in DE, y is not free in C nor any

undischarged assumptions of Π, except Ax
y and D!y, and either y is the

same as x or it is not free in A.

The elimination rule for identity in intuitionist free logic is the same as

in I.

In intuitionist positive free logic IPF, identity has the same introduc-

tion rule as in intuitionist logic, i.e. $ t “ t, for any term t. Semantically

speaking, in positive free logic any statement of self-identity is true, irre-

spective of whether a term refers or not.

In intuitionist negative free logic INF the introduction rule for identity

is weakened and requires an existential premise:

D!t
“ In :

t “ t

In INF the existence of ti may be inferred if ti occurs in an atomic formula:

At1 . . . tn
AD :

D!ti

where A is an n-place predicate letter (including identity) and 1 ď i ď n.

Speaking semantically, for an atomic sentence, including identities, to be

true, all terms in it must refer. If the language has function symbols, there

is also the rule of functional denotation:
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D!ft1 . . . tn
FD :

D!ti

where f is an n-place function letter and 1 ď i ď n. Speaking semantically,

for the value of a function to exist, all of its arguments must exist. “ In,

AD and FD are called the rules of strictness.4

Hintikka’s Law D!t Ø Dx x “ t, where x not in t, is provable in INF

and IPF. In IPF, it suffices to observe the following:

t “ t D!t
Dx x “ t

Dx x “ t

1
x “ t

1
D!x

D!t
1

D!t

In INF, conclude t “ t from D!t.
The degree of a formula is the number of connectives occurring in it.

K, being a connective, is of degree 1. This excludes the superfluous case in

which K is inferred from K by KE. D!t is an atomic formula of degree 0.

The major premise of an elimination rule is the premise with the con-

nective that the rule governs. The other premises are minor premises. A

maximal formula is one that is the conclusion of an introduction rule and

the major premise of an elimination rule for its main connective. A seg-

ment is a sequence of formulas of the same shape, all minor premises and

conclusions of _E or DE, except the first and the last one; the first is only

a minor premise, the last only a conclusion. A segment is maximal if its

first formula has been derived by an application of an introduction rule

for its main connective, and its last formula is the major premise of an

elimination rule. A deduction is in normal form if it contains neither max-

imal formulas nor maximal segments. A normalisation theorem establishes

that any deduction can be brought into normal form by applying reduction

procedures for the removal of maximal formulas from deductions and per-

mutative reduction procedures for reducing maximal segments to maximal

formulas.

Notice that the conditions imposed on applications of “ E have the

consequence that there are no maximal formulas of the form t1 “ t2.

4
INF is the system introduced by Scott [6] and called Nie by Troelstra and Schwicht-

enberg [9, 200] but with a simpler theory of identity. It is the system that results if
classical reductio ad absurdum, the rule that licenses the derivation of A if  A entails a
contradiction, is not taken to form part of the system Tennant presents in [8, Ch. 7.10].
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AD and FD have the characteristics of introduction rules for D!, and
“ Im has the characteristics of an elimination rule for it. In a sense @E and

DI of free logic also eliminate formulas of the form D!t. I will, however, not
count these rules as introduction and elimination rules for D!, as there is no
general way of removing formulas of the form D!t that have been concluded

by AD or FD and are premises of “ In, @E or DI.
Proofs of the normalisation theorem for intuitionist logic, such as those

given by Prawitz [5, Ch. IV.1] and Troelstra and Schwichtenberg

[9, Ch. 6.1], can be modified to carry over to the intuitionist free logics

considered here.

A normalisation theorem for intuitionist negative free logic with a term

forming ι operator can be reconstructed from material Tennant provides

in [8]. In particular, as in the case of I, we can assume that every appli-

cation of @I and DE has its own variable, that is, the free variable y of

an application of such a rule occurs only in the hypotheses discharged by

the rule and formulas concluded from them and, for @I, in the premise of

that rule and the formulas it has been derived from. This way we avoid

‘clashes’ between the restrictions on the variables of different application of

these rules when reduction procedures are applied to a deduction contain-

ing maximal formulas. Applying the reduction procedures for quantifiers

of free logic can only introduce maximal formulas of lower degree than the

one removed. I leave the details to the reader.

4. Natural Deduction for ι in INF

The interderivability of ιxrF,Gs and DxpF^@ypF x
y Ñ x “ yq^Gq is the hall

mark of a Russellian theory of definite descriptions, in which any statement

of the form ‘The F is G’ is false if there is no F or if there is more than one.

It is the generally accepted treatment of definite descriptions in negative

free logic. To establish how to modify the rules for ι given in Section

2 to yield a Russellian theory of definite descriptions when the logic is

intuitionist negative free logic, we analyse the deductions establishing the

interderivability of ιxrF,Gs and DxpF ^ @ypF x
y Ñ x “ yq ^ Gq in I given

at the end of that section.

Looking at the derivation of DxpF^@ypF x
y Ñ x “ yq^Gq from ιxrF,Gs,

had the application of the universal quantifier introduction rule be one of

free logic, it would have allowed the discharge of an assumption D!y, and
had the existential quantifier introduction rule been one of free logic, a
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further assumption D!x would have been required. Both lend themselves as

additional premises of ιE2, as premises analogous to the existence assump-

tions in the rules of the quantifiers of free logic. D!y would be discharged by

the application of the universal quantifier introduction rule of free logic, so

in order for the conclusion of the deduction not to depend on D!x, it would
have to be discharged, and the only option here is that it is discharged by

the application of ιE1. This is also a natural option, corresponding, as it

does, to the discharge of existence assumptions by the quantifier rules of

free logic.

Generalising the first observation, we add the premises D!t1 and D!t2 to

ιE2:

ιxrF,Gs D!t1 D!t2 F x
t1

F x
t2

ιE2 : t1 “ t2

where t1 and t2 are free for x in F .

To implement the second observation, we add D!z as an additional dis-

charged assumption to ιE1:

ιxrF,Gs

F x
z

i
, Gx

z

i
, D!z

i

looooooooooomooooooooooon

Π

C
ιE1 : i

C

where is z not free in C nor any undischarged assumptions it depends on

except F x
z , G

x
z and D!z, and either z is the same as x or it is not free in F

nor in G.

To find suitable modifications of the introduction rule for ι, we look at

the derivation of ιxrF,Gs from DxpF ^ @ypF x
y Ñ x “ yq ^Gq in I. Had the

application of the universal quantifier elimination rule been one of free logic,

a further assumption D!y would have been required, and had the existential

quantifier elimination rule been one of free logic, it would have allowed the

discharge of an assumption D!x. The latter lends itself as an additional

premise of ιI, the former as an additional assumption discharged by that

rule, which is again analogous to the existence assumptions required and

discharged in applications of the rules for the quantifiers of free logic.
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Generalising the second observation, we add D!t as a further premise,

and to implement the first observation we add D!z as a further discharged

assumption to ιI:

F x
t Gx

t D!t

F x
z

i
, D!z

i

loooooomoooooon

Π
z “ t

ιI : i
ιxrF,Gs

where t is free for x in F and in G, and z is different from x, not free in t

and does not occur free in any undischarged assumptions in Π except F x
z

and D!z.5

It is obvious that ιxrF,Gs and DxpF ^ @ypF x
y Ñ x “ yq ^ Gq are

interderivable in INF when ι is governed by the modified rules, but we

give the deductions for convenience.

1. ιxrF,Gs $ DxpF ^ @ypF x
y Ñ y “ xq ^ Gq

Let x and y be different variables, where y is not free in F nor in G:

ιxrF,Gs

ιxrF,Gs
2

D!y
3

D!x
1

F x
y

3
F

ιE2

y “ x
1

pF x
y Ñ y “ xq

2
@ypF x

y Ñ y “ xq
3

F

F ^ @ypF x
y Ñ y “ xq

3
G

F ^ @ypF x
y Ñ y “ xq ^ G

3
D!x

DxpF ^ @ypF x
y Ñ y “ xq ^ Gq

3 ιE1

DxpF ^ @ypF x
y Ñ y “ xq ^ Gq

5A more precise and general statement of the introduction rule for ι would result
if we were to require Π to be a deduction of py “ tqyz from pFx

y
qyz and D!z, where y is

different from x and not free in t, and either z is the same as y or z is not free in Fx
y

nor in y “ t.
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2. DxpF ^ @ypF x
y Ñ y “ xq ^ Gq $ ιxrF,Gs

Let
Ç

be the formula pF ^@ypF x
y Ñ y “ xq^Gq, where y is different from

x and not free in F or G:

Dx
Ç

2Ç

F

2Ç

G
2

D!x

2Ç

@ypF x
y Ñ y “ xq

1
D!y

F x
y Ñ y “ x

1
F x
y

y “ x
1 ιI

ιxrF,Gs
2

ιxrF,Gs

Let INF
ι denote the systems of intuitionist negative free logic augmented

with the rules for ι given in this section.

In order to prove a normalisation theorem for INF
ι, we first observe

that KE can be restricted to atomic conclusions in this system:

1. Instead of inferring @xA from K, infer Ax
y , for some y not occurring

in any assumption that K depends on, and apply @I, discharging

vacuously.

2. Instead of inferring DxA from K, infer Ax
t , for some t that is free for

x in A, infer D!t, and apply DI.

3. Instead of inferring ιxrF,Gs from K, infer F x
t , G

x
t , D!t and z “ t,

for some t that is free for x in F and in G and some z that is not

free in any assumption that K depends on, and apply ιI, discharging

vacuously.

Next, “ E can be restricted to atomic formulas in INF
ι. Consider an

application of this rule with premise ιxrF,Gsyt1 :

t1 “ t2 ιxrF,Gsyt1
ιxrF,Gsyt2

where t1 and t2 are free for y in ιxrF,Gs. The exclusion of vacuous appli-

cations of “ E means that y must be different from x, and so ιxrF,Gsyt1
is ιxrF y

t1
, G

y
t1

s. Let v and z be different variables not occurring in F , G,

t1, t2. The induction step applying “ E to subformulas of ιxrF,Gsyt1 is the

following:
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ιxrF y
t1
, G

y
t1

s
A B C D

ιxrF y
t2
, G

y
t2

s
2 ιE1 ,

ιxrF y
t2
, G

y
t2

s

where

A “ t1 “ t2
2

pF y
t1

qxz

pF y
t2

qxz

B “ t1 “ t2
2

pGy
t1

qxz

pGy
t2

qxz

C “ 2
D!z

D “ ιxrF y
t1
, G

y
t1

s
1

D!v
2

D!z
1

pF y
t1

qxv
2

pF y
t1

qxz
ιE2 .

v “ z

As for applications of @I and DE, we can assume that every application

of ιI and ιE1 has its own free variable, i.e. the variable z of an application

of ιI or ιE2 occurs only in the premises discharged by the rule and formulas

derived from the discharged premises, and nowhere else in the deduction.

I will now give the reduction procedures for maximal formulas of the

form ιxrF,Gs and the permutative reduction procedures for maximal seg-

ments consisting of a formula of that form.

There are two cases of reduction procedures for maximal formulas of

the form ιxrF,Gs to be considered. First, the conclusion of ιI is the major

premise of ιE1:

Σ1

F x
t

Σ2

Gx
t

Σ3

D!t

F x
z

i
, D!z

i

loooooomoooooon

Π
z “ t

i
ιxrF,Gs

F x
v

j
, Gx

v

j
, D!v

j

loooooooooooomoooooooooooon

Ξ

C
j

C

Transform such steps in a deduction into the following, where Ξv
t is the

deduction resulting from Ξ by replacing the variable v everywhere with the

term t:

F x
t

Σ1

, Gx
t

Σ2

, D!t
Σ3

loooooomoooooon

Ξv
t

C
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The conditions on variables ensure that no clashes arise from the replace-

ment.

Second, the conclusion of ιI is the major premise of ιE2:

Σ1

F x
t1

Σ2

Gx
t1

Σ3

D!t1

F x
z

i
, D!z

i

loooooomoooooon

Π
z “ t1

i
ιxrF,Gs

Ξ1

D!t2

Ξ2

D!t3

Ξ3

F x
t2

Ξ4

F x
t3

t2 “ t3

Transform such steps in a deduction into the following, where Πz
t2

and

Πz
t3

are the deductions resulting from Π by replacing z with t2 and t3,

respectively, and the last rule is an application of “ E:

F x
t3

Ξ4

, D!t3

Ξ2

looomooon

Πz
t3

t3 “ t1

F x
t2

Ξ3

, D!t2

Ξ1

looomooon

Πz
t2

t2 “ t1
t2 “ t3

The conditions on variables ensure that no clashes arise from the replace-

ments.

The second reduction procedure for maximal formulas of the form

ιxrF,Gs is slightly unusual, as it appeals to a rule for another logical con-

stant, i.e. identity. However, as the conclusion of ιE2 is an identity, it is

to be expected that its rules may have to be appealed to in the workings

of the rules for ι.

I only give two examples of permutative reduction procedures for for-

mulas of the form ιxrF,Gs that are the conclusion of _E, DE or ιE1 and

the major premise of ιE1 or ιE2. As in previous cases, clashes between

variables are avoidable by choosing different variables for the applications

of DE and the elimination rules for ι.
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First example. The major premise of ιE1 is concluded by DE:

DvA

i
Av

y

Σ

ιxrF,Gs
i

ιxrF,Gs

F x
z

j
, Gx

z

j
, D!z

j

loooooooooooomoooooooooooon

Π

C
j

C

Replace such steps in a deduction by:

DvA

i
Av

y

Σ

ιxrF,Gs

F x
z

j
, Gx

z

j
, D!z

j

loooooooooooomoooooooooooon

Π

C
j

C
i

C

Second example. The major premise of ιE2 is the conclusion of DE:

DvA

i
Av

y

Σ

ιxrF,Gs
i

ιxrF,Gs D!t1 D!t2 F x
t1

F x
t2

t1 “ t2

Replace such steps in a deduction by:

DvA

i
Av

y

Σ

ιxrF,Gs D!t1 D!t2 F x
t1

F x
t2

t1 “ t2
i

t1 “ t2

The remaining cases are similar.

I am not counting ιE2 as an introduction rule for “. There is no general

way of removing formulas t1 “ t2 concluded by ιE2 and eliminated by “ E,

as the following illustrates:
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ιxrF,Gs D!t1 D!t2 F x
t1

F x
t2

t1 “ t2 Ax
t1

Ax
t2

Thus there are no further maximal formulas to be considered in INF
ι.

After the theorem, I will give an alternative second elimination rule for ι

that avoids this problem.

We have the following:

Theorem 1. For any deduction Π of A from Γ in INF
ι there is a deduction

of the same conclusion from some of the formulas in Γ that is in normal

form.

Proof: By induction over the rank of proofs. The length of a segment is

the number of formulas it consists of and its degree the number of logical

constants in that formula. Let a maximal formula be a maximal segment of

length 1. The rank of a deduction is the pair xd, ly, where d is the highest

degree of a maximal segment or 0 if there is none, and l is the sum of the

lengths of maximal segments of highest degree. xd, ly ă xd1, l1y iff either

(i) d ă d1 or (ii) d “ d1 and l ă l1. Applying the reduction procedures to

a suitably chosen maximal segment of highest degree and longest length

reduces the rank of a deduction. 2

We can reformulate the second elimination rule for ι to incorporate an

application of Leibniz’ Law instead of concluding with an identity:

ιxrF,Gs D!t1 D!t2 F x
t1

F x
t2

Ax
t1

ιE2A :
Ax

t2

A can be restricted to atomic formulas, an induction over the complexity of

formulas showing that the general version with A a formula of any degree

is admissible. Call the system resulting from INF
ι by replacing ιE2 with

ιE2A
INF

ι1

.

ιE2 and ιE2A are interderivable in virtue of the rules for identity:

1. To derive ιE2A, given premises ιxrF,Gs, D!t1, D!t2, F
x
t1
and F x

t2
, derive

t1 “ t2 by ιE2 and apply “ E to it and the premise Ax
t1

to derive

Ax
t2
.

2. To derive ιE2, let A be t1 “ x, so that Ax
t1

is t1 “ t1: derive it from

D!t1 by “ In, apply ιE2A to derive Ax
t2
, i.e. t1 “ t2.

Thus INF
ι and INF

ι1

are equivalent.



96 Nils Kürbis

In INF
ι1

, steps in a deduction that conclude t1 “ t2 by ιE2A (with

t1 “ t1 as Ax
t1
) and using it as the identity in Leibniz’ Law are redundant:

ιE2A can instead be applied with the premise and conclusion of Leibniz’

Law. Such identities can therefore be removed from deductions, and we

are now at liberty to count them amongst the maximal formulas.

If a maximal formula arises from introducing ιxrF,Gs by ιI and elimi-

nating it by ιE2A, we have the following situation:

Σ1

F x
t1

Σ2

Gx
t1

Σ3

D!t1

F x
z

i
, D!z

i

loooooomoooooon

Π
z “ t1

i
ιxrF,Gs D!t2

Ξ1

D!t3

Ξ2

F x
t2

Ξ3

F x
t3

Ξ4

Ax
t2

Ξ5

Ax
t3

We now have two options for removing the maximal formula. We can

proceed as previously: conclude t2 “ t3 by an application of Leibniz’ Law

to the conclusions t2 “ t1 of Πz
t1

and t3 “ t1 of Πz
t2
, and then apply

Leibniz’ Law once more with Ax
t2

as further premise and Ax
t3

as conclusion.

Alternatively, we can first conclude Ax
t1

from the conclusion t2 “ t1 of Πz
t1

and Ax
t2
, and then conclude Ax

t3
from Ax

t2
and the conclusion t3 “ t1 of

Πz
t2
. Thus deductions in the system resulting by replacing ιE2 by ιE2A

also normalise, and it has the additional advantage of avoiding identities

concluded by ιE2 and eliminated by Leibniz’ Law.

Thus we have the following:

Theorem 2. For any deduction Π of A from Γ in INF
ι1

there is a de-

duction of the same conclusion from some formulas in Γ that is in normal

form.

Deductions in INF
ι1

have slightly neater proof-theoretic properties than

those in INF
ι, as deductions in normal form in INF

ι1

do not contain

redundant identities introduced by ιE2 and eliminated by “ E. Deductions

in INF
ι are, however, slightly simpler if we are interested in establishing

identities, and this will be the case if we are interested in comparing the

present system with the standard treatment of ι as a term forming operator:

axioms and rules for the latter invariably appeal to identity.
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Abstract

The goal of this paper is to propose correspondence analysis as a technique for

generating the so-called erotetic (i.e. pertaining to the logic of questions) calculi

which constitute the method of Socratic proofs by Andrzej Wísniewski. As we

explain in the paper, in order to successfully design an erotetic calculus one needs

invertible sequent-calculus-style rules. For this reason, the proposed correspon-

dence analysis resulting in invertible rules can constitute a new foundation for

the method of Socratic proofs.

Correspondence analysis is Kooi and Tamminga’s technique for designing

proof systems. In this paper it is used to consider sequent calculi with non-

branching (the only exception being the rule of cut), invertible rules for the

negation fragment of classical propositional logic and its extensions by binary

Boolean functions.

Keywords: Socratic proofs, correspondence analysis, invertible rule, infer-
ential erotetic logic, classical propositional logic, sequent calculus.
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100 D. Leszczyńska-Jasion, Y. Petrukhin and V. Shangin

1. Introduction

1.1. The method of Socratic proofs

The method of Socratic proofs is a proof method grounded in the logic
of questions called inferential erotetic logic (IEL, for short).1 Developed
mainly in the nineties by Andrzej Wísniewski2, the logic focuses its atten-
tion on the analysis of inferential relations between questions, distinguishes
some classes of inferences with questions involved (henceforth called erotetic

inferences), and, finally, develops criteria of validity of such erotetic infer-
ences.

Undertaking the task to formally model erotetic inferences has led IEL

to distinguishing some proof methods, especially the method of Socratic
proofs.3 The core of the method is the idea of answering questions by
questioning, that is, by transforming the structure of the initially posed
question. When the questions concern, for example, validity in a logic
L, then the method of Socratic proofs constitutes a proof method for L.
However, the general goal is more ambitious: it is to capture and provide
a formal model for a kind of cognitive phenomenon, when an agent tends
to solve a problem by consecutive questions.

The fact that we do perform such reasoning is incontestable. The
erotetic calculi designed so far may be claimed to successfully model erotetic
reasoning such as:

• Is A a tautology? Well, is ¬A satisfiable?

But they also shed the light of explanation on such more general examples
as:

• From [11, p. 47]: Let me rephrase my question; what I am really

asking is . . .

whereas the very notion of erotetic implication may be adjusted to provide
an account of the following:

1The word erotetic comes from the Greek ǫρωτηµα which means question.
2Tadeusz Kubiński, one of the pioneers in the logic of questions, has already focused

on some relations between questions [17], [16]. For IEL, see [38] or [35] for a concise
introduction. See also [36] for the most recent account of IEL.

3Introduced in [37] for the case of classical propositional logic it has been later ad-
justed to the first-order case (see [40]) as well as various non-classical cases (int.al. modal
[19, 21], and paraconsistent [41, 6]). The most recent developments of the method are
discussed in the monographs [5, 20].
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Q1 : Is
√
2
√
2
a rational number?

A1 : (Gelfond-Schneider Theorem) If x and y are algebraic numbers, x 6=
0, x 6= 1, and y is irrational, then xy is a transcendental number.

A2 : Every (real) transcendental number is irrational.

Q2 : Is
√
2 an algebraic number?

There are two conditions defining the notion of erotetic implication.
First, if question Q1 erotetically implies question Q2 (on the basis of X),
then soundness of the first question, Q1, warrants soundness of

the second question, Q2. This means that if in a given situation it is
reasonable to ask Q1, then it is also reasonable to ask Q2. (More precisely,
soundness of a question under a valuation amounts to the existence of an
answer to the question which is true under the valuation. We postpone the
technical details to Section 3.) For example, if a question:

• Is Sabrina in the bedroom or in the living room?

is sound in a given situation, and if one can hear Sabrina’s voice, then the
following question is also sound:

• Does her voice come from the bedroom or from the living room?

The second condition defining the notion of erotetic implication
amounts to the fact that Q2 is asked for a purpose: every answer to

Q2 must bring one closer to answering Q1. It is the case in our ex-
ample with Sabrina: every answer to the second question (providing the
information that Sabrina’s voice comes from the bedroom or from the living
room) entails the answer to the first question.

The requirement “every answer” is a very strong one, and for this
reason it is often weakened: when weak erotetic implication is considered,
it is enough that at least one answer to the second question is useful in
resolving the first one. For example, the affirmative answer to the above
question Q2: “Yes,

√
2 is an algebraic number”,4 makes theorem A1 ap-

plicable, and so, together with A2, yields the negative answer to Q1: the
number is not rational. However, in this case the requirement every an-

swer is not satisfied, as the negative answer to Q2 does not entail any
solution to the problem expressed by Q1. Yet, with the weaker variants of
erotetic implication IEL can easily deal with that.

4It is the true answer, as the polynomial ‘x2 − 2’ witnesses.
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What properties should a formal model possess in order to capture at
least some of the cognitive phenomena described above? Well, the funda-
mental properties of the model designed in the framework of IEL, that is,
of the method of Socratic proofs, are the following:

1. Syntactic, quasi-reductionist approach to questions (see [39] or [36,
Chapter 2] for this and other approaches). It means, int.al., that
questions are distinguished as separate expressions in the language,
expressions differing with respect to statements; and that a question
is identified (understood) by knowing what counts as an answer. (Cf.
the so-called Hamblin’s postulates, [10].)

2. The rules transforming questions, i.e. erotetic rules, are built on a
proof-theoretical skeleton of sequent calculus. As we shall see, ques-
tions transform certain units composed of sequents.

3. The crucial property: the construction of erotetic rules warrants that
they retain the relation of erotetic implication between the question-
premise and the question-conclusion.

For the last property to hold, the rules must be semantically invertible, that
is, semantic correctness of the conclusion of a rule must warrant semantic
correctness of its premise. This property is used in proving soundness of
the method. However, regardless of their invertibility, the order of the
application of erotetic rules is settled.

Each rule of an erotetic calculus transforms a question, but it focuses
on a single constituent of a question, which is a sequent. When viewed as a
rule acting on a sequent, an erotetic rule is a sequent-calculus rule inverted,
so the derivation process as defined by the rules reflects the backward proof-
search in sequent calculi—from the final conclusion in the root to the leaves.

From a purely proof-theoretical point of view, erotetic rules need not
be sound in the sense of preserving semantic correctness top-down. Let us
observe that the situation is similar in the case of sequent calculi, where,
in general, the rules need not be semantically invertible in order to obtain
the adequateness result. However, from the erotetic point of view, both
soundness (top-down) and invertibility (bottom-up) of erotetic rules are
necessary to obtain erotetic correctness of the rules. Hence comes the
idea to examine the potential of correspondence analysis in the version
introduced in the paper [22].
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Both directions of applications of the rules open up more opportunities
to search for proofs; however, it is probably more important that the two
directions give more possibilities in modelling erotetic reasoning. Moreover,
invertibility of the rules is essentially used in the completeness proof of the
calculi presented in [22].

1.2. The notion of correspondence analysis

Correspondence analysis is Kooi and Tamminga’s [15] proof-theoretic ap-
proach which, originally, was developed in order to axiomatize via natural
deduction systems all the truth-functional unary and binary extensions of
three-valued logic LP (Logic of Paradox) [1, 31]. Later, Tamminga [33],
using correspondence analysis, presented natural deduction systems for all
the unary and binary extensions of Kleene’s strong three-valued logic K3

[14, 13].
Further, Petrukhin [23] formulated via correspondence analysis natural

deduction systems for all the unary and binary extensions of Belnap-Dunn’s
four-valued logic FDE (First Degree Entailment) [2, 3, 7] supplied with
Boolean negation. Petrukhin and Shangin have recently applied corre-
spondence analysis and a proof-searching procedure for FDE itself [29].
Petrukhin and Shangin [26] developed a proof-searching algorithm for nat-
ural deduction systems for all the binary extensions of LP. In [27], the
authors extended their proof searching technique to the case of all the bi-
nary extensions of K3. Petrukhin [24] presented via correspondence anal-
ysis natural deduction systems for all the unary and binary extensions of
Kubyshkina and Zaitsev’s [18] four-valued logic LRA (Logic of Rational
Agent). Besides, he generalized Kooi and Tamminga’s ([15], [33]) results
for a wider class of three-valued logics [25]. Petrukhin and Shangin [30]
used correspondence analysis to syntactically characterize Tomova’s natu-
ral logics [34, 12]. Petrukhin and Shangin [28] presented correspondence
analysis for PWK (Paraconsistent Weak Kleene logic) [9, 4] which is
Kleene’s weak logic Kw

3 [14, 13] with two designated values.
Finally, in [22], the authors showed how to use the framework to obtain

sequent calculi with the following properties: all the rules are semantically
invertible (understood as before, see also explanations below) and actually

inverted, that is, used in both directions; the rules for connectives (the
logical rules) are linear, the only branching rule is the rule of the cut, and
the rule is not eliminable.
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2. Sequent calculi obtained via correspondence

analysis

We start with a summary of [22]. Some details, that may be found there,
are skipped.

Notation. We use P for a countably infinite set {p, q, . . .} of propo-
sitional variables and B = {◦⊥, ∧, 6→, ◦1, 6←, ◦2, ⊻, ∨, ↓, ≡, ◦¬2, ←, ◦¬1,
→, ↑, ◦⊤} for a set of binary operators, where:

A B ◦⊥ ∧ 6→ ◦1 6← ◦2 ⊻ ∨
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0

A B ↓ ≡ ◦¬2 ← ◦¬1 → ↑ ◦⊤
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 1 1

Let L ◦
¬ be propositional language with the alphabet 〈P,B,¬, (, )〉; the set

F ◦
¬ of all L ◦

¬ ’s formulas is defined as usually.
Sequents are introduced as expressions of language L ◦

¬⇒ which is
built upon L ◦

¬ by adding ‘⇒’ (the sequent arrow) and the comma ‘,’ to the
alphabet. The only category of a well-formed expression of L ◦

¬⇒ is that of
a sequent of L ◦

¬⇒, which is an expression of the form:

Γ⇒ ∆ (2.1)

where Γ and ∆ are finite, possibly empty multisets of formulas of L ◦
¬ . We

use comma in the antecedent and in the succedent both as a separator of
the elements of a multiset and as the sum of multisets (the context makes
it clear).

The sequent calculi introduced in [22] are built upon the rules (Ax),
(⇒ ¬), (¬ ⇒), for the negation fragment of CPL, together with the struc-
tural rule (cut) which is the only branching rule of the system.
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(Ax) A,Γ⇒ ∆, A

Γ⇒ ∆, A A,Γ⇒ ∆

Γ⇒ ∆
(cut)

A,Γ⇒ ∆

Γ⇒ ∆,¬A (⇒ ¬) Γ⇒ ∆, A

¬A,Γ⇒ ∆
(¬ ⇒)

The following rules, presented in [22], have been found by correspon-
dence analysis:

R
(01)
◦

A,Γ⇒ ∆, B

A ◦B,Γ⇒ ∆, B
R

(02)
◦

B,Γ⇒ ∆,¬(A ◦B)

A ◦B,Γ⇒ ∆, A

R
(03)
◦

B,Γ⇒ ∆, A

A ◦B,Γ⇒ ∆, A
R

(04)
◦

A,Γ⇒ ∆, B

¬B,Γ⇒ ∆, A ◦B

R
(05)
◦

B,Γ⇒ ∆, A ◦B
¬A,Γ⇒ ∆, A ◦B R

(06)
◦

A ◦B,Γ⇒ ∆, A

¬A,Γ⇒ ∆, B

R
(07)
◦

B,Γ⇒ ∆, A ◦B
B,Γ⇒ ∆, A

R
(08)
◦

A ◦B,Γ⇒ ∆, B

A ◦B,Γ⇒ ∆, A

R
(09)
◦

B,Γ⇒ ∆,¬(A ◦B)

B,Γ⇒ ∆, A
R

(10)
◦

¬B,Γ⇒ ∆, A ◦B
¬A,Γ⇒ ∆, A ◦B

R
(11)
◦

A,Γ⇒ ∆, A ◦B
A,Γ⇒ ∆, B

R
(12)
◦

A,Γ⇒ ∆,¬(A ◦B)

A,Γ⇒ ∆, B

A
(I)
◦↑ A,B,Γ⇒ ∆, A ◦B A

(I)
◦↓ A ◦B,∆⇒ Γ, A,B

A
(II)
◦↑ ¬A,¬B,Γ⇒ ∆, A ◦B A

(II)
◦↓ A ◦B,∆⇒ Γ,¬A,¬B

A
(III)
◦↑ A,¬B,Γ⇒ ∆, A ◦B A

(III)
◦↓ A ◦B,∆⇒ Γ, A,¬B

A
(IV)
◦↑ ¬A,B,Γ⇒ ∆, A ◦B A

(IV)
◦↓ A ◦B,∆⇒ Γ,¬A,B

R
(I)
◦

A,B,Γ⇒ ∆, A ◦B
A ◦B,Γ,⇒ ∆, A,B

R
(II)
◦

¬A,¬B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆,¬A,¬B

R
(III)
◦

A,¬B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆, A,¬B R

(IV)
◦

¬A,B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆,¬A,B

The tables 1 and 2 (below) summarize the construction of our sequent
calculi for various fragments of CPL expressed in language 〈P, {◦},¬, (, )〉.
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To increase readability, under a connective ◦ we indicate in the table the
numbers of the ◦-specific rules instead of their names. In the case of the
primary connectives5, we define two types of sequent calculi: one can add
an axiom or a rule with the respective Roman numeral.

Table 1. Rules for non-primary connectives

A ◦⊥ B A ◦1 B A ◦2 B A ⊻B
(02), (08) (01), (07) (03), (11) (01), (09)

(02), (10)
(03), (12)

A ≡ B A ◦¬2 B A ◦¬1 B A ◦⊤ B
(04), (07) (06), (12) (04), (09) (05), (10)
(05), (08)
(06), (11)

Table 2. Rules for primary connectives

(I) and (08) A ◦B = A ∧B
(I) and (10) A ◦B = A ∨B
(II) and (08) A ◦B = A ↓ B
(II) and (10) A ◦B = A ↑ B
(III) and (02) A ◦B = A 6→ B
(III) and (05) A ◦B = A← B
(IV) and (02) A ◦B = A 6← B
(IV) and (05) A ◦B = A→ B

Semantics for L ◦
¬⇒. As in [22], we will use the symbol ‘|=’ for en-

tailment in both languages: L ◦
¬⇒ and L ◦

¬ . If v is a valuation, then we say
that sequent (2.1) is true under v iff if every element of Γ is true under v,
then some element of ∆ is true under v as well. For example, every sequent
of the form (Ax): A,Γ⇒ ∆, A is true under every valuation.

5A binary connective ◦ is called primary, if {¬, ◦} is functionally complete (see [8,
p. 13]). In [22] we show the difference between the primary and the non-primary
connectives via correspondence analysis.
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Finally, by:

Γ⇒ ∆ |= Θ⇒ Λ

we mean that for every valuation v, if sequent Γ⇒ ∆ is true under v, then
sequent Θ⇒ Λ is true under v.

The notions of a derivation and a proof are defined in a standard man-
ner. By ⊢C Γ ⇒ ∆ we mean that sequent Γ ⇒ ∆ has a proof in sequent
calculus C . In [22] we proved that:

Theorem 1 (Soundness and Completeness of C ). For each formula A ∈
L ◦

¬ , � A iff ⊢C ⇒ A.

3. Erotetic calculi

3.1. Language

Erotetic calculi are worded in languages containing questions; the declara-
tive expressions are, first of all, sequents.

We enrich language L ◦
¬⇒ with the question forming operator: ‘?’, the

semicolon ‘;’, the signs for negation: ng and conjunction: & (in order to
build complex declarative formulas from sequents). The resulting language
will be called QL . Atomic declarative formulas of QL are, simply, se-
quents of L ◦

¬⇒. The remaining declarative formulas are built from the
atomic ones by the use of ng and/or & in a usual way. Questions of QL

are expressions of the form:

?(Γ1 ⇒ ∆1; . . . ; Γn ⇒ ∆n) (3.1)

where Γi ⇒ ∆i is a sequent, also called a constituent of question (3.1).
Erotetic calculus is a set of erotetic rules, that is, rules transforming

a question into a question. In the original account, each erotetic step is
supposed to simplify the logical structure of the analysed problem by elim-
ination of a logical constant (or better – due to the use of the unified
notation6 – by decomposition of complex α-, β- formulas into their compo-
nents). The use of correspondence analysis changes this picture since the
simplification is sometimes lost.

6As far, erotetic calculi have been usually formed with the use of the unified notation:
see [36], [5], [20]. However, in [20] the author considers also erotetic calculi where this
convention is dropped.
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3.2. Rules

One of the characteristic proof-theoretic features of the method of Socratic
proofs is that its rules are designed with the aim to capture erotetic impli-
cation. For this reason one needs invertibility on the level of declaratives of
QL (that is, sequents). Hence follows the choice of calculi C introduced
in [22] and recalled above as the basis of erotetic calculi EC .

Greek letters Φ and Ψ are used for finite, possibly empty sequences of
sequents. For simplicity, the semicolon is used both as a separator between
sequents and as a concatenation symbol between sequences of sequents.
EC is any set of rules containing erotetic version of cut, the rules for

negation:

ERcut
?(Φ ; Γ⇒ ∆ ; Ψ)

?(Φ ; Γ⇒ ∆, A ; A,Γ⇒ ∆ ; Ψ)

ER¬⇒
?(Φ ; ¬A,Γ⇒ ∆ ; Ψ)
?(Φ ; Γ⇒ ∆, A ; Ψ)

ER⇒¬
?(Φ ; Γ⇒ ∆,¬A ; Ψ)
?(Φ ; A,Γ⇒ ∆ ; Ψ)

and a combination of the ◦-specific rules. To save space, these may be
given by the following general scheme: if R = φ/ψ is a ◦-specific rule of C ,

that is, R is one of R
(01)
◦ -R

(12)
◦ or R

(I)
◦ -R

(IV)
◦ , then the following:

ER
?(Φ ; ψ ; Ψ)

?(Φ ; φ ; Ψ)

is a rule of EC . For example, if R
(01)
◦ belongs to C , then ER

(01)
◦ belongs to

EC , where:

ER
(01)
◦

?(Φ ; A ◦B,Γ⇒ ∆, B ; Ψ)

?(Φ ; A,Γ⇒ ∆, B ; Ψ)

As above, the double line indicates that the rules are not only semantically
invertible, but may be applied in both directions.

As we can see, calculi C form the proof-theoretical skeleton of EC .
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Definition 1 (Socratic proof in EC v.1). Let Γ ⇒ ∆ be a sequent of

language QL , and assume that C does not contain any of axioms: A
(I)
◦ ,

A
(II)
◦ , A

(III)
◦ , A

(IV)
◦ . A Socratic proof of Γ⇒ ∆ in EC is a finite sequence of

questions 〈Q1, . . . , Qn〉 such that:

1. Q1 = ?(Γ⇒ ∆),

2. for each i, n ≥ i > 1: Qi results from Qi−1 by a rule of EC , and

3. each constituent of Qn is of the form (Ax): A,Γ⇒ ∆, A.

If there exists a Socratic proof of a sequent in EC , then we say that the
sequent is provable in EC .

Further, in the case of EC , where C contains axioms:

Definition 2 (Socratic proof in EC v.2). Let Γ ⇒ ∆ be a sequent of

language QL , where C contains at least one of axioms: A
(I)
◦ , A

(II)
◦ , A

(III)
◦ ,

A
(IV)
◦ . A Socratic proof of Γ ⇒ ∆ in EC is a finite sequence of questions
〈Q1, . . . , Qn〉 such that:

1. Q1 = ?(Γ⇒ ∆),

2. for each i, n ≥ i > 1: Qi results from Qi−1 by a rule of EC , and

3. each constituent of Qn is of the form (Ax): A,Γ ⇒ ∆, A, or of the
form Ax

◦ , where A
x
◦ belongs to C .

If there exists a Socratic proof of a sequent in EC , then we say that the
sequent is provable in EC .

Here is an example of a Socratic proof in EC . To save some space,
A ≡ B stands for (p ≡ q) ≡ (q ≡ p); as soon as a sequent of the form (Ax∗)
is arrived at, it is represented as Axi.
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?(⇒ (p ≡ q) ≡ (q ≡ p))
ERcut

?(⇒ A ≡ B,¬(q ≡ p) ; ¬(q ≡ p)⇒ A ≡ B)
ER⇒¬

?(q ≡ p⇒ A ≡ B ; ¬(q ≡ p)⇒ A ≡ B)
ER(07) ↑

?(q ≡ p⇒ p ≡ q ; ¬(q ≡ p)⇒ A ≡ B)
ERcut

?(B ⇒ A,¬q ; ¬q, q ≡ p⇒ p ≡ q ; ¬(q ≡ p)⇒ A ≡ B)
ER⇒¬

?(q,B ⇒ A ; ¬q,B ⇒ A ; ¬(q ≡ p)⇒ A ≡ B)
ER(07) ↑

?(q,B ⇒ p ; ¬q,B ⇒ A ; ¬(q ≡ p)⇒ A ≡ B)
ER(08) ↑

?(q,B ⇒ q ; ¬q,B ⇒ A ; ¬(q ≡ p)⇒ A ≡ B)
ER(04) ↓

?(Ax1 ; p, q ≡ p⇒ q ; ¬(q ≡ p)⇒ A ≡ B)
ER(08) ↓

?(Ax1 ; p, q ≡ p⇒ p ; ¬(q ≡ p)⇒ A ≡ B)
ER(04) ↓

?(Ax1 ; Ax2 ; p ≡ q ⇒ q ≡ p)
ERcut

?(Ax1 ; Ax2 ; p ≡ q ⇒ q ≡ p,¬p ; ¬p, p ≡ q ⇒ q ≡ p)
ER⇒¬

?(Ax1 ; Ax2 ; p, p ≡ q ⇒ q ≡ p ; ¬p, p ≡ q ⇒ q ≡ p)
ER(07) ↑

?(Ax1 ; Ax2 ; p, p ≡ q ⇒ q ; ¬p, p ≡ q ⇒ q ≡ p)
ER(08) ↑

?(Ax1 ; Ax2 ; p, p ≡ q ⇒ p ; ¬p, p ≡ q ⇒ q ≡ p)
ER(04) ↓

?(Ax1 ; Ax2 ; Ax3 ; q, p ≡ q ⇒ p)
ER(08) ↓

?(Ax1 ; Ax2 ; Ax3 ; q, p ≡ q ⇒ q)

The main differences between C and EC are:

• direction: in C , as in all standard sequent calculi, the direction of
proving as defined by the rules and the direction of proof-search as
performed by a logician are opposite; in erotetic calculi it is the same
direction; obviously, here it holds only for the rules of cut and nega-
tion;

• sequent calculi define derivations as trees, in erotetic calculi deriva-
tions (called Socratic transformations) are defined as sequences of
questions, and questions are based on sequences of sequents; as one
can see, the external context Φ, Ψ is rewritten every time a rule is
applied, the result is such that all the semantic information is saved
in the last question; in the account of implementation it means that
no backtracking is needed.
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3.3. MiES

This section shows the importance of invertibility of rules in the erotetic
context.

Let us start with:

Definition 3. An erotetic rule ?(Φ)/?(Ψ) is:

• sound iff, for each valuation v, the truth of each constituent of Φ
under v warrants the truth of each constituent of Ψ under v,

• invertible iff, for each valuation v, the truth of each constituent of Ψ
under v warrants the truth of each constituent of Φ under v.

Corollary 1. If a rule Γ1 ⇒ ∆1/Γ2 ⇒ ∆2 of C is sound and invertible,
then an erotetic rule of the form:

?(Φ ; Γ2 ⇒ ∆2 ; Ψ)

?(Φ ; Γ1 ⇒ ∆1 ; Ψ)

is sound and invertible.

It is easy to see that ERcut is sound and invertible, hence:

Corollary 2. Each rule of EC is sound and invertible.

From the fact that axioms (Ax) are true under every valuation, and
from the fact that the rules of EC are invertible, it follows that:

Theorem 2 (soundness of EC ). Let Γ⇒ ∆ be a sequent of QL . If Γ⇒ ∆
has a Socratic proof in EC , then Γ⇒ ∆ is true under every valuation.

Similarly, completeness of EC follows from completeness of C .

Theorem 3 (completeness of EC ). If a sequent of QL is true under every
valuation, then it has a Socratic proof in EC .

Erotetic implication

As we explained in the first section, the construction of erotetic calculi
should warrant that the relation of erotetic implication, a central notion for
inferential erotetic logic, holds between a question-premise and a question-
conclusion. Now we define the notion.

Suppose that we deal with a language rich enough to distinguish be-
tween declaratives and questions. Let Q, Q∗ stand for questions and dQ,
dQ∗ for the respective sets of direct answers to these questions. We adjust
the definition from [36, p. 67]:
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Definition 4 (erotetic implication). A question Q implies a question Q∗

on the basis of a set of declaratives X (in symbols: Im(Q,X,Q∗)) iff:

1. for each A ∈ dQ, for each valuation v, if each formula in X ∪ {A} is
true under v, then some formula in dQ∗ is true under v,
and

2. for each B ∈ dQ∗, there exists a non-empty proper subset Y of dQ
such that, for each valuation v, if each formula in X ∪ {B} is true
under v, then some formula in Y is true under v.

Definition 4 is based upon the semantic notion of Boolean valuation; in
the case of QL we need something more general. The notions introduced
below are central tools of the so-calledMinimal Erotetic Semantics (MiES),
a very general framework for a semantic analysis of both declaratives and
questions developed by Andrzej Wísniewski.7 The primary notion is that
of a partition of a language, which comes from [32].

Definition 5 (partition of language QL ). Let DQL be the set of sequents
of language QL . By a partition of DQL (or a partition of language QL )
we mean an ordered pair P = 〈TP,UP〉 such that TP ∪ UP = DQL and
TP ∩ UP = ∅.

In the case of complex languages with questions, the counterpart of the
semantic notion of Boolean valuation is that of an admissible partition.

Definition 6 (admissible partition of language QL ). Let P = 〈TP,UP〉
be a partition of language QL . We say that P is admissible for QL iff
the following conditions hold:

1. ‘Γ⇒ ∆’ ∈ TP iff both ‘Γ⇒ ∆, A’ ∈ TP and ‘A,Γ⇒ ∆’ ∈ TP, for
each formula A;

2. ‘ Γ,¬A,∆⇒ Θ,Λ’ ∈ TP iff ‘ Γ,∆⇒ Θ, A,Λ’ ∈ TP;

3. ‘Γ,∆⇒ Θ,¬A,Λ’ ∈ TP iff ‘Γ, A,∆⇒ Θ,Λ’ ∈ TP;

4. ‘Γ, A,∆⇒ Θ, B,Λ’ ∈ TP iff ‘Γ,¬B,∆⇒ Θ, A ≡ B,Λ’ ∈ TP;

5. ‘Γ, B,∆⇒ Θ, A ≡ B,Λ’ ∈ TP iff ‘Γ, B,∆⇒ Θ, A,Λ’ ∈ TP.

To save some space, in the above definition we have specified only

the machinery for ‘◦’ = ‘≡’ corresponding to rules R
(04)
◦ and R

(07)
◦ . It

is analogous in the remaining cases. Let us also observe that the above
definition does not take into account the axioms that may be present in C .

7For the details see [36] or [39].
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The reason for their absence is that on the level of language QL we are
interested in entailment only, not in validity.

Definition 7 (entailment in QL ). Suppose that X is a set of sequents of
language QL and t is a single sequent. We say that set X entails formula

t in language QL , symbolically:

X �QL t

iff there is no admissible partition P for language QL such that X ⊆ TP

and t /∈ TP.

As before, dQ stands for the set of direct answers to Q. In the case of
questions of QL of the form (3.1) (see page 107), the set is composed of
two declarative formulas of the language: the affirmative answer (3.2) and
the negative answer (3.3).

(Γ1 ⇒ ∆1) & (. . .& ((Γn−1 ⇒ ∆n−1) & (Γn ⇒ ∆n) . . .) (3.2)

ng((Γ1 ⇒ ∆1) & (. . .& ((Γn−1 ⇒ ∆n−1) & (Γn ⇒ ∆n) . . .)) (3.3)

Definition 8 (erotetic implication in QL ). Suppose that Q and Q∗ are
questions of QL and that X is a set of sequents. We say that question Q
implies question Q∗ on the basis of set X of sequents iff, for each admissible
partition P of language QL , the following holds:

1. for each t ∈ dQ: if X ∪ {t} ⊆ TP, then dQ
∗ ∩ TP 6= ∅; and

2. for each u ∈ dQ∗: there is a non-empty proper subset X∗ of dQ such
that if X ∪ {u} ⊆ TP, then X

∗ ∩ TP 6= ∅.

The above construction leads to the following:

Corollary 3. Suppose that a sequence of questions 〈Q1, . . . , Qn〉 is a So-
cratic proof of a certain sequent in EC . Then question Q1 implies question
Qn on the basis of the empty set of sequents.
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SEMI-HEYTING ALGEBRAS AND IDENTITIES

OF ASSOCIATIVE TYPE

Abstract

An algebra A = 〈A,∨,∧,→, 0, 1〉 is a semi-Heyting algebra if 〈A,∨,∧, 0, 1〉 is a

bounded lattice, and it satisfies the identities : x ∧ (x → y) ≈ x ∧ y, x ∧ (y →
z)

≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. SH denotes the variety of

semi-Heyting algebras. Semi-Heyting algebras were introduced by the second

author as an abstraction from Heyting algebras. They share several important

properties with Heyting algebras. An identity of associative type of length 3 is a

groupoid identity, both sides of which contain the same three (distinct) variables

that occur in any order and that are grouped in one of the two (obvious) ways.

A subvariety of SH is of associative type of length 3 if it is defined by a single

identity of associative type of length 3.

In this paper we describe all the distinct subvarieties of the variety SH of aso-

ciative type of length 3. Our main result shows that there are 3 such subvarities

of SH.

Keywords: semi-Heyting algebra, Heyting algebra, identity of associative
type, subvariety of associative type.

2010 Mathematics Subject Classification: Primary 03G25, 06D20, 06D15;
Secondary 08B26, 08B15.

1. Introduction

Semi-Heyting algebras were introduced by the second author in 1983–84,
as a result of his research that went into [33] (which was still a preprint at
the time). Some of the early results were announced in [35].
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A closer look at the proofs of results proved in [33] led him to the
following rather interesting observation:

The arguments in [33], for the most part, used only the following well
known properties of Heyting algebras:

(1) Their lattice-reducts are pseudocomplemented,

(2) Their lattice-reducts are distributive, and

(3) Congruences on them are determined by filters.

This observation led him to the following conjecture.

Conjecture A: There exists a variety V of algebras such that

• it has the same language as that of Heyting algebras,

• it contains Heyting algebras, and

• it possesses the following well known properties of Heyting algebras:

(1) The lattice reducts of the algebras in V are pseudocomple-
mented

(2) The lattice-reducts are distributive,

(3) Congruences on the algebras in V are determined by filters,

Around the same time (1983-85), he had also completed the research
for [36] (which was still in the preprint form). Led by the striking similar-
ities in the results and in the proofs of (the preprints of) the papers [33]
and [36], he formulated the following conjecture which appeared in print
much later in 1987:

Conjecture 1: There exists a variety V of algebras of type 〈∨,∧,→,′ , 0, 1〉
which would provide a unifying framework to state and prove common
generalizations of strikingly similar results, proved in the above-mentioned
two papers.

The search for such a variety led him naturally to consider the following
conjecture and strengthened his belief in the validity of Conjecture A.

Conjecture 2: There exists a common generalization of (dually) pseudo-
complemented lattices and De Morgan algebras.

Conjecture 2 was easy to settle with the variety of semi-De Morgan al-
gebras, since they were already known to the author in 1979. The results
on these algebras, however, appeared in print in the paper [37].



Semi-Heyting Algebras and Identities of Associative Type 119

Conjecture A was settled in 1983–84 with the discovery of semi-Heyting
algebras. However, the first results on semi-Heyting algebras appeared in
print only in 2008 in the Proceedings of 9th A. Monteiro Conference in
Bahia Blanca, Argentina (see [38]), held in 2007. (It was predicted in [37]
that semi-De Morgan algebras might be useful in resolving Conjecture 1.
Indeed, it turned out to be the case. Conjecture 1 was settled later in [39],
with the help of both semi-Heyting algebras and (a subvariety of) semi-De
Morgan algebras.)

Definition 1.1. An algebra 〈A,∨,∧,→, 0, 1〉 is a semi-Heyting algebra if
the following conditions hold:

(SH1) 〈A,∨,∧, 0, 1〉 is a lattice with 0 and 1,

(SH2) x ∧ (x → y) ≈ x ∧ y,

(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],

(SH4) x → x ≈ 1.

A semi-Heyting algebra is a Heyting algebra if it satisfies the identity

(H) (x ∧ y) → x ≈ 1.

We will denote the variety of semi-Heyting algebras by SH and that of
Heyting algebras by H. It is clear that H ⊂ SH.

It turns out (see [38]) that semi-Heyting algebras share with Heyting
algebras some rather strong properties, besides the three mentioned ear-
lier. For example, semi-Heyting algebras share the following properties
with Heyting algebras:
(1) every interval in a semi-Heyting algebra is also pseudocomplemented,
(2) the variety SH is arithmetical, and
(3) The variety SH has EDPC (equationally definable principal congru-
ences).
Moreover, there is a rich supply of algebras in SH. It is known that there
are in SH, up to isomorphism, two 2-element algebras, ten 3-element alge-
bras, only one of which, of course, is a Heyting algebra and 160 algebras
on a 4-element chain (see [38] and [4]).

It is well-known that Heyting algebras form an equivalent algebraic se-
mantics for intuitionistic logic; and there is a vast literature on the lattice of
subvarieties of H (equivalently, on the lattice of intermediate logics), both
from algebraic and logical points of view. Recently, the first author, in
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[11], has introduced “semi-intuitionistic logic”, whose equivalent algebraic
semantics is the the variety of semi-Heyting algebras and which has the
intuitionistic logic and classical logic as extensions, thus implying that the
lattice of intermediate logics (extensions of the intuitionistic logic) is an
interval in the lattice of extensions of the semi-intuitionistic logic (see [13]
for a more stream-lined version). These observations led us naturally to
the following problem.

PROBLEM: Investigate the structure of the lattice of subvarieties of
the variety of semi-Heyting algebras, algebraically and logically.

It should perhaps be mentioned here that already Problem 14.2 of [38]
had called for an investigation into the structure of the lattice of subvarieties
of the variety of semi-Heyting algebras (algebraically).

There exists already some literature related to this problem. The pa-
pers that deal with this problem algebraically include [38], [2], [3], [4], [5],
[15] and [17]. The paper [4] investigates the properties of semi-Heyting
chains and the structure of the variety CSH generated by all semi-Heyting
chains. In [2], it is proved, among other things, that the variety of Boolean
semi-Heyting algebras (algebras with an underlying structure of Boolean
lattice) constitutes a reflective subcategory of SH, extending the corre-
sponding result for Heyting algebras (see [6, Corollary IX.5.4], and that the
free algebras in a subvariety V of SH are directly indecomposable if and
only if V satisfies the Stone identity, extending a known result for Heyt-
ing algebras. Article [3] presents two other subvarieties of semi-Heyting
algebras that are term-equivalent to the variety of Goedel algebras (linear
Heyting algebras), and that they are the only other subvarieties in L with
this property. The variety of semi-Nelson algebras is introduced in [17] so
that the well-known and well-exploited relationship between Heyting and
Nelson algebras extends to semi-Heyting and semi-Nelson algebras. It is
also proved that the variety of semi-Nelson algebras is arithmetical, has
equationally definable principal congruences, has the congruence extension
property, along with a description of the semisimple subvarieties. In [15] an
equivalence is exhibited between the category of semi-Heyting algebras and
the category of centered semi-Nelson algebras, extending Cignoli’s result
that the categories of Heyting algebras and centered Nelson algebras are
equivalent.
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[13] and [16]. In [10] the authors introduce a Gentzen style sequent calculus
LSJ for the semi-intuitionistic logic. The advantage of this presentation
of the logic is that they prove a cut-elimination theorem for LSJ that
allows them to check the decidability of the logic. As a direct consequence,
they also obtain the decidability of the equational theory of semi-Heyting
algebras. In [16], a propositional calculus called “semi-intuitionistic logic
with strong negation” is introduced and proved to be complete with respect
to the variety of semi-Nelson algebras. It has intuitionstic logic with strong
negation as an axiomatic extension.

The present paper is an addition to the above-mentioned papers. In the
quest for finding new varieties of semi-Heyting algebras, we systematically
investigate, in this paper, the identities of associative type.

1.1. Identities of Associative Type

A look at the associative law would reveal at least the following character-
istics:

(1) Length of the left side term = length of the right side term = 3,

(2) The number of distinct variables on the left = the number of distinct
variables on right = the number of occurrences of variables on either
side,

(3) The order of the variables on the left side is the same as the order of
the variables on the right side,

(4) The bracketings used in the left side term and in the right side term
are different from each other.

One way to generalize the associative law is to relax (3) and second
half of (1), while keeping (2), (4) and the first half of (1). So, we are led
to the following definition.

Definition 1.2. An identity of associative type of length n is an identity
of the form p ≈ q of length n such that

(a) each of p and q contains the same n (an integer ≥ 3) distinct vari-
ables,

(b) p and q are terms obtained by distinct bracketings of a permutation
of the n variables.

The papers that deal with the above problem logically include [10], [11],
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The above definition is taken from [14]. We do not know whether the
notion of “identities of associative type of length n” in such a generality as
given above has occurred in the literature earlier. However, we do know
that specific instances of the identities of associative type have already
appeared in the literature. We mention a few examples below, using · for
the binary operation instead of →. (The interested reader may refer to [14]
for more such examples.)

• The identity x·(y·z) ≈ (z·x)·y was considered in [42] by Suschkewitsch
(see also [40, Theorem 11.5]).

• Abbott [1] uses the identity x · (y ·z) ≈ y · (x ·z) as one of the defining
identities in his definition of implication algebras.

• The identities x · (y · z) ≈ z · (y · x), x · (y · z) ≈ y · (x · z), and
x · (y · z) ≈ (z · x) · y were investigated for quasigroups by Hossuzú in
[23].

• The identity x · (z ·y) ≈ (x ·y) ·z is investigated by Pushkashu in [30].

• The identities x · (z · y) ≈ (x · y) · z and x · (y · z) ≈ z · (y · x) have
appeared in [26] of Kazim and Naseeruddin.

The following problem was first mentioned in [14].

PROBLEM: Let V be a given variety of algebras (whose language includes
a binary operation symbol, say, ‘ →′). Investigate the mutual relationships
among the subvarieties of V, each of which is defined by a single identity
of associative type of length n.

We will now consider the above problem for the variety SH. We begin a
systematic analysis of the relationships among the identities of associative
type of length 3 relative to the variety SH. For reader’s convenience we
repeat the special case of Definition 1.2, when n = 3.

Definition 1.3. An identity p ≈ q, in the groupoid language 〈→〉, is called
an identity of associative type of length 3 if p and q have exactly 3 (distinct)
variables, say x,y,z, and these variables are grouped according to one of the
following two ways of grouping:

(a) o → (o → o) (b) (o → o) → o.

A subvariety V of SH is called a subvariety of associative type of length
3 if it is defined by a single identity of associative type of lenth 3.
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In the rest of the paper, we refer to an “identity of associative type of
length 3” and a variety of associative type of lenth 3 as simply an identity
of associative type and a variety of associative type, respectively.

We wish to determine distinct subvarieties of associative type and their
mutual relationships, as well as their relationships with other known sub-
varieties of SH.

Our main theorem says that there are 3 such subvarieties of SH that
are distinct from each other and describes explicitly, by a Hasse diagram,
the poset formed by them.

2. Preliminaries

We refer to [9] for concepts and results in universal algebra and to [6] for
distributive lattices.

In this section, we recall some known subvarieties of SH and also recall
some results that will be useful in later sections.

Lemma 2.1. [38] Let A ∈ SH and a, b ∈ A.

(a) If a → b = 1 then a ≤ b.

(b) If a ≤ b then a ≤ a → b.

(c) 1 → a = a.

Theorem 2.2. [5, Theorem 1.8] Let A ∈ SH. The following conditions
are equivalent:

(1) A |= x → y ≈ y → x,

(2) A |= x → 1 ≈ x,

(3) A |= y ∧ (x → y) ≈ x ∧ y.

The varieties of associative semi-Heyting algebras and commutive semi-
Heyting algebras, denoted, respectively, by A and C, are defined (see [38]),
relative to SH, by

(A) x → (y → z) ≈ (x → y) → z,

(C) x → y ≈ y → x.

In [5] it is proved that the identity x → (y → z) ≈ (x → y) → z
characterizes the variety V(L2), where V(L2) is the variety generated by
L2 (see bellow). The variety C has the interesting property that 0 → 1 = 0,
quite opposite to the behavior of Heyting algebras. The variety C is, we
think, also of interest from the philosophical point of view.



124 Juan M. Cornejo and Hanamantagouda P. Sankappanavar

Theorem 2.3. [5, Theorem 1.12] A = V(L2).

Lemma 2.4. [5, Lemma 1.10] If A ∈ A, then A satisfies x → 1 ≈ x.

The following examples of semi-Heyting algebras will be useful in the
rest of the paper.

• Algebras defined on a 2-element chain {0, 1} with 0 < 1:

L1

→: 0 1
0 1 1
1 0 1

L2

→: 0 1
0 1 0
1 0 1

• Algebras defined on a 3-element chain {0, a, 1}, with 0 < a < 1:

L3

→: 0 1 a
0 1 a 1
1 0 1 a
a 0 1 1

L4

→: 0 1 a
0 1 0 0
1 0 1 a
a 0 a 1

L5

→: 0 1 a
0 1 1 1
1 0 1 a
a 0 a 1

• Algebras defined on a 4-element chain {0, a, b, 1}, with 0 < a < b < 1:

L6

→: 0 1 b a
0 1 1 1 b
1 0 1 b a
b 0 1 1 a
a 0 1 1 1
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• A 5-element algebra with the following lattice reduct and the → op-
eration:

t

t t
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A
A
A

A
A

A
A
A
A
A

0

2 3

4

1

L7

→: 0 1 2 3 4
0 1 0 3 2 0
1 0 1 2 3 4
2 3 2 1 0 2
3 2 3 0 1 3
4 0 1 2 3 1

3. Identities of Associative Type

We now turn our attention to identities of associative type of length 3.
Recall that such an identity will contain three distinct variables that occur
in any order and that are grouped in one of the two (obvious) ways. The
following identities play a crucial role in the sequel.

Let Σ denote the set consisting of the following 14 identities of associa-
tive type in the binary language 〈→〉):

(A1) x → (y → z) ≈ (x → y) → z,
(Associative law, )

(A2) x → (y → z) ≈ x → (z → y),

(A3) x → (y → z) ≈ (x → z) → y,

(A4) x → (y → z) ≈ y → (x → z),

(A5) x → (y → z) ≈ (y → x) → z,

(A6) x → (y → z) ≈ y → (z → x),

(A7) x → (y → z) ≈ (y → z) → x,

(A8) x → (y → z) ≈ (z → x) → y,

(A9) x → (y → z) ≈ z → (y → x),

(A10) x → (y → z) ≈ (z → y) → x,

(A11) (x → y) → z ≈ (x → z) → y,

(A12) (x → y) → z ≈ (y → x) → z,

(A13) (x → y) → z ≈ (y → z) → x,

(A14) (x → y) → z ≈ (z → y) → x.
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We will denote by Ai the subvariety of SH defined by the identity (Ai),
for 1 ≤ i ≤ 14. Such varieties will be referred to as subvarieties of SH of
associative type. Sometimes we will use (A) for (A1) and A for A1.

The following proposition, whose proof is routine, is crucial for the rest
of the paper.

Proposition 3.1. [14] Let G be the variety of all groupoids of type {→} and
Let V denote the subvariety of G defined by a single identity of associative
type. Then V = Ai, for some i ∈ {1, 2, · · · , 14}.

Our goal, in this paper, is to determine the distinct subvarieties of SH
associative type and to describe the poset of subvarieties of SH. It suffices
to concentrate on the varieties defined by identities (A1)-(A14), in view of
the above proposition.

3.1. Properties of subvarieties of SH of Associative type

In this section we present properties of several subvarieties of SH which
will play a crucial role in our analysis of the identities of associative type
relative to SH.

The proof of the following lemma is straightforward.

Lemma 3.2. If A ∈ SH satisfies the identities x → y ≈ y → x and
x → (y → z) ≈ (x → y) → z then A ∈ Aj for all j ∈ {1, 2, . . . , 14}.
Lemma 3.3. If A ∈ Aj with j ∈ {1, 5, 8, 10, 12, 13, 14}, then A |= x →
1 ≈ x.

Proof: Let a ∈ A.

• j = 1: This case follows from Lemma 2.4.

• j = 5:

a → 1 = a → (a → a) by (SH4)
= (a → a) → a by (A5)
= 1 → a by (SH4)
= a by Lemma 2.1 (c).

• j = 8:
a = (1 → 1) → a by Lemma 2.1 (c)

= 1 → (a → 1) by (A8)
= a → 1 by Lemma 2.1 (c).
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• j = 10:

a → 1 = a → (1 → 1) by Lemma 2.1 (c)
= (1 → 1) → a by (A10)
= 1 → a by Lemma 2.1 (c)
= a by Lemma 2.1 (c).

• j = 12: By Lemma 2.1 (b), a ≤ a → 1. Also note that

(a → 1) → a = (1 → a) → a by (A12)
= a → a by Lemma 2.1 (c)
= 1 by (SH4).

Hence, using Lemma 2.1 (a), a → 1 ≤ a.

• j = 13:
a = 1 → a by Lemma 2.1 (c)

= (1 → 1) → a by Lemma 2.1 (c)
= (1 → a) → 1 by (A13)
= a → 1 by Lemma 2.1 (c).

• j = 14: By Lemma 2.1 (b), a ≤ a → 1. Also note that

a → 1 = (a → 1) ∧ 1
= (a → 1) ∧ ((a → 1) → 1) by (SH2)
= (a → 1) ∧ ((1 → 1) → a) by (A14)
= (a → 1) ∧ a by Lemma 2.1 (c).

Therefore, a → 1 ≤ a,

proving the lemma. �

Lemma 3.4. If A ∈ Aj for 1 ≤ j ≤ 14 and j 6= 4 then A ∈ C.

Proof: Let a, b ∈ A.

• If j ∈ {1, 5, 8, 10, 12, 13, 14} the result follows from Theorem 2.2 and
Lemma 3.3.

• j = 2:
a → b = 1 → (a → b) by Lemma 2.1 (c)

= 1 → (b → a) by (A2)
= b → a by Lemma 2.1 (c).
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• j = 3:
a → b = 1 → (a → b) by Lemma 2.1 (c)

= (1 → b) → a by (A3)
= b → a by Lemma 2.1 (c).

• j = 6:
a → b = a → (1 → b) by Lemma 2.1 (c)

= 1 → (b → a) by (A6)
= b → a by Lemma 2.1 (c).

• j = 7:
a → b = a → (1 → b) by Lemma 2.1 (c)

= (1 → b) → a by (A7)
= b → a by Lemma 2.1 (c).

• j = 9:
a → b = a → (1 → b) by Lemma 2.1 (c)

= b → (1 → a) by (A9)
= b → a by Lemma 2.1 (c).

• j = 11:

a → b = (1 → a) → b by Lemma 2.1 (c)
= (1 → b) → a by (A11)
= b → a by Lemma 2.1 (c),

proving the lemma. �

Lemma 3.5. If A ∈ Aj with j ∈ {3, 5, 6, 8, 9, 11, 13, 14} then A ∈ A.

Proof: If A ∈ A3, then

a → (b → c) = a → (c → b) by Lemma 3.4
= (a → b) → c by (A3).

If A ∈ A5, then

a → (b → c) = (b → a) → c by (A5)
= (a → b) → c by Lemma 3.4.

If A ∈ A6, then

a → (b → c) = a → (c → b) by Lemma 3.4
= c → (b → a) by (A6)
= c → (a → b) by Lemma 3.4
= (a → b) → c by Lemma 3.4.
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If A ∈ A8, then

a → (b → c) = a → (c → b) by Lemma 3.4
= (b → a) → c by (A8)
= (a → b) → c by Lemma 3.4.

If A ∈ A9, then

a → (b → c) = c → (b → a) by (A9)
= c → (a → b) by Lemma 3.4
= (a → b) → c by Lemma 3.4.

If A ∈ A11, then

(a → b) → c = (b → a) → c by Lemma 3.4
= (b → c) → a by (A11)
= a → (b → c) by Lemma 3.4.

If A ∈ A13, then

(a → b) → c = (b → c) → a by (A13)
= a → (b → c) by Lemma 3.4.

If A ∈ A14,

(a → b) → c = (c → b) → a by (A14)
= a → (c → b) by Lemma 3.4
= a → (b → c) by Lemma 3.4.

The lemma is now proved. �

Theorem 3.6. A = A1 = A3 = A5 = A6 = A8 = A9 = A11 = A13 = A14.

Proof: The proof follows directly from Lemma 3.2, Lemma 3.4 and Lemma
3.5. �

The proof of the following lemma is straightforward.

Lemma 3.7. If A ∈ C then A ∈ Aj with j ∈ {2, 7, 10, 12}.
Theorem 3.8. C = A2 = A7 = A10 = A12.

Proof: This result is easy to check by using Lemma 3.4 and Lemma 3.7.
�
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4. Main Theorem

We are now ready to present the main theorem of this paper.

Theorem 4.1. We have

(a) The following are the 3 subvarieties of SH of associative type that are
distinct from each other:

A, C and A4.

(b) They satisfy the following relationships:

1. T ⊂ A ⊂ C ⊂ SH, where T denotes the trivial variety,

2. A ⊂ A4 ⊂ SH,
3. C || A4,
4. H ⊂ A4.

Proof: Observe that, in view of Theorem 3.6 and Theorem 3.8 we can
conclude that each of the 14 subvarieties of associative type of SH is equal
to one of the following varieties:

A, C and A4.

We first wish to prove (b). By Lemma 3.2, A ⊆ A4. The algebra L1 shows
that the inclusion is proper using x = 0, y = 0, z = 0 in the identity (A). It
is clear that A4 ⊆ SH. The algebra L3 shows that the inclusion is proper
using x = 0, y = a, z = 1 in the identity (A4) proving b2.

Let us check item (b3). The algebra L4 shows that C 6⊆ A4 using
x = 0, y = a, z = 0 in the identity (A4). The algebra L1 shows that
A4 6⊆ C using x = 0, y = 1 in the identity (C).

The condition H ⊆ A4 is clear since if A ∈ H and a, b ∈ A then
a → (b → c) = (a ∧ b) → c = (b ∧ a) → c = b → (a → c), the latter being
well-known. Let us consider the algebra L2. It shows that A4 6⊆ H using
x = 0, y = 1 in the identity (H). Then the proof of item (b4) is done.

The inclusion A ⊆ C follows from Lemma 2.4 and Theorem 2.2. The
algebra L4 shows that the inclusion is proper since (A) fails in it at x = 0,
y = 0, z = a. The proof of the theorem is now complete since (a) is an
immediate consequence of (b). �

Further relationship between C, A4 and A is given in the following
theorem.
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Theorem 4.2. C ∩ A4 = A.

Proof: Let A ∈ A4 and a, b, c ∈ A. Notice that

a → (b → c) = a → (c → b) by (C)
= c → (a → b) by (A4)
= (a → b) → c by (C)

Hence C ∩ A4 ⊆ A. In view of Theorem 4.1, C ∩ A4 = A. �

The Hasse diagram of the poset (in fact, ∧-semilattice) of subvarieties
of SH of associative type, together with SH, T and H, is given below.
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Next, we will study some relationships of this interesting new subvariety
A4 with some of the other earlier known subvarieties of SH.

In [38, Definition 8.1], Sankappanavar introduced the following subva-
rieties of SH by providing defining identities relative to SH for each of
them (where ∗ is the operation of pseudocomplementation):
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Subvariety Defining identity within SH
FT T (False implies True is True) 0 → 1 ≈ 1
FT D (False implies True is Dense) (0 → 1)∗ ≈ 0
QH (Quasi-Heyting algebras) y ≤ x → y

SHS (Stone semi-Heyting algebras) x∗ ∨ x∗∗ ≈ 1
FT F (False implies True is False) 0 → 1 ≈ 0

Theorem 4.3. The variety A4 is incomparable to each of the subvarieties

FT T ,FT D,QH,SHS and FT F .

Proof: The algebra L2 shows that A4 6⊆ FT T , A4 6⊆ FT D and A4 6⊆
QH.
The algebra L3 shows that FT D 6⊆ A4 and SHS 6⊆ A4 using x = 0, y = a,
z = 1.
The algebra L5 shows that FT T 6⊆ A4 using x = 0, y = a, z = 0.
The algebra L6 shows that QH 6⊆ A4 using x = 0, y = b, z = a.
The algebra L7 shows that A4 6⊆ SHS with x = 2.
The algebra L1 shows that A4 6⊆ FT F .
The algebra L4 shows that FT F 6⊆ A4 using x = 0, y = a, z = 0. �
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FULL CUT ELIMINATION AND INTERPOLATION

FOR INTUITIONISTIC LOGIC WITH EXISTENCE

PREDICATE1

Abstract

In previous work by Baaz and Iemhoff, a Gentzen calculus for intuitionistic logic

with existence predicate is presented that satisfies partial cut elimination and

Craig’s interpolation property; it is also conjectured that interpolation fails for

the implication-free fragment. In this paper an equivalent calculus is introduced

that satisfies full cut elimination and allows a direct proof of interpolation via

Maehara’s lemma. In this way, it is possible to obtain much simpler interpolants

and to better understand and (partly) overcome the failure of interpolation for

the implication-free fragment.

Keywords: intuitionistic logic, existence predicate, sequent calculi, cut
elimination, interpolation, Maehara’s lemma.

1. Introduction

In [9] Scott introduced intuitionistic logic with existence predicate (ILE)
to make explicit the existential assumptions in an intuitionistic theory,
that is to indicate which objects exist. In ILE the language of first-order
intuitionistic logic is extended with an existence predicate E and Et is
interpreted as saying that (the object denoted by) t exists. In [9] ILE is
presented as an Hilbert system extending the standard axiomatization of
intuitionistic propositional logic with new rules for quantifiers and axioms
for E . In [1, 2] Baaz and Iemhoff introduced Gentzen systems equivalent to

1Thanks to an anonymous referee for many helpful comments.
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Scott’s axiomatization and showed that they satisfy partial cut elimination
as well as Craig’s interpolation property. The proof of the latter, however,
is indirect in the sense that interpolation is proved not for the original
calculus, but in an equivalent one where structural rules are not admissible.
Moreover, it is conjectured that interpolation fails for the implication-free
fragment.

The aim of this paper is to improve on [1, 2]. We introduce an alter-
native Gentzen calculus for ILE that satisfies full cut elimination and in
which Craig’s interpolation property can be proved via Maehara’s lemma
using exclusively the rules of the calculus. The advantage is that our proof
is direct and delivers much simpler interpolants. This helps to improve
on the conjecture of Baaz and Iemhoff [1, §5.1] that their calculi do not
interpolate for the fragment of the language without implication (nor ⊥).
Specifically, we prove (Proposition 12) that although the interpolants for
the implication-free fragment may contain implications, the antecedent of
such implications is always an existence atom—and not an arbitrary for-
mula as in [1]. Moreover, we are able to calculate a precise upper bound
to the number of such implications. Finally, we prove (Proposition 13)
that under an arguably plausible assumption our calculi interpolate for the
fragment of the language without implication (nor ⊥).

The paper also improves on other works in the area of interpolation for
first-order theories, especially [4] where it is shown how to extend inter-
polation to a class of first-order theories, called singular geometric, where
individual constants do not occur. Since in ILE, constants do occur in
existential axioms Et, it is clear that the proof of interpolation presented
here indicates a way to generalize the results of [4].

2. The calculi LJE and LJE(ΣL)

To make the paper self-contained we recall basic definitions and results
from [1, 2]. Let L′ be a first-order language without identity and let LJE

be a Gentzen calculus consisting of the initial sequents and rules given in
Table 1.

In the rules R∀ and L∃, the variable y is eigenvariable, i.e. it does not
occur free in the conclusion of the rule.2 Moreover, let ΣL be the set of all

2In [1, 2] the substitution occurs in the conclusion of the rules R∀ and L∃ instead of
in their premises, but this difference is immaterial.
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Table 1. The calculus LJE

P,Γ ⇒ P ⊥,Γ ⇒ C
L⊥

A,B,Γ ⇒ C

A ∧B,Γ ⇒ C
L∧

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧B

R∧

A,Γ ⇒ C B,Γ ⇒ C

A ∨B,Γ ⇒ C
L∨

Γ ⇒ A
Γ ⇒ A ∨B

R∨1
Γ ⇒ B

Γ ⇒ A ∨B
R∨2

A → B,Γ ⇒ A B,Γ ⇒ C

A → B,Γ ⇒ C
L→

A,Γ ⇒ B

Γ ⇒ A → B
R→

∀xA,Γ ⇒ Et A[ tx ], ∀xA,Γ ⇒ C

∀xA,Γ ⇒ C
L∀∗

Ey,Γ ⇒ A[ yx ]

Γ ⇒ ∀xA R∀

Ey,A[ yx ],Γ ⇒ C

∃xA,Γ ⇒ C
L∃

Γ ⇒ Et Γ ⇒ A[ tx ]

Γ ⇒ ∃xA R∃∗

sequents Γ ⇒ Et, where t is a term of a language L ⊆ L′ which contains
no variable and at least one constant (hence t is a constant). Since L
contains at least one constant, ΣL is not empty; and since L contains no
variable, all sequents in ΣL are closed. Consider now the calculus LJE(ΣL)
obtained from LJE by adding all the sequents in the language L′ that are
LJE-derivable from ΣL. In other words, LJE(ΣL) is obtained from LJE by
adding “axiomatic sequents” Γ ⇒ Et.

In [2] it is shown that LJE and LJE(ΣL) are equivalent to the standard
axiomatizations IQCE and IQCE

+ of ILE due to Scott [9] and Beeson [3],
respectively. In [2] it is also shown that in LJE and LJE(ΣL) weakening
and contraction

Γ ⇒ C
A,Γ ⇒ C

Wkn
A,A,Γ ⇒ C

A,Γ ⇒ C
Ctr

are height-preserving admissible (Lemma 4.3 and 4.4). However, the pres-
ence of axiomatic sequents in LJE(ΣL) impairs cut elimination: although
LJE is fully cut-free, LJE(ΣL) only allows a partial cut elimination. Specif-
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ically, the cut rule with E-formulas principal (with t term in L)
Γ ⇒ Et Et,∆ ⇒ C

Γ,∆ ⇒ C
Cut

is not eliminable (Theorem 4.6).
Interpolation in LJE(ΣL) is investigated in [1] where it is shown LJE

and LJE(ΣL) have Craig’s interpolation property (Corollary 2). The proof
is indirect in the sense that interpolation is not proved for LJE(ΣL), but for
an equivalent system where weakening and contraction are not admissible
and cuts on axiomatic sequents are replaced by instances of weakening
(Theorem 4). Towards the end of [1] it is conjectured that interpolation
fails for the implication-free fragment of LJE and LJE(ΣL) because the
proof of interpolation in the case of the rule L∀ only deliver implicative
interpolants, i.e. formulas of the form A → B.

3. The cut-free calculi G3ie and G3ie
T

To overcome the limitation of partial cut elimination, we consider a calculus
equivalent to LJE(ΣL) where the rules for quantifiers are aptly modified and
each existential sequent Γ ⇒ Et in ΣL is replaced by an inference rule. The
modification of the quantifier rules has been largely inspired by the modal
rules of labelled sequent calculi of [7] and consists into replacing L∀∗ and
R∃∗ of LJE(ΣL) by the following rules:

A[ tx ], ∀xA, Et,Γ ⇒ C

∀xA, Et,Γ ⇒ C
L∀

Et,Γ ⇒ A[ tx ]

Et,Γ ⇒ ∃xA R∃

Let G3ie be the result of replacing L∀∗ and R∃∗ of LJE(ΣL) with L∀ and
R∃, respectively. The key feature of L∀ and R∃ in G3ie is that existential
atoms may be active (principal) only in the left-hand side of the sequent
arrow ⇒.

Next, instead of axiomatic sequents Γ ⇒ Et, we consider (extensions of
G3ie with) existential rules Ex(t) of the form

Et,Γ ⇒ C

Γ ⇒ C
Ex(t)

where t is a term of L. We agree that if T = {t : Γ ⇒ Et ∈ ΣL}, then
G3ie

T is the extension of G3ie with a rule Ex(t) for each t ∈ T .
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Now we show that G3ieT (as well as G3ie) satisfies full cut elimination.
As usual, we shall assume that derivations satisfy the pure-variable con-
vention: in a derivation no variable occurs both free and bound and the
eigenvariables are pairwise disjoint. Next, we begin with some preparatory
lemmas. First, height-preserving admissibility of substitution in G3ie

T (we
shall omit to specify G3ie

T , unless it is necessary).

Lemma 1 (substitution). If ⊢h Γ ⇒ C and t is free for x in Γ, C then
⊢h Γ[ tx ] ⇒ C[ tx ].

Proof: By induction on height h of the derivation of Γ ⇒ C. If h = 0
or h = n + 1 and the last rule instance R is by a propositional rule, see
[8, Theorem 4.1.2]. If (h = n + 1 and) R is L∀ and x ≡ y then the claim
holds since the substitution [ tx ] is vacuous. Otherwise, if x 6≡ y then we
apply IH on the premise of L∀ and then L∀ again. The case of R∃ is
similar. If R is R∀ with conclusion Γ ⇒ ∀yA, then we take the premise
Ez,Γ ⇒ A[ zy ] (with z eigenvariable) and we apply IH so as to replace z
with a new variable u and obtain ⊢n Eu,Γ ⇒ A[ uy ]. By IH again and R∀
we conclude Γ[ tx ] ⇒ (∀yA)[ tx ]. The case of L∃ is similar. �

Next is height-preserving admissibility of weakening.

Lemma 2 (Weakening). If ⊢h Γ ⇒ C then ⊢h A,Γ ⇒ C.

Proof: By induction on h. If h = 0 or h = n+1 and the last rule instance
R is by a propositional rule, see [8, Theorem 4.2.2]. If (h = n + 1 and)
R is a quantifier rule without variable condition, then the claim holds by
IH and R. If R is a quantifier rule with eigenvariable then use Lemma 1,
IH and R. Finally, if R is Ex(t), then its premise is Et,Γ ⇒ C and the
conclusion A,Γ ⇒ C is obtained by applying IH on the premise of Ex(t)
and then Ex(t) (since t is a constant, we know Et is not affected by the
substitution). �

To prove that contraction is height-preserving admissible, we need
height-preserving invertibility of some rules.

Lemma 3 (Inversion). All rules, except R∨, L → and R∃, are height-
preserving invertible. However, L → is height-preserving invertible with
respect to its right premise.

Proof: For height-preserving invertibility of the propositional rules, see
[8, Theorem 2.3.5]. The height-preserving invertibility of L∀ and Ex(t)
follows by height-preserving admissibility of weakening (Lemma 2), whereas
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the case of L∃ is as in [2, Lemma 4.4] and the case of R∀ is similar and
hence left to the reader. �

Now we can prove height-preserving admissibility of contraction.

Lemma 4 (Contraction). If ⊢h A,A,Γ ⇒ C then ⊢h A,Γ ⇒ C.

Proof: By induction on h. If h = 0 or h = n + 1 and the last rule
instance R is by a propositional rule, see [8, Theorem 2.4.1]. If R is a
height-preserving invertible quantifier rule, then the claim holds by IH and
Lemma 3. If R is R∃, then A cannot be principal in it and C ≡ ∃xB.
We need to consider two cases: either A ≡ Et or Γ ≡ Et,Γ′. In the first
case, the premise of R∃ is Et, Et,Γ ⇒ B[ tx ] and the sequent Et,Γ ⇒ ∃xB
is obtained by applying IH on Et and then R∃ again. In the second case,
the premise of R∃ is A,A, Et,Γ′ ⇒ B[ tx ] and the sequent A, Et,Γ′ ⇒ ∃xB
is obtained similarly. Finally, if R is Ex(t), then A cannot be principal
in it and the premise of Ex(t) is A,A, Et,Γ ⇒ C. Thus, A, Et,Γ ⇒ C is
obtained by applying IH and then Ex(t). �

We are now ready to prove (full) cut elimination.

Theorem 5 (Cut). If ⊢ Γ ⇒ A and ⊢ A,∆ ⇒ C then ⊢ Γ,∆ ⇒ C.

Proof: The proof is by induction on the weight of the cut formula A with
a sub-induction on the sum of heights of derivation of the two premises
(cut-height, for short). If at least one the two premises of cut is initial
or concluded by L⊥, then the proof is the same as in [8, Theorem 2.4.3].
Otherwise, if none of the premises of cut is initial or concluded by L⊥, we
consider three cases: (i) A is not principal in Γ ⇒ A; (ii) A is principal in
Γ ⇒ A only; (iii) A is principal in Γ ⇒ A and A,∆ ⇒ C.

In case (i), we proceed by cases according to the rule R concluding
Γ ⇒ A. Since A is not principal by hypothesis, Γ ⇒ A can only be
concluded by a left rule or Ex(t). We consider only the case of (ia) L∀,
(ib) L∃ and (ic) Ex(t), the rest being the same as in [8, Theorem 2.4.3]. If
(ia) Γ ⇒ A is concluded by L∀, then Γ ≡ Et, ∀xB,Γ′ and we have:

B[ tx ], Et, ∀xB,Γ′ ⇒ A

Et, ∀xB,Γ′ ⇒ A
L∀

A,∆ ⇒ C

Et, ∀xB,Γ′,∆ ⇒ C
Cut

We apply IH on the premise of L∀ and then L∀ as follows.
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B[ tx ], Et, ∀xB,Γ′ ⇒ A A,∆ ⇒ C

B[ tx ], Et, ∀xB,Γ′,∆ ⇒ C
IH

Et, ∀xB,Γ′,∆ ⇒ C
L∀

If (ib) then Γ ⇒ A is concluded by L∃ then Γ is ∃xB,Γ′. In this case the
procedure is similar to case (a), except that we need first to apply Lemma
1 on the premise Ey,B[ yx ],Γ

′ ⇒ A of L∃ so as to replace y with a new
variable z.
Finally, if (ic) Γ ⇒ A is concluded by Ex(t) cut is “permuted upwards” as
above.

In case (ii), we proceed by cases according to the rule R concluding
A,∆ ⇒ C. We consider here only the cases of the quantifier rules and
Ex(t). If R is L∀ or R∃ then we reason as in case (ia), whereas if R is R∀
or L∃ the reasoning is similar to (ib). Finally, If R is Ex(t) we proceed as
in (ic).

We now consider the case (iii). If the cut formula A is propositional,
then see [8, Theorem 2.4.3]. If A ≡ ∀xB, then ∆ ≡ Et,∆′ and we have

Ey,Γ ⇒ B[ yx ]

Γ ⇒ ∀xB R∀
B[ tx ], ∀xB, Et,∆′ ⇒ C

∀xB, Et,∆′ ⇒ C
L∀

Γ, Et,∆′ ⇒ C
Cut

where y is eigenvariable in R∀. First, we apply height-preserving admissi-
bility of substitution (Lemma 1) on the premise of R∀ in order to replace y
with t; thus, we obtain ⊢n−1 Et,Γ ⇒ B[ tx ], where n is the derivation height
of the conclusion of R∀. Then we apply IH twice and height-preserving ad-
missibility of contraction (Lemma 4) as follows.

Ey,Γ ⇒ B[ yx ]

Et,Γ ⇒ B[ tx ]
[ ty ]

Γ ⇒ ∀xB B[ tx ], ∀xB, Et,∆′ ⇒ C

Γ, B[ tx ], Et,∆′ ⇒ C
IH

Et,Γ,Γ, Et,∆′ ⇒ C
IH

Γ, Et,∆′ ⇒ C
Ctr

The case in which the cut formula A is ∃xB is similar. Notice the if A ≡ Et,
then such a formula cannot be both principal of a right rule and a left rule.
�

Thus, the calculus G3ieT satisfies full cut elimination. We now need to
prove that it is equivalent to LJE(ΣL).
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Theorem 6. LJE(ΣL) and G3ie
T are equivalent.

Proof: Any existential sequent Γ ⇒ Et in LJE(ΣL) is clearly derivable in
G3ie

T by the corresponding existential rule Ex(t). On the other hand, if
the existential rule Ex(t) is in G3ie

T , then it is admissible in LJE(ΣL) since
it can be simulated by a (non-eliminable) cut with the axiomatic sequent
⇒ Et. Thus we have only to prove that rule L∀ (R∃) is equivalent to the
rule L∀∗ (R∃∗). The following derivation shows that L∀ is admissible in
LJE(ΣL):

Et, ∀xA,Γ ⇒ Et A[ tx ], ∀xA, Et,Γ ⇒ C

∀xA, Et,Γ ⇒ C
L∀∗

and, by Lemmas 2 and 4 and Theorem 5, the following one shows that L∀∗
is admissible in G3ie

T :

∀xA,Γ ⇒ Et

A[ tx ], ∀xA,Γ ⇒ C

Et, A[ tx ], ∀xA,Γ ⇒ C
Wkn

Et, ∀xA,Γ ⇒ C
L∀

∀xA, ∀xA,Γ,Γ ⇒ C
Cut

∀xA,Γ ⇒ C
Ctr

The cases of R∃ in LJE(ΣL) and R∃∗ in G3ie
T are left to the reader. �

4. Interpolation

We now turn to interpolation. The standard proof of interpolation for
Gentzen’s calculi LK and LJ rests on cut elimination and a result due to
Maehara [5]. We recall from [10] some basic definitions.

Definition 7 (Formula-language). Given a formula A the set Ter(A) is the
set of free variables and individual constants occurring in A; the set Rel(A)
is the set of non-logical relational symbols—i.e., all relational symbols ex-
cept E—occurring in A; and Lan(A) is the union of Ter(A) and Rel(A).
These notions are extended to multisets and to sequents as expected.

Definition 8 (partition, split-interpolant). A partition of a sequent Γ ⇒
C is an expression Γ1 ; Γ2 ⇒ C, where Γ = Γ1,Γ2 (where = is the multiset-
identity). A split-interpolant of a partition Γ1 ; Γ2 ⇒ C is a formula I
such that:
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I ⊢ Γ1 ⇒ I

II ⊢ I,Γ2 ⇒ C

III Lan(I) ⊆ Lan(Γ1) ∩ Lan(Γ2, C)

We use Γ1 ; Γ2
I
=⇒ C to indicate that I is a split-interpolant for

Γ1 ; Γ2 ⇒ C.

Moreover, we say that a formula I satisfying conditions (I) and (II)
satisfies the derivability conditions for being a split-interpolant for the par-
tition Γ1 ; Γ2 ⇒ I, whereas if I satisfies (III) we say that it satisfies
the language condition for being a split-interpolant for the same partition.
Given a split sequent Γ1 ; Γ2 ⇒ C, we call Γ1 (Γ2) its first (second) com-
ponent. Finally, having assumed that E 6∈ Rel(A) for each formula A, we
say that E is a logical predicate.

To prove Maehara’s lemma we need first to prove a generalized version
of Lemma 1 that allows arbitrary terms (either free variables or individual
constants) to be replaced. Thus, we consider a general substitution [ tu ] of
terms for terms and we show its height-preserving admissibility.

Lemma 9 (General substitution). If ⊢n Γ ⇒ C and t is free for u in Γ, C
and no instance of the rule Ex(u) has been applied in the derivation of
Γ ⇒ C, then ⊢n Γ[ tu ] ⇒ C[ tu ].

Proof: If u is a variable, the claim holds by Lemma 1. Otherwise, let u
be an individual constant. We can think of the derivation D of Γ ⇒ C as

Γ′ ⇒ C ′

Γ′[ uz ] ⇒ C[ uz ]
[ uz ]

where Γ′ ⇒ C ′ is like Γ ⇒ C save that it has a fresh variable z in place of
u. Note that this is always feasible for purely logical derivations, and it is
feasible for derivations involving no instance of rule Ex(u). We transform
D into

Γ′ ⇒ C ′

Γ′[ tz ] ⇒ C ′[ tz ]
[ tz ]

where t is free for z since we assumed it is free for u in Γ ⇒ C. We have
thus found a derivation (D[ tu ]) of Γ[ tu ] ⇒ C[ tu ] that has the same height
as the derivation D of Γ ⇒ C. �

Lemma 10 (Maehara’s lemma for G3ieT ). Every partition Γ1 ; Γ2 ⇒ C of
a derivable sequent Γ ⇒ C has a split-interpolant.
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Proof: The proof is by induction on the height h of the derivation D. The
cases when h = 0 or h = n+ 1 and the last step in D is by a propositional
rule are identical to the ones for G3i and the reader is referred to [10, §4.4.2]
for a sketch of the proof. Hence we have to consider only the rules for the
quantifiers and the non-logical rule Ex(t). We consider first the rules for
the existential quantifier.

Suppose that the last step in D is by L∃, i.e.
Ey,A[ yx ],Γ ⇒ C

∃xA,Γ ⇒ C
L∃

where y is eigenvariable. We have to consider the following two partitions
of the conclusion:

1. ∃xA,Γ1 ; Γ2 ⇒ C

2. Γ1 ; ∃xA,Γ2 ⇒ C

The split-interpolants for these partitions are, respectively,

A[ yx ], Ey,Γ1 ; Γ2
I
=⇒ C

∃xA,Γ1 ; Γ2
I
=⇒ C

and
Γ1 ; A[ yx ], Ey,Γ2

I
=⇒ C

Γ1 ; ∃xA,Γ2
I
=⇒ C

We give the details of the proof only for the first partition since the proof
for the other one is almost identical. By induction hypothesis (IH), there
is a formula I such that:

(i) ⊢ A[ yx ], Ey,Γ1 ⇒ I

(ii) ⊢ I,Γ2 ⇒ C

(iii) Lan(I) ⊆ Lan(A[ yx ], Ey,Γ1) ∩ Lan(Γ2, C)

The following derivations show that I satisfies the derivability conditions
for being a split-interpolant of the partition under consideration.

A[ yx ], Ey,Γ1 ⇒ I
(i)

∃xA,Γ1 ⇒ I
L∃ and

I,Γ2 ⇒ C
(ii)
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Moreover, since E 6∈ Lan(I) by Definition 7, to see that (iii) implies that I
satisfies the language condition it is enough to notice that y cannot be in
Ter(I) because y is the eigenvariable of this rule instance and, hence, it is
not in Ter(Γ2, C).3 Now we consider the rule R∃.

Suppose the last step in D is by R∃:

Et,Γ ⇒ A[ tx ]

Et,Γ ⇒ ∃xA R∃

Once again, we have to consider two partitions:

1. Γ1 ; Et,Γ2 ⇒ ∃xA
2. Et,Γ1 ; Γ2 ⇒ ∃xA

For the first partition we have the following split-interpolant:

Γ1 ; Et,Γ2
I
=⇒ A[ tx ]

Γ1 ; Et,Γ2
I
=⇒ ∃xA

To see this, notice that by IH we know that there is a formula I such that:

(i) ⊢ Γ1 ⇒ I

(ii) ⊢ I, Et,Γ2 ⇒ A[ tx ]

(iii) Lan(I) ⊆ Lan(Γ1) ∩ Lan(Et,Γ2, A[
t
x ])

From (i) and (ii) it immediately follows that I satisfies the derivability
condition—we only need to apply R∃ to the sequent in (ii). Moreover, (iii)
implies that I satisfies the language condition too, since Lan(Et,Γ2, ∃xA) =
Lan(Et,Γ2, A[ tx ]) (for t already occurs in both). For the second partition
the proof is more complicated. By IH we can assume there is a formula I
such that:

(i) ⊢ Et,Γ1 ⇒ I

(ii) ⊢ I,Γ2 ⇒ A[ tx ]

(iii) Lan(I) ⊆ Lan(Et,Γ1) ∩ Lan(Γ2, A[
t
x ])

3 In [1, p. 11] the split-interpolant of the given partition is identified with ∀zI[ z
y
]

where the ∀z can be dropped when y does not occur free in I. Our reasoning shows that
we are always in this latter case.
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Now we need to consider three mutually incompatible and exhaustive cases:

(a) t 6∈ Ter(Γ2, ∃xA)
(b) t ∈ Ter(Γ2, ∃xA) and t ∈ T

(c) t ∈ Ter(Γ2, ∃xA) and t 6∈ T

If case (a) holds, the partition has the following split-interpolant:

Et,Γ1 ; Γ2
I
=⇒ A[ tx ]

Et,Γ1 ; Γ2
∃yI[ yt ]
====⇒ ∃xA

Indeed, the following derivations show that ∃yI[ yt ] satisfies the derivability
conditions:

Et,Γ1 ⇒ I
(i)

Ey,Γ1[
y
t ] ⇒ (I[ yt ])[

y
y ]

[ yt ] [ yy ]

Ey,Γ1[
y
t ] ⇒ ∃yI[ yt ]

R∃

Et,Γ1 ⇒ ∃yI[ yt ]
[ ty ] and

I,Γ2 ⇒ A[ tx ]
(ii)

Et, I,Γ2 ⇒ A[ tx ]
Wkn

I, Et,Γ2 ⇒ ∃xA R∃

∃yI[ yt ], Ey,Γ2 ⇒ ∃xA
[ yt ] [ yy ]

∃yI[ yt ],Γ2 ⇒ ∃xA L∃

where y is a new variable and in both derivations the inference steps where
we have applied substitutions are height-preserving admissible by Lemma
9. In particular, Lemma 9 allows us to apply the substitution [ yt ] because,
thanks to the admissibility of contraction (Lemma 4), we can eliminate any
instance of rule Ex(t) from the derivation of a sequent where Et occurs.
Moreover, the assumption for case (a), i.e. t 6∈ Ter(Γ2, ∃xA), ensures that
the substitution [ yt ] has no effect on Γ2, ∃xA in the right derivation. It is
also immediate to see that (iii) entails that ∃yI[ yt ] satisfies the language
condition since t 6∈ Ter(∃yI[ yt ]). Thus, the split-interpolant is ∃yI[ yt ] and
whenever t 6∈ Ter(I), we can drop the vacuous quantification.
In case (b), the partition has the following split-interpolant:

Et,Γ1 ; Γ2
I
=⇒ A[ tx ]

Et,Γ1 ; Γ2
I
=⇒ ∃xA
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Too see this notice that (iii) entails that I satisfies the language condition
and the following derivations, where Ex(t) is applicable, since t ∈ T by
assumption for case (b), show it satisfies the derivability conditions as well.

Et,Γ1 ⇒ I
(i) and

I,Γ2 ⇒ A[ tx ]
(ii)

Et, I,Γ2 ⇒ A[ tx ]
Wkn

Et, I,Γ2 ⇒ ∃xA R∃

I,Γ2 ⇒ ∃xA Ex(t)

Finally, in case (c) the split-interpolant is:

Et,Γ1 ; Γ2
I
=⇒ A[ tx ]

Et,Γ1 ; Γ2
I∧Et
===⇒ ∃xA

On the one hand, the following derivations show that I ∧ Et satisfies the
derivability conditions:

Et,Γ1 ⇒ I
(i) Et,Γ1 ⇒ Et

Et,Γ1 ⇒ I ∧ Et R∧ and

I,Γ2 ⇒ A[ tx ]
(ii)

Et, I,Γ2 ⇒ A[ tx ]
Wkn

I, Et,Γ2 ⇒ ∃xA R∃

I ∧ Et,Γ2 ⇒ ∃xA L∧

On the other hand, the formula I∧Et satisfies the language condition since
both I and Et satisfy it. Indeed, that I satisfies it follows immediately from
(iii). To see that the same holds for Et, notice that both t and E satisfy
the language condition in virtue of the assumption for case (c) and the fact
that E is a logical predicate, respectively.4 This completes the proof for
the rules of the existential quantifier. Next we move to the rules for the
universal quantifier.

4 If, instead, E weren’t a logical predicate, interpolation would fail for ILE altogether:
for Pt∧Et → ∃xPx is a theorem whose interpolant is Pt∧Et but E 6∈ Lan(∃xPx). This
is analogous to the case of Maehara’s lemma for first-order logic with identity in [4].
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Suppose that the last step in D is by L∀:

A[ tx ], ∀xA, Et,Γ ⇒ C

∀xA, Et,Γ ⇒ C
L∀

We have to consider four partitions of the conclusion:

1. ∀xA, Et,Γ1 ; Γ2 ⇒ C

2. Γ1 ; ∀xA, Et,Γ2 ⇒ C

3. Et,Γ1 ; ∀xA,Γ2 ⇒ C

4. ∀xA,Γ1 ; Et,Γ2 ⇒ C

The reader can easily see that the split-interpolants for the first two parti-
tions are, respectively:

A[ tx ], ∀xA, Et,Γ1 ; Γ2
I
=⇒ C

∀xA, Et,Γ1 ; Γ2
I
=⇒ C

and
Γ1 ; A[ tx ], ∀xA, Et,Γ2

I
=⇒ C

Γ1 ; ∀xA, Et,Γ2
I
=⇒ C

The third partition can be dealt with as the second partition for rule
R∃. In particular, by IH we can assume that:

(i) ⊢ Et,Γ1 ⇒ I

(ii) ⊢ I, A[ tx ], ∀xA,Γ2 ⇒ C

(iii) Lan(I) ⊆ Lan(Et,Γ1) ∩ Lan(A[ tx ], ∀xA,Γ2, C)

and we have to consider three mutually incompatible and exhaustive cases:

(a) t 6∈ Ter(∀xA,Γ2, C)

(b) t ∈ Ter(∀xA,Γ2, C) and t ∈ T

(c) t ∈ Ter(∀xA,Γ2, C) and t 6∈ T

For each case the split-interpolant for the partition is, respectively:
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Et,Γ1 ; A[ tx ], ∀xA,Γ2
I
=⇒ C

Et,Γ1 ; ∀xA,Γ2
∃yI[ yt ]
====⇒ C

Et,Γ1 ; A[ tx ], ∀xA,Γ2
I
=⇒ C

Et,Γ1 ; ∀xA,Γ2
I
=⇒ C

Et,Γ1 ; A[ tx ], ∀xA,Γ2
I
=⇒ C

Et,Γ1 ; ∀xA,Γ2
I∧Et
===⇒ C

We now deal with the the fourth partition. We assume by IH that:

(i) ⊢ A[ tx ], ∀xA,Γ1 ⇒ I

(ii) ⊢ I, Et,Γ2 ⇒ C

(iii) Lan(I) ⊆ Lan(A[ tx ], ∀xA,Γ1) ∩ Lan(Et,Γ2, C)

We have, once again, to consider three mutually incompatible and exhaus-
tive cases:

(a) t 6∈ Ter(∀xA,Γ1)

(b) t ∈ Ter(∀xA,Γ1) and t ∈ T

(c) t ∈ Ter(∀xA,Γ1) and t 6∈ T

Mutatis mutandis, in cases (a) and (b) we reason as in the correspond-
ing cases for the second partition of rule R∃ and we find that the split-
interpolants for the partition are, respectively:

A[ tx ], ∀xA,Γ1 ; Et,Γ2
I
=⇒ C

∀xA,Γ1 ; Et,Γ2
∀yI[ yt ]
====⇒ C

A[ tx ], ∀xA,Γ1 ; Et,Γ2
I
=⇒ C

∀xA,Γ1 ; Et,Γ2
I
=⇒ C

sIn case (c), instead, the split-interpolant is:

A[ tx ], ∀xA,Γ1 ; Et,Γ2
I
=⇒ C

∀xA,Γ1 ; Et,Γ2
Et→I
===⇒ C

Indeed (iii) entails that the formula Et → I satisfies the language con-
dition since, in virtue of the assumption for case (c), we know that t ∈
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Ter(∀xA,Γ1) and since E is a logical predicate (cf. footnote 4). Next the
following derivations show that Et → I satisfies the derivability conditions,
too:

A[ tx ], ∀xA,Γ1 ⇒ I
(i)

Et, A[ tx ], ∀xA,Γ1 ⇒ I
Wkn

Et, ∀xA,Γ1 ⇒ I
L∀

∀xA,Γ1 ⇒ Et → I
R→

Et,Γ2 ⇒ Et I, Et,Γ2 ⇒ C
(ii)

Et → I, Et,Γ2 ⇒ C
L→

This completes the proof for L∀ and we can now consider rule R∀.
Suppose that the last step in D is by R∀:

Ey,Γ ⇒ A[ yx ]

Γ ⇒ ∀xA R∀

where y is eigenvariable. As in [1] (omitting the vacuous quantifier, cf.
footnote 3), we have to consider only one partition of the conclusion, whose
split-interpolant is:

Γ1 ; Ey,Γ2
I
=⇒ A[ yx ]

Γ1 ; Γ2
I
=⇒ ∀xA

The proof that I satisfies the language and derivability conditions is as
in [1]. Finally, we have to consider rule Ex(t).

Suppose the final step in D is by Ex(t):

Et,Γ ⇒ C

Γ ⇒ C
Ex(t)

We have only one partition to consider, namely Γ1 ; Γ2 ⇒ C. We consider
two cases according to whether t ∈ Ter(Γ1) or not and we have, respectively:

Et,Γ1 ; Γ2
I
=⇒ C

Γ1 ; Γ2
I
=⇒ C

Γ1 ; Et,Γ2
I
=⇒ C

Γ1 ; Γ2
I
=⇒ C
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The fact that I satisfies the derivability conditions is obvious in both cases:
we just have to apply IH and then an instance of rule Ex(t). It is also easy
to see that I satisfies the language condition too: in the first case I satisfies
the language condition because (E 6∈ Lan(I) and) if t ∈ Ter(I) then, by IH,
it must be in Ter(Γ2, C) and we are assuming that it is in Ter(Γ1); but so
does in the second case, since here we are assuming that t 6∈ Ter(Γ1) and
hence t 6∈ Ter(I). �

From Maehara’s lemma for G3ie
T , it is immediate to prove Craig’s

interpolation theorem.

Theorem 11 (Craig’s interpolation for G3ie
T ). If A ⇒ B is derivable in

G3ie
T then there exists a formula I such that ⊢ A ⇒ I and ⊢ I ⇒ B and

Lan(I) ⊆ Lan(A) ∩ Lan(B).

Proof: Let A ⇒ B be derivable in G3ie
T and let us consider the partition

A ; ∅ ⇒ B of A ⇒ B. By Lemma 10, this partition has a split-interpolant,

namely there exists a I such that A ; ∅
I
=⇒ B. Hence ⊢ A ⇒ I and ⊢ I ⇒ B

and Lan(I) ⊆ Lan(A) ∩ Lan(B) by Definition 8. �

Comparing our proof of interpolation with that of [1], it appears that
ours is direct in the sense that it relies exclusively on the rules of G3ieT ,
with no need to go through an equivalent system.

5. Interpolation for the implication-free fragment

In this section we consider interpolation for sequents in the fragment of
the language without implication (nor ⊥). First, we show that for the
procedure given in Lemma 10 (henceforth Proc) there exists a bound on the
number of implications introduced in the interpolants. Next, we consider
the class of implication-free derivable partitions Π1 ; Π2 ⇒ F such that Π2

contains no existential atom. We show that for sequents in this class, Proc
can be modified in such a way that it outputs implication-free interpolants.
Notice that the assumption that no existence atom occurs in the second
component of the end-sequent is not restrictive as long as one aims to prove
interpolation for sequents representing theorems of ILE, since their second
component is empty (cf. Theorem 11).

We say that a sequent calculus G interpolates for a fragment F of the

language L′ if whenever ⊢ Γ1 ; Γ2
I
=⇒ C in G with Γ1,Γ2, C ∈ F , we
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have that I ∈ F . It is well-known that LJ interpolates for the {∧,∨, ∃, ∀}-
fragment. Nevertheless, in [1, §5.1] it is conjectured LJE and LJE(ΣL)
do not interpolate for the {∧,∨, ∃, ∀}-fragment because rule L∀ does not
interpolate for this fragment. The problem, roughly, is that the procedure
given in [1, Theorem 4] might introduce an implication in the interpolant
of the conclusion of an instance of L∀.

We are now going to show that the calculi G3ie and G3ie
T are better

behaved with respect to interpolation for the {∧,∨, ∃, ∀}-fragment in that:

Proposition 12. If Γ1 ; Γ2 ⇒ C is a G3ie
(T )-derivable sequent in the

{∧,∨, ∃, ∀}-fragment and we apply Proc to its derivation, we obtain an
interpolant I such that:

(α) If an implication occurrs in I, its antecedent is of the form Et;5
(β) If #◦(Γ) stands for the number of occurrences of the symbol ◦ in Γ,

then

#→(I) ≤ [#∀(Γ1)] × [#E(Γ2) + #∀(C) + #∃(Γ2) ]

Proof: First of all, by inspecting Proc we immediately see that an im-
plication may occur in the interpolant of an implication-free sequent only
when in its derivation there is an instance of L∀ whose conclusion is an
instance of subcase (c) of the fourth partition considered in Lemma 10,
i.e., it is of the form

(†)
A[ tx ], ∀xA,∆1 ; Et,∆2 ⇒ D

∀xA,∆1 ; Et,∆2 ⇒ D
L∀

(‡) with t 6∈ T and t ∈ Ter(∀xA,∆1)

Let us call quasi-implicative an arbitrary instance of the fourth partition of
L∀ and fully-implicative one that falls under case (c). Thus, an implication
may occur in the interpolant of an implication-free conclusion of an instance
of a rule of G3ieT if and only if it is a fully-implicative instance of L∀.

The claim (α) holds since the interpolant of a conclusion of a fully-
implicative instance of L∀ is Et → J (where J is the interpolant of the
premiss).

To prove claim (β) we analyze the derivation of Γ1 ; Γ2 ⇒ C bottom-
up, as is normally done in proof-search procedures. The first thing to notice
is that no case of Proc for the {∧,∨, ∃, ∀}-fragment switches the position of

5And not a formula of arbitrary complexity as in [1, Thm. 4]
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a (sub)formula occurring in a rule instance: in moving from the conclusion
to the premiss(es) nothing goes from one component of the antecedent (or
from one side of the sequent) to the other. As a consequence we have that
Γ1 ; Γ2 ⇒ C has been concluded by a quasi-implicative instance of L∀
only if:

1. its principal formula ∀xA is a subformula of (some formula in) Γ1,
and

2. its principal formula Et
(a) is a subformula of Γ2, or
(b) it has been introduced (bottom-up) by an instance of Ex(t) , or

(c) it has been introduced (bottom-up) by an instance either of R∀
whose principal formula is a subformula of C or of L∃ whose
principal formula is a subformula of Γ2.

We immediately have that the number of (quasi- and) fully-implicative
instances of L∀ is bounded by a function of the number of universal quan-
tifiers occurring in Γ1, namely #→(I) ≤ [#∀(Γ1)] ×m, for some m.

Now we show that m = #E(Γ2) + #∀(C) + #∃(Γ2). This will done
by identifying when the quasi-implicative instance of L∀ in (†) is fully-
implicative, i.e. it satisfies (‡). If its principal formula Et is a subformula
of Γ2, it is fully-implicative if and only if t 6∈ T and t ∈ ∀xA,∆1. Hence
#E(Γ2) goes into m. If, instead, its principal formula Et has been intro-
duced by a lower instance of Ex(t), it is never fully-implicative since t ∈ T .
Hence nothing goes into m. Lastly, if its principal formula Et has been
introduced by a lower instance of one of R∀ and L∃, say

Σ1 ; Et,Σ2 ⇒ B[ tz ]

Σ1 ; Σ2 ⇒ ∀zB R∀

by the variable condition on R∀ we immediately get that t is a variable
(hence we know t 6∈ T ) that does not occur in Σ1. Therefore, t can be
in Ter(∀xA,∆1) only if it has been introduced (bottom-up) by some rule
instance occurring between R∀ and (†). The only rule that can introduce
new (free) occurrences of t in the first component of its premiss is L∀.
Hence the first quasi-implicative instance of L∀ (with Et principal) cannot
be fully-implicative (the only occurrence of t in its antecedent is the one
in Et) and each other one is fully-implicative (provided the quantification
in the principal formula of the first one wasn’t vacuous). Hence #∀(C) and
#∃(Γ2) goes into m. �
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Now we give an alternative procedure showing that, under a plausible
assumption, G3ieT interpolates for the {∧,∨, ∃, ∀}-fragment.

Proposition 13. The calculus G3ie
(T ) interpolates for the {∧,∨, ∃, ∀}-

fragment provided that we exclude end-sequents with existence atoms oc-
curring in their second component.

Proof: Suppose we are applying Proc to the derivation of a sequent
Π1 ; Π2 ⇒ F satisfying the hypothesis of the Proposition 13. By Propo-
sition 12, we know that an instance of L∀ is fully-implicative only if its
principal formulas Ey has been introduced in the second component by a
lower instance of either L∃ or R∀, and y has been introduced in its first-
component by another (in-between) instance of L∀. In particular, the first
instance of L∀, i.e. the one introducing free occurrences of y in the first
component, is a (non-fully-implicative) instance of case (a) of the fourth
partition for L∀ in Lemma 10.

Let us consider a procedure Proc∗ that is like Proc save that in case
(a) of the fourth partition for L∀ it moves the existence atom Et from the
second component of its conclusion to the first component of its premiss:

Et, A[ tx ], ∀xA,∆1 ; ∆2
I
=⇒ D

∀xA,∆1 ; Et,∆2
∀yI[ yt ]
====⇒ D

L∀, t 6∈Ter(∀xA,∆1 )

Maehara’s lemma holds for Proc∗: we have just moved the existence atom
Et from one component to the other. This difference has no impact for the
language condition since E is a logical predicate and t 6∈ Ter(∀yI[ yt ]). As for
the derivability conditions, the only difference is that now we have to intro-
duce Et via an instance of weakening in the derivation of ∀yI[ yt ], Et,∆2 ⇒
C instead of introducing it via weakening in the one of ∀xA,∆1 ⇒ ∀yI[ yt ]
(as in lemma 10).

Let us consider an arbitrary quasi-implicative instance of L∀ occurring
in the derivation of Π1 ; Π2 ⇒ F with principal formula Ey (introduced
by a lower instance of one of R∀ and L∃). We can easily show that it
is not a fully-implicative instance since it must fall under the modified
case (a) above. To witness, we have already shown that the first quasi-
implicative instance of L∀ occurring above the introduction of Ey falls
under case (a) and, given that Proc∗ moves Ey to the first component of
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the premiss of this rule instance and no rule instance can move it back to
the second component nor introduce another instance of Ey (since we are
considering derivations satisfying the pure-variable convention), no other
quasi-implicative instance of L∀ with principal formula Ey can occur above
the first one. Thus we never apply a fully-implicative instance of L∀ under
Proc∗, and this is enough to prove the proposition.

From the perspective of the numeric bound given for Proc in Propo-
sition 12, we now have that #E(Γ2) = 0 by hypothesis of the proposition
and that Proc∗ is defined so that #∀(C) +#∃(Γ2) is replaced by 0. Hence
#→(I) = 0. �

6. Conclusion

In this paper we presented an improvement on the previous work by Baaz
and Iemhoff on cut elimination and interpolation for ILE. In particular, we
have shown that ILE admits a fully cut-free systematization in sequent cal-
culus, which allows a direct constructive proof of interpolation, and we have
shown that if an implication occurs in the interpolant of an implication-free
sequent, then its antecedent must be an atom of existence. Moreover, we
have also shown that (under a plausible assumption) our cut-free calculi
interpolate for the {∧,∨, ∃, ∀}-fragment.

This paper is also an improvement on the previous work on interpola-
tion in first-order theories, especially [4]. In [4] it is shown how to extend
interpolation from classical and intuitionistic logic to singular geometric
theories, a subclass of geometric theories investigated in [6]. Interestingly,
singular geometric theories are subjected to the condition that individual
constants do not occur in any axiom. ILE is clearly an example of a the-
ory outside the singular geometric class, since individual constants occur
necessarily in existential axioms. Therefore, G3ieT is a calculus not falling
within the singular geometric class for which interpolation holds. This mo-
tivates further interest in generalizing the approach of [4] and we leave the
task to future work.
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