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PREFACE: NON-CLASSICAL LOGICS. THEORY
AND APPLICATIONS (PART I)

The articles in the present and forthcoming issues are revised and extended
versions of papers presented at the conference Non-Classical Logics. Theory
and Applications, held in £.6dZ on 4-8 September 2024.1

Non-Classical Logics. Theory and Applications (NCL) is an interna-
tional conference series devoted to novel results and survey work in broadly
understood non-classical logics and their applications. The first two edi-
tions took place in L6dz, Poland, in 2008 and 2009. Subsequently, the con-
ference was held alternately in Torun (2010, 2012, 2015, 2018) and %.6dz
(2011, 2013, 2016, 2022). The tenth edition, organised by the University of
Lodz in 2022, was the first to publish its proceedings in Electronic Proceed-
ings in Theoretical Computer Science. This practice was continued in the
most recent, eleventh edition, with all accepted long papers again appear-
ing in an EPTCS volume. The 2024 edition was supported by the European
Research Council as part of the project Coming to Terms: Proof Theory
for Definite Descriptions and Other Terms (ExtenDD), and featured four

IDue to the high number of accepted post-conference submissions, the editors de-
cided to divide them into two sets, to be published in two separate issues.

© Copyright by the Author(s), 2025

Licensee University of Lodz — Lodz University Press, Lodz, Poland

@@@@ This article is an open access article distributed under the terms and con-
Caemtl ditions of the Creative Commons Attribution license CC-BY-NC-ND 4.0.
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$\relax \infer [R']{\de }{ \infer [(\NEG \LAND {\rm E})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LAND \be )}{ } & \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ] } } & \infer *[{\mathcal {E}}_1]{\de _1}{ } & \infer *[{\mathcal {E}}_2]{\de _2}{ } }$


$\relax \infer [(\NEG \LAND {\rm E})]{\de }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LAND \be )}{ } & \infer [\scriptstyle \!{R'}]{\de }{ \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal {E}}_1]{\de _1}{ } & \infer *[{\mathcal {E}}_2]{\de _2}{ } } & \infer [\scriptstyle \!{R'}]{\de }{ \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ] } & \infer *[{\mathcal {E}}_1]{\de _1}{ } & \infer *[{\mathcal {E}}_2]{\de _2}{ } } }$


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$R'$


$R$


$\NEG \LOR $


$\ga $


$\NEG (\al _1\LOR \al _2)$


$\relax \infer [(\NEG \LOR {\rm E}i)]{\NEG \al _i}{ \infer [(\NEG \LOR {\rm I})]{\NEG (\al _1\LOR \al _2)}{ \infer *[{\mathcal {D}}_1]{\NEG \al _1}{ } & \infer *[{\mathcal {D}}_2]{\NEG \al _2}{ } } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}_i]{\NEG \al _i}{ }$


$i$


$1$


$2$


$\rhd $


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


$\relax \infer [R']{\de }{ \infer [({\rm EM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }$


$\relax \infer [({\rm EM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }$


$R'$


$\I $


$\LAND $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


$\relax \infer [R']{\de }{ \infer [({\rm GEM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }$


$\relax \infer [({\rm GEM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }$


$R'$


$\I $


$\LAND $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$N_1$


$N_2$


$N_3$


$N_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$i \in \{1, 2, 3, 4\}$


$\mathcal {D}$


$N_i$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$S_i$


$\vdash $


$\GA  \Rightarrow \be $


$S_i$


$-$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {D}'$


$N_i$


$\mathcal {D}'$


$\subseteq $


$\GA $


$\mathcal {D}'$


$=$


$\be $


$\mathcal {D}'$


$\mathcal {D}$


$N_i$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$\mathcal {D}$


$\mathcal {D}$


$\relax \infer [{\rm (EM)}]{\ga }{ \infer *[{\mathcal {D}}_1]{\ga }{ [\NEG \al ] \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\al ] \GA _2 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\ga $


$S_i$


$\vdash $


$\NEG \al , \GA _1 \Rightarrow \ga $


$S_i$


$\vdash $


$\al , \GA _2 \Rightarrow \ga $


$S_i$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \ga $


$\relax \infer [(\mbox {\rm ex-middle})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[(\mbox {\rm we})]{\SEQ {\NEG \al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\NEG \al , \GA _1}{\ga }}{ } } & \infer *[(\mbox {\rm we})]{\SEQ {\al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\al , \GA _2}{\ga }}{ } } }$


$S_i$


$-$


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm E})]{\al }{ \infer *[{\mathcal {D}}_1]{\NEG \NEG \al }{ \GA } }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\al $


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG \NEG \al $


$S_i$


$\vdash $


$\GA  \Rightarrow \al $


$\relax \infer [({\rm cut}).]{\SEQ {\GA }{\al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA }{\NEG \NEG \al }}{ } & \infer [(\NEG \NEG {\rm left})]{\SEQ {\NEG \NEG \al }{\al }}{ \infer *[Prop. \ref {initial-sequent-prop}]{\SEQ {\al }{\al }}{ } } }$


$\NEG \I $


$\mathcal {D}$


$\relax \infer [{\rm (\NEG \I I)}]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}']{\NEG \be }{ \GA } }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\NEG (\al \I \be )$


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG \be $


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm right})]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \infer [\mbox {\rm (we)}]{\SEQ {\al , \GA }{\NEG \be }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA }{\NEG \be }}{ } } }$


$S_i$


$-$


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm I})]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}'}]{\NEG \be }{ [\al ]~\GA } }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\NEG (\al \I \be )$


$S_i$


$\vdash $


$\al , \GA  \Rightarrow \NEG \be $


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm right}).]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \infer *[Ind. \, hyp.]{\SEQ {\al , \GA }{\NEG \be }}{ } }$


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm E})]{\NEG \be }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \I \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\al }{ \GA _2 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\NEG \be $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \I \be )$


$S_i$


$\vdash $


$\GA _2 \Rightarrow \al $


$S_i$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \NEG \be $


$\relax \infer [({\rm cut}).]{\SEQ {\GA _1, \GA _2}{\NEG \be }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA _2}{\al }}{ } & \infer [({\rm cut})]{\SEQ {\al , \GA _1}{\NEG \be }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA _1}{\NEG (\al \I \be )}}{ } & \infer [(\NEG \I {\rm left})]{\SEQ {\NEG (\al \I \be ), \al }{\NEG \be }}{ \infer *[Prop. \ref {initial-sequent-prop}]{\SEQ {\al }{\al }}{ } & \infer *[Prop. \ref {initial-sequent-prop}]{\SEQ {\NEG \be }{\NEG \be }}{ } } } }$


$\NEG \LAND $


$\mathcal {D}$


$\relax \infer [(\NEG \LAND {\rm E})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LAND \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al ] \GA _2 } & \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ] \GA _3 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2 \cup \GA _3$


$\mathcal {D}$


$\ga $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \LAND \be )$


$S_i$


$\vdash $


$\NEG \al , \GA _2 \Rightarrow \ga $


$S_i$


$\vdash $


$\NEG \be , \GA _3 \Rightarrow \ga $


$S_i$


$\vdash $


$\GA _1, \GA _2, \GA _3 \Rightarrow \ga $


$\relax \infer [({\rm cut})]{\SEQ {\GA _1, \GA _2, \GA _3}{\ga }}{ \infer *[Ind. \, hyp.\!\!]{\SEQ {\GA _1}{\NEG (\al \LAND \be )}}{ } & \infer [(\NEG \LAND {\rm left})]{\SEQ {\NEG (\al \LAND \be ), \GA _2, \GA _3}{\ga }}{ \infer *[({\rm we})]{\SEQ {\NEG \al , \GA _2, \GA _3}{\ga }}{ \infer *[Ind. \, hyp.\!\!]{\SEQ {\NEG \al , \GA _2}{\ga }}{ } } & \infer *[({\rm we})]{\SEQ {\NEG \be , \GA _2, \GA _3}{\ga }}{ \infer *[Ind. \, hyp.]{\SEQ {\NEG \be , \GA _3}{\ga }}{ } } } }$


$S_i$


$-$


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm I})]{\NEG (\al \LOR \be )}{ \infer *[{\mathcal {D}}_1]{\NEG \al }{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ \GA _2 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\NEG (\al \LOR \be )$


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG \al $


$S_i$


$\vdash $


$\GA _2 \Rightarrow \NEG \be $


$S_i$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \NEG (\al \LOR \be )$


$\relax \infer [(\NEG \LOR {\rm right})]{\SEQ {\GA _1, \GA _2}{\NEG (\al \LOR \be )}}{ \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2}{\NEG \al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _1}{\NEG \al }}{ } } & \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2}{\NEG \be }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _2}{\NEG \be }}{ } } }$


$S_i$


$-$


$\mathcal {D}$


$\GA  \Rightarrow \be $


$S_i$


$-$


$\mathcal {D}$


$\mathcal {D}$


$\SEQ {\NEG p, \GA }{\NEG p}~({\rm init2})$


${\mathcal {D}}'$


$\NEG p$


${\mathcal {D}}'$


$\{ \NEG p \}$


$\subseteq $


$\{ \NEG p\}\cup \GA $


${\mathcal {D}}'$


$\NEG p$


$\mathcal {D}$


$\relax \infer [(\mbox {\rm ex-middle}).]{\SEQ {\GA }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\NEG \al , \GA }{\ga }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\al , \GA }{\ga }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\ga }{ (\NEG \al , \GA )^* } \quad \quad \quad \infer *[{\mathcal {E}}_2]{\ga }{ (\al , \GA )^* }$


${\mathcal {E}}_1$


$(\{ \NEG \al \} \cup \GA )^*$


$\subseteq $


$\{ \NEG \al \} \cup \GA $


${\mathcal {E}}_2$


$(\{ \al \} \cup \GA )^*$


$\subseteq $


$\{ \al \} \cup \GA $


${\mathcal {E}}_1$


$\ga $


${\mathcal {E}}_2$


$\ga $


$(\{ \NEG \al \} \cup \GA )^*$


$(\{ \al \} \cup \GA )^*$


$\NEG \al \not \in (\{ \NEG \al \} \cup \GA )^*$


$\al \not \in (\{ \al \} \cup \GA )^*$


$\NEG \al \in (\{ \NEG \al \} \cup \GA )^*$


$\al \in (\{ \al \} \cup \GA )^*$


${\mathcal {D}}'$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\ga }{ \GA ^* }$


${\mathcal {D}}'$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {D}}'$


$\ga $


${\mathcal {D}}'$


$N_i$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ \GA ^* }$


${\mathcal {D}}'$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {D}}'$


$\ga $


${\mathcal {D}}'$


$N_i$


$\relax \infer [({\rm EM})]{\ga }{ \infer *[{\mathcal {E}}_1]{\ga }{ ([\NEG \al ]~\GA )^* } & \infer *[{\mathcal {E}}_2]{\ga }{ ([\al ]~\GA )^* } }$


${\mathcal {D}}'$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {D}}'$


$\ga $


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm left}).]{\SEQ {\NEG \NEG \al , \GA }{\ga }}{ \infer *[\mathcal {E}]{\SEQ {\al , \GA }{\ga }}{ } }$


$\mathcal {E}'$


$N_i$


$\relax \infer *[\mathcal {E}']{\ga }{ (\al , \GA )^* }$


$\mathcal {E}'$


$(\{\al \} \cup \GA )^*$


$\subseteq $


$\{\al \} \cup \GA $


$\mathcal {E}'$


$\ga $


$(\{\al \} \cup \GA )^*$


$\equiv $


$\{\al \} \cup \GA $


$\mathcal {D}'$


$N_i$


$\relax \infer *[\mathcal {E}']{\ga }{ \infer [(\NEG \NEG {\rm E})]{\al }{ \NEG \NEG \al } & \GA }$


$\mathcal {D}'$


$\{ \NEG \NEG \al \} \cup \GA $


$\mathcal {D}'$


$\ga $


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm left}).]{\SEQ {\NEG (\al \I \be ), \GA , \DE }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\GA }{\al }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\NEG \be , \DE }{\ga }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\al }{ \GA ^* }$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ (\NEG \be , \DE )^* }$


${\mathcal {E}}_1$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {E}}_1$


$\al $


${\mathcal {E}}_2$


$(\{\be \}\cup \DE )^*$


$\subseteq $


$\{\be \}\cup \DE $


${\mathcal {E}}_2$


$\ga $


$\GA ^*$


$\equiv $


$\GA $


$(\{\be \}\cup \DE )^*$


$\equiv $


$\{\be \}\cup \DE $


$\mathcal {D}'$


$N_i$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ \infer [(\NEG \I {\rm E})]{\NEG \be }{ \NEG (\al \I \be ) & \infer *[{\mathcal {E}}_1]{\al }{ \GA } } & \DE }$


$\mathcal {D}'$


$\{\NEG (\al \I \be )\}\cup \GA \cup \DE $


$\mathcal {D}'$


$\ga $


$\NEG \LAND $


$\mathcal {D}$


$\relax \infer [(\NEG \LAND {\rm left}).]{\SEQ {\NEG (\al \LAND \be ), \GA }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\NEG \al , \GA }{\ga }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\NEG \be , \GA }{\ga }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\ga }{ (\NEG \al , \GA )^* }$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ (\NEG \be , \GA )^* }$


${\mathcal {E}}_1$


$(\{\NEG \al \}\cup \GA )^*$


$\subseteq $


$\{\NEG \al \}\cup \GA $


${\mathcal {E}}_2$


$(\{\NEG \be \}\cup \GA )^*$


$\subseteq $


$\{\NEG \be \}\cup \GA $


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$\ga $


$(\{\NEG \al \}\cup \GA )^*$


$\equiv $


$\{\NEG \al \}\cup \GA $


$(\{\NEG \be \}\cup \GA )^*$


$\equiv $


$\{\NEG \be \}\cup \GA $


$\mathcal {D}'$


$N_i$


$\relax \infer [(\NEG \LAND {\rm E})]{\ga }{ \NEG (\al \LAND \be ) & \infer *[{\mathcal {E}}_1]{\ga }{ [\NEG \al ] \GA } & \infer *[{\mathcal {E}}_2]{\ga }{ [\NEG \be ] \GA } }$


$\mathcal {D}'$


$\{\NEG (\al \LAND \be )\}\cup \GA $


$\mathcal {D}'$


$\ga $


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm right}).]{\SEQ {\GA }{\NEG (\al \LOR \be )}}{ \infer *[{\mathcal {D}}_1]{\SEQ {\GA }{\NEG \al }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\GA }{\NEG \be }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\NEG \al }{ \GA ^* }$


$\relax \infer *[{\mathcal {E}}_2]{\NEG \be }{ \GA ^* }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {E}}_1$


$\NEG \al $


${\mathcal {E}}_2$


$\NEG \be $


$\GA ^* \equiv \GA $


$\mathcal {D}'$


$N_i$


$\relax \infer [(\NEG \LOR {\rm I})]{\NEG (\al \LOR \be )}{ \infer *[{\mathcal {E}}_1]{\NEG \al }{ \GA } & \infer *[{\mathcal {E}}_2]{\NEG \be }{ \GA } }$


$\mathcal {D}'$


$\GA $


$\mathcal {D}'$


$\NEG (\al \LOR \be )$


$\relax \square $


$N_1$


$N_2$


$N_3$


$N_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$\al $


$i \in \{1, 2, 3, 4\}$


$S_i$


$\vdash $


$\Rightarrow \al $


$\al $


$N_i$


$\emptyset $


$\GA $


$\relax \square $


$N$


$N$


$\mathcal {D}$


$N$


$\mathcal {D}'$


$N$


$\mathcal {D}'$


$\subseteq $


$\mathcal {D}$


$\mathcal {D}'$


$=$


$\mathcal {D}$


$N_1$


$N_2$


$N_3$


$N_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$i$


$1$


$2$


$3$


$4$


$\mathcal {D}$


$N_i$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$S_i$


$\vdash $


$\GA  \Rightarrow \be $


$S_i$


$S_i$


$-$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {D}'$


$N_i$


$\mathcal {D}'$


$\subseteq $


$\mathcal {D}$


$\mathcal {D}'$


$\mathcal {D}$


$\relax \square $


$^+$


$^+$


$^+$


$^+$


$\I $


$\LAND $


$\LAND $


$\relax \infer [(\I {\rm GE})]{\ga }{ \al \I \be & \al & \infer *[]{\ga }{ [\be ] } }$


$\relax \infer [(\LAND {\rm GE}).]{\ga }{ \al \LAND \be & \infer *[]{\ga }{ [\al , \be ] } }$


$^+$


$\NEG \NEG $


$\NEG \I $


$\NEG \LOR $


$\NEG \LOR $


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \NEG \NEG \al & \infer *[]{\ga }{ [\al ] } }$


$\relax \infer [(\NEG \I {\rm GE})]{\ga }{ \NEG (\al \I \be ) & \al & \infer *[]{\ga }{ [\NEG \be ] } }$


$\relax \infer [(\NEG \LOR {\rm GE}).]{\ga }{ \NEG (\al \lor \be ) & \infer *[]{\ga }{ [\NEG \al , \NEG \be ] } }$


$\I $


$\LAND $


$\NEG \NEG $


$\NEG \I $


$\NEG \LOR $


$\ga $


$R$


$\rhd $


$\ga $


$R$


$\I $


$\ga $


$\al \I \be $


$\relax \infer [(\I {\rm GE})] {\ga }{ \infer [(\I {\rm I})] {\al \I \be }{ \infer *[{\mathcal D}] {\be }{ [\al ] } } & \infer *[{\mathcal E}_1]{\al }{ } & \infer *[{\mathcal E}_2]{\ga }{ [\be ] } }$


$\relax \infer *[{\mathcal E}_2]{\ga .}{ \infer *[{\mathcal D}]{\be }{ \infer *[{\mathcal E}_1]{\al }{ } } }$


$R$


$\LAND $


$\ga $


$\al _1\LAND \al _2$


$\relax \infer [(\LAND {\rm GE})]{\ga }{ \infer [(\LAND {\rm I})]{\al \LAND \be }{ \infer *[{\mathcal D}_1]{\al }{ } & \infer *[{\mathcal D}_2]{\be }{ } } & \infer *[{\mathcal E}]{\ga }{ [\al , \be ] } }$


$\relax \infer *[{\mathcal E}]{\ga .}{ \infer *[{\mathcal D}_1]{\al }{ } & \infer *[{\mathcal D}_2]{\be }{ } }$


$R$


$\LOR $


$\LOR $


$\ga $


$\al _1\LOR \al _2$


$R$


$\LOR $


$R$


$\NEG \NEG $


$\ga $


$\NEG \NEG \al $


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \infer [(\NEG \NEG {\rm I})]{\NEG \NEG \al }{ \infer *[\mathcal {D}]{\al }{ } } & \infer *[{\mathcal E}]{\ga }{ [\al ] } }$


$\relax \infer *[{\mathcal E}]{\ga .}{ \infer *[\mathcal {D}]{\al }{ } }$


$R$


$\NEG \I $


$\ga $


$\NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm GE})] {\ga }{ \infer [(\NEG \I {\rm I})] {\NEG (\al \I \be )}{ \infer *[{\mathcal D}] {\NEG \be }{ [\al ] } } & \infer *[{\mathcal E}_1]{\al }{ } & \infer *[{\mathcal E}_2]{\ga }{ [\NEG \be ] } }$


$\relax \infer *[{\mathcal E}_2]{\ga .}{ \infer *[{\mathcal D}]{\NEG \be }{ \infer *[{\mathcal E}_1]{\al }{ } } }$


$R$


$\NEG \LAND $


$\NEG \LAND $


$\ga $


$\NEG (\al _1\LAND \al _2)$


$R$


$\NEG \LAND $


$R$


$\NEG \LOR $


$\ga $


$\NEG (\al _1\LOR \al _2)$


$\relax \infer [(\NEG \LOR {\rm GE})]{\ga }{ \infer [(\NEG \LOR {\rm I})]{\NEG (\al \LOR \be )}{ \infer *[{\mathcal {D}}_1]{\NEG \al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } & \infer *[{\mathcal E}]{\ga }{ [\NEG \al , \NEG \be ] } }$


$\relax \infer *[{\mathcal E}]{\ga .}{ \infer *[{\mathcal {D}}_1]{\NEG \al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } }$


$\rhd $


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


$\relax \infer [R']{\de }{ \infer [({\rm EM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }$


$\relax \infer [({\rm EM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }$


$R'$


$\I $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


\begin {equation*}\infer [R']{\de }{ \infer [({\rm GEM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }\end {equation*}


\begin {equation*}\quad \quad \rhd \quad \quad \infer [({\rm GEM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }\end {equation*}


$R'$


$\I $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$G_1$


$G_2$


$G_3$


$G_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$i \in \{1, 2, 3, 4\}$


$\mathcal {D}$


$G_i$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$S_i$


$\vdash $


$\GA  \Rightarrow \be $


$S_i$


$-$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {D}'$


$G_i$


$\mathcal {D}'$


$\subseteq $


$\GA $


$\mathcal {D}'$


$=$


$\be $


$\mathcal {D}'$


$\mathcal {D}$


$G_i$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$\mathcal {D}$


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG \NEG \al }{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\al ] ~\GA _2 } }$


$\mathcal {D}$


$\GA _1\cup \GA _2$


$\mathcal {D}$


$\ga $


$\NEG \NEG $


$S_i$


$\vdash $


$\GA _2 \Rightarrow \ga $


$\relax \infer *[({\rm we})]{\SEQ {\NEG \NEG \al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _2}{\ga }}{ } }$


$S_i$


$\al $


$\NEG \NEG $


$S_i$


$\vdash $


$\al , \GA _2 \Rightarrow \ga $


$\relax \infer [(\NEG \NEG {\rm left})]{\SEQ {\NEG \NEG \al , \GA _1, \GA _2}{\ga }}{ \infer *[({\rm we})]{\SEQ {\al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\al , \GA _2}{\ga }}{ } } }$


$S_i$


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm GE})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \I \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\al }{ \GA _2 } & \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ]~\GA _3 } }$


$\mathcal {D}$


$\GA _1\cup \GA _2\cup \GA _3$


$\mathcal {D}$


$\ga $


$\NEG \I $


$S_i$


$\vdash $


$\GA _3 \Rightarrow \ga $


$\relax \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2, \GA _3}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _3}{\ga }}{ } }$


$S_i$


$\NEG \be $


$\NEG \I $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \I \be )$


$S_i$


$\vdash $


$\GA _2 \Rightarrow \al $


$S_i$


$\vdash $


$\NEG \be , \GA _3 \Rightarrow \ga $


$\relax \infer [({\rm cut}).]{\SEQ {\GA _1, \GA _2, \GA _3}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _1}{\NEG (\al \I \be )}}{ } & \infer [(\NEG \I {\rm left})]{\SEQ {\NEG (\al \I \be ), \GA _2, \GA _3}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _2}{\al }}{ } & \infer *[Ind.~hyp.]{\SEQ {\NEG \be , \GA _3}{\ga }}{ } } }$


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm GE})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LOR \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al , \NEG \be ]~\GA _2 } }$


$\mathcal {D}$


$\GA _1\cup \GA _2$


$\mathcal {D}$


$\ga $


$\NEG \LOR $


$S_i$


$\vdash $


$\GA _2 \Rightarrow \ga $


$\relax \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _2}{\ga }}{ } }$


$S_i$


$\NEG \al $


$\NEG \be $


$\NEG \LOR $


$\NEG \be $


$\NEG \LOR $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \LOR \be )$


$S_i$


$\vdash $


$\NEG \be , \GA _2 \Rightarrow \ga $


$\relax \infer [({\rm cut})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _1}{\NEG (\al \LOR \be )}}{ } & \infer [(\NEG \LOR {\rm left})]{\SEQ {\NEG (\al \LOR \be ), \GA _2}{\ga }}{ \infer [({\rm we})]{\SEQ {\NEG \al , \NEG \be , \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\NEG \be , \GA _2}{\ga }}{ } } } }$


$S_i$


$\mathcal {D}$


$\GA  \Rightarrow \be $


$S_i$


$-$


$\mathcal {D}$


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm left}).]{\SEQ {\NEG \NEG \al , \GA }{\ga }}{ \infer *[\mathcal {E}]{\SEQ {\al , \GA }{\ga }}{ } }$


$\mathcal {E'}$


$G_i$


$\relax \infer *[\mathcal {E'}]{\ga }{ (\al , \GA )^* }$


$\mathcal {E}'$


$(\{\al \} \cup \GA )^*$


$\subseteq $


$\{\al \} \cup \GA $


$\mathcal {E}'$


$\ga $


$(\{\al \} \cup \GA )^*$


$\equiv $


$\{\al \} \cup \GA $


$\mathcal {D}'$


$G_i$


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \NEG \NEG \al & \infer *[\mathcal {E'}]{\ga }{ [\al ]~\GA } }$


$\mathcal {D}'$


$\{ \NEG \NEG \al \} \cup \GA $


$\mathcal {D}'$


$\ga $


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm left}).]{\SEQ {\NEG (\al \I \be ), \GA , \DE }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\GA }{\al }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\NEG \be , \DE }{\ga }}{ } }$


${\mathcal {D}}_1'$


${\mathcal {D}}_2'$


$G_i$


$\relax \infer *[{\mathcal {D}}_1']{\al }{ \GA ^* } \quad \quad \quad \infer *[{\mathcal {D}}_2']{\ga }{ (\NEG \be , \DE )^* }$


${\mathcal {E}}_1$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {E}}_1$


$\al $


${\mathcal {E}}_2$


$(\{\NEG \be \}\cup \DE )^*$


$\subseteq $


$\{\NEG \be \}\cup \DE $


${\mathcal {E}}_2$


$\ga $


$\GA ^*$


$\equiv $


$\GA $


$(\{\NEG \be \}\cup \DE )^*$


$\equiv $


$\{\NEG \be \}\cup \DE $


$\mathcal {D}'$


$G_i$


$\relax \infer [(\NEG \I {\rm GE})]{\ga }{ \NEG (\al \I \be ) & \infer *[{\mathcal {D}}_1']{\al }{ \GA } & \infer *[{\mathcal {D}}_2']{\ga }{ [\NEG \be ]~\DE } }$


$\mathcal {D}'$


$\{\NEG (\al \I \be )\}\cup \GA \cup \DE $


$\mathcal {D}'$


$\ga $


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm left}).]{\SEQ {\NEG (\al \LOR \be ), \GA }{\ga }}{ \infer *[\mathcal {E}]{\SEQ {\NEG \al , \NEG \be , \GA }{\ga }}{ } }$


$\mathcal {E'}$


$G_i$


$\relax \infer *[\mathcal {E'}]{\ga }{ (\NEG \al , \NEG \be , \GA )^* }$


$\mathcal {E'}$


$(\{\NEG \al , \NEG \be \} \cup \GA )^*$


$\subseteq $


$\{\NEG \al , \NEG \be \} \cup \GA $


$\mathcal {E'}$


$\ga $


$(\{\NEG \al , \NEG \be \} \cup \GA )^*$


$\equiv $


$\{\NEG \al , \NEG \be \} \cup \GA $


$\mathcal {D}'$


$G_i$


$\relax \infer [(\NEG \LOR {\rm GE})]{\ga }{ \NEG (\al \LOR \be ) & \infer *[\mathcal {E'}]{\ga }{ [\NEG \al , \NEG \be ]~\GA } }$


$\mathcal {D}'$


$\{ \NEG (\al \LOR \be ) \} \cup \GA $


$\mathcal {D}'$


$\ga $


$\relax \square $


$G_1$


$G_2$


$G_3$


$G_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$\al $


$i \in \{1, 2, 3, 4\}$


$S_i$


$\vdash $


$\Rightarrow \al $


$\al $


$G_i$


$\relax \square $


$G_1$


$G_2$


$G_3$


$G_4$


$N_1$


$N_2$


$N_3$


$N_4$


$\al $


$i \in \{1, 2, 3, 4\}$


$\al $


$G_i$


$\al $


$N_i$


$\relax \square $


$G$


$G$


$\relax \square $


$\NEG \I $


$\NEG \I $


\begin {equation*}\infer [{\rm (\NEG \I left^{\star })}]{\SEQ {\NEG (\al \I \be ), \GA }{\ga }}{ \SEQ {\al , \NEG \be , \GA }{\ga } } \quad \quad \infer [{\rm (\NEG \I right^{\star })}]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \SEQ {\GA }{\al } & \SEQ {\GA }{\NEG \be } }\end {equation*}


$\NEG (\al \I \be ) \leftrightarrow \al \LAND \NEG \be $


$=$


$+$


$=$


$+$


$=$


$+$


$+$


$=$


$+$


$=$


$+$


$+$


\begin {equation*}\infer [(\mbox {\rm we-right})]{\SEQ {\GA }{\al }}{ \SEQ {\GA }{} } \quad \quad \infer [({\rm explosion}).]{\SEQ {\GA }{\ga }}{ \SEQ {\GA }{\NEG \al } & \SEQ {\GA }{\al } }\end {equation*}


$+$


$+$


$\GA  \Rightarrow \ga $


$\ga $


$+$


$\NEG \I $


$\NEG \I $


\begin {equation*}\infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \al & \NEG \be } \quad \quad \infer [(\NEG \I {\rm E1}^{\star })]{\al }{ \NEG (\al \I \be ) } \quad \quad \infer [(\NEG \I {\rm E2}^{\star })]{\NEG \be }{ \NEG (\al \I \be ) }\end {equation*}


$\NEG (\al \I \be ) \leftrightarrow \al \LAND \NEG \be $


$=$


$+$


$=$


$+$


$=$


$+$


$+$


$R$


$\NEG \I $


$\ga $


$\NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm E1^{\star }})]{\al }{ \infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } }$


$\relax \infer *[{\mathcal {D}}_1]{\al .}{ }$


$\relax \infer [(\NEG \I {\rm E2}^{\star })]{\NEG \be }{ \infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } }$


$\relax \infer *[{\mathcal {D}}_2]{\NEG \be .}{ }$


$\I $


$\LAND $


$\LAND $


$\NEG \NEG $


$\NEG \LOR $


$\NEG \LOR $


$\NEG \I $


$^{\star }$


$\NEG \I $


$^{\star }$


$\I $


$\LAND $


$\NEG \NEG $


$\NEG \LOR $


\begin {equation*}\infer [(\NEG \I {\rm GE}^{\star }).]{\ga }{ \NEG (\al \I \be ) & \infer *[]{\ga }{ [\al , \NEG \be ] } }\end {equation*}


$=$


$+$


$=$


$+$


$=$


$+$


$+$


$R$


$\NEG \I $


$\ga $


$\NEG (\al \I \be )$


\begin {equation*}\infer [(\NEG \I {\rm GE}^{\star })]{\ga }{ \infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } & \infer *[{\mathcal E}]{\ga }{ [\al , \NEG \be ] } } \quad \quad \rhd \quad \quad \infer *[{\mathcal E}]{\ga .}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } }\end {equation*}


$^*$


$^*$


$^*$


$^*$


$^*$


$^*$


$\NEG \I $


$\NEG \I $


\begin {equation*}\infer [{\rm (\NEG \I left^c)}]{\SEQ {\NEG (\al \I \be ), \GA ,\DE }{\ga }}{ \SEQ {\GA }{\NEG \al } & \SEQ {\NEG \be , \DE }{\ga } } \quad \quad \infer [{\rm (\NEG \I right^c)}]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \SEQ {\NEG \al , \GA }{\NEG \be } }\end {equation*}


$\NEG \I $


$^c$


$\NEG \I $


$^c$


$\NEG (\al \I \be ) \leftrightarrow \NEG \al \I \NEG \be $


$\CON (\al \I \be ) \leftrightarrow \CON \al \I \CON \be $


$\CON $


$\neg $


$\bot $


$^{\bot }$


$^{\bot }_3$


$^{ab}_{po}$


$^{ab}_{we}$


$^{ab}_{po}$


$^{ab}_{we}$


\begin {equation*}\infer [(\mbox {\rm po-omni})]{\SEQ {\GA }{}}{ \SEQ {\NEG \al ,\GA }{} & \SEQ {\al , \GA }{} } \quad \quad \infer [(\mbox {\rm we-neg})]{\SEQ {\GA }{\ga }}{ \SEQ {\NEG \al ,\GA }{\ga } & \SEQ {\al , \GA }{} }\end {equation*}


$\neg \neg (\NEG \al \lor \al )$


$\neg \al \I \NEG \al $


\begin {equation*}\infer [({\rm PO})]{\bot }{ \infer *[]{\bot }{ [\NEG \al ] } & \infer *[]{\bot }{ [\al ] } } \quad \quad \infer [({\rm WN}).]{\ga }{ \infer *[]{\ga }{ [\NEG \al ] } & \infer *[]{\bot }{ [\al ] } }\end {equation*}


$\neg \al $


$\neg \al := \al \I \bot $


$\bot $


$^{\bot }$


$^{\bot }_3$


$^{ab}_{po}$


$^{ab}_{wn}$


$\mathbf {K}$


$\Hi \K $


$\K $


$\Hi \K $


$\axt ,\axd ,\axiv $


$\axv $


$[t]$


$t$


$[x]P(x)$


$[f(x)]P(x)$


$\all x [f(x)]P(x)$


$K_t$


$t$


$K_t \varphi $


$t$


$\Hi \K $


$\axt ,\axd ,\axiv $


$\axv $


$\Hi \K $


$x = c \to (P(x) \to P(c))$


$\Gamma \subseteq \setof {\axt ,\axd ,\axiv ,\axv }$


$\Gamma $


$\Hi \K \Gamma $


$\Hi \K $


$\Gamma $


$\Hi \K $


$\agt $


$\obj $


$\agtobj $


$\agt $


$\obj $


$\agtobj $


$P(x)$


$x$


$\agt $


$P$


$\agtobj $


$P(x)$


$x$


$\agt $


$P$


$\agtobj $


$x$


$P$


$x = x$


$x$


$\agt $


$\obj $


$=$


$\agtobj $


$\VAR $


$\CON $


$\FUN $


$\REL $


$=$


$\tuple {\TYPE ,\preccurlyeq }$


$\TYPE $


$=$


$\setof {\agt ,\obj ,\agtobj }$


$\preccurlyeq $


$\TYPE $


$\agt \preccurlyeq \agtobj $


$\obj \preccurlyeq \agtobj $


\begin {equation*}\preccurlyeq \,\,\coloneqq \,\, \inset {\tuple {\tau ,\tau }}{\tau \in \TYPE } \cup \setof {\tuple {\agt ,\agtobj },\tuple {\obj ,\agtobj }}.\end {equation*}


$\type \colon \VAR \cup \CON \cup \FUN \cup \REL $


$\to $


$\bigcup _{n \in \N } \TYPE ^{n}$


$x$


$\type (x) \in \setof {\agt ,\obj }$


$\VAR \cap \type ^{-1}[\setof {\agt }]$


$\VAR \cap \type ^{-1}[\setof {\obj }]$


$\type ^{-1}[X]$


$X$


$c$


$\type (c) \in \setof {\agt ,\obj }$


$f$


$\type (f) \in \TYPE ^{n} \times \setof {\agt ,\obj }$


$n \in \N $


$=$


$\type (=)$


$=$


$\tuple {\agtobj ,\agtobj }$


$P$


$=$


$\type (P) \in \TYPE ^n$


$n\in \N $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$\type (x)$


$c \in \CON $


$\type (c)$


$t_1,\dots ,t_n$


$\tau _1,\dots ,\tau _n$


$f$


$\FUN $


$\type (f)$


$=$


$\tuple {\tau '_{1},\dots ,\tau '_{n},\tau '_{n+1}}$


$\tau _i \preccurlyeq \tau '_i$


$f(t_1,\dots ,t_n)$


$\tau '_{n+1}$


$\type $


$\type (f(t_{1},\dots ,t_{n}))$


$=$


$\tau $


$f(t_{1},\dots ,t_{n})$


$\tau $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$\varphi $


\begin {equation*}\varphi \Coloneqq P(t_1,\dots ,t_n) \mid \neg \varphi \mid \varphi \land \varphi \mid K_{s}\varphi \mid \all x \varphi ,\end {equation*}


$t_1,\dots ,t_n,s$


$\type (s)$


$=$


$\agt $


$P \in \REL $


$\type (P)$


$=$


$\tuple {\tau _1,\dots ,\tau _n}$


$\type (t_i) \preccurlyeq \tau _i$


$P$


$=$


$t \neq s$


$\coloneqq \neg (t=s)$


$\varphi \to \psi $


$\coloneqq $


$\neg (\varphi \land \neg \psi )$


$\some x \varphi $


$\coloneqq $


$\neg \all x \neg \varphi $


$\bot \coloneqq P \land \neg P$


$P$


$\top \coloneqq \neg \bot $


$K_{t}\varphi $


$t$


$\varphi $


$x$


$t,s$


$\varphi $


$\type (x) = \type (s)$


$s$


$\varphi $


$t(s/x)$


$\varphi (s/x)$


$s$


$x$


$t$


$\varphi $


$(K_{t}\varphi )(s/x)$


$=$


$K_{t(s/x)}\varphi (s/x)$


$t(s/x)$


$\varphi (s/x)$


$\type (x) = \type (s)$


$s$


$\varphi $


$F = \tuple {D,W,R}$


$D \coloneqq D_{\agtobj } \coloneqq D_{\agt } \sqcup D_{\obj }$


$D_{\agt }$


$D_{\obj }$


$W$


$R$


$i \in D_{\agt }$


$R_{i}$


$W$


$R \colon D_{\agt } \to \mathcal {P}(W \times W)$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$M = \tuple {D,W,R,I}$


$\tuple {D,W,R}$


$I$


$\tuple {c,w}$


$c \in \CON $


$w \in W$


$I(c,w) \in D_{\type (c)}$


$\tuple {f,w}$


$f \in \FUN $


$w \in W$


$I(f,w) \colon (D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}) \to D_{\tau _{n+1}}$


$\type (f)$


$=$


$\tuple {\tau _{1},\dots ,\tau _{n},\tau _{n+1}}$


$\tuple {=,w}$


$=$


$w \in W$


$I(=,w)$


$=$


$\inset {\tuple {d,d}}{d \in D_{\agtobj }}$


$\tuple {P,w}$


$P \in \REL \setminus \setof {=}$


$w \in W$


$I(P,w)$


$D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}$


$\type (P)$


$=$


$\tuple {\tau _1,\dots ,\tau _n}$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$\val \colon \VAR \to D$


$\val (x) \in D_{\type (x)}$


$\val [x \mapsto d]$


$\val $


$x$


$d \in D_{\type (x)}$


$\val $


$w$


$I$


$\llbracket t \rrbracket ^{I,\val }_{w}$


$t$


$\llbracket x \rrbracket ^{I,\val }_{w}$


$=$


$\val (x)$


$\llbracket c \rrbracket ^{I,\val }_{w}$


$=$


$I(c,w)$


$\llbracket f(t_{1},\dots ,f_n) \rrbracket ^{I,\val }_{w}$


$=$


$I(f,w)(\llbracket t_{1} \rrbracket ^{I,\val }_{w},\dots ,\llbracket t_{n} \rrbracket ^{I,\val }_{w})$


$M,w \models _\val \varphi $


$\varphi $


$w$


$M$


$\val $


\begin {align*}&M,w \models _\val P(t_1,\dots ,t_n) &&\text {iff} &&\tuple {\llbracket t_1 \rrbracket ^{I,\val }_{w},\dots ,\llbracket t_n \rrbracket ^{I,\val }_{w}} \in I(P,w) \quad \text {($P$ can be $=$)} \\ &M,w \models _\val \neg \varphi &&\text {iff} &&M,w \not \models _\val \varphi \\ &M,w \models _\val \varphi \land \psi &&\text {iff} &&M,w \models _\val \varphi \quad \text {and} \quad M,w \models _\val \psi \\ &M,w \models _\val \all x \varphi &&\text {iff} &&M,w \models _{\val [x \mapsto d]} \varphi \quad \text {for all $d \in D_{\type (x)}$} \\ &M,w \models _\val K_{t} \varphi &&\text {iff} &&M,w' \models _{\val } \varphi \quad \text {for all $w' \in W$ such that} \\ &\mbox {} &&\mbox {} &&\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{I,\val }_{w}}\end {align*}


$\varphi $


$\F $


$M$


$\F $


$w \in W$


$\val $


$M,w \models _{\val } \varphi $


$\varphi $


$\FF $


$\F \in \FF $


$\varphi $


$\F $


$x$


$\val $


$\val [x \mapsto d]$


$\all x \varphi $


$\tuple {W,D,R}$


$R_{i}$


$i \in D_{\agt }$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$\type (x)$


$=$


$\agt $


$\axt $


$\coloneqq $


$\all x (K_x \varphi \to \varphi )$


$\axd $


$\coloneqq $


$\all x \neg K_x \bot $


$\axiv $


$\coloneqq $


$\all x (K_x \varphi \to K_x K_x \varphi )$


$\axv $


$\coloneqq $


$\all x (\neg K_x \varphi \to K_x \neg K_x \varphi )$


$\type (x)$


$\agt $


$\#X$


$X$


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x}_n}_{y}$


$\mathsf {M}$


$\mathsf {N}$


$\axao ^{\vec {x}_n}_{y}$


$\coloneqq $


$\some x_1 \cdots x_n \big ( (\bigwedge _{i<j \leq n} x_i \neq x_j) \land \all y \bigvee _{i \leq n} y = x_i \big )$


$\#D = n$


$\axa ^{\vec {x}_n}_{y}$


$\coloneqq $


$\some x_1 \cdots x_n \big ( (\bigwedge _{i \leq n}K_{x_i} \top ) \land (\bigwedge _{i<j \leq n} x_i \neq x_j) \land \all y (K_{y} \top \to \bigvee _{i \leq n} y = x_i) \big )$


$\#D_{\agt } = n$


$x_1,\dots ,x_n,y$


$\agt $


$\axao ^{\vec {x}_n}_{y}$


$\#D_{\agt } = n$


$D_{\obj } \neq \emptyset $


$n <$


$\#D_{\agt } + \#D_{\obj }$


$=$


$\#D$


$\axao ^{\vec {x}_n}_{y}$


$|y|$


$\inset {x_i}{\type (y)=\type (x_i), 1 \leq i \leq n}$


$\overline {\tau }$


$\tau $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x_1$


$\dots $


$x_n$


$y$


$\axao ^{\vec {x}_n}_{y}$


$\#D_{\type (y)} = \#|y|$


$\#D_{\overline {\type (y)}} \geq (n-\#|y|)$


$\axao ^{\vec {x}_n}_{y}$


$\F $


$w$


$I$


$\sigma $


$\tuple {\F ,I}, w \models _{\sigma } \axao ^{\vec {x}_n}_{y}$


$d_1,\dots ,d_{\#|y|} \in D_{\type (y)}$


$d_{\#|y|+1},\dots ,d_n \in D_{\overline {\type (y)}}$


$d \in D_{\type (y)}$


$d = d_1$


$\cdots $


$d = d_{\#|y|}$


$d = d_{\#|y|+1}$


$\cdots $


$d = d_n$


$d \in D_{\type (y)}$


$d_{\#|y|+1},\dots ,d_n \in D_{\overline {\type (y)}}$


$d = d_1$


$\cdots $


$d = d_{\#|y|}$


$\#D_{\type (y)} = \#|y|$


$\#D_{\overline {\type (y)}} \geq (n-\#|y|)$


$\#D_{\type (y)} = \#|y|$


$\#D_{\overline {\type (y)}} \geq (n-\#|y|)$


$\tuple {\F ,I},w \models _{\sigma } \axao ^{\vec {x}_n}_{y}$


$I$


$w$


$\sigma $


$d_1,\dots ,d_{\#|y|} \in D_{\type (y)}$


$d_{\#|y|+1},\dots ,d_n \in D_{\overline {\type (y)}}$


$D_{\type (y)} = \setof {d_1,\dots ,d_{\#|y|}}$


$\type (x_{k_1})$


$= \cdots =$


$\type (x_{k_\#|y|})$


$=$


$\type (y)$


$\type (x_{k_{\#|y|+1}})$


$= \cdots =$


$\type (x_{k_n})$


$=$


$\overline {\type (y)}$


$x_{k_1},\dots ,x_{k_n}$


$x_1,\dots ,x_n$


$\sigma '$


$=$


$\sigma [x_{k_1} \mapsto d_1] \cdots [x_{k_n} \mapsto d_n]$


$\sigma ''$


$=$


$\sigma [x_1 \mapsto \sigma '(x_1)] \cdots [x_n \mapsto \sigma '(x_n)]$


$\tuple {\F ,I}, w \models _{\sigma ''} \bigwedge _{i<j \leq n} x_i \neq x_j$


$\tuple {\F ,I}, w \models _{\sigma ''} \all y \bigvee _{i \leq \#|y|} y = x_{k_i}$


$\tuple {\F ,I}, w \models _{\sigma ''} \all y \bigvee _{i \leq n} y = x_i$


$\tuple {\F ,I},w \models _{\sigma } \axao ^{\vec {x}_n}_{y}$


$\relax \square $


$\axa ^{\vec {x}_n}_{y}$


$\Sigma $


$x_1,\dots ,x_n$


$\agt $


$\Sigma $


$\axa ^{\vec {x}_n}_{y}$


$\axao ^{\vec {x}_n}_{y}$


$\#D_{\agt } = n$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x_1$


$\dots $


$x_n$


$y$


$\type (x_1) = \dots = \type (x_n) = \type (y) = \agt $


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x}_n}_{y}$


$\#D_{\agt } = n$


$\axa ^{\vec {x}_n}_{y}$


$\axao ^{\vec {x}_n}_{y}$


$\type (x_1)$


$= \cdots =$


$\type (x_n)$


$=$


$\type (y)$


$=$


$\agt $


$\Hi \K $


$\K $


$\Hi \K $


$\Hi \K $


$\K $


$\ue $


$\all x\varphi \to \varphi (y/x)$


$\axk $


$K_{t}(\varphi \to \psi )\to (K_{t}\varphi \to K_{t}\psi )$


$\id $


$t=t$


$\barcan ^{\dagger }$


$\all xK_{t}\varphi \to K_{t}\all x\varphi $


$\ps $


$x=y\to (\varphi (x/z)\to \varphi (y/z))$


$\kni $


$x\neq y\to K_{t}x\neq y$


$\eid $


$c=c\to \some x(x=c)$


$\dd $


$x\neq y$


$\type (x)\neq \type (y)$


$\rmp $


$\varphi $


$\varphi \to \psi $


$\psi $


$\rkg $


$\varphi $


$K_{t}\varphi $


$\rug ^{\ddagger }$


$\varphi \to \psi $


$\varphi \to \all x\psi $


$\dagger $


$x$


$t$


$\ddagger $


$x$


$\varphi $


$\AX = \setof {\axt ,\axd ,\axiv ,\axv }$


$\Gamma \subseteq \AX $


$\Hi \K \Gamma $


$\Hi \K $


$\Gamma $


$\Hi \K \Gamma $


$\Hi \K \AX $


$\Hi \SV \coloneqq \Hi \K \setof {\axt ,\axv }$


$\Hi \K \Gamma $


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x'}_{n'}}_{y'}$


$n,n' \geq 1$


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x'}_{n'}}_{y'}$


$\Hi \K \Gamma $


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x'}_{n'}}_{y'}$


$\Hi \K \Gamma \cup \setof {\axao ^{\vec {x}_n}_{y},\axa ^{\vec {x'}_{n'}}_{y'}}$


$\type (y)$


$=$


$\type (y')$


$\#|y| = \#|y'|$


$\type (y)$


$\neq $


$\type (y')$


$\#|y| \geq (n'-\#|y'|)$


$\#|y'| \geq (n-\#|y|)$


$\AX $


$\ue $


$\ps $


$\Hi \K \Gamma $


$\all x \varphi \to \varphi (t/x)$


$t = s \to (\varphi (t/z) \to \varphi (s/z))$


$\ue $


$\ps $


$\ue $


$\ps $


$x = c \to (P(x) \to P(c))$


$\Gamma \subseteq \AX $


$\Hi \K \Gamma $


$x = c \to (P(x) \to P(c))$


$\Gamma $


$\Hi \K \Gamma $


$\Gamma $


$x = c \to (P(x) \to P(c))$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$c \in \CON $


$P \in \REL $


$\type (P)$


$=$


$\tuple {\agtobj }$


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\Hi \K \Gamma $


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\Hi \SV $


$x = c \to (P(x) \to P(c))$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$N = \tuple {D,W,R,J}$


$\tuple {D,W,R}$


$J$


$\tuple {c,w,X}$


$c \in \CON $


$w \in W$


$X \subseteq D^{n}$


$n \in \N $


$J(c,w,X) \in D_{\type (c)}$


$\tuple {f,w,X}$


$f \in \FUN $


$w \in W$


$X \subseteq D^{n}$


$n \in \N $


$J(f,w,X) \colon (D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}) \to D_{\tau _{n+1}}$


$\type (f)$


$=$


$\tuple {\tau _{1},\dots ,\tau _{n+1}}$


$\tuple {=,w}$


$=$


$w \in W$


$J(=,w)$


$=$


$\inset {\tuple {d,d}}{d \in D_{\agtobj }}$


$\tuple {P,w}$


$P \in \REL \setminus \setof {=}$


$w \in W$


$J(P,w)$


$D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}$


$\type (P)$


$=$


$\tuple {\tau _1,\dots ,\tau _n}$


$X$


$D^n$


$X$


$J(c,w,X)$


$J(f,w,X)$


$c$


$f$


$\llbracket t \rrbracket ^{J,\val }_{w,X}$


$t$


$\llbracket x \rrbracket ^{J,\val }_{w,X}$


$=$


$\val (x)$


$\llbracket c \rrbracket ^{J,\val }_{w,X}$


$=$


$J(c,w,X)$


$\llbracket f(t_1,\dots ,t_n) \rrbracket ^{J,\val }_{w,X}$


$=$


$J(f,w,X)(\llbracket t_1 \rrbracket ^{J,\val }_{w,X},\dots ,\llbracket t_n \rrbracket ^{J,\val }_{w,X})$


$N,w \models _\val \varphi $


$\varphi $


$w$


$N$


$\val $


\begin {align*}&N,w \models _\val P(t_1,\dots ,t_n) &&\text {iff} &&\tuple {\llbracket t_1 \rrbracket ^{J,\val }_{w,J(P,w)},\dots ,\llbracket t_n \rrbracket ^{J,\val }_{w,J(P,w)}} \in J(P,w) \\ &\mbox {} &&\mbox {} &&\text {($P$ can be $=$)} \\ &N,w \models _\val \neg \varphi &&\text {iff} &&N,w \not \models _\val \varphi \\ &N,w \models _\val \varphi \land \psi &&\text {iff} &&N,w \models _\val \varphi \quad \text {and} \quad N,w \models _\val \psi \\ &N,w \models _\val \all x \varphi &&\text {iff} &&N,w \models _{\val [x \mapsto d]} \varphi \quad \text {for all $d \in D_{\type (x)}$} \\ &N,w \models _\val K_{t} \varphi &&\text {iff} &&N,w' \models _{\val } \varphi \quad \text {for all $w' \in W$ such that} \\ &\mbox {} &&\mbox {} &&\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }}\end {align*}


$P(t_{1},\dots ,t_{n})$


$K_{t}\varphi $


$P(t_{1},\dots ,t_{n})$


$\llbracket t_{i} \rrbracket ^{J,\val }_{w,J(P,w)}$


$t_{i}$


$P(t_{1},\dots ,t_{n})$


$J$


$\val $


$w$


$J(P,w)$


$P$


$t_{1},\dots ,t_{n}$


$c$


$P(c)$


$c$


$Q(c)$


$lewis\! \in \! \CON $


$\type (lewis)\! =\! \agt $


$SL,CF\! \in \! \REL $


$\type (SL)\! =\! \type (CF)\! =\! \tuple {\agt }$


$J(SL,w)\!=\!\{i \in D_{\agt } \,|\, \text {$i$ is one of the authors of \textit {Symbolic Logic}} \}$


$J(CF,w)\linebreak =\inset {i \in D_{\agt }}{\text {$i$ is the author of \textit {Counterfactuals}}}$


$J(lewis,w,J(SL,w))$


$J(lewis,w,J(CF,w))$


$J(lewis,w,J(SL,w))$


$lewis$


$SL(lewis)$


$J(lewis,w,J(CF,w))$


$lewis$


$CF(lewis)$


$J(lewis,w,J(SL,w)) \in J(SL,w)$


$J(lewis,w,J(SL,w))$


$J(lewis,w,J(SL,w)) \notin J(SL,w)$


$\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }$


$t$


$K_t$


$K_{t}\varphi $


$K_{t}\varphi $


$\axk $


$\barcan $


$x = c \to (P(x) \to P(c))$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$c \in \CON $


$\type (x) = \type (c)$


$P \in \REL $


$\type (P)$


$=$


$\tuple {\agtobj }$


$x = c \to (P(x) \to P(c))$


$\type (x) = \type (c) = \agt $


$N = \tuple {D,W,R,J}$


$w \in W$


$R_{i}$


$i \in D_{\agt }$


$D_{\agt }$


$=$


$\setof {\alpha ,\beta }$


$J(c,w,\{\,\tuple {d,d}\,\mid $


$d \in D_{\agtobj }\,\})$


$=$


$\alpha $


$J(c,w,\setof {\alpha })$


$=$


$\beta $


$J(P,w)$


$=$


$\setof {\alpha }$


$\val $


$\val (x) = \alpha $


$\llbracket x \rrbracket ^{J,\val }_{w,J(=,w)}$


$=$


$\val (x)$


$=$


$\alpha $


$=$


$J(c,w,\{\,\tuple {d,d}\,\mid d \in D_{\agtobj }\,\})$


$=$


$J(c,w,J(=,w))$


$=$


$\llbracket c \rrbracket ^{J,\val }_{w,J(=,w)}$


$N,w \models _\val x = c$


$N,w \models _\val P(x)$


$\llbracket c \rrbracket ^{J,\val }_{w,J(P,w)}$


$=$


$J(c,w,J(P,w))$


$=$


$J(c,w,\setof {\alpha })$


$=$


$\beta $


$N,w \models _\val P(c)$


$x=c \to (P(x) \to P(c))$


$\relax \square $


$\Hi \SV $


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x,y \in \VAR $


$\type (x) = \type (y)$


$\tuple {D,W,R,J}$


$w$


$X$


$D^n$


$n \in \N $


$\val $


$t$


\begin {equation*}\llbracket t(y/x) \rrbracket ^{J,\val }_{w,X} \quad = \quad \llbracket t \rrbracket ^{J,\val [x \mapsto \val (y)]}_{w,X}.\end {equation*}


$\relax \square $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x,y \in \VAR $


$\type (x) = \type (y)$


$N$


$=$


$\tuple {D,W,R,J}$


$w$


$\val $


$\varphi $


\begin {equation*}N,w \models _{\val } \varphi (y/x) \quad \text {iff} \quad N,w \models _{\val [x \mapsto \val (y)]} \varphi .\end {equation*}


$\relax \square $


$\varphi $


$\Hi \SV $


$\varphi $


$\Hi \SV $


$\neg $


$\land $


$\ue $


$\all x \varphi \to \varphi (y/x)$


$N,w \models _\val \all x \varphi $


$N,w \models _{\val [x \mapsto \val (y)]} \varphi $


$N,w \models _\val \varphi (y/x)$


$\id $


$t=t$


$\ps $


$x=y \to (\varphi (x/z) \to \varphi (y/z))$


$\varphi $


$\varphi $


$P(t_1,\dots ,t_n)$


$N,w \models _\val x = y$


$N,w \models _\val P(t_1,\dots ,t_n)(x/z)$


\begin {equation*}\tuple {\llbracket t_1(x/z) \rrbracket ^{J,\val }_{w,J(P,w)},\dots ,\llbracket t_n(x/z) \rrbracket ^{J,\val }_{w,J(P,w)}} \in J(P,w),\end {equation*}


$\val (x) = \val (y)$


\begin {equation*}\tuple {\llbracket t_1(y/z) \rrbracket ^{J,\val }_{w,J(P,w)},\dots ,\llbracket t_n(y/z) \rrbracket ^{J,\val }_{w,J(P,w)}} \in J(P,w).\end {equation*}


$N,w \models _\val P(t_1,\dots ,t_n)(y/z)$


$\varphi $


$\neg \psi $


$\psi \land \gamma $


$\varphi $


$\all z' \psi $


$z' \neq x$


$z' \neq y$


$x,y$


$\varphi $


$\varphi (x/z)$


$\varphi (y/z)$


$N,w \models _\val x = y$


$N,w \models _\val (\all z' \psi )(x/z)$


$z' = z$


$N,w \models _\val (\all z' \psi )(y/z)$


$z' \neq z$


$N,w \models _\val \all z' \psi (x/z)$


$N,w \models _{\val [z' \mapsto d]} \psi (x/z)$


$d \in D_{\type (z')}$


$N,w \models _{\val [z' \mapsto d]} x = y$


$d \in D_{\type (z')}$


$N,w \models _{\val [z' \mapsto d]} \psi (y/z)$


$d \in D_{\type (z')}$


$N,w \models _\val (\all z' \psi )(y/z)$


$\varphi $


$K_{t}\psi $


$N,w \models _\val x = y$


$N,w \models _\val (K_{t}\psi )(x/z)$


$N,w' \models _\val \psi (x/z)$


$w' \in W$


$\tuple {w,w'} \in R_{\llbracket t(x/z) \rrbracket ^{J,\val }_{w,\emptyset }}$


$N,w' \models _{\val } x = y$


$w' \in W$


$\llbracket t(x/z) \rrbracket ^{J,\val }_{w,\emptyset }$


$=$


$\llbracket t(y/z) \rrbracket ^{J,\val }_{w,\emptyset }$


$\val (x)$


$=$


$\val (y)$


$N,w' \models _\val \psi (y/z)$


$w' \in W$


$\tuple {w,w'} \in R_{\llbracket t(y/z) \rrbracket ^{J,\val }_{w,\emptyset }}$


$N,w \models _\val (K_t \psi )(y/z)$


$\eid $


$c=c \to \some x (x = c)$


$N,w \models _{\val [x \mapsto J(c,w,J(=,w))]} x = c$


$N,w \models _\val \some x (x=c)$


$N,w \models _\val c = c \to \some x (x=c)$


$\dd $


$x \neq y$


$\type (x) \neq \type (y)$


$\type (x) \neq \type (y)$


$N$


$w$


$\val $


$\val (x)$


$\val (y)$


$D_{\type (x)}$


$D_{\type (y)}$


$\type (x) \neq \type (y)$


$D_{\type (x)}$


$D_{\type (y)}$


$N,w \models _\val x \neq y$


$\axk $


$K_{t}(\varphi \to \psi ) \to (K_{t}\varphi \to K_{t}\psi )$


$N,w \models _\val K_{t}(\varphi \to \psi )$


$N,w \models _\val K_{t}\varphi $


$w'$


$\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }}$


$N,w' \models _\val \varphi \to \psi $


$N,w' \models _\val \varphi $


$N,w' \models _\val \psi $


$\barcan $


$\all x K_{t}\varphi \to K_{t} \all x \varphi $


$x$


$t$


$N,w \models _\val \all x K_{t}\varphi $


$N,w \models _{\val } K_{t} \all x \varphi $


$w'$


$\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }}$


$d \in D_{\type (x)}$


$N,w \models _{\val [x \mapsto d]} K_{t} \varphi $


$\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }$


$=$


$\llbracket t \rrbracket ^{J,\val [x \mapsto d]}_{w,\emptyset }$


$x$


$t$


$\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val [x \mapsto d]}_{w,\emptyset }}$


$N,w' \models _{\val [x \mapsto d]} \varphi $


$\kni $


$x \neq y \to K_{t} x \neq y$


$N,w \models _\val x \neq y$


$N,w' \models _\val x \neq y$


$w'$


$N,w \models K_{t} x \neq y$


$\axt $


$\all x (K_x \varphi \to \varphi )$


$N,w \models _{\sigma [x \mapsto d]} K_x \varphi $


$d \in D_{\type (x)}$


$\tuple {w,w} \in R_{\sigma [x \mapsto d](x)}$


$N$


$N,w \models _{\sigma [x \mapsto d]} \varphi $


$\axv $


$\all x (\neg K_x \varphi \to K_x \neg K_x \varphi )$


$N,w \models _{\sigma [x \mapsto d]} \neg K_x \varphi $


$d \in D_{\type (x)}$


$N,w \models _{\sigma [x \mapsto d]} K_x \neg K_x \varphi $


$N,v \models _{\sigma [x \mapsto d]} \neg K_x \varphi $


$v$


$\tuple {w,v} \in R_{\sigma [x \mapsto d](x)}$


$u$


$\tuple {w,u} \in R_{\sigma [x \mapsto d](x)}$


$N,u \not \models _{\sigma [x \mapsto d]} \varphi $


$\tuple {v,u} \in R_{\sigma [x \mapsto d](x)}$


$N$


$N,v \models _{\sigma [x \mapsto d]} \neg K_x \varphi $


$\relax \square $


$\Sigma = \tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$c \in \CON $


$\type (x) = \type (c)$


$P \in \REL $


$\type (P)$


$=$


$\tuple {\agtobj }$


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\relax \square $


$\Hi \K \Gamma $


$\Hi \K \Gamma $


$\Gamma \subseteq \AX $


$\Hi \K \Gamma $


$\Gamma $


$\varphi $


$\varphi $


$\Gamma $


$\Hi \K \Gamma $


$x = c \to (P(x) \to P(c))$


$\Gamma $


$x = c \to (P(x) \to P(c))$


$\Hi \K \Gamma $


$\relax \square $


$\Hi \K $


$\Gamma \subseteq \AX $


$=$


$\setof {\axt ,\axd ,\axiv ,\axv }$


$\Hi \K \Gamma $


$\K \Gamma $


$\Gamma $


$\axao ^{\vec {x}_n}_{y}$


$\Hi \K \setof {\axao ^{\vec {x}_n}_{y},\axa ^{\vec {x'}_{n'}}_{y'}}$


$n' < n$


$\type (x'_1)$


$= \cdots =$


$\type (x'_{n'})$


$=$


$\type (y')$


$=$


$\agt $


$\FF $


$\setof {\axao ^{\vec {x}_n}_{y},\axa ^{\vec {x'}_{n'}}_{y'}}$


$D_{\obj }$


$\FF $


$\type (x_1)$


$= \cdots =$


$\type (x_{n'})$


$=$


$\type (y)$


$=$


$\agt $


$\type (x_{n'+1})$


$= \cdots =$


$\type (x_{n})$


$=$


$\obj $


$\FF $


$\#D_{\agt } = n'$


$\#D_{\obj } \geq (n-n')$


$\FF $


$D_{\obj }$


$x=c \to (P(x) \to P(c))$


$\Hi \K \Gamma $


$\LAN $


$\Box $


$\LAN $


$\Hi \K \Gamma $


$\LAN $


$A(t/x) \to \some x A$


$t = s \to (A(t/z) \oto A(s/z))$


$t,s$


$A$


$K_{a}$


$\K $


$J(P,w)$


$J(c,w,J(P,w))$


$c$


$w$


$_{\omega }$


$_{\omega }^{\rm \footnotesize U}$


$_{\omega }^{\rm \footnotesize U}$


$_{\omega }$


$_{\omega }$


$\omega $


$_{\omega }$


$\omega $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{ND}$


$_{ND}$


$i : \alpha $


$\X $


$\G $


$_{ND}$


$_{\omega }$


$_{\omega }$


$_{\omega }$


\begin {equation*}\infer [(\mbox {\rm ex-middle})]{\SEQ {\GA }{\ga }}{ \SEQ {\X ^i\neg \al , \GA }{\ga } & \SEQ {\X ^i\al , \GA }{\ga } }\end {equation*}


$\X ^i$


$i$


$\al \LOR \neg \al $


$\al $


$\X ^i$


$_{\omega }$


$_{\omega }$


$_{\omega }$


\begin {equation*}\infer [({\rm EXM})]{\ga }{ \infer *[]{\ga }{ [\X ^i\neg \al ] } & \infer *[]{\ga }{ [\X ^i\al ] } } \quad \infer [({\rm EXP})]{\ga }{ \X ^i\neg \al & \X ^i\al } \quad \infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[]{\X ^j\neg \ga }{ [\X ^i\al ] } & \infer *[]{\X ^j\ga }{ [\X ^i\al ] } }\end {equation*}


$\neg $


$_{\omega }$


$\neg $


$_{\omega }$


$_{\omega }$


$^{\star }$


$^{st}$


$^{\star }$


$\neg $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\I $


$\neg $


$\LAND $


$\LOR $


$\G $


$\F $


$\X $


$p, q, ...$


$\al , \be ,...$


$\GA , \DE ,...$


$_{\omega }$


$_{\omega }$


$\M \in \{\G , \F , \X \}$


$\GA $


$\M \GA $


$\{ \M \ga ~|~ \ga \in \GA \}$


$\equiv $


$\omega $


$\X ^i \al $


$i \in \omega $


$\X ^0\al \equiv \al $


$\X ^{n+1}\al \equiv \X ^n \X \al $


$i, j$


$k$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\GA  \Rightarrow \DE $


$_{\omega }$


$\GA  \Rightarrow \ga $


$\ga $


$L \vdash S$


$S$


$L$


$R$


$L$


$\frac {S_1 \cdots S_n}{S}$


$R$


$L \vdash S_i$


$i$


$L \vdash S$


$\D $


$ht(\D )$


$\Gm \Seq \Dlt $


$\X ^i p$


$\Gm $


$\Dlt $


$0$


$\Gm \Seq \Dlt $


$\D _n$


$\alpha _n$


$\Gm _n \Seq \Dlt _n$


\begin {align*}\infer [R] {\Gm \Seq \Dlt } { & \dots & \Gm _n \Seq \Dlt _n & \dots & }\end {align*}


\begin {align*}\infer [R] {\Gm \Seq \Dlt } { & \dots & \infer [] {\Gm _n \Seq \Dlt _n} {\D _n} & \dots }\end {align*}


$sup_{n}(\alpha _n) + 1$


$\Gm \Seq \Dlt $


$\D $


$ht(\D )$


$\D '$


$\D $


$ht(\D ') < ht(\D )$


$R$


$\frac {S_1 \cdots S_n}{S}$


$L$


$n$


$R$


$L$


$S_1, \cdots , S_n$


$S$


$L$


$_{\omega }$


$_{\omega }$


$i$


$k$


$i, k \in \omega $


$_{\omega }$


$p$


\begin {equation*}\SEQ {\X ^i p}{\X ^i p}~{\rm (init)}\end {equation*}


$_{\omega }$


\begin {equation*}\infer [({\rm cut})]{\SEQ {\GA ,\SI }{\DE ,\PI }}{ \SEQ {\GA }{\DE ,\al } & \SEQ {\al ,\SI }{\PI } }\end {equation*}


\begin {equation*}\infer [(\mbox {\rm we-left})]{\SEQ {\al ,\GA }{\DE }}{ \SEQ {\GA }{\DE } } \quad \infer [(\mbox {\rm we-right})]{\SEQ {\GA }{\DE ,\al }}{ \SEQ {\GA }{\DE } }\end {equation*}


\begin {equation*}\infer [(\mbox {\rm co-left})]{\SEQ {\al ,\GA }{\DE }}{ \SEQ {\al , \al , \GA }{\DE } } \quad \infer [(\mbox {\rm co-right}).]{\SEQ {\GA }{\DE ,\al }}{ \SEQ {\GA }{\DE , \al , \al } }\end {equation*}


$_{\omega }$


\begin {equation*}\infer [(\I {\rm left})]{\SEQ {\X ^i(\al \I \be ), \GA }{\DE }}{ \SEQ {\GA }{\DE , \X ^i\al } & \SEQ {\X ^i\be , \GA }{\DE } } \quad \infer [(\I {\rm right})]{\SEQ {\GA }{\DE , \X ^i(\al \I \be )}}{ \SEQ {\X ^i\al , \GA }{\DE , \X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\neg {\rm left})]{\SEQ {\X ^i\neg \al , \GA }{\DE }}{ \SEQ {\GA }{\DE , \X ^i\al } } \quad \infer [(\neg {\rm right})]{\SEQ {\GA }{\DE , \X ^i\neg \al }}{ \SEQ {\X ^i\al , \GA }{\DE } }\end {equation*}


\begin {equation*}\infer [(\LAND {\rm left})]{\SEQ {\X ^i(\al \LAND \be ), \GA }{\DE }}{ \SEQ {\X ^i\al , \X ^i\be , \GA }{\DE } } \quad \infer [(\LAND {\rm right})]{\SEQ {\GA }{\DE , \X ^i(\al \LAND \be )}}{ \SEQ {\GA }{\DE , \X ^i\al } & \SEQ {\GA }{\DE , \X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\LOR {\rm left})]{\SEQ {\X ^i(\al \LOR \be ), \GA }{\DE }}{ \SEQ {\X ^i\al , \GA }{\DE } & \SEQ {\X ^i\be , \GA }{\DE } } \quad \infer [(\LOR {\rm right})]{\SEQ {\GA }{\DE , \X ^i(\al \LOR \be )}}{ \SEQ {\GA }{\DE , \X ^i\al , \X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\G {\rm left})]{\SEQ {\X ^i \G \al , \GA }{\DE }}{ \SEQ {\X ^{i+k} \al , \GA }{\DE } } \quad \infer [(\G {\rm right})]{\SEQ {\GA }{\DE , \X ^i \G \al }}{ \{~ \SEQ {\GA }{\DE , \X ^{i+j} \al }~ \}_{j \in \omega } }\end {equation*}


\begin {equation*}\infer [(\F {\rm left})]{\SEQ {\X ^i \F \al , \GA }{\DE }}{ \{~ \SEQ {\X ^{i+j} \al , \GA }{\DE }~ \}_{j \in \omega } } \quad \infer [(\F {\rm right}).]{\SEQ {\GA }{\DE , \X ^i \F \al }}{ \SEQ {\GA }{\DE , \X ^{i+k} \al } }\end {equation*}


$_{\omega }$


$\G $


$\F $


\begin {align*}\infer [(\G {\rm right})]{\SEQ {\GA }{\DE , \X ^i \G \al }}{ \{~ \SEQ {\GA }{\DE , \X ^{i+j} \al }~\!|~\!j\! \in \! \omega ~\} } \quad \infer [(\F {\rm left}).]{\SEQ {\X ^i \F \al , \GA }{\DE }}{ \{~ \SEQ {\X ^{i+j} \al , \GA }{\DE }~\!|~\!j\! \in \! \omega ~\} }\end {align*}


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\omega $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$i$


$k$


$\ga $


$_{\omega }$


$p$


\begin {equation*}\SEQ {\X ^i p, \GA }{\X ^i p}~{\rm (init)}. \footnote { The context $\GA $ is required in (init), which distinguishes it from LT$_{\omega }$. }\end {equation*}


$_{\omega }$


$_{\omega }$


\begin {equation*}\infer [(\mbox {\rm we-right}).]{\SEQ {\GA }{\al }}{ \SEQ {\GA }{} }\end {equation*}


$_{\omega }$


\begin {equation*}\infer [(\I {\rm left})]{\SEQ {\X ^i(\al \I \be ),\GA }{\ga }}{ \SEQ {\X ^i(\al \I \be ),\GA }{\X ^i\al } & \SEQ {\X ^i\be , \GA }{\ga } } \quad \infer [(\I {\rm right})]{\SEQ {\GA }{\X ^i(\al \I \be )}}{ \SEQ {\X ^i\al , \GA }{\X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\neg {\rm left})]{\SEQ {\X ^i\neg \al , \GA }{}}{ \SEQ {\X ^i\neg \al ,\GA }{\X ^i\al } } \quad \infer [(\neg {\rm right})]{\SEQ {\GA }{\X ^i\neg \al }}{ \SEQ {\X ^i\al , \GA }{} }\end {equation*}


\begin {equation*}\infer [(\mbox {\rm ex-middle})]{\SEQ {\GA }{\ga }}{ \SEQ {\X ^i\neg \al , \GA }{\ga } & \SEQ {\X ^i\al , \GA }{\ga } }\end {equation*}


\begin {equation*}\infer [(\land {\rm left})]{\SEQ {\X ^i(\al \land \be ), \GA }{\ga }}{ \SEQ {\X ^i\al , \X ^i\be , \GA }{\ga } } \quad \infer [(\land {\rm right})]{\SEQ {\GA }{\X ^i(\al \land \be )}}{ \SEQ {\GA }{\X ^i\al } & \SEQ {\GA }{\X ^i\be } }\end {equation*}


\begin {equation*}\infer [( \lor {\rm left})]{\SEQ {\X ^i(\al \lor \be ),\GA }{\ga }}{ \SEQ {\X ^i\al , \GA }{\ga } & \SEQ {\X ^i\be , \GA }{\ga } }\end {equation*}


\begin {equation*}\infer [(\lor {\rm right1})]{\SEQ {\GA }{\X ^i(\al \lor \be )}}{ \SEQ {\GA }{\X ^i\al } } \quad \infer [(\lor {\rm right2})]{\SEQ {\GA }{\X ^i(\al \lor \be )}}{ \SEQ {\GA }{\X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\G {\rm left})]{\SEQ {\X ^i \G \al , \GA }{\ga }}{ \SEQ {\X ^i \G \al ,\X ^{i+k} \al , \GA }{\ga } } \quad \infer [(\G {\rm right})]{\SEQ {\GA }{\X ^i \G \al }}{ \{~ \SEQ {\GA }{\X ^{i+j} \al }~ \}_{j \in \omega } }\end {equation*}


\begin {equation*}\infer [(\F {\rm left})]{\SEQ {\X ^i \F \al , \GA }{\ga }}{ \{~ \SEQ {\X ^{i+j} \al , \GA }{\ga }~ \}_{j \in \omega } } \quad \infer [(\F {\rm right}).]{\SEQ {\GA }{\X ^i \F \al }}{ \SEQ {\GA }{\X ^{i+k} \al } }\end {equation*}


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


\begin {align*}\infer [(\mbox {\rm ex-middle-at})]{\SEQ {\GA }{\ga }}{ \SEQ {\neg p,\GA }{\ga } & \SEQ {p, \GA }{\ga } }\end {align*}


$p$


$L$


$_{\omega }$


$_{\omega }$


$\X ^i\al , \GA  \Rightarrow \X ^i\al $


$\al $


$\GA $


$i$


$L$


$\al $


$\al \equiv \neg \be $


\begin {align*}\infer [(\neg {\rm right}).]{\SEQ {\X ^i\neg \be , \GA }{\X ^i\neg \be }}{ \infer [(\neg {\rm left})]{\SEQ {\X ^i\be , \X ^i\neg \be , \GA }{}}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\neg \be , \X ^i\be , \GA }{\X ^i\be }}{ } } }\end {align*}


$\al \equiv \be \I \ga $


\begin {align*}\infer [(\I {\rm right}).]{\SEQ {\X ^i(\be \I \ga ), \GA }{\X ^i(\be \I \ga )}}{ \infer [(\I {\rm left})]{\SEQ {\X ^i\be , \X ^i(\be \I \ga ), \GA }{\X ^i\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i(\be \I \ga ), \X ^i\be }{\X ^i\be }}{ } & \infer *[Ind.\, hyp.]{\SEQ {\X ^i\ga , \GA }{\X ^i\ga }}{ } } }\end {align*}


$\al \equiv \G \be $


\begin {align*}\infer [(\G {\rm right}).]{\SEQ {\X ^i\G \be , \GA }{\X ^i\G \be }}{ \infer [(\G {\rm left})]{\SEQ {\{~\X ^i\G \be , \GA }{\X ^{i+j}}~\}_{j\in \omega }}{ \infer *[Ind.\, hyp.]{\{~\SEQ {\X ^i\G \be , \X ^{i+j}\be , \GA }{\X ^{i+j}\be }~\}_{j\in \omega }}{ } } }\end {align*}


$\relax \square $


\begin {equation*}\infer [(\mbox {\rm we-left})]{\SEQ {\al ,\GA }{\ga }}{ \SEQ {\GA }{\ga } }\end {equation*}


$_{\omega }$


$\relax \square $


$_{\omega }$


$(\I {\rm left})$


$(\lor {\rm right1})$


$(\lor {\rm right2})$


$(\F {\rm right})$


$(\I {\rm left})$


$\I {\rm left}$


$\vdash _0$


$X^i(\al \I \be ),\Gamma  \Rightarrow \gamma $


$\gamma \in \Gamma $


$\gamma $


$X^jp$


$\vdash _0$


$X^i(\al \I \be ),X^jp,\Gamma ' \Rightarrow X^jp$


$X^i\be ,X^jp,\Gamma ' \Rightarrow X^jp$


$\vdash _0$


$X^i\be ,\Gamma  \Rightarrow \gamma $


$n$


$n+1$


$(\I {\rm left})$


$X^i(\al \I \be )$


$\I {\rm left}$


$\vdash _{n+1}$


$X^i(\al \I \be ),X^j(\epsilon \I \delta ),\Gamma ' \Rightarrow \gamma $


$\vdash _{n}$


$X^i(\al \I \be ),\Gamma ' \Rightarrow X^j\epsilon $


$\vdash _{n}$


$X^i(\al \I \be ),X^j\delta ,\Gamma ' \Rightarrow \gamma $


$\vdash _{n}$


$X^i\be ,\Gamma ' \Rightarrow X^j\epsilon $


$\vdash _{n}$


$X^i\be ,X^j\delta ,\Gamma ' \Rightarrow \gamma $


$\I {\rm left}$


$\vdash _{n+1}$


$X^i\be ,X^j(\epsilon \I \delta ),\Gamma ' \Rightarrow \gamma $


$\relax \square $


\begin {equation*}\infer [(\mbox {\rm co-left})]{\SEQ {\al ,\GA }{\ga }}{ \SEQ {\al , \al , \GA }{\ga } }\end {equation*}


$_{\omega }$


$n+1$


$n$


$\al , \al , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\al , \al , \GA  \Rightarrow $


$\vdash _{n}$


$\al , \GA  \Rightarrow $


$\vdash _{n+1}$


$\al , \GA  \Rightarrow \ga $


$\al , \al , \GA  \Rightarrow \ga $


$\al , \al , \GA  \Rightarrow \ga $


$\al $


$\I {\rm left}$


$(\I {\rm left})$


$(\neg {\rm left})$


$\G {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \lor \be ),\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\al ,\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be ,\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\lor {\rm left}$


$\vdash _{n}$


$\X ^i\al ,\X ^i\al , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be ,\X ^i\be , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\al , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be , \GA  \Rightarrow \ga $


$\lor {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\I {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \I \be ),\X ^i(\al \I \be ), \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i(\al \I \be ),\X ^i(\al \I \be ), \GA  \Rightarrow \X ^i\al $


$\vdash _{n}$


$\X ^i(\al \I \be ),\X ^i\be , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i(\al \I \be ), \GA  \Rightarrow \X ^i\al $


$\I {\rm left}$


$\vdash _{n}$


$\X ^i\be ,\X ^i\be , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be , \GA  \Rightarrow \ga $


$\I {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \I \be ), \GA  \Rightarrow \ga $


$\relax \square $


$\alpha \# \beta $


$\alpha $


$\beta $


$\#$


$\alpha < \alpha '$


$\alpha \# \beta < \alpha ' \# \beta $


$\pi (I)$


$I$


$\D $


$\D '$


$d(A)$


$h(\D ) \# h(\D ')$


$(\delta , \sigma )$


$\delta \cdot \epsilon _0 + \sigma $


$\epsilon _0$


$\sigma $


\begin {align*}\infer [({\rm cut})]{\SEQ {\GA ,\SI }{\ga }}{ \SEQ {\GA }{\al } & \SEQ {\al ,\SI }{\ga } }\end {align*}


$_{\omega }$


$\X ^i p$


$\X ^i p$


\begin {align*}\infer [({\rm cut})]{ \Gm , \X ^i p, \Gm ' \Seq \ga } { \Gm , \X ^i p \Seq \X ^i p & \X ^i p, \Gm ' \Seq \ga }\end {align*}


$\X ^i\F \al $


\begin {align*}\infer [({\rm cut})] { \Gm , \Gm ' \Seq \ga } {\infer [(\F {\rm right})] {\Gm \Seq \X ^i\F \al } {\Gm \Seq \X ^{i+k}\al } & \infer [(\F {\rm left})] {\X ^i\F \al , \Gm ' \Seq \ga } {\{\X ^{i+j}\al , \Gm ' \Seq \ga \}_{j\in \omega } } }\end {align*}


\begin {align*}\infer [({\rm cut})] {\Gm , \Gm ' \seq \ga } {\Gm \Seq \X ^{i+k}\al & \X ^{i+k}\al , \Gm ' \Seq \ga }\end {align*}


$\X ^i\G \al $


$\X ^i p$


$\X ^i p$


$X^i p$


$X^i p$


$\al $


$(\F {\rm left})$


\begin {align*}\infer [({\rm cut})] { \Gm , \Gm ', \X ^i\F \be \Seq \ga } {\infer [(\F {\rm left})] {\Gm , \X ^{i} \F \be \Seq \al } {\{\Gm , \X ^{i+j} \be \Seq \al \}_{j\in \omega } } & \al , \Gm ' \Seq \ga }\end {align*}


\begin {align*}\infer [(\F {\rm left})] {\Gm , \Gm ' , \X ^i \F \be \Seq \ga } { \dots &\infer [({\rm cut})]{\Gm , \Gm ' , \X ^{i+j} \be \Seq \ga } {\Gm , \X ^{i+j} \be \Seq \Dlt , \al & \al , \Gm ' \Seq \ga } & \dots }\end {align*}


$\mbox {(\F {\rm left})}$


$\ga $


$\al $


$\relax \square $


$_{\omega }$


$\D $


$R$


$ht(\D )$


$R$


$\D $


$\D $


$ht(\D )$


$\D $


$\relax \square $


$_{\omega }$


$[\al ]$


$\al $


$_{\omega }$


$i$


$k$


$\al $


$\be $


$\ga $


$\ga $


$_{\omega }$


$\I $


\begin {align*}\infer [{\rm (Wk)}.]{\X ^i(\al \I \be )}{ \X ^i\be }\end {align*}


\begin {align*}\infer [(\I {\rm I})]{\X ^i (\al \I \be )}{ \infer *[]{\X ^i\be }{ [\X ^i\al ] } } \quad \infer [(\I {\rm E})]{\X ^i\be }{ \X ^i (\al \I \be ) & \X ^i \al }\end {align*}


\begin {align*}\infer [({\rm EXP})]{\ga }{ \X ^i\neg \al & \X ^i\al } \quad \infer [({\rm EXM})]{\ga }{ \infer *[]{\ga }{ [\X ^i\neg \al ] } & \infer *[]{\ga }{ [\X ^i\al ] } } \quad \infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[]{\X ^j\neg \ga }{ [\X ^i\al ] } & \infer *[]{\X ^j\ga }{ [\X ^i\al ] } }\end {align*}


\begin {align*}\infer [(\LAND {\rm I})]{\X ^i (\al \LAND \be )}{ \X ^i\al & \X ^i\be } \quad \infer [(\LAND {\rm E1})]{\X ^i\al }{ \X ^i (\al \LAND \be ) } \quad \infer [(\LAND {\rm E2})]{\X ^i\be }{ \X ^i (\al \LAND \be ) }\\ \infer [(\LOR {\rm I1})]{\X ^i (\al \LOR \be )}{ \X ^i\al } \quad \infer [(\LOR {\rm I2})]{\X ^i (\al \LOR \be )}{ \X ^i\be } \quad \infer [(\LOR {\rm E})]{\ga }{ \X ^i (\al \LOR \be ) & \infer *[]{\ga }{ [\X ^i\al ] } & \infer *[]{\ga }{ [\X ^i\be ] } }\end {align*}


\begin {align*}\infer [(\G {\rm I})]{\X ^i \G \al }{ \{~ \X ^{i+j}\al ~\}_{j \in \omega } } \quad \infer [(\G {\rm E})]{\X ^{i+k} \al }{ \X ^i \G \al }\end {align*}


\begin {align*}\infer [(\F {\rm I})]{\X ^i \F \al }{ \X ^{i+k}\al } \quad \infer [(\F {\rm E}).] {\ga }{ \X ^i \F \al & \{ \infer *[]{\ga }{ [\X ^{i+j}\al ]} \}_{j\in \omega } &}\end {align*}


$\neg $


$_{\omega }$


$\neg $


$\neg $


\begin {align*}\infer [({\rm EXM}$-${\rm at})]{\ga }{ \infer *[]{\ga }{ [\neg p] } & \infer *[]{\ga }{ [p] } }\end {align*}


$p$


$(\neg \al \LAND \al )\I \ga $


$\neg \al \LOR \al $


\begin {align*}\infer [(\I {\rm I})^1]{(\neg \al \LAND \al )\I \ga }{ \infer [({\rm EXP})]{\ga }{ \infer [(\LAND {\rm E1})]{\neg \al }{ [\neg \al \LAND \al ]^1 } & \infer [(\LAND {\rm E2})]{\al }{ [\neg \al \LAND \al ]^1 } } } \quad \infer [({\rm EXM})^1.]{\neg \al \LOR \al }{ \infer [(\LOR {\rm I1})]{\neg \al \LOR \al }{ [\neg \al ]^1 } & \infer [(\LOR {\rm I2})]{\neg \al \LOR \al }{ [\al ]^1 } }\end {align*}


$\neg $


$\al \I \neg \neg \al $


$\neg \neg (\al \I \al )$


\begin {align*}\infer [(\I {\rm I})^1]{\al \I \neg \neg \al }{ \infer [(\neg {\rm I})^2]{\neg \neg \al }{ \infer [({\rm EXP})]{\neg \al }{ [\neg \al ]^2 & [\al ]^1 } & \infer [({\rm EXP})]{\al }{ [\neg \al ]^2 & [\al ]^1 } } }\end {align*}


\begin {align*}\infer [(\neg {\rm I})^1]{\neg \neg (\al \I \al )}{ \infer [({\rm EXP})]{\al \I \al }{ \infer [(\I {\rm I})^3]{\al \I \al }{ [\al ]^3 } & [\neg (\al \I \al )]^1 } & \infer [({\rm EXP})]{\neg (\al \I \al )}{ \infer [(\I {\rm I})^2]{\al \I \al }{ [\al ]^2 } & [\neg (\al \I \al )]^1 } }\end {align*}


$\G $


\begin {align*}\infer [(\G {\rm I}).]{\X ^i \G \al }{ \X ^{i}\al & \X ^{i+1}\al & \X ^{i+2}\al & \cdots & \X ^{i+n}\al & \cdots & }\end {align*}


$\F $


\begin {align*}\infer [(\F {\rm E}).]{\ga }{ \X ^i \F \al & \infer *[]{\ga }{ [\X ^{i}\al ] } & \infer *[]{\ga }{ [\X ^{i+1}\al ] } & \infer *[]{\ga }{ [\X ^{i+2}\al ] } & \cdots & \infer *[]{\ga }{ [\X ^{i+n}\al ] } & \cdots & }\end {align*}


$_{\omega }$


$\I $


$\LAND $


$\LOR $


$\LOR $


$\neg $


$\G $


$\F $


$\I $


$\LAND $


$\LAND $


$\LOR $


$\G $


$\F $


$\X ^i\neg \al $


$\X ^i\al $


$\X ^i\neg \al $


$\X ^i\al $


$\mathcal {D}$


$\mathcal {D}$


$\mathcal {D}$


$\mathcal {D}$


$\mathcal {D}$


$\al $


$L$


$L$


$\al $


$\neg $


$\neg $


$_{\omega }$


$\rhd $


$_{\omega }$


$\rhd $


$\rhd $


$\al $


$\mathcal {D}$


$_{\omega }$


$\al $


$\mathcal {D}$


$\al $


$\al $


$\LOR $


$\al $


$\ga $


$R$


$\rhd $


$\ga $


$_{\omega }$


$R$


$\I $


$\ga $


$\X ^i (\al \I \be )$


\begin {align*}\infer [(\I {\rm E})]{\X ^i \be }{ \infer [(\I {\rm I})]{\X ^i (\al \I \be )}{ \infer *[{\mathcal {D}}]{\X ^i \be }{ [\X ^i \al ] } } & \infer *[{\mathcal {E}}]{\X ^i\al }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}]{\X ^i\be .}{ \infer *[{\mathcal {E}}]{\X ^i\al }{ } }\end {align*}


$R$


\begin {align*}\infer [R']{\pi }{ \infer [({\rm EXP})]{\ga }{ \infer *[{\mathcal {D}}_1]{\X ^i\neg \de }{ } & \infer *[{\mathcal {D}}_2]{\X ^i\de }{ } } & \infer *[{\mathcal {E}}_1]{\pi _1}{ } & \infer *[{\mathcal {E}}_2]{\pi _2}{ } } \quad \quad \rhd \quad \quad \infer [({\rm EXP})]{\pi }{ \infer *[{\mathcal {D}}_1]{\X ^i\neg \de }{ } & \infer *[{\mathcal {D}}_2]{\X ^i\de }{ } }\end {align*}


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$R'$


$R$


$\neg $


$\ga $


$\X ^i\neg \al $


$\be $


\begin {align*}\infer [({\rm EXP})]{\be }{ \infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \de }{ [\X ^i\al ] } & \infer *[{\mathcal {D}}_2]{\X ^j\de }{ [\X ^i\al ] } } & \infer *[{\mathcal {E}}]{\X ^i\al }{ } } \quad \quad \rhd \quad \quad \infer [({\rm EXP}).]{\be }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \de }{ \infer *[{\mathcal {E}}]{\X ^i\al }{} } & \infer *[{\mathcal {D}}_2]{\X ^j\de }{ \infer *[{\mathcal {E}}]{\X ^i\al }{} } }\end {align*}


$R$


$\neg $


$\ga $


$\X ^i\neg \de $


$\X ^i\de $


\begin {align*}\infer [({\rm EXP})]{\X ^i\de }{ \infer [(\neg {\rm I})]{\X ^i\neg \de }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \be }{ [\X ^i\de ] } & \infer *[{\mathcal {D}}_2]{\X ^j\be }{ [\X ^i\de ] } } & \infer *[{\mathcal {E}}]{\X ^i\de }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}]{\X ^i\de .}{ }\end {align*}


$R$


$\ga $


$\X ^i(\ga _1\I \ga _2)$


$\X ^i(\ga _1\LAND \ga _2)$


$\X ^i (\ga _1\LOR \ga _2)$


\begin {align*}\infer [R']{\de }{ \infer [({\rm EXM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\X ^i\neg \al ] } & \infer *[{\mathcal D}_2]{\ga }{ [\X ^i\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [({\rm EXM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\X ^i\neg \al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\X ^i\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }\end {align*}


$R'$


$\I $


$\LAND $


$\LAND $


$\LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$R$


$\ga $


$\X ^i\neg \de $


$\X ^i\de $


\begin {align*}\infer [{\rm (EXP)}]{\X ^i\de }{ \infer [({\rm EXM})]{\X ^i\neg \de }{ \infer *[{\mathcal {D}}_1]{\X ^i\neg \de }{ [\X ^i\neg \al ] } & \infer *[{\mathcal {D}}_2]{\X ^i\neg \de }{ [\X ^i\al ] } } & \infer *[{\mathcal {E}}]{\X ^i\de }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}]{\X ^i\de .}{ }\end {align*}


$R$


$\LAND $


$\ga $


$\X ^i (\al _1\LAND \al _2)$


\begin {align*}\infer [(\LAND {\rm E}i)]{\X ^i\al _i}{ \infer [(\LAND {\rm I})]{\X ^i (\al _1\LAND \al _2)}{ \infer *[{\mathcal {D}}_1]{\X ^i \al _1}{ } & \infer *[{\mathcal {D}}_2]{\X ^i \al _2}{ } } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}_i]{\X ^i \al _i}{ }\end {align*}


$i$


$1$


$2$


$R$


$\LOR $


$\LOR $


$\ga $


$\X ^i (\al _1\LOR \al _2)$


\begin {align*}\infer [(\LOR {\rm E})]{\de }{ \infer [(\LOR {\rm I}i)]{\X ^i (\al _1\LOR \al _2)}{ \infer *[{\mathcal {D}}]{\X ^i \al _i}{ } } & \infer *[{\mathcal {E}}_1]{\de }{ [\X ^i\al _1] } & \infer *[{\mathcal {E}}_2]{\de }{ [\X ^i\al _2] } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}_i]{\de }{ \infer *[{\mathcal {D}}]{\X ^i\al _i}{ } }\end {align*}


$i$


$1$


$2$


$R$


$\LOR $


\begin {align*}\infer [R']{\de }{ \infer [(\LOR {\rm E})]{\pi }{ \infer *[{\mathcal {D}}_1]{\X ^i (\al \LOR \be )}{ } & \infer *[{\mathcal {D}}_2]{\pi }{ [\X ^i\al ] } & \infer *[{\mathcal {D}}_3]{\pi }{ [\X ^i\be ] } } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [(\LOR {\rm E})]{\de }{ \infer *[{\mathcal {D}}_1]{\X ^i (\al \LOR \be )}{ } & \infer [R']{\de }{ \infer *[{\mathcal {D}}_2]{\pi }{ [\X ^i\al ] } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } } & \infer [R']{\de }{ \infer *[{\mathcal {D}}_3]{\pi }{ [\X ^i\be ] } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } } }\end {align*}


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


${\mathcal {E}}_n$


$R'$


$R$


$\G $


$\ga $


$\X ^i\G \al $


\begin {align*}\infer [(\G {\rm E})]{\X ^{i+k} \al }{ \infer [(\G {\rm I})]{\X ^i \G \al }{ \infer *[{\mathcal {D}}_j]{\{~ \X ^{i+j} \al ~\}_{j\in \omega }}{ } } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}_k]{\X ^{i+k} \al }{ }\end {align*}


$k \in \omega $


$R$


$\F $


$\ga $


$\X ^i \F \al $


\begin {align*}\infer [(\F {\rm E})]{\de }{ \infer [(\F {\rm I})]{\X ^i \F \al }{ \infer *[{\mathcal {D}}_k]{\X ^{i+k} \al }{ } } & \infer *[{\mathcal {E}}_j]{\{~\de ~\}_{j\in \omega }}{ [\X ^{i+j} \al ] } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}_k]{\de }{ \infer *[{\mathcal {D}}_k]{\X ^{i+k}\al }{ } }\end {align*}


$k \in \omega $


$R$


$\F $


\begin {align*}\infer [R']{\de }{ \infer [(\F {\rm E})]{\pi }{ \infer *[{\mathcal {D}}]{\X ^i \F \al }{ } & \infer *[{\mathcal {D}}_j]{\{~\pi ~\}_{j\in \omega }}{ [\X ^{i+j}\al ] } } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [(\F {\rm E})]{\de }{ \infer *[{\mathcal {D}}]{\X ^i \F \al }{ } & \infer [R']{\{~\de ~\}_{j\in \omega }}{ \infer *[{\mathcal {D}}_j]{\pi }{ [\X ^{i+j}\al ] } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } } }\end {align*}


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


${\mathcal {E}}_n$


$R'$


$\rhd $


$R$


$\ga $


\begin {align*}\infer [({\rm EXM})^1]{\ga }{ \infer [({\rm EXP})]{\ga }{ [\X ^i\neg \al ]^1 & \infer *[{\mathcal {D}}_1]{\X ^i\al }{ } } & \infer [({\rm EXP})]{\ga }{ \infer *[{\mathcal {D}}_2]{\X ^i\neg \al }{ } & [\X ^i\al ]^1 } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [({\rm EXP}).]{\ga }{ \infer *[{\mathcal {D}}_2]{\X ^i\neg \al }{ } & \infer *[{\mathcal {D}}_1]{\X ^i\al }{ } }\end {align*}


$R$


$\ga $


$\neg \ga $


\begin {align*}\infer [{\rm (EXP)}]{\neg \ga }{ \infer [({\rm EXM})]{\ga }{ \infer *[{\mathcal {D}}_1]{\ga }{ [\X ^i\neg \al ] } & \infer *[{\mathcal {D}}_2]{\ga }{ [\X ^i\al ] } } & \infer *[{\mathcal {E}}]{\neg \ga }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}]{\neg \ga .}{ }\end {align*}


${\mathcal {D}}'$


$\mathcal {D}$


${\mathcal {D}} \rhd {\mathcal {D}}'$


${\mathcal {D}}_0, {\mathcal {D}}_1, ...$


${\mathcal {D}}_i \rhd {\mathcal {D}}_{i+1}$


$i \geq 0$


$\mathcal {D}$


$\mathcal {D}$


$\GA  \Rightarrow $


$_{\omega }$


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\neg p\LAND p$


$\DE $


$\GA $


$\DE $


$\GA $


$\GA $


$\ga $


$\GA $


$\GA $


$\{\al , \al , \al , \be \}$


$\{\al , \be , \ga \}$


$\GA ^*$


$\GA $


$\GA \subseteq ^* \DE $


$\GA $


$\DE $


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


${\mathcal {D}}'$


$_{\omega }$


${\mathcal {D}}'$


$\subseteq ^* \GA $


${\mathcal {D}}'$


$=$


$\be $


${\mathcal {D}}'$


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$\mathcal {D}$


$\I $


$\mathcal {D}$


\begin {align*}\infer [{\rm (\I I)}]{\X ^i(\al \I \ga )}{ \infer *[{\mathcal {E}}]{\X ^i\ga }{ [\X ^i\al ]~\GA } }\end {align*}


$\mathcal {D}$


$\{\X ^i\al \}\cup \GA $


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA  \Rightarrow \X ^i\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i(\al \I \ga )$


\begin {align*}\infer [(\I {\rm right}).]{\SEQ {\GA }{\X ^i(\al \I \ga )}}{ \infer *[Ind. \, hyp.]{\SEQ {\X ^i\al , \GA }{\X ^i\ga }}{ } }\end {align*}


$\mathcal {D}$


\begin {align*}\infer [{\rm (\I I)}]{\X ^i(\al \I \ga )}{ \infer *[{\mathcal {E}}]{\X ^i\ga }{ \GA } }\end {align*}


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i(\al \I \ga )$


\begin {align*}\infer [(\I {\rm right})]{\SEQ {\GA }{\X ^i(\al \I \ga )}}{ \infer [\mbox {\rm (we-left)}]{\SEQ {\X ^i\al , \GA }{\X ^i\ga }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA }{\X ^i\ga }}{ } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


\begin {align*}\infer [{\rm (\I I)}]{\X ^i(\al \I \ga )}{ \infer *[{\mathcal {E}}]{\X ^i\ga }{ [\X ^i\al ,\X ^i\al ]~\GA } }\end {align*}


$\mathcal {D}$


$\{\X ^i\al , \X ^i\al \}\cup \GA $


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\X ^i\al ,\X ^i\al , \GA  \Rightarrow \X ^i\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i(\al \I \ga )$


\begin {align*}\infer [(\I {\rm right})]{ \SEQ {\GA }{\X ^i(\al \I \ga )} }{ \infer [(\mbox {\rm co-left})]{\SEQ {\X ^i\al , \GA }{\X ^i\ga }}{ \infer *[Ind. \, hyp.]{\SEQ {\X ^i\al ,\X ^i\al , \GA }{\X ^i\ga }}{ } }}\end {align*}


$_{\omega }$


$\neg $


$\mathcal {D}$


\begin {align*}\infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \ga }{ [\X ^i\al ] \GA _1 } & \infer *[{\mathcal {D}}_2]{\X ^j\ga }{ [\X ^i\al ] \GA _2 } }\end {align*}


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\X ^i\neg \al $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA _1 \Rightarrow \X ^j\neg \ga $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA _2 \Rightarrow \X ^j\ga $


$_{\omega }$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \X ^i\neg \al $


\begin {align*}\infer [(\neg {\rm right})]{\SEQ {\GA _1, \GA _2}{\X ^i\neg \al }}{ \infer [(\mbox {\rm co-left})]{\SEQ {\X ^i\al , \GA _1, \GA _2}{}}{ \infer [({\rm cut})]{\SEQ {\X ^i\al ,\X ^i\al , \GA _1, \GA _2}{}}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\al , \GA _1}{\X ^j\neg \ga }}{ } & \infer [(\neg {\rm left})]{\SEQ {\X ^j\neg \ga , \X ^i\al , \GA _2}{}}{ \infer [(\mbox {we-left})]{\SEQ {\X ^i\neg \ga , \X ^i\al , \GA _2}{\X ^j\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\al , \GA _2}{\X ^j\ga }}{ } } } } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


\begin {align*}\infer [({\rm EXP})]{\be }{ \infer *[{\mathcal {E}}_1]{\X ^i\neg \al }{ \GA _1 } & \infer *[{\mathcal {E}}_2]{\X ^i\al }{ \GA _2 } }\end {align*}


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\be $


$_{\omega }$


$\vdash $


$\GA _1 \Rightarrow \X ^i\neg \al $


$_{\omega }$


$\vdash $


$\GA _2 \Rightarrow \X ^i\al $


$_{\omega }$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \be $


\begin {align*}\infer [(\mbox {\rm we-right})]{\SEQ {\GA _1, \GA _2}{\be }}{ \infer [({\rm cut})]{\SEQ {\GA _1, \GA _2}{}}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _2}{\X ^i\al }}{ } & \infer [({\rm cut})]{\SEQ {\X ^i\al , \GA _1}{}}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _1}{\X ^i\neg \al }}{ } & \infer [(\neg {\rm left})]{\SEQ {\X ^i\neg \al , \X ^i\al }{}}{ \infer *[Prop.~\ref {\SLT -prop-1}]{\SEQ {\X ^i\neg \al , \X ^i\al }{\X ^i\al }}{ } } } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


\begin {align*}\infer [({\rm EXM})]{\ga }{ \infer *[{\mathcal {E}}_1]{\ga }{ [\X ^i\neg \al ] \GA _1 } & \infer *[{\mathcal {E}}_2]{\ga }{ [\X ^i\al ] \GA _2 } }\end {align*}


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\X ^i\neg \al , \GA _1\! \Rightarrow \!\ga $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA _2\! \Rightarrow \!\ga $


$_{\omega }$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \ga $


\begin {align*}\infer [(\mbox {\rm ex-middle})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[(\mbox {\rm we-left})]{\SEQ {\X ^i\neg \al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\neg \al , \GA _1}{\ga }}{ } } & \infer *[(\mbox {\rm we-left})]{\SEQ {\X ^i\al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\al , \GA _2}{\ga }}{ } } }\end {align*}


$_{\omega }$


$\G $


$\mathcal {D}$


\begin {align*}\infer [(\G {\rm I})]{\X ^i\G \al }{ \infer *[P_j]{\{~\X ^{i+j}\al ~\}_{j\in \omega }}{ \GA _j } }\end {align*}


$\mathcal {D}$


$\displaystyle {\GA = \bigcup _{j\in \omega } \GA _j}$


$\mathcal {D}$


$\X ^i\G \al $


$_{\omega }$


$\vdash $


$\GA _j \Rightarrow \X ^{i+j}\al $


$j\in \omega $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\G \al $


\begin {align*}\infer [(\G {\rm right})]{\SEQ {\GA }{\X ^i\G \al }}{ \infer *[(\mbox {\rm we-left})]{\{~\SEQ {\GA }{\X ^{i+j}\al }~\}_{j\in \omega }}{ \infer *[Ind.\,hyp.]{\SEQ {\GA _j}{\X ^{i+j}\al }}{ } } }\end {align*}


$_{\omega }$


$\G $


$\mathcal {D}$


\begin {align*}\infer [(\G {\rm E})]{\X ^{i+k}\al }{ \infer *[{\mathcal {D}}']{\X ^i\G \al }{ \GA } }\end {align*}


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\X ^{i+k}\al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\G \al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^{i+k}\al $


\begin {align*}\infer [({\rm cut})]{\SEQ {\GA }{\X ^{i+k}\al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA }{\X ^i\G \al }}{ } & \infer [(\G {\rm left})]{\SEQ {\X ^i\G \al }{\X ^{i+k}\al }}{ \infer *[Prop.~\ref {\SLT -prop-1}]{\SEQ {\X ^i\G \al , \X ^{i+k}\al }{\X ^{i+k}\al }}{ } } }\end {align*}


$_{\omega }$


$\F $


$\mathcal {D}$


\begin {align*}\infer [(\F {\rm I})]{\X ^i\F \al }{ \infer *[{\mathcal {D}}']{\X ^{i+k}\al }{ \GA } }\end {align*}


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\X ^i\F \al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^{i+k}\al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\F \al $


\begin {align*}\infer [(\F {\rm right}).]{\SEQ {\GA }{\X ^i\F \al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA }{\X ^{i+k}\al }}{ } }\end {align*}


$\F $


$\mathcal {D}$


\begin {align*}\infer [(\F {\rm E})]{\ga }{ \infer *[{\mathcal {D}}']{\X ^i\F \al }{ \GA ' } & \{ \infer *[{\mathcal {D}}_j]{\ga }{ [\X ^{i+j}\al ] \GA _j }\}_{j\in \omega } & }\end {align*}


$\mathcal {D}$


$\displaystyle {\GA '\cup \GA }$


$\displaystyle {\GA = \bigcup _{j\in \omega } \GA _j}$


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\GA ' \Rightarrow \X ^i\F \al $


$_{\omega }$


$\vdash $


$\X ^{i+j}\al , \GA _j \Rightarrow \ga $


$j\in \omega $


$_{\omega }$


$\vdash $


$\GA ', \GA  \Rightarrow \ga $


\begin {align*}\infer [({\rm cut})]{\SEQ {\GA ', \GA }{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA '}{\X ^i\F \al }}{ } & \infer [(\F {\rm left})]{\SEQ {\X ^i\F \al , \GA }{\ga }}{ \infer *[(\mbox {\rm we-left})]{\{~\SEQ {\X ^{i+j}\al , \GA }{\ga }~\}_{j\in \omega }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^{i+j}\al , \GA _j}{\ga }}{ } } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


$\GA  \Rightarrow \be $


$_{\omega }$


$\mathcal {D}$


$\mathcal {D}$


\begin {align*}\infer *[{\mathcal {D}}]{\SEQ {\X ^i p, \GA }{\X ^i p.}}{ }\end {align*}


$\mathcal {E}$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}]{\X ^i p}{ }\end {align*}


$\mathcal {E}$


$\{\X ^i p\}$


$\subseteq ^*$


$\{\X ^i p\}\cup \GA $


$\mathcal {E}$


$\X ^i p$


$\mathcal {D}$


\begin {align*}\infer [\mbox {\rm (we-right)}]{\SEQ {\GA }{\al }}{ \infer *[{\mathcal {D}}']{\SEQ {\GA }{}}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\neg p\LAND p}{ \GA ^* }\end {align*}


${\mathcal {E}}'$


$=$


$\GA ^*$


$\subseteq ^*$


$\GA $


${\mathcal {E}}'$


$\neg p \LAND p$


$\mathcal {E}$


\begin {align*}\infer [{\rm (Exp)}]{\al }{ \infer [{\rm (\LAND E1)}]{\neg p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ \GA ^* } } & \infer [{\rm (\LAND E2)}]{p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ \GA ^* } } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\al $


$\neg $


$\mathcal {D}$


\begin {align*}\infer [(\neg {\rm left}).]{\SEQ {\X ^i\neg \al , \GA }{}}{ \infer *[{\mathcal {D}}']{\SEQ {\X ^i\neg \al , \GA }{\X ^i\al }}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\X ^i\al }{ (\X ^i\neg \al , \GA )^* }\end {align*}


${\mathcal {E}}'$


$(\X ^i\neg \al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\neg \al \}\cup \GA $


${\mathcal {E}}'$


$\X ^i\al $


$\mathcal {E}$


\begin {align*}\infer [({\rm EXP})]{\neg p\LAND p}{ \X ^i\neg \al & \infer *[{\mathcal {E}}']{\X ^i\al }{ (\X ^i\neg \al , \GA )^* } }\end {align*}


$\mathcal {E}$


$(\X ^i\neg \al , \X ^i\neg \al , \GA )^*$


$\subseteq ^*$


$\{ \X ^i\neg \al \}\cup \GA $


$\mathcal {E}$


$\neg p\LAND p$


$\bot $


$\{\X ^i\neg \al , \X ^i\neg \al \} \cup \GA $


$\{\X ^i\neg \al \} \cup \GA $


$\mathcal {E}$


$\I $


$\I $


${\mathcal {E}}'$


$\I $


$\neg $


$\mathcal {D}$


\begin {align*}\infer [(\neg {\rm right}).]{\SEQ {\GA }{\X ^i\neg \al }}{ \infer *[{\mathcal {D}}']{\SEQ {\X ^i\al , \GA }{}}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\neg p\LAND p}{ (\X ^i\al , \GA )^* }\end {align*}


${\mathcal {E}}'$


$(\X ^i\al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\al \} \cup \GA $


${\mathcal {E}}'$


$\neg p \LAND p$


$\mathcal {E}$


\begin {align*}\infer [(\neg {\rm I})^1]{\X ^i\neg \al }{ \infer [(\LAND {\rm E1})]{\neg p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ [\X ^i\al ]^1 ~\GA ^* } } & \infer [(\LAND {\rm E2})]{p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ [\X ^i\al ]^1 ~\GA ^* } } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\X ^i\neg \al $


$\mathcal {D}$


\begin {align*}\infer [(\mbox {\rm ex-middle}).]{\SEQ {\GA }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\X ^i\neg \al , \GA }{\ga }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\X ^i\al , \GA }{\ga }}{ } }\end {align*}


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}_1]{\ga }{ (\X ^i\neg \al , \GA )^* } \quad \quad \quad \infer *[{\mathcal {E}}_2]{\ga }{ (\X ^i\al , \GA )^* }\end {align*}


${\mathcal {E}}_1$


$(\X ^i\neg \al , \GA )^*$


$\subseteq ^*$


$\{ \X ^i\neg \al \} \cup \GA $


${\mathcal {E}}_2$


$(\X ^i\al , \GA )^*$


$\subseteq ^*$
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$^{-\top , \bot }$


$\neg p\rightarrow \neg \neg (q\rightarrow q)$


$\neg (p\rightarrow p)\rightarrow q$


$\mathsf {CoPC}$


$\mathcal {L}_\neg $


$^{-\top ,\bot }$


$A$


$\mathcal {L}_{\neg }$


\begin {equation*}\mathbf {CO}\text {-}\mathbf {MIN}\vdash A\ \Leftrightarrow \ \mathbf {CO}\text {-}\mathbf {MIN}^{-\top , \bot }\vdash A.\end {equation*}


$\relax \square $


$^{-\top ,\bot }$


$\mathsf {ECQPC}$


$\mathsf {ECQPC}$


$\mathsf {An^-PC}$


$\mathsf {ECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)$


$\mathsf {ECQPC}\vdash ((p\rightarrow \neg p)\land \neg q)\rightarrow (q\leftrightarrow p)$


$p\rightarrow \neg p$


$\neg q$


$(p\rightarrow \neg p)\land \neg q$


$\mathsf {Ax6,7}$


$q$


$p$


$\neg q$


$\mathsf {(ECQ)}$


$p$


$\neg p$


$p\rightarrow \neg p$


$q$


$\mathsf {(ECQ)}$


\begin {align*}&1.\;\mathsf {ECQPC}\vdash ((p\rightarrow \neg p)\land \neg q)\rightarrow (q\leftrightarrow p)&&\\ &2.\;\mathsf {ECQPC}\vdash ((p\rightarrow \neg p)\land \neg q)\rightarrow (\neg q\rightarrow \neg p)&&(\mathsf {(N)}\text { and }1)\\ &3.\;\mathsf {ECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)&&(\text {From }2).\end {align*}


$\relax \square $


$\mathsf {ECQPC}$


$\mathbf {CO}$


$\mathbf {MIN}^{-\top , \bot }$


$p\rightarrow p$


$\neg (p\rightarrow p)\rightarrow q$


$((p\rightarrow p)\land \neg (p\rightarrow p))\rightarrow q$


$\mathsf {ECQ}$


$\mathsf {ECQPC}\vdash \neg p\rightarrow \neg \neg (q\rightarrow q)$


\begin {align*}&1.\;\mathsf {ECQPC}\vdash \neg (q\rightarrow q)\rightarrow \neg \neg (q\rightarrow q)&&\\ &2.\;\mathsf {ECQPC}\vdash (\neg (q\rightarrow q)\rightarrow \neg \neg (q\rightarrow q))\rightarrow (\neg p\rightarrow \neg \neg (q\rightarrow q))&&\mathsf {(An^-)}\\ &3.\;\mathsf {ECQPC}\vdash \neg p\rightarrow \neg \neg (q\rightarrow q)&&(1\text { and }2).\end {align*}


$\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow q$


\begin {align*}&1.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow (p\leftrightarrow (p\rightarrow p))&&\\ &2.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow (\neg p\rightarrow \neg (p\rightarrow p))&&((\mathsf {N})\text { and }1)\\ &3.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow \neg (p\rightarrow p)&&(\text {From }2)\\ &4.\;\textbf {CO-MIN}^{-\top , \bot }\vdash \neg (p\rightarrow p)\rightarrow q&&(\mathsf {Ax}\text { of }{\footnotesize \textbf {CO-MIN}^{-\top , \bot }})\\ &5.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow q&&(3\text { and } 4).\end {align*}


$\relax \square $


$\mathsf {An\cap ECQPC}$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {An^-PC}^+$


$\mathsf {An^-PC}$


$\neg \neg (p\rightarrow p)$


$\mathsf {MPC}_{\neg }$


$\mathsf {An^-PC^+}\vdash (p\rightarrow \neg p)\rightarrow \neg p$


\begin {align*}&1.\;\mathsf {An^-PC}^+\vdash (p\rightarrow \neg p)\rightarrow (\neg \neg (p\rightarrow p)\rightarrow \neg p)&&(\mathsf {An^-})\\ &2.\;\mathsf {An^-PC}^+\vdash \neg \neg (p\rightarrow p)\rightarrow ((p\rightarrow \neg p)\rightarrow \neg p)&&(\text {From }1)\\ &3.;\mathsf {An^-PC}^+\vdash (p\rightarrow \neg p)\rightarrow \neg p&&(2\text { and }\mathsf {Ax}\text { of }\mathsf {An^-PC}^+).\end {align*}


$\mathsf {MPC}_\neg \vdash \neg \neg (p\rightarrow p)$


$\mathsf {MPC}_\neg \vdash (\mathsf {An^-})$


\begin {align*}&1.\;\mathsf {MPC_\neg }\vdash \neg (p\rightarrow p)\rightarrow \neg \neg (p\rightarrow p)&&\mathsf {(NECQ)}\\ &2.\;\mathsf {MPC_\neg }\vdash (\neg (p\rightarrow p)\rightarrow \neg \neg (p\rightarrow p))\rightarrow \neg \neg (p\rightarrow p)&&\mathsf {(An)}\\ &3.\;\mathsf {MPC_\neg }\vdash \neg \neg (p\rightarrow p)&&(1\text { and }2).\end {align*}


$\relax \square $


$\mathsf {An\cap ECQPC}$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {An\cap ECQPC}\subseteq \mathsf {ECQPC}$


$\mathsf {An\cap ECQPC}\subseteq \mathsf {MPC_\neg }$


$\mathsf {ECQPC}\vdash \neg \neg (p\rightarrow p)\lor (\neg (q\rightarrow q)\rightarrow r)$


$\mathsf {MPC_\neg }\vdash \neg \neg (p\rightarrow p)\lor (\neg (q\rightarrow q)\rightarrow r)$


$\mathsf {ECQPC}=\textbf {CO-MIN}^{-\top , \bot }$


$\mathsf {MPC_\neg }=\mathsf {An^-PC}^+$


$\mathsf {An^-PC}$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$A$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {MPC}_\neg \vdash A$


$\mathsf {An^-PC}\vdash B\rightarrow A$


$B$


$\neg \neg (p\rightarrow p)$


$\mathsf {ECQPC}\vdash A$


$\mathsf {An^-PC}\vdash C\rightarrow A$


$C$


$\neg (q\rightarrow q)\rightarrow r$


$\mathsf {Ax5}$


$\mathsf {An^-PC}\vdash (B\lor C)\rightarrow A$


$B\lor C$


$\mathsf {An\cap \ ECQ}$


$\mathsf {An\cap ECQPC}\vdash A$


$\relax \square $


$\mathsf {CoECQPC}$


$\mathsf {An^-PC}$


$\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)$


$\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow ((p\land \neg p)\leftrightarrow p)$


$\mathsf {Ax6,7}$


\begin {align*}&1.\;\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow ((p\land \neg p)\leftrightarrow p)&&\\ &2.\;\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg (p\land \neg p)\leftrightarrow \neg p)&&((\mathsf {N})\text { and }1)\\ &3.\;\mathsf {CoECQPC}\vdash \neg (p\land \neg p)\rightarrow ((p\rightarrow \neg p)\rightarrow \neg p)&&(\text {From }2)\\ &4.\;\mathsf {CoECQPC}\vdash \neg q\rightarrow \neg (p\land \neg p)&&(\mathsf {(CoECQ)})\\ &5.\;\mathsf {CoECQPC}\vdash \neg q\rightarrow ((p\rightarrow \neg p)\rightarrow \neg p)&&(3\text { and }4)\\ &6.\;\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)&&(\text {From } 5)\end {align*}


$\mathsf {An^-PC}\vdash \neg p\rightarrow \neg (q\land \neg q)$


\begin {align*}&1.\;\mathsf {An^-PC}\vdash \neg q\rightarrow \neg (q\land \neg q)&&(\mathsf {Ax7}\text { and }\mathsf {(Co)})\\ &2.\;\mathsf {An^-PC}\vdash (q\land \neg q)\rightarrow \neg q&&(\mathsf {Ax7})\\ &3.\;\mathsf {An^-PC}\vdash (q\land \neg q)\rightarrow \neg (q\land \neg q)&&(1\text { and }2)\\ &4.\;\mathsf {An^-PC}\vdash ((q\land \neg q)\rightarrow \neg (q\land \neg q))\rightarrow (\neg p\rightarrow \neg (q\land \neg q))&&(\mathsf {(An^-)})\\ &5.\;\mathsf {An^-PC}\vdash \neg p\rightarrow \neg (q\land \neg q)&&(3\text { and }4)\end {align*}


$\relax \square $


$\mathsf {IPC}$


$(\text {Intuitionistic logic})$


$\mathsf {AVQPC}$


$\mathsf {MPC_\neg }$


$(\text {Minimal logic})$


$\mathsf {ECQPC}$


$(\text {Co-minimal logic})$


$\mathsf {An\cap ECQPC}$


$\textbf {SUBMIN}^{-\top ,\bot }$


$\mathsf {An^-PC}$


$\mathsf {CoECQPC}$


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$\mathsf {NPC}$


$\textbf {SUBMIN}^{-\top ,\bot }$


$\mathsf {An\cap ECQPC}$


$\mathsf {An\cap ECQPC}$


$\mathsf {An\cap ECQPC}$


$\mathsf {N}$


$\langle |\mathfrak {A}|,\land _{\mathfrak {A}}, \lor _{\mathfrak {A}}\rangle $


$1_{\mathfrak {A}}$


$\leq _{\mathfrak {A}}$


\begin {equation*}a\leq _{\mathfrak {A}}b:\Leftrightarrow a\land _{\mathfrak {A}}b=a\end {equation*}


$a,b\in |\mathfrak {A}|$


$\mathsf {N}$


$\langle |\mathfrak {A}|,1_{\mathfrak {A}},\land _{\mathfrak {A}},\lor _{\mathfrak {A}},\rightarrow _{\mathfrak {A}},\neg _{\mathfrak {A}}\rangle $


$\rightarrow _{\mathfrak {A}}$


$\neg _{\mathfrak {A}}$


$|\mathfrak {A}|$


\begin {equation*}a\rightarrow _{\mathfrak {A}} b\coloneq \max \{c \in |\mathfrak {A}| \mid a \land _{\mathfrak {A}} c \leq _{\mathfrak {A}} b\};\end {equation*}


\begin {equation*}(a\leftrightarrow _{\mathfrak {A}} b)\rightarrow _{\mathfrak {A}}(\neg _{\mathfrak {A}} a\leftrightarrow _{\mathfrak {A}}\neg _{\mathfrak {A}} b)=1_{\mathfrak {A}},\end {equation*}


$a\leftrightarrow _{\mathfrak {A}}b$


$(a\rightarrow _{\mathfrak {A}}b)\land _{\mathfrak {A}}(b\rightarrow _{\mathfrak {A}}a)$


$\mathsf {N}$


$\mathfrak {A}$


\begin {equation*}a\leq _{\mathfrak {A}}b\Longleftrightarrow a\rightarrow _{\mathfrak {A}}b=1_{\mathfrak {A}}.\end {equation*}


$(\mathsf {An})^E:\ (x\rightarrow \neg x)\rightarrow \neg x=1$


$(\mathsf {An}^-)^E:\ (x\rightarrow \neg x)\rightarrow (\neg y\rightarrow \neg x)=1$


$(\mathsf {Co})^E:\ (x\rightarrow y)\rightarrow (\neg y\rightarrow \neg x)=1$


$(\mathsf {NECQ})^E:\ (x\land \neg x)\rightarrow \neg y=1$


$(\mathsf {ECQ})^E:\ (x\land \neg x)\rightarrow y=1$


$(\mathsf {AVQ})^E:\ \neg \neg (\neg (x\rightarrow x)\rightarrow y)=1$


$(\mathsf {An\cap ECQ})^E:\ \neg \neg (x\rightarrow x)\lor (\neg (y\rightarrow y)\rightarrow z)=1$


$\mathsf {(CoECQ)}^E:\ \neg x\rightarrow \neg (y\land \neg y)=1$


$E$


$\Psi =\{\land ,\lor ,\rightarrow \}$


$\mathcal {P}$


$\mathsf {N}$


$\mathsf {N}$


$v$


$\mathcal {P}$


$|\mathfrak {A}|$


$\overline {v}$


$\mathfrak {A}$


$A$


$\overline {v}(A)\coloneq v(A)$


$A=\neg B$


$\overline {v}(\neg B)\coloneq \neg _{\mathfrak {A}}\overline {v}(B)$


$A=B\otimes C$


$\overline {v}(B\otimes C)\coloneq \overline {v}(B)\otimes _{\mathfrak {A}}\overline {v}(C)$


$\otimes \in \Psi $


$\overline {v}$


$v$


$\overline {v}$


$v$


$v$


$A$


$v(A)=1_{\mathfrak {A}}$


$A$


$v$


$A$


$v$


$v$


$\mathfrak {A}$


$A$


$\mathfrak {A}$


$\mathfrak {A}\models A$


$\mathcal {C}$


$\mathsf {N}$


$\mathfrak {A}\models A$


$\mathfrak {A}$


$\mathcal {C}$


$A$


$\mathcal {C}$


$\Delta $


$A$


$\mathcal {C}$


$\mathsf {N}$


$\mathsf {N}$


$\mathfrak {A}\in \mathcal {C}$


$v$


$\mathfrak {A}$


$A$


$v$


$B$


$v$


$B\in \Delta $


$A$


$\Delta $


$\mathcal {C}$


$\Delta \models _{\mathcal {C}} A$


$\Delta $


$\models _{\mathcal {C}}A$


$\mathsf {N}$


$\mathsf {ECQPC}$


$\mathcal {C}_\mathsf {ECQ}$


$\mathsf {N}$


$\mathsf {ECQ}$


$A$


$\mathsf {ECQPC}\vdash A\ \Leftrightarrow \ \models _{\mathcal {C}_\mathsf {ECQ}} A.$


$\relax \square $


$\mathsf {N}$


$L$


$\mathcal {C}_L$


$\mathsf {N}$


$L$


$A$


$L\vdash A\ \Leftrightarrow \ \models _{\mathcal {C}_L} A.$


$\top $


$p\rightarrow p$


$\relax \square $


$\mathsf {N}$


$\mathfrak {A}$


$\mathfrak {A}$


$|\mathfrak {A}|\smallsetminus \{1_{\mathfrak {A}}\}$


$\mathfrak {A}$


$\star _{\mathfrak {A}}$


$\Psi =\{\land , \lor , \rightarrow \}$


$\Psi $


$\Psi $


$\mathfrak {A}$


$\langle |\mathfrak {A}|,1_{\mathfrak {A}},0_{\mathfrak {A}},\langle \otimes _{\mathfrak {A}}\mid \otimes \in \Psi \rangle \rangle $


$\Psi $


$\mathfrak {B}$


$\Psi $


$\mathfrak {A}$


$\mathfrak {B}$


$\Psi $


$\mathfrak {A}$


$\Psi $


$\mathfrak {B}$


$\mathsf {N}$


$g$


$a\in dom(g)$


$g_a$


$g$


$a$


$\mathsf {N}$


$\mathfrak {A}$


$g$


$|\mathfrak {A}|$


$\mathcal {P}$


$A$


$\chi _A^g(\mathfrak {A})$


$\mathfrak {A}$


$g$


$A$


$\chi _{A}^g(\mathfrak {A}):=\bigwedge \{(g_a\otimes g_b)\rightarrow g_{a\otimes _{\mathfrak {A}} b}\mid \otimes \in \Psi ,a,b\in |\mathfrak {A}|\}\cup \{g_{a\otimes _{\mathfrak {A}} b}\rightarrow (g_a\otimes g_b)\mid \otimes \in \Psi ,a,b\in |\mathfrak {A}|\}\rightarrow (g_{\star _{\mathfrak {A}}}\lor A)$


$\chi _A^g(\mathfrak {A})$


$\theta (\chi _A^g(\mathfrak {A}))$


$\mathsf {N}$


$\mathfrak {A}$


$v$


$v(g_{\star _{\mathfrak {A}}})$


$\mathsf {N}$


$\mathsf {N}$


$A$


$A$


$\mathsf {N}$


$\mathsf {N}$


$\mathsf {N}$


$\mathfrak {A}=\langle |\mathfrak {A}|,1_{\mathfrak {A}},\land _{\mathfrak {A}},\lor _{\mathfrak {A}},\rightarrow _{\mathfrak {A}},\neg _{\mathfrak {A}}\rangle $


$0_{\mathfrak {A}}$


$\mathfrak {A}^H=\langle |\mathfrak {A}|,1_{\mathfrak {A}^H},0_{\mathfrak {A}^H},\land _{\mathfrak {A}^H},\lor _{\mathfrak {A}^H},\rightarrow _{\mathfrak {A}^H},\neg _{\mathfrak {A}^H}\rangle $


\begin {equation*}|\mathfrak {A}^H|\coloneq |\mathfrak {A}|,1_{\mathfrak {A}^H}\coloneq 1_{\mathfrak {A}},0_{\mathfrak {A}^H}\coloneq 0_{\mathfrak {A}},\land _{\mathfrak {A}^H}\coloneq \land _{\mathfrak {A}},\lor _{\mathfrak {A}^H}\coloneq \lor _{\mathfrak {A}},\rightarrow _{\mathfrak {A}^H}\coloneq \rightarrow _{\mathfrak {A}}, \text {and}\end {equation*}


\begin {equation*}\neg _{\mathfrak {A}^H}a\coloneq a\rightarrow _{\mathfrak {A}}0_{\mathfrak {A}}.\end {equation*}


$H$


$F$


$H$


$H$


$a,b\in F$


$a\land _H b\in F$


$a\in F$


$a\leq _H b$


$b\in F$


$a\in H$


$\{b\in H\mid a\leq b\}$


$a$


$a$


$\mathfrak {A}$


$F$


$|\mathfrak {A}|$


$F$


$\mathfrak {A}$


$F$


$1_{\mathfrak {A}}\in F$


$a\in F$


$a\rightarrow _{\mathfrak {A}} b\in F$


$b\in F$


$\mathfrak {A}$


$F$


$\mathfrak {A}$


$\sim _F$


$\mathfrak {A}$


\begin {align*}a\sim _F b:\Longleftrightarrow a\rightarrow _{\mathfrak {A}} b\in F \text { and } b\rightarrow _{\mathfrak {A}} a\in F \text { for any } a,b\in |\mathfrak {A}|.\end {align*}


$\sim _F$


$\mathfrak {A}$


$a\in |\mathfrak {A}|$


$\sim _F$


$[a]_F\coloneq \{b\in |\mathfrak {A}|\mid a\sim _Fb\}$


$\{[a]_F\mid a\in |\mathfrak {A}|\}$


$|\mathfrak {A}|/F$


$\mathfrak {A}/F=\langle |\mathfrak {A}|/F,1_{\mathfrak {A}/F},0_{\mathfrak {A}/F},\land _{\mathfrak {A}/F},\lor _{\mathfrak {A}/F},\rightarrow _{\mathfrak {A}/F},\neg _{\mathfrak {A}/F}\rangle $


$[a]_F,[b]_F\in |\mathfrak {A}|/F$


$1_{\mathfrak {A}/F}\coloneq [1_{\mathfrak {A}}]_F$


$0_{\mathfrak {A}/F}\coloneq [0_{\mathfrak {A}}]_F$


$[a]_F\land _{\mathfrak {A}/F}[b]_F\coloneq [a\land _{\mathfrak {A}}b]_F$


$[a]_F\lor _{\mathfrak {A}/F}[b]_F\coloneq [a\lor _{\mathfrak {A}}b]_F$


$[a]_F\rightarrow _{\mathfrak {A}/F}[b]_F\coloneq [a\rightarrow _{\mathfrak {A}}b]_F$


$\neg _{\mathfrak {A}/F}[a]_F\coloneq [\neg _{\mathfrak {A}}a]_F$


$\mathfrak {A}/F$


$\mathsf {N}$


$\mathfrak {A}$


$\mathfrak {B}$


$\mathsf {N}$


$F$


$\mathfrak {B}^H$


$\Psi $


$\mathfrak {A}^H$


$\mathfrak {B}^H/F$


$A$


$g:|\mathfrak {A}|\rightarrow \mathcal {P}$


$\mathfrak {B}\models \chi _A^g(\mathfrak {A})$


$\mathsf {N}$


$\mathfrak {C}$


$\mathfrak {D}$


$\mathfrak {D}\not \models \chi _A^g(\mathfrak {C})$


$g:|\mathfrak {C}|\rightarrow \mathcal {P}$


$A$


$v$


$v(\theta (\chi _A^g(\mathfrak {C})))\not \leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}}\lor A)$


$\theta (\chi _A^g(\mathfrak {C}))$


$\chi _A^g(\mathfrak {C})$


$\chi _{g{\star _{\mathfrak {C}}}}^g(\mathfrak {C})$


$g_{\star _{\mathfrak {C}}}$


$v(\theta (\chi _{g{\star _{\mathfrak {C}}}}^g(\mathfrak {C})))=v(\theta (\chi _A^g(\mathfrak {C})))$


$v(g_{\star _{\mathfrak {C}}})\leq _{\mathfrak {D}} v(g_{\star _{\mathfrak {C}}}\lor A)$


$v(\theta (\chi _{g{\star _{\mathfrak {C}}}}^g(\mathfrak {C})))\leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}})$


$v(\theta (\chi _A^g(\mathfrak {C})))\leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}}\lor A)$


$v(\theta (\chi ^g_{g_{\star _{\mathfrak {C}}}}(\mathfrak {C})))\not \leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}})$


$\mathfrak {D}\not \models \chi ^g_{g_{\star _{\mathfrak {C}}}}(\mathfrak {C})$


$G$


$\mathfrak {D}$


$v(\theta (\chi ^g_{g_{\star _{\mathfrak {C}}}}(\mathfrak {C})))$


$G$


\begin {equation}v(g_{\star _{\mathfrak {C}}})\not \in G;\tag {9}\label {equation9}\end {equation}


\begin {equation}[v(g_{c\otimes d})]_G=[v(g_c\otimes g_d)]_G\text { for any $c,d\in |\mathfrak {C}|$ and $\otimes \in \Psi $}.\tag {10}\label {equation10}\end {equation}


$v':\mathfrak {C}\rightarrow \mathfrak {D}/G$


$v'(c)\coloneq [v(g_c)]_G$


$c\in |\mathfrak {C}|$


$v'$


$\Psi $


$\Psi $


$v'$


$\land $


$c,d\in |\mathfrak {C}|$


\begin {align*}v'(c\land _{\mathfrak {C}}d)&=[v(g_{c\land _{\mathfrak {C}}d})]_G \\ &=[v(g_c\land g_d)]_G\\ &=[v(g_c)\land _{\mathfrak {D}}v(g_d)]_G\\ &=[v(g_c)]_G\land _{\mathfrak {D}/G}[v(g_b)]_G\\ &=v'(c)\land _{\mathfrak {D}/G}v'(d).\end {align*}


$\lor $


$\rightarrow $


$v'$


$v'(c)=v'(d)$


$[v(g_c)]_G=[v(g_d)]_G$


$c,d\in |\mathfrak {C}|$


\begin {align*}v(g_c)\leftrightarrow _{\mathfrak {D}} v(g_d)&=(v(g_c)\rightarrow _{\mathfrak {D}}v(g_d))\land _{\mathfrak {D}}(v(g_d)\rightarrow _{\mathfrak {D}}v(g_c))\\ &=v(g_c\rightarrow g_d)\land _{\mathfrak {D}}v(g_d\rightarrow g_c)\end {align*}


$[v(g_c)]_G=[v(g_d)]_G$


$v(g_c\rightarrow g_d)\land _{\mathfrak {D}}v(g_d\rightarrow g_c)\in G$


$v(g_{c\rightarrow _{\mathfrak {C}}d}),v(g_{d\rightarrow _{\mathfrak {C}}c})\in G$


$1_{\mathfrak {D}}\leftrightarrow _{\mathfrak {D}}v(g_{1_{\mathfrak {C}}})=v(g_c\rightarrow g_c)\leftrightarrow _{\mathfrak {D}} v(g_{c\rightarrow _{\mathfrak {C}}c})$


$v(g_c\rightarrow g_c)\leftrightarrow _{\mathfrak {D}} v(g_{c\rightarrow _{\mathfrak {C}}c})\in G$


$v(g_{1_{\mathfrak {C}}})\in G$


$c\not = d$


$c\rightarrow _{\mathfrak {C}}d\not =1_{\mathfrak {C}}$


$d\rightarrow _{\mathfrak {C}} c\not = 1_{\mathfrak {C}}$


$\mathfrak {C}$


$\star _{\mathfrak {C}}$


$c\rightarrow _{\mathfrak {C}}d\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$d\rightarrow _{\mathfrak {C}}c\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$c\rightarrow _{\mathfrak {C}}d\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$v(g_{c\rightarrow _{\mathfrak {C}}d}\rightarrow g_{\star _{\mathfrak {C}}})\leftrightarrow _{\mathfrak {D}}v(g_{(c\rightarrow _{\mathfrak {C}}d)\rightarrow _{\mathfrak {C}}\star _{\mathfrak {C}}})=(v(g_{c\rightarrow _{\mathfrak {C}}d})\rightarrow _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}}))\leftrightarrow _{\mathfrak {D}}v(g_{1_{\mathfrak {C}}})$


$v(g_{c\rightarrow _{\mathfrak {C}}d}\rightarrow g_{\star _{\mathfrak {C}}})\leftrightarrow _{\mathfrak {D}}v(g_{(c\rightarrow _{\mathfrak {C}}d)\rightarrow _{\mathfrak {C}}\star _{\mathfrak {C}}}),v(g_{1_{\mathfrak {C}}}),v(g_{c\rightarrow _{\mathfrak {C}}d})\in G$


$v(g_{\star _{\mathfrak {C}}})\in G$


$d\rightarrow _{\mathfrak {C}}c\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$c=d$


$v'$


$\mathfrak {C}$


$\mathfrak {D}$


$\mathsf {N}$


$\mathfrak {A}$


$\mathfrak {B}$


$F$


$\mathfrak {B}^H$


$\Psi $


$\mathfrak {A}^H$


$\mathfrak {B}^H/F$


$\mathfrak {B}^H\models \chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})$


$g:|\mathfrak {A}|\rightarrow \mathcal {P}$


$\chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})$


$\neg $


$\mathfrak {B}\models \chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})$


$v$


$A$


$g:|\mathfrak {A}|\rightarrow \mathcal {P}$


$v(\theta (\chi _A^g(\mathfrak {A})))=v(\theta (\chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})))\leq _{\mathfrak {B}}v(g_{\star _{\mathfrak {A}}})\leq _{\mathfrak {B}}v(g_{\star _{\mathfrak {A}}}\lor A)$


$\mathfrak {B}\models \chi _A^g(\mathfrak {A})$


$\relax \square $


$n$


$a_n,r_n$


$s_n$


\begin {equation*}a_n\coloneq \{i\mid i<n\},r_n\coloneq a_n\cup \{n+1\},s_n\coloneq r_n\cup \{n+3\}\end {equation*}


$\mathfrak {A}$


$\underline {\mathfrak {A}}$


$0_{\underline {\mathfrak {A}}}$


$\mathfrak {A}$


$\neg $


$\neg _{\underline {\mathfrak {A}}}a\coloneq a\rightarrow _{\underline {\mathfrak {A}}}0_{\underline {\mathfrak {A}}}$


$\underline {\mathfrak {A}}$


$\underline {\mathfrak {A}}$


$a\in |\underline {\mathfrak {A}}|$


$a\rightarrow _{\underline {\mathfrak {A}}}0_{\underline {\mathfrak {A}}}$


$0_{\underline {\mathfrak {A}}}\rightarrow _{\underline {\mathfrak {A}}}a$


$a=0_{\underline {\mathfrak {A}}}$


$1_{\underline {\mathfrak {A}}}$


$a\not =0_{\underline {\mathfrak {A}}}$


$c\not =0_{\underline {\mathfrak {A}}}$


$0_{\mathfrak {A}}\leq _{\underline {\mathfrak {A}}}a\land _{\underline {\mathfrak {A}}}c$


$a\land _{\underline {\mathfrak {A}}}c\not \leq 0_{\underline {\mathfrak {A}}}$


$a\rightarrow _{\underline {\mathfrak {A}}}0_{\underline {\mathfrak {A}}}=0_{\underline {\mathfrak {A}}}$


$0_{\underline {\mathfrak {A}}}\rightarrow _{\underline {\mathfrak {A}}} a=1_{\underline {\mathfrak {A}}}$


$\rightarrow $


$\relax \square $


$n$


$|\mathfrak {A}_n|=\{a_0,\ldots ,a_{n+8}\}\cup \linebreak \{r_0,\ldots ,r_{n+6}\}\cup \{s_0,s_{n+4},\mathbb {N}\}$


$x,y\in |\mathfrak {A}_n|, x\rightarrow _{\mathfrak {A}_n}y=\bigcup \{z\in |\mathfrak {A}_n|\mid x\cap z\subseteq y\},\neg _{\mathfrak {A}_n}x=x\rightarrow _{\mathfrak {A}_n}a_0$


$\mathfrak {A}_n$


$\lor $


$\land $


$\cup $


$\cap $


$n$


$\mathfrak {A}_n=\langle |\mathfrak {A}_n|,\mathbb {N},a_0,\cap ,\cup ,\rightarrow _{\mathfrak {A}_n},\neg _{\mathfrak {A}_n}\rangle $


$\underline {\mathfrak {A}_n}$


$a_{n+8}$


$n$


$\underline {\mathfrak {A}_0},\underline {\mathfrak {A}_1}$


$\underline {\mathfrak {A}_2}$


$\{\rightarrow \}$


$\mathfrak {A}_n$


$\mathfrak {A}_m$


$\leq _{\mathfrak {A}_n}$


$r_1, a_2, s_0$


$r_{n+5}, a_{n+6},s_{n+4}$


$r_{m+5}, a_{m+6},s_{m+4}$


$\{\rightarrow \}$


$n$


$m$


$n\not =m$


$\underline {\mathfrak {A}_n}$


$\{\rightarrow \}$


$\underline {\mathfrak {A}_m}/F$


$\underline {\mathfrak {A}_m}$


$F$


$\underline {\mathfrak {A}_m}$


$\mathsf {IPC}$


$\mathsf {AVQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {ECQPC}$


$\mathsf {An\cap ECQPC}$


$\mathsf {An^-PC}$


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$\mathsf {NPC}$


$\mathsf {IPC}$


$\mathsf {ECQPC}$


$\mathsf {MPC}_\neg $


$\mathsf {An\cap ECQPC}$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {ECQPC}$


$\underline {\mathfrak {A}_n}$


$n$


$I\subset \mathbb {N}$


$\mathcal {A}_n$


$L^1(I)$


$N^1(\underline {\mathfrak {A}_k})\models \mathcal {A}_l$


$k\not =l$


$\mathcal {A}_n \in L^1(I)$


$n\in I$


$N^1(\underline {\mathfrak {A}_n})\not \models \mathcal {A}_n$


$\mathsf {IPC}$


$\mathsf {ECQPC}$


$n$


\begin {align*}N^1(\underline {\mathfrak {A}_n})=\langle |N^1(\underline {\mathfrak {A}_n})|,1_{N^1(\underline {\mathfrak {A}_n})},\land _{N^1(\underline {\mathfrak {A}_n})},\lor _{N^1(\underline {\mathfrak {A}_n})},\rightarrow _{N^1(\underline {\mathfrak {A}_n})},\neg _{N^1(\underline {\mathfrak {A}_n})}\rangle \end {align*}


\begin {align*}|N^1(\underline {\mathfrak {A}_n})|&\coloneq |\underline {\mathfrak {A}_n}|,\\ 1_{N^1(\underline {\mathfrak {A}_n})}&\coloneq \mathbb {N},\\ \land _{N^1(\underline {\mathfrak {A}_n})}&\coloneq \land _{\underline {\mathfrak {A}_n}},\\ \lor _{N^1(\underline {\mathfrak {A}_n})}&\coloneq \lor _{\underline {\mathfrak {A}_n}},\\ \rightarrow _{N^1(\underline {\mathfrak {A}_n})}&\coloneq \rightarrow _{\underline {\mathfrak {A}_n}},\end {align*}


$\neg _{N^1(\underline {\mathfrak {A}_n})} a:= \begin {cases} a_{n+8}& \text { if }a=0_{\underline {\mathfrak {A}_n}};\\ 0_{\underline {\mathfrak {A}_n}}&\text { otherwise}, \end {cases}$


$a\in |N^1(\underline {\mathfrak {A}_n})|$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(N),(ECQ)}$


$\mathsf {(An\cap ECQ)}$


$\mathsf {(N)}$


$a,b\in |N^1(\underline {\mathfrak {A}_n})|$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}&(\neg _{N^1(\underline {\mathfrak {A}_n})} a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} b)\\ &=(a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}(0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\\ &=(a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$\mathsf {(N)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$a=0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b)&\rightarrow _{N^1(\underline {\mathfrak {A}_n})}(\neg _{N^1(\underline {\mathfrak {A}_n})} 0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} b)\\ &=(0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}(a_{n+8}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\\ &=0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}}\\ &=\mathbb {N}.\end {align*}


$0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b=0_{\underline {\mathfrak {A}_n}}$


$0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b=(0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}b)\land _{N^1(\underline {\mathfrak {A}_n})}(b\rightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})$


$b\rightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}}=0_{\underline {\mathfrak {A}_n}}$


$\mathsf {(N)}$


$a=0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$\mathsf {(N)}$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(ECQ)}$


$a,b\in |N^1(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\land _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} a)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}b&=0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}b\\ &=\mathbb {N}.\end {align*}


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(ECQ)}$


$(\mathsf {An\cap ECQ})$


$(\mathsf {ECQ})$


$I$


$g:|N^1(\underline {\mathfrak {A}_n})|\rightarrow \mathcal {P}$


$\mathcal {A}_n$


$\chi ^g_{(g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}}}(N^1(\underline {\mathfrak {A}_n}))$


$L^1(I)$


$\mathcal {A}_n$


$\mathsf {ECQPC}$


$n\in I$


$L^1(I)$


$\mathsf {N}$


$N^1(\underline {\mathfrak {A}_k})\models \mathcal {A}_l$


$k,l$


$k\not =l$


$N^1(\underline {\mathfrak {A}_l})^H=\underline {\mathfrak {A}_l}$


$\{\rightarrow \}$


$\underline {\mathfrak {A}_l}$


$\underline {\mathfrak {A}_k}/F$


$k$


$k\not =l$


$F$


$\underline {\mathfrak {A}_k}$


$\Psi $


$\underline {\mathfrak {A}_l}$


$\underline {\mathfrak {A}_k}/F$


$k$


$l$


$k\not =l$


$F$


$\underline {\mathfrak {A}_k}$


$k$


$l$


$k\not =l$


$N^1(\underline {\mathfrak {A}_k})\models \mathcal {A}_l$


\begin {align*}\mathcal {A}_n\in L^1(I)\Leftrightarrow n\in I.\end {align*}


$\Leftarrow $


$\Rightarrow $


$n\not \in I$


$\mathcal {A}_n\not \in L^1(I)$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(N)}$


$\mathsf {(ECQ)}$


$\mathcal {A}_m$


$m\not =n$


$N^1(\underline {\mathfrak {A}_n})\not \models \mathcal {A}_n$


$g^{-1}$


$g$


$g^{-1}:\{g_a\in \mathcal {P}\mid a\in |N^1(\underline {\mathfrak {A}_n})|\}\rightarrow |N^1(\underline {\mathfrak {A}_n})|$


$g^{-1}(g(a))=a$


$v$


$|N^1(\underline {\mathfrak {A}_n})|$


$g^{-1}$


$v(\theta (\chi _{(g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}}}^g(N^1(\underline {\mathfrak {A}_n}))))=\mathbb {N}$


$v(g_a\otimes g_b)=a\otimes _{N^1(\underline {\mathfrak {A}_n})} b=v(g_{a\otimes _{N^1(\underline {\mathfrak {A}_n})} b})$


$a,b\in |N^1(\underline {\mathfrak {A}_n})|$


$\otimes \in \Psi $


$v((g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\not =\mathbb {N}$


$v(((g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\lor g_{\star _{\mathfrak {A}}})=\star _{\mathfrak {A}}\not =\mathbb {N}$


$N^1(\underline {\mathfrak {A}_n})\not \models \chi ^g_{(g_{0_{\underline {\mathfrak {A}}_n}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})}(N^1(\underline {\mathfrak {A}_n}))$


\begin {align*}v((g_{0_{\underline {\mathfrak {A}_n}}}&\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\\ &=(v(g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} v(g_{0_{\underline {\mathfrak {A}_n}}}))\rightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} v(g_{0_{\underline {\mathfrak {A}_n}}}))\\ &=(0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}a_{n+8})\rightarrow _{N^1(\underline {\mathfrak {A}_n})}a_{n+8}\\ &=\mathbb {N}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}a_{n+8},\end {align*}


$v((g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\not =\mathbb {N}$


$N^1(\underline {\mathfrak {A}_n})\not \models \mathcal {A}_n$


$\mathcal {A}_n$


$L^1(I)$


$\mathsf {ECQPC}$


$\mathcal {A}_m$


$m\in I$


$L^1(I)\subseteq \{A\mid N^1(\underline {\mathfrak {A}_n})\models A\}$


$\mathcal {A}_n\not \in L^1(I)$


$L^1(I)\not = L^1(J)$


$I$


$J$


$I\not =J$


$\mathsf {IPC}\vdash (p\rightarrow \neg p)\rightarrow \neg p$


$\mathsf {IPC}$


$\mathcal {A}_n$


$n$


$\mathsf {IPC}\vdash \mathcal {A}_n$


$I$


$\mathsf {ECQPC}\subsetneq L^1(I) \subsetneq \mathsf {IPC}$


$I$


$\mathsf {IPC}$


$\mathsf {ECQPC}$


$L^5(I)$


$\mathcal {A}_n$


$\mathsf {An\cap ECQPC}$


$n\in I$


$\relax \square $


$\mathsf {IPC}$


$\mathsf {AVQPC}$


$\mathsf {ECQPC}$


$\mathsf {An\cap ECQPC}$


$n$


\begin {align*}N^2(\underline {\mathfrak {A}_n})=\langle |N^2(\underline {\mathfrak {A}_n})|,1_{N^2(\underline {\mathfrak {A}_n})},\land _{N^2(\underline {\mathfrak {A}_n})},\lor _{N^2(\underline {\mathfrak {A}_n})},\rightarrow _{N^2(\underline {\mathfrak {A}_n})},\neg _{N^2(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^2(\underline {\mathfrak {A}_n})}$


$\neg _{N^2(\underline {\mathfrak {A}_n})} a:= \mathbb {N}$


$a\in |N^2(\underline {\mathfrak {A}_n})|$


$N^2(\underline {\mathfrak {A}_n})$


$\mathsf {(N),(An),(AVQ)}$


$\mathsf {(An\cap ECQ)}$


$\mathsf {(N)}$


$a,b\in |N^2(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}&(\neg _{N^2(\underline {\mathfrak {A}_n})} a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})}\neg _{N^2(\underline {\mathfrak {A}_n})} b)\\ &=(a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}(\mathbb {N}\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N})\\ &=(a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$N^2(\underline {\mathfrak {A}_n})$


$\mathsf {(N)}$


$(\mathsf {An})$


$a\in |N^2(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\neg _{N^2(\underline {\mathfrak {A}_n})} a)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\neg _{N^2(\underline {\mathfrak {A}_n})}a&=(a\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N})\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$N^2(\underline {\mathfrak {A}_n})$


$\mathsf {(An)}$


$\mathsf {(AVQ)}$


$(\mathsf {An\cap ECQ})$


$(\mathsf {An})$


$n$


$\mathcal {B}_n\coloneq \chi ^g_{(g_{\mathbb {N}}\land \neg g_{\mathbb {N}})\rightarrow g_{0_{\underline {\mathfrak {A}_n}}}}(N^2(\underline {\mathfrak {A}_n}))$


$N^2(\underline {\mathfrak {A}_n})$


$\mathcal {B}_n$


$(\mathsf {ECQ})$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {AVQPC}$


$\mathsf {MPC}_\neg $


$n$


\begin {align*}N^3(\underline {\mathfrak {A}_n})=\langle |N^3(\underline {\mathfrak {A}_n})|,1_{N^3(\underline {\mathfrak {A}_n})},\land _{N^3(\underline {\mathfrak {A}_n})},\lor _{N^3(\underline {\mathfrak {A}_n})},\rightarrow _{N^3(\underline {\mathfrak {A}_n})},\neg _{N^3(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^3(\underline {\mathfrak {A}_n})}$


$\neg _{N^3(\underline {\mathfrak {A}_n})} a:=a\rightarrow _{N^3(\underline {\mathfrak {A}_n})} a_0$


$a\in |N^3(\underline {\mathfrak {A}_n})|$


$N^3(\underline {\mathfrak {A}_n})$


$\mathsf {(N)\text { and }(An)}$


$\mathsf {(N)}$


$a,b\in |N^3(\underline {\mathfrak {A}_n})|$


$\mathsf {(N)}$


$N^3(\underline {\mathfrak {A}_n})$


$(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}b)\land _{N^3(\underline {\mathfrak {A}_n})}(b\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\leq _{N^3(\underline {\mathfrak {A}_n})}a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0$


$(b\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a)\land _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\leq _{N^3(\underline {\mathfrak {A}_n})}b\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0$


$\mathsf {(An)}$


$a\in |N^3(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}&\neg _{N^3(\underline {\mathfrak {A}_n})}a)\rightarrow _{N^3(\underline {\mathfrak {A}_n})}\neg _{N^3(\underline {\mathfrak {A}_n})}a\\ &=(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0))\rightarrow _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\\ &=(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\rightarrow _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\\ &=\mathbb {N}.\end {align*}


$(\mathsf {An})$


$N^3(\underline {\mathfrak {A}_n})$


$n$


$\mathcal {D}_n\coloneq \chi ^g_{\neg \neg (\neg (g_{\mathbb {N}}\rightarrow g_{\mathbb {N}})\rightarrow g_{0_{\underline {\mathfrak {A}_n}}})}(N^3(\underline {\mathfrak {A}_n}))$


$N^3(\underline {\mathfrak {A}_n})$


$\mathcal {D}_n$


$(\mathsf {AVQ})$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {An\cap ECQPC}$


$\mathsf {An^-PC}$


$n$


\begin {align*}N^6(\underline {\mathfrak {A}_n})=\langle |N^6(\underline {\mathfrak {A}_n})|,1_{N^6(\underline {\mathfrak {A}_n})},\land _{N^6(\underline {\mathfrak {A}_n})},\lor _{N^6(\underline {\mathfrak {A}_n})},\rightarrow _{N^6(\underline {\mathfrak {A}_n})},\neg _{N^6(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^4(\underline {\mathfrak {A}_n})}$


$\neg _{N^6(\underline {\mathfrak {A}_n})} a:=a_{n+8}$


$a\in |N^6(\underline {\mathfrak {A}_n})|$


$N^6(\underline {\mathfrak {A}_n})$


$(\mathsf {N})$


$(\mathsf {An^-})$


$n$


\begin {equation*}\mathcal {F}_n\coloneq \chi ^g_{\neg \neg (g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow g_{0_{\underline {\mathfrak {A}_n}}})\lor (\neg (g_{\mathbb {N}}\rightarrow g_{\mathbb {N}})\rightarrow g_{0_{\underline {\mathfrak {A}_n}}} )}(N^6(\underline {\mathfrak {A}_n})).\end {equation*}


$N^6(\underline {\mathfrak {A}_n})$


$\mathcal {F}_n$


$(\mathsf {An\cap ECQ})$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {An^-PC}$


$\mathsf {CoPC}$


$n$


\begin {align*}N^{7}(\underline {\mathfrak {A}_n})=\langle |N^{7}(\underline {\mathfrak {A}_n})|,1_{N^{7}(\underline {\mathfrak {A}_n})},\land _{N^{7}(\underline {\mathfrak {A}_n})},\lor _{N^{7}(\underline {\mathfrak {A}_n})},\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})},\neg _{N^{7}(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^7(\underline {\mathfrak {A}_n})}$


$\neg _{N^{7}(\underline {\mathfrak {A}_n})} a:= \begin {cases} \mathbb {N}& \text { if }a=0_{\underline {\mathfrak {A}_n}};\\ a_0&\text { otherwise }, \end {cases}$


$a\in |N^{7}(\underline {\mathfrak {A}_n})|$


$N^7(\underline {\mathfrak {A}_n})$


$\mathsf {(Co)}$


$\mathsf {(N)}$


$\mathsf {(Co)}$


$a,b\in N^{7}(\underline {\mathfrak {A}_n})$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _n(&\neg _{N^{7}(\underline {\mathfrak {A}_n})} b\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\neg _{N^{7}(\underline {\mathfrak {A}_n})} a)\\ &=(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}(a_0\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}a_0)\\ &=(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$\mathsf {(Co)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b=0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}&(\neg _{N^{7}(\underline {\mathfrak {A}_n})}b\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\neg _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\\&=\mathbb {N}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}(a_0\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\mathbb {N})\\ &=\mathbb {N}.\end {align*}


$\mathsf {(Co)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b=0_{\underline {\mathfrak {A}_n}}$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}&(\neg _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\neg _{N^{7}(\underline {\mathfrak {A}_n})} a)\\ &=(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}(\mathbb {N}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}a_0)\\ &=0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}a_0\\ &=\mathbb {N}.\end {align*}


$\mathsf {(Co)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$\mathsf {(Co)}$


$N^{7}(\underline {\mathfrak {A}_n})$


$\mathsf {N}$


$n$


$\mathcal {G}_n\coloneq \chi ^g_{(g_{a_0}\rightarrow \neg g_{a_0})\rightarrow (\neg g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{a_0})}(N^{7}(\underline {\mathfrak {A}_n}))$


$N^{7}(\underline {\mathfrak {A}_n})$


$\mathcal {G}_n$


$(\mathsf {An}^-)$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$n$


\begin {align*}N^{8}(\underline {\mathfrak {A}_n})=\langle |N^{8}(\underline {\mathfrak {A}_n})|,1_{N^{8}(\underline {\mathfrak {A}_n})},\land _{N^{8}(\underline {\mathfrak {A}_n})},\lor _{N^{8}(\underline {\mathfrak {A}_n})},\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})},\neg _{N^{8}(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^8(\underline {\mathfrak {A}_n})}$


$\neg _{N^{8}(\underline {\mathfrak {A}_n})} a:= \begin {cases} \mathbb {N}& \text { if }a=a_{n+8};\\ a_{n+8}&\text { otherwise }, \end {cases}$


$a\in |N^{8}(\underline {\mathfrak {A}_n})|$


$N^{8}(\underline {\mathfrak {A}_n})$


$\mathsf {(N)}$


$\mathsf {(NECQ)}$


$\mathsf {(N)}$


$a,b\in N^{8}(\underline {\mathfrak {A}_n})$


$a\not = a_{n+8}$


$b\not =a_{n+8}$


\begin {align*}(a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)&\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(\neg _{N^{8}(\underline {\mathfrak {A}_n})} a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b)\\&=(a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8})\\ &=(a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$\mathsf {(N)}$


$a\not =a_{n+8}$


$b\not =a_{n+8}$


$a= a_{n+8}$


$b\not =a_{n+8}$


\begin {align*}(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})} b)&\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(\neg _{N^{8}(\underline {\mathfrak {A}_n})} a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b)\\ &=(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(\mathbb {N}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8})\\ &=(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}\\ &=\mathbb {N}.\end {align*}


$\mathbb {N}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}=a_{n+8}$


$\mathbb {N}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}=(\mathbb {N}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8})\land _{N^{8}(\underline {\mathfrak {A}_n})}(a_{n+8}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\mathbb {N})$


$\mathbb {N}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}=a_{n+8}$


$\mathsf {(N)}$


$a=a_{n+8}$


$b\not =a_{n+8}$


$\mathsf {(NECQ)}$


$a,b\in |N^{8}(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\land _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} a)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b&=a_{n+8}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b\\ &=\mathbb {N}.\end {align*}


$\mathsf {(NECQ)}$


$N^{8}(\underline {\mathfrak {A}_n})$


$n$
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invited talks, eighteen contributed talks, and eighteen short presentations
accepted through a light reviewing process.

Given that non-classical logics form a broad and diverse area of research
within logic, the contributions collected in this issue address a wide range of
topics. They include, among others, proof-theoretic properties of connexive
implication, term-modalities, until-free fragments of linear temporal logic,
and subminimal intuitionistic negation.

The article “Cut-Elimination and Normalization Theorems for Con-
nexive Logics over Wansing’s C1” by Norihiro Kamide develops a unified
Gentzen-style proof-theoretical framework for a family of connexive logics
based on Wansing’s constructive connexive logic C. Within this framework,
the author introduces sequent calculi and natural deduction systems (in-
cluding variants with general elimination rules) for C and its extensions—
C3, MC, and CN—obtained by adding the law of excluded middle, Peirce’s
law, or both. The paper proves cut-elimination theorems for the sequent
calculi, normalisation theorems for the corresponding natural deduction
systems, and establishes their equivalence. In addition, similar results
are obtained for a family of paraconsistent logics (N-family) over Nelson’s
four-valued logic N4. Compared to earlier work, the article extends and
refines proofs, corrects errors from a prior conference version, and provides
detailed technical developments that yield an integrated proof-theoretical
treatment of connexive and related paraconsistent logics. The article by
Takahiro Sawasaki, “Semantic Incompleteness of Liberman et al. (2020)’s
Hilbert-Style Systems for Term-Modal Logics with Equality and Non-Rigid
Terms”, establishes that the Hilbert-style systems proposed by Liberman
et al. [1] for term-modal logics are semantically incomplete when extended
with standard modal axioms (T, D, 4, 5). Term-modal logic, which allows
modal operators indexed by first-order terms, is important in epistemic and
deontic contexts, but the author shows that certain formulas valid in the
intended Kripke semantics are unprovable in these systems. In particular,
the validity of the formula z = ¢ — (P(z) — P(c)) highlights the gap.
To demonstrate this, the paper develops a non-standard Kripke semantics
in which the interpretation of constants and function symbols depends on
the relations they occur with, thereby exposing the systems’ limitations.
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The paper also corrects a mischaracterised frame correspondence in Liber-
man et al’s paper, providing refined technical results on the relationship
between syntax, semantics, and completeness in this family of logics.

Norihiro Kamide and Sara Negri’s paper “Unified Sequent Calculi and
Natural Deduction Systems for Until-free Linear-time Temporal Logics”
introduces a unified Gentzen-style proof-theoretic framework for until-free
propositional linear-time temporal logic (LTL) and its intuitionistic variant.
It develops both single-succedent sequent calculi and natural deduction sys-
tems that extend Gentzen’s classical (LK, NK) and intuitionistic (LI, NT)
calculi in a uniform way. The main results establish the equivalence be-
tween the proposed sequent calculi and natural deduction systems, prove
cut-elimination theorems for the calculi, and show normalisation theorems
for the deduction systems. By doing so, the article provides a modular,
consistent, and proof-theoretically robust foundation for reasoning in these
temporal logics, clarifying their structural properties and relations to clas-
sical proof theory.

Finally, the article “Continua of Logics Related to Intuitionistic and
Minimal Logics” by Kaito Ichikura investigates the landscape of logical sys-
tems lying between and around intuitionistic and minimal logics. Building
on Vakarelov’s work on co-minimal and subminimal logics [2], the paper re-
formulates earlier approaches in a uniform framework and introduces a sim-
pler characterisation of the intersection of minimal and co-minimal logics.
Using algebraic semantics (Wroniski’s method) rather than neighborhood
semantics, the author demonstrates the existence of continua of distinct
logics situated between these systems, thereby extending classical results
on the cardinality of intermediate logics. The study not only clarifies the
relations among various subminimal systems (such as SUBMIN, CO-MIN,
and their fragments), but also provides simpler proofs of known results
and shows how algebraic tools can yield new insights into the fine-grained
structure of the logical space below intuitionistic logic.
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middle. Natural deduction systems with general elimination rules are also in-
troduced for the C-family. Theorems establishing the equivalence between the
proposed sequent calculi and natural deduction systems are demonstrated. Cut-
elimination and normalization theorems are established for the proposed sequent
calculi and natural deduction systems, respectively. Additionally, similar results
are obtained for a family (N-family) of paraconsistent logics over Nelson’s con-
structive four-valued logic N4.

Keywords: connexive logic, cut-elimination theorem, normalization theorem.

2020 Mathematical Subject Classification: 03B50, 03B53.

1. Introduction

Connexive logics are recognized as philosophically plausible paraconsistent
contradictory logics [3, 22, 40, 43]. A distinguishing feature of connexive
logics is their validation of the so-called Aristotle’s theses: ~(a—~a) and
~(~a—a), and the so-called Boethius’ theses: (a—f)—~(a—~f) and
(a—=~B)—=~(a—F). On the one hand, the roots of connexive logics can
be traced back to Aristotle and Boethius. On the other hand, modern
perspectives on connexive logics were established by Angell [3] and Mc-
Call [22].

A basic constructive connexive logic referred to as C, considered a
variant of Nelson’s constructive four-valued logic N4 [2, 24, 19], was in-
troduced by Wansing in [40]. Furthermore, C was extended by Wans-
ing in [40] to introduce a constructive connexive modal logic, serving as
a constructive connexive analogue of the smallest normal modal logic K.
For further details on connexive logics, including C, refer to, for example,
[3, 22, 40, 4, 17, 20, 43, 30, 26] and the references therein.

In this study, a unified Gentzen-style framework for proving cut-eli-
mination and normalization theorems is employed to investigate several
connexive logics over Wansing’s C. The term “unified Gentzen-style frame-
work” means that we can handle cut-elimination theorems in Gentzen-
style sequent calculi and normalization theorems in Gentzen-style natural
deduction systems uniformly, with equivalences between these calculi and
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systems. Additionally, natural deduction systems with general elimination
rules are added to this framework.

The logics under consideration include Omori and Wansing’s connexive
logic C3 [30], Wansing’s material connexive logic MC [43], and Cantwell’s
connexive logic CN [4]. The relationships among these logics can be sum-
marized as follows: C3 is obtained from C by adding the law of excluded
middle —-aVa, MC is obtained from C by adding Peirce’s law
((a—=f)—a)—a, and CN is obtained from C3 by adding Peirce’s law.

On the one hand, Gentzen-style or G3-style sequent calculi for C, C3,
CN and some intermediate logics between C and C3 have been introduced
and investigated [40, 30, 6, 25], along with a Gentzen-style natural deduc-
tion system for the implicational fragment of C [13]. On the other hand,
a unified Gentzen-style framework for C, C3, MC, and CN has not been
established. Therefore, we construct such a framework in this study. This
framework enables an integrated proof-theoretical treatment of these log-
ics and establishes a natural correspondence between sequent calculi and
natural deduction systems for them.

We now discuss some related works on sequent calculi for connexive
logics. The cut-elimination theorem for a Gentzen-style sequent calculus,
referred to as sC, was proved by Wansing in [40], although the name sC was
not used by him. The cut-elimination theorems for G3-style sequent cal-
culi, namely G3C and G3C3at for C and C3, respectively, were established
by Omori and Wansing in [30]. In this context, G3C3at is a sequent cal-
culus that incorporates the rule of atomic excluded middle (at-ex-middle)
in place of the rule of excluded middle (ex-middle). The admissibility of
(ex-middle) in G3C3at was also demonstrated by them. Consequently,
the cut-elimination theorem for a G3-style sequent calculus, referred to as
G3C3, which is obtained from G3C3at by replacing (at-ex-middle) with
(ex-middle), was also demonstrated by them in [26]. Additionally, the
first-order extensions of G3C, G3C3at, and G3C3 were also introduced
and investigated by them. The systems G3C, G3C3at, and G3C3 were also
used by Niki and Wansing in [26] to explore the provable contradictions of
C and C3.
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Several sequent calculi for some intermediate logics between C and C3
have recently been studied by Niki in [25]. A three-sided sequent calculus
for CN, under the name CC/TTm, has recently been introduced and in-
vestigated by Egré et al. in [6]. A natural deduction system, NC2, and
a two-sorted typed A-calculus, 2), were introduced and investigated by
Wansing in [42] for the bi-connexive propositional logic 2C. Natural deduc-
tion systems for two variants of connexive logics concerning non-classical
interpretations of a certain kind between negation and implication were
studied by Francez in [9]. In addition, some extensions of C were studied
by Olkhovikov in [27, 28] and by Omori in [29], although these studies are
not concerned with sequent calculus or natural deduction system.

The structure of this paper is as follows.

In Section 2, we introduce Gentzen-style sequent calculi for C, C3, MC,
and CN, referred to as sC, sC3, sMC, and sCN, respectively. Furthermore,
we prove the cut-elimination theorems for these calculi. The calculi sC3,
sMC, and sCN are obtained from sC by adding the excluded middle rule
(ex-middle), the Peirce rule (Peirce), and both (ex-middle) and (Peirce),
respectively. Moreover, we introduce alternative Gentzen-style sequent cal-
culi for MC and CN, referred to as sMC* and sCN*, respectively. These
calculi are obtained from sC by adding the generalized excluded middle rule
(g-ex-middle) and both (ex-middle) and (g-ex-middle), respectively. We
then prove a theorem establishing the cut-free equivalence between sMC*
(sCN*) and sMC (sCN, resp.), along with presenting the cut-elimination
theorems for sMC* and sCN*.

In Section 3, we introduce Gentzen-style natural deduction systems for
C, C3, MC, and CN, referred to as nC, nC3, nMC, and nCN, respectively.
We then prove a theorem establishing equivalence between nC, (nC3, nMC,
and nCN), and sC, (sC3, sMC*, and sCN*, resp.). Furthermore, we prove
the normalization theorems for nC, nC3, nMC, and nCN.

In Section 4, we introduce natural deduction systems with general elim-
ination rules [33, 37], for C, C3, MC, and CN, referred to as gC, gC3, gMC,
and gCN, resp. We then prove a theorem establishing equivalence between
gC, (gC3, gMC, and gCN), and sC, (sC3, sMC*, and sCN*, resp.). Further-
more, we prove the normalization theorems for gC, gC3, gMC, and gCN.
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In Section 5, we show some similar results on a family (N-family) of pa-
raconsistent logics over Nelson’s constructive four-valued logic N4 [2, 24].
The N-family is obtained from N4 by adding Peirce’s law, the law of ex-
cluded middle, and/or the law of generalized excluded middle.

In Section 6, we conclude this study and provide some final remarks.

2. Gentzen-style sequent calculi and cut-elimination
theorems

Formulas of connexive logics are constructed using countably many propo-
sitional variables, the logical connectives A (conjunction), V (disjunction),
— (implication), and ~ (connexive negation). We use small letters p, g, ...
to denote propositional variables, Greek small letters a, 3, ... to denote for-
mulas, and Greek capital letters I', A, ... to denote finite (possibly empty)
sets of formulas. A sequent is an expression of the form I' = . We use
the expression L F S to represent the fact that a sequent S is provable in
a sequent calculus L. We say that “a rule R of inference is admissible in a
sequent calculus L” if the following condition is satisfied: For any instance

Sy S,
S

of R, if L + S; for all ¢, then L - S. Furthermore, we say that “R is
derivable in L” if there is a derivation from Si,---,S, to S in L.

We introduce Gentzen-style sequent calculi LJ* [34], sC [40], sC3, sMC,
and sCN for positive intuitionistic logic, C [40], C3 [30], MC [43], and CN
[4], respectively.

DEFINITION 2.1 (LJT, sC, sC3, sMC, and sCN).

1. LJ* is defined by the initial sequents and structural and logical in-
ference rules of the following form, for any propositional variable p:

p,I' = p (initl)

'sa ao,X=7v
Y=~

(cut)
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Fa:;(;,F’ﬁ,AA:ZZV (—left) % (—right)
% (Aleft) W (Aright)
a’FZ;Fi Ff 7 (Vieft)

Fl;% (Vright1) % (Vright2).

2. sC is obtained from LJT by adding the negated initial sequents and
logical inference rules of the following form, for any propositional
variable p:

~p,T' = ~p (init2)

«, r = Y I = Q .
o TS (~left) To oma (~right)
I'=> ~B,A = =~
« ~b, 7 (~—left) @ b (~—sTight)

~(a—=8), A =~ I'= ~(a—p)
~a =y ~f =y

~(ang),I' =~

(~Aleft)

I'=~g
I'= ~(anp)

I'= ~a

(~Aright2)

~a,~3, T =y I's~a I'=s ~f
————— (~Vleft)
~(aVvp),T' =~y = ~(aVvp)

(~Vright).

3. sC3 is obtained from sC by adding the excluded middle rule of the
form:
~oa,I'=v o, '=7y
I'= v

(ex-middle).
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4. sMC is obtained from sC by adding the Peirce rule of the form:

a—3,T =«

r=a (Peirce).

5. sCN is obtained from sC3 by adding (Peirce).

Remark 2.2.

163

1. It is known that single-succedent Gentzen-style sequent calculi for

classical logic are obtained from Gentzen’s sequent calculus LJ (or
other variants such as the G3-style sequent calculus G3ip) for in-
tuitionistic logic by adding one of (ex-middle), (Peirce), and their
variants. These single-succeddent calculi have been studied by sev-
eral researchers [5, 7, 10, 1, 36, 23, 12, 15]. For a survey on these
calculi, see, for example, [12, 15].

. (ex-middle), which corresponds to the law of excluded middle ~aVa,
was introduced and investigated by von Plato [36, 23], although the
name (ex-middle) was not used by him. He showed that (ex-middle)
can be restricted to the inference rule of the form:

~p,I'=~vy p T =7~y
I'=~

(at-ex-middle)

where p is a propositional variable. Namely, (at-ex-middle) and (ex-
middle) are equivalent over intuitionistic logic. He proved the cut-
elimination theorems for some sequent calculi with (at-ex-middle) or
(ex-middle).

. (Peirce), which corresponds to the Peirce law ((a—f)—a)—a, was
introduced and investigated by Curry [5], Felscher [7], Gordeev [10],
and Africk [1]. The cut-elimination theorem for LJ + (Peirce) was
proved by them. Specifically, Africk [1] obtained a simple embedding-
based proof of the cut-elimination theorem for LJ + (Peirce). The
subformula property for a version of LJ 4 (Peirce) without the falsity
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constant | was shown by Gordeev. Specifically, he proved in [10]
that 8 in (Peirce) can be restricted to a subformula of some formulas
in (T, a).

4. Gentzen’s LK for classical logic, L] + (ex-middle), and LJ + (Peirce)
are theorem-equivalent within the language {A,V,—,—, L}. How-
ever, sC3, sMC, and sCN (and their corresponding logics C3, MC,
and CN) are not logically-equivalent. This fact will be formally shown
in Theorem 2.7.

PROPOSITION 2.3. Let L be LJT, sC, sC3, sMC, or sCN. For any formula
«a and any set I' of formulas, we have: L F o, = a.

PRrROOF: By induction on «a. U

PROPOSITION 2.4. Let L be LJ*, sC, sC3, sMC, or sCN. The following
rule is admissible in cut-free L:
I'=~y
a,I'=~y

(we).

PrOOF: By induction on the proofs P of I' = 7 of (we) in cut-free L. O
The following cut-elimination theorems for LJ* and sC are well-known.

THEOREM 2.5 (Cut-elimination for LJT and sC [34, 40]). Let L be LJ*
or sC. The rule (cut) is admissible in cut-free L.

We now show the cut-elimination theorems for sC3, sMC, and sCN.

THEOREM 2.6 (Cut-elimination for sC3, sMC, and sCN). Let L be sC3,
sMC, or sCN. The rule (cut) is admissible in cut-free L.

PROOF (Sketch): We give a sketch of the proof.

e First, we show the cut-elimination theorem for sC3. It is known that
the cut-elimination theorem for the G3-style sequent calculus G3C3 for
C3, which has (ex-middle), holds [30]. Then, we can show the cut-free
equivalence between G3C3 and sC3. Thus, from this equivalence and the
cut-elimination theorem for G3C3, we obtain the cut-elimination theorem
for sC3.
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e Second, we show the cut-elimination theorem for sMC. It is known
that the cut-elimination theorem for LJ + (Peirce) holds. This theorem was
proved directly and indirectly by using the methods by Gordeev [10] and
Africk [1]. Thus, the cut-elimination theorem for the negation-less fragment
(i.e., LJT + (Peirce)) of LJ + (Peirce) holds because LJ + (Peirce) is a
conservative extension of LJT + (Peirce) by the cut-elimination theorem
for LJ + (Peirce). Then, we can show a theorem for embedding (cut-free)
sMC into (cut-free) LJ* + (Peirce), and by using this theorem, we can show
the cut-elimination theorem for sMC. We will show this in the following.

Prior to showing the embedding theorem, we introduce a translation of
sMC to LJT + (Peirce). Let ® be a set of propositional variables and &’
be the set {p’ | p € ®} of propositional variables. Then, the language Ly
of sMC is defined using ®, A, V, —, and ~. The language Liyy of LI
is obtained from Lyic by replacing ~ with ®'. A mapping f from Lyc to
Lint+ is defined inductively by:

1. for anypE@ f(p) :==pand f(~p):=p € P,
2. flatB):=fla)t f(B) with § € {A,V, =},
3. f(NNa) fla),

4. f(~(anB)) == f(~a)Vf(~B),
5. f(~(aVvB)) == f(~a)A\f(~B),
6. f(~(a=p)) = fla)=f(~B).

An expression f(I') denotes the result of replacing every occurrence of
a formula o in I' by an occurrence of f(a). We remark that a similar
translation defined as above has been used by Gurevich [11], Rautenberg
[32] and Vorob’ev [38] to embed Nelson’s constructive logic [2, 24] into
positive intuitionistic logic.

We then obtain the following theorem for embedding sMC into LJ* 4
(Peirce):

1. sMC kT =~ iff LIt + (Peirce) F f(T) = f(v),
2. sMC — (cut) b ' = « iff LJT + (Peirce) — (cut) - f(T') = f(v).

The proof of this theorem is almost the same as that for the theorem for em-
bedding sC or a Gentzen-style sequent calculus for Nelson’s paraconsistent
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four-valued logic N4 into LJT. For more information on these embedding
theorems, see, for example, [18, 19, 17, 20, 14].

We are ready to prove of the cut-elimination theorem for sMC. Suppose
that sMC + I' = ~. Then, we have LJ* + (Peirce) - f(T') = f(v) by
the statement (1) of the theorem, and hence LJ* + (Peirce) — (cut)
F(T) = f(~) by the cut-elimination theorem for LJ* + (Peirce). Then, by
the statement (2) of the theorem, we obtain sMC — (cut) - I' = ~.

e Finally, the cut-elimination theorem for sCN can be proved in a similar
way as for sMC. O

THEOREM 2.7 (Separation of C, C3, MC, and CN). The logics C, C3, MC,
and CN are not logically-equivalent.

PRrOOF: To show this, we use sC, sC3, sMC, sCN, and Theorem 2.6. Let
p and ¢ be distinct propositional variables. Then, we consider only the
following facts:

1. = ((p—q)—p)—p is provable in cut-free sSMC, but not provable in
cut-free sC3,

2. = ~pVp is provable in cut-free sC3, but not provable in cut-free sMC.

The unprovabilities of these sequents are guaranteed by Theorem 2.6. We
thus show the case for sMC — (cut) + = ((p—¢)—p)—p by:

p = p (initl) ¢ = ¢ (initl)

P=4p =4
p=q=p—q p = p (init1)

p—=q, (p—q)—=p=Dp
(p—a)—=p=p
= ((p—q)—p)—p

(—left)
(—right)

(—left)

(Peirce)
(—right)

and the case for sC3 — (cut) b = ~pVp by:

~p = ~p (init2)
~p = ~pVp

p = p (initl)
p = ~pVp (

(Vright1) (Vright2)

ex-middle).

= ~pVp
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Next, we introduce alternative Gentzen-style sequent calculi sMC* and
sCN* for MC and CN, respectively. These calculi will be used to prove the
normalization theorems for the natural deduction systems nMC and nCN
for MC and CN, respectively.

DEFINITION 2.8 (sMC* and sCN*).

1. sMC* is obtained from sC by adding the generalized excluded middle
rule of the form:
a—=pB,I'=~v ol =7~
I'=»~

(g-ex-middle).

2. sCN* is obtained from sC3 by adding (g-ex-middle).
Remark 2.9.

1. (g-ex-middle), which corresponds to the generalized law of excluded
middle (a«—f)Va, was introduced and investigated by Kamide in [12],
although the name (g-ex-middle) was not used by him. He proved
the cut-elimination theorem for LJ + (g-ex-middle) using the method
by Africk [1].

2. LJ + (g-ex-middle) is regarded as a sequent calculus for classical logic.
Actually, (g-ex-middle) and (ex-middle) are equivalent over positive
intuitionistic logic. (g-ex-middle) is regarded as a generalization of
(ex-middle) if we assume the falsity constant | and the definition
~a = a—1. (g-ex-middle) is also regarded as a generalization of
(Peirce) and it was referred to as generalized Peirce rule (named (g-
Peirce)) in [12].

3. The following is an example proof of = (p—¢q)Vp in cut-free sMC*:

p = p (initl) ¢ = ¢ (initl)

PGD = q — (=left)
p=g = p—=q (7right) p=p (initl) .
(Vright1) ———— (Vright2)
p—q = (p—q)Vp p= (p—q)Vp

g-ex-middle).
= (p—=q)Vp ( )
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ProprosITION 2.10. Let L be sMC* or sCN*. For any formula « and any
set I' of formulas, we have: L F o, = «.

Proor: By induction on a. O

PROPOSITION 2.11. Let L be sMC* or sCN*. The rule (we) is admissible
in cut-free L.

PrOOF: Similar to the proof of Proposition 2.4. O

THEOREM 2.12 (Equivalence between sMC (sCN) and sMC* (sCN*)). Let
Ly and Lo be the sequent calculi sMC and sCN, respectively. Let L} and
L% be the sequent calculi SMC* and sCN*, respectively. For any i € {1,2},
we have:

1. LiFT=~iff LI T =+,
2. Li — (cut) F "=~ iff LF — (cut) - T =~.

Proor: We show only (2). The fact that L; — (cut) - I =  implies L}

— (cut) F T' = ~ is obvious because (Peirce) is an instance of (g-ex-middle).

Thus, we show that L7 — (cut) - I' = ~ implies L; — (cut) - I' =+ by

induction on the proofs P of I' = ~ in L} — (cut). We distinguish the cases

according to the last inference of P and show only the following case.
Case (g-ex-middle): The last inference of P is of the form:

a—>6,r =y a,F.:>7
I'=»~y

(g-ex-middle).

By induction hypotheses, we have: L; — (cut) - a—38,I' =~ and L; —
(cut) F a,T' = v. Then, we obtain the required fact:

. Ind.hyp. . Ind.hyp.
oz—)ﬁ,.f‘:>’y a,F.=>’y
y—=a,a—0,T =~
a—B,T =~ ' 0
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THEOREM 2.13 (Cut-elimination for sMC* and sCN*).Let L be sMC* or
sCN*. The rule (cut) is admissible in cut-free L.

Proor: By Theorems 2.6 and 2.12. O

3. Gentzen-style natural deduction systems
and normalization theorems

We now define Gentzen-style natural deduction systems NJ*, nC, nC3,
nMC, and nCN for positive intuitionistic logic, C, C3, MC, and CN, re-
spectively. We use the notation [a] in the definitions of natural deduction
systems to denote the discharged assumption (i.e., the formula « is a dis-
charged assumption by the underlying logical inference rule).

DEFINITION 3.1 (NJ*, nC, nC3, nMC, and nCN).

1. NJ* is defined as the logical inference rules of the form: 2

[o]
é a—f «
asp (—=I) 5 (—E)
a 8 a anB
wg (D 2Py T (AE2)
o] (8]
a0 (I a’%ﬁ (VI2) M (VE).

2The discharge in (—1I) can be vacuous. Namely, the following rule is an instance of

(—1I):
B

a—f.
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2. nC is obtained from NJ* by adding the negated logical inference rules
of the form:

S )

[o]
N:/B ~(a=p) «a
~(a—3) (~=1) <3 (~—E)
~Q NB
ol [~
~ens) v
¥ (~AE)
~a ~B ~(av ~(aVp)
~(avp) VY @vB) (wE) —5 (~VER).
3. nC3 is obtained from nC by adding the rule of excluded middle of
the form:
~al o]
Y
— (BM).

4. nMC is obtained from nC by adding the generalized rule of excluded
middle of the form:

a=8] ol

Y9
gl

(GEM).

5. nCN is obtained from nC3 by adding (GEM).
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Remark 3.2.

1. (EM) and its restricted version (EM-at) with the propositional vari-
able discharged assumptions were originally introduced by von Plato
[36], and called there Gem (for generalized excluded middle) and Gem-
at, respectively. He proved normalization theorems for systems with
(EM) or (EM-at).

2. Using (EM) and (GEM), we can prove the formulas ~aVa and
(a—p)Va by:

[o]!
(a—=B)Va (a—=P)Va

3. Using (GEM), we can prove the formula ((«—8)—a)—a« by:

(osfoel! foosfl? gy
((a—=pf)—a)—a (

(G

—I

4. The following Peirce rule was introduced by Curry [5] and studied by
Zimmermann [44]:

[a—5]
g (PE).

Natural deduction systems with (PE) were considered by them for
classical logic and the normalization theorems for these systems were
proved by them.
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5. (PE) is regarded as an instance of (GEM), and using (PE), we can
prove the formula ((a—f)—a)—a by:

[(a=B)—a]  [a—p]?

& (PE)?

6. In this study, we do not consider the natural deduction systems nC
+ (PE) and nC 4+ (EM) + (PE) because reduction conditions for
nC + (PE) and nC + (EM) + (PE) cannot be defined in a similar
and uniform way as for nMC and nCN. Moreover, we do not know
if nC + (PE) (nC + (EM) + (PE)) and nMC (nCN, respectively)
are logically-equivalent or not. Namely, we have not yet proved the
equivalence (or difference) of nC + (PE) (nC + (EM) + (PE)) and
nMC (nCN, respectively).

7. The {—, ~}-fragment of nC was introduced and investigated by Ka-
mide in [13], wherein the strong normalization theorem for the frag-
ment was proved.

Next, we define some notions for the natural deduction systems.

DEFINITION 3.3. The inference rules (—1), (AI), (VI1), (VI2), (~~1), (~—T),
(~AIL), (~AI2), (~VI), (EM), and (GEM) are called introduction rules, and
the inference rules (—E), (AE1), (AE2), (VE), (~~E), (~—E), (~AE),
(~VEL), and (~VE2) are called elimination rules. The notions of major
and minor premises of the inference rules without (EM) and (GEM) are
defined as usual. The notions of derivation, (open and discharged) assump-
tions of derivation, and end-formula of derivation are also defined as usual.
Any derivation starts with an assumption « can be considered a derivation
of a from itself. For a derivation D, we use the expression oa(D) to denote
the set of open assumptions of D and the expression end(D) to denote the
end-formula of D. A formula « is said to be provable in a natural deduction
system N if there exists a derivation in N with no open assumptions whose
end-formula is a.
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Remark 3.4. There are no notions of major and minor premises of (EM)
and (GEM). Namely, both the premises of (EM) and (GEM) are neither
major nor minor premise. In this study, (EM) and (GEM) are treated as
introduction rules.

Next, we define a reduction relation > on the set of derivations in the
natural deduction systems. Prior to defining >, we define some notions
concerning >.

DEFINITION 3.5. Let L be nC, nC3, nMC, or nCN. Let a be a formula
occurring in a derivation D in L. Then, « is called a mazimum formula in
D if « satisfies the following conditions:

1. « is the conclusion of an introduction rule, (VE), or (~AE),

2. « is the major premise of an elimination rule.
A derivation is said to be normal if it contains no maximum formula. The
notion of substitution of derivations to assumptions is defined as usual. We
assume that the set of derivations is closed under substitution.

DEFINITION 3.6 (Reduction relation). Let v be a maximum formula in a
derivation that is the conclusion of an inference rule R.

1. The definition of the reduction relation > at v in nC is obtained by
the following conditions.

(a) Ris (—I) and v is a—p:

(o]
/;D . L&
S 2 & a
a—f (=1 6 (SE) : D
B > 8.
(b) Ris (Al) and v is a3 Aaa:
. Dy D
(651} (6% .
o\ (/\I) . D;
—a, (NE) s g

where 7 is 1 or 2.
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c¢) Ris (VI1) or (VI2) and v is a1 Vas:

(c) ¥
D [0{1] [0{2} D
021' : 51 : 82 di

(VIi) : ; :
(65) \/Oé2 1) 1) . (c;l‘
; (VE)

where 7 is 1 or 2.
(d) Ris (VE):

o (8
D, . Dy . Dy £ £
avp o o 1 2
v (VE) 5, 92 R
)
] B
. Dy & & ipy & &
D, v 01 P R o 01 d9 I
aVvp 1 )
> 5 (VE)

where R’ is an arbitrary inference rule, and both £; and &5 are
derivations of the minor premises of R’ if they exist.

(e) Ris (~~I), and v is ~~a:

. D
(6% .
WENNI D

«

~~

(f) Ris (~—I) and 7 is ~(a—p):
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(g) Ris (~AIl) or (~AI2) and v is ~(a1Aag):

' D [~aa] - [~ag] © D
Ndi . 51 . 52 ~O
— TN (Al ; ; o
~(a1Aas) (~ATL) ) 0 AE D&
5 (~AE) 5

where 7 is 1 or 2.
(h) Ris (~AE):

~a] [~
. Dl . DQ . Dg < <
~(anB) 7 gl 1 2
gl (~AE) o1 o2
5 R
[~ .8
D2 51 82 : ’D3 51 82
Dy vy 01 2 o v ! 02 .
~(anB) 4] ' )
. 5 (~AE)

where R’ is an arbitrary inference rule, and both £ and & are
derivations of the minor premises of R’ if they exist.

(i) Ris (~VI) and 7 is ~(ayVag):

b i

Nal Na2

——— = (~VI .
~(a1Vas) ( .) D,
——=a;, — (~VEiQ) >~y

where ¢ is 1 or 2.
(j) The set of derivations is closed under >.
2. The definition of the reduction relation > at v in nC3 is obtained

from the conditions for the reduction relation > at + in nC by adding
the following condition.
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(a) Ris (EM) and v is 71—, 71AY2, ¥1VY2, ~~7s ~(71—=72),
~(71/\V2), or ~(71V3):

ol o]
: D . Dy .
i & 16
v (EM) 5, dr
5 R
[~a] (o]
D, & & D, & &
Y (;1 02 r 2 (;1 02 I
o 5 (EM)

where R’ is (=E), (AE1), (AE2), (VE), (~~E) (~—E), (~AE),
(~VEL1), or (~VE2), and both & and & are derivations of the
minor premises of R’ if they exist.

3. The definition of the reduction relation > at v in nMC is obtained
from the conditions for the reduction relation > at « in nC by adding
the following condition.

(a) Ris (GEM) and v is v, =72, V1AV, Y1VY2, ~~Ys ~(v1=72),
~(71/\73), or ~(71V79):

(asB]  [al
. Dl : DQ .
y S & &
y B T2
— (GEM) 5,
5 ’
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where R’ is (—E), (AE1), (AE2), (VE), (~~E) (~—E), (~AE),
(~VEL), or (~VE2), and both & and &; are derivations of the
minor premises of R’ if they exist.

4. The definition of the reduction relation t> at v in nCN is obtained
from the conditions for the reduction relation > at v in nC3 by adding
the other conditions of nMC. Namely, it is defined as all the conditions
for both nC3 and nMC.

Prior to proving the normalization theorems for nC, nC3, nMC, and
nCN, we need the following lemma.

LEMMA 3.7. Let N1, N, N3, and N4 be nC, nC3, nMC, and nCN, respec-
tively. Let S1, So, S3, and Sy be sC, sC3, sMC*, and sCN*, respectively.
For any i € {1,2,3,4}, the following hold.

1. If D is a derivation in N; such that oa(D) =T and end(D) = 3, then
S;FT'= 0,

2. If S; — (cut) F I' = 3, then we can obtain a derivation D’ in N; such
that

(a) oa(D') C T,
(b) end(D') = B,

(¢) D' is normal.
PRrOOF:

1. We prove 1 by induction on the derivations D of N; such that oa(D)
=T and end(D) = B. We distinguish the cases according to the last
inference of D. We show some cases.

(a) Case (EM): D is of the form:
[~all'y [l

: D1 D
v Y
" (EM)
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where oa(D) = I'y UT'3 and end(D) = v. By induction hypoth-
esis, we have S; F ~a,I'y = v and S; F «,I's = . Then, we
obtain the required fact S; - I'1,T's = ~:

Ind. hyp. Ind. hyp.
~a,I'1 =7 a, 'y = v
 (we) : (we)
~a, '),y = v o, '1,Ty =7y .

T T, = o (ex-middle)
where (we) is admissible in S; — (cut) by Propositions 2.4 and
2.11.

(b) Case (~~E): D is of the form:
L
Dy
~r~

where oa(D) = T" and end(D) = «. By induction hypothesis, we
have S; F I' = ~~qa. Then, we obtain the required fact S;

I'=s o
: Prop.2.3
. Ind. hyp. o= a ~~left
F:}NNQ ~~L = Ecut)e )
I'=a .

(¢) Case (~—I): We divide this case into two subcases.

i. Subcase 1: D is of the form:
T
. D
B
~(a—p)
where oa(D) = I' and end(D) = ~(a—f). By induction
hypothesis, we have S; - I' = ~3. Then, we obtain that S;
FT = ~(a—p):

()
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. Ind. hyp.
I'=~f
aT=~p
I' = ~(a—p)
where (we) is admissible in S; — (cut) by Propositions 2.4

(we)
(~—right)

and 2.11.
ii. Subcase 2: D is of the form:
[a] T
: D
~B
IR YN |
~fa—p) 7Y

where oa(D) = I' and end(D) = ~(a—f). By induction
hypothesis, we have S; - a,I' = ~f3. Then, we obtain the
required fact S; F T' = ~(a—f):
Ind. hyp.
a,I'= ~p
I'= ~(a—p)
(d) Case (~—E): D is of the form:

(~—right).

Iy Iy
D1 i,

where oa(D) = I'y UT'y and end(D) = ~f. By induction hy-
potheses, we have S; F 'y = ~(a—p) and S; F I's = a. Then,
we obtain the required fact S; - I'y, T’y = ~0:

. Prop.2.3 Prop.2.3
D Ind hyp. o=« ~B =~
: : (~—left)
© Ind.hyp. T1 = ~(a—p) ~(a—p),a = ~fB (cut)
Iy =a a,T1 = ~f o
(cut).

Iy, Iy =~
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(e) Case (~AE): D is of the form:

Iy [~ally  [~B]T3
- Dy "D, © Dy
~(anp) o v
~ (N/\E)

where oa(D) =T';y UT'; UT'3 and end(D) = 7. By induction hy-
potheses, we have S; F T'y = ~(anfB), S; b ~a,Ty = 7,
and S; F ~fB,'s =~. Then, we obtain the required fact
Si = Fl,rg,rg =

Ind. hyp. Ind. hyp.
~a, Ty =y ~B, T3 = v
 (we)  (we)
: Ind. hyp. ~a,T5,I's = ~B,Iy, T3 =
: nd hyp a,12,13 i /87 2,13 Y (N/\left)
Iy = N(Oé/\ﬁ) N(Oé/\ﬁ),rg,rg =y (Cut)
[y, Do, T3 =y
where (we) is admissible in S; — (cut) by Propositions 2.4 and
2.11.
(f) Case (~VI): D is of the form:
Iy T2
Dy D2
———— (~VI
~@vp

where oa(D) = I't UT'y and end(D) = ~(aVvp). By induction
hypotheses, we have S; F 'y = ~«a and S; F I's = ~f3. Then,
we obtain the required fact S; F T'1,T's = ~(aVp):

. Ind. hyp. : Ind. hyp.
I = ~a [y = ~f3
L (we) L (we)
Fl,rg = ~Q Fl,FQ = NB (N\/right)

[y, Ty = ~(avp)
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where (we) is admissible in S; — (cut) by Propositions 2.4 and
2.11.

2. We prove 2 by induction on the derivations D of I'= 3 in S5; —
(cut). We distinguish the cases according to the last inference of D.
We show some cases.

(a) Case (init2): D is of the form:
~p,T' = ~p (init2).
In this case, we obtain a required normal derivation D’ by:
~p
where oa(D’) = {~p} C {~p} UT and end(D’) = ~p.
(b) Case (ex-middle): D is of the form:
o in
~o,I'=vy o =7y
I'=~

(ex-middle).

By induction hypotheses, we have normal derivations £ and &
in N; of the form:
(~a,I)* (o, 1)
L& &
gl gl
where oa(&1) = ({~a} UD)* C {~a} UT, ca(&) = ({af UT)*
C {a}UT, end(&1) = 7, and end(&2) = . Then, we distinguish
the cases according to ({~a}UT)* and ({a}UT)*. We consider
the following cases: (1) ~a & ({~a}UT)*, (2) a € ({a} UT)*,
and (3) ~a € ({~a}UT)* and o € ({a} UT)*.
i. Subcase (1): We obtain a required normal derivation D’ in
N; by:
F*
&
gl
where oa(D’) = T'* C T and end(D’) = 7.
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ii. Subcase (2): We obtain a required normal derivation D’ in
N; by:
1’\*
D &
gl
where oa(D’) =T C T and end(D’) = +.

ifi. Subcase (3): We obtain a required normal derivation D’ in

N; by:
([va] )" ([ D)
51 52
i 2
— (M)

where oa(D’) =T C T and end(D’) = .
(c) Case (~~left): D is of the form:

€
o,'=7~y

By induction hypothesis, we have a normal derivation £ in N;
of the form:
(a, 1)
e
&
where oa(&’') = ({a}UT)* C {a}UT and end(&’) = v. In what
follows, we show only the case for ({a} UT")* = {a} UT". In this
case, we obtain a required normal derivation D’ in N; by:

~r~
— ~E) p
D&
g
where oa(D') = {~~a}UT and end(D’) = ~.
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(d)

Case (~—left): D is of the form:
i,
'sa ~B,A=~y
~(a—=p),T,A =~

(~—left).

By induction hypotheses, we have normal derivations £ and &
in N; of the form:

P* (NBZ A)*

. (‘:1 . 52

a gl
where oa(£;) =T C T, end(&1) = o, 0a(&) = ({BUA)* C
{AtUA, and end(&2) = v. In what follows, we show only the
case for I'" =T and ({8} UA)* = {8} UA. In this case, we
obtain a required normal derivation D’ in N; by:

I
(0m) &
~(a—p) «
— g 7B 4
: &
v

where oa(D’) = {~(a—f)} UT'UA and end(D’) = +.
Case (~Aleft): D is of the form:

' Dy . Dy
~a, ' = ~G6,T =
@ 7 _~B 7 (~Aleft).
~(anB), T = v

By induction hypotheses, we have normal derivations £ and &,
in N; of the form:

(v T) (BT
& &
Y Y
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where oa(&1) = ({~a}UT)* C {~a}UT, oa(&) = {~FUT)*
C {~B8} UT, and end(&1) = end(&) = . In what follows, we
show only the case for ({~a}UT)* = {~a}UT and ({~F}UT)*
= {~p}UT. In this case, we obtain a required normal derivation
D’ in N; by:

[~all' [~BIT
& s
~(anp) 77 T (AR)

where oa(D’) = {~(aAB)}UT and end(D’) = ~.
Case (~Vright): D is of the form:

o, im,
I's~a T'=s~f

~\Vright).

T = ~(av3) (~Vright)

By induction hypotheses, we have normal derivations & and &
in N; of the form:

r* rr
& : &
r\;a Nﬁ
where 0a(€1) = oa(&) =T C T, end(£1) = ~a, and end(&2)

= ~f. In what follows, we show only the case for I'* = T". In
this case, we obtain a required normal derivation D’ in N; by:

r L

& &
~o ~B
v

where oa(D’) =T and end(D’) = ~(aVp).
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We then obtain the following theorems.

THEOREM 3.8 (Equivalence between nC-family and sC-family). Let Ny,
Ns, N3, and N4 be nC, nC3, nMC, and nCN, respectively. Let S1, Sa, S3,
and Sy be sC, sC3, sMC*, and sCN*, respectively. For any formula o and
any i € {1,2,3,4}, S; b = « iff « is provable in N;.

Proor: Taking ) as " in Lemma 3.7, we obtain the claim. (]

THEOREM 3.9 (Normalization for nC, nC3, nMC, and nCN). Let N be nC,
nC3, nMC, or nCN. All derivations in N are normalizable. More precisely,
if a derivation D in N is given, then we can obtain a normal derivation D’
in N such that oa(D') C oa(D) and end(D’) = end(D).

PrROOF: Let Ny, Ny, N3, and N4 be nC, nC3, nMC, and nCN, respec-
tively. Let Sy, So, S3, and Sy be sC, sC3, sMC*, and sCN*, respectively.
Let ¢ be 1, 2, 3, or 4. Suppose that a derivation D in N, is given, and
assume that oa(D) = I" and end(D) = . Then, by Lemma 3.7 (1), we
obtain S; F I" = 3. By the cut-elimination theorem for S; (i.e., Theorems
2.5, 2.6, and 2.13), we obtain S; — (cut) - I' = . Then, by Lemma 3.7

(2), we can obtain a normal derivation D’ in N; such that oa(D’) C oa(D)
and end(D’) = end(D). O

4. Natural deduction systems with general
elimination rules and normalization theorems

We define natural deduction systems with general elimination rules, re-
ferred to as gNJ*, gC, gC3, gMC, and gCN, for positive intuitionistic
logic, C, C3, MC, and CN, respectively. For these systems, we use the
same notations and notions as those for the previously introduced systems.

DEFINITION 4.1 (gNJT, gC, gC3, gMC, and gCN).

1. gNJT is obtained from NJ* by replacing (—E), (AE1), and (AE2)
with the general elimination rules of the form:
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) o

a—f « ’y(

ar8 4
5 —

—GE) ~

AGE).

2. gC is obtained from gNJ* by adding (~~E), (~—E), (~VEl),
(~VE2), and the negated general elimination rules of the form:

[a] [~B]
~2 T (~~GE) G )W © 7 (lGR)
[Nav.NB]
~avh Y e,

~
3. gC3 is obtained from gC by adding (EM).

4. gMC is obtained from gC by adding (GEM).
5. gCN is obtained from gC3 by adding (GEM).

Remark 4.2. The rules (—GE), (AGE), (~~GE), (~—GE), and (~VGE)
are referred to as general elimination rules. These rules are considered as
elimination rules. For more information on general elimination rules and
systems incorporating them, see [33, 37, 23].

Next, we define reduction relations on the set of derivations in natural
deduction systems with general elimination rules. We employ the same
notions, such as the maximum formula and normal derivation, as those

used for nC, nC3, nMC, or nCN.

DEFINITION 4.3 (Reduction relation). Let v be a maximum formula in a
derivation that is the conclusion of an inference rule R.

1. The definition of the reduction relation > at v in gC is obtained by
the following conditions.
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(a) Ris (—I) and v is a—p:

&

] &

}3 p ) /3 D
(51 & & :
a—f «a A 2 &

5 (»GE) o 57
(b) Ris (Al) and v is a3 Aaa:
D D2 [a,f) D, D
@ Jé] L Q 8
— (A]) : :
anp ~y 2 &€
o (AGE) > 5.

(¢) Ris (VI1) or (VI2) and  is a3 Vag: The same condition as the
one defined in Definition 3.6.

(d) R is (VE): The same condition as the one defined in Definition
3.6.

(e) Ris (~~I), and vy is ~~a:
' p (o] D
Q 2 & &
~~a (D 4 L &
gl ( g

~~GE)
(f) Ris (~—I) and v is ~(a—p):

] 3
EﬁD . [~5] EﬁD
T (s & & ~
~ &
(a—p) . o Y (~—GE) . H 2

(g) Ris (~AIl) or (~AI2) and ~ is ~(@;Aaz): The same condition
as the one defined in Definition 3.6.
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(h) Ris (~AE): The same condition as the one defined in Definition
3.6.

(i) Ris (~VI) and v is ~(a1Vas):

D P bacs ‘p, D
——— (~VI) € @ p
~(aVp) ol 2 €
5 (N\/GE) > ,Y

(j) The set of derivations is closed under .

2. The definition of the reduction relation > at v in gC3 is obtained
from the conditions for the reduction relation > at v in gC by adding
the following condition.

(a) Ris (EM) and v is v{—=Y2, 7172, 71 VY2 ~~Y ~(v1—=72)s
~(71AY2)s or ~(71V7,):

ol ol
: Dl . D2 .
iy a6
T EM) 4 g,
5 R
[~a] . [a] . :
D, & & D, & &
Y (;1 62 R Y (;1 52 o
o 5 (EM)

where R’ is (-GE), (AGE), (VE), (~~GE) (~—GE), (~AE),
or (~VGE), and both & and &; are derivations of the minor
premises of R’ if they exist.

3. The definition of the reduction relation > at v in gMC is obtained
from the conditions for the reduction relation > at v in gC by adding
the following condition.
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(a) Ris (GEM) and v is v =72, 11AY2, Y1V ~~Y's ~(71—=72),
~(71/\V2), or ~(71V3):

la=8] o]
Dy D

SR A S SR A S

5 R
(GEM)

where R’ is (—GE), (AGE), (VE), (~~GE) (~—GE), (~AE), or (~VGE),
and both &£; and &; are derivations of the minor premises of R’ if they exist.

4. The definition of the reduction relation > at v in gCN is obtained
from the conditions for the reduction relation t> at v in gC3 by adding
the other conditions of gMC.

LEMMA 4.4. Let Gy, Ga, G3, and G4 be gC, gC3, gMC, and gCN, respec-
tively. Let S1, So, S3, and Sy be sC, sC3, sMC*, and sCN*, respectively.
For any i € {1,2,3,4}, the following hold.

1. If D is a derivation in G; such that oa(D) =T and end(D) = 3, then
S;FT'= 3,

2. IfS; — (cut) = T' = B, then we can obtain a derivation D' in G; such
that

(a) oa(D') C T,
(b) end(D') = B,

(¢) D' is normal.
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PROOF:

1. We prove 1 by induction on the derivations D of G; such that oa(D)
= I' and end(D) = S. We distinguish the cases according to the last
inference of D. We show some cases.

(a) Case (~~E): D is of the form:

Iy [a] Ty
- Dy : Do
~~O y
— (~~cE)

where oa(D) = I'; UT'y and end(D) = 7.
i. Subcase (1): The discharge of (~~GE) is vacuous. In this

case, by induction hypothesis, we have S; - I's = ~v. We
then obtain the required fact by:

Ind. hyp.
I's = Y
: (we)
~Q, F17 FQ =
where (we) is admissible in cut-free S; by Proposition 2.4.

ii. Subcase (2): « is the discharged assumption of (~~GE). In
this case, by induction hypothesis, we have S; - o, 'y = 7.
We then obtain the required fact by:

. Ind. hyp.
«, FQ' =7
 (we)
T2 =0 efr)

~~a, Ty, Dy =y

where (we) is admissible in cut-free .S; by Proposition 2.4.
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(b) Case (~—GE): D is of the form:

Ty Iy [~B] I's
DL ip, D
~(a=5) 704 Y (~sGE)

where oa(D) = T'1 UTy UT'3 and end(D) = 7.

i. Subcase (1): The discharge of (~—GE) is vacuous. In this
case, by induction hypothesis, we have S; - I's = v. We
then obtain the required fact by:

. Ind. hyp.
T3 =5
: (we)
Iy, 0,15 = 7
where (we) is admissible in cut-free S; by Proposition 2.4.

ii. Subcase (2): ~f is the discharged assumption of (~—GE).
In this case, by induction hypotheses, we have the following;:
S;FT'1 = N(Oé—),é’), S; Ty = a, and S; F Nﬂ,F?, = . We
then obtain the required fact by:

: Ind. hyp. : Ind. hyp.
. Ind. hyp. T ~B,T
t Ind. hyp. T'ys = « B,I's =~ (~—sleft)
Fl = N(OZ—)B) N(a—>5),I‘2,I‘3 = (Cut)
Flv F27 F3 = .
(c¢) Case (~VGE): D is of the form:
I—jl [Na7N6] F2
- Dy © Dy
~(aV \
(a 6)7 Y (VGE)

where oa(D) = I'y UT'; and end(D) = 4.

i. Subcase (1): The discharge of (~VGE) is vacuous. In this
case, by induction hypothesis, we have S; - I's = 7. We
then obtain the required fact by:
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. Ind. hyp.
Ty =y
: (we)
Ty,Ty =y
where (we) is admissible in cut-free S; by Proposition 2.4.
ii. Subcase (2): ~« and/or ~f is (are) the discharged assump-
tion(s) of (~VGE). We show only the case that ~3 is only
the discharged assumption of (~VGE). In this case, by in-
duction hypotheses, we have S; F I'y = ~(aVg) and S; +
~B,T's = . We then obtain the required fact by:

Ind. hyp.
' ~B,I's = v (we)
: Ind. hyp. ~a,~B, Ty =y (~VIeft)
'y = ~(aVvp) ~(aVvp),Ty =~ (cut)

I'n,I'y =~
where (we) is admissible in cut-free S; by Proposition 2.4.

2. We prove 2 by induction on the derivations D of I'= (§ in §; —
(cut). We distinguish the cases according to the last inference of D.
We show some cases.

(a) Case (~~left): D is of the form:

€
a, ' =~

By induction hypothesis, we have a normal derivation £ in G;
of the form:

(o, 1)
-l
’.Y
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()

where oa(&’') = ({a}UT)* C {a} UT and end(&’) = v. In what
follows, we show only the case for ({a} UT')* = {a}UT". In this
case, we obtain a required normal derivation D’ in G; by:
[a] T
L &

ST (~nCE)

where oa(D’) = {~~a}UT and end(D’) = ~.
Case (~—left): D is of the form:
: Dy . Dy
'sa ~B,A=~y
~(a—=p),I,A =~y

By induction hypotheses, we have normal derivations D} and
D} in G; of the form:

: D : D

a g
where oa(&1) =T C T, end(&1) = a, oa(&2) = {~F}UA)* C
{~B}UA, and end(&2) = 7. In what follows, we show only the
case for T =T and ({~B}UA)* = {~F} UA. In this case, we
obtain a required normal derivation D’ in G; by:

(~—left).

r oA
Dy Dy
~(a=5) Va Y (~GE)

where oa(D') = {~(a—B)} UT UA and end(D’) = ~.
Case (~Vleft): D is of the form:
L €
~a,~3,T =~

VBT = o (~Vleft).
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By induction hypothesis, we have a normal derivation £’ in G;
of the form:

(~a, ~B, 1)
D&
gl
where oa(&’) = ({~a,~B}UT)* C {~a,~p}UT and end(&’) =
~. In what follows, we show only the case for ({~a,~g} UT)*
= {~a,~p} UT. In this case, we obtain a required normal
derivation D’ in G; by:
[Na’ N/@] F
L&
~ V 3
(o 5)7 Y (~VGE)
where oa(D’) = {~(aVB)}UT and end(D’) = ~. 0

THEOREM 4.5 (Equivalence between gC-family and sC-family). Let Gy,
G2, G3, and G4 be gC, gC3, gMC, and gCN, respectively. Let Sy, S3, S3,
and Sy be sC, sC3, sMC*, and sCN*, respectively. For any formula o and
any i € {1,2,3,4}, S; b = « iff a is provable in G;.

ProOOF: By Lemma 4.4. O
THEOREM 4.6 (Equivalence between gC-family and nC-family). Let Gy,
G, G3, and G4 be gC, gC3, gMC, and gCN, respectively. Let N1, No, N3,
and Ny be nC, nC3, nMC, and nCN, respectively. For any formula o and
any i € {1,2,3,4}, « is provable in G; iff « is provable in N;.

ProOOF: By Theorems 3.8 and 4.5. O

THEOREM 4.7 (Normalization for gC, gC3, gMC, and gCN). Let G be gC,
gC3, gMC, or gCN. All derivations in G are normalizable.

PROOF: Similar to the proof of Theorem 3.9. We use Lemma 4.4 and
Theorems 2.5, 2.6, and 2.13. O
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5. Systems and theorems for N-family

5.1. Gentzen-style sequent calculi and cut-elimination theorems

A Gentzen-style sequent calculus sN4 for N4 is obtained from sC by replac-
ing (~—left) and (~—right) with the negated logical inference rules of the
form:

0 BL=Y ey Lo =B
~(a—=8),I' =~ = ~(a—p)

(~—right*)

which correspond to the axiom scheme ~(a—f3) <> aA~f3. For more in-
formation on this calculus, see, for example, [18, 19].

We then obtain the following Gentzen-style sequent calculi for the N-
family in a similar way as for the C-family:

1. sN4de = sN4 + (ex-middle),

2. sNdp = sN4 + (Peirce),

3. sNdep = sN4 + (ex-middle) + (Peirce),

4. sN4g = sN4 + (g-ex-middle),

5. sNdeg = sN4 + (ex-middle) + (g-ex-middle).

Then, we obtain the cut-elimination theorems for these calculi, the cut-
free equivalence between sN4p (sN4ep) and sN4g (sN4eg, resp.), and the
separation theorem for the N4-based logics that correspond to sN4, sN4e,
sN4p, and sN4ep.

Remark 5.1. As presented in [15], a single-succedent Gentzen-style sequent
calculus for classical logic is obtained from a single-succedent Gentzen-
style sequent calculus for N4 by adding (ex-middle) and the structural and
logical inference rules of the following form:

I'=s~a T'= o
I'=s»~y

I'=
I'=«

(we-right) (explosion).
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Namely, sN4e + (we-right) + (explosion) becomes a sequent calculus for
classical logic, although the definition of sequent should be modified as
I' = ~ where + is a formula or the empty set. Additionally, we remark that
sC + (explosion) becomes a sequent calculus for trivial logic (i.e., it is a
meaningless logic).

5.2. Gentzen-style natural deduction systems
and normalization theorems

A Gentzen-style natural deduction system nN4 for N4 is obtained from nC
by replacing (~—I), and (~—E) with the negated logical inference rules
of the form:

o NB * ~(Q N(Q%B) *
~(0=p) (vor)  a2B) :B) (~—El) T 5 (~—E27)

which correspond to the axiom scheme ~(a—3) <> aA~f3. For more in-
formation on this system, see, for example, [31, 39, 13].

We then obtain the following Gentzen-style natural deduction systems
for the N-family in a similar way as for the C-family:

1. nN4e = nN4 + (EM),
2. nN4g = nN4 + (GEM),
3. nN4eg = nN4 + (EM) + (GEM).

Of course, we must introduce the appropriate reduction relations with
respect to these systems, modifying the reduction relations with respect to
nC, nC3, nMC, and nCN. For example, we must introduce the following
reduction conditions for the case when R is (~—I) and 7 is ~(a—f),
instead of the condition for the same case in nC, nC3, nMC, and nCN:

1. Subcase 1:
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2. Subcase 2:
D, Dy
« ~f3
~—I* .
~(a—p) (,(\J%EQ’)*) : Dy
~B > ~f.

Then, we obtain the normalization theorems for these systems and the
equivalence between nN4-family and sN4-family.

Remark 5.2. Natural deduction systems for a family of many-valued logics
including Nelson’s constructive three-valued logic N3 [2, 24] has recently
been introduced and investigated by Kiirbis and Petrukhin in [21]. For
more information on natural deduction systems for N4, N3, and related
logics, see, for example, [31, 39, 35, 13, 41].

5.3. Natural deduction systems with general elimination rules
and normalization theorems

A natural deduction system with general elimination rules, gN4, for N4
is obtained from nN4 by replacing (—E), (AE1), (AE2), (~~E), (~VEL),
(~VE2), (~—E1*), and (~—E2*) with (=GE), (AGE), (~~GE), (~VGE),
and the negated general elimination rule of the form:

[a7 Nﬂ]

~a—=8) A

~ (~—GE").

For more information on this system, see, [13].
We then obtain the following natural deduction systems with general
elimination rules, for the N-family in a similar way as for the C-family:

1. gN4e = gN4 + (EM),
2. gN4g = gN4 + (GEM),
3. gN4eg = gN4 + (EM) + (GEM).
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Of course, we must introduce the appropriate reduction relations with
respect to these systems, modifying the reduction relations with respect to
nN4, nN4e, nN4g, and nN4eg. For example, we must introduce the follow-
ing reduction condition for the case when R is (~—I) and v is ~(a—f),
instead of the condition for the same case in nN4, nN4e, nN4g, and nN4eg;:

Dy D> [or, ~f] . Dy D
@ B i€ a o~

~(a—p) ¥ (~GEY) N D E

gl 7.
Then, we obtain the normalization theorems for these systems and the
equivalence between gN4-family and sN4-family. Additionally, we also ob-

tain the equivalence between gN4-family and nN4-family.

6. Concluding remarks

In this study, we introduced the Gentzen-style sequent calculi sC, sC3,
sMC, and sCN for the C-family: C, C3, MC, and CN, respectively. We
proved the cut-elimination theorems for these calculi. We also introduced
alternative Gentzen-style sequent calculi sMC* and sCN* for MC and CN,
respectively. We then proved the theorem for cut-free equivalence between
sMC* (sCN*) and sMC (sCN, respectively) and the cut-elimination theo-
rem for sMC* and sCN*.

Furthermore, we introduced the Gentzen-style natural deduction sys-
tems nC, nC3, nMC, and nCN for the C-family. We then proved the
normalization theorems for nC, nC3, nMC, and nCN. Additionally, we in-
troduced the natural deduction systems with general elimination rules, gC,
gC3, gMC, and gCN for the C-family. We then proved the normalization
theorems for gC, gC3, gMC, and gCN.

Additionally, we have shown similar results for the N-family of paracon-
sistent logics based on Nelson’s constructive four-valued logic N4. Thus,
we have demonstrated that the proposed proof-theoretic framework can
handle a wide range of non-classical logics, including connexive and para-
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consistent logics. We have established a unified method for proving the
cut-elimination and normalization theorems for these logics. In particular,
we have obtained computational interpretations for the standard connexive
logics C, C3, MC, and CN using the proposed natural deduction systems.

We remark that similar results can also be obtained for the family of
paracounsistent logics with the conflation connective [8]. Specifically, we can
consider a Gentzen-style sequent calculus for such a logic, derived from sC
by replacing (~—left) and (~—right) with negated logical inference rules
of the form:

'=s~a ~8,A=xy
~(a—=p),T,A =«

~a, ' = ~f
I'= ~(a—p)

(~—left®) (~—right®)
where (~—left®) and (~—right®) correspond to the axiom ~(a—f8)
~a—~f of conflation. This conflation axiom is generally denoted as
—(a—p) <> —a——p using the conflation connective — [8], which serves
as the logical counterpart of the conflation operator used in the algebraic
structure of bilattices.

In future work, we intend to obtain similar results for extended interme-
diate connexive logics with the intuitionistic negation connective — or the
absurdity constant 1. These extended connexive logics include C+, Cs,
and Niki’s intermediate connexive logics, C25 and C4% [25]. As discussed
by Niki, Gentzen-style sequent calculi for ng and C2 are considered to
include logical inference rules, referred to as the potential omniscience rule
and weak negation rules, respectively, of the form:

~o,I'= o =
I'=

~a,'=v ol =
I'=»~y

(po-omni) (we-neg)
which correspond to the axiom ——(~aVa) of potential omniscience and the
axiom —a—~a of weak negation, respectively. The corresponding natural
deduction rules for (po-omni) and (we-neg) can be considered respectively
of the form:
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1L L ) €
= (PO) 7 —— (WN).
where —a can be defined as -« := a— 1 using L.

In other future work, from a technical perspective, we aim to prove the
strong normalization and Church-Rosser theorems for the proposed natural
deduction systems nC, nC3, nMC, nCN, gC, gC3, gMC, gCN, nN4e, nN4g,
nN4eg, gN4e, gN4g, gN4eg, as well as for natural deduction systems for the
intermediate connexive logics, including C*+, Cx, ng, and C% . However,
these issues remain unresolved at present.
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1. Introduction

This paper is an extended version of Sawasaki [10]. In [10] we proved the
semantic incompleteness of Liberman et al. [8]’s Hilbert-style system HK
for the minimal normal term-modal logic K with equality and non-rigid
terms. In this paper, we further prove the semantic incompleteness of all
the expansions that [8] has obtained from HK by adding some of axioms
T,D,4 and 5. This paper also addresses an incorrect frame correspondence
result given in [8].

Term-modal logic, developed by Thalmann [12] and Fitting et al. [4],
is a family of first-order modal logics having term-modal operators [t] in-
dexed with terms ¢ in the first-order language. In the language of term-
modal logic, for example, [x]P(x), [f(x)]P(x) and Vz[f(x)]P(x) are formu-
las. Term-modal logic is more expressive than multi-modal propositional
logic and has been applied to epistemic logic in e.g. [7, 8, 13] and deontic
logic in e.g. [11, 5, 6]. Some other developments of term-modal logic have
been overviewed e.g. in [8, pp. 22-24] and [5, pp. 48-50].

The logics developed in Liberman et al. [8] are first-order dynamic epis-
temic logics for epistemic planning, and term-modal logic is invoked as its
underlying logic. Technically speaking, their term-modal logics are two-
sorted normal term-modal logics of the constant domain with equality and
non-rigid terms. They make their logics two-sorted because, while letting
the domain of a model include both agents and objects, they read an epis-
temically interpreted term-modal operator K; as “agent t knows.” The
language defined in [8] allows K;p to be a formula only if ¢ is a term for
an agent, and thereby excludes the possibility that terms denoting objects
appear in the argument of the term-modal operator. In [8, p. 17], HK and
its expansions with T, D, 4 and 5 are claimed to be strongly complete with
respect to the class of all the corresponding frames. Most of these results
were originally presented in [1]. Later, two issues concerning action models
and reduction axioms were fixed in the erratum [9] of [8].

Unfortunately, HK and its expansions are semantically incomplete. In
particular, the valid first-order formula z = ¢ — (P(x) — P(c)) is unprov-
able. To be more precise, for a set I' C {T,D,4,5}, we can prove that
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this formula is valid over the class of all frames to which I'" corresponds
but is not provable in the system HKI' obtained from HK by adding T
To this end, in Section 3 we introduce a non-standard Kripke semantics
which makes the meanings of constants and function symbols relative to
the meanings of relation symbols combined with them.

This paper will proceed as follows. In Section 2 we first introduce the
syntax in [8]. Since there are some minor defects on the definitions for
type, we do this with some modifications. Then we introduce the Kripke
semantics and the Hilbert-style systems given in [8], addressing an incorrect
frame correspondence result. In Section 3 we prove the semantic incom-
pleteness of the expansions of HK by introducing a non-standard Kripke
semantics.

2. Syntax, Semantics and Hilbert-style Systems

We will first introduce the syntax presented in [8, pp. 3-4] with some
modifications. The idea there is to define the notions of term and formula
while assigning (sequences of) types “agt”, “obj” or “agt_or_obj” to all
symbols like variables or relation symbols. It is basically the same idea as
in Enderton [2, Section 4.3], but there is an important difference. In the
syntax of [8], not only agt or obj but also agt_or_obj may be assigned
to the arguments of function symbols and relation symbols, so that P(x)
seems to be intended to become a formula even when x has type agt and
P takes type agt__or_ obj.

However, the original definitions 1-3 for the syntax seem to have two
minor defects. First, the original definition 1 for type assignment and the
original definition 2 for term are dependent upon one another, thus they are
circular definitions. Second, while P(z) seems to be intended to become
a formula when z has type agt and P takes type agt_or_obj, it does
not actually become a formula since the original definition 3 for formula
requires that the type of x and the type of the argument of P must be the
same. Accordingly, for example, z = x cannot be a formula in any signature
since the type of x is either agt or obj but the type of the arguments of =
is always agt_or obj.
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To amend the above two defects, we redefine the syntax in [8, pp. 3—4]
as follows.

DEFINITION 2.1 (Signature). Let Var be a countably infinite set of vari-
ables, Cn a countable set of constants, Fn a countable set of function sym-
bols, and Rel a countable set of relation symbols containing the equal-
ity symbol =. Let (TYPE, %) be also the ordered set of types where TYPE
= {agt,obj,agt_or_ obj} and =< is the reflexive ordering on TYPE with
agt < agt_or_obj and obj < agt_or_obj, i.e.,

<= {{r,7)|7 € TYPE} U { (agt,agt_or_obj), (obj,agt_or_obj) }.
A type assignment t: Var UCn UFn URel — UneN TYPE" is an assignment
mapping

1. a variable z to a type t(z) € {agt,obj} such that both Var N
t~![{ agt }] and VarNt~1[{ obj }] are countably infinite, where t ~1[X]
is the inverse image of a set X;

2. a constant ¢ to a type t(c) € { agt,obj };

3. a function symbol f to a sequence of types t(f) € TYPE" x { agt, obj }
for some n € N;

4. the equality symbol = to the sequence of types t(=) =
(agt_or_obj,agt_or_obj);

5. a relation symbol P distinct from = to a sequence of types t(P) €
TYPE" for some n € N.
The tuple (Var,Cn,Fn,Rel, t) is called a signature.
DEFINITION 2.2 (Term of Type). Let (Var,Cn,Fn,Rel,t) be a signature.
The set of terms of types is defined as follows.
1. any variable z € Var is a term of type t(z).
2. any constant ¢ € Cn is a term of type t(c).

3. If ty,...,t, are terms of types 71, ..., 7, and f is a function symbol in
Fn such that t(f) = (7{,...,7,,7,,1) and 7; < 7/, then f(t1,...,t)
is a term of type 7, ;.
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For convenience, henceforth we use a type assignment t to mean its uniquely
extended assignment by letting t(f(¢1,...,t,)) = 7 for each term of the
form f(t1,...,t,) of type T.

DEFINITION 2.3 (Language). Let (Var,Cn,Fn,Rel, t) be a signature. The
language is the set of formulas ¢ defined in the following BNF.

@ u=Pt1,.. . tn) | 20 | @ Ao | Ksp | Yy,

where t1,...,t,,s are terms with t(s) = agt and P € Rel such that t(P)
={(11,...,7n) and t(¢;) < 7. Note here that P can be =.

As usual, we use the notations ¢ # s == =(t = s), ¢ = ¥ = =(p A ),
Jxp = =Vax—p, L := PA=P for some fixed nullary relation symbol P, and
T:=-1.

We believe that our definitions successfully capture what was intended
in the original definitions 1-3. On top of these definitions, we will follow [8,
p. 4] to define the notions of free variable and bound variable in a formula
as usual, where the set of free variables in Ky is defined as the union of
the set of variables in ¢ and the set of free variables in ¢. For a variable =z,
terms ¢, s and a formula ¢ such that t(z) = t(s) and no variables in s are
bound variables in ¢, we also define substitutions t(s/x) and ¢(s/z) of s for
r in t and ¢ in a usual manner, except that (K;p)(s/z) = Ky(s/2)0(s/).
Whenever we write t(s/x) or ¢(s/x), we tacitly assume that t(x) = t(s)
and no variables in s are bound variables in . We also define the lengths
of term and formula as usual.

Let us now introduce the Kripke semantics presented in [8, pp. 5-6].

DEFINITION 2.4 (Frame, [8, Def. 4]). A frame is a tuple F' = (D, W, R)

where

1. D= Dagt or obj = Dagt U Dopj is the disjoint union of a non-empty
set Dygy of agents and a non-empty set Doy; of objects;

2. W is a non-empty set of worlds;

3. R is a mapping that assigns to each agent ¢ € D,g; a binary relation
R; on W, i.e., R: Dagy — P(W x W).
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DEFINITION 2.5 (Model, [8, Def. 5]). Let (Var,Cn,Fn,Rel, t) be a signa-
ture. A model is a tuple M = (D, W, R, I) where (D, W, R) is a frame and
I is an interpretation that maps

1. a pair (¢, w) of some ¢ € Cn and w € W to an element I(c,w) € Dy(cy;

2. apair (f,w) of some f € Fnand w € W to a function I(f,w): (D, X
X Dy )= Dy ., where t(f) = (71, ..., T, Tnt1):

3. a pair (=, w) of the equality symbol = and some w € W to the set
I(sz) = { <d7 d> | de Dagt_or_obj }7

4. a pair (P,w) of some P € Rel\ {=} and w € W to a subset I(P, w)
of Dy, x -+ x D, , where t(P) = (T1,...,Tp).

DEFINITION 2.6 (Valuation, [8, Def. 6, 7]). Let (Var,Cn,Fn,Rel,t) be
a signature. A waluation is a mapping o: Var — D such that o(z) €
Dy(yy and the valuation o[z +— d] is the same valuation as ¢ except for
assigning to a variable z an element d € Dy(,). Given a valuation o, a
world w and an interpretation I in a model, the extension [t]%7 of a term
t is defined by [2]L° = o(z), [c]%° = I(c,w), and [f(t1,..., f)]5° =
I(f,w) ([t - - [tn]i?)-

DEFINITION 2.7 (Satisfaction, [8, Def. 8]). The satisfaction M,w =, ¢
of a formula ¢ at a world w in a model M under a valuation o is defined
as follows.

M,wl=g P(ty, ... t,) iff ([t1]57, ..., [ta]L°) € I(P,w) (P can be =)

M, w =, —p it M,wl, ¢

MowkE, o AN it MwEks, e and M,wl, ¥

M, w =, Yoy iff M, w Fqpmq ¢ forallde Dy
M,wE, Ko if M,w' |, ¢ forall w € W such that

(w,w') € Ryy1.a
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DEFINITION 2.8 (Validity, [8, p. 25]). A formula ¢ is valid over a frame
F if for all models M based on F, all worlds w € W and all valuations o,
it holds that M, w =, ¢. A formula ¢ is valid over a class F of frames if
for all frames F' € F, ¢ is valid over F.

Remark 2.9. Instead of the z-variant of a valuation o used in [8], we adopted
the notion of o[z — d] to give the satisfaction for Vzy. This change is just
for the clarity of our proof and does not affect the satisfiability of formulas.

For ease of reference, henceforth we call this semantics TML-semantics.
To state precisely our result on the semantic incompleteness in the next
section, we import the frame correspondence results in [8, p. 18] with some
modifications. Let us define the notion of frame correspondence as usual
and say that a frame (W, D, R) is reflexive, serial, transitive or euclidean if
R; is so for all i € D,g. We then have the following frame correspondences.

PROPOSITION 2.10. Let (Var,Cn,Fn,Rel,t) be a signature and x € Var
with t(z) = agt.
1. T == Vz(K,p — ¢) corresponds to the class of all reflexive frames.
2. D :== Vz—K, L corresponds to the class of all serial frames.

3. 4 = Vo (K,p — K,K,p) corresponds to the class of all transitive
frames.

4. 5:=Ve(-K,p — K, K,) corresponds to the class of all euclidean
frames.

We can find this proposition in [8, p. 18] if t(x) is supposed to be agt.
In addition to Proposition 2.10, however, [8] also makes the following
claims at the same page, where #X denotes the cardinality of a set X:!

() AOJ™ = w1 an (Aicjcn @i # %) AVY Vg, ¥ = i)
corresponds to the class of all frames such that #D = n;

(b) AY =321 20 ((Nsan Kai TIA (Nicjap @i # 25) AVY(EYT = Vi y = i)
corresponds to the class of all frames such that #D,g = n,

Mn [8, p. 18], Aogn and Ag" are called M and N, respectively.



214 Takahiro Sawasaki

Amongst these, (a) is false in the current two-sorted language. Consider a
signature such that all of x1,...,z,,y have type agt. Then, it is easy to
check that the validity of AO§" over a frame entails #D,gx = n. Hence it
follows from Dgyj # 0 that n < #Dagy + #Dgy; = #D, which contradicts
(a). The frame property to which AO§" corresponds is actually as follows,
where |y| denotes the set {x; |t(y) = t(z;),1 <i<n} and T denotes the
converse type of a type 7.

PROPOSITION 2.11. Let (Var,Cn,Fn,Rel, t) be a signature such that x4,

..., Tn, y are pairwise distinct variables. Then AO’?" corresponds to the
class of all frames such that # D, = #|y| and #Dt(y) (n — #ly)).

PROOF: Suppose that AO;”" is valid over a frame F'. Taking a world w, an

interpretation I and a valuation o arbitrarily, we obtain (F, I), w =, AOgn.

We then have some pairwise distinct elements dy,...,dy), € Dy, and
dy|y|+15--->dn € D@ such that for all d € Dy, the following disjunction
holds: d =dy or --- or d=dy, or d=dyy41 or -+ or d=dp.

Since d € Dy(yy and dy|y|11,--.,dn € D5, this disjunction is equivalent
to the disjunction that d = dy or --- or d = dy,. Thus, #Dy,) = #|y|
and #Dt(y) ( - #|y‘)

For the other direction, suppose #Dy(,) = #y| and #Dt( y = > (n—
#lyl]). We show that (F,I),w =, AOy” for any interpretation I, any
world w and any valuation . By our supposition we have some pairwise
distinct elements di,...,dyjy € Dyiry) and dyjyj41,...,dn € D@ such

that Dt(y) = {dl, .. .,d#‘y| } Note here that t(:ckl) == t(zk#‘m) =
t(y) and t(2ky,,,,) = = t(zk,) = t(y) for some variables zy,, ...z,
coming from x1,...,2,. Letting o/ = o[z, — di] [z, — dy] and o”
= olz1 = o'(x1)] - [xn = o' (zn)], we have (F\ ), w FEor \;jc, @i #

zj. On top of that, we have (F,I),w =~ Vy\/ig#‘yly = xy, hence
(B, 1), w =g Vy\/igny = ;. Thus, (F,I),w E, /—\Og". O
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On the other hand, (b) is true on some reading, but then just a corollary
of Proposition 2.11. For, (b) can be true only if we presuppose on the
meta-level that Agn is a well-formed formula under a given signature X,
which means after all to presuppose at the meta-level that all of x1,...,x,
have type agt under ¥. Then Agn is just an equivalent variant of AOi"
corresponding to the class of all frames such that #D., = n, as shown
below.

COROLLARY 2.12. Let (Var, Cn,Fn,Rel, t) be a signature such that 1, . . .,
T, y are pairwise distinct variables with t(z1) = -+ = t(z,) = t(y) = agt.
Then each of AOi” and Ai” corresponds to the class of all frames such that
H#HDgogr = n.

Thus we may treat Aj» as AO;™ with t(z1) = -+ = t(v,) = t(y) = agt.
Axioms
all propositional tautologies
UE  Vazp = ¢(y/z) K Ki(p =) = (Kep — Ku)
Id t=t BFf  VaKip — KiVxp

PS  z=y— (p(z/2) = ¢(y/z)) KNI z£y—Kix#y
3id c=c— Jz(z=c)

DD a#y ift(z)#t(y)

Inference rules

MP From ¢ and ¢ — 9, infer ¢
KG From ¢, infer Kip

UG  From ¢ — 9, infer o — Yz

t:  does not occur in t and i: = is not free in .

Table 1: The Hilbert-style system HK for term-modal logic K

Finally, we introduce the Hilbert-style system HK for the minimal nor-
mal term-modal logic K and some expansions of it presented in
[8, pp. 17-18]. The Hilbert-style system HK is defined as in Table 1.
For its expansions, put AX = {T,D, 4,5} throughout the paper. Given
a set I' C AX, the Hilbert-style system HKI is defined to be the system
obtained from HK by adding all axioms in I". The notion of proof in HKT'
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is defined as usual. It is easy to check that HKAX and HS5 := HK{T,5}
have the same provability.

Remark 2.13. In [8, Theorem 3], the strong completeness of some expan-

sions of HKT" with AO”E” and AZ:"' is also claimed. Since there are some
signatures and some n,n’ > 1 such that the addition of AOi" and Aay",/"/
make HKT' inconsistent, in those cases we cannot prove the semantic in-
completeness of those expansions. On the other hand, the side conditions

of AO}" and AZ:"’ to keep the consistency of HKT' U {AOi",A';:"/ } are
somewhat complicated.? Thus, for simplicity we confine ourselves to the
expansions with axioms in AX.

Before going to the next section, we note that UE and PS are particularly
relevant to the semantic incompleteness of HKI'. As remarked in Fagin
et al. [3, pp. 88-89], the ordinary first-order axioms Vze — ¢(t/z) and
t = s = (o(t/z) = ¢(s/z)) are not valid in Kripke semantics for first-
order modal logic where constants or function symbols are interpreted as
non-rigid. Probably because of this reason, [8] instead adopted UE and
PS that are the variable-restricted versions of these ordinary first-order
axioms. The problem is that UE and PS or their combinations with other
axioms are not sufficient to derive a valid formula z = ¢ — (P(x) = P(c))
over the class of all frames.

3. Semantic Incompleteness

In this section, for all I' € AX we prove the semantic incompleteness of
HKT by showing that © = ¢ — (P(z) — P(c)) is valid over the class of all
frames to which I' corresponds in the TML-semantics but not provable in
HKT'. For the former, since any valid formula over the class of all frames is
also valid over the class of all frames to which I" corresponds, it is sufficient
to show that x = ¢ — (P(xz) — P(c)) is valid over the class of all frames in
the TML-semantics. As expected, it is straightforward to show this fact.

2The following two side conditions are at least necessary: (1) if t(y) = t(y’) then

#lyl = #1y'l; (2) if t(y) # t(y') then #|y| > (0’ — #]y'|) and #|y'| > (n — #[y).
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PROPOSITION 3.1. Let (Var,Cn,Fn,Rel, t) be a signature, € Var, ¢ € Cn
and P € Rel with t(P) = (agt_or_ obj). A formula z = ¢ — (P(z) —
P(c)) is valid over the class of all frames in the TML-semantics.

For the latter, since any unprovable formula in HS5 is also unprovable
in HKT, it is sufficient to show that z = ¢ — (P(x) — P(c)) is not provable
in HS5. To this end, we introduce a new semantics in which HS5 is sound
with respect to the class of all reflexive, symmetric and transitive frames
but © = ¢ — (P(z) — P(c)) is not valid over this class of frames.

DEFINITION 3.2 (Non-standard Model). Let (Var,Cn,Fn,Rel, t) be a sig-
nature. A non-standard model is a tuple N = (D, W, R, J) where (D, W, R)
is a frame in the sense of Definition 2.4 and J is an interpretation that maps

1. a triple {¢, w, X) of some ¢ € Cn, some w € W and some X C D" for
some n € N to an element J(c, w, X) € Dy(cy;

2. a triple (f,w, X) of some f € Fn, some w € W and some X C D"
for some n € N to a function J(f,w, X): (D;, X---x D, ) — D
where t(f) = (71, .., Tnt1);

Tn+17

3. a pair (=, w) of the equality symbol = and some w € W to the set
J(:,’IU) = { <da d> |d S Dagtioriobj }a

4. a pair (P,w) of some P € Rel \ {=} and some w € W to a subset
J(P,w) of Dy, X -+ x D, , where t(P) = (T1,...,Tn).

Here is the intuition. A subset X of D™ is a set of sequences consisting
of either/both of agents and objects. Thus, the set X mentioned in the
meanings J(c,w, X) and J(f,w, X) of a constant ¢ and a function symbol
f can serve as the meaning of a relation symbol. This trick enables us
to make the meanings of constants and function symbols relative to the
meanings of relation symbols combined with them.

We then define the notion of satisfaction of formulas in non-standard
models. In what follows, we use the same notion of valuation as in the
TML-semantics and define the extension [[t]];ff;( of a term ¢ in a given non-

standard model similarly by letting [[ac]]uljgx = o(x), [[c]]u]f;( = J(c,w, X)
and [f(t1,. )% = J(Fw, X) ([0 - [l )
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DEFINITION 3.3 (Satisfaction in Non-standard Model). The satisfaction
N,w =, ¢ of a formula ¢ at a world w in a non-standard model N under
a valuation o is defined as follows.

Now g Pty t) i ([0]2% oy [l ) € J(Pw)

(P can be =)
N,w =, ¢ iff Nywle, @
NyowkEs, p AN iff Nwpks,p and NwlE, ¢
N,w =, Vo iff N,w FEgmoa @ forallde Dy
N,wkE, Kip iff N,w' |, ¢ forall w' €W such that

/
(w,w") € R[[t]]i’,g@

What we should pay attention here is the satisfactions of atomic for-

mula P(t1,...,t,) and term-modal formula K;p. In the satisfaction of
P(t1,...,t,) in non-standard models, the meaning [¢; ]]i) (P Of each t;
in P(t1,...,t,) is determined by the interpretation .J, the valuation o,

the world w and the meaning J(P,w) of the relation symbol P combined
with terms t1,...,t,. Thus, as explained in the following Example 3.4, the
meaning of a constant ¢ occurring in P(c) could be different from that of ¢
occurring in Q(c).

Ezample 3.4. Let lewis € Cn with t(lewis) =agt and SL,CF €Rel with
t(SL) = t(CF) = (agt), and consider a non-standard model such that
J(SL,w)={i € Dag | i is one of the authors of Symbolic Logic}, J(CF,w)
= {i € Dags |i is the author of Counterfactuals }, J(lewis,w, J(SL,w)) is
C. I. Lewis and J(lewis,w,J(CF,w)) is D. Lewis. Then, the meaning
J(lewis, w, J(SL,w)) of lewis occurring in SL(lewis) is different from
the meaning J(lewis, w, J(CF,w)) of lewis occurring in CF(lewis). Note
that, although J(lewis, w, J(SL,w)) € J(SL,w) in the above non-standard
model, we can technically assign to J(lewis,w, J(SL,w)) D. Lewis to have
a non-standard model such that J(lewis, w, J(SL,w)) ¢ J(SL,w).

On the other hand, because the meaning ﬂt]]{uam of ¢t in K, is determined
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independently of the meaning of any relation symbol, the satisfaction of
Ky in non-standard model is in effect the same as the satisfaction of K¢
in models of the TML-semantics. By this fact we can validate axioms K
and BF in this semantics.

The notions of validity is defined as in the TML-semantics. For ease of
reference, henceforth we call this semantics non-standard semantics.

Now it is easy to see that z = ¢ — (P(x) — P(c)) is not valid over the
class of all reflexive, symmetric and transitive frames in the non-standard
semantics.

PROPOSITION 3.5. Let (Var,Cn,Fn,Rel, t) be a signature, x € Var, ¢ € Cn
with t(z) = t(c) and P € Rel with t(P) = (agt_or_obj). A formula
x =c— (P(z) = P(c)) is not valid over the class of all reflexive, symmetric
and transitive frames in the non-standard semantics.

PrROOF: We may assume t(z) = t(c) = agt without loss of generality.
Let N = (D,W,R,J) be a non-standard model such that w € W, R;
is reflexive, symmetric and transitive for all i € Dage, Dage = {0, 3},
J(c,w,{(d,d) | d € Dagt_or obj}) =, J(c,w,{a}) = and J(P,w) =
{a}. Let o be also a valuation such that o(x) = «. Since Hxﬂi?(: w)
= U(‘T) = a = J(Cawa{<da d> | d e Dagtfor,Obj }) = J(vaa J(:,’LU)) =
[[c}]i’(f,(: wyr We have N w |=; & = c. It is also easy to see N, w E, P(z).
S ) = Je,w, J(Pw)) = J(e,w,{a}) = B, it fails

However, since [c];)% p .,
that N,w |=, P(c). Therefore z = ¢ — (P(x) — P(c)) is not valid over the

class of all reflexive, symmetric and transitive frames in the non-standard
semantics. O

On the other hand, we can use the following lemmas to prove the sound-
ness of HS5 in the non-standard semantics, and thereby obtain the unprov-
ability of ¢ = ¢ — (P(z) — P(c)) in HS5.

LEMMA 3.6. Let (Var,Cn,Fn,Rel,t) be a signature and x,y € Var with

t(z) = t(y). Let (D,W,R,J) be also a non-standard model, w a world, X
a subset of D™ for some n € N and o a valuation. For all terms t,

[ty/ol% = [
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Proor: By induction on the length of terms. O

LEMMA 3.7. Let (Var,Cn,Fn,Rel, t) be a signature, x,y € Var with t(z) =
t(y) and N = (D,W, R, J) a non-standard model. For all worlds w, all
valuations o and all formulas @,

Now o o(y/z) iff Now Eowmo(y) ¢-

ProOOF: By induction on the length of formulas. t

THEOREM 3.8 (Soundness). If ¢ is provable in HS5, then ¢ is wvalid
over the class of all reflexive, symmetric and transitive frames in the non-
standard semantics.

PRrROOF: 1t is sufficient to prove that all axioms in HS5 are valid and that
all inference rules preserve validity. Since the proof of the latter is done as
usual, we see only the former.

o For any propositional tautology, its validity is obvious since the non-
standard semantics gives the ordinary satisfactions for — and A.

e For UE, ie., Yoy — ¢(y/z), suppose N,w =, Vrp. Then we have
N, w Folzmso(y) ©- Thus by Lemma 3.7 N,w =, ¢(y/z) holds, as
required.

e For Id, i.e., t =t, its validity is obvious.

e For PS, ie, x =y — (o(x/2) = ¢(y/z)), its validity is shown by
induction on .

— For ¢ being of the form P(ty,...,t,), suppose N,w =, © =y
and N,w =, P(t1,...,t,)(x/z). Since

<[[t1 (x/z)]]i;f](P,w)v ceey [[tn(x/z)]]if](gwﬂ € J(Pv U}),
we can use o(z) = o(y) and Lemma 3.6 to obtain
<[[t1(y/z)]];{;f](p,w)a s [[tn(y/z)]]i;fj(pwﬁ € J(Pw).

Thus N,w =, P(t1,...,tn)(y/2).
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— For ¢ being of the forms —) or ¥ A, the proof is straightforward.

— For ¢ being of the form Vz'1), notice first that 2’ # x and 2’ # y
since x,y are assumed not to be bound in ¢ whenever we write
w(x/z) and ¢(y/z). Suppose N,w |, ¢ = y and N,w =,
(VZ')(x/2). If 2/ = z, obviously N,w =, (V2'¥)(y/z). If 2/ #
z, then we have N,w =, Vz'9(2/2) thus N,w |=op2rsq ¥(2/2)
for all d € Dy(,y. Since we have N,w F=,p.mq © = y for all
d € Dy (.1, by the inductive hypothesis we obtain N, w Eq[./q]
Y(y/z) for all d € Dy(.ry. Therefore, N,w =, (V2'9)(y/2).

— For ¢ being of the form Ky, suppose N,w =, = y and
N,w =, (Kw)(x/z). Then N,w' =, ¢(z/z) for all w’ € W
such that (w,w’) € R, /. 025, Now, we have N,w' |, z =y

for allw’ € W, and [[t(sc/z)]]w 0= [[t(y/z)]] g by o(z) = o(y) and
Lemma 3.6. So by the inductive hypothesls we obtain N, w’ =,
P(y/z) for all w' € W such that (w,w’) € R[t(y/z)w%. Thus,
Now =0 (Ki)(y/2).

e For Jid, i.e., c = ¢ — Jz(x = ¢), notice that N, w Fqzms s(c,w,7(=w))]
& = ¢. Then we have N,w =, Jz(x = ¢) hence Nyw =, ¢ = ¢ —
Jz(x = ¢), as required.

e For DD, i.e., & # y if t(x) # t(y), suppose t(z) # t(y) and let N, w
and ¢ be arbitrary. By the definition of valuation, each of o(x) and
o(y) is in Dy, and Dy, respectively. Since t(x) # t(y), Dy(z) and
Dy(yy must be disjoint. Thus N,w =, x # y, as required.

e For K, ie., Ki(p — ¢) = (Ko — K)), suppose N, w =, Ki(p —
) and N,w =, Kip. Let w’ be any world such that (w,w') € RM,J,” )

w,0
Then we have N,w’ =, ¢ — ¢ and N,w’' |, ¢. Thus N,w' =, ¥,
as required.

e For BF, ie., VxKip — KVxp for x not occurring in ¢, suppose
N,w |, VeKip. To show N,w |, KiVzp, let w' be any world such
that (w,w’) € R[[t]] 7.0 and take any d € Dy(,). By our supposition, we

have N, w Fo[zsa) thp Now [[t]]w 0= [[t}]i’;)[r'_)d] holds since = does
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not occur in ¢. Thus by (w,w’) € R[[tﬂ,;,a[de], we have N, w' =gz
w,0
©, as required.

e For KNI, ie., z # y — Kz # y, suppose N,w =, ¢ # y. By
definition, obviously N, w’ =, x # y for all worlds w’. Thus N,w |=
Kix # y, as required.

e For T, ie., Vo(K,.p — @), suppose N, w o[y Ko for any d €
Dy (). Since (w,w) € Ry[zsd)(x) by the reflexivity of the frame of IV,
we have N, w =y[35q) @, as required.

e For 5, ie., Vo(=K,p — K,~K,p), suppose N,w Fgpoag ~Kep
for any d € Dyg). To show N,w Fojpq KoKy, it is suffi-
cient to show N, v =g (gsa) Ko for any world v such that (w,v) €
R;[zsd)(z)- Now by our supposition we have some world u such that
(w,u) € Ro[pd)(z) and N, u [Fqipq) . Since (v,u) € Ry[msd)(z) by
the euclideaness of the frame of N, we have N,v Fqpma) Ko, as
required.

By the above argument the proof has completed. O

THEOREM 3.9. Let ¥ = (Var,Cn,Fn,Rel,t) be a signature, x € Var,
¢ € Cn with t(z) = t(c) and P € Rel with t(P) = (agt_or_ obj). A
formula © = ¢ — (P(z) — P(c)) is not provable in HS5.

Proor: Ifx =c — (P(x) — P(c)) is provable in HS5, then by the sound-
ness (Theorem 3.8) it must be valid over the class of all reflexive, symmet-
ric and transitive frames in the non-standard semantics, which contradicts
Proposition 3.5. O

We can now get the semantic incompleteness of HKI' contradicting
Theorem 3 in [8], as follows.

THEOREM 3.10 (Semantic Incompleteness of HKT'). Let I' C AX. The
Hilbert-style system HKT s semantically incomplete with respect to the
class of all frames to which T' corresponds in the TML-semantics, i.e.,
there exists some formula @ such that ¢ is valid over the class of all frames
to which T’ corresponds in the TML-semantics, but not provable in HKT .
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PrOOF: By Proposition 3.1 it follows that x = ¢ — (P(z) — P(c)) is valid
over the class of all frames to which I" corresponds in the TML-semantics.
On the other hand, by Theorem 3.9 it follows that © = ¢ — (P(z) — P(c))
is not provable in HKT'. O

COROLLARY 3.11 ([10, Corollary 1]). The Hilbert-style system HK is
semantically incomplete with respect to the class of all frames in the TML-
semantics.

4. Conclusion

In this paper, for a set ' C AX = {T,D,4,5}, we proved that Liber-
man et al.[8]’s Hilbert-style system HKT for the term-modal logic KI" with
equality and non-rigid terms is semantically incomplete with respect to the
class of all frames to which I' corresponds (Theorem 3.10). We also cor-
rected the frame property to which [8] claims that axiom AO§" corresponds
(Proposition 2.11).

We make two remarks here. The first remark is that [8] also fails to

prove the decidability of HK{ AOf”,Az:"' }withn' <nand t(z)) =--- =
t(z!,) = t(y') = agt ([8, item 1 of Proposition 7]). Let F be the class of all
frames to which {AO;?”,A;:”' } corresponds. The proof in [8] depends on
a claim that Dgy; is finite for any frame in IF. However, this is not the case
in some signatures. A simple counterexample is the case in which t(x1)
= =t(zy) = t(y) = agt and t(zy41) = -+ = t(x,) = obj. Then
Proposition 2.11 tells us only that every frame in F satisfies #Dagy = 0’
and #Dgy; > (n—n'), so we can find a frame in F such that Dy is infinite.

The second remark is that, as the problematic first-order formula = =
¢ — (P(z) — P(c)) suggests, the semantic incompleteness of HKT" is ir-
relevant to its term-modal or two-sorted aspects. To make the point clear,
let £ be a first-order modal language having equality, constants, function
symbols and only the ordinary non-indexed modal operator [J as its modal
operators. Say that the semantics for first-order modal logic (the FOML-
semantics for short) is the Kripke semantics of the constant domain given
to £ in which the accessibility relation is a binary relation on worlds, and
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constants and function symbols are interpreted relative to worlds. Using a
semantics similar to the non-standard semantics introduced in Section 3,
we can in fact prove that the Hilbert-style system naturally obtained from
HKT by changing from the two-sorted term-modal language to £ becomes
semantically incomplete with respect to the corresponding class of frames
in the FOML-semantics. The question to be asked here is how we can ob-
tain a sound and complete Hilbert-style system with respect to this class
of frames in the FOML-semantics. To the best of our knowledge, such a
Hilbert-style system seems to have never been provided together with a de-
tailed proof in the literature.?

A further direction to be pursued is to give sound and complete Hilbert-
style systems for term-modal logics including K with equality and non-rigid
terms. Such systems, for example, might be obtained as slight modifications
of the system given in Fagin et al. [3, p. 90]. Another further direction
that might be worth studying is to apply the non-standard semantics to
the analysis of natural language. As Example 3.4 suggests, it is reasonable
to see J(P,w) in J(c,w, J(P,w)) as a kind of context uniquely determining
the denotation of a constant ¢ at a world w. Thus, the non-standard
semantics could be used for a semantics capturing the context-dependency
of the denotations of nouns in natural language.

Acknowledgements. I would like to thank an anonymous reviewer for
this journal for their comments on an earlier version of this paper.

3 As for a sound and complete proof system with respect to the multi-modal FOML-
semantics with the epistemic accessibility relation for each agent, Fagin et al. [3, p. 90]
offered a Hilbert-style system having two first-order principles A(t/z) — 3z A and ¢t =
s = (A(t/z) +» A(s/z)) as axioms with a restriction that ¢, s must be variables if A has
any occurrence of an (non term-modal) epistemic operator K,. However, the proof of
this system’s completeness is omitted.
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systems for both the classical and intuitionistic versions of these temporal logics.
Theorems establishing the equivalence between the proposed sequent calculi and
natural deduction systems are proved. Furthermore, the cut-elimination theo-
rems for the proposed sequent calculi and the normalization theorems for the
proposed natural deduction systems are established.

Keywords: linear-time temporal logic, intuitionistic linear-time temporal logic,
sequent calculus, natural deduction, cut-elimination theorem, normalization the-

orem.

2020 Mathematical Subject Classification: 03B44, 03F05.

1. Introduction

1.1. Until-free LTL and its intuitionistic variant

Linear-time temporal logic (LTL) and its fragments and variants have been
extensively studied [45, 33, 14, 3, 4, 6, 18, 15, 10, 8, 9, 32, 23, 17, 11].2 The
fragment of LTL without the until operator U is referred to as wuntil-free
LTL. Numerous Gentzen-style sequent calculi for LTL and until-free LTL
have been introduced and investigated [33, 43, 44, 49, 4, 18, 15, 10, 23].
Several natural deduction systems for LTL and until-free LTL have also
been explored [3, 6].

This study focuses on until-free LTL and its intuitionistic variant as
the main target logics.®> One reason for this focus is its high compatibility

2LTL was traditionally studied, for example, in [45, 14]. The fragment of LTL
without the until operator U was investigated, for example, in [33, 3, 4, 18, 32, 23].

3The until operator U in LTL presents a certain difficulty in constructing a simple
cut-free, two-sided, LK-compatible Gentzen-style sequent calculus. An extension of
Kawai’s Gentzen-style sequent calculus LT\, referred to as LTE, with the addition
of U, was considered in [25], although it is unknown whether the cut-elimination and
completeness theorems for LTY hold or not. A few alternative cut-free and complete
sequent calculi extended by adding U were developed in [15, 10]. However, we cannot
use these calculi in this study, as they are not compatible with the present approach,
which treats both sequent calculi and natural deduction systems in a uniform manner.
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with Gentzen’s LK and NK for classical logic and Gentzen’s LI and NI* for
intuitionistic logic [48, 46]. Specifically, the proposed Gentzen-style single-
succedent sequent calculus and Gentzen-style natural deduction system for
until-free LTL can be seen as natural extensions of LI and NI, respectively.

In addition, the intuitionistic variant of until-free LTL is considered
because of its strong compatibility with Gentzen’s LI and NI. Specifically,
the proposed Gentzen-style single-succedent sequent calculus and Gentzen-
style natural deduction system for this intuitionistic variant are subsystems
of the corresponding systems for until-free LTL. These subsystems are ob-
tained in a modular way from the systems of until-free LTL by removing
the temporal versions of the rules of excluded middle.?

1.2. Sequent calculi and natural deduction systems

Gentzen-style sequent calculi for LTL have been previously explored in the
literature. Kawai introduced the sequent calculus LT, for first-order until-
free LTL, proving both cut elimination and completeness [33].° Baratella
and Masini developed the 2-sequent calculus 2Sw for first-order until-free
LTL, and established the cut-elimination and completeness theorems [4].
Kamide demonstrated an equivalence theorem between the propositional
fragments of LT, and 2Sw, providing alternative proofs of cut elimina-
tion as a consequence of this equivalence [18]. Further, Kamide presented
embedding-based proofs of the cut-elimination and completeness theorems
for LT,, and its propositional fragment [23]. This study introduces a single-
succedent version, G3cLT,,, of LT, and its intuitionistic variant, G3iLT,,.

4We remark that Gentzen designated his intuitionistic calculus by NI, however, his
handwriting for capital I was in the old Siitterlin handwriting, that, as explained by von
Plato in [55], p. 83, has been rendered by capital J in printing. This practice has been
followed, with rare exceptions, to these days, but recent literature shows a return to the
originally intended nomenclature, see e.g. [51]. We shall follow the original notation also
for the intuitionistic sequent calculus, with LI instead of LJ.

5The proposed sequent calculus for until-free LTL includes the sequent calculus
version of the rule of excluded middle, referred to as (ex-middle), and the proposed
natural deduction system for until-free LTL includes the natural deduction version of
the rule of excluded middle, referred to as (EXM).

SWe have not yet obtained a cut-free and complete extension of LT,, with the until
operator.
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The Gentzen-style natural deduction systems PNK and PNJ were intro-
duced by Baratella and Masini [3] for classical and intuitionistic until-free
LTLs, respectively. These systems, PNK and PNJ, are regarded as exten-
sions of Gentzen’s NK and NI, and were referred to by the authors as the
“logics of positions”. In a separate development, Bolotov et al. introduced
the natural deduction system PLTLxp [6] for full classical propositional
LTL, including the until operator U. The system PLTL xp employs labelled
formulas of the form 7 : o and a temporal induction rule that deals with
the next-time operator X and the “globally in the future” operator G. It
is notable that PNK, PNJ, and PLTLxyp utilize an induction rule and do
not incorporate infinite premiss rules for handling temporal operators. In
contrast, the natural deduction systems proposed in this study employ in-
finite premiss rules and do not rely on an induction rule. This alternative
approach provides a novel natural deduction system, NLT,,, of LT,, and its
intuitionistic variant, NILT,,.

1.3. The approach of this study

In this study, we introduce a unified Gentzen-style framework for until-free
propositional LTL and its intuitionistic variant. This framework seam-
lessly integrates both Gentzen-style single-succedent sequent calculi and
Gentzen-style natural deduction systems. Specifically, it allows us to estab-
lish an equivalence between these systems and to demonstrate that the cut-
elimination theorems for the single-succedent sequent calculi imply the nor-
malization theorems for the natural deduction systems.

The primary aim and original contribution of this study lie in providing
a unified treatment for both sequent calculi and natural deduction systems
within the context of until-free LTL.” Until now, these systems have been

"The unified treatment or approach also means that we can obtain a natural corre-
spondence between the sequent calculus and the natural deduction system. More specif-
ically, a natural correspondence refers to a correspondence between the cut-elimination
theorem for the sequent calculus and the normalization theorem for the natural deduc-
tion system. Thus, the unified approach implies that we can handle these fundamental
theorems in a uniform way.
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studied separately for LTL and its fragments, rather than in a unified man-
ner. This is in contrast to recent work where a unified treatment of sequent
calculus and tableaux calculus for branching-time temporal logics has been
explored by Abuin et al. [1]. Our unified approach not only bridges the
gap (i.e., non-uniformity) between sequent calculi and natural deduction
systems in until-free LTL but also facilitates the transfer of meta-results
between these formalisms, providing a significant theoretical advantage for
their applications.

To address the issue of the correspondence between cut elimination and
normalization, we require a Gentzen-style single-succedent sequent calcu-
lus. This necessity arises because the cut-elimination theorem for the typ-
ical Gentzen-style multiple-succedent sequent calculi in standard classical
LTL does not imply the normalization theorem for the corresponding natu-
ral deduction system. A similar situation is observed in classical logic when
comparing Gentzen’s LK and NK. In contrast, it is well-established that
the cut-elimination theorem for the single-succedent calculus LI directly
implies the normalization theorem for NI in intuitionistic logic.® There-
fore, our approach involves developing an LI-like single-succedent sequent
calculus tailored for our target logic.

1.4. The proposed single-succedent sequent calculi

To obtain a classical single-succedent sequent calculus, we use the following
temporal (single-succedent) excluded middle rule:

Xma, T =~ X'a,T =7y
=~

(ex-middle)

where X’ is an i-times nested next-time operator. By employing this rule,
we can prove the law of excluded middle, aV—a, for arbitrary formulas
«. The non-temporal version of this rule, without X*, was originally intro-
duced by von Plato [53, 41]. Pursuing the idea of correspondence between
cut elimination and normalization, von Plato developed a single-succedent

8See, for example, [41] and the references therein.
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sequent calculus for classical logic and proved cut elimination and nor-
malization for the corresponding sequent calculus and natural deduction
systems. Building on this approach, we aim to extend these concepts to
the target temporal logic. In fact, the G3-style single-succedent sequent
calculus G3cLT, proposed in this study can be seen as a temporal ex-
tension of von Plato’s calculus. Moreover, the cut-elimination result for
G3cLT,, serves as an extension of his cut-elimination results for classical
logic. Additionally, an important advantage of this approach is that a
single-succedent sequent calculus for an intuitionistic variant of the target
logic can be easily derived from G3cLT,, by just removing (ex-middle).

1.5. The proposed natural deduction systems

To obtain the corresponding natural deduction system for until-free LTL,
we use rules of the form:

X-a] [Xia Xl el
QY (% . .

: : | 4 Xiy Xy

3 3 X'ma X' =0 2
T2 exan) 200 X0 gxp) Ty (=)

where (EXM) corresponds to (ex-middle). As mentioned above, the non-
temporal version of (EXM) was originally introduced by von Plato [53,
41]; the non-temporal versions of (EXP) and (—I) were instead originally
introduced by Gentzen. For detailed information on these rules, see [54, 55].

Rule (EXP) has been applied in various contexts: Bolotov and Shangin
[7] utilized it to construct the paracomplete logic PCont; Kiirbis and Petru-
khin [36] developed natural deduction systems for a family of many-valued
logics, including N3, using this rule; Kamide and Negri [26, 30] employed
it to formalize Gurevich logic [16] and Nelson logic [42, 2]. Additionally,
Priest [47] proposed rules similar to (EXP) for creating natural deduction
systems for logics in the FDE (First Degree Entailment) family.

Rule (EXP) is considered a counterpart to (EXM) and is particularly
useful for handling natural deduction systems where negation is treated as
a primitive connective, rather than being defined through implication and
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the falsity constant. In this study, the proposed natural deduction system
NLT,, can be seen as a modified temporal extension of von Plato’s classical
system, enhanced by incorporating (EXP) and (—I). The normalization re-
sult for NLT,, extends von Plato’s normalization result for classical logic.
Moreover, a significant advantage of this approach is that a natural de-
duction system for an intuitionistic variant of until-free LTL can be easily
obtained from NLT,, by omitting rule (EXM).

We address some remarks on previous results presented in the papers
[26, 30] concerning natural deduction systems for logics of strong negation.
The paper [26] introduced natural deduction systems for Gurevich logic, in-
tuitionistic logic, and classical logic using (EXP) and/or (EXM) and proved
normalization theorems for the natural deduction systems of Gurevich logic
and intuitionistic logic. However, [26] contained errors related to these nor-
malization theorems. These errors arose from inappropriate definitions in
the natural deduction system NI* for intuitionistic logic.

These issues were identified by Arnon Avron during the 1%¢ Workshop
on Contradictory Logics, held in Bochum on December 6-8, 2023. He
pointed out a gap in an earlier version of NI*, specifically the absence of
the non-temporal version of (—I). These errors have been corrected in the
subsequent papers [30, 29]. The results of this study reflect the corrected
findings in [30, 29].

1.6. Paper structure

The paper is structured as follows: In Section 2, we explore Gentzen-style
sequent calculi and their cut-elimination theorems for until-free proposi-
tional LTL. We begin by presenting Kawai’s Gentzen-style sequent calcu-
lus LT, and introducing the newly proposed Gentzen-style single-succedent
sequent calculus G3cLT,. Subsequently, we prove the cut-elimination the-
orem for G3cLT,, using an extension of the standard methodology for G3-
style sequent calculi, namely, by first proving invertibility of (most of) the
rules and admissibility of weakening and contraction.

In Section 3, we begin by introducing the newly proposed Gentzen-style
natural deduction system NLT,, for until-free propositional LTL. We also
define the reduction relation for NLT,. Subsequently, we establish the
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normalization theorem for NLT, by exploiting the equivalence theorem
between NLT,, and G3cLT,,.

In Section 4, we introduce and investigate a Gentzen-style sequent cal-
culus G3iLT,, and a Gentzen-style natural deduction system NILT,, for
an intuitionistic variant of the until-free propositional LTL. The systems
G3iLT,, and NILT,, are derived from G3cLT, and NLT,,, respectively, by
removing (ex-middle), and its corresponding rule (EXM). All the structural
results and the cut-elimination theorem for G3iLT, follow directly from the
corresponding results for G3cLT,,. Then, we establish the normalization
theorem for NILT,, using the translation that gives the equivalence between
NILT,, and G3iLT,,.

Section 5 concludes this study with some additional remarks.

2. Sequent calculus and cut elimination

In this study, we assume standard notions and terminologies regarding
Gentzen-style sequent calculus and Gentzen-style natural deduction sys-
tem, and do not provide precise definitions for some of these familiar no-
tions and terminologies.

Formulas of the logic discussed in this study are constructed using
countably many propositional variables, the logical connectives — (impli-
cation), - (negation), A (conjunction), V (disjunction), G (globally in the
future), F (eventually in the future), and X (next-time). We use small let-
ters p, q, ... to denote propositional variables and Greek small letters «, £, ...
to denote formulas.

We use Greek capital letters T', A, ... to denote finite (possibly empty)
multisets? of formulas. For any # € {G,F,X} and any multisets T' of
formulas, we use an expression #I" to denote the multisets {#y | v € I'}.
The symbol = is used to denote the equality of multisets of symbols. The

9For the newly introduced G3-style calculi we shall consider a definition based on
multisets. This will also be the case for natural deduction although the practice of
multiple-discharge makes the choice less visible. Additionally, for the sake of comparison
between our calculus and Kawai’s calculus LT, LT, is also presented in this study
using a multiset-based formulation. This modification is not essential to the results of
this study.
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symbol w is used to represent the set of natural numbers. An expression
X'o for any i € w is defined inductively by X%a = @ and X" a = X"Xa.
We use lower-case letters ¢, j and k to denote any natural numbers.

We will define Kawai’s Gentzen-style sequent calculus LT, [33] and a
new alternative Gentzten-style single-succedent sequent calculus G3cLT,,.
Prior to defining these sequent calculi, we need to define some additional
notions and notations.

DEFINITION 2.1. A sequent for LT, is an expression of the form I' = A,
and a sequent for G3cLT,, is an expression of the form I' = ~ where 7 is
a formula or the empty set. We use the expression L F S to represent the
fact that a sequent S is derivable in a sequent calculus L. We say that “a
rule R is admissible in a sequent calculus L” if the following condition is

satisfied: For any instance SliSS” of R, if L+ S; for all 7, then L+ S.

Additionally, we have to define the notion of height of a derivation.
This notion is formulated in a general way and is applicable to all the
sequent calculi here presented. Derivations built using these rules are thus
(in general) infinite trees, with countable branching but where (as may
be proved by induction on the definition of derivation) each branch has
finite length. The leaves of the trees are the initial sequents. To make this
precise, we give a formal definition of the notion of derivation D and the
associated notions of its height ht(D) and its end-sequent.

DEFINITION 2.2.

1. Any sequent I' = A, where some formula X’p occurs in both I' and
A, is a derivation of height 0 and with end-sequent I' = A.

2. If each D, is a derivation of height «,,, with end-sequent I',, = A,
and
I'n = A,
I'= A

R

is an inference (i.e. an instance of a rule), then
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D,
T,= A,
I'=A

- R

is a derivation, its height is the countable ordinal sup,(a,) + 1, and
its end-sequent is I' = A.

3. Thus, each derivation D has a countable ordinal height, denoted
ht(D), which is the successor of the supremum of the heights of its
immediate subderivations. It follows that, if D’ is a sub-derivation of
D, then ht(D') < ht(D).

4. We say that “a rule R of the form = 'S'S"' is height-preserving admis-
sible in a sequent calculus L” if the following condition is satisfied: If
the premisses are derivable with height at most n then also the con-
clusion is derivable with the same bound on the derivation height.
Furthermore, we say that “R is derivable in L” if there is a derivation
from Sy,--- .S, to S in L.

First, we introduce LT,,.

DEFINITION 2.3 (LT,). In the following definitions, ¢ and k represent
arbitrary natural numbers (i.e., i, k € w).
The initial sequents of LT, are of the following form for any proposi-
tional variable p:
X'p = X'p (init)

The structural rules of LT, are of the form:

F'=Aa o,X=10

rx=am o
r=A r=A .
m (We—left) m (We-rlght)
a,a,'= A I'= A0« .
m (CO—leﬂ]) m (CO-I’lght) .
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The logical rules of LT, are of the form:

I'=AXa XBT=A Xa,I'= A, X8

- (—left) - (—right)
X'(a—=p),I'= A I'= A X" (a—p)

= AX X'a, ' = A

# (—left) 0‘77:: (—right)

X', I' = A = A X'«
WmWQFjAOWM I'=AXa F:Ax%(m@m
Xi(anB), T = A I = A, X' (aAp)

X'a,T = A X'BT=A = A XX

& f AT = (Vleft) -5 ia’ 4 (Vright)
X" (avB), T = A I'= A X" (avp)

X o, I = A I= A XM a }e,

=B T2 (Gleft) { - Vicw Gright)
X'Ga,I' = A = A X'Ca
XM, T'= A Vew itk

{ - Jie (Fleft) w (Fright).

X'Fa, T = A I = A X'Fa

Remark 2.4.

1. The calculus LT, introduced here is a modified propositional version
of Kawai’s sequent calculus [33] for until-free first-order linear-time
temporal logic. Kawai’s original sequent calculus was developed as a
first-order system incorporating the Barcan formula. In that system,
the next-time operator was not used as a modal operator but rather
as a special symbol.

2. Note that (Gright) and (Fleft) have infinitely many premises and can
also be represented as:

{XMa,I'= Aljcw }
XFa,I = A

{T=AXMa|jew}
I' = A X'Ga

(Gright)

(Fleft).
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3. The following cut-elimination theorem holds for LT,,. Rule (cut) is
admissible in cut-free LT,,. For the details, see [33, 18, 23].

4. The cut-elimination theorem for the original first-order LT, was prov-
ed by Kawai in [33] and was indirectly re-proved for a slightly modified
version of LT,, by Kamide in [18], via the cut-free equivalence between
LT, and Baratella-Masini’s cut-free 2-sequent calculus 2Sw [4]. Addi-
tionally, Kamide provided an alternative proof for the cut-elimination
theorem for the slightly modified LT,, in [23]. This alternative proof
was based on a theorem that embeds LT, into a Gentzen-style se-
quent calculus for infinitary logic. For more information on the cut-
elimination theorem for LT,,, see [33, 18, 23].

Next, we introduce G3cLT,. We use the same names for the rules of
G3cLT,, as those of LT,,.

DEFINITION 2.5 (G3cLT,). In the following definitions, ¢ and k denote
arbitrary natural numbers and v denotes either a formula or the empty
multiset.

The initial sequents of G3cLT,, are of the following form for any propo-

sitional variable p: ‘ ‘
X'p, T = X'p (init).'°

The structural rules of G3cLT,, are of the form:

I'=
I'=«

(we-right).

The logical rules of G3cLT,, are of the form:

X'(a—=p),T = X'a XBT =~
X (a—=B),T =~

X'a,I' = X'B

I = X' (a—p) (right)

(—left)

10The context T is required in (init), which distinguishes it from LT,,.

1 As will be shown, weakening-left, contraction-left, and cut rules are admissible in
G3cLT,.
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Xi-a, T = X'a
Xima, T =

Xia,T =

(—left) ,
I'= X'«

(—right)

Xima, I =~ X'a,T =7y

(ex-middle)

I'=~y
X', X'B,T s Xa I'=sX
O XPUZT ey LXK D= X
X' (anB),T =~ I'=X'(aAp)
X'o,T' =~ X8,
@, i v X'BI'=~y (Vieft)
Xi(aVp),T =y
i =X
_I=Xa (Vright1) ;ﬂ (Vright2)
I = X (aVp) I = X(aVp)

XzG Xi-’rk T = Xi""ja cw
WXl =5 ey | 2 Vicw (Gright)
X'Ga,I'=~ I = X'Ga
(XMl = hieo (Fleit) =X g

X'Fo,T = v I = X'Fa

Remark 2.6.

1. Similar to Gentzen’s LK and the single-succedent sequent calculus
for classical logic, a theorem can be established to demonstrate the
equivalence between LT, and G3cLT,,, assuming the admissibility of
structural rules, including (cut). However, a proof is omitted here, as
it was presented in [28] for similar systems. For details on the proof of
such an equivalence theorem, see [28], where the equivalence between
a slightly modified version of LT,, and a non-G3-style version, SLT,,,
of G3cLT,, was established.

2. Alternatively, the equivalence between LT, and G3cLT,, can be es-
tablished through the equivalence among LT, SLT,, and NLT,,.
Here, SLT,, refers to the non-G3-style single-succedent sequent
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calculus introduced in [28], and NLT,, is introduced both in the
present study and in [28]. Since NLT,, and (a slightly modified ver-
sion of) LT, are common to both studies, the required equivalence
theorem can be obtained.

Rule (ex-middle) is a characteristic feature of G3cLT,,. By utilizing
this rule, we can formalize a single-succedent sequent calculus. This
rule is a temporal generalization of the original rule introduced by
von Plato [53, 41]. Von Plato originally developed a single-succedent
sequent calculus for classical logic using this rule and proved the cut-
elimination theorem for it. Therefore, G3cLT,, can be viewed as a
temporal extension of his calculus, and the cut-elimination result for
G3cLT,, extends his cut-elimination result for classical logic.

In [53, 41], (ex-middle) and the following rule were introduced:

-p,I'=~vy pl'=vy
I'=~y

(ex-middle-at)

where p is a propositional variable. In [53, 41], the following results
were presented. The cut rule and rule (ex-middle) are admissible
in certain versions of cut-free LI that include (ex-middle-at). As a
consequence of these results, these versions possess a weak subformula
property that allows for propositional variables and their negations.

PROPOSITIQN 2.7. Let L be LT, or G3cLT,,. The sequents of the form
X', T' = X'« for any formula «, any multiset I" of formulas, and any nat-
ural number ¢ are derivable in L.

PrOOF: By induction on a. We show some cases.

1. Case a = —f3:

Ind. hyp.
Xi-8,X8,T = X8
X3, X'-8,T =
X-3,T = X'-8

(—left)
(—right).
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2. Case a = f—y:

. Ind. hyp. . Ind. hyp.
Xi(B=7), X1 = XiB  Xin,T = Xiny
X'B8,X"(8—+7),I = X'y

X (B=7),T = X'(B-7)

(—left)
(—right).

3. Case a = Gf3:
: Ind. hyp.
X'GB, XM = XTB Vi,
{ f{lGﬂ ]f Xi+j B }]E (Gleft)
9 = jEw
{ bie (Gright).

X'GA,T = X'GA

PrOPOSITION 2.8. The rule of left weakening

I'=~

m (We—left)

is height-preserving admissible in G3cLT,,.

PrOOF: By straightforward induction on the height of the derivation since
weakening is in-built in initial sequents and all the rules have an arbitrary
context on the left. O

LEMMA 2.9. All the logical rules of G3cLT,, with the exception of (—left),
(Vrightl), (vright2), (Fright) are hp-invertible. Rule (—left) is hp-invertible
with respect to the right premiss.

PROOF: By induction on the height of the derivation of the conclusion of
each rule. We show the case of invertibility of (—left) with respect to the
right premiss, all the other cases being similar. Assume o X*(a—3),T = 7.
Then we have an initial sequent with v € T' and « is of the form X7p,
i.e. Fo X (a—p), X/p, T’ = X7p. Then also X*3, X7p,I" = X7p is an ini-
tial sequent, i.e., o X'3,T = 7.
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Let us assume the statement to be true for n and prove it for n + 1.
We consider the last rule applied in the derivation. If it is (—left) with
X'#(a— ) principal, the right premiss gives the desired conclusion. If some
other formula is principal in the last step, assume for example that the
last step is (—left) with another principal formula. So we have bk,
X (a—pB), X7 (e—0),I" = ~ and the premisses give -, X*(a—f),I" = XJe
and -, X*(a—f), X74,T" = ~. By inductive hypothesis we thus obtain -,
X8, T = XJe and F,, X3, XI5, T" = v and a step of (—left) gives the
conclusion b, 11 X3, X7(e—0),IV = 7. O

LEMMA 2.10. The rule of left contraction

a,a, ' =~

ol S (co-left)

18 hp-admissible in G3cLT,,.

PRrROOF: By induction on the height of the derivation of the premiss. In the
base case, with height zero, the premiss is an initial sequent and clearly also
the conclusion is an initial sequent. Otherwise, we assume that the premiss
has derivation height n + 1 and assume the statement true for derivation
height n. We proceed by cases on the rule used to derive a,a, I’ = 7.
If it is derived by (we-right) we have b, «,«,T =, so by induction hy-
pothesis +,, «,' = and by (we-right) F,4+1 a, ' = ~v. We proceed in a
similar way if o, a,I" = v is the conclusion of a right rule: we apply the
induction hypothesis to the premiss(es) of the rule, and then obtain the
required fact. If instead «,«,’ = v is the conclusion of a left rule, we
distinguish two cases: either « is principal in the last rule, or it is not. In
this latter case, we apply the induction hypothesis to the premiss(es) of
the last rule and then obtain the required fact. Otherwise, in the former
case, we consider the last rule applied and distinguish two sub-cases, de-
pending on whether the last rule is invertible. We observe that all the left
rules with the exception of (—left) are invertible. Additionally, (—left),
(—left), and (Gleft) have been made invertible with the repetition in the
premiss of the principal formula. These cases are straightforward because
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we find the duplication in the premiss of the rule and the induction hypoth-
esis applies. In the case of an invertible rule, say we have a derivation of
Fnt1 Xi(a vV A3), X (aVp),l = 7 and the premisses of the last rule give I,
Xla,X"(aV B),I =~ and +, XZB,Xl(a VvV ),T' = ~. By hp-invertibility
of (Vleft) we obtain b, X'a,X'a, I'= v and I, X' ﬁ,X’ﬁ,F =, so by
induction hypothesis we have F, X'a,T' = ~ and -, X'3,T = ~. Applica-
tion of (Vleft) gives the conclusion I, 1 X' (aV B),T = . If the last rule is
(—left), we have b, 41 X* (a—>ﬁ) X’(a—>ﬁ) I' = v, and the premisses of the
rule give F, X'(a—f), X' (a—f),I' = X'a and F, X'(a—p),X'3,T = ~.
By inductive hypothesis the former gives -, X‘(a—/3),T = X’a and the
letter by (partial) hp-invertibility of (—left) gives b, X'3,X'8,T = ~,
so again by inductive hypothesis we obtain F, X'8,T" = v, and thus by
(—left), Fni1 X (a—B),T = 1. O

For G3c [41], the proof of cut elimination eliminates a topmost cut by
induction on the complexity of the cut formula and subinduction on the
sum of the heights of the derivations of the premisses of cuts. To adapt
the proof to a G3-style calculus with infinitary rules, we proceed as in [39]:
heights are given by ordinals, and we shall employ the standard notion of
(natural or Hessenberg) addition a#j for countable ordinals a and S (cf.
e.g. 10.1.2B in [52] for the definition). We recall that # is commutative
and that if o < o’ then a#8 < o'#8.

The rank w(I) of an instance I of (cut) with cut-free premisses D and
D' is the pair comprising the depth d(A) of the cut formula and the natural
sum h(D)#h(D’) of the heights of the premisses. We will call the second
component the total height of the cut. Pairs are ordered lexicographically.

Ordinals are well-ordered, so we can reason by (transfinite) induction;
since we actually do it for pairs, we call this transfinite lexicographic induc-
tion. It can be converted to ordinary transfinite induction by turning pairs
into ordinals, e.g. the pair (d,0) can be converted to § - ¢y + o, where €
has the useful property of being greater than any possible value of o; but
pairs are conceptually clearer.
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LEMMA 2.11. In

'sa o,X=7v
Y=«

(cut)

if the premisses admit cut-free derivations in G3cLT,,, then the conclusion
also admits a cut-free derivation.

PROOF: By transfinite lexicographic induction on the rank of instances
of cut and case analysis. We first show the reduction steps for cuts with
cut formula principal in both premisses, i.e. principal cuts. Then we show
how non-principal cuts are reduced by permutation, maintaining the cut
formula but reducing the sum of heights. We give the details only of the
permutations of cuts into the first premiss; permutations into the second
premiss are covered generically.

1. If the cut formula is principal in each premiss for instances of initial
sequents, then the conclusion is already an initial sequent, so the cut
can be eliminated.

2. If the first premiss is an instance of an initial sequent with the atom
X'p principal and X'p is the cut formula, then the conclusion may be
obtained by admissible (we-left) from the second premiss, regardless
of the rule used in the second premiss, as in

[, X'p=X'p XipI'=~
L, X'p, T/ = v

(cut)

3. If the cut formula X‘Fa is principal in each premiss, then we consider
the cut

{XH_jav = ’Y}jEw

: i Fleft
I'= X'Fa X'Fa, IV = v ( )

(cut)
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which we transform into
= X XTra T/ = 5
LT =~

(cut)

a cut on a smaller formula. The case with cut formula X’Ga is treated
in a dual way.

4. Principal cuts with formulas with binary connectives and quantifiers
as outermost logical constant are reduced as in the standard proof
for G3c (cf. [41]).

5. If the second premiss is an instance of an initial sequent with the
atom X'p principal and X’p is the cut formula, then the conclusion
may be obtained by (we-left) from the first premiss, regardless of the
rule used in the first premiss.

6. If the second premiss is an instance of an initial sequent with the for-
mula X%p principal but X*p not the cut formula, then the conclusion
is already an initial sequent, regardless of the rule used in the first
premiss.

7. If the cut formula « is not principal in the left premiss, we reason by
cases on the last rule used to derive it. Since the calculus is single
succedent, the rule cannot be a right rule.

8. Tt is (Fleft), we have

(T, X"3 = a}jen

A (Fleft)
I X'F8= a o, IV =~ (cut)
. cu
LI, X'FB8 =«
which can be transformed to
XT3 =Aa ol =~
LI, X3 = (cut)
- i (Flett)

IV, X'FB =~
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i.e., the cut is “permuted upwards” to each of the premisses of (Fleft),
with unchanged cut formula v and reduced total height. All the other
cases of non-principal cuts with finitary rules are treated in a similar
way.

9. If the cut formula « is not principal in the second premiss, and that
premiss is not an initial sequents, then a standard permutation into
the second premiss is applicable, with resulting cut(s) of reduced
height.

Observe that in each case we have reduced the rank of the cut. O
THEOREM 2.12. Rule (cut) is admissible in G3cLT\,.

ProOF: It remains to show that an arbitrary derivation using instances
(possibly infinite in number) of rule (cut) can be transformed to a cut-
free derivation. Since this number may be infinite, we argue by transfinite
induction on the height of the derivation. Consider a derivation D; if it does
not end with (cut), but with a step by rule R, then, by inductive hypothesis,
each premiss (which has height less than ht(D)) can be transformed to a
cut-free derivation (with conclusion unchanged), and thus so, by adding
an R-step, can D. Otherwise, if D ends with a cut, the derivations of its
premisses both have height less than ht(D); by inductive hypothesis, each
can be transformed to a cut-free derivation (with conclusion unchanged).
We now use the Lemma to obtain a cut-free derivation of the conclusion
of D. O

3. Natural deduction and normalization

3.1. Natural deduction

Next, we define a Gentzen-style natural deduction system NLT,, for until-
free propositional linear-time temporal logic. As usual in a definition of a
natural deduction system we use the notation [a] to denote a discharged as-
sumption (i.e., the formula « is a discharged assumption by the underlying
logical rule).
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DEFINITION 3.1 (NLT,). Let i and k be arbitrary natural numbers.'?
The logical rules of NLT,, are of the following form, where the discharge in
rules that discharge assumptions can be simple, vacuous, or multiple:'3

X'a]
AXZ‘B ) Xi(aaﬂ_) X'a (E)
X'(a=p) X'p
Xia] [Xla
Xia) [Xia] [ § 1 § ]
i i : Xy XMy
X'—a X'a y Y - 1
7 (EXP) —L(EXM) Ty, (D)
Xia Xip X (anB) X' (anp)
X' (ang) (AI) Yo (AE1) ———— (AE2)
X'a] [X'f)
X'a ‘B X (Vi : :
X (D) (VI1) X v5) (vi2) X'(avp) . ¥ 7 (VE)

{ X }je, X'Ga
—— (GI - GE
X'Ga (GD) Xtk g (GE)

121n this definition, «, 8, and 7 represent arbitrary formulas. In particular, compared
with the definition in the sequent calculus, v is treated as a formula rather than as a

formula or the empty multiset.
130bserve that, for example, as an instance of (—I) we include a rule of the form:
X'B

—— (Wk).
X" (a—p) (W)
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[Xi-i-ja]
X'H-ka XzF )
L@ (pr a { 7 Jew
<o TV - (FE).
Remark 3.2.

1. Rules (EXP), (EXM), and (—I) are characteristic features of NLT,,.

Rules (EXP) and (—I) are temporal generalizations of the original
rules introduced by Gentzen. Rule (EXM) is a temporal general-
ization of the original rule introduced by von Plato [53, 41]. The
non-temporal versions of (EXP), (EXM), and (—1I) were also used by
Kamide and Negri in [30] for constructing natural deduction systems
for logics of strong negation.

An extended intuitionistic natural deduction system with the follow-
ing restricted version (EXM-at) of (the original non-temporal version
of) (EXM) was introduced by von Plato who also proved a normal-
ization theorem for this system [53]:

S

T
gl

(EXM-at)

where p is a propositional variable. This system was introduced as
a natural deduction system for classical propositional logic. It was
thus shown in [53] that (EXM) can be restricted to (EXM-at) without
changing the provability in classical propositional logic.

Using (EXP) and (EXM), we can prove the formulas of the form
(mana)—y and ~aVa, respectively:

[~ana]t
=

[~ana)t

AE1l) ———— (AE2 1
(7) (:‘D(lEX(P) : [ﬁodl win 22
(mana)—y

ava
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4. Using (=I) and (EXP), we can prove the formulas of the form a———a
and ——(a—a):

el by B
e

and

D 1 A OV e

a—Q Oé_}QE_'(a_)a)] (EXP) —|(O(—>OZ) (EXP)
—\—\(OZ%O[) (_‘I)l

5. (GI) has infinitely many premisses and is also represented as:

Xia XTla X*2q ... X'17g
XiGa

(GI).

6. (FE) has infinitely many premisses and is also represented as:

Xia] [X*a] [X¥2]  [X*)
XFa 4 7§ i 4
- (FE).

Next, we define some notions for NLT,,.

DEFINITION 3.3. Rules (—1), (AI), (VI1), (VI2), (-1), (GI), (FI), and (EXM)
are called introduction rules, and rules (—E), (AE1), (AE2), (VE), (GE),
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(FE), and (EXP) are called elimination rules. The notions of major and
minor premisses of the rules without (EXM) and (EXP) are defined as
usual. If X‘=a and X’a are both premisses of (EXP), then X‘~a and X'a
are called the major and minor premisses of (EXP), respectively. The no-
tions of derivation, (open and discharged) assumptions of a derivation, and
end-formula of a derivation are also defined as usual. For a derivation D,
we use the expression oa(D) to denote the multiset of open assumptions of
D and the expression end(D) to denote the end-formula of D. A formula
« is said to be provable in a natural deduction system L if there exists a
derivation of L with no open assumption whose end-formula is .

Remark 3.4. There are no notions of the major and minor premisses of
(EXM) and (—I). Namely, the premisses of (EXM) and (—I) are neither
major nor minor premisses. In this study, (EXP) is treated as an elimina-
tion rule, and (EXM) is treated as an introduction rule.

In order to define the notion of normal derivations in NLT,,, we define
a reduction relation > on the set of derivations in NLT,,. Before defining
>, we introduce some notions related to .

DEFINITION 3.5. Let a be a formula occurring in a derivation D in NLT,,.
Then, a is called a mazimum formula in D if a satisfies the following
conditions:

1. « is the conclusion of an introduction rule, (VE), or (EXP),

2. « is the major premiss of an elimination rule.

A derivation is said to be normal if it contains no maximum formula. The
notion of substitution of derivations for assumptions is defined as usual.
We assume that the set of derivations is closed under substitution.

DEFINITION 3.6 (Reduction relation). Let v be a maximum formula in a
derivation that is the conclusion of a rule R.

The definition of the reduction relation t> at v in NLT,, is obtained by
the following conditions.
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1. Ris (—I) and 7 is X' (a—p):

[X'al
D , L £
X" : i
TR p (1) o € X a
(a—p) _ © (LE) : D
X'B > X'B
2. Ris (EXP):
c Dy Dy ) )
i ’ : : D D
X ﬁév X' (EXP) 7r:1 & 7r:2 & Xi.—@ 1 X.ig 2
T R > — (EXP)

where R’ is an arbitrary rule, and both & and & are derivations of
the minor premisses of R’ if they exist.

3. Ris (—I), v is X‘=a, and B is the conclusion of (EXP):

Xl [l e e
: D1 1Dy . X'a Xa
Xisd XI5 L i€ ;D Dy

B B
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4. Ris (—I), v is X'=8, and X' is the conclusion of (EXP):
[X's]  [X'0]

D iD,

X/-8  X/B ) L € .
X2 X9 gxp) &
X' > X'0.

5. Ris (EXM) and 7 is X'(7;=72), X'(71/A72), or X'(7,V72):

[X'-a] [X'a]
: Dy Dy :
v & &
5 (EXM) s 5o
R/
1)

X'=a] . X'a] .
D, (& & ip, & 16
) é 6 ) 1) §
gl 51 2 R gl 51 2 r

> 3 (EXM)

where R’ is (—E), (AE1), (AE2), or (VE), and both & and &; are
derivations of the minor premisses of R’ if they exist.

6. R is (EXM), v is X'=, and X6 is the conclusion of (EXP):

X'-a]  [Xa]
D,

X' X0 gy »
Xiag X' pxp) :

X5 > X16.
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7. Ris (AI) and v is X" (a1 Aag):

253

0, im,
w (AI) .
i A : )
M (AEi) : D;
XlOéi > Xlai
where ¢ is 1 or 2.
8. Ris (VI1) or (VI2) and v is X" (a;Vas):
:D Xlay] [X'ao] . D
iy : : i
Favag P 3" G° .
“laqVae 1 &
1) (VE) > 5
where ¢ is 1 or 2.
9. Ris (VE):
: X'a] X5
:Dr ip, iy
X (aVvp) T [ n
T (\/E) { S }
R/
0
Xial X'
. : DQ gn . Dg n
- Dy s On s On
i {0n} I {don} R
X' (aVvp) 1) 1) VE
> 0 (VE)
where R’ is an arbitrary rule, and &1, &s, ... , &,, ... are derivations

of the minor premisses of R’ if they exist.



254 Norihiro Kamide, Sara Negri

10. Ris (GI) and v is X'Gax:

: D
{ XZJFJOC }jGUJ (GI) .
Xitky, itk
where k € w.
11. Ris (FI) and v is X'Fou:
‘D [XTal ' Dy
itk : -
% FD s - X
« jEW c &
FE .
) (FE) 1)
where k € w.
12. Ris (FE):
X"+ al
: D . D;
X'Fa {7 }jecw En
0 (FE) { on }
5 R
[X"*a] :
: D T {don} )
XiFa (3 }e0 Fg‘
o 5 (FE)
where R’ is an arbitrary rule, and &1, &s, ... , &,, ... are derivations

of the minor premisses of R’ if they exist.
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13. The set of derivations is closed under >.

Remark 3.7. We could consider some other reduction conditions that can
reduce a redundant derivation to a simpler derivation. The following are ex-
amples of such conditions. However, in this study, we do not introduce these
conditions. If we did, we would have to appropriately change the notion of
normal form according to these additional reduction conditions.

1. Ris (EXP) and + is in the premisses of (EXM):

: Dy : Dy

[X’%a]l X;a X [Xia]l
= 2% Exp) 224
Y Y

~ (

(EXP)
EXM)!

. i,
Xi-a X (

> 5 EXP).

2. Ris (EXM), v is the minor premiss of (EXP), and — is the conclusion
of (EXP):
[X'-a]  [X'a]
:D1 Dy
T (Bxm)
=

¢ |
7 (EXP) £

> —.

DEFINITION 3.8. If D’ is obtained from D by the reduction relation defined
in Definition 3.6 then this fact is denoted by D>D’. A sequence Dy, Dy, ...
of derivations is called a reduction sequence if it satisfies the following con-
ditions:

1. D; > Di+1 for all i > 0,

2. the last derivation in the sequence is normal if the sequence is finite.
A derivation D is called normalizable if there is a finite reduction sequence
starting from D.



256 Norihiro Kamide, Sara Negri

3.2. Equivalence and normalization

In the following discussion, a derivation of I' = in G3cLT,, is interpreted
as a derivation D in NLT,, such that oa(D) = I" and end(D) = —pAp.

DEFINITION 3.9. A multiset A of formulas is called a multiset reduct of a
multiset I" of formulas if A is obtained from I' by multiplying formulas in
I', where zero multiplicity is also permitted.!* For example, {«, a, a, B} is
a multiset reduct of {«, 3,7}. Note that the relation of being a multiset
reduct is reflexive and transitive.

We use an expression I'* to denote a multiset reduct of I'. We also use
an expression I' C* A to denote the fact that I' is a multiset reduct of A.

LEMMA 3.10. The following hold:

1. If D is a derivation in NLT, such that oa(D) =T and end(D) = S,
then G3cLT, +T = 3,

2. If G3cLT,, + I" = 3, then we can obtain a derivation D’ in NLT,
such that

(a) oa(D') C* T,
(b) end(D') = B,

(¢c) D' is normal.
PROOF:

1. We prove this by induction on the height of the derivations D of
NLT,, such that oa(D) = T' and end(D) = 5. We distinguish the
cases according to the last rule of D. We show some cases.

(a) Case (—1I): This case is divided into three cases.

14The notion of multiset reduct was introduced in [40, pp. 1805, Definition 1]. It
is sometimes thought that natural deduction would not be able to express the rule of
weakening and therefore derivability in natural deduction is defined as: + is derivable
from I if there is a derivation with open assumptions contained in I'. Instead of this,
the notion of multiset reduct was introduced.
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i.

ii.

D is of the form:
[X'a] T
L€
Xiy

Xar)

where oa(D) = {X'a} UT and end(D) = v. By induction
hypothesis, we have G3cLT,, F X'a,I' = X"y. Then, we
obtain that G3cLT,, F I' = X'(a—7):

Ind. hyp.
Xia, T = X'y

, —right).
' = X'(a—7y) (Toright)

D is of the form:

r
: &
Xiy

X (a—7)

where oa(D) = I' and end(D) = . By induction hypothesis,
we have G3CLTw F T = X"y. Then, we obtain that G3cLT,,
FT = X"(a—7):

Ind. hyp.
= X'y
X, I = X
[ = X' (a—7y)

(we-left)
(—right)

where (we-left) is admissible in G3cLT,, by Proposition 2.8.
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ili. D is of the form:

X'a,X'a] T
L€
_)(77 (=)
X (a—)

where oa(D) = {X'a,X’a} UT and end(D) = . By in-
duction hypothesis, we have G3cLT,, F X'a, X'a, T = X'.
Then, by applying an admissible step of contraction we ob-
tain that G3cLT,, F T = X'(a—7):

Ind. hyp.
Xla,X'a,I' = X'y
Xia, T = X'y

I = X' (a—7y)

(co-left)
(—right)

where (co-left) is admissible in G3cLT,, by Lemma 2.10. All
the other cases where multiple discharge of assumptions is
used in natural deduction are handled in a similar way via
admissible contraction steps and we shall not detail them
further.

(b) Case (—I): D is of the form:

[X'all1  [X'a]l

DD
XI =y X7y
— (7D

X'«

where oa(D) = I'y UTy and end(D) = Xijoz. By induction
hypotheses, we have G3cLT,, F X*a, 'y = X’/—y and G3cLT,, +
X'a, 'y = X?v. Then, we obtain that G3cLT, FI'{,T'y = X'—a:
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Ind. hyp.

Xla, Ty = Xy
Ind. hyp. X'—y,X'a,Ty = XIy
Xia, I = Xy XI =y, X, Ty =
X, X, I,y =
Xla,I'1,Iy =
I, Ty = X

(we-left)
(—left)
(cut)

(co-left)
(—right)

where (we-left) and (co-left) are admissible in G3cLT,, by Propo-
sition 2.8 and Lemma 2.10, respectively.

(c) Case (EXP): D is of the form:

Iy Iy
a6
X'wa X' (
g
where oa(D) = I'y UT'; and end(D) = . By induction hypothe-

ses, we have G3cLT, F I'y = Xi—a and G3cLT,, + 'y = Xa.
Then, we obtain the required fact that G3cLT,, - I'1,I's = 5:

EXP)

Prop. 2.7
D Ind.hyp. X'oa, X'a =X
. : Ind hyp ikt a (—left)
Ind. hyp. T1 = X"« X", X'a = (cut)
Iy = X'a X'a, T =
T, = (cut)
m (We—rlght)

where (cut) is admissible in G3cLT,, by Theorem 2.12.
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Case (EXM): D is of the form:

[X'-a]l;  [Xially
e e
Y y
- (EXM)
where oa(D) = I'y UT; and end(D) = v. By induction hypothe-
ses, we have G3cLT,, FX"—a, 'y =~ and G3cLT,+FX'a, 'y =1.
Then, we obtain the required fact that G3cLT,, - I';,I's = :

Ind. hyp. Ind. hyp.
Xiﬁa, Fl =7 XiOé7 FQ =7
(we-left) (we-left)
Xi=a, Ty, T X', Ty,T
a,lq, 2:>’Y a,lq, 2:>’y (ex—middle)
F17 FQ =

where (we-left) is admissible in G3cLT,, by Proposition 2.8.

Case (GI): D is of the form:
Ly
P b

XM a }iew

(X0 e (GI)

X'Ga

where oa(D) =T = U I, and end(D) = X'Ga. By induction

JEW
hypotheses, we have G3cLT, FI'; = X o for all j € w. Then,
we obtain the required fact G3cLT,, F I' = X'Ga:
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Ind. hyp.
r;= X o
(we-left)
{T=X"a}jew
I' = X'Ga

(Gright)

where (we-left) is admissible in G3cLT,, by Proposition 2.8.
Note that the induction hypothesis is applied for each of the
denumerable set of premisses.

Case (GE): D is of the form:
r

. D

X'Ga

Xi-‘rka

(GE)

where oa(D) = I' and end(D) = X" . By induction hypothe-
sis, we have G3cLT,, - I' = X'Ga. Then, we obtain the required
fact that G3cLT,, - I' = X" TFa:

Prop. 2.7
: Ind. hyp. Ga', o : ! «@ (Gleft)
I = X'Ga X'Ga = X"
(cut)

= X"*rq

where (cut) is admissible in G3cLT,, by Theorem 2.12.
Case (FI): D is of the form:
T
D
Xijrka

- FI
X'Fa (FD

where oa(D) =T and end(D) = X'Fa.. By induction hypothesis,
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we have G3cLT, T = Xifka. Then, we obtain the required
fact that G3cLT, T = X'Fa:

Ind. hyp.
i+k
I=X" o (Fright).
I' = X'Fa
(h) Case (FE):
D is of the form:
Ind i+ .
oy X 'oz]F]
: . D;
X'Fa { ’7 }jEw
. (FE)

where oa(D) = I"UT with I’ = U I'; and end(D) = v. By in-
JEwW

duction hypotheses, we have G3cLT,, F I = X'Fa and G3cLT,,

FX T, I'j = ~forall j € w. Then, we obtain the required fact,

that G3cLT,, - I'",T = ~ by the following derivation where the

induction hypothesis is applied for each of the denumerable set

of premisses:

Ind. hyp.
XHa, T =y
(we-left)
L Ind hyp. {Xa.T =7 }je
 Ind-hyp. { X7 VI pegy)
I'" = X'Fa X'Fa,T' = v
(cut)

I'I'=~

where (cut) and (we-left) are admissible in G3cLT,, by Theorem
2.12 and Proposition 2.8, respectively.

2. We prove this by induction on the derivations D of I' = 3 in G3cLT,,.
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We distinguish the cases according to the last rule of D. We show
some cases.

(a)

Case (init): D is of the form:
D
Xip,T' = X'p.
Then, we have a normal derivation £ in NLT,, of the form:
L €
X'p
where oa(€) = {X'p} C* {X‘p} UT and end(&) = X'p.
Case (we-right): D is of the form:
D
r=
I'=sa

(we-right)

By induction hypothesis, we have a normal derivation &’ in
NLT,, of the form:

1—\*
&
—pAP
where oa(&’) = I'™" C* T" and end(€’) = —pAp. Then, we obtain
a required normal derivation &£ by:

e r’
2 & 2 &
P20 (g1 2P (AE2)
& (Exp)

where oa(€) =T C* T and end(€) = a.
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Case (—left): D is of the form:
. D
Xiﬂa,F. = X'a

- (—left).
X'=a, T =

By induction hypothesis, we have a normal derivation £ in
NLT,, of the form:
(X'—a, T)*
D &
Xio
where oa(€’) = (X'-a,T)* C* {X'=a}UT and end(£') = X'a.
Then, we obtain a required normal derivation £ by:
(X'=a, T)*
&
Xisa X'a (

EXP
—pAp )

where 0a(€) = (X'=a, X'—a,T)* cr {Xija} UT and end(€) =
—pAp (i.e., L). We remark that {X'—a, X"~} UT is a multiset
reduct of {X"-a} UT'. We also remark that the last rule (EXP)
in £ cannot be replaced with (—E), because using (—E) entails
a possibility of developing a non-normal derivation. Namely,
there is a possibility of the case that the last rule of £ is (—1I).
Case (—right): D is of the form:
D
X, T =

: —right).
F:>XZ—|0¢( ght)

By induction hypothesis, we have a normal derivation &’ in
NLT,, of the form:
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(X'a,T)*
&
—pAp
where oa(£') = (X'a,I)* C* {X'a} UT and end(£') = —pAp.
Then, we obtain a required normal derivation £ by:

[X‘a]' T* [X‘al' T*
& D &
—DA —DA
L (B 2P (nE2)
- (-I)!

where 0a(£) = I'* C* I and end(€) = X'—a.
(e) Case (ex-middle): D is of the form:

RN 5
Xi-a,T Xla,T
e E & =7 (ex-middle).
I'=~y

By induction hypotheses, we have normal derivations £ and &
in NLT,, of the form:
(X'=a, )" (X'a, )"
& e
v v
where oa(&;) = (X'=a,I)* C* {X'a}UT, oa(&) = (Xla,T)*
C* {X'a} UT, end(&1) = 7, and end(&2) = 7. Then, we obtain
a required normal derivation &£ by:
[Xima]l* [Xiall*
D& L &

gl g
5 (EXM)

where oa(€) = I' C* T’ and end(&) = .
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(f) Case (Gleft): D is of the form:

. D
XiGa, X*a, I = ~
X'Ga, T = v

(Gleft).

By induction hypothesis, we have a normal derivation &£’ in
NLT,, of the form:

(X'Ga XFa T)*
e
gl
where oa(£') = (X'Ga, X Fa,I)* C* {X'Ga, X" a} UT and

end(£’) = . Then, we obtain a required normal derivation &
by:

XGo yiga T
: Xi-‘rk'a ( )

g

;}/

where 0a(€) = (X"CGa, X'Ga, T)* C* {X'Ga}UT and end(€) =7.

(g) Case (Gright): D is of the form:

S D
{ I'=X"a }jEw
I = X'Ga

(Gright).
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By induction hypotheses, we have normal derivations &; for all
j € win NLT,, of the form:

T
L&
X o
where oa(&;) = I'; C* T'j with I'* = U [; C* T, and end(&))
JEW
= X" . Then, we obtain a required normal derivation £ by:

I
L&
XM }ie,
(XVadie o
X'Ga
where oa(€) = I'* C* T and end(&) = X'Ga.

Case (Fleft): D is of the form:
D
{ X”ka,f =7 bew
X'Fa,T =~

(Fleft).

By induction hypotheses, we have normal derivations £; for all
j € win NLT,, of the form:

(XiJrja Fj)*
L&
0
where oa(;) = (Xa,T;)* C* {X"a}UT; with I'* = U r;
JEW
C* T and end(&;) = v. Then, we obtain a required normal
derivation £ by:
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[Xz-‘rj a]l F;k
) : 5j
X'Fa { ry }jEw
e

(FE)!

where 0a(€) = (X'Fa,T)* C* {X'Fa} UT and end(&) = 7.
(i) Case (Fright): D is of the form:

: D
I = Xtk

- Fright).
F:>XlFa( ght)

By induction hypothesis, we have a normal derivations £’ in
NLT,, of the form:

F*
L&
X”.koz

where oa(€’) = I'* C* T and end(£’) = X" ™. Then, we obtain
a required normal derivation £ by:

F*
&
Xijrkoz

- FI
X'Fa (FD

where oa(€) = I'* C* T and end(&) = X'Fa. O
We obtain the following required theorems.

THEOREM 3.11 (Equivalence between NLT,, and G3cLT,,). For any for-
mula «, G3cLT,, F = « iff a is derivable in NLT,,.
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Proor: Taking ) as " in Lemma 3.10, we obtain the required fact. O

THEOREM 3.12 (Normalization for NLT,,). All derivations in NLT,, are
normalizable. More precisely, if a derivation D in NLT,, is given, then we

can obtain a normal derivation € in NLT, such that oa(E) C* oa(D) and
end(€) = end(D).

PrROOF: Suppose that a derivation D in NLT,, is given, and suppose that
oa(D) =T and end(D) = . Then, by Lemma 3.10 (1), we obtain G3cLT,,
F T = B. Then, by Lemma 3.10 (2), we can obtain a normal derivation &£
in NLT,, such that oa(€) C* oa(D) and end(£) = end(D). O

4. Intuitionistic variant

4.1. Sequent calculus and cut elimination

The language of G3iLT,, is the same as defined in Section 2 for G3cLT,,.
A sequent for G3iLT,, is an expression of the form I' = v where I is a
(possibly empty) multiset of formulas and v is a formula or the empty
multiset. The same notions and notations as introduced and presented in
Section 2 are used for G3iLT,,.

We now define G3iLT,,.

DEFINITION 4.1 (G3iLT,). G3iLT, is obtained from G3cLT,, by deleting
(ex-middle).

We have the following propositions.

PROPOSITION 4.2. The sequents of the form X’a, I' = X'« for any formula
«, any set I' of formulas, and any natural number ¢ are derivable in G3iLT,,.

PrOOF: Similar to the proof of Proposition 2.7. By induction on «v. [
PROPOSITION 4.3. Rule (we-left) is height-preserving admissible in G3iLT,,.
PROOF: Similar to the proof of Proposition 2.8. O

PrROPOSITION 4.4.  Rule (co-left) is height-preserving admissible in
G3iLT,,.

PROOF: Similar to the proof of Proposition 2.10. O
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THEOREM 4.5. The rule (cut) is admissible in G3iLT,,.
PROOF: Similar to the proof of Theorem 2.12. O
We also obtain the following constructive property for G3iLT,,.

THEOREM 4.6 (Timed disjunction property for G3iLT,,). For any formulas
a and B and any i € w, if G3iLT,, = = X'(aVf), then either G3iLT,, F
= X'a or G3iLT, F = X'S.

PrOOF: Immediate by Theorem 4.5. ]

4.2. Natural deduction and normalization

The same notions and notations as introduced and presented in Section 3
are used for NILT,,.
First, we define NILT,,.

DEFINITION 4.7 (NILT,). NILT, is obtained from NLT, by deleting

Next, we define the reduction relation on NILT,,.

DEFINITION 4.8 (Reduction relation). The definition of the reduction
relation on NILT,, is obtained form Definition 3.6 in NLT,, by deleting the
conditions concerning (EXM).

We then obtain the following lemma.

LEMMA 4.9. We have the following statements.

1. If D is a derivation in NILT,, such that oa(D) = T' and end(D) = §,
then G3iLT, - T' = 3,

2. If G3iLT,, + I' = B, then we can obtain a derivation D’ in NILT,,
such that

(a) oa(D') C* T,
(b) end(D') = 3,

(c) D' is normal.

PRrROOF: Similar to the proof of Lemma 3.10. O
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We then obtain the following required theorems.

THEOREM 4.10 (Equivalence between NILT,, and G3iLT,). For any for-
mula o, G3iLT, F = « iff « is derivable in NILT,,.

PROOF: Similar to the proof of Theorem 3.11. We use Lemma 4.9. O

THEOREM 4.11 (Normalization for NILT,,). All derivations in NILT,, are
normalizable. More precisely, if a derivation D in NILT,, is given, then we
can obtain a normal derivation £ in NILT,, such that oa(€) C* oa(D) and

end(€) = end(D).
PRrROOF: Similar to the proof of Theorem 3.12. We use Lemma 4.9. O

5. Conclusion and remarks

5.1. Conclusion

In this study, we introduced a unified Gentzen-style proof-theoretic frame-
work for until-free propositional linear-time temporal logic (LTL) and its
intuitionistic variant.

First, we proposed the Gentzen-style single-succedent sequent calculus
G3cLT,, for until-free propositional LTL. Subsequently, we proved the cut-
elimination theorem for G3cLT,, following the methodology for G3-style
sequent calculi with infinitary rules, as in [39].

Second, we introduced the Gentzen-style natural deduction system NLT,
for until-free propositional LTL, along with a reduction relation for NLT,,.
Following this, we established the normalization theorem for NLT,, by uti-
lizing the equivalence theorem between NLT,, and G3cLT,,.

Third, we introduced and investigated a Gentzen-style sequent calcu-
lus, G3iLT,, and a Gentzen-style natural deduction system, NILT,,, for
an intuitionistic variant of the until-free propositional LTL. The systems
G3iLT,, and NILT,, are derived from G3cLT,, and NLT,, by omitting the
rules (ex-middle) and (EXM), respectively. The cut-elimination theorem
for G3iLT,, is then immediate as a subcase of the cut-elimination theorem
for G3cLT,,. Subsequently, we established the normalization theorem for
NILT,, by utilizing the equivalence theorem between NILT,, and G3iLT,,.
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5.2. Remarks on the merits of our approach

We now highlight the merits of our approach. In particular, we emphasize
the advantages of the proposed infinitary systems, which incorporate logical
inference rules with infinitely many premises. These systems exhibit three
key features: uniformity, modularity, and compatibility.

Regarding uniformity, by employing inference rules with infinitely many
premises, we can treat both Gentzen-style sequent calculi and Gentzen-style
natural deduction systems in a uniform manner. In particular, we estab-
lish a natural correspondence between the Gentzen-style single-succedent
sequent calculi G3cLT,, and G3iLT,, and the Gentzen-style natural deduc-
tion systems NLT,, and NILT,,, respectively.

Regarding modularity, the systems with infinitary rules can be extended
in a modular way. In particular, G3cLT, and NLT,, are obtained from
G3iLT,, and NILT,, simply by adding the rules (ez-middle) and (EXM),
respectively. This modularity, together with uniformity, is a distinctive
advantage not available in previously proposed systems.

By using rules with infinitely many premises, we also gain an advantage
in establishing smoothly a Glivenko theorem for G3cLT,, and G3iLT,,. This
result is an analogue of the Glivenko theorem for Gentzen’s LK and LI in
classical and intuitionistic logics. This theorem is formally presented as
follows: For any formula o, G3cLT,, - = « if and only if G3iLT,, - = ——«a.
The proof of this theorem can be given in a similar way as presented in [22].

In addition to these merits, by using rules with infinitely many premises,
we can obtain certain theorems for embedding G3cLT,, and G3iLT,, into
a Gentzen-style sequent calculus LK, for infinitary classical logic and a
Gentzen-style sequent calculus LI, for infinitary intuitionistic logic, re-
spectively. These theorems can be proved in the same way as presented in
[19, 23].

Further, we can construct finite fragments of G3cLT, and G3iLT,,,
in which the infinite domain w of rules with infinitely many premises is
restricted to a finite domain w; = {n € w | n < I} for a fixed positive
integer [. A system based on LT, of this kind was studied, for example,
n [21]. These systems have been shown to be embeddable into LK or LI,
and hence are decidable.
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The above-mentioned merits imply that our framework is highly com-
patible with the traditional frameworks of classical logic, intuitionistic logic,
infinitary classical logic, and infinitary intuitionistic logic. This naturally
extends the traditional proof theory for these standard logics. This was
the basic aim of this study.

5.3. Remarks on next-time fragments

The next-time fragments (i.e., the {G, F}-less fragments) of the proposed
systems possess several desirable properties. To fix the terminology, let
XT,, SXT,,, SIXT,,, NXT,,, and NIXT,, denote the next-time fragments
of LT, G3cLT,,, G3iLT,, NLT,,, and NILT,,, respectively.

Then, the cut-elimination theorems for XT,,, SXT,, and SIXT, hold
by virtue of the cut-elimination theorems for XT,,, G3cLT,,, and G3iLT,,
and their conservativeness. We can demonstrate theorems for embedding
XT,, and G3iLT,, into Gentzen-style sequent calculi for classical logic and
intuitionistic logic, respectively. Such a Gentzen-style sequent calculus,
referred to here as LK, for classical logic is the X-less fragment of XT,, (i.e.,
LK is obtained from XT,, by deleting all occurrences of Xi). Similarly, such
a Gentzen-style sequent calculus, referred to here as LI, for intuitionistic
logic is the X-less fragment of SIXT,, (i.e., LI is obtained from SIXT, by
deleting all occurrences of X*).

The equivalence between NXT,, (or NIXT,,) and SXT,, (or SIXT,,, re-
spectively) can also be established. The normalization theorems for NXT,,
and NIXT,, can be demonstrated similarly to those for NLT,, and NILT,,,
since NXT,, and NIXT, are proper subsystems of NLT, and NILT,, re-
spectively.

As demonstrated above, we can derive the theorems for embedding XT',
and SIXT, into LK and LI, respectively. By virtue of these theorems, we
can also establish the decidability of XT,, and SIXT,, as well as the Craig
interpolation theorems for XT,, and SIXT,. These results, based on the
embedding theorems into LK and LI, cannot be obtained for LT, and
G3iLT,, because these systems are not embeddable into LK and LI, respec-
tively. Instead, they can be embedded into Gentzen-style sequent calculi
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LK, and LI, for infinitary logic and infinitary intuitionistic logic, respec-
tively, which are known to be undecidable. Additionally, it is well-known
that the Craig interpolation theorem does not hold for LTL. For more infor-
mation on Craig interpolation theorem for the next-time fragment of LTL,
see [24]. In conclusion, XT,, and SIXT, are analogous to classical logic
and intuitionistic logic, respectively, while LT,, and G3iLT,, are analogous
to infinitary logic and infinitary intuitionistic logic, respectively.

5.4. Related and future works

Gentzen-style sequent calculi and natural deduction systems for some ex-
tended intuitionistic variants of until-free propositional LTL with paracon-
sistent negation were examined by Kamide and Wansing in [31], where
the corresponding display sequent calculi were also discussed. Kamide
clarified the relationship among until-free propositional LTL, first-order
monadic omega-logic, propositional generalized definitional reflection logic,
and propositional infinitary logic in [25], using Gentzen-style sequent cal-
culi for the investigation. Recently, Kamide proposed and investigated
refutation-aware Gentzen-style sequent calculi for until-free propositional
LTL in [27], although their intuitionistic variants and Gentzen-style natural
deduction systems were not studied.

Gentzen-style natural deduction systems and related typed A-calculi for
various fragments of LTL and related modal logics have been extensively
studied [3, 5, 6, 12, 13, 34, 37, 38, 35, 50, 56, 20] to establish a foundation
for staged computation in multi-level programming. Gentzen-style natural
deduction systems and sequent calculi for variants of the next-time frag-
ment of LTL were surveyed and investigated in [20], where Davies’ logic for
binding-time analysis was also discussed.

From an application perspective, Davies [12] proposed a typed A-calculus
A° (including a next-time operator () insted of X) for a fragment of intu-
itionistic LTL to discuss multi-level binding-time analysis. Taha et al. [50]
introduced an extension of A\° called MetaML, which incorporates proper-
ties like run-time generation and persistent code. Moggi et al. [37] further
developed an extension of MetaML called AIM (an idealized MetaML), and
Benaissa et al. [5] proposed a refinement of AIM known as ABN.
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Davies and Pfenning [13] introduced an alternative typed A-calculus Al
(incorporating an S4-type modal operator []) for intuitionistic S4-modal
logic, aimed at analyzing staged computation. Nanevski [38] and Kim et
al. [34] explored various type systems based on A, while Yuse and Igarashi
[56] introduced \°U, a type system combining A° and All| designed to man-
age both persistent code (using []) and ephemeral code (using Q).

In future work, we aim to prove the strong normalization and Church-
Rosser theorems for NLT,, and NILT,,, as well as for their first-order exten-
sions. Additionally, we plan to introduce the corresponding typed A-calculi
for NLT,, and NILT,, with the Curry-Howard correspondence, and to apply
these calculi to the analysis of staged computation in multi-level program-
ming.
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1. Introduction

In this paper, we explore the relation between known and new logics with
a focus on subminimal logics, which were introduced by [13, 12]. Since
we have two backgrounds, we will first describe the backgrounds and then
clarify the aims of the paper.

1.1. Vakarelov’s logics and Minimal logic

Intuitionistic logic contains ex contradictione quodlibet (ECQ for short),
which is the inference rule deriving any conclusion B from A and —A.
Minimal logic, which is introduced by [6], is the logic excluding ECQ from
Intuitionistic logic. When we treat classical, intuitionistic and minimal log-
ics, negation is usually defined by making use of the absurdity constant and
implication, i.e., =A = A — 1. We call this kind of negation intuitionistic
negation by following the terminology used by [13, 12]. Using intuitionistic
negation, minimal logic is the weakest logic with respect to the strength of
negation, on the assumption that the implication is at least intuitionistic.

However, there is another way to treat negation in classical/intuitio-
nistic/minimal logics. That is, to take negation as a primitive logical
connective with one argument. We call this kind of negation subminimal
negation by following the terminology used in [13] again. In [13], submini-
mal negation was introduced to analyze strong negation in a more general
framework. By using subminimal negation, we can analyze properties of
negation in a more detailed way than intuitionistic negation, and we can
define logics weaker than minimal logic, which we shall call subminimal
logics.

In this paper, we are interested in two systems introduced in [13]. One
is the L-free fragment of SUBMIN (Definition 6.1), which is one of the
subminimal logics. The other is co-minimal logic (CO-MIN for short)
(Definition 2.7), which has ECQ. The positive fragment of CO-MIN coin-
cides with that of intuitionistic logic, but CO-MIN is neither weaker nor
stronger than minimal logic. Moreover, CO-MIN is stronger than SUB-
MIN. The relationship between the four systems discussed by Vakarelov
can be summarized as follows.
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[Intuitionistic logicJ

Minimal logic

Figure 1: Main systems discussed by Vakarelov

Note here that the systems above the lines are strictly stronger than
the lower systems.

1.2. Subminimal logics

Let us now move on to the second background. In [3, 4], several subminimal
logics that are closely related to SUBMIN were introduced. By using sub-
minimal negation instead of intuitionistic negation, we can treat negation
separately from implication and absurdity. Then, the following properties
of negation do not hold automatically.

(Co) (A — B) — (=B — —A) (Contraposition);
(NECQ) (A A—-A) — —B (Negative Ex Contradiction Quodibet);
(N) (A + B) = (=A + —B) (Congruence).

Hence we can obtain systems by adding these as axioms to the positive
fragment of intuitionistic logic with subminimal negation and the following
hierarchy.
Furthermore, [3] established the soundness and completeness theorems for
the newly introduced subminimal logics using neighborhood semantics.
The relationship between logics has been analyzed by measuring of the
cardinality of logics between them. In [17], the existence of a continuum of
logics between classical and intuitionistic logics is proved, by using algebraic
semantics. As a related result, [9] showed the existence of a continuum of
logics between some intutitionistic modal logics. Another result that is
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[Intuitionistic 10gic}

Minimal logic

Figure 2: Systems discussed by Colacito, Bezhanishvili and de Jongh

directly related to the above systems can be found in [1] in which the
existence of continua of logics between the systems included in the above
figure is established.

Although SUBMIN was mentioned in [3] its relationship to the logics
introduced in [13] was not clarified. It was Niki who revealed, in [8], the
relations between SUBMIN and subminimal logics included in Figure 2.
As a result, the systems are related as summarized in the following figure.
Note that Niki refers to the L-free system SUBMIN (SUBMIN™ for
short) as An~PC.

1.3. The aims of the paper

Building on the two backgrounds, we have two aims for this paper. First,
we investigate the systems introduced by Vakarelov in some further detail.
More specifically, we observe that there is a simpler characterization of
CO-MIN and introduce the intersection of CO-MIN and minimal logic.
Second, we establish some new results concerning the existence of continua
of logics between systems that are not discussed so far in the literature.
The results are established by making use of the techniques introduced in
[15], and this strategy has the advantage of simplifying the proofs for the
previous results established in [1].
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[Intuitionistic 10gic}

Minimal logic

(SUBMIN or An—PC]

Figure 3: Systems discussed by Colacito, Bezhanishvili and de Jongh, after
Niki’s clarification

The remainder of this paper is structured as follows. In Section 2, we
introduce proof systems for subsystems of intuitionistic logic and establish
some results related to the first aim. In Section 3 we define algebraic
semantics for the systems defined in Section 2, as a preparation for the
main result. In Section 4, we show the existence of continua of logics
between the logics discussed in this paper, and this will be related to the
second aim. In Section 5, we conclude the paper by summarizing the main
findings of the paper and pointing out some directions for further research.
In the appendix, we prove the soundness and completeness theorems for
the main logics of this paper using the Kripke semantics introduced by
Vakarelov in [13].

2. Proof system

We shall use the language £, consisting of denumerable propositional vari-
ables, A, V, — and —. The set of propositional variables is denoted by P. We
define formulas of £, as follows: A:=p|—-A| (AANA)| (AVA) | (A — A),
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and employ the abbreviation A <+ B := (A — B) A (B — A). The formula
Alp1/Bu,...,pn/By] is obtained by replacing all occurrences of p; in A
with B; for each i = 1,...,n and leaving all other variables fixed. We call
this operation substitution.

DEFINITION 2.1 (NPC [3]). We define the Hilbert system NPC by adding a
negative axioms to the positive axiom and rules of intuitionistic/minimal
logic.
Axioms

* AxL: p = (g = p);

e Ax2: (p—=(g—r) = ((p—=a) = (=)

e Ax3: p— (pVq);

o Ax4d: g — (pVq);

e ABi(p—=r) = [lg—=r) = ((pVa =)

o Ax6: (pAq) = p; AXT: (pAg) — g

e A8:p— (¢ — (PN

e (N): (p+rq) = (—p > —q).
Inference rules

e (MP): If A and A — B, then B;

e (Sub): If A, then A[p1/Bj,...,pn/By], where p1,...,p, are proposi-
tional variables in A and By, ..., B, are formulas.

For a formula A, a sequence Ay, ..., A, isa proof of Ain NPC, if A; satisfies
one of the following for any 1 <i < n:
1. A; is an axiom;
2. A; is the result of applying (MP) to formulas A; and Ay for some
k<1
3. A; is the result of applying (Sub) to a formula A; for some j < 4
4. A, = A.

NPC I A denotes that there is a proof of A in NPC. Unless there is a risk
of misunderstanding, the set {A | NPCF A} is also denoted by NPC.
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For a set of formulas I', a formula A, a sequence Aq,...,A, is a de-
duction of A from T" in NPC, if A; satisfies one of the following for any
1< <n:

1. A; isin NPC or in T}

2. A; is the result of applying (MP) to formulas A; and Ay for some

g,k <1

3. A, =A.

I Fnpe A denotes there is a deduction of A from I' in NPC.

In considering deductions with hypothesis, (Sub) is not allowed.
If (Sub) were allowed, p F ¢ would be derived for any p and g.
We consider the following axioms related to negation.

DEFINITION 2.2 (Additional Axioms).

e (An): (p— —p) — —p;
e (An7): (p— —p) = (g — —p);
(Co): (p—¢q) = (mg — —p);
e (NECQ): (pA—-p) = —g;
(ECQ): (pA—p) = g;
(AVQ) : == (=(p = p) — q);
(AnN ECQ) —=(p=p)V(=(qg—q) —r);
(

CoECQ) : —p — —(g A —q).
By adding the above axioms, we obtain the following Hilbert systems.

o NECQPC is the Hilbert system adding (NECQ) to NPC. NECQ is an
abbreviation of negative ex contradiction quodibet.

e CoPC is the Hilbert system adding (Co) to NPC (in this case, (N) is
redundant [3]). Co is an abbreviation of contraposition.

e An~PC is the Hilbert system adding (An~) to NPC.

o CoECQPC is the Hilbert system adding (CoECQ) to NPC. CoECQ is
an abbreviation of contraposition of ex contradiction quodibet.
e An N ECQPC is the Hilbert system adding (An N ECQ) to An~PC.
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e MPC, is the Hilbert system adding (An) to NPC. An is an abbrevia-
tion for absorption of negation.

o ECQPC is the Hilbert system adding (ECQ) to NPC. ECQ is an
abbreviation of ex contradiction quodibet.

¢ AVQPC is the Hilbert system adding (AVQ) and (An) to NPC. AVQ
is an abbreviation of avoidability of quodibet.

o IPC is the Hilbert system adding (ECQ) and (An) to NPC. (In this
case, (N) is redundant, see Lemma 2.5.)

Note that the system AVQPC was introduced in [14].! For each Hilbert
system, the deducibility relation “I" = A” is defined as in the NPC case.

In [3, 8] the systems NeF, CoPC,An~PC and MPC_, are defined in the
language with T. The systems NECQPC, CoPC, An~PC and MPC_, we de-
fined above are the T-free fragments of them, respectively. This can be
proved in the same way as CO-MIN and CO-MIN~ "+ in Appendix.

Unless there is a risk of misinterpretation, for any Hilbert system H
above, we denote the set {4 | HF A} by H in the same way as NPC.

For each Hilbert system H defined above, the set {A | H+ A} can be
summed up in one concept. Because we use it later, we define it as follows.

DEFINITION 2.3. A super-N-logic (sN-logic, for short) in the language £,
is any set L of L£_-formulas satisfying the conditions:

« NPCC L;

e [ is closed under modus ponens;

o L is closed under substitution.

As mentioned, for each Hilbert system H defined above, the set {A |
HF A} is an sN-logic.
LEMMA 2.4 (Deduction theorem). Let I' U {A, B} be a set of formulas.
The following holds:

FU{A}FNpcB & I'Fnpc A — B.

I This formulation was given by [7].
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To prove Deduction theorem, we need only Axl and Ax2 and the fact
that (MP) is the unique inference rule in deductions. So, it holds for all
Hilbert systems defined above.

We will use Deduction theorem without a mentioning in what follows.

LEMMA 2.5. Let IPC”™N) be the Hilbert system removing (N) from IPC.
IPC~ ™M (N).

ProOF:  We can show IPC”MN F (=pAg A (p < q)) = (pA—p) as follows:
We can prove —p,q and p <> ¢ from —=p A g A (p <> q) by using Ax6,7.
Since we can show p from ¢ and p + ¢ by (MP), we can show p A —p from
—pAgqA (p< q) by Ax8. Then we have the following:

LIPC™ E (=pAgA(pq) = (pA-p)

2. IPC M - (spAgA (p+ q)) = —q ((ECQ) and 1)

3. IPC M - (=p A (p ) = (¢ — —q) (From 2)

4. 1PC N (=p A (p+ q)) = ¢ ((An) and 3)

5. 1PC M - (p o q) = (-p — —q) (From 4)

6. IPCN F (p 5 q) = (g — —p) (The same way as 1-5)

7. IPC N E (p s q) = (—p & —q) (Ax8,5 and 6). O
LEMMA 2.6. NPC C NECQPC C CoPC C An~PC C MPC...

PROOF: By combining the results of [3, Page 12] and [8, Page 970], we
have NPC C NeFPC C CoPC C An~PC C MPC_,. In their proofs, the axiom
for T is not used. Since NPC,NECQPC, CoPC,An~PC, MPC_, are T-free
fragment of them. O

Hereinafter Lemma 2.6 is used without reference.

We shall show that co-minimal logic (CO-MIN for short (cf. [13])) is
a conservative extension of ECQPC.

To define CO-MIN, we shall use the language £- 1 | consisting of
L., T, L. We define formulas of £, 1, as follows: A:==p| T | L]|-A4|
(ANA)| (AVA)| (A= A).
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DEFINITION 2.7 (cf. [13]). CO-MIN is the Hilbert system obtained by
adding the axioms L — p,p — T, =-p = ==T and =T — p to CoPC in
LoT1.

We define CO-MIN~ "1 as the Hilbert system adding the axioms
—p — —=(¢ — ¢) and —~(p — p) = ¢ to CoPC in L_.

The following lemma shows that CO-MIN is a conservative extension
for CO-MIN— T+,

LEMMA 2.8. Given a formula A in the language of L,

CO-MINF+ A < CO-MIN~ "t 4.

PROOF: See Appendix. O
Next, we show the equivalence between CO-MIN~ T+ and ECQPC.
LEMMA 2.9. ECQPC contains An—PC.

PrOOF: Tt suffices to show that ECQPCF (p — —p) — (—qg — —p).

We can show ECQPCF ((p — —p) A —q) — (q <> p) as follows:

We can show p — —p and —¢q from (p — —p) A =g by Ax6,7. Assume ¢,
then we can show p from —¢ by (ECQ). Assume p, then we can show —p
from p — —p, and so ¢ by (ECQ) again.

Then we have the following:

1. ECQPCHF ((p = ) A—q) = (¢ & p)

2. ECQPCHF ((p — —p) A —q) = (—g — —p) ((N) and 1)

3. ECQPCF (p — —p) = (=g — —p) (From 2). 0
LEMMA 2.10. ECQPC is equivalent to CO-MIN~ "+,

PROOF: Since p — p is derivable, =(p — p) — ¢ is equivalent to the
instance ((p — p) A =(p = p)) = ¢ of ECQ. Then it suffices to show that
ECQPCF —p — —=(q — q).
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1. ECQPCF —~(q — q) = =—=(q — q)

2. ECQPCF (=(¢ = q) = ==(¢—q)) = (=p = (¢ = q)) (An7)

3. ECQPCF —p — =~(q — q) (1 and 2).
For the other direction, it suffices to show CO-MIN~ "1 | (pA—p)—q.

1.CO-MIN™ "+ (pA—=p) = (p & (p—p))

2. CO-MIN~ "+ (pA=p) = (=p = =(p —p)) ((N) and 1)

3. CO-MIN~ " (p A =p) = =(p = p) (From 2)

4. CO-MIN™ " —(p = p) = ¢ (Ax of cO-MIN~ 1)
5.CO-MIN~ "+ (pA—p) = ¢ (3 and 4). 0

In order to show An N ECQPC is the intersection of ECQPC and MPC_,
we show the following lemma.

LEMMA 2.11. The Hilbert system An—PC" consisting of An~PC plus the
aziom ——(p — p) is equivalent to MPC_,.

PrOOF: An~PCT F (p — —p) — —p can be shown as follows.
L. AnPC  (p = —p) = (——=(p = p) = —p) (An7)
2. AnPCt I —-=(p—p) = ((p = —p) = —-p) (From 1)
3.;AnPCT (p—-p) = -p (2 and Ax of An_PC+).

For the converse, it suffices to show MPC_ + ——(p — p), since MPC_ +
(An7).

1. MPC_ F =(p = p) = =~ (p = p) (NECQ)

2.MPC_F (=(p—p) > =(p—=p) > —@—p)  (An)

3. MPC. F ==(p — p) (land 2). O
LEMMA 2.12. AnNECQPC is the intersection of ECQPC and MPC_,.
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ProoF: By Lemma 2.9, to prove An N ECQPC C ECQPC and
AnNECQPC C MPC_, it suffices to show that ECQPC F —=(p — p) V
(=(¢ = q) = r) and MPC_, + —==(p — p) V (=(¢ = ¢) — r), but it is
immediate from Lemma 2.10 and Lemma 2.11.

For the other direction, note that ECQPC = CO-MIN~ ! and
MPC_ = An— PC+, so An~PC is contained in the intersection of ECQPC and
MPC_. Suppose that A is in the intersection of ECQPC and MPC_,. Since
MPC_ - A, An~PCF B — A, where B is a conjunction of substitution
instances of == (p — p). Since ECQPC - A, An"PC - C — A, where
C' is a conjunction of substitution instances of —(¢ — ¢) — r. By Ax5,
An~PCF (BVv C) — A. Since BV C is equivalent to a conjunction of
instances of An N ECQ, we obtain An N ECQPCFH A. O

It will be seen below that SUBMIN can be further formalized differ-
ently.

LEMMA 2.13. CoECQPC is equivalent to An—PC.
Proor: We show that CoECQPCF (p — —p) — (—g — —p).
We can infer CoOECQPCF (p — —p) = ((p A —p) <> p) by using Ax6,7.

1. COECQPCH (p — —p) = ((p A —p) <+ p)

2. CoECQPCF (p = —p) = (=(p A —p) + —p) ((N) and 1)
3. CoECQPCF —(p A —p) = ((p = —p) = —p) (From 2)
4. COECQPCF —g — —(p A —p) ((CoECQ))
5. COECQPCF —¢ — ((p = —p) — —p) (3 and 4)
6. CoECQPCH+ (p — —p) — (—g — —p) (From 5)

For the other direction, we show that An"PCF —p — =(q A ~q).



Continua of Logics Related to Intuitionistic and Minimal Logics 295

1. An"PCF ¢ — =(g A —q) (Ax7 and (Co))
2. AnTPCH (g A —q) = ¢ (AXT)

3. An"PCF (g A —q) = —(qgA—q) (

4. An"PCFE ((gA—=q) = (g A=q)) = (=p = —(gA—q)) ((An7))

5. An"PCHF —p — =(g A —q) (3and 4) g

The results concerning the relations between the systems so far can be
summarized as follows.

IPC
(Intuitionistic logic)

AVQPC

ECQPC MPC.,
( )

Co-minimal logic (Minimal logic)

An N ECQPC

(SUBMIN™T* or An—PC or CoECQPC]

See the Appendix for SUBMIN™ "' The systems other than

An N ECQPC were defined using different languages and the relations were
already known. The relation of An N ECQPC to other systems is a new
result of this paper, but at this point, it is not yet clear whether it can be
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separated from other systems. In Section 4, using algebraic semantics, we
separate An N ECQPC from the others. Before presenting the main results,
we will first prepare some tools that we will use in the proofs of the main
results.

3. Algebraic semantics

We now turn to introduce algebraic semantics for logics in the previous
section.

DEFINITION 3.1 (N-algebra (cf. [3])). Let (||, Aq, Vo) be a lattice with
the greatest element 1g. The order <g in the lattice is defined by

a<gb:sangb=a

for any a,b € |2|. The N-algebra (|2, 1o, Ag(, Var, —>a1, 7o) is given by
defining a binary operator —¢ and an unary operator —g over |2l| as follows:

a =g b=max{c € |A| | a Ay c <g b};

((l S b) —9 (—@a St ﬁmb) = ].Q[,

where a <»o b is an abbreviation of (@ —y b) Ay (b =9 a).

For any N-algebra 2, the following holds in the same manner as Heyting
algebras:
a<gq b= a—9b=1g.

This relation will be used without notice in what follows.
We now define the following algebraic conditions that correspond to the
axioms.

DEFINITION 3.2 (Additional conditions for negation). The following con-
ditions corresponding to the additional inference rules in Definition 2.2 are
defined as follows:

1. (An)?: (z = —2) = 2 =1;
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Y (2= —2) = (my = —2) =1;
Co)P: (
NECQ)? : (z A—zx) = —y =1;
D (e Az) sy =1;

(An~

(

(
(ECQ)F :
(

(

(

x—=y)— (~y — —x) =1

)
AVQ)P i ——(—(x =) = y) =1;
AnNECQ)®: ——(z =)V (~(y = y) = 2) = 1;
CoECQ)” : —2 — =(y A—y) = 1.

® N> oW

These conditions are also denoted without E unless there is a risk of
misunderstanding.

In what follows, we fix ¥ = {A,V,—}. Recall that P is the set of
propositional variables.

DEFINITION 3.3 (Valuation of N-algebra). For any N-algebra and any map
v from P to |2, the valuation T in 2 is defined as follows:

1. If A is a propositional variable, then 7(A4) = v(A);
2. If A =-B, then 7(—B) = —90(B);
3. f A=B®C, then 5(B® C) =1(B) ®y 7(C), for ® € ¥.

Since v is uniquely determined for any v, by this definition the valuation v
is also written as v unless there is a risk of misunderstanding.

For given a valuation v and any formula A, if v(A) = 1y, then we say
that A is true in v. If A is true in v for any valuation v in 2, then we
say that A is true in 2, which is denoted by 20 = A. For a class C of
N-algebras, if % = A for any 2 in C, then we say that A is true in C. For
any set A of formulas, any formula A and any class C of N-algebras, if,
for any N-algebra 2l € C and valuation v in 2, A is true in v whenever B
is true in v for any B € A, then we say A is true under A in C which is
denoted by A ¢ A. If A is empty, it is denoted by ¢ A.

We can prove the completeness theorem for the logics defined above and
these N-algebras. In particular, here we show the completeness theorem
regarding ECQPC.
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THEOREM 3.4. Let Cecq be the class of N-algebras that validate ECQ. For
any formula A, the following holds:

ECQPCH A & |y, A.

PrOOF: With regard to the forward implication, it can be proved by
induction on the length of the deduction. For the other direction, it can
be proved in the same manner as Heyting algebras (cf. [2, page 195]). O

Thus, completeness theorems can be proved in the same manner for the
remaining logics. In more general, we can show the following.

THEOREM 3.5 (Completeness theorem). For sN-logic L, let Cr, be the class
of N-algebras in which all theorems of L are true. For any formula A, the
following holds:

L-FA & ):CL A.

PrROOF: We can show this theorem in the same way as [3, page 51] by
replacing T with p — p. O

4. The existence of continua of logics between pairs
of logics below intuitionistic logic

In this section, we show the main theorem: there are continua of logics
between logics introduced in Section 2. In order to show it, we introduce
the following definitions and lemmas. Most of them are introduced by [15].
The Heyting algebras are defined as usual.

4.1. Preliminaries

DEFINITION 4.1 (Second greatest element (cf. [15])). Given a N-algebra
A, we say that A has the second greatest element if the greatest element
exists in |2A| \ {1a}. We write the second greatest element in 2 as *g if it
exists.

The role of the second greatest element will be explained when we in-
troduce Yankov formulas.
Recall that ¥ = {A,V, —}.
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DEFINITION 4.2 (PU-reduct, ¥-embedding (cf. [15])). For any Heyting
algebra 2A, we define the following:

1. The algebra (|2, 1y, Og, (®e | ® € ¥)) is the W-reduct.

2. For a Heyting algebra B, a U-embedding from 2 to B is an embedding
from the W-reduct of A to the WU-reduct of B .

The following is a generalization of Yankov formulas (cf. [16]).

DEFINITION 4.3 (Yankov formula of N-algebra). In what follows, for any
function g and a € dom(g), g, denotes the value of g at a. For any finite
N-algebra 20 with the second greatest element, any injection g from |2
to P, and any formula A, the Yankov formula x% (2l) with 2, g and A is
defined as follows:

X4 = A{(9a ® 9b) = Gawab | ® € ¥, a,b € |A[} U{gagab = (90 © gb) |
® €U, a,b €A} = (gug V A).

The antecedent of x% () is denoted by 0(x% (2)).

Yankov formula will be used when we separate logics and make continua
of logics. For any finite N-algebra 2 with the second greatest element, the
antecedent of Yankov formula asserts that algebraic operators except for
negation are rewritten by corresponding logical connectives. The succedent
of Yankov formula is defined by using the second greatest element. In
a valuation v making the antecedent of Yankov formula true, v(gyy) is
interpreted as the second greatest element in the model. If we choose N-
algebra appropriately, the succedent of Yankov formula is interpreted as the
second greatest element, then the N-algebra refutes the Yankov formula.

The difference from the conventional definition of the Yankov formula
is in the succedent of the formula: We added the formula A. In order to
separate logics, we take an instance of the axioms concerning negation as
A in the proof of the main theorem.

In the following, we will prove some lemmata to prove the main theorem.

An N-algebra with the minimum element can be reformed into a Heyting
algebra by modifying the negation.
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DEFINITION 4.4 (Heyting algebraization of N-algebra). For any N-algebra
A = (||, Lo, Aar, Var, =9, 7o) with the minimum element Og, the Heyting
algebra AT = (|A|, Lon, Ogurr, Aguar, Vo, —gui, mgur ) is defined as follows:

|Q[H| = |Q[|, lom == 1o, Ogm = Og, Agua = Ag(, Vguu = Vg, —rga =—>g(, and

TYHA = A Ogy.

DEFINITION 4.5 (Filter). For any lattice H, a filter F' of H is a nonempty
subset of H satisfying the following 1 and 2:
1. If a,b € F, then a Ay b € F;

2. Ifae Fand a <y b, thenb € F.

Given a € H, the filter {b € H | a < b} is the smallest filter containing
a. We refer to this as the filter generated by a.
PROPOSITION 4.6. For any Heyting algebra 2 and any subset F of |2|, F
is a filter of 21 if and only if F' satisfies both of the following 1 and 2:

1. 1y € F

2. fae Fanda —9 b€ F, thenbe F.

DEFINITION 4.7 (Quotient algebra of Heyting algebra). For any Heyting
algebra 2 and any filter F' of 2, the binary relation ~p over 2 is defined
as follows:

a~pbi<>a—9b€Fandb—9ackF forany a,b € |2|.

It is easy to show that this binary relation ~pg is a congruence relation
over 2. We define the congruence class of a € || with respect to ~p by
[a]p == {b € || | a ~F b}. The set of congruence classes {[a]r | a € ||} is
denoted by |2A|/F.

The quotient algebra
Ql/F = <|91|/FV7 191/]:‘, Om/F, /\Ql/Fa VQ[/F, —A/F» _'Ql/F> is defined as follows:
for any [a]p, [b]F € ||/ F

L 1y = [LalF;

2. OQ[/F = [OQ(}F;
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. [CL}F Nt/ F [bF = [a/\glb]p;

3 ]

4. [a]lr Vayr [b]F = [a Va b]F;
5. [alr —ayr [blF = [a = b]F;
6

. —\Ql/F[a]F = [—\gla]p.

It is easy to show that 2/F is a Heyting algebra.

The following is a generalization of Lemma 2 in [15] to Yankov formula
of N-algebra.

LEMMA 4.8. Let A and B be finite N-algebras with the second greatest
elements such that, for each filter F of B, there is no V-embedding from
AT to BH/F. Then, for any formula A and any injection g : |A| — P,
B = x4 () holds.

PROOF: Recall that any Heyting algebra is an N-algebra. We first show
the statement for finite Heyting algebras € and © with the second greatest
elements.

To show the contraposition, assume © F x¥%(€) for some g : |€] — P
and a formula A. Then there is a valuation v such that v(6(x%(€))) £o
V(gue V A), where 6(x%(€)) is the antecedent of x¥(€). Consider an-
other Yankov formula x§.,(€) for a propositional variable g,,. Since
v(0(XGse (€))) = v(0(x%(€))) and v(gse) <o V(gue V A), v(0(Xgre (€))) <o
v(gxe ) implies a contradiction, namely v(0(x% (€))) <o v(gse V A). There-
fore 1)(0()(5;*Lr (€))) £o v(g«,) and so ® = XGre (€) holds.

Take the filter G of © generated by v(@(xg*t (¢))). From the construc-
tion of GG, we have the following:

V(gsxe) € G; (9)
[v(geoa)la = [v(ge ® ga)la for any ¢,d € |€] and ® € V. (10)

Let v' : € = ©/G be the map defined by v'(¢) == [v(g.)]¢ for any ¢ € |€].
We prove v is a U-embedding.
We see that each operators in W is preserved by v’. For A, we have the
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following equation for each ¢, d € |€].

V(e Ae d) = [U(genea)la
= [U(gc A gd)]
= [v(gc) Ao v(9d)]a
= [v(gc)]e Aoy [vign)la
='(c) Aoy v'(d).

The cases V and — can be shown in the same manner.

We can see that v’ is an injection as follows.

Assume v'(¢) = v'(d). Then [v(g:)]¢ = [v(g94)]c holds, and so for any
¢, d €€,

v(ge) <o v(9a) = (v(ge) —o v(9a)) Ao (v(94) =0 v(ge))
= v(g9c = 9d) No (94 — gc)

By [v(9c)]e = [v(ga)]a, we have v(g. — ga) Ao v(ga — g.) € G, and so
V(Geosed)s V(gd—see) € G from (10).

Furthermore, the equation lp <o v(g1,) = v(ge = gc) <o V(gesec)
holds. Since we have v(g. — ¢c) <o V(gemsec) € G, we obtain that
U(gle‘) €q.

If we assume ¢ # d, then ¢ —¢ d # 1¢ or d —¢ ¢ # 1¢ hold. Since € has
the second greatest element x¢, we have ¢ —¢ d <¢ *¢ or d —¢ ¢ <g *¢.
We assume ¢ —¢ d <¢ *¢. Then the equation v(ge—yed — Gre) <o
V(G(esed)sene) = (V(Ggesed) =D V(gxe)) <o (g1, ) holds.

Since we have v(gcﬁq‘d - g*q‘) <D U(.g(cﬁcd)ﬁc:*c)’ ’U(gle‘)fv(gcﬁcd) €
G, we obtain v(g,, ) € G. But this contradicts (9). If d =¢ ¢ <¢ *¢ we can
derive a contradiction in the same manner. Therefore we obtain ¢ = d, and
v’ is an embedding. This completes a proof of the statements for Heyting
algebras ¢ and ©.

Next we show the statement for any finite N-algebra 21 and B with the
second greatest elements. Assume that, for each filter F' of B | there is no
U-embedding from 2 to B /F. Then, from the above argument, B =
X414 (%) holds for any injection g : || — P. Since x{, () does not contain
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the negation —, it implies B = xZ, (&). Then, for any valuation v, any
formula A and any g : || — P, we have v(8(x%(2))) = v(0(x7, (A))) <=
V(Gun) < V(gug V A), and so B = x5 (). O

DEFINITION 4.9. For any natural number n, subsets of natural numbers
an, Ty and s, are defined as follows:

an ={ili<n},rn, =a,U{n+1},s, =r,U{n+3}

LEMMA 4.10. For any Heyting algebras A, let 2 be the algebra obtained
by adding a new minimum element Oy to & and changing the definition of
negation — into —ga = a —>g Ogy. Then A is a Heyting algebra.

ProOOF: It is immediate that 2 is a lattice by the definition. For any
a € |2, a —y Oy and Oy —o a exist as follows. If a = Oy, then both of
them are equal to 1g. If a # Og, then ¢ # Oy implies Oy <o a Ag ¢ and so
a Ng ¢ £ Oy. Therefore, a —g Oy = Ogy. The equation Oy —go @ = 1y is
immediate from the definition of —. O

In order to distinct logics, we construct countably many algebras in the
following.

For any natural number n, let us put |, = {ao,...,an+s} U
{Tﬂa cee 7rn+6} U {807Sn+4aN} and for any r,y € ‘mn‘vx — A, Y = U{Z €
20, | Nz Cy}, g,z =2 —q, o

The set 2, forms a Heyting algebra by taking algebraic operations V
and A as set operations U and N.

LEMMA 4.11 (cf. Lemma 5.7 in [15]). For any natural number n, 2, =
(12,1, N, ag, N, U, =g, , 71, ) @8 a Heyting algebra.

Hence 2, is a Heyting algebra with the second greatest element s
for any natural number n by Lemma 4.11.
g, 2y and 2, are represented with Hasse diagrams as in Figure 4.
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Figure 4: Heyting algebras 2,20, and 24

Consider an {—} embedding from 2, to A,,. Since it preserves the
order <g , T1,a2,50 must be mapped into themselves respectively, and
Tnt5s Ant6s Sn+a Must be mapped into 7,15, Gm+6, Sm+a, via {—}-embed-
ding. This is the key point of the lemma below.

LEMMA 4.12 (cf. [15]). For any natural numbers n and m, the following
statement holds: Ifn # m, then U, cannot be {—}-embedded into a quotient
algebra Up, [ F of Us, for any filter F of App,.
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4.2. Main Results

The main results of this paper are summarized as the following theorem.

THEOREM 4.13. There exist continua of logics in each line in the figure
below.

(ii)

(ii)

(iv) (v)

An N ECQPC
(vi)

NECQPC
(iv)

Hereafter, when the number in the above figure is used as anything
other than a subscript, it is used to indicate a proof of the existence of
continua of logics between the two logics.

LEMMA 4.14. There is a continuum of logics between IPC and ECQPC.
The same holds between MPC_, and An N ECQPC.

PrROOF: We prove this lemma as follows.

Step 1. We construct countably many models N*(2,,) of ECQPC based on
A, in Lemma 4.11.
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Step 2. For each natural number n and each set I C N of natural numbers,
we define Yankov formula A,, and logic L(I).

Step 3. We show N'() = A if k # L.
Step 4. We show A,, € L'(I) iff n € I by proving N*(2,) [~ A,.

Step 5. We show that there is continuum of logics between IPC and ECQPC.
Step 1. For any natural number n, the algebra
N (@) = (IN (@) ] I 2, AN (@00 VN (@00)0 N1 (@2)0 7N (2)
is defined as follows:
[N ()| = (A,
1N1(%) =N,
ANY(@,) = A
\/Nl(%) = \/J7
TIN(2,) T U
and

An4-8 ifa= Og[n;
TNY(R,)0 = {OZ(+ otherwise. for any a € [N1(2,)].

We show that N'(2,,) validates the conditions (N), (ECQ) and (An N ECQ).
For (N), let a,b € [N'(y,)]. If a # Og,, and b # Oy, , then
(@ o ni@,) ) 2ai@) (vt e SNt @, "V @y)b)
= (e oy b) 2vi@,) On v, O
= (CL HNI(%) b) %Nl(%) N
=N.
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Hence (N) holds for a # Oy, and b # Og,. If @ = Og(, and b # Og,,, then

(O, N1, 0) =) (v, O, €281 @,) 7N @) D)

= (0g, N1, b) 2 ni@y) (@nts < niay,) 02,)
= Oz, =@ N1(2n) O2t,
=N.

The equality Og(, <>n1(2,) b = Og, follows from

OQ{ O NL(L,) b= (O% —NL(L,) b)/\Nl(Q[”)(b —N1(A,) 0%) and b —NL(,)
Og, = Og,,. Hence (N) holds for a = Og,, and b # Oy,,. The remaining case

can be proven in the same manner. So (N) holds in N* (2,).
For (ECQ), let a,b € [N'(2,)|. Then

(@ AN1(2,) TN (@) @) =N (,) b= 02, N1,
—N.

So N1(2,) validates (ECQ).
It is immediate that (An N ECQ) follows from (ECQ).

Step 2. Take a nonempty proper subset I of natural numbers and an
injection g : [IN'(%,)| — P, and let A, be x{, g, ) g0g (Nl(an))
2A Ay E—

Let L'(I) be the logic adding axioms A4,, into ECQPC forn € I Note that
LY(I) is a sN-logic.

Step 3. We show that N'(2x) = A; for natural numbers k,l with &k # [.
Note that N1(2;)" = 2;. There is no {—}-embedding from A; to Ay /F
for any natural number k with k # [ and any filter /" of 2, by Lemma 4.12,
and so there is no U-embedding 2; to 2 /F for any natural number & and
[ with k # [ and any filter F' of 2(;. Therefore for any natural number k
and | with k # I, N*(2) = A; holds from Lemma 4.8.

Step 4. We can also prove the following.
A, e LNI) e nel
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Since < is obvious, we show =. We assume n ¢ I and show that A, ¢
LY(I). Since N'(2,) validates (N), (ECQ) and A,, for each m # n, it

is enough to show N'(2,,) = A,.. Let g~' be the inverse map of g, i.e.,
g ' {g. € P|ae|NEL)|} - |N' ()| such that g~'(g(a)) = a.
Take a valuation v into |N!(2,)| which is an extension of g=!. Then

u (Nl(in)))) = N since v(g, ® gp) = a@N1(A,) b=
v(ga®N1;)b) for any a,b € [N*(2,)| and any ® € ¥. On the other hand,
v((9oa,, = 790, ) = 7904, ) # N and so v(((goa, — 7904, ) = "Y0a,) V
Gxo) = *o # N. Therefore, N*(2,) b ng"gn aﬂgo\h)ﬂﬂgoh)(‘]\fl(%))'
Then

g
v(6
( (X(Qo —7goy, )0y,

v((9oa,, —* "90s, ) = 790a,, )
= (U(go\h) NL(A,) _‘Nl(%)v(goh)) TTNL(2A,) ﬁNl(&)U(QO\Lﬂ))
= (02, = N1(2a) @nt8) N1 (2a) Unts
=N —=nN1@1,) ants,

and s0 v((goy, —* 7Yoa, ) = “G04, ) # N. Therefore N'(2,) = A, from
the construction of A,,. Since L'(I) is the minimum logic containing each
axioms of ECQPC and A,, for m € I, we have L'(I) C {A | N'(,) | A}.
Thus we obtain A,, ¢ L'(I). This is the end of Step 4.

Step 5. By the result of Step 4, it follows that L!(I) # L*(J) for any
nonempty proper subsets I and J of natural numbers with I # J.

Since IPC + (p — —p) — —p, IPC proves succedent of A,, for any natural
number n, and so IPCH A,,.

Then, for any nonempty proper subset I of natural numbers, ECQPC C
LY(I) € IPC hold. Since the choice of I is continuum, there is continuum
of logics between IPC and ECQPC. We can show (v) by letting L5(I) be
the logic adding axioms A4,, into An N ECQPC for n € I in the same manner
as (i). O

LEMMA 4.15. There is a continuum of logics between IPC and AVQPC.
The same holds between ECQPC and An N ECQPC.
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ProOF: For any natural number n, the algebra

N2(2y) = (IN?(2n)] In2(2,)s AN2(21,) ) VN2(2,) — N2 (21,)> TN (21,))

is defined in the same way as Lemma 4.14 except for negation. —nz(g,,) is
defined as follows: o

“n2(21,)0 = N for any a € INZ(2,,)].

First, we see that N?(2,) validates the conditions (N), (An), (AVQ) and
(An NECQ).
For (N), take any a,b € |[N?(2,)|. Then

(@ N2 0) = N2@0) (TN (@)@ N2 @) V22 )
= (CL HNQ(%) b) —>N2(&) (N HNZ(&) N)
= (a (—)Nz(%) b) %Nz(glin) N
=N.
So N%(2,,) validates (N).

For (An), let a € [N?(2,,)|. Then

(a —>N2(%) ﬁNz(%)a) —)Nz(%) —|N2(%)a = (a %Nz(%) N) —)Nz(%) N
=N.

So N2%(2,) validates (An). The case (AVQ) can be shown in the same way.

It is immediate that (An N ECQ) holds from (An).

For any natural number n, we define B,, = ngN/\_‘gN)A)gOmn (N2(2,,)).

Using N2(2l,,), B, and (ECQ) instead of N*(2,,), A, and (An), respectively,

we can show (ii) and (iv) in the same manner as (i). O

We can show the remining cases in the same way as Lemma 4.14.
LEMMA 4.16. There is a continuum of logics between AVQPC and MPC_.

PrOOF: For any natural number n, the algebra

N3 (2n) = (IN* ()], Lns 2,y AN5 2> VN3 (21)5 —F N3(20,)0 N3 (21y))



310 Kaito Ichikura

is defined in the same way as Lemma 4.14 except for negation. —ys(g,) is
defined as follows: o

TN3(,) @ = A P N3(R1,) 40 for any a € |N3(%)|

First, we see that N3(2,) validates conditions (N) and (An).
For (N), take any a,b € |[N3(2,)|. It is immediate that (N) holds in
N3(2,) in view of the following.

((Zi*)]\m(%) b) /\NS(%) (b — N3 () ao) SN?’(QIJ) a = N3(2,) @0,
(b — N3 (2U,) a) /\Ns(%) (a — N3 () ao) SNs(%) b —N3(2,) @0-
For (An), take any a € |[N3(2(,,)|. Then

(a —)Ns(%)ﬁNz(%)a) _>N3(%) ﬁNs(%)a
= (a = N3, (@ = N3(21,) @0)) N3, (@ N3 (,) Qo)
= (a, _>N3(%) ao) %Na(%) (a —>N3(%) ao)
=N.

Hence (An) hold in N3(2L,,).

For any natural number n, we define
D, = X‘Zﬁ(ﬂ(gN%gN)ﬁgOmJ) (N3(2,,)). Using N3(2,,), Dy, and (AVQ) instead
of N*(2,), A, and (An), respectively, we can show (iii) in the same way
as (i). O
LEMMA 4.17. There is a continuum of logics between An N ECQPC and
An~PC.

PrOOF: For any natural number n, the algebra

NO(@n) = (IN°(n)]s Lvo(@tn)s ANO()s VNS ()s — N () "N ()
is defined in the same way as Lemma 4.14 except for negation. —ya(g,,) is
defined as follows:

ING(21,)0 = Gy for any a € [NO(2L,)].

We can show N°(2,) validates (N) and (An™) in the same way as (ii).

For any natural number n, we define
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Fo=x" (N (24))-

Xﬂﬁ(go‘hﬂgo%)V(ﬁ(gN%gN)%gogJ)

Using N(2,,), 7, and (AnNECQ) instead of N*(2,), A, and (An) re-
spectively, we can show (vi) in the same manner as (i). O

LEMMA 4.18. There is a continuum of logics between An~PC and CoPC.

PRrROOF: For any natural number n, the algebra
NT(2n) = (INT(2n)], In7(2,)5 ANT (@) VNT(@0)s > NT(20)s TN7 ()

is defined in the same way as Lemma 4.14 except for negation. —n7(g,) 18
defined as follows: o

N ifa=0
SNT(R,)0 = { RO for any a € |[N7(2,)|.
— ap otherwise ,

First, we see that N7(2,,) validates conditions (Co) and (N).
We see that (Co). Let a,b € N7(,). If a # Oy, and b # Oy, , then

(a *>N7(Q(7n) b) —n (—|N7(%)b 4)N7(%) ﬂ]\n(%)a)
= ((L _>N7(Ql7n) b) _>N7(%) (ao _>N7(%) ao)
= (a _>N7(%) b) _>N7(%) N
=N.

Hence (Co) holds for a # Oy, and b # Og,. If a # Og, and b = Og,,, then

An)

(O, = N7(2t,) 0) = N7 (20 (TN7(20) 0 = N7 (20,) N7 () O2t,)
=N —)N7(%) (CLO *>N7(%) N)
—N.

Hence (Co) holds for a # Oy, and b= Og,. If a # Og,, and b # Og,,, then
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(@ = n7(2t,) O2,) = N7(2) (ON7(20) 02, N7 (2,) TN7(2,)@)

= (a _>N7(%) OQ[ ) _>N7( ) (N _>N7(an) ao)
= OQ[J _>N7(%) ap
=N.

Hence (Co) holds for a # Oy, and b # Og,. The remaining case can be

proven in the same manner. So (Co) holds in N7(2L,). The cases (N) can
be shown in the same manner.
For any natural number n, we define

Gn = X?gaoaﬁgao)a(ﬂgom —hgaO)(Z\ﬂ(Ql ). Using N7( n), Gn and (An)

instead of N'(2l,,), A, and (An) respectively, we can show (vii) in the same
manner as (i). O

LEMMA 4.19. There is a continuum of logics between CoPC and NECQPC.

PrOOF: For any natural number n, the algebra

NE¥(2) = ([N ()], Lvs(2,)s ANS (@) VNS @) s = N5 (@) N5 (24))

is defined in the same way as Lemma 4.14 except for negation. —ys(g,,) is
defined as follows:

N if a = anys;
TNS(2L,)0 = T for any a € [N8(2y)].
= an+sg Otherwise , -

First, we see that N®(2,) validates the conditions (N) and (NECQ).
For (N), let a,b € N®(2,,). If @ # ay4s and b # an+s, then

(@ < nsa,) b) =ns,) (Ns@,)e < Ns@,) TNs@,)b)
= (a ©rns(,) b) s, (Ants <2 Ns(a,) Gnts)
= (Cl HNS(%) b) —)NS(%) N
=N.

sHence (N) holds for a # an1s and b # apts. If a = apys and b # a4,
then
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(@n+s N3 (@) b) N3 (TNS @) Tnt8 N8 (2,) TN (20)D)
= (ants N5, 0) 7as@,) (N ons@,) anis)
= (an+s € Ns,) b) P NsL,) Ants
=N. o o
The equality N <> ys(a(,) Gnts = anig follows from N < ysa, ) Gnys =
(N %NB(%) an+8) /\JTS(%) (an+g %Ns(%) N) and N —)NS(QQ) Ap48 =
ants. Hence (N) holds for a = a,ys and b # an4s. The remaining case

can be proven in the same manner.

For (NECQ), let a,b € |[N¥(2L,)|, then
(@ ANs@2L,) TNS(2,)0) P NERL,) TNE,)D = Gngs P Ns@,) TNE@L)D
—N.

Hence (NECQ) holds in N8(2,,).
For any natural number n, we define
H, = ngaoﬂgawg)—%ﬁga +8_hgao)(Ng(an)) Using N¥(2l,,), H,, and (Co)

instead of N'(2,), A, and (An) respectively, we can show (viii) in the
same manner as (i). O

LEMMA 4.20. There is a continuum of logics between NECQPC and NPC.

ProoF: For any natural number n, the algebra

N2(2n) = (IN? ()|, Lo (2,) s AN () VN (20)5 —> NO(2,)» "N (31,))

is defined in the same way as Lemma 4.14 except for negation. —yo(g,,) is
defined as follows: o

N if a = N;
TINO(,) A { . 7 forany a € [N(2,)|.
— an+s Otherwise , -

As in the case of (viii), we can show that Ng(an) validates (N).
For any natural number n, we define H,, X(g (N9 (2L,,))-
INATGN) > Ga,, | g BadLs

Using N%(2,,), H, and (NECQ) instead of Nl(an) A, and (An) respec-

tively, we can show (ix) in the same manner as (i). O
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Lemma 4.19 and Lemma 4.20 are already proved in [1, Proposition 3.5]
using neighborhood semantics.

5. Concluding remarks

5.1. Summary of the main results

In [13], it was clear that SUBMIN is a subsystem of both co-minimal
logic and minimal logic, but it was not clear if SUBMIN is the strongest
logic among the systems that are contained in both co-minimal logic and
minimal logic. We identified that SUBMIN is not the strongest logic, but
An N ECQPC is the strongest logic. Moreover, we presented new formal-
izations of co-minimal logic and SUBMIN that clarify their relationships
with ECQ. Furthermore, we applied the method used in [15] and simplified
the proofs of the results offered in [1] and obtained new results that are
not included in [1]. Figure 5 summarizes the main results of this paper.
Note here that there exist continua of logics in each line in the figure above,
as we proved in Theorem 4.13.

5.2. Future Directions

There is still much work to be done in this area of research. Some directions
that seem to be worth exploring are described here.

ECQ and substructural logics For proof systems, this paper focused
on Hilbert systems. But we can also define sequent calcului for these logics
(cf. [8, 3, 11]). Then, given the deep connections between substructural
logics and algebraic semantics, it will be interesting to explore the sub-
structural versions of LN, which is a sequent calculus version of NPC, and
its extensions. Note that the existence of continua of logics between pairs
of substructural logics is explored in [10]. Therefore, it would be interest-
ing to examine whether the method used in this paper can be applied to
substructural versions of LN and related systems.
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IPC
(Intuitionistic logic)

AVQPC

ECQPC MPC_,
( )

Co-minimal logic (Minimal logic)

An N ECQPC

(SUBMIN or An—PC]

Figure 5: Summary of the results presented in the paper

Another method We used algebraic semantics for showing the existence
of continua of logics between pairs of logics related to intuitionistic logic
and minimal logic. It is known that there is a duality (“Priestley duality”)
between the class of Priestley spaces and the class of bounded distributive
lattices. Since N-algebras are distributive lattices, we might be able to
use topological semantics to obtain yet another proof for the existence of
continua of logics.?

2This idea was pointed out by Prof. Hanamantagouda P. Sankappanavar after the
presentation based on an earlier draft of this paper at Non-Classical Logics: Theory
and Applications 2024. 1 would like to thank Prof. Sankappanavar for this interesting
comment.
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No gap between logics This paper focused on the existence of continua
of logics between logics related to intuitionistic logic and minimal logic.
However, there are pairs of intermediate logics where no logic exists between
the pair, as shown in [5]. More specifically, if we consider the family of
extensions of intuitionistic logic, known as the n-valued Godel logic G,
then for n > 3, no logic exists between G,, and G, 11. In view of this result,
it will be interesting to see if extensions of the logics we considered in this
paper will have similar results.

First-order logics We discussed only propositional logics in this paper,
but of course it will be interesting to consider first-order logics. If we add
universal and existential quantifiers to these logics with the usual axioms
and rules, without the additional axioms such as the constant domain ax-
iom, then we can show immediately the existence of continua of logics
between first-order expansions of logics discussed in this paper by consid-
ering propositional logics to be predicate logics with only zero argument
predicate symbols. However, other cases remain to be explored in further
detail.

Appendix: Kripke semantics for logics above An~PC

DEFINITION 6.1. We define the following Hilbert systems:

« SUBMIN is the Hilbert system obtained by adding axioms 1 — p,
p— T and =p = == T to CoPCin L 1 |.

o SUBMIN~ "1 as the Hilbert system adding axioms —p — ——(q —
q) to CoPCin L_,.

o MIN is the Hilbert system obtained by adding axioms | — p,p — T,
-p = =T and == T to CoPCin £ 7 ;.

e MIN~ T+ as the Hilbert system adding axioms —p — —=—(q¢ — q)
and —=—(p — p) to CoPCin L.

Kripke semantics for the logic SUBMIN ((F, G)-semantics for short)
was introduced in [13].
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DEFINITION 6.2 (cf. [13]). An (F,G)-frame F for An~PC is a quadruple
(W, <, F,G) satisfying the following:
o (W, <) is a quasi-order, i.e., < is a reflexive and transitive relation on

W (we call an element of W a world);
e F. G are upward closed subsets of W such that F'is a subset of G.

An (F,G)-model M is a pair (F, V) satistying the following:
o Fisan (F,G)-frame;
e V is a mapping assigning an upward closed set of worlds to each
propositional variable.

A valuation of formulas in £ 1 | is inductively defined as follows:

e M,wlkpg) T for all w € W

e M,wlf(pg) L forall we W;

o« M,w |F(F7(;) p <<= wE V(p);

o« M,w “_(RG) ANB <= M,w ”‘(Rg) A and M, w H_(F,G) B;

e Mw ”_(F,G) AV B <= M,w ||_(F7G) A or M,w ”_(F,G) B;

. M,’LU ”_(F,G) A— B+ VYv> ’U)[M,U H_(F,G) A= M,’U ”_(F,G) B];

e Mwlkpg ~A =Y > wM,vlkpe A=ve Fland w e G.
F Ewra) A denotes that (F,V),w lkpg) A for all V and w € W.
M Era) A denotes that M, w IF(p ) A for all w € W. For any set

of formulas I, T' =) A denotes M, w IF(p ) B for any B € T implies
M, w IFpq)y A, for any M and w € W, where W is the set of worlds of
M.

By imposing conditions on (F, G)-frame, the soundness and complete-
ness theorems holds with some already defined logics.

Fact 6.3 (cf. [13]).

1. T FSUBMIN AT ':(RG) A.
2. ' Fvan A <= T E(pg) A for the class of (F,G)-semantics with

G=W.
3. 'Fco-min A <= T |=(p) A for the class of (F, G)-semantics with
F=g.

4. T Frpc A <= T [(pg) A for the class of (F,G)-semantics with
G =W and F = @, where IPC is intuitionistic logic.
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By excluding the conditions on T and L, (F, G)-semantics for formulas
in £_, can be given. Then we can show the soundness and completeness in
the same way.

Fact 6.4.

1. T l_SUBMIN—T.L A=T ’:(F,G) A.
2. T'Fyn-7.0 A <= T [=(p,g) A for the class of (F, G)-semantics with

G=W.
3. I'Feomin-T+ A <= T E(rq) A for the class of (F, G)-semantics
with F' = @.

4. T'Fpo-7.0 A <=T [E(pq) A for the class of (F, G)-semantics with
G=W and F = 0@.

Hence, for T and L free formula A, CO-MIN + A < CO-MIN~ "+
A is immediate from the above facts. The same argument holds for the re-
maining cases. Furthermore, SUBMIN " is equivalent to An~PC, and
MIN~ " is equivalent to MPC_, (cf. [8]).

The soundness and completeness theorems can be shown for
An N ECQPC and AVQPC by adding similar conditions for F' and G.

DEFINITION 6.5 (An N ECQ-frame and AVQ-frame). For an (F,G)-frame
without T and L, F’ denotes := {w € W | Vo > w(v € F)}. We define the
following conditions:

o AnNECQ-frames are (F, G)-frames with F/ UG = W.
o AVQ-frames are (F, G)-frames such that Vu > w[u ¢ F'] implies w €
F for all w € W and G = W hold.

We write IFannecq,; Fannecq, Favq and Eavq for validity with respect
to the classes of An N ECQ-frames and AVQ-frames.

DEFINITION 6.6 (cf. [14]). A sub-normal Kripke frame is a tuple
(W, <, F) satisfying the following:
o (W, <) is a quasi-order, i.e., < is a reflexive and transitive relation on
W (we call an element of W a world);
e Fis an upward closed subset of W such that for every w ¢ F', there
is v € W such that w < v and for every w € W, if v < u, then u ¢ F.
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For any AVQ-frame (W, <, F, @), G is uniquely determined only by W
and F, and so the AVQ-frame can be rewritten as (W, <, F'). In [14], sub-
normal Kripke frame (W, <, F') was introduced. Because the condition for
F in AVQ-frane is the contraposition of the condition for F' in sub-normal
Kripke frame, AVQ-frame is sub-normal frame, and vice versa. Because our
definition of AVQ-frame is more convenient for the proof for soundness, we
use the definition of AVQ-frame.

We show the soundness and completeness of An N ECQPC for the class
of An N ECQPC-frames.

THEOREM 6.7 (Soundness of AnNECQPC). If T' Fannecqrc A4, then
I' Eannecq A.

PRrROOF: We show this statement by induction on the length of the deduc-
tion. Here we show only the cases for the negative axiom (An N ECQ), since
the remaining case can be proven in the same manner as [8]. Let (F,V)
and w € W be arbitrary.

Suppose (F,V),w Fannecq = (p — p). First, we observe that
(F,V),v lFannecq ——(p — p) iff v € G for any v € W. We show
(F,V),u fannecq (¢ — q) for every w > w , which implies w IFannecq
=(¢g—¢q) = r. Sincew € G, w € F" and so u ¢ F for every u > w. By the
definition of the valuation, (F, V), u lfannecq —(¢ — ¢) for every u > w. O

In what follows, we call a set of formulas A saturated if the following
conditions hold,
e There is a formula A such that A ¢ A (nontriviality);

o« A }_AnﬁECQPC A= Ac A;

e AFannecqpc AV B = A Fannecqrc A or A Fannecqpe B.

THEOREM 6.8 (Completeness of AnNECQPC). If T’ =annecq A, then
I' FannEcare A.

Proor: Given I' Fannecq 4, we construct a saturated set I'g D I' such
that To Zannecq A. Then the canonical model M = (W, <, F, G, V) with
respect to Iy is defined standardly. For F and G, we define F' := {A |
-B € Aforall Bland G := {A | =B € A for some B}. It is sufficient
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to show F' UG = W, since the remaining case can be proven in the
same way as [8].

Suppose A ¢ G, and so =B ¢ A for any B. Hence -—(p — p) € A.
By AnNECQPC + —=(p — p) V (-(¢g — ¢q) — C) for any formula C,
=(¢ = ¢q) — C € A. By nontriviality of saturated set, (¢ — ¢q) ¢ A’ for
any A’ > A, and so we obtain A’ € F for any A’ > A, andso A € F'. 0O

We next show the soundness and completeness of AVQPC for the class
of AVQPC-frames.

THEOREM 6.9 (Soundness of AVQPC) IfF |_AVQPC A, then I’ ):AVQPC A.

PrROOF: We show this statement by induction on the length of the deduc-
tion. Here we show only the cases for the negative axiom (AVQPC), since
the remaining case can be proven in the same manner as [8]. Let (F, V)
and w € W be arbitrary.

Suppose (F,V),u lFavq —(=(p = p) — ¢q) for u > w. We want to show
u € F. By assumption, (F,V),v lFavq ~(p — p) — ¢ implies v € F for
any v > u. If (F,V),v lFavq ~(p — p) — ¢, then v € F. Otherwise,
(F, V), 0" lkavq —(p — p) and (F, V), v’ Favq ¢ for some v/ > v > u. By
the definition of AVQ-frame, u € F'. O

For the completeness, we need the following lemma.
LEMMA 6.10. MPC.F -4+ (A— —(p—=p)).

Proor: MPC_+ -4 — (A — —(p — p)) is immediate from (NECQ).

For the other direction, by (NECQ), MPC_ F (A = —(p = p)) N A) —
(A — —A), and so MPC_ F (A — =(p — p)) = (A — —A). By (An),
MPC_ F (A — —A) — —A, and so MPC_ F (A — —=(p — p)) — —A. O

THEOREM 6.11 (Completeness of AVQPC). IfT'l=avq A, then I'avqec A.

ProOOF: Given I t/ayq A, we construct a saturated set I'g D I' such that
Ty /avq A. Then the canonical model M = (W, <, F,G,V) with respect
to T'g is defined standardly. For F and G, we define F' := {A | =B €
A for all B} and G .= {A | =B € A for some B}. It is sufficient to show
VA" > A[A" ¢ F'] implies A € F for all A € W, since the remaining case
can be proven in the same manner as [8], and G = W is obvious: Take
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any A € W and suppose A’ ¢ F' for any A’ > A---(x). We want to
show A € F. Suppose A ¢ F, and so =B ¢ A for some B. By (Co),
AVQPCF (B = (p — p)) = (=(p = p) — —B). Hence -(p — p) € A.
Let Cy,C1,C5 ... be an enumeration of all formulas. By (AVQ) and the
previous lemma, AVQPC F ((—=(p — p) — Cy) — —(p = p)) = —~(p — p),
and so (=(p = p) = Cy) — —(p — p) € A. Hence, there is a saturated
A% D A such that —(p — p) — Cy € A® and =(p — p) € A°. By repeating
this operation, we can take a sequence of saturated set A° C Al C A% C

. and a saturated set |J,c, A’. By the nontriviality of saturated set,
(p — p) & A for any A" > J,., A%, and so A’ € F and Uje , A* € F'.
But this contradicts (%), and so A € F. O
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