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PREFACE: NON-CLASSICAL LOGICS. THEORY 
AND APPLICATIONS (PART I)

© Copyright by the Author(s), 2025
Licensee University of Lodz – Lodz University Press, Lodz, Poland

This article is an open access article distributed under the terms and con­
ditions of the Creative Commons Attribution license CC-BY-NC-ND 4.0.

The articles in the present and forthcoming issues are revised and extended 
versions of papers presented at the conference Non-Classical Logics. Theory 
and Applications, held in Łódź on 4–8 September 2024.1

Non-Classical Logics. Theory and Applications (NCL) is an interna­
tional conference series devoted to novel results and survey work in broadly 
understood non-classical logics and their applications. The first two edi­
tions took place in Łódź, Poland, in 2008 and 2009. Subsequently, the con­
ference was held alternately in Toruń (2010, 2012, 2015, 2018) and Łódź 
(2011, 2013, 2016, 2022). The tenth edition, organised by the University of 
Lodz in 2022, was the first to publish its proceedings in Electronic Proceed­
ings in Theoretical Computer Science. This practice was continued in the 
most recent, eleventh edition, with all accepted long papers again appear­
ing in an EPTCS volume. The 2024 edition was supported by the European 
Research Council as part of the project Coming to Terms: Proof Theory 
for Definite Descriptions and Other Terms (ExtenDD), and featured four

1Due to the high number of accepted post-conference submissions, the editors de­
cided to divide them into two sets, to be published in two separate issues.
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$\relax \infer [R']{\de }{ \infer [(\NEG \LAND {\rm E})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LAND \be )}{ } & \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ] } } & \infer *[{\mathcal {E}}_1]{\de _1}{ } & \infer *[{\mathcal {E}}_2]{\de _2}{ } }$


$\relax \infer [(\NEG \LAND {\rm E})]{\de }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LAND \be )}{ } & \infer [\scriptstyle \!{R'}]{\de }{ \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal {E}}_1]{\de _1}{ } & \infer *[{\mathcal {E}}_2]{\de _2}{ } } & \infer [\scriptstyle \!{R'}]{\de }{ \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ] } & \infer *[{\mathcal {E}}_1]{\de _1}{ } & \infer *[{\mathcal {E}}_2]{\de _2}{ } } }$


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$R'$


$R$


$\NEG \LOR $


$\ga $


$\NEG (\al _1\LOR \al _2)$


$\relax \infer [(\NEG \LOR {\rm E}i)]{\NEG \al _i}{ \infer [(\NEG \LOR {\rm I})]{\NEG (\al _1\LOR \al _2)}{ \infer *[{\mathcal {D}}_1]{\NEG \al _1}{ } & \infer *[{\mathcal {D}}_2]{\NEG \al _2}{ } } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}_i]{\NEG \al _i}{ }$


$i$


$1$


$2$


$\rhd $


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


$\relax \infer [R']{\de }{ \infer [({\rm EM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }$


$\relax \infer [({\rm EM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }$


$R'$


$\I $


$\LAND $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


$\relax \infer [R']{\de }{ \infer [({\rm GEM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }$


$\relax \infer [({\rm GEM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }$


$R'$


$\I $


$\LAND $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$N_1$


$N_2$


$N_3$


$N_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$i \in \{1, 2, 3, 4\}$


$\mathcal {D}$


$N_i$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$S_i$


$\vdash $


$\GA  \Rightarrow \be $


$S_i$


$-$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {D}'$


$N_i$


$\mathcal {D}'$


$\subseteq $


$\GA $


$\mathcal {D}'$


$=$


$\be $


$\mathcal {D}'$


$\mathcal {D}$


$N_i$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$\mathcal {D}$


$\mathcal {D}$


$\relax \infer [{\rm (EM)}]{\ga }{ \infer *[{\mathcal {D}}_1]{\ga }{ [\NEG \al ] \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\al ] \GA _2 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\ga $


$S_i$


$\vdash $


$\NEG \al , \GA _1 \Rightarrow \ga $


$S_i$


$\vdash $


$\al , \GA _2 \Rightarrow \ga $


$S_i$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \ga $


$\relax \infer [(\mbox {\rm ex-middle})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[(\mbox {\rm we})]{\SEQ {\NEG \al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\NEG \al , \GA _1}{\ga }}{ } } & \infer *[(\mbox {\rm we})]{\SEQ {\al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\al , \GA _2}{\ga }}{ } } }$


$S_i$


$-$


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm E})]{\al }{ \infer *[{\mathcal {D}}_1]{\NEG \NEG \al }{ \GA } }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\al $


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG \NEG \al $


$S_i$


$\vdash $


$\GA  \Rightarrow \al $


$\relax \infer [({\rm cut}).]{\SEQ {\GA }{\al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA }{\NEG \NEG \al }}{ } & \infer [(\NEG \NEG {\rm left})]{\SEQ {\NEG \NEG \al }{\al }}{ \infer *[Prop. \ref {initial-sequent-prop}]{\SEQ {\al }{\al }}{ } } }$


$\NEG \I $


$\mathcal {D}$


$\relax \infer [{\rm (\NEG \I I)}]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}']{\NEG \be }{ \GA } }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\NEG (\al \I \be )$


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG \be $


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm right})]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \infer [\mbox {\rm (we)}]{\SEQ {\al , \GA }{\NEG \be }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA }{\NEG \be }}{ } } }$


$S_i$


$-$


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm I})]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}'}]{\NEG \be }{ [\al ]~\GA } }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\NEG (\al \I \be )$


$S_i$


$\vdash $


$\al , \GA  \Rightarrow \NEG \be $


$S_i$


$\vdash $


$\GA  \Rightarrow \NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm right}).]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \infer *[Ind. \, hyp.]{\SEQ {\al , \GA }{\NEG \be }}{ } }$


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm E})]{\NEG \be }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \I \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\al }{ \GA _2 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\NEG \be $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \I \be )$


$S_i$


$\vdash $


$\GA _2 \Rightarrow \al $


$S_i$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \NEG \be $


$\relax \infer [({\rm cut}).]{\SEQ {\GA _1, \GA _2}{\NEG \be }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA _2}{\al }}{ } & \infer [({\rm cut})]{\SEQ {\al , \GA _1}{\NEG \be }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA _1}{\NEG (\al \I \be )}}{ } & \infer [(\NEG \I {\rm left})]{\SEQ {\NEG (\al \I \be ), \al }{\NEG \be }}{ \infer *[Prop. \ref {initial-sequent-prop}]{\SEQ {\al }{\al }}{ } & \infer *[Prop. \ref {initial-sequent-prop}]{\SEQ {\NEG \be }{\NEG \be }}{ } } } }$


$\NEG \LAND $


$\mathcal {D}$


$\relax \infer [(\NEG \LAND {\rm E})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LAND \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al ] \GA _2 } & \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ] \GA _3 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2 \cup \GA _3$


$\mathcal {D}$


$\ga $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \LAND \be )$


$S_i$


$\vdash $


$\NEG \al , \GA _2 \Rightarrow \ga $


$S_i$


$\vdash $


$\NEG \be , \GA _3 \Rightarrow \ga $


$S_i$


$\vdash $


$\GA _1, \GA _2, \GA _3 \Rightarrow \ga $


$\relax \infer [({\rm cut})]{\SEQ {\GA _1, \GA _2, \GA _3}{\ga }}{ \infer *[Ind. \, hyp.\!\!]{\SEQ {\GA _1}{\NEG (\al \LAND \be )}}{ } & \infer [(\NEG \LAND {\rm left})]{\SEQ {\NEG (\al \LAND \be ), \GA _2, \GA _3}{\ga }}{ \infer *[({\rm we})]{\SEQ {\NEG \al , \GA _2, \GA _3}{\ga }}{ \infer *[Ind. \, hyp.\!\!]{\SEQ {\NEG \al , \GA _2}{\ga }}{ } } & \infer *[({\rm we})]{\SEQ {\NEG \be , \GA _2, \GA _3}{\ga }}{ \infer *[Ind. \, hyp.]{\SEQ {\NEG \be , \GA _3}{\ga }}{ } } } }$


$S_i$


$-$


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm I})]{\NEG (\al \LOR \be )}{ \infer *[{\mathcal {D}}_1]{\NEG \al }{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ \GA _2 } }$


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\NEG (\al \LOR \be )$


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG \al $


$S_i$


$\vdash $


$\GA _2 \Rightarrow \NEG \be $


$S_i$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \NEG (\al \LOR \be )$


$\relax \infer [(\NEG \LOR {\rm right})]{\SEQ {\GA _1, \GA _2}{\NEG (\al \LOR \be )}}{ \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2}{\NEG \al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _1}{\NEG \al }}{ } } & \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2}{\NEG \be }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _2}{\NEG \be }}{ } } }$


$S_i$


$-$


$\mathcal {D}$


$\GA  \Rightarrow \be $


$S_i$


$-$


$\mathcal {D}$


$\mathcal {D}$


$\SEQ {\NEG p, \GA }{\NEG p}~({\rm init2})$


${\mathcal {D}}'$


$\NEG p$


${\mathcal {D}}'$


$\{ \NEG p \}$


$\subseteq $


$\{ \NEG p\}\cup \GA $


${\mathcal {D}}'$


$\NEG p$


$\mathcal {D}$


$\relax \infer [(\mbox {\rm ex-middle}).]{\SEQ {\GA }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\NEG \al , \GA }{\ga }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\al , \GA }{\ga }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\ga }{ (\NEG \al , \GA )^* } \quad \quad \quad \infer *[{\mathcal {E}}_2]{\ga }{ (\al , \GA )^* }$


${\mathcal {E}}_1$


$(\{ \NEG \al \} \cup \GA )^*$


$\subseteq $


$\{ \NEG \al \} \cup \GA $


${\mathcal {E}}_2$


$(\{ \al \} \cup \GA )^*$


$\subseteq $


$\{ \al \} \cup \GA $


${\mathcal {E}}_1$


$\ga $


${\mathcal {E}}_2$


$\ga $


$(\{ \NEG \al \} \cup \GA )^*$


$(\{ \al \} \cup \GA )^*$


$\NEG \al \not \in (\{ \NEG \al \} \cup \GA )^*$


$\al \not \in (\{ \al \} \cup \GA )^*$


$\NEG \al \in (\{ \NEG \al \} \cup \GA )^*$


$\al \in (\{ \al \} \cup \GA )^*$


${\mathcal {D}}'$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\ga }{ \GA ^* }$


${\mathcal {D}}'$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {D}}'$


$\ga $


${\mathcal {D}}'$


$N_i$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ \GA ^* }$


${\mathcal {D}}'$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {D}}'$


$\ga $


${\mathcal {D}}'$


$N_i$


$\relax \infer [({\rm EM})]{\ga }{ \infer *[{\mathcal {E}}_1]{\ga }{ ([\NEG \al ]~\GA )^* } & \infer *[{\mathcal {E}}_2]{\ga }{ ([\al ]~\GA )^* } }$


${\mathcal {D}}'$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {D}}'$


$\ga $


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm left}).]{\SEQ {\NEG \NEG \al , \GA }{\ga }}{ \infer *[\mathcal {E}]{\SEQ {\al , \GA }{\ga }}{ } }$


$\mathcal {E}'$


$N_i$


$\relax \infer *[\mathcal {E}']{\ga }{ (\al , \GA )^* }$


$\mathcal {E}'$


$(\{\al \} \cup \GA )^*$


$\subseteq $


$\{\al \} \cup \GA $


$\mathcal {E}'$


$\ga $


$(\{\al \} \cup \GA )^*$


$\equiv $


$\{\al \} \cup \GA $


$\mathcal {D}'$


$N_i$


$\relax \infer *[\mathcal {E}']{\ga }{ \infer [(\NEG \NEG {\rm E})]{\al }{ \NEG \NEG \al } & \GA }$


$\mathcal {D}'$


$\{ \NEG \NEG \al \} \cup \GA $


$\mathcal {D}'$


$\ga $


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm left}).]{\SEQ {\NEG (\al \I \be ), \GA , \DE }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\GA }{\al }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\NEG \be , \DE }{\ga }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\al }{ \GA ^* }$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ (\NEG \be , \DE )^* }$


${\mathcal {E}}_1$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {E}}_1$


$\al $


${\mathcal {E}}_2$


$(\{\be \}\cup \DE )^*$


$\subseteq $


$\{\be \}\cup \DE $


${\mathcal {E}}_2$


$\ga $


$\GA ^*$


$\equiv $


$\GA $


$(\{\be \}\cup \DE )^*$


$\equiv $


$\{\be \}\cup \DE $


$\mathcal {D}'$


$N_i$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ \infer [(\NEG \I {\rm E})]{\NEG \be }{ \NEG (\al \I \be ) & \infer *[{\mathcal {E}}_1]{\al }{ \GA } } & \DE }$


$\mathcal {D}'$


$\{\NEG (\al \I \be )\}\cup \GA \cup \DE $


$\mathcal {D}'$


$\ga $


$\NEG \LAND $


$\mathcal {D}$


$\relax \infer [(\NEG \LAND {\rm left}).]{\SEQ {\NEG (\al \LAND \be ), \GA }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\NEG \al , \GA }{\ga }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\NEG \be , \GA }{\ga }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\ga }{ (\NEG \al , \GA )^* }$


$\relax \infer *[{\mathcal {E}}_2]{\ga }{ (\NEG \be , \GA )^* }$


${\mathcal {E}}_1$


$(\{\NEG \al \}\cup \GA )^*$


$\subseteq $


$\{\NEG \al \}\cup \GA $


${\mathcal {E}}_2$


$(\{\NEG \be \}\cup \GA )^*$


$\subseteq $


$\{\NEG \be \}\cup \GA $


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$\ga $


$(\{\NEG \al \}\cup \GA )^*$


$\equiv $


$\{\NEG \al \}\cup \GA $


$(\{\NEG \be \}\cup \GA )^*$


$\equiv $


$\{\NEG \be \}\cup \GA $


$\mathcal {D}'$


$N_i$


$\relax \infer [(\NEG \LAND {\rm E})]{\ga }{ \NEG (\al \LAND \be ) & \infer *[{\mathcal {E}}_1]{\ga }{ [\NEG \al ] \GA } & \infer *[{\mathcal {E}}_2]{\ga }{ [\NEG \be ] \GA } }$


$\mathcal {D}'$


$\{\NEG (\al \LAND \be )\}\cup \GA $


$\mathcal {D}'$


$\ga $


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm right}).]{\SEQ {\GA }{\NEG (\al \LOR \be )}}{ \infer *[{\mathcal {D}}_1]{\SEQ {\GA }{\NEG \al }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\GA }{\NEG \be }}{ } }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$N_i$


$\relax \infer *[{\mathcal {E}}_1]{\NEG \al }{ \GA ^* }$


$\relax \infer *[{\mathcal {E}}_2]{\NEG \be }{ \GA ^* }$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {E}}_1$


$\NEG \al $


${\mathcal {E}}_2$


$\NEG \be $


$\GA ^* \equiv \GA $


$\mathcal {D}'$


$N_i$


$\relax \infer [(\NEG \LOR {\rm I})]{\NEG (\al \LOR \be )}{ \infer *[{\mathcal {E}}_1]{\NEG \al }{ \GA } & \infer *[{\mathcal {E}}_2]{\NEG \be }{ \GA } }$


$\mathcal {D}'$


$\GA $


$\mathcal {D}'$


$\NEG (\al \LOR \be )$


$\relax \square $


$N_1$


$N_2$


$N_3$


$N_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$\al $


$i \in \{1, 2, 3, 4\}$


$S_i$


$\vdash $


$\Rightarrow \al $


$\al $


$N_i$


$\emptyset $


$\GA $


$\relax \square $


$N$


$N$


$\mathcal {D}$


$N$


$\mathcal {D}'$


$N$


$\mathcal {D}'$


$\subseteq $


$\mathcal {D}$


$\mathcal {D}'$


$=$


$\mathcal {D}$


$N_1$


$N_2$


$N_3$


$N_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$i$


$1$


$2$


$3$


$4$


$\mathcal {D}$


$N_i$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$S_i$


$\vdash $


$\GA  \Rightarrow \be $


$S_i$


$S_i$


$-$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {D}'$


$N_i$


$\mathcal {D}'$


$\subseteq $


$\mathcal {D}$


$\mathcal {D}'$


$\mathcal {D}$


$\relax \square $


$^+$


$^+$


$^+$


$^+$


$\I $


$\LAND $


$\LAND $


$\relax \infer [(\I {\rm GE})]{\ga }{ \al \I \be & \al & \infer *[]{\ga }{ [\be ] } }$


$\relax \infer [(\LAND {\rm GE}).]{\ga }{ \al \LAND \be & \infer *[]{\ga }{ [\al , \be ] } }$


$^+$


$\NEG \NEG $


$\NEG \I $


$\NEG \LOR $


$\NEG \LOR $


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \NEG \NEG \al & \infer *[]{\ga }{ [\al ] } }$


$\relax \infer [(\NEG \I {\rm GE})]{\ga }{ \NEG (\al \I \be ) & \al & \infer *[]{\ga }{ [\NEG \be ] } }$


$\relax \infer [(\NEG \LOR {\rm GE}).]{\ga }{ \NEG (\al \lor \be ) & \infer *[]{\ga }{ [\NEG \al , \NEG \be ] } }$


$\I $


$\LAND $


$\NEG \NEG $


$\NEG \I $


$\NEG \LOR $


$\ga $


$R$


$\rhd $


$\ga $


$R$


$\I $


$\ga $


$\al \I \be $


$\relax \infer [(\I {\rm GE})] {\ga }{ \infer [(\I {\rm I})] {\al \I \be }{ \infer *[{\mathcal D}] {\be }{ [\al ] } } & \infer *[{\mathcal E}_1]{\al }{ } & \infer *[{\mathcal E}_2]{\ga }{ [\be ] } }$


$\relax \infer *[{\mathcal E}_2]{\ga .}{ \infer *[{\mathcal D}]{\be }{ \infer *[{\mathcal E}_1]{\al }{ } } }$


$R$


$\LAND $


$\ga $


$\al _1\LAND \al _2$


$\relax \infer [(\LAND {\rm GE})]{\ga }{ \infer [(\LAND {\rm I})]{\al \LAND \be }{ \infer *[{\mathcal D}_1]{\al }{ } & \infer *[{\mathcal D}_2]{\be }{ } } & \infer *[{\mathcal E}]{\ga }{ [\al , \be ] } }$


$\relax \infer *[{\mathcal E}]{\ga .}{ \infer *[{\mathcal D}_1]{\al }{ } & \infer *[{\mathcal D}_2]{\be }{ } }$


$R$


$\LOR $


$\LOR $


$\ga $


$\al _1\LOR \al _2$


$R$


$\LOR $


$R$


$\NEG \NEG $


$\ga $


$\NEG \NEG \al $


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \infer [(\NEG \NEG {\rm I})]{\NEG \NEG \al }{ \infer *[\mathcal {D}]{\al }{ } } & \infer *[{\mathcal E}]{\ga }{ [\al ] } }$


$\relax \infer *[{\mathcal E}]{\ga .}{ \infer *[\mathcal {D}]{\al }{ } }$


$R$


$\NEG \I $


$\ga $


$\NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm GE})] {\ga }{ \infer [(\NEG \I {\rm I})] {\NEG (\al \I \be )}{ \infer *[{\mathcal D}] {\NEG \be }{ [\al ] } } & \infer *[{\mathcal E}_1]{\al }{ } & \infer *[{\mathcal E}_2]{\ga }{ [\NEG \be ] } }$


$\relax \infer *[{\mathcal E}_2]{\ga .}{ \infer *[{\mathcal D}]{\NEG \be }{ \infer *[{\mathcal E}_1]{\al }{ } } }$


$R$


$\NEG \LAND $


$\NEG \LAND $


$\ga $


$\NEG (\al _1\LAND \al _2)$


$R$


$\NEG \LAND $


$R$


$\NEG \LOR $


$\ga $


$\NEG (\al _1\LOR \al _2)$


$\relax \infer [(\NEG \LOR {\rm GE})]{\ga }{ \infer [(\NEG \LOR {\rm I})]{\NEG (\al \LOR \be )}{ \infer *[{\mathcal {D}}_1]{\NEG \al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } & \infer *[{\mathcal E}]{\ga }{ [\NEG \al , \NEG \be ] } }$


$\relax \infer *[{\mathcal E}]{\ga .}{ \infer *[{\mathcal {D}}_1]{\NEG \al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } }$


$\rhd $


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


$\relax \infer [R']{\de }{ \infer [({\rm EM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }$


$\relax \infer [({\rm EM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\NEG \al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }$


$R'$


$\I $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$R$


$\ga $


$\ga _1\I \ga _2$


$\ga _1\LAND \ga _2$


$\ga _1\LOR \ga _2$


$\NEG \NEG \ga '$


$\NEG (\ga _1\I \ga _2)$


$\NEG (\ga _1\LAND \ga _2)$


$\NEG (\ga _1\LOR \ga _2)$


\begin {equation*}\infer [R']{\de }{ \infer [({\rm GEM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal D}_2]{\ga }{ [\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }\end {equation*}


\begin {equation*}\quad \quad \rhd \quad \quad \infer [({\rm GEM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\al \I \be ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }\end {equation*}


$R'$


$\I $


$\LAND $


$\LOR $


$\NEG \NEG $


$\NEG \I $


$\NEG \LAND $


$\NEG \LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$\rhd $


$\ga $


$\rhd $


$\ga $


$G_1$


$G_2$


$G_3$


$G_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$i \in \{1, 2, 3, 4\}$


$\mathcal {D}$


$G_i$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$S_i$


$\vdash $


$\GA  \Rightarrow \be $


$S_i$


$-$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {D}'$


$G_i$


$\mathcal {D}'$


$\subseteq $


$\GA $


$\mathcal {D}'$


$=$


$\be $


$\mathcal {D}'$


$\mathcal {D}$


$G_i$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$\mathcal {D}$


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG \NEG \al }{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\al ] ~\GA _2 } }$


$\mathcal {D}$


$\GA _1\cup \GA _2$


$\mathcal {D}$


$\ga $


$\NEG \NEG $


$S_i$


$\vdash $


$\GA _2 \Rightarrow \ga $


$\relax \infer *[({\rm we})]{\SEQ {\NEG \NEG \al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _2}{\ga }}{ } }$


$S_i$


$\al $


$\NEG \NEG $


$S_i$


$\vdash $


$\al , \GA _2 \Rightarrow \ga $


$\relax \infer [(\NEG \NEG {\rm left})]{\SEQ {\NEG \NEG \al , \GA _1, \GA _2}{\ga }}{ \infer *[({\rm we})]{\SEQ {\al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\al , \GA _2}{\ga }}{ } } }$


$S_i$


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm GE})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \I \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\al }{ \GA _2 } & \infer *[{\mathcal {D}}_3]{\ga }{ [\NEG \be ]~\GA _3 } }$


$\mathcal {D}$


$\GA _1\cup \GA _2\cup \GA _3$


$\mathcal {D}$


$\ga $


$\NEG \I $


$S_i$


$\vdash $


$\GA _3 \Rightarrow \ga $


$\relax \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2, \GA _3}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _3}{\ga }}{ } }$


$S_i$


$\NEG \be $


$\NEG \I $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \I \be )$


$S_i$


$\vdash $


$\GA _2 \Rightarrow \al $


$S_i$


$\vdash $


$\NEG \be , \GA _3 \Rightarrow \ga $


$\relax \infer [({\rm cut}).]{\SEQ {\GA _1, \GA _2, \GA _3}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _1}{\NEG (\al \I \be )}}{ } & \infer [(\NEG \I {\rm left})]{\SEQ {\NEG (\al \I \be ), \GA _2, \GA _3}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _2}{\al }}{ } & \infer *[Ind.~hyp.]{\SEQ {\NEG \be , \GA _3}{\ga }}{ } } }$


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm GE})]{\ga }{ \infer *[{\mathcal {D}}_1]{\NEG (\al \LOR \be )}{ \GA _1 } & \infer *[{\mathcal {D}}_2]{\ga }{ [\NEG \al , \NEG \be ]~\GA _2 } }$


$\mathcal {D}$


$\GA _1\cup \GA _2$


$\mathcal {D}$


$\ga $


$\NEG \LOR $


$S_i$


$\vdash $


$\GA _2 \Rightarrow \ga $


$\relax \infer *[({\rm we})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _2}{\ga }}{ } }$


$S_i$


$\NEG \al $


$\NEG \be $


$\NEG \LOR $


$\NEG \be $


$\NEG \LOR $


$S_i$


$\vdash $


$\GA _1 \Rightarrow \NEG (\al \LOR \be )$


$S_i$


$\vdash $


$\NEG \be , \GA _2 \Rightarrow \ga $


$\relax \infer [({\rm cut})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\GA _1}{\NEG (\al \LOR \be )}}{ } & \infer [(\NEG \LOR {\rm left})]{\SEQ {\NEG (\al \LOR \be ), \GA _2}{\ga }}{ \infer [({\rm we})]{\SEQ {\NEG \al , \NEG \be , \GA _2}{\ga }}{ \infer *[Ind.~hyp.]{\SEQ {\NEG \be , \GA _2}{\ga }}{ } } } }$


$S_i$


$\mathcal {D}$


$\GA  \Rightarrow \be $


$S_i$


$-$


$\mathcal {D}$


$\NEG \NEG $


$\mathcal {D}$


$\relax \infer [(\NEG \NEG {\rm left}).]{\SEQ {\NEG \NEG \al , \GA }{\ga }}{ \infer *[\mathcal {E}]{\SEQ {\al , \GA }{\ga }}{ } }$


$\mathcal {E'}$


$G_i$


$\relax \infer *[\mathcal {E'}]{\ga }{ (\al , \GA )^* }$


$\mathcal {E}'$


$(\{\al \} \cup \GA )^*$


$\subseteq $


$\{\al \} \cup \GA $


$\mathcal {E}'$


$\ga $


$(\{\al \} \cup \GA )^*$


$\equiv $


$\{\al \} \cup \GA $


$\mathcal {D}'$


$G_i$


$\relax \infer [(\NEG \NEG {\rm GE})]{\ga }{ \NEG \NEG \al & \infer *[\mathcal {E'}]{\ga }{ [\al ]~\GA } }$


$\mathcal {D}'$


$\{ \NEG \NEG \al \} \cup \GA $


$\mathcal {D}'$


$\ga $


$\NEG \I $


$\mathcal {D}$


$\relax \infer [(\NEG \I {\rm left}).]{\SEQ {\NEG (\al \I \be ), \GA , \DE }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\GA }{\al }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\NEG \be , \DE }{\ga }}{ } }$


${\mathcal {D}}_1'$


${\mathcal {D}}_2'$


$G_i$


$\relax \infer *[{\mathcal {D}}_1']{\al }{ \GA ^* } \quad \quad \quad \infer *[{\mathcal {D}}_2']{\ga }{ (\NEG \be , \DE )^* }$


${\mathcal {E}}_1$


$\GA ^*$


$\subseteq $


$\GA $


${\mathcal {E}}_1$


$\al $


${\mathcal {E}}_2$


$(\{\NEG \be \}\cup \DE )^*$


$\subseteq $


$\{\NEG \be \}\cup \DE $


${\mathcal {E}}_2$


$\ga $


$\GA ^*$


$\equiv $


$\GA $


$(\{\NEG \be \}\cup \DE )^*$


$\equiv $


$\{\NEG \be \}\cup \DE $


$\mathcal {D}'$


$G_i$


$\relax \infer [(\NEG \I {\rm GE})]{\ga }{ \NEG (\al \I \be ) & \infer *[{\mathcal {D}}_1']{\al }{ \GA } & \infer *[{\mathcal {D}}_2']{\ga }{ [\NEG \be ]~\DE } }$


$\mathcal {D}'$


$\{\NEG (\al \I \be )\}\cup \GA \cup \DE $


$\mathcal {D}'$


$\ga $


$\NEG \LOR $


$\mathcal {D}$


$\relax \infer [(\NEG \LOR {\rm left}).]{\SEQ {\NEG (\al \LOR \be ), \GA }{\ga }}{ \infer *[\mathcal {E}]{\SEQ {\NEG \al , \NEG \be , \GA }{\ga }}{ } }$


$\mathcal {E'}$


$G_i$


$\relax \infer *[\mathcal {E'}]{\ga }{ (\NEG \al , \NEG \be , \GA )^* }$


$\mathcal {E'}$


$(\{\NEG \al , \NEG \be \} \cup \GA )^*$


$\subseteq $


$\{\NEG \al , \NEG \be \} \cup \GA $


$\mathcal {E'}$


$\ga $


$(\{\NEG \al , \NEG \be \} \cup \GA )^*$


$\equiv $


$\{\NEG \al , \NEG \be \} \cup \GA $


$\mathcal {D}'$


$G_i$


$\relax \infer [(\NEG \LOR {\rm GE})]{\ga }{ \NEG (\al \LOR \be ) & \infer *[\mathcal {E'}]{\ga }{ [\NEG \al , \NEG \be ]~\GA } }$


$\mathcal {D}'$


$\{ \NEG (\al \LOR \be ) \} \cup \GA $


$\mathcal {D}'$


$\ga $


$\relax \square $


$G_1$


$G_2$


$G_3$


$G_4$


$S_1$


$S_2$


$S_3$


$S_4$


$^*$


$^*$


$\al $


$i \in \{1, 2, 3, 4\}$


$S_i$


$\vdash $


$\Rightarrow \al $


$\al $


$G_i$


$\relax \square $


$G_1$


$G_2$


$G_3$


$G_4$


$N_1$


$N_2$


$N_3$


$N_4$


$\al $


$i \in \{1, 2, 3, 4\}$


$\al $


$G_i$


$\al $


$N_i$


$\relax \square $


$G$


$G$


$\relax \square $


$\NEG \I $


$\NEG \I $


\begin {equation*}\infer [{\rm (\NEG \I left^{\star })}]{\SEQ {\NEG (\al \I \be ), \GA }{\ga }}{ \SEQ {\al , \NEG \be , \GA }{\ga } } \quad \quad \infer [{\rm (\NEG \I right^{\star })}]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \SEQ {\GA }{\al } & \SEQ {\GA }{\NEG \be } }\end {equation*}


$\NEG (\al \I \be ) \leftrightarrow \al \LAND \NEG \be $


$=$


$+$


$=$


$+$


$=$


$+$


$+$


$=$


$+$


$=$


$+$


$+$


\begin {equation*}\infer [(\mbox {\rm we-right})]{\SEQ {\GA }{\al }}{ \SEQ {\GA }{} } \quad \quad \infer [({\rm explosion}).]{\SEQ {\GA }{\ga }}{ \SEQ {\GA }{\NEG \al } & \SEQ {\GA }{\al } }\end {equation*}


$+$


$+$


$\GA  \Rightarrow \ga $


$\ga $


$+$


$\NEG \I $


$\NEG \I $


\begin {equation*}\infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \al & \NEG \be } \quad \quad \infer [(\NEG \I {\rm E1}^{\star })]{\al }{ \NEG (\al \I \be ) } \quad \quad \infer [(\NEG \I {\rm E2}^{\star })]{\NEG \be }{ \NEG (\al \I \be ) }\end {equation*}


$\NEG (\al \I \be ) \leftrightarrow \al \LAND \NEG \be $


$=$


$+$


$=$


$+$


$=$


$+$


$+$


$R$


$\NEG \I $


$\ga $


$\NEG (\al \I \be )$


$\relax \infer [(\NEG \I {\rm E1^{\star }})]{\al }{ \infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } }$


$\relax \infer *[{\mathcal {D}}_1]{\al .}{ }$


$\relax \infer [(\NEG \I {\rm E2}^{\star })]{\NEG \be }{ \infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } }$


$\relax \infer *[{\mathcal {D}}_2]{\NEG \be .}{ }$


$\I $


$\LAND $


$\LAND $


$\NEG \NEG $


$\NEG \LOR $


$\NEG \LOR $


$\NEG \I $


$^{\star }$


$\NEG \I $


$^{\star }$


$\I $


$\LAND $


$\NEG \NEG $


$\NEG \LOR $


\begin {equation*}\infer [(\NEG \I {\rm GE}^{\star }).]{\ga }{ \NEG (\al \I \be ) & \infer *[]{\ga }{ [\al , \NEG \be ] } }\end {equation*}


$=$


$+$


$=$


$+$


$=$


$+$


$+$


$R$


$\NEG \I $


$\ga $


$\NEG (\al \I \be )$


\begin {equation*}\infer [(\NEG \I {\rm GE}^{\star })]{\ga }{ \infer [(\NEG \I {\rm I}^{\star })]{\NEG (\al \I \be )}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } } & \infer *[{\mathcal E}]{\ga }{ [\al , \NEG \be ] } } \quad \quad \rhd \quad \quad \infer *[{\mathcal E}]{\ga .}{ \infer *[{\mathcal {D}}_1]{\al }{ } & \infer *[{\mathcal {D}}_2]{\NEG \be }{ } }\end {equation*}


$^*$


$^*$


$^*$


$^*$


$^*$


$^*$


$\NEG \I $


$\NEG \I $


\begin {equation*}\infer [{\rm (\NEG \I left^c)}]{\SEQ {\NEG (\al \I \be ), \GA ,\DE }{\ga }}{ \SEQ {\GA }{\NEG \al } & \SEQ {\NEG \be , \DE }{\ga } } \quad \quad \infer [{\rm (\NEG \I right^c)}]{\SEQ {\GA }{\NEG (\al \I \be )}}{ \SEQ {\NEG \al , \GA }{\NEG \be } }\end {equation*}


$\NEG \I $


$^c$


$\NEG \I $


$^c$


$\NEG (\al \I \be ) \leftrightarrow \NEG \al \I \NEG \be $


$\CON (\al \I \be ) \leftrightarrow \CON \al \I \CON \be $


$\CON $


$\neg $


$\bot $


$^{\bot }$


$^{\bot }_3$


$^{ab}_{po}$


$^{ab}_{we}$


$^{ab}_{po}$


$^{ab}_{we}$


\begin {equation*}\infer [(\mbox {\rm po-omni})]{\SEQ {\GA }{}}{ \SEQ {\NEG \al ,\GA }{} & \SEQ {\al , \GA }{} } \quad \quad \infer [(\mbox {\rm we-neg})]{\SEQ {\GA }{\ga }}{ \SEQ {\NEG \al ,\GA }{\ga } & \SEQ {\al , \GA }{} }\end {equation*}


$\neg \neg (\NEG \al \lor \al )$


$\neg \al \I \NEG \al $


\begin {equation*}\infer [({\rm PO})]{\bot }{ \infer *[]{\bot }{ [\NEG \al ] } & \infer *[]{\bot }{ [\al ] } } \quad \quad \infer [({\rm WN}).]{\ga }{ \infer *[]{\ga }{ [\NEG \al ] } & \infer *[]{\bot }{ [\al ] } }\end {equation*}


$\neg \al $


$\neg \al := \al \I \bot $


$\bot $


$^{\bot }$


$^{\bot }_3$


$^{ab}_{po}$


$^{ab}_{wn}$


$\mathbf {K}$


$\Hi \K $


$\K $


$\Hi \K $


$\axt ,\axd ,\axiv $


$\axv $


$[t]$


$t$


$[x]P(x)$


$[f(x)]P(x)$


$\all x [f(x)]P(x)$


$K_t$


$t$


$K_t \varphi $


$t$


$\Hi \K $


$\axt ,\axd ,\axiv $


$\axv $


$\Hi \K $


$x = c \to (P(x) \to P(c))$


$\Gamma \subseteq \setof {\axt ,\axd ,\axiv ,\axv }$


$\Gamma $


$\Hi \K \Gamma $


$\Hi \K $


$\Gamma $


$\Hi \K $


$\agt $


$\obj $


$\agtobj $


$\agt $


$\obj $


$\agtobj $


$P(x)$


$x$


$\agt $


$P$


$\agtobj $


$P(x)$


$x$


$\agt $


$P$


$\agtobj $


$x$


$P$


$x = x$


$x$


$\agt $


$\obj $


$=$


$\agtobj $


$\VAR $


$\CON $


$\FUN $


$\REL $


$=$


$\tuple {\TYPE ,\preccurlyeq }$


$\TYPE $


$=$


$\setof {\agt ,\obj ,\agtobj }$


$\preccurlyeq $


$\TYPE $


$\agt \preccurlyeq \agtobj $


$\obj \preccurlyeq \agtobj $


\begin {equation*}\preccurlyeq \,\,\coloneqq \,\, \inset {\tuple {\tau ,\tau }}{\tau \in \TYPE } \cup \setof {\tuple {\agt ,\agtobj },\tuple {\obj ,\agtobj }}.\end {equation*}


$\type \colon \VAR \cup \CON \cup \FUN \cup \REL $


$\to $


$\bigcup _{n \in \N } \TYPE ^{n}$


$x$


$\type (x) \in \setof {\agt ,\obj }$


$\VAR \cap \type ^{-1}[\setof {\agt }]$


$\VAR \cap \type ^{-1}[\setof {\obj }]$


$\type ^{-1}[X]$


$X$


$c$


$\type (c) \in \setof {\agt ,\obj }$


$f$


$\type (f) \in \TYPE ^{n} \times \setof {\agt ,\obj }$


$n \in \N $


$=$


$\type (=)$


$=$


$\tuple {\agtobj ,\agtobj }$


$P$


$=$


$\type (P) \in \TYPE ^n$


$n\in \N $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$\type (x)$


$c \in \CON $


$\type (c)$


$t_1,\dots ,t_n$


$\tau _1,\dots ,\tau _n$


$f$


$\FUN $


$\type (f)$


$=$


$\tuple {\tau '_{1},\dots ,\tau '_{n},\tau '_{n+1}}$


$\tau _i \preccurlyeq \tau '_i$


$f(t_1,\dots ,t_n)$


$\tau '_{n+1}$


$\type $


$\type (f(t_{1},\dots ,t_{n}))$


$=$


$\tau $


$f(t_{1},\dots ,t_{n})$


$\tau $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$\varphi $


\begin {equation*}\varphi \Coloneqq P(t_1,\dots ,t_n) \mid \neg \varphi \mid \varphi \land \varphi \mid K_{s}\varphi \mid \all x \varphi ,\end {equation*}


$t_1,\dots ,t_n,s$


$\type (s)$


$=$


$\agt $


$P \in \REL $


$\type (P)$


$=$


$\tuple {\tau _1,\dots ,\tau _n}$


$\type (t_i) \preccurlyeq \tau _i$


$P$


$=$


$t \neq s$


$\coloneqq \neg (t=s)$


$\varphi \to \psi $


$\coloneqq $


$\neg (\varphi \land \neg \psi )$


$\some x \varphi $


$\coloneqq $


$\neg \all x \neg \varphi $


$\bot \coloneqq P \land \neg P$


$P$


$\top \coloneqq \neg \bot $


$K_{t}\varphi $


$t$


$\varphi $


$x$


$t,s$


$\varphi $


$\type (x) = \type (s)$


$s$


$\varphi $


$t(s/x)$


$\varphi (s/x)$


$s$


$x$


$t$


$\varphi $


$(K_{t}\varphi )(s/x)$


$=$


$K_{t(s/x)}\varphi (s/x)$


$t(s/x)$


$\varphi (s/x)$


$\type (x) = \type (s)$


$s$


$\varphi $


$F = \tuple {D,W,R}$


$D \coloneqq D_{\agtobj } \coloneqq D_{\agt } \sqcup D_{\obj }$


$D_{\agt }$


$D_{\obj }$


$W$


$R$


$i \in D_{\agt }$


$R_{i}$


$W$


$R \colon D_{\agt } \to \mathcal {P}(W \times W)$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$M = \tuple {D,W,R,I}$


$\tuple {D,W,R}$


$I$


$\tuple {c,w}$


$c \in \CON $


$w \in W$


$I(c,w) \in D_{\type (c)}$


$\tuple {f,w}$


$f \in \FUN $


$w \in W$


$I(f,w) \colon (D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}) \to D_{\tau _{n+1}}$


$\type (f)$


$=$


$\tuple {\tau _{1},\dots ,\tau _{n},\tau _{n+1}}$


$\tuple {=,w}$


$=$


$w \in W$


$I(=,w)$


$=$


$\inset {\tuple {d,d}}{d \in D_{\agtobj }}$


$\tuple {P,w}$


$P \in \REL \setminus \setof {=}$


$w \in W$


$I(P,w)$


$D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}$


$\type (P)$


$=$


$\tuple {\tau _1,\dots ,\tau _n}$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$\val \colon \VAR \to D$


$\val (x) \in D_{\type (x)}$


$\val [x \mapsto d]$


$\val $


$x$


$d \in D_{\type (x)}$


$\val $


$w$


$I$


$\llbracket t \rrbracket ^{I,\val }_{w}$


$t$


$\llbracket x \rrbracket ^{I,\val }_{w}$


$=$


$\val (x)$


$\llbracket c \rrbracket ^{I,\val }_{w}$


$=$


$I(c,w)$


$\llbracket f(t_{1},\dots ,f_n) \rrbracket ^{I,\val }_{w}$


$=$


$I(f,w)(\llbracket t_{1} \rrbracket ^{I,\val }_{w},\dots ,\llbracket t_{n} \rrbracket ^{I,\val }_{w})$


$M,w \models _\val \varphi $


$\varphi $


$w$


$M$


$\val $


\begin {align*}&M,w \models _\val P(t_1,\dots ,t_n) &&\text {iff} &&\tuple {\llbracket t_1 \rrbracket ^{I,\val }_{w},\dots ,\llbracket t_n \rrbracket ^{I,\val }_{w}} \in I(P,w) \quad \text {($P$ can be $=$)} \\ &M,w \models _\val \neg \varphi &&\text {iff} &&M,w \not \models _\val \varphi \\ &M,w \models _\val \varphi \land \psi &&\text {iff} &&M,w \models _\val \varphi \quad \text {and} \quad M,w \models _\val \psi \\ &M,w \models _\val \all x \varphi &&\text {iff} &&M,w \models _{\val [x \mapsto d]} \varphi \quad \text {for all $d \in D_{\type (x)}$} \\ &M,w \models _\val K_{t} \varphi &&\text {iff} &&M,w' \models _{\val } \varphi \quad \text {for all $w' \in W$ such that} \\ &\mbox {} &&\mbox {} &&\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{I,\val }_{w}}\end {align*}


$\varphi $


$\F $


$M$


$\F $


$w \in W$


$\val $


$M,w \models _{\val } \varphi $


$\varphi $


$\FF $


$\F \in \FF $


$\varphi $


$\F $


$x$


$\val $


$\val [x \mapsto d]$


$\all x \varphi $


$\tuple {W,D,R}$


$R_{i}$


$i \in D_{\agt }$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$\type (x)$


$=$


$\agt $


$\axt $


$\coloneqq $


$\all x (K_x \varphi \to \varphi )$


$\axd $


$\coloneqq $


$\all x \neg K_x \bot $


$\axiv $


$\coloneqq $


$\all x (K_x \varphi \to K_x K_x \varphi )$


$\axv $


$\coloneqq $


$\all x (\neg K_x \varphi \to K_x \neg K_x \varphi )$


$\type (x)$


$\agt $


$\#X$


$X$


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x}_n}_{y}$


$\mathsf {M}$


$\mathsf {N}$


$\axao ^{\vec {x}_n}_{y}$


$\coloneqq $


$\some x_1 \cdots x_n \big ( (\bigwedge _{i<j \leq n} x_i \neq x_j) \land \all y \bigvee _{i \leq n} y = x_i \big )$


$\#D = n$


$\axa ^{\vec {x}_n}_{y}$


$\coloneqq $


$\some x_1 \cdots x_n \big ( (\bigwedge _{i \leq n}K_{x_i} \top ) \land (\bigwedge _{i<j \leq n} x_i \neq x_j) \land \all y (K_{y} \top \to \bigvee _{i \leq n} y = x_i) \big )$


$\#D_{\agt } = n$


$x_1,\dots ,x_n,y$


$\agt $


$\axao ^{\vec {x}_n}_{y}$


$\#D_{\agt } = n$


$D_{\obj } \neq \emptyset $


$n <$


$\#D_{\agt } + \#D_{\obj }$


$=$


$\#D$


$\axao ^{\vec {x}_n}_{y}$


$|y|$


$\inset {x_i}{\type (y)=\type (x_i), 1 \leq i \leq n}$


$\overline {\tau }$


$\tau $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x_1$


$\dots $


$x_n$


$y$


$\axao ^{\vec {x}_n}_{y}$


$\#D_{\type (y)} = \#|y|$


$\#D_{\overline {\type (y)}} \geq (n-\#|y|)$


$\axao ^{\vec {x}_n}_{y}$


$\F $


$w$


$I$


$\sigma $


$\tuple {\F ,I}, w \models _{\sigma } \axao ^{\vec {x}_n}_{y}$


$d_1,\dots ,d_{\#|y|} \in D_{\type (y)}$


$d_{\#|y|+1},\dots ,d_n \in D_{\overline {\type (y)}}$


$d \in D_{\type (y)}$


$d = d_1$


$\cdots $


$d = d_{\#|y|}$


$d = d_{\#|y|+1}$


$\cdots $


$d = d_n$


$d \in D_{\type (y)}$


$d_{\#|y|+1},\dots ,d_n \in D_{\overline {\type (y)}}$


$d = d_1$


$\cdots $


$d = d_{\#|y|}$


$\#D_{\type (y)} = \#|y|$


$\#D_{\overline {\type (y)}} \geq (n-\#|y|)$


$\#D_{\type (y)} = \#|y|$


$\#D_{\overline {\type (y)}} \geq (n-\#|y|)$


$\tuple {\F ,I},w \models _{\sigma } \axao ^{\vec {x}_n}_{y}$


$I$


$w$


$\sigma $


$d_1,\dots ,d_{\#|y|} \in D_{\type (y)}$


$d_{\#|y|+1},\dots ,d_n \in D_{\overline {\type (y)}}$


$D_{\type (y)} = \setof {d_1,\dots ,d_{\#|y|}}$


$\type (x_{k_1})$


$= \cdots =$


$\type (x_{k_\#|y|})$


$=$


$\type (y)$


$\type (x_{k_{\#|y|+1}})$


$= \cdots =$


$\type (x_{k_n})$


$=$


$\overline {\type (y)}$


$x_{k_1},\dots ,x_{k_n}$


$x_1,\dots ,x_n$


$\sigma '$


$=$


$\sigma [x_{k_1} \mapsto d_1] \cdots [x_{k_n} \mapsto d_n]$


$\sigma ''$


$=$


$\sigma [x_1 \mapsto \sigma '(x_1)] \cdots [x_n \mapsto \sigma '(x_n)]$


$\tuple {\F ,I}, w \models _{\sigma ''} \bigwedge _{i<j \leq n} x_i \neq x_j$


$\tuple {\F ,I}, w \models _{\sigma ''} \all y \bigvee _{i \leq \#|y|} y = x_{k_i}$


$\tuple {\F ,I}, w \models _{\sigma ''} \all y \bigvee _{i \leq n} y = x_i$


$\tuple {\F ,I},w \models _{\sigma } \axao ^{\vec {x}_n}_{y}$


$\relax \square $


$\axa ^{\vec {x}_n}_{y}$


$\Sigma $


$x_1,\dots ,x_n$


$\agt $


$\Sigma $


$\axa ^{\vec {x}_n}_{y}$


$\axao ^{\vec {x}_n}_{y}$


$\#D_{\agt } = n$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x_1$


$\dots $


$x_n$


$y$


$\type (x_1) = \dots = \type (x_n) = \type (y) = \agt $


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x}_n}_{y}$


$\#D_{\agt } = n$


$\axa ^{\vec {x}_n}_{y}$


$\axao ^{\vec {x}_n}_{y}$


$\type (x_1)$


$= \cdots =$


$\type (x_n)$


$=$


$\type (y)$


$=$


$\agt $


$\Hi \K $


$\K $


$\Hi \K $


$\Hi \K $


$\K $


$\ue $


$\all x\varphi \to \varphi (y/x)$


$\axk $


$K_{t}(\varphi \to \psi )\to (K_{t}\varphi \to K_{t}\psi )$


$\id $


$t=t$


$\barcan ^{\dagger }$


$\all xK_{t}\varphi \to K_{t}\all x\varphi $


$\ps $


$x=y\to (\varphi (x/z)\to \varphi (y/z))$


$\kni $


$x\neq y\to K_{t}x\neq y$


$\eid $


$c=c\to \some x(x=c)$


$\dd $


$x\neq y$


$\type (x)\neq \type (y)$


$\rmp $


$\varphi $


$\varphi \to \psi $


$\psi $


$\rkg $


$\varphi $


$K_{t}\varphi $


$\rug ^{\ddagger }$


$\varphi \to \psi $


$\varphi \to \all x\psi $


$\dagger $


$x$


$t$


$\ddagger $


$x$


$\varphi $


$\AX = \setof {\axt ,\axd ,\axiv ,\axv }$


$\Gamma \subseteq \AX $


$\Hi \K \Gamma $


$\Hi \K $


$\Gamma $


$\Hi \K \Gamma $


$\Hi \K \AX $


$\Hi \SV \coloneqq \Hi \K \setof {\axt ,\axv }$


$\Hi \K \Gamma $


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x'}_{n'}}_{y'}$


$n,n' \geq 1$


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x'}_{n'}}_{y'}$


$\Hi \K \Gamma $


$\axao ^{\vec {x}_n}_{y}$


$\axa ^{\vec {x'}_{n'}}_{y'}$


$\Hi \K \Gamma \cup \setof {\axao ^{\vec {x}_n}_{y},\axa ^{\vec {x'}_{n'}}_{y'}}$


$\type (y)$


$=$


$\type (y')$


$\#|y| = \#|y'|$


$\type (y)$


$\neq $


$\type (y')$


$\#|y| \geq (n'-\#|y'|)$


$\#|y'| \geq (n-\#|y|)$


$\AX $


$\ue $


$\ps $


$\Hi \K \Gamma $


$\all x \varphi \to \varphi (t/x)$


$t = s \to (\varphi (t/z) \to \varphi (s/z))$


$\ue $


$\ps $


$\ue $


$\ps $


$x = c \to (P(x) \to P(c))$


$\Gamma \subseteq \AX $


$\Hi \K \Gamma $


$x = c \to (P(x) \to P(c))$


$\Gamma $


$\Hi \K \Gamma $


$\Gamma $


$x = c \to (P(x) \to P(c))$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$c \in \CON $


$P \in \REL $


$\type (P)$


$=$


$\tuple {\agtobj }$


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\Hi \K \Gamma $


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\Hi \SV $


$x = c \to (P(x) \to P(c))$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$N = \tuple {D,W,R,J}$


$\tuple {D,W,R}$


$J$


$\tuple {c,w,X}$


$c \in \CON $


$w \in W$


$X \subseteq D^{n}$


$n \in \N $


$J(c,w,X) \in D_{\type (c)}$


$\tuple {f,w,X}$


$f \in \FUN $


$w \in W$


$X \subseteq D^{n}$


$n \in \N $


$J(f,w,X) \colon (D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}) \to D_{\tau _{n+1}}$


$\type (f)$


$=$


$\tuple {\tau _{1},\dots ,\tau _{n+1}}$


$\tuple {=,w}$


$=$


$w \in W$


$J(=,w)$


$=$


$\inset {\tuple {d,d}}{d \in D_{\agtobj }}$


$\tuple {P,w}$


$P \in \REL \setminus \setof {=}$


$w \in W$


$J(P,w)$


$D_{\tau _{1}} \times \cdots \times D_{\tau _{n}}$


$\type (P)$


$=$


$\tuple {\tau _1,\dots ,\tau _n}$


$X$


$D^n$


$X$


$J(c,w,X)$


$J(f,w,X)$


$c$


$f$


$\llbracket t \rrbracket ^{J,\val }_{w,X}$


$t$


$\llbracket x \rrbracket ^{J,\val }_{w,X}$


$=$


$\val (x)$


$\llbracket c \rrbracket ^{J,\val }_{w,X}$


$=$


$J(c,w,X)$


$\llbracket f(t_1,\dots ,t_n) \rrbracket ^{J,\val }_{w,X}$


$=$


$J(f,w,X)(\llbracket t_1 \rrbracket ^{J,\val }_{w,X},\dots ,\llbracket t_n \rrbracket ^{J,\val }_{w,X})$


$N,w \models _\val \varphi $


$\varphi $


$w$


$N$


$\val $


\begin {align*}&N,w \models _\val P(t_1,\dots ,t_n) &&\text {iff} &&\tuple {\llbracket t_1 \rrbracket ^{J,\val }_{w,J(P,w)},\dots ,\llbracket t_n \rrbracket ^{J,\val }_{w,J(P,w)}} \in J(P,w) \\ &\mbox {} &&\mbox {} &&\text {($P$ can be $=$)} \\ &N,w \models _\val \neg \varphi &&\text {iff} &&N,w \not \models _\val \varphi \\ &N,w \models _\val \varphi \land \psi &&\text {iff} &&N,w \models _\val \varphi \quad \text {and} \quad N,w \models _\val \psi \\ &N,w \models _\val \all x \varphi &&\text {iff} &&N,w \models _{\val [x \mapsto d]} \varphi \quad \text {for all $d \in D_{\type (x)}$} \\ &N,w \models _\val K_{t} \varphi &&\text {iff} &&N,w' \models _{\val } \varphi \quad \text {for all $w' \in W$ such that} \\ &\mbox {} &&\mbox {} &&\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }}\end {align*}


$P(t_{1},\dots ,t_{n})$


$K_{t}\varphi $


$P(t_{1},\dots ,t_{n})$


$\llbracket t_{i} \rrbracket ^{J,\val }_{w,J(P,w)}$


$t_{i}$


$P(t_{1},\dots ,t_{n})$


$J$


$\val $


$w$


$J(P,w)$


$P$


$t_{1},\dots ,t_{n}$


$c$


$P(c)$


$c$


$Q(c)$


$lewis\! \in \! \CON $


$\type (lewis)\! =\! \agt $


$SL,CF\! \in \! \REL $


$\type (SL)\! =\! \type (CF)\! =\! \tuple {\agt }$


$J(SL,w)\!=\!\{i \in D_{\agt } \,|\, \text {$i$ is one of the authors of \textit {Symbolic Logic}} \}$


$J(CF,w)\linebreak =\inset {i \in D_{\agt }}{\text {$i$ is the author of \textit {Counterfactuals}}}$


$J(lewis,w,J(SL,w))$


$J(lewis,w,J(CF,w))$


$J(lewis,w,J(SL,w))$


$lewis$


$SL(lewis)$


$J(lewis,w,J(CF,w))$


$lewis$


$CF(lewis)$


$J(lewis,w,J(SL,w)) \in J(SL,w)$


$J(lewis,w,J(SL,w))$


$J(lewis,w,J(SL,w)) \notin J(SL,w)$


$\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }$


$t$


$K_t$


$K_{t}\varphi $


$K_{t}\varphi $


$\axk $


$\barcan $


$x = c \to (P(x) \to P(c))$


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$c \in \CON $


$\type (x) = \type (c)$


$P \in \REL $


$\type (P)$


$=$


$\tuple {\agtobj }$


$x = c \to (P(x) \to P(c))$


$\type (x) = \type (c) = \agt $


$N = \tuple {D,W,R,J}$


$w \in W$


$R_{i}$


$i \in D_{\agt }$


$D_{\agt }$


$=$


$\setof {\alpha ,\beta }$


$J(c,w,\{\,\tuple {d,d}\,\mid $


$d \in D_{\agtobj }\,\})$


$=$


$\alpha $


$J(c,w,\setof {\alpha })$


$=$


$\beta $


$J(P,w)$


$=$


$\setof {\alpha }$


$\val $


$\val (x) = \alpha $


$\llbracket x \rrbracket ^{J,\val }_{w,J(=,w)}$


$=$


$\val (x)$


$=$


$\alpha $


$=$


$J(c,w,\{\,\tuple {d,d}\,\mid d \in D_{\agtobj }\,\})$


$=$


$J(c,w,J(=,w))$


$=$


$\llbracket c \rrbracket ^{J,\val }_{w,J(=,w)}$


$N,w \models _\val x = c$


$N,w \models _\val P(x)$


$\llbracket c \rrbracket ^{J,\val }_{w,J(P,w)}$


$=$


$J(c,w,J(P,w))$


$=$


$J(c,w,\setof {\alpha })$


$=$


$\beta $


$N,w \models _\val P(c)$


$x=c \to (P(x) \to P(c))$


$\relax \square $


$\Hi \SV $


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x,y \in \VAR $


$\type (x) = \type (y)$


$\tuple {D,W,R,J}$


$w$


$X$


$D^n$


$n \in \N $


$\val $


$t$


\begin {equation*}\llbracket t(y/x) \rrbracket ^{J,\val }_{w,X} \quad = \quad \llbracket t \rrbracket ^{J,\val [x \mapsto \val (y)]}_{w,X}.\end {equation*}


$\relax \square $


$\tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x,y \in \VAR $


$\type (x) = \type (y)$


$N$


$=$


$\tuple {D,W,R,J}$


$w$


$\val $


$\varphi $


\begin {equation*}N,w \models _{\val } \varphi (y/x) \quad \text {iff} \quad N,w \models _{\val [x \mapsto \val (y)]} \varphi .\end {equation*}


$\relax \square $


$\varphi $


$\Hi \SV $


$\varphi $


$\Hi \SV $


$\neg $


$\land $


$\ue $


$\all x \varphi \to \varphi (y/x)$


$N,w \models _\val \all x \varphi $


$N,w \models _{\val [x \mapsto \val (y)]} \varphi $


$N,w \models _\val \varphi (y/x)$


$\id $


$t=t$


$\ps $


$x=y \to (\varphi (x/z) \to \varphi (y/z))$


$\varphi $


$\varphi $


$P(t_1,\dots ,t_n)$


$N,w \models _\val x = y$


$N,w \models _\val P(t_1,\dots ,t_n)(x/z)$


\begin {equation*}\tuple {\llbracket t_1(x/z) \rrbracket ^{J,\val }_{w,J(P,w)},\dots ,\llbracket t_n(x/z) \rrbracket ^{J,\val }_{w,J(P,w)}} \in J(P,w),\end {equation*}


$\val (x) = \val (y)$


\begin {equation*}\tuple {\llbracket t_1(y/z) \rrbracket ^{J,\val }_{w,J(P,w)},\dots ,\llbracket t_n(y/z) \rrbracket ^{J,\val }_{w,J(P,w)}} \in J(P,w).\end {equation*}


$N,w \models _\val P(t_1,\dots ,t_n)(y/z)$


$\varphi $


$\neg \psi $


$\psi \land \gamma $


$\varphi $


$\all z' \psi $


$z' \neq x$


$z' \neq y$


$x,y$


$\varphi $


$\varphi (x/z)$


$\varphi (y/z)$


$N,w \models _\val x = y$


$N,w \models _\val (\all z' \psi )(x/z)$


$z' = z$


$N,w \models _\val (\all z' \psi )(y/z)$


$z' \neq z$


$N,w \models _\val \all z' \psi (x/z)$


$N,w \models _{\val [z' \mapsto d]} \psi (x/z)$


$d \in D_{\type (z')}$


$N,w \models _{\val [z' \mapsto d]} x = y$


$d \in D_{\type (z')}$


$N,w \models _{\val [z' \mapsto d]} \psi (y/z)$


$d \in D_{\type (z')}$


$N,w \models _\val (\all z' \psi )(y/z)$


$\varphi $


$K_{t}\psi $


$N,w \models _\val x = y$


$N,w \models _\val (K_{t}\psi )(x/z)$


$N,w' \models _\val \psi (x/z)$


$w' \in W$


$\tuple {w,w'} \in R_{\llbracket t(x/z) \rrbracket ^{J,\val }_{w,\emptyset }}$


$N,w' \models _{\val } x = y$


$w' \in W$


$\llbracket t(x/z) \rrbracket ^{J,\val }_{w,\emptyset }$


$=$


$\llbracket t(y/z) \rrbracket ^{J,\val }_{w,\emptyset }$


$\val (x)$


$=$


$\val (y)$


$N,w' \models _\val \psi (y/z)$


$w' \in W$


$\tuple {w,w'} \in R_{\llbracket t(y/z) \rrbracket ^{J,\val }_{w,\emptyset }}$


$N,w \models _\val (K_t \psi )(y/z)$


$\eid $


$c=c \to \some x (x = c)$


$N,w \models _{\val [x \mapsto J(c,w,J(=,w))]} x = c$


$N,w \models _\val \some x (x=c)$


$N,w \models _\val c = c \to \some x (x=c)$


$\dd $


$x \neq y$


$\type (x) \neq \type (y)$


$\type (x) \neq \type (y)$


$N$


$w$


$\val $


$\val (x)$


$\val (y)$


$D_{\type (x)}$


$D_{\type (y)}$


$\type (x) \neq \type (y)$


$D_{\type (x)}$


$D_{\type (y)}$


$N,w \models _\val x \neq y$


$\axk $


$K_{t}(\varphi \to \psi ) \to (K_{t}\varphi \to K_{t}\psi )$


$N,w \models _\val K_{t}(\varphi \to \psi )$


$N,w \models _\val K_{t}\varphi $


$w'$


$\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }}$


$N,w' \models _\val \varphi \to \psi $


$N,w' \models _\val \varphi $


$N,w' \models _\val \psi $


$\barcan $


$\all x K_{t}\varphi \to K_{t} \all x \varphi $


$x$


$t$


$N,w \models _\val \all x K_{t}\varphi $


$N,w \models _{\val } K_{t} \all x \varphi $


$w'$


$\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }}$


$d \in D_{\type (x)}$


$N,w \models _{\val [x \mapsto d]} K_{t} \varphi $


$\llbracket t \rrbracket ^{J,\val }_{w,\emptyset }$


$=$


$\llbracket t \rrbracket ^{J,\val [x \mapsto d]}_{w,\emptyset }$


$x$


$t$


$\tuple {w,w'} \in R_{\llbracket t \rrbracket ^{J,\val [x \mapsto d]}_{w,\emptyset }}$


$N,w' \models _{\val [x \mapsto d]} \varphi $


$\kni $


$x \neq y \to K_{t} x \neq y$


$N,w \models _\val x \neq y$


$N,w' \models _\val x \neq y$


$w'$


$N,w \models K_{t} x \neq y$


$\axt $


$\all x (K_x \varphi \to \varphi )$


$N,w \models _{\sigma [x \mapsto d]} K_x \varphi $


$d \in D_{\type (x)}$


$\tuple {w,w} \in R_{\sigma [x \mapsto d](x)}$


$N$


$N,w \models _{\sigma [x \mapsto d]} \varphi $


$\axv $


$\all x (\neg K_x \varphi \to K_x \neg K_x \varphi )$


$N,w \models _{\sigma [x \mapsto d]} \neg K_x \varphi $


$d \in D_{\type (x)}$


$N,w \models _{\sigma [x \mapsto d]} K_x \neg K_x \varphi $


$N,v \models _{\sigma [x \mapsto d]} \neg K_x \varphi $


$v$


$\tuple {w,v} \in R_{\sigma [x \mapsto d](x)}$


$u$


$\tuple {w,u} \in R_{\sigma [x \mapsto d](x)}$


$N,u \not \models _{\sigma [x \mapsto d]} \varphi $


$\tuple {v,u} \in R_{\sigma [x \mapsto d](x)}$


$N$


$N,v \models _{\sigma [x \mapsto d]} \neg K_x \varphi $


$\relax \square $


$\Sigma = \tuple {\VAR ,\CON ,\FUN ,\REL ,\type }$


$x \in \VAR $


$c \in \CON $


$\type (x) = \type (c)$


$P \in \REL $


$\type (P)$


$=$


$\tuple {\agtobj }$


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$x = c \to (P(x) \to P(c))$


$\Hi \SV $


$\relax \square $


$\Hi \K \Gamma $


$\Hi \K \Gamma $


$\Gamma \subseteq \AX $


$\Hi \K \Gamma $


$\Gamma $


$\varphi $


$\varphi $


$\Gamma $


$\Hi \K \Gamma $


$x = c \to (P(x) \to P(c))$


$\Gamma $


$x = c \to (P(x) \to P(c))$


$\Hi \K \Gamma $


$\relax \square $


$\Hi \K $


$\Gamma \subseteq \AX $


$=$


$\setof {\axt ,\axd ,\axiv ,\axv }$


$\Hi \K \Gamma $


$\K \Gamma $


$\Gamma $


$\axao ^{\vec {x}_n}_{y}$


$\Hi \K \setof {\axao ^{\vec {x}_n}_{y},\axa ^{\vec {x'}_{n'}}_{y'}}$


$n' < n$


$\type (x'_1)$


$= \cdots =$


$\type (x'_{n'})$


$=$


$\type (y')$


$=$


$\agt $


$\FF $


$\setof {\axao ^{\vec {x}_n}_{y},\axa ^{\vec {x'}_{n'}}_{y'}}$


$D_{\obj }$


$\FF $


$\type (x_1)$


$= \cdots =$


$\type (x_{n'})$


$=$


$\type (y)$


$=$


$\agt $


$\type (x_{n'+1})$


$= \cdots =$


$\type (x_{n})$


$=$


$\obj $


$\FF $


$\#D_{\agt } = n'$


$\#D_{\obj } \geq (n-n')$


$\FF $


$D_{\obj }$


$x=c \to (P(x) \to P(c))$


$\Hi \K \Gamma $


$\LAN $


$\Box $


$\LAN $


$\Hi \K \Gamma $


$\LAN $


$A(t/x) \to \some x A$


$t = s \to (A(t/z) \oto A(s/z))$


$t,s$


$A$


$K_{a}$


$\K $


$J(P,w)$


$J(c,w,J(P,w))$


$c$


$w$


$_{\omega }$


$_{\omega }^{\rm \footnotesize U}$


$_{\omega }^{\rm \footnotesize U}$


$_{\omega }$


$_{\omega }$


$\omega $


$_{\omega }$


$\omega $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{ND}$


$_{ND}$


$i : \alpha $


$\X $


$\G $


$_{ND}$


$_{\omega }$


$_{\omega }$


$_{\omega }$


\begin {equation*}\infer [(\mbox {\rm ex-middle})]{\SEQ {\GA }{\ga }}{ \SEQ {\X ^i\neg \al , \GA }{\ga } & \SEQ {\X ^i\al , \GA }{\ga } }\end {equation*}


$\X ^i$


$i$


$\al \LOR \neg \al $


$\al $


$\X ^i$


$_{\omega }$


$_{\omega }$


$_{\omega }$


\begin {equation*}\infer [({\rm EXM})]{\ga }{ \infer *[]{\ga }{ [\X ^i\neg \al ] } & \infer *[]{\ga }{ [\X ^i\al ] } } \quad \infer [({\rm EXP})]{\ga }{ \X ^i\neg \al & \X ^i\al } \quad \infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[]{\X ^j\neg \ga }{ [\X ^i\al ] } & \infer *[]{\X ^j\ga }{ [\X ^i\al ] } }\end {equation*}


$\neg $


$_{\omega }$


$\neg $


$_{\omega }$


$_{\omega }$


$^{\star }$


$^{st}$


$^{\star }$


$\neg $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\I $


$\neg $


$\LAND $


$\LOR $


$\G $


$\F $


$\X $


$p, q, ...$


$\al , \be ,...$


$\GA , \DE ,...$


$_{\omega }$


$_{\omega }$


$\M \in \{\G , \F , \X \}$


$\GA $


$\M \GA $


$\{ \M \ga ~|~ \ga \in \GA \}$


$\equiv $


$\omega $


$\X ^i \al $


$i \in \omega $


$\X ^0\al \equiv \al $


$\X ^{n+1}\al \equiv \X ^n \X \al $


$i, j$


$k$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\GA  \Rightarrow \DE $


$_{\omega }$


$\GA  \Rightarrow \ga $


$\ga $


$L \vdash S$


$S$


$L$


$R$


$L$


$\frac {S_1 \cdots S_n}{S}$


$R$


$L \vdash S_i$


$i$


$L \vdash S$


$\D $


$ht(\D )$


$\Gm \Seq \Dlt $


$\X ^i p$


$\Gm $


$\Dlt $


$0$


$\Gm \Seq \Dlt $


$\D _n$


$\alpha _n$


$\Gm _n \Seq \Dlt _n$


\begin {align*}\infer [R] {\Gm \Seq \Dlt } { & \dots & \Gm _n \Seq \Dlt _n & \dots & }\end {align*}


\begin {align*}\infer [R] {\Gm \Seq \Dlt } { & \dots & \infer [] {\Gm _n \Seq \Dlt _n} {\D _n} & \dots }\end {align*}


$sup_{n}(\alpha _n) + 1$


$\Gm \Seq \Dlt $


$\D $


$ht(\D )$


$\D '$


$\D $


$ht(\D ') < ht(\D )$


$R$


$\frac {S_1 \cdots S_n}{S}$


$L$


$n$


$R$


$L$


$S_1, \cdots , S_n$


$S$


$L$


$_{\omega }$


$_{\omega }$


$i$


$k$


$i, k \in \omega $


$_{\omega }$


$p$


\begin {equation*}\SEQ {\X ^i p}{\X ^i p}~{\rm (init)}\end {equation*}


$_{\omega }$


\begin {equation*}\infer [({\rm cut})]{\SEQ {\GA ,\SI }{\DE ,\PI }}{ \SEQ {\GA }{\DE ,\al } & \SEQ {\al ,\SI }{\PI } }\end {equation*}


\begin {equation*}\infer [(\mbox {\rm we-left})]{\SEQ {\al ,\GA }{\DE }}{ \SEQ {\GA }{\DE } } \quad \infer [(\mbox {\rm we-right})]{\SEQ {\GA }{\DE ,\al }}{ \SEQ {\GA }{\DE } }\end {equation*}


\begin {equation*}\infer [(\mbox {\rm co-left})]{\SEQ {\al ,\GA }{\DE }}{ \SEQ {\al , \al , \GA }{\DE } } \quad \infer [(\mbox {\rm co-right}).]{\SEQ {\GA }{\DE ,\al }}{ \SEQ {\GA }{\DE , \al , \al } }\end {equation*}


$_{\omega }$


\begin {equation*}\infer [(\I {\rm left})]{\SEQ {\X ^i(\al \I \be ), \GA }{\DE }}{ \SEQ {\GA }{\DE , \X ^i\al } & \SEQ {\X ^i\be , \GA }{\DE } } \quad \infer [(\I {\rm right})]{\SEQ {\GA }{\DE , \X ^i(\al \I \be )}}{ \SEQ {\X ^i\al , \GA }{\DE , \X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\neg {\rm left})]{\SEQ {\X ^i\neg \al , \GA }{\DE }}{ \SEQ {\GA }{\DE , \X ^i\al } } \quad \infer [(\neg {\rm right})]{\SEQ {\GA }{\DE , \X ^i\neg \al }}{ \SEQ {\X ^i\al , \GA }{\DE } }\end {equation*}


\begin {equation*}\infer [(\LAND {\rm left})]{\SEQ {\X ^i(\al \LAND \be ), \GA }{\DE }}{ \SEQ {\X ^i\al , \X ^i\be , \GA }{\DE } } \quad \infer [(\LAND {\rm right})]{\SEQ {\GA }{\DE , \X ^i(\al \LAND \be )}}{ \SEQ {\GA }{\DE , \X ^i\al } & \SEQ {\GA }{\DE , \X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\LOR {\rm left})]{\SEQ {\X ^i(\al \LOR \be ), \GA }{\DE }}{ \SEQ {\X ^i\al , \GA }{\DE } & \SEQ {\X ^i\be , \GA }{\DE } } \quad \infer [(\LOR {\rm right})]{\SEQ {\GA }{\DE , \X ^i(\al \LOR \be )}}{ \SEQ {\GA }{\DE , \X ^i\al , \X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\G {\rm left})]{\SEQ {\X ^i \G \al , \GA }{\DE }}{ \SEQ {\X ^{i+k} \al , \GA }{\DE } } \quad \infer [(\G {\rm right})]{\SEQ {\GA }{\DE , \X ^i \G \al }}{ \{~ \SEQ {\GA }{\DE , \X ^{i+j} \al }~ \}_{j \in \omega } }\end {equation*}


\begin {equation*}\infer [(\F {\rm left})]{\SEQ {\X ^i \F \al , \GA }{\DE }}{ \{~ \SEQ {\X ^{i+j} \al , \GA }{\DE }~ \}_{j \in \omega } } \quad \infer [(\F {\rm right}).]{\SEQ {\GA }{\DE , \X ^i \F \al }}{ \SEQ {\GA }{\DE , \X ^{i+k} \al } }\end {equation*}


$_{\omega }$


$\G $


$\F $


\begin {align*}\infer [(\G {\rm right})]{\SEQ {\GA }{\DE , \X ^i \G \al }}{ \{~ \SEQ {\GA }{\DE , \X ^{i+j} \al }~\!|~\!j\! \in \! \omega ~\} } \quad \infer [(\F {\rm left}).]{\SEQ {\X ^i \F \al , \GA }{\DE }}{ \{~ \SEQ {\X ^{i+j} \al , \GA }{\DE }~\!|~\!j\! \in \! \omega ~\} }\end {align*}


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\omega $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$i$


$k$


$\ga $


$_{\omega }$


$p$


\begin {equation*}\SEQ {\X ^i p, \GA }{\X ^i p}~{\rm (init)}. \footnote { The context $\GA $ is required in (init), which distinguishes it from LT$_{\omega }$. }\end {equation*}


$_{\omega }$


$_{\omega }$


\begin {equation*}\infer [(\mbox {\rm we-right}).]{\SEQ {\GA }{\al }}{ \SEQ {\GA }{} }\end {equation*}


$_{\omega }$


\begin {equation*}\infer [(\I {\rm left})]{\SEQ {\X ^i(\al \I \be ),\GA }{\ga }}{ \SEQ {\X ^i(\al \I \be ),\GA }{\X ^i\al } & \SEQ {\X ^i\be , \GA }{\ga } } \quad \infer [(\I {\rm right})]{\SEQ {\GA }{\X ^i(\al \I \be )}}{ \SEQ {\X ^i\al , \GA }{\X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\neg {\rm left})]{\SEQ {\X ^i\neg \al , \GA }{}}{ \SEQ {\X ^i\neg \al ,\GA }{\X ^i\al } } \quad \infer [(\neg {\rm right})]{\SEQ {\GA }{\X ^i\neg \al }}{ \SEQ {\X ^i\al , \GA }{} }\end {equation*}


\begin {equation*}\infer [(\mbox {\rm ex-middle})]{\SEQ {\GA }{\ga }}{ \SEQ {\X ^i\neg \al , \GA }{\ga } & \SEQ {\X ^i\al , \GA }{\ga } }\end {equation*}


\begin {equation*}\infer [(\land {\rm left})]{\SEQ {\X ^i(\al \land \be ), \GA }{\ga }}{ \SEQ {\X ^i\al , \X ^i\be , \GA }{\ga } } \quad \infer [(\land {\rm right})]{\SEQ {\GA }{\X ^i(\al \land \be )}}{ \SEQ {\GA }{\X ^i\al } & \SEQ {\GA }{\X ^i\be } }\end {equation*}


\begin {equation*}\infer [( \lor {\rm left})]{\SEQ {\X ^i(\al \lor \be ),\GA }{\ga }}{ \SEQ {\X ^i\al , \GA }{\ga } & \SEQ {\X ^i\be , \GA }{\ga } }\end {equation*}


\begin {equation*}\infer [(\lor {\rm right1})]{\SEQ {\GA }{\X ^i(\al \lor \be )}}{ \SEQ {\GA }{\X ^i\al } } \quad \infer [(\lor {\rm right2})]{\SEQ {\GA }{\X ^i(\al \lor \be )}}{ \SEQ {\GA }{\X ^i\be } }\end {equation*}


\begin {equation*}\infer [(\G {\rm left})]{\SEQ {\X ^i \G \al , \GA }{\ga }}{ \SEQ {\X ^i \G \al ,\X ^{i+k} \al , \GA }{\ga } } \quad \infer [(\G {\rm right})]{\SEQ {\GA }{\X ^i \G \al }}{ \{~ \SEQ {\GA }{\X ^{i+j} \al }~ \}_{j \in \omega } }\end {equation*}


\begin {equation*}\infer [(\F {\rm left})]{\SEQ {\X ^i \F \al , \GA }{\ga }}{ \{~ \SEQ {\X ^{i+j} \al , \GA }{\ga }~ \}_{j \in \omega } } \quad \infer [(\F {\rm right}).]{\SEQ {\GA }{\X ^i \F \al }}{ \SEQ {\GA }{\X ^{i+k} \al } }\end {equation*}


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


\begin {align*}\infer [(\mbox {\rm ex-middle-at})]{\SEQ {\GA }{\ga }}{ \SEQ {\neg p,\GA }{\ga } & \SEQ {p, \GA }{\ga } }\end {align*}


$p$


$L$


$_{\omega }$


$_{\omega }$


$\X ^i\al , \GA  \Rightarrow \X ^i\al $


$\al $


$\GA $


$i$


$L$


$\al $


$\al \equiv \neg \be $


\begin {align*}\infer [(\neg {\rm right}).]{\SEQ {\X ^i\neg \be , \GA }{\X ^i\neg \be }}{ \infer [(\neg {\rm left})]{\SEQ {\X ^i\be , \X ^i\neg \be , \GA }{}}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\neg \be , \X ^i\be , \GA }{\X ^i\be }}{ } } }\end {align*}


$\al \equiv \be \I \ga $


\begin {align*}\infer [(\I {\rm right}).]{\SEQ {\X ^i(\be \I \ga ), \GA }{\X ^i(\be \I \ga )}}{ \infer [(\I {\rm left})]{\SEQ {\X ^i\be , \X ^i(\be \I \ga ), \GA }{\X ^i\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i(\be \I \ga ), \X ^i\be }{\X ^i\be }}{ } & \infer *[Ind.\, hyp.]{\SEQ {\X ^i\ga , \GA }{\X ^i\ga }}{ } } }\end {align*}


$\al \equiv \G \be $


\begin {align*}\infer [(\G {\rm right}).]{\SEQ {\X ^i\G \be , \GA }{\X ^i\G \be }}{ \infer [(\G {\rm left})]{\SEQ {\{~\X ^i\G \be , \GA }{\X ^{i+j}}~\}_{j\in \omega }}{ \infer *[Ind.\, hyp.]{\{~\SEQ {\X ^i\G \be , \X ^{i+j}\be , \GA }{\X ^{i+j}\be }~\}_{j\in \omega }}{ } } }\end {align*}


$\relax \square $


\begin {equation*}\infer [(\mbox {\rm we-left})]{\SEQ {\al ,\GA }{\ga }}{ \SEQ {\GA }{\ga } }\end {equation*}


$_{\omega }$


$\relax \square $


$_{\omega }$


$(\I {\rm left})$


$(\lor {\rm right1})$


$(\lor {\rm right2})$


$(\F {\rm right})$


$(\I {\rm left})$


$\I {\rm left}$


$\vdash _0$


$X^i(\al \I \be ),\Gamma  \Rightarrow \gamma $


$\gamma \in \Gamma $


$\gamma $


$X^jp$


$\vdash _0$


$X^i(\al \I \be ),X^jp,\Gamma ' \Rightarrow X^jp$


$X^i\be ,X^jp,\Gamma ' \Rightarrow X^jp$


$\vdash _0$


$X^i\be ,\Gamma  \Rightarrow \gamma $


$n$


$n+1$


$(\I {\rm left})$


$X^i(\al \I \be )$


$\I {\rm left}$


$\vdash _{n+1}$


$X^i(\al \I \be ),X^j(\epsilon \I \delta ),\Gamma ' \Rightarrow \gamma $


$\vdash _{n}$


$X^i(\al \I \be ),\Gamma ' \Rightarrow X^j\epsilon $


$\vdash _{n}$


$X^i(\al \I \be ),X^j\delta ,\Gamma ' \Rightarrow \gamma $


$\vdash _{n}$


$X^i\be ,\Gamma ' \Rightarrow X^j\epsilon $


$\vdash _{n}$


$X^i\be ,X^j\delta ,\Gamma ' \Rightarrow \gamma $


$\I {\rm left}$


$\vdash _{n+1}$


$X^i\be ,X^j(\epsilon \I \delta ),\Gamma ' \Rightarrow \gamma $


$\relax \square $


\begin {equation*}\infer [(\mbox {\rm co-left})]{\SEQ {\al ,\GA }{\ga }}{ \SEQ {\al , \al , \GA }{\ga } }\end {equation*}


$_{\omega }$


$n+1$


$n$


$\al , \al , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\al , \al , \GA  \Rightarrow $


$\vdash _{n}$


$\al , \GA  \Rightarrow $


$\vdash _{n+1}$


$\al , \GA  \Rightarrow \ga $


$\al , \al , \GA  \Rightarrow \ga $


$\al , \al , \GA  \Rightarrow \ga $


$\al $


$\I {\rm left}$


$(\I {\rm left})$


$(\neg {\rm left})$


$\G {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \lor \be ),\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\al ,\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be ,\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\lor {\rm left}$


$\vdash _{n}$


$\X ^i\al ,\X ^i\al , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be ,\X ^i\be , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\al , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be , \GA  \Rightarrow \ga $


$\lor {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \lor \be ), \GA  \Rightarrow \ga $


$\I {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \I \be ),\X ^i(\al \I \be ), \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i(\al \I \be ),\X ^i(\al \I \be ), \GA  \Rightarrow \X ^i\al $


$\vdash _{n}$


$\X ^i(\al \I \be ),\X ^i\be , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i(\al \I \be ), \GA  \Rightarrow \X ^i\al $


$\I {\rm left}$


$\vdash _{n}$


$\X ^i\be ,\X ^i\be , \GA  \Rightarrow \ga $


$\vdash _{n}$


$\X ^i\be , \GA  \Rightarrow \ga $


$\I {\rm left}$


$\vdash _{n+1}$


$\X ^i(\al \I \be ), \GA  \Rightarrow \ga $


$\relax \square $


$\alpha \# \beta $


$\alpha $


$\beta $


$\#$


$\alpha < \alpha '$


$\alpha \# \beta < \alpha ' \# \beta $


$\pi (I)$


$I$


$\D $


$\D '$


$d(A)$


$h(\D ) \# h(\D ')$


$(\delta , \sigma )$


$\delta \cdot \epsilon _0 + \sigma $


$\epsilon _0$


$\sigma $


\begin {align*}\infer [({\rm cut})]{\SEQ {\GA ,\SI }{\ga }}{ \SEQ {\GA }{\al } & \SEQ {\al ,\SI }{\ga } }\end {align*}


$_{\omega }$


$\X ^i p$


$\X ^i p$


\begin {align*}\infer [({\rm cut})]{ \Gm , \X ^i p, \Gm ' \Seq \ga } { \Gm , \X ^i p \Seq \X ^i p & \X ^i p, \Gm ' \Seq \ga }\end {align*}


$\X ^i\F \al $


\begin {align*}\infer [({\rm cut})] { \Gm , \Gm ' \Seq \ga } {\infer [(\F {\rm right})] {\Gm \Seq \X ^i\F \al } {\Gm \Seq \X ^{i+k}\al } & \infer [(\F {\rm left})] {\X ^i\F \al , \Gm ' \Seq \ga } {\{\X ^{i+j}\al , \Gm ' \Seq \ga \}_{j\in \omega } } }\end {align*}


\begin {align*}\infer [({\rm cut})] {\Gm , \Gm ' \seq \ga } {\Gm \Seq \X ^{i+k}\al & \X ^{i+k}\al , \Gm ' \Seq \ga }\end {align*}


$\X ^i\G \al $


$\X ^i p$


$\X ^i p$


$X^i p$


$X^i p$


$\al $


$(\F {\rm left})$


\begin {align*}\infer [({\rm cut})] { \Gm , \Gm ', \X ^i\F \be \Seq \ga } {\infer [(\F {\rm left})] {\Gm , \X ^{i} \F \be \Seq \al } {\{\Gm , \X ^{i+j} \be \Seq \al \}_{j\in \omega } } & \al , \Gm ' \Seq \ga }\end {align*}


\begin {align*}\infer [(\F {\rm left})] {\Gm , \Gm ' , \X ^i \F \be \Seq \ga } { \dots &\infer [({\rm cut})]{\Gm , \Gm ' , \X ^{i+j} \be \Seq \ga } {\Gm , \X ^{i+j} \be \Seq \Dlt , \al & \al , \Gm ' \Seq \ga } & \dots }\end {align*}


$\mbox {(\F {\rm left})}$


$\ga $


$\al $


$\relax \square $


$_{\omega }$


$\D $


$R$


$ht(\D )$


$R$


$\D $


$\D $


$ht(\D )$


$\D $


$\relax \square $


$_{\omega }$


$[\al ]$


$\al $


$_{\omega }$


$i$


$k$


$\al $


$\be $


$\ga $


$\ga $


$_{\omega }$


$\I $


\begin {align*}\infer [{\rm (Wk)}.]{\X ^i(\al \I \be )}{ \X ^i\be }\end {align*}


\begin {align*}\infer [(\I {\rm I})]{\X ^i (\al \I \be )}{ \infer *[]{\X ^i\be }{ [\X ^i\al ] } } \quad \infer [(\I {\rm E})]{\X ^i\be }{ \X ^i (\al \I \be ) & \X ^i \al }\end {align*}


\begin {align*}\infer [({\rm EXP})]{\ga }{ \X ^i\neg \al & \X ^i\al } \quad \infer [({\rm EXM})]{\ga }{ \infer *[]{\ga }{ [\X ^i\neg \al ] } & \infer *[]{\ga }{ [\X ^i\al ] } } \quad \infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[]{\X ^j\neg \ga }{ [\X ^i\al ] } & \infer *[]{\X ^j\ga }{ [\X ^i\al ] } }\end {align*}


\begin {align*}\infer [(\LAND {\rm I})]{\X ^i (\al \LAND \be )}{ \X ^i\al & \X ^i\be } \quad \infer [(\LAND {\rm E1})]{\X ^i\al }{ \X ^i (\al \LAND \be ) } \quad \infer [(\LAND {\rm E2})]{\X ^i\be }{ \X ^i (\al \LAND \be ) }\\ \infer [(\LOR {\rm I1})]{\X ^i (\al \LOR \be )}{ \X ^i\al } \quad \infer [(\LOR {\rm I2})]{\X ^i (\al \LOR \be )}{ \X ^i\be } \quad \infer [(\LOR {\rm E})]{\ga }{ \X ^i (\al \LOR \be ) & \infer *[]{\ga }{ [\X ^i\al ] } & \infer *[]{\ga }{ [\X ^i\be ] } }\end {align*}


\begin {align*}\infer [(\G {\rm I})]{\X ^i \G \al }{ \{~ \X ^{i+j}\al ~\}_{j \in \omega } } \quad \infer [(\G {\rm E})]{\X ^{i+k} \al }{ \X ^i \G \al }\end {align*}


\begin {align*}\infer [(\F {\rm I})]{\X ^i \F \al }{ \X ^{i+k}\al } \quad \infer [(\F {\rm E}).] {\ga }{ \X ^i \F \al & \{ \infer *[]{\ga }{ [\X ^{i+j}\al ]} \}_{j\in \omega } &}\end {align*}


$\neg $


$_{\omega }$


$\neg $


$\neg $


\begin {align*}\infer [({\rm EXM}$-${\rm at})]{\ga }{ \infer *[]{\ga }{ [\neg p] } & \infer *[]{\ga }{ [p] } }\end {align*}


$p$


$(\neg \al \LAND \al )\I \ga $


$\neg \al \LOR \al $


\begin {align*}\infer [(\I {\rm I})^1]{(\neg \al \LAND \al )\I \ga }{ \infer [({\rm EXP})]{\ga }{ \infer [(\LAND {\rm E1})]{\neg \al }{ [\neg \al \LAND \al ]^1 } & \infer [(\LAND {\rm E2})]{\al }{ [\neg \al \LAND \al ]^1 } } } \quad \infer [({\rm EXM})^1.]{\neg \al \LOR \al }{ \infer [(\LOR {\rm I1})]{\neg \al \LOR \al }{ [\neg \al ]^1 } & \infer [(\LOR {\rm I2})]{\neg \al \LOR \al }{ [\al ]^1 } }\end {align*}


$\neg $


$\al \I \neg \neg \al $


$\neg \neg (\al \I \al )$


\begin {align*}\infer [(\I {\rm I})^1]{\al \I \neg \neg \al }{ \infer [(\neg {\rm I})^2]{\neg \neg \al }{ \infer [({\rm EXP})]{\neg \al }{ [\neg \al ]^2 & [\al ]^1 } & \infer [({\rm EXP})]{\al }{ [\neg \al ]^2 & [\al ]^1 } } }\end {align*}


\begin {align*}\infer [(\neg {\rm I})^1]{\neg \neg (\al \I \al )}{ \infer [({\rm EXP})]{\al \I \al }{ \infer [(\I {\rm I})^3]{\al \I \al }{ [\al ]^3 } & [\neg (\al \I \al )]^1 } & \infer [({\rm EXP})]{\neg (\al \I \al )}{ \infer [(\I {\rm I})^2]{\al \I \al }{ [\al ]^2 } & [\neg (\al \I \al )]^1 } }\end {align*}


$\G $


\begin {align*}\infer [(\G {\rm I}).]{\X ^i \G \al }{ \X ^{i}\al & \X ^{i+1}\al & \X ^{i+2}\al & \cdots & \X ^{i+n}\al & \cdots & }\end {align*}


$\F $


\begin {align*}\infer [(\F {\rm E}).]{\ga }{ \X ^i \F \al & \infer *[]{\ga }{ [\X ^{i}\al ] } & \infer *[]{\ga }{ [\X ^{i+1}\al ] } & \infer *[]{\ga }{ [\X ^{i+2}\al ] } & \cdots & \infer *[]{\ga }{ [\X ^{i+n}\al ] } & \cdots & }\end {align*}


$_{\omega }$


$\I $


$\LAND $


$\LOR $


$\LOR $


$\neg $


$\G $


$\F $


$\I $


$\LAND $


$\LAND $


$\LOR $


$\G $


$\F $


$\X ^i\neg \al $


$\X ^i\al $


$\X ^i\neg \al $


$\X ^i\al $


$\mathcal {D}$


$\mathcal {D}$


$\mathcal {D}$


$\mathcal {D}$


$\mathcal {D}$


$\al $


$L$


$L$


$\al $


$\neg $


$\neg $


$_{\omega }$


$\rhd $


$_{\omega }$


$\rhd $


$\rhd $


$\al $


$\mathcal {D}$


$_{\omega }$


$\al $


$\mathcal {D}$


$\al $


$\al $


$\LOR $


$\al $


$\ga $


$R$


$\rhd $


$\ga $


$_{\omega }$


$R$


$\I $


$\ga $


$\X ^i (\al \I \be )$


\begin {align*}\infer [(\I {\rm E})]{\X ^i \be }{ \infer [(\I {\rm I})]{\X ^i (\al \I \be )}{ \infer *[{\mathcal {D}}]{\X ^i \be }{ [\X ^i \al ] } } & \infer *[{\mathcal {E}}]{\X ^i\al }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}]{\X ^i\be .}{ \infer *[{\mathcal {E}}]{\X ^i\al }{ } }\end {align*}


$R$


\begin {align*}\infer [R']{\pi }{ \infer [({\rm EXP})]{\ga }{ \infer *[{\mathcal {D}}_1]{\X ^i\neg \de }{ } & \infer *[{\mathcal {D}}_2]{\X ^i\de }{ } } & \infer *[{\mathcal {E}}_1]{\pi _1}{ } & \infer *[{\mathcal {E}}_2]{\pi _2}{ } } \quad \quad \rhd \quad \quad \infer [({\rm EXP})]{\pi }{ \infer *[{\mathcal {D}}_1]{\X ^i\neg \de }{ } & \infer *[{\mathcal {D}}_2]{\X ^i\de }{ } }\end {align*}


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$R'$


$R$


$\neg $


$\ga $


$\X ^i\neg \al $


$\be $


\begin {align*}\infer [({\rm EXP})]{\be }{ \infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \de }{ [\X ^i\al ] } & \infer *[{\mathcal {D}}_2]{\X ^j\de }{ [\X ^i\al ] } } & \infer *[{\mathcal {E}}]{\X ^i\al }{ } } \quad \quad \rhd \quad \quad \infer [({\rm EXP}).]{\be }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \de }{ \infer *[{\mathcal {E}}]{\X ^i\al }{} } & \infer *[{\mathcal {D}}_2]{\X ^j\de }{ \infer *[{\mathcal {E}}]{\X ^i\al }{} } }\end {align*}


$R$


$\neg $


$\ga $


$\X ^i\neg \de $


$\X ^i\de $


\begin {align*}\infer [({\rm EXP})]{\X ^i\de }{ \infer [(\neg {\rm I})]{\X ^i\neg \de }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \be }{ [\X ^i\de ] } & \infer *[{\mathcal {D}}_2]{\X ^j\be }{ [\X ^i\de ] } } & \infer *[{\mathcal {E}}]{\X ^i\de }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}]{\X ^i\de .}{ }\end {align*}


$R$


$\ga $


$\X ^i(\ga _1\I \ga _2)$


$\X ^i(\ga _1\LAND \ga _2)$


$\X ^i (\ga _1\LOR \ga _2)$


\begin {align*}\infer [R']{\de }{ \infer [({\rm EXM})]{\ga }{ \infer *[{\mathcal D}_1]{\ga }{ [\X ^i\neg \al ] } & \infer *[{\mathcal D}_2]{\ga }{ [\X ^i\al ] } } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [({\rm EXM})]{\de }{ \infer [R']{\de }{ \infer *[{\mathcal D}_1]{\ga }{ [\X ^i\neg \al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } & \infer [R']{\de }{ \infer *[{\mathcal D}_2]{\ga }{ [\X ^i\al ] } & \infer *[{\mathcal E}_1]{\de _1}{ } & \infer *[{\mathcal E}_2]{\de _2}{ } } }\end {align*}


$R'$


$\I $


$\LAND $


$\LAND $


$\LOR $


${\mathcal E}_1$


${\mathcal E}_2$


$R'$


$R$


$\ga $


$\X ^i\neg \de $


$\X ^i\de $


\begin {align*}\infer [{\rm (EXP)}]{\X ^i\de }{ \infer [({\rm EXM})]{\X ^i\neg \de }{ \infer *[{\mathcal {D}}_1]{\X ^i\neg \de }{ [\X ^i\neg \al ] } & \infer *[{\mathcal {D}}_2]{\X ^i\neg \de }{ [\X ^i\al ] } } & \infer *[{\mathcal {E}}]{\X ^i\de }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}]{\X ^i\de .}{ }\end {align*}


$R$


$\LAND $


$\ga $


$\X ^i (\al _1\LAND \al _2)$


\begin {align*}\infer [(\LAND {\rm E}i)]{\X ^i\al _i}{ \infer [(\LAND {\rm I})]{\X ^i (\al _1\LAND \al _2)}{ \infer *[{\mathcal {D}}_1]{\X ^i \al _1}{ } & \infer *[{\mathcal {D}}_2]{\X ^i \al _2}{ } } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}_i]{\X ^i \al _i}{ }\end {align*}


$i$


$1$


$2$


$R$


$\LOR $


$\LOR $


$\ga $


$\X ^i (\al _1\LOR \al _2)$


\begin {align*}\infer [(\LOR {\rm E})]{\de }{ \infer [(\LOR {\rm I}i)]{\X ^i (\al _1\LOR \al _2)}{ \infer *[{\mathcal {D}}]{\X ^i \al _i}{ } } & \infer *[{\mathcal {E}}_1]{\de }{ [\X ^i\al _1] } & \infer *[{\mathcal {E}}_2]{\de }{ [\X ^i\al _2] } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}_i]{\de }{ \infer *[{\mathcal {D}}]{\X ^i\al _i}{ } }\end {align*}


$i$


$1$


$2$


$R$


$\LOR $


\begin {align*}\infer [R']{\de }{ \infer [(\LOR {\rm E})]{\pi }{ \infer *[{\mathcal {D}}_1]{\X ^i (\al \LOR \be )}{ } & \infer *[{\mathcal {D}}_2]{\pi }{ [\X ^i\al ] } & \infer *[{\mathcal {D}}_3]{\pi }{ [\X ^i\be ] } } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [(\LOR {\rm E})]{\de }{ \infer *[{\mathcal {D}}_1]{\X ^i (\al \LOR \be )}{ } & \infer [R']{\de }{ \infer *[{\mathcal {D}}_2]{\pi }{ [\X ^i\al ] } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } } & \infer [R']{\de }{ \infer *[{\mathcal {D}}_3]{\pi }{ [\X ^i\be ] } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } } }\end {align*}


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


${\mathcal {E}}_n$


$R'$


$R$


$\G $


$\ga $


$\X ^i\G \al $


\begin {align*}\infer [(\G {\rm E})]{\X ^{i+k} \al }{ \infer [(\G {\rm I})]{\X ^i \G \al }{ \infer *[{\mathcal {D}}_j]{\{~ \X ^{i+j} \al ~\}_{j\in \omega }}{ } } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {D}}_k]{\X ^{i+k} \al }{ }\end {align*}


$k \in \omega $


$R$


$\F $


$\ga $


$\X ^i \F \al $


\begin {align*}\infer [(\F {\rm E})]{\de }{ \infer [(\F {\rm I})]{\X ^i \F \al }{ \infer *[{\mathcal {D}}_k]{\X ^{i+k} \al }{ } } & \infer *[{\mathcal {E}}_j]{\{~\de ~\}_{j\in \omega }}{ [\X ^{i+j} \al ] } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}_k]{\de }{ \infer *[{\mathcal {D}}_k]{\X ^{i+k}\al }{ } }\end {align*}


$k \in \omega $


$R$


$\F $


\begin {align*}\infer [R']{\de }{ \infer [(\F {\rm E})]{\pi }{ \infer *[{\mathcal {D}}]{\X ^i \F \al }{ } & \infer *[{\mathcal {D}}_j]{\{~\pi ~\}_{j\in \omega }}{ [\X ^{i+j}\al ] } } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [(\F {\rm E})]{\de }{ \infer *[{\mathcal {D}}]{\X ^i \F \al }{ } & \infer [R']{\{~\de ~\}_{j\in \omega }}{ \infer *[{\mathcal {D}}_j]{\pi }{ [\X ^{i+j}\al ] } & \infer *[{\mathcal {E}}_n]{\{~\de _n~\}}{ } } }\end {align*}


$R'$


${\mathcal {E}}_1$


${\mathcal {E}}_2$


${\mathcal {E}}_n$


$R'$


$\rhd $


$R$


$\ga $


\begin {align*}\infer [({\rm EXM})^1]{\ga }{ \infer [({\rm EXP})]{\ga }{ [\X ^i\neg \al ]^1 & \infer *[{\mathcal {D}}_1]{\X ^i\al }{ } } & \infer [({\rm EXP})]{\ga }{ \infer *[{\mathcal {D}}_2]{\X ^i\neg \al }{ } & [\X ^i\al ]^1 } }\end {align*}


\begin {align*}\quad \quad \rhd \quad \quad \infer [({\rm EXP}).]{\ga }{ \infer *[{\mathcal {D}}_2]{\X ^i\neg \al }{ } & \infer *[{\mathcal {D}}_1]{\X ^i\al }{ } }\end {align*}


$R$


$\ga $


$\neg \ga $


\begin {align*}\infer [{\rm (EXP)}]{\neg \ga }{ \infer [({\rm EXM})]{\ga }{ \infer *[{\mathcal {D}}_1]{\ga }{ [\X ^i\neg \al ] } & \infer *[{\mathcal {D}}_2]{\ga }{ [\X ^i\al ] } } & \infer *[{\mathcal {E}}]{\neg \ga }{ } } \quad \quad \rhd \quad \quad \infer *[{\mathcal {E}}]{\neg \ga .}{ }\end {align*}


${\mathcal {D}}'$


$\mathcal {D}$


${\mathcal {D}} \rhd {\mathcal {D}}'$


${\mathcal {D}}_0, {\mathcal {D}}_1, ...$


${\mathcal {D}}_i \rhd {\mathcal {D}}_{i+1}$


$i \geq 0$


$\mathcal {D}$


$\mathcal {D}$


$\GA  \Rightarrow $


$_{\omega }$


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\neg p\LAND p$


$\DE $


$\GA $


$\DE $


$\GA $


$\GA $


$\ga $


$\GA $


$\GA $


$\{\al , \al , \al , \be \}$


$\{\al , \be , \ga \}$


$\GA ^*$


$\GA $


$\GA \subseteq ^* \DE $


$\GA $


$\DE $


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


${\mathcal {D}}'$


$_{\omega }$


${\mathcal {D}}'$


$\subseteq ^* \GA $


${\mathcal {D}}'$


$=$


$\be $


${\mathcal {D}}'$


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$\mathcal {D}$


$\I $


$\mathcal {D}$


\begin {align*}\infer [{\rm (\I I)}]{\X ^i(\al \I \ga )}{ \infer *[{\mathcal {E}}]{\X ^i\ga }{ [\X ^i\al ]~\GA } }\end {align*}


$\mathcal {D}$


$\{\X ^i\al \}\cup \GA $


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA  \Rightarrow \X ^i\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i(\al \I \ga )$


\begin {align*}\infer [(\I {\rm right}).]{\SEQ {\GA }{\X ^i(\al \I \ga )}}{ \infer *[Ind. \, hyp.]{\SEQ {\X ^i\al , \GA }{\X ^i\ga }}{ } }\end {align*}


$\mathcal {D}$


\begin {align*}\infer [{\rm (\I I)}]{\X ^i(\al \I \ga )}{ \infer *[{\mathcal {E}}]{\X ^i\ga }{ \GA } }\end {align*}


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i(\al \I \ga )$


\begin {align*}\infer [(\I {\rm right})]{\SEQ {\GA }{\X ^i(\al \I \ga )}}{ \infer [\mbox {\rm (we-left)}]{\SEQ {\X ^i\al , \GA }{\X ^i\ga }}{ \infer *[Ind. \, hyp.]{\SEQ {\GA }{\X ^i\ga }}{ } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


\begin {align*}\infer [{\rm (\I I)}]{\X ^i(\al \I \ga )}{ \infer *[{\mathcal {E}}]{\X ^i\ga }{ [\X ^i\al ,\X ^i\al ]~\GA } }\end {align*}


$\mathcal {D}$


$\{\X ^i\al , \X ^i\al \}\cup \GA $


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\X ^i\al ,\X ^i\al , \GA  \Rightarrow \X ^i\ga $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i(\al \I \ga )$


\begin {align*}\infer [(\I {\rm right})]{ \SEQ {\GA }{\X ^i(\al \I \ga )} }{ \infer [(\mbox {\rm co-left})]{\SEQ {\X ^i\al , \GA }{\X ^i\ga }}{ \infer *[Ind. \, hyp.]{\SEQ {\X ^i\al ,\X ^i\al , \GA }{\X ^i\ga }}{ } }}\end {align*}


$_{\omega }$


$\neg $


$\mathcal {D}$


\begin {align*}\infer [(\neg {\rm I})]{\X ^i\neg \al }{ \infer *[{\mathcal {D}}_1]{\X ^j\neg \ga }{ [\X ^i\al ] \GA _1 } & \infer *[{\mathcal {D}}_2]{\X ^j\ga }{ [\X ^i\al ] \GA _2 } }\end {align*}


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\X ^i\neg \al $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA _1 \Rightarrow \X ^j\neg \ga $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA _2 \Rightarrow \X ^j\ga $


$_{\omega }$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \X ^i\neg \al $


\begin {align*}\infer [(\neg {\rm right})]{\SEQ {\GA _1, \GA _2}{\X ^i\neg \al }}{ \infer [(\mbox {\rm co-left})]{\SEQ {\X ^i\al , \GA _1, \GA _2}{}}{ \infer [({\rm cut})]{\SEQ {\X ^i\al ,\X ^i\al , \GA _1, \GA _2}{}}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\al , \GA _1}{\X ^j\neg \ga }}{ } & \infer [(\neg {\rm left})]{\SEQ {\X ^j\neg \ga , \X ^i\al , \GA _2}{}}{ \infer [(\mbox {we-left})]{\SEQ {\X ^i\neg \ga , \X ^i\al , \GA _2}{\X ^j\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\al , \GA _2}{\X ^j\ga }}{ } } } } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


\begin {align*}\infer [({\rm EXP})]{\be }{ \infer *[{\mathcal {E}}_1]{\X ^i\neg \al }{ \GA _1 } & \infer *[{\mathcal {E}}_2]{\X ^i\al }{ \GA _2 } }\end {align*}


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\be $


$_{\omega }$


$\vdash $


$\GA _1 \Rightarrow \X ^i\neg \al $


$_{\omega }$


$\vdash $


$\GA _2 \Rightarrow \X ^i\al $


$_{\omega }$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \be $


\begin {align*}\infer [(\mbox {\rm we-right})]{\SEQ {\GA _1, \GA _2}{\be }}{ \infer [({\rm cut})]{\SEQ {\GA _1, \GA _2}{}}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _2}{\X ^i\al }}{ } & \infer [({\rm cut})]{\SEQ {\X ^i\al , \GA _1}{}}{ \infer *[Ind.\, hyp.]{\SEQ {\GA _1}{\X ^i\neg \al }}{ } & \infer [(\neg {\rm left})]{\SEQ {\X ^i\neg \al , \X ^i\al }{}}{ \infer *[Prop.~\ref {\SLT -prop-1}]{\SEQ {\X ^i\neg \al , \X ^i\al }{\X ^i\al }}{ } } } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


\begin {align*}\infer [({\rm EXM})]{\ga }{ \infer *[{\mathcal {E}}_1]{\ga }{ [\X ^i\neg \al ] \GA _1 } & \infer *[{\mathcal {E}}_2]{\ga }{ [\X ^i\al ] \GA _2 } }\end {align*}


$\mathcal {D}$


$\GA _1 \cup \GA _2$


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\X ^i\neg \al , \GA _1\! \Rightarrow \!\ga $


$_{\omega }$


$\vdash $


$\X ^i\al , \GA _2\! \Rightarrow \!\ga $


$_{\omega }$


$\vdash $


$\GA _1, \GA _2 \Rightarrow \ga $


\begin {align*}\infer [(\mbox {\rm ex-middle})]{\SEQ {\GA _1, \GA _2}{\ga }}{ \infer *[(\mbox {\rm we-left})]{\SEQ {\X ^i\neg \al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\neg \al , \GA _1}{\ga }}{ } } & \infer *[(\mbox {\rm we-left})]{\SEQ {\X ^i\al , \GA _1, \GA _2}{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^i\al , \GA _2}{\ga }}{ } } }\end {align*}


$_{\omega }$


$\G $


$\mathcal {D}$


\begin {align*}\infer [(\G {\rm I})]{\X ^i\G \al }{ \infer *[P_j]{\{~\X ^{i+j}\al ~\}_{j\in \omega }}{ \GA _j } }\end {align*}


$\mathcal {D}$


$\displaystyle {\GA = \bigcup _{j\in \omega } \GA _j}$


$\mathcal {D}$


$\X ^i\G \al $


$_{\omega }$


$\vdash $


$\GA _j \Rightarrow \X ^{i+j}\al $


$j\in \omega $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\G \al $


\begin {align*}\infer [(\G {\rm right})]{\SEQ {\GA }{\X ^i\G \al }}{ \infer *[(\mbox {\rm we-left})]{\{~\SEQ {\GA }{\X ^{i+j}\al }~\}_{j\in \omega }}{ \infer *[Ind.\,hyp.]{\SEQ {\GA _j}{\X ^{i+j}\al }}{ } } }\end {align*}


$_{\omega }$


$\G $


$\mathcal {D}$


\begin {align*}\infer [(\G {\rm E})]{\X ^{i+k}\al }{ \infer *[{\mathcal {D}}']{\X ^i\G \al }{ \GA } }\end {align*}


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\X ^{i+k}\al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\G \al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^{i+k}\al $


\begin {align*}\infer [({\rm cut})]{\SEQ {\GA }{\X ^{i+k}\al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA }{\X ^i\G \al }}{ } & \infer [(\G {\rm left})]{\SEQ {\X ^i\G \al }{\X ^{i+k}\al }}{ \infer *[Prop.~\ref {\SLT -prop-1}]{\SEQ {\X ^i\G \al , \X ^{i+k}\al }{\X ^{i+k}\al }}{ } } }\end {align*}


$_{\omega }$


$\F $


$\mathcal {D}$


\begin {align*}\infer [(\F {\rm I})]{\X ^i\F \al }{ \infer *[{\mathcal {D}}']{\X ^{i+k}\al }{ \GA } }\end {align*}


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\X ^i\F \al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^{i+k}\al $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \X ^i\F \al $


\begin {align*}\infer [(\F {\rm right}).]{\SEQ {\GA }{\X ^i\F \al }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA }{\X ^{i+k}\al }}{ } }\end {align*}


$\F $


$\mathcal {D}$


\begin {align*}\infer [(\F {\rm E})]{\ga }{ \infer *[{\mathcal {D}}']{\X ^i\F \al }{ \GA ' } & \{ \infer *[{\mathcal {D}}_j]{\ga }{ [\X ^{i+j}\al ] \GA _j }\}_{j\in \omega } & }\end {align*}


$\mathcal {D}$


$\displaystyle {\GA '\cup \GA }$


$\displaystyle {\GA = \bigcup _{j\in \omega } \GA _j}$


$\mathcal {D}$


$\ga $


$_{\omega }$


$\vdash $


$\GA ' \Rightarrow \X ^i\F \al $


$_{\omega }$


$\vdash $


$\X ^{i+j}\al , \GA _j \Rightarrow \ga $


$j\in \omega $


$_{\omega }$


$\vdash $


$\GA ', \GA  \Rightarrow \ga $


\begin {align*}\infer [({\rm cut})]{\SEQ {\GA ', \GA }{\ga }}{ \infer *[Ind.\, hyp.]{\SEQ {\GA '}{\X ^i\F \al }}{ } & \infer [(\F {\rm left})]{\SEQ {\X ^i\F \al , \GA }{\ga }}{ \infer *[(\mbox {\rm we-left})]{\{~\SEQ {\X ^{i+j}\al , \GA }{\ga }~\}_{j\in \omega }}{ \infer *[Ind.\, hyp.]{\SEQ {\X ^{i+j}\al , \GA _j}{\ga }}{ } } } }\end {align*}


$_{\omega }$


$\mathcal {D}$


$\GA  \Rightarrow \be $


$_{\omega }$


$\mathcal {D}$


$\mathcal {D}$


\begin {align*}\infer *[{\mathcal {D}}]{\SEQ {\X ^i p, \GA }{\X ^i p.}}{ }\end {align*}


$\mathcal {E}$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}]{\X ^i p}{ }\end {align*}


$\mathcal {E}$


$\{\X ^i p\}$


$\subseteq ^*$


$\{\X ^i p\}\cup \GA $


$\mathcal {E}$


$\X ^i p$


$\mathcal {D}$


\begin {align*}\infer [\mbox {\rm (we-right)}]{\SEQ {\GA }{\al }}{ \infer *[{\mathcal {D}}']{\SEQ {\GA }{}}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\neg p\LAND p}{ \GA ^* }\end {align*}


${\mathcal {E}}'$


$=$


$\GA ^*$


$\subseteq ^*$


$\GA $


${\mathcal {E}}'$


$\neg p \LAND p$


$\mathcal {E}$


\begin {align*}\infer [{\rm (Exp)}]{\al }{ \infer [{\rm (\LAND E1)}]{\neg p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ \GA ^* } } & \infer [{\rm (\LAND E2)}]{p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ \GA ^* } } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\al $


$\neg $


$\mathcal {D}$


\begin {align*}\infer [(\neg {\rm left}).]{\SEQ {\X ^i\neg \al , \GA }{}}{ \infer *[{\mathcal {D}}']{\SEQ {\X ^i\neg \al , \GA }{\X ^i\al }}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\X ^i\al }{ (\X ^i\neg \al , \GA )^* }\end {align*}


${\mathcal {E}}'$


$(\X ^i\neg \al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\neg \al \}\cup \GA $


${\mathcal {E}}'$


$\X ^i\al $


$\mathcal {E}$


\begin {align*}\infer [({\rm EXP})]{\neg p\LAND p}{ \X ^i\neg \al & \infer *[{\mathcal {E}}']{\X ^i\al }{ (\X ^i\neg \al , \GA )^* } }\end {align*}


$\mathcal {E}$


$(\X ^i\neg \al , \X ^i\neg \al , \GA )^*$


$\subseteq ^*$


$\{ \X ^i\neg \al \}\cup \GA $


$\mathcal {E}$


$\neg p\LAND p$


$\bot $


$\{\X ^i\neg \al , \X ^i\neg \al \} \cup \GA $


$\{\X ^i\neg \al \} \cup \GA $


$\mathcal {E}$


$\I $


$\I $


${\mathcal {E}}'$


$\I $


$\neg $


$\mathcal {D}$


\begin {align*}\infer [(\neg {\rm right}).]{\SEQ {\GA }{\X ^i\neg \al }}{ \infer *[{\mathcal {D}}']{\SEQ {\X ^i\al , \GA }{}}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\neg p\LAND p}{ (\X ^i\al , \GA )^* }\end {align*}


${\mathcal {E}}'$


$(\X ^i\al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\al \} \cup \GA $


${\mathcal {E}}'$


$\neg p \LAND p$


$\mathcal {E}$


\begin {align*}\infer [(\neg {\rm I})^1]{\X ^i\neg \al }{ \infer [(\LAND {\rm E1})]{\neg p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ [\X ^i\al ]^1 ~\GA ^* } } & \infer [(\LAND {\rm E2})]{p}{ \infer *[{\mathcal {E}}']{\neg p\LAND p}{ [\X ^i\al ]^1 ~\GA ^* } } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\X ^i\neg \al $


$\mathcal {D}$


\begin {align*}\infer [(\mbox {\rm ex-middle}).]{\SEQ {\GA }{\ga }}{ \infer *[{\mathcal {D}}_1]{\SEQ {\X ^i\neg \al , \GA }{\ga }}{ } & \infer *[{\mathcal {D}}_2]{\SEQ {\X ^i\al , \GA }{\ga }}{ } }\end {align*}


${\mathcal {E}}_1$


${\mathcal {E}}_2$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}_1]{\ga }{ (\X ^i\neg \al , \GA )^* } \quad \quad \quad \infer *[{\mathcal {E}}_2]{\ga }{ (\X ^i\al , \GA )^* }\end {align*}


${\mathcal {E}}_1$


$(\X ^i\neg \al , \GA )^*$


$\subseteq ^*$


$\{ \X ^i\neg \al \} \cup \GA $


${\mathcal {E}}_2$


$(\X ^i\al , \GA )^*$


$\subseteq ^*$


$\{ \X ^i\al \} \cup \GA $


${\mathcal {E}}_1$


$\ga $


${\mathcal {E}}_2$


$\ga $


$\mathcal {E}$


\begin {align*}\infer [(\mbox {\rm EXM})]{\ga }{ \infer *[{\mathcal {E}}_1]{\ga }{ [\X ^i\neg \al ] \GA ^* } & \infer *[{\mathcal {E}}_2]{\ga }{ [\X ^i\al ] \GA ^* } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\ga $


$\G $


$\mathcal {D}$


\begin {align*}\infer [(\G {\rm left}).]{\SEQ {\X ^i\G \al , \GA }{\ga }}{ \infer *[{\mathcal {D}}']{\SEQ {\X ^i\G \al , \X ^{i+k}\al , \GA }{\ga }}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\ga }{ (\X ^i\G \al & \X ^{i+k}\al & \GA )^* }\end {align*}


${\mathcal {E}}'$


$(\X ^i\G \al , \X ^{i+k}\al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\G \al , \X ^{i+k}\al \}\cup \GA $


${\mathcal {E}}'$


$\ga $


$\mathcal {E}$


\begin {align*}\infer *[{\mathcal {E}}']{\ga }{ \infer *[]{}{ (\X ^i\G \al } & \infer [(\G {\rm E})]{\X ^{i+k}\al }{ \X ^i\G \al } & \infer *[]{}{ \GA )^* } }\end {align*}


$\mathcal {E}$


$(\X ^i\G \al , \X ^i\G \al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\G \al \} \cup \GA $


$\mathrm {end}({\mathcal {E}})\!=\!\ga $


$\G $


$\mathcal {D}$


\begin {align*}\infer [(\G {\rm right}).]{\SEQ {\GA }{\X ^i\G \al }}{ \infer *[{\mathcal {D}}']{\{~\SEQ {\GA }{\X ^{i+j}\al }~\}_{j\in \omega }}{ } }\end {align*}


${\mathcal {E}}_j$


$j \in \omega $


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}_j]{\X ^{i+j}\al }{ \GA _j^* }\end {align*}


${\mathcal {E}}_j$


$\GA _j^*$


$\subseteq ^*$


$\GA _j$


$\displaystyle {\GA ^* = \bigcup _{j\in \omega }\GA _j^*}$


$\subseteq ^*$


$\GA $


${\mathcal {E}}_j$


$\X ^{i+j}\al $


$\mathcal {E}$


\begin {align*}\infer [(\G {\rm I})]{\X ^i\G \al }{ \infer *[{\mathcal {E}}_j]{\{~\X ^{i+j}\al ~\}_{j\in \omega }}{ \GA _j^* } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\X ^i\G \al $


$\F $


$\mathcal {D}$


\begin {align*}\infer [(\F {\rm left}).]{\SEQ {\X ^i\F \al , \GA }{\ga }}{ \infer *[{\mathcal {D}}']{\{~\SEQ {\X ^{i+k}\al , \GA }{\ga }~\}_{j\in \omega }}{ } }\end {align*}


${\mathcal {E}}_j$


$j\in \omega $


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}_j]{\ga }{ (\X ^{i+j}\al & \GA _j)^* }\end {align*}


${\mathcal {E}}_j$


$(\X ^{i+j}\al , \GA _j)^*$


$\subseteq ^*$


$\{\X ^{i+j}\al \} \cup \GA _j$


$\displaystyle {\GA ^* = \bigcup _{j\in \omega } \GA _j^*}$


$\subseteq ^*$


$\GA $


${\mathcal {E}}_j$


$\ga $


$\mathcal {E}$


\begin {align*}\infer [(\F {\rm E})^1]{\ga }{ \X ^i\F \al & \{ \infer *[{\mathcal {E}}_j]{\ga }{ [\X ^{i+j}\al ]^1 & \GA _j^* }\}_{j\in \omega } & }\end {align*}


$\mathcal {E}$


$(\X ^i\F \al , \GA )^*$


$\subseteq ^*$


$\{\X ^i\F \al \}\cup \GA $


$\mathcal {E}$


$\ga $


$\F $


$\mathcal {D}$


\begin {align*}\infer [(\F {\rm right}).]{\SEQ {\GA }{\X ^i\F \al }}{ \infer *[{\mathcal {D}}']{\SEQ {\GA }{\X ^{i+k}\al }}{ } }\end {align*}


${\mathcal {E}}'$


$_{\omega }$


\begin {align*}\infer *[{\mathcal {E}}']{\X ^{i+k}\al }{ \GA ^* }\end {align*}


${\mathcal {E}}'$


$\GA ^*$


$\subseteq ^*$


$\GA $


${\mathcal {E}}'$


$\X ^{i+k}\al $


$\mathcal {E}$


\begin {align*}\infer [(\F {\rm I})]{\X ^i\F \al }{ \infer *[{\mathcal {E}}']{\X ^{i+k}\al }{ \GA ^* } }\end {align*}


$\mathcal {E}$


$\GA ^*$


$\subseteq ^*$


$\GA $


$\mathcal {E}$


$\X ^i\F \al $


$\relax \square $


$_{\omega }$


$_{\omega }$


$\al $


$_{\omega }$


$\vdash $


$\Rightarrow \al $


$\al $


$_{\omega }$


$\emptyset $


$\GA $


$\relax \square $


$_{\omega }$


$_{\omega }$


$\mathcal {D}$


$_{\omega }$


$\mathcal {E}$


$_{\omega }$


$\mathcal {E}$


$\subseteq ^*$


$\mathcal {D}$


$\mathcal {E}$


$=$


$\mathcal {D}$


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$\GA $


$\mathcal {D}$


$\be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


$\mathcal {E}$


$_{\omega }$


$\mathcal {E}$


$\subseteq ^*$


$\mathcal {D}$


$\mathcal {E}$


$\mathcal {D}$


$\relax \square $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\GA  \Rightarrow \ga $


$\GA $


$\ga $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\X ^i\al , \GA  \Rightarrow \X ^i\al $


$\al $


$\GA $


$i$


$_{\omega }$


$\al $


$\relax \square $


$_{\omega }$


$\relax \square $


$_{\omega }$


$\relax \square $


$_{\omega }$


$\relax \square $


$_{\omega }$


$_{\omega }$


$\al $


$\be $


$i\in \omega $


$_{\omega }$


$\vdash $


$\Rightarrow \X ^i (\al \LOR \be )$


$_{\omega }$


$\vdash $


$\Rightarrow \X ^i \al $


$_{\omega }$


$\vdash $


$\Rightarrow \X ^i \be $


$\relax \square $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\mathcal {D}$


$_{\omega }$


$\mathcal {D}$


$=$


$\GA $


$\mathcal {D}$


$=$


$\be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


$_{\omega }$


$\vdash $


$\GA  \Rightarrow \be $


${\mathcal {D}}'$


$_{\omega }$


${\mathcal {D}}'$


$\subseteq ^*$


$\GA $


${\mathcal {D}}'$


$=$


$\be $


${\mathcal {D}}'$


$\relax \square $


$_{\omega }$


$_{\omega }$


$\al $


$_{\omega }$


$\vdash $


$\Rightarrow \al $


$\al $


$_{\omega }$


$\relax \square $


$_{\omega }$


$_{\omega }$


$\mathcal {D}$


$_{\omega }$


$\mathcal {E}$


$_{\omega }$


$\mathcal {E}$


$\subseteq ^*$


$\mathcal {D}$


$\mathcal {E}$


$=$


$\mathcal {D}$


$\relax \square $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\al $


$_{\omega }$


$\vdash $


$\Rightarrow \al $


$_{\omega }$


$\vdash $


$\Rightarrow \neg \neg \al $


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\omega $


$\omega _l = \{n \in \omega ~|~n \leq l\}$


$l$


$_{\omega }$


$\{\G , \F \}$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\X $


$_{\omega }$


$_{\omega }$


$\X ^i$


$\X $


$_{\omega }$


$_{\omega }$


$\X ^i$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$_{\omega }$


$\lambda $


$\lambda $


$\lambda ^{\circ }$


$\bigcirc $


$\X $


$\lambda ^{\circ }$


$\lambda ^{\mathrm {BN}}$


$\lambda $


$\lambda ^{[]}$


$[]$


$\lambda ^{[]}$


$\lambda ^{\circ []}$


$\lambda ^{\circ }$


$\lambda ^{[]}$


$[]$


$\bigcirc $


$_{\omega }$


$_{\omega }$


$\lambda $


$_{\omega }$


$_{\omega }$


$^\omega $


$B$


$A$


$\neg A$


$\neg A\coloneq A\rightarrow \bot $


$\bot $


$\mathsf {(Co)}$


$(A\rightarrow B)\rightarrow (\neg B\rightarrow \neg A)$


$\mathsf {(NECQ)}$


$(A\land \neg A)\rightarrow \neg B$


$\mathsf {(N)}$


$(A\leftrightarrow B)\rightarrow (\neg A\leftrightarrow \neg B)$


$\text {Intuitionistic logic}$


$\text {Minimal logic}$


$\mathsf {CoPC}$


$\mathsf {NeFPC}$


$\mathsf {NPC}$


$\text {Intuitionistic logic}$


$\textbf {SUBMIN}$


$\text {Intuitionistic logic}$


$\textbf {SUBMIN}^-$


$\mathsf {An^-PC}$


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$\mathsf {NPC}$


$\underline {\mathfrak {A}_0},\underline {\mathfrak {A}_1}$


$\underline {\mathfrak {A}_2}$


$\begin {matrix} \begin {minipage}{.24\linewidth } \begin {tikzpicture}[scale = 0.45, transform shape,every node/.style={circle,draw}] \node (N) {$\mathbb {N}$}; \node [below =of N] (a8) {$a_8$}; \node [below left =of a8] (a7) {$a_7$}; \node [below right =of a8] (r6) {$r_6$}; \node [below left =of a7] (r5) {$r_5$}; \node [below right =of a7] (a6) {$a_6$}; \node [below right =of r6] (s4) {$s_4$}; \node [below right =of r5] (a5) {$a_5$}; \node [below right =of a6] (r4) {$r_4$}; \node [below left =of a5] (r3) {$r_3$}; \node [below right =of a5] (a4) {$a_4$}; \node [below right =of r3] (a3) {$a_3$}; \node [below right =of a4] (r2) {$r_2$}; \node [below left =of a3] (r1) {$r_1$}; \node [below right =of a3] (a2) {$a_2$}; \node [below right =of r2] (s0) {$s_0$}; \node [below right =of r1] (a1) {$a_1$}; \node [below right =of a2] (r0) {$r_0$}; \node [below right =of a1] (a0) {$a_0$}; \node [below =of a0] (a) {$0_{\underline {\mathfrak {A}_0}}$}; \foreach \u / \v in {N/a8,a8/a7,a8/r6,a7/r5,a7/a6,r6/a6,r6/s4,r5/a5,a6/a5,a6/r4,s4/r4,a5/r3,a5/a4,r4/a4,r3/a3,a4/a3,a4/r2,a3/r1,a3/a2,r2/a2,r2/s0,r1/a1,a2/a1,a2/r0,s0/r0,a1/a0,r0/a0,a0/a} \draw [-] (\u ) -- (\v ); \end {tikzpicture} \end {minipage} & \begin {minipage}{.3\linewidth } \begin {tikzpicture}[scale = 0.45, transform shape,every node/.style={circle,draw}] \node (N) {$\mathbb {N}$}; \node [below =of N] (a9) {$a_9$}; \node [below left =of a9] (r7) {$r_7$}; \node [below right =of a9] (a8) {$a_8$}; \node [below left =of r7] (s5) {$s_5$}; \node [below right =of r7] (a7) {$a_7$}; \node [below right =of a8] (r6) {$r_6$}; \node [below right =of s5] (r5) {$r_5$}; \node [below right =of a7] (a6) {$a_6$}; \node [below right =of r5] (a5) {$a_5$}; \node [below right =of a6] (r4) {$r_4$}; \node [below left =of a5] (r3) {$r_3$}; \node [below right =of a5] (a4) {$a_4$}; \node [below right =of r3] (a3) {$a_3$}; \node [below right =of a4] (r2) {$r_2$}; \node [below left =of a3] (r1) {$r_1$}; \node [below right =of a3] (a2) {$a_2$}; \node [below right =of r2] (s0) {$s_0$}; \node [below right =of r1] (a1) {$a_1$}; \node [below right =of a2] (r0) {$r_0$}; \node [below right =of a1] (a0) {$a_0$}; \node [below =of a0] (a) {$0_{\underline {\mathfrak {A}_1}}$}; \foreach \u / \v in {N/a9,a9/r7,a9/a8,r7/s5,r7/a7,a8/a7,a8/r6,s5/r5,a7/r5,a7/a6,r6/a6,r5/a5,a6/a5,a6/r4,a5/r3,a5/a4,r4/a4,r3/a3,a4/a3,a4/r2,a3/r1,a3/a2,r2/a2,r2/s0,r1/a1,a2/a1,a2/r0,s0/r0,a1/a0,r0/a0,a0/a} \draw [-] (\u ) -- (\v ); \end {tikzpicture} \end {minipage} & \begin {minipage}{.3\linewidth } \begin {tikzpicture}[scale = 0.45, transform shape,every node/.style={circle,draw}] \node (N) {$\mathbb {N}$}; \node [below =of N] (a10) {$a_{10}$}; \node [below left =of a10] (a9) {$a_9$}; \node [below right =of a10] (r8) {$r_8$}; \node [below right =of r8] (s6) {$s_6$}; \node [below left =of a9] (r7) {$r_7$}; \node [below right =of a9] (a8) {$a_8$}; \node [below right =of r7] (a7) {$a_7$}; \node [below right =of a8] (r6) {$r_6$}; \node [below left =of a7] (r5) {$r_5$}; \node [below right =of a7] (a6) {$a_6$}; \node [below right =of r5] (a5) {$a_5$}; \node [below right =of a6] (r4) {$r_4$}; \node [below left =of a5] (r3) {$r_3$}; \node [below right =of a5] (a4) {$a_4$}; \node [below right =of r3] (a3) {$a_3$}; \node [below right =of a4] (r2) {$r_2$}; \node [below left =of a3] (r1) {$r_1$}; \node [below right =of a3] (a2) {$a_2$}; \node [below right =of r2] (s0) {$s_0$}; \node [below right =of r1] (a1) {$a_1$}; \node [below right =of a2] (r0) {$r_0$}; \node [below right =of a1] (a0) {$a_0$}; \node [below =of a0] (a) {$0_{\underline {\mathfrak {A}_2}}$}; \foreach \u / \v in {N/a10,a10/a9,a10/r8,a9/r7,a9/a8,r8/a8,r8/s6,r7/a7,a8/a7,a8/r6,s6/r6,a7/r5,a7/a6,r6/a6,r5/a5,a6/a5,a6/r4,a5/r3,a5/a4,r4/a4,r3/a3,a4/a3,a4/r2,a3/r1,a3/a2,r2/a2,r2/s0,r1/a1,a2/a1,a2/r0,s0/r0,a1/a0,r0/a0,a0/a} \draw [-] (\u ) -- (\v ); \end {tikzpicture} \end {minipage} \end {matrix}$


$\mathsf {IPC}$


$(\text {Intuitionistic logic})$


$\mathsf {AVQPC}$


$\mathsf {MPC_\neg }$


$(\text {Minimal logic})$


$\mathsf {ECQPC}$


$(\text {Co-minimal logic})$


$\mathsf {An\cap ECQPC}$


$\mathsf {An^-PC}$


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$\mathsf {NPC}$


$\bot $


$\textbf {SUBMIN}^-$


$\mathsf {An^-PC}$


$\mathcal {L}_\neg $


$\land , \lor , \rightarrow $


$\neg $


$\mathcal {P}$


$\mathcal {L}_\neg $


$A\coloneqq p \mid \neg A \mid (A\land A) \mid (A\lor A) \mid (A \rightarrow A)$


$A \leftrightarrow B \coloneq (A \rightarrow B) \land (B \rightarrow A).$


$A[p_1/B_1,\ldots ,p_n/B_n]$


$p_i$


$A$


$B_i$


$i=1,\ldots , n$


$\mathsf {NPC}$


$\mathsf {NPC}$


$\mathsf {Ax1}$


$p\rightarrow (q\rightarrow p);$


$\mathsf {Ax2}$


$(p\rightarrow (q\rightarrow r))\rightarrow ((p\rightarrow q)\rightarrow (p\rightarrow r));$


$\mathsf {Ax3}$


$p\rightarrow (p\lor q);$


$\mathsf {Ax4}$


$q\rightarrow (p\lor q);$


$\mathsf {Ax5}$


$(p\rightarrow r)\rightarrow [(q\rightarrow r)\rightarrow ((p\lor q)\rightarrow r)];$


$\mathsf {Ax6}$


$(p\land q)\rightarrow p;\ \mathsf {Ax7}:\ (p\land q)\rightarrow q;$


$\mathsf {Ax8}$


$p\rightarrow (q\rightarrow (p\land q));$


$\mathsf {(N)}$


$(p\leftrightarrow q)\rightarrow (\neg p\leftrightarrow \neg q)$


$A\text { and } A\rightarrow B$


$B$


$A$


$A[p_1/B_1,\ldots ,p_n/B_n]$


$p_1,\ldots ,p_n$


$A$


$B_1,\ldots , B_n$


$A$


$A_1,\ldots ,A_n$


$A$


$\mathsf {NPC}$


$A_i$


$1\leq i\leq n$


$A_i$


$A_i$


$A_j$


$A_k$


$j, k< i$


$A_i$


$A_j$


$j<i$


$A_n=A$


$\mathsf {NPC}\vdash A$


$A$


$\mathsf {NPC}$


$\{A\mid \mathsf {NPC}\vdash A\}$


$\mathsf {NPC}$


$\Gamma $


$A$


$A_1,\ldots ,A_n$


$A$


$\Gamma $


$\mathsf {NPC}$


$A_i$


$1\leq i\leq n$


$A_i$


$\mathsf {NPC}$


$\Gamma $


$A_i$


$A_j$


$A_k$


$j, k< i$


$A_n=A$


$\Gamma \vdash _{\mathsf {NPC}}A$


$A$


$\Gamma $


$\mathsf {NPC}$


$p\vdash q$


$p$


$q$


$(\mathsf {An}) :\ (p\rightarrow \neg p)\rightarrow \neg p$


$(\mathsf {An}^-) :\ (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)$


$(\mathsf {Co}) :\ (p\rightarrow q)\rightarrow (\neg q\rightarrow \neg p)$


$(\mathsf {NECQ}) :\ (p\land \neg p)\rightarrow \neg q$


$(\mathsf {ECQ}) :\ (p\land \neg p)\rightarrow q$


$(\mathsf {AVQ}) :\ \neg \neg (\neg (p\rightarrow p)\rightarrow q)$


$(\mathsf {An\cap ECQ}) :\ \neg \neg (p\rightarrow p)\lor (\neg (q\rightarrow q)\rightarrow r)$


$\mathsf {(CoECQ)} :\ \neg p\rightarrow \neg (q\land \neg q)$


$\mathsf {NECQPC}$


$(\mathsf {NECQ})$


$\mathsf {NPC}$


$\mathsf {NECQ}$


$\mathsf {CoPC}$


$(\mathsf {Co})$


$\mathsf {NPC}$


$\mathsf {(N)}$


$\mathsf {Co}$


$\mathsf {An^-PC}$


$(\mathsf {An^-})$


$\mathsf {NPC}$


$\mathsf {CoECQPC}$


$(\mathsf {CoECQ})$


$\mathsf {NPC}$


$\mathsf {CoECQ}$


$\mathsf {An\cap ECQPC}$


$\mathsf {(An\cap ECQ)}$


$\mathsf {An^-PC}$


$\mathsf {MPC_\neg }$


$(\mathsf {An})$


$\mathsf {NPC}$


$\mathsf {An}$


$\mathsf {ECQPC}$


$(\mathsf {ECQ})$


$\mathsf {NPC}$


$\mathsf {ECQ}$


$\mathsf {AVQPC}$


$(\mathsf {AVQ})$


$(\mathsf {An})$


$\mathsf {NPC}$


$\mathsf {AVQ}$


$\mathsf {IPC}$


$(\mathsf {ECQ})$


$(\mathsf {An})$


$\mathsf {NPC}$


$\mathsf {(N)}$


$\mathsf {AVQPC}$


$\Gamma \vdash A$


$\mathsf {NPC}$


$\mathsf {NeF,CoPC,An^-PC}$


$\mathsf {MPC_\neg }$


$\top $


$\mathsf {NECQPC,CoPC,An^-PC}$


$\mathsf {MPC_\neg }$


$\top $


$\textbf {CO-MIN}$


$\textbf {CO-MIN}^{-\top , \bot }$


$\mathsf {H}$


$\{A\mid \mathsf {H}\vdash A\}$


$\mathsf {H}$


$\mathsf {NPC}$


$\mathsf {H}$


$\{A\mid \mathsf {H}\vdash A\}$


$\mathsf {N}$


$\mathsf {N}$


$\mathcal {L}_\neg $


$L$


$\mathcal {L}_\neg $


$\mathsf {NPC}\subseteq L$


$L$


$L$


$\mathsf {H}$


$\{A\mid \mathsf {H}\vdash A\}$


$\mathsf {N}$


$\Gamma \cup \{ A, B \}$


\begin {equation*}\Gamma \cup \{A\}\vdash _{\mathsf {NPC}} B\ \Leftrightarrow \ \Gamma \vdash _{\mathsf {NPC}} A\rightarrow B.\end {equation*}


$\mathsf {Ax1}$


$\mathsf {Ax2}$


$\mathsf {IPC}^{-\mathsf {(N)}}$


$\mathsf {(N)}$


$\mathsf {IPC}$


$\mathsf {IPC}^{-\mathsf {(N)}}\vdash \mathsf {(N)}$


$\mathsf {IPC}^{-\mathsf {(N)}}\vdash (\neg p\land q\land (p\leftrightarrow q))\rightarrow (p\land \neg p)$


$\neg p, q$


$p\leftrightarrow q$


$\neg p\land q\land (p\leftrightarrow q)$


$\mathsf {Ax6,7}$


$p$


$q$


$p\leftrightarrow q$


$p\land \neg p$


$\neg p\land q\land (p\leftrightarrow q)$


$\mathsf {Ax 8}$


\begin {align*}&1.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (\neg p\land q\land (p\leftrightarrow q))\rightarrow (p\land \neg p) &&\\ &2.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (\neg p\land q\land (p\leftrightarrow q))\rightarrow \neg q&&(\mathsf {(ECQ)} \text { and }1)\\ &3.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (\neg p\land (p\leftrightarrow q))\rightarrow (q\rightarrow \neg q)&&(\text {From }2)\\ &4.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (\neg p\land (p\leftrightarrow q))\rightarrow \neg q&&(\mathsf {(An)}\text { and }3)\\ &5.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (p\leftrightarrow q)\rightarrow (\neg p\rightarrow \neg q)&&(\text {From } 4)\\ &6.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (p\leftrightarrow q)\rightarrow (\neg q\rightarrow \neg p)&&(\text {The same way as }1\text {-}5)\\ &7.\;\mathsf {IPC}^{-\mathsf {(N)}}\vdash (p\leftrightarrow q)\rightarrow (\neg p\leftrightarrow \neg q)&&(\mathsf {Ax 8}, 5\text { and }6).\end {align*}


$\relax \square $


$\mathsf {NPC}\subseteq \mathsf {NECQPC\subseteq CoPC\subseteq An^-PC}\subseteq \mathsf {MPC_\neg }$


$\mathsf {NPC}\subseteq \mathsf {NeFPC\subseteq CoPC\subseteq An^-PC}\subseteq \mathsf {MPC_\neg }$


$\top $


$\mathsf {NPC}, \mathsf {NECQPC}, \mathsf {CoPC},\mathsf {An^-PC},\mathsf {MPC_\neg }$


$\top $


$\relax \square $


$\mathsf {ECQPC}$


$\mathcal {L}_{\neg , \top , \bot }$


$\mathcal {L}_\neg $


$\top $


$\bot $


$\mathcal {L}_{\neg , \top , \bot }$


$A\coloneqq p \mid \top \mid \bot \mid \neg A \mid (A\land A) \mid (A\lor A) \mid (A \rightarrow A)$


$\bot \rightarrow p$


$p\rightarrow \top $


$\neg p\rightarrow \neg \neg \top $


$\neg \top \rightarrow p$


$\mathsf {CoPC}$


$\mathcal {L}_{\neg , \top , \bot }$


$^{-\top , \bot }$


$\neg p\rightarrow \neg \neg (q\rightarrow q)$


$\neg (p\rightarrow p)\rightarrow q$


$\mathsf {CoPC}$


$\mathcal {L}_\neg $


$^{-\top ,\bot }$


$A$


$\mathcal {L}_{\neg }$


\begin {equation*}\mathbf {CO}\text {-}\mathbf {MIN}\vdash A\ \Leftrightarrow \ \mathbf {CO}\text {-}\mathbf {MIN}^{-\top , \bot }\vdash A.\end {equation*}


$\relax \square $


$^{-\top ,\bot }$


$\mathsf {ECQPC}$


$\mathsf {ECQPC}$


$\mathsf {An^-PC}$


$\mathsf {ECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)$


$\mathsf {ECQPC}\vdash ((p\rightarrow \neg p)\land \neg q)\rightarrow (q\leftrightarrow p)$


$p\rightarrow \neg p$


$\neg q$


$(p\rightarrow \neg p)\land \neg q$


$\mathsf {Ax6,7}$


$q$


$p$


$\neg q$


$\mathsf {(ECQ)}$


$p$


$\neg p$


$p\rightarrow \neg p$


$q$


$\mathsf {(ECQ)}$


\begin {align*}&1.\;\mathsf {ECQPC}\vdash ((p\rightarrow \neg p)\land \neg q)\rightarrow (q\leftrightarrow p)&&\\ &2.\;\mathsf {ECQPC}\vdash ((p\rightarrow \neg p)\land \neg q)\rightarrow (\neg q\rightarrow \neg p)&&(\mathsf {(N)}\text { and }1)\\ &3.\;\mathsf {ECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)&&(\text {From }2).\end {align*}


$\relax \square $


$\mathsf {ECQPC}$


$\mathbf {CO}$


$\mathbf {MIN}^{-\top , \bot }$


$p\rightarrow p$


$\neg (p\rightarrow p)\rightarrow q$


$((p\rightarrow p)\land \neg (p\rightarrow p))\rightarrow q$


$\mathsf {ECQ}$


$\mathsf {ECQPC}\vdash \neg p\rightarrow \neg \neg (q\rightarrow q)$


\begin {align*}&1.\;\mathsf {ECQPC}\vdash \neg (q\rightarrow q)\rightarrow \neg \neg (q\rightarrow q)&&\\ &2.\;\mathsf {ECQPC}\vdash (\neg (q\rightarrow q)\rightarrow \neg \neg (q\rightarrow q))\rightarrow (\neg p\rightarrow \neg \neg (q\rightarrow q))&&\mathsf {(An^-)}\\ &3.\;\mathsf {ECQPC}\vdash \neg p\rightarrow \neg \neg (q\rightarrow q)&&(1\text { and }2).\end {align*}


$\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow q$


\begin {align*}&1.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow (p\leftrightarrow (p\rightarrow p))&&\\ &2.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow (\neg p\rightarrow \neg (p\rightarrow p))&&((\mathsf {N})\text { and }1)\\ &3.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow \neg (p\rightarrow p)&&(\text {From }2)\\ &4.\;\textbf {CO-MIN}^{-\top , \bot }\vdash \neg (p\rightarrow p)\rightarrow q&&(\mathsf {Ax}\text { of }{\footnotesize \textbf {CO-MIN}^{-\top , \bot }})\\ &5.\;\textbf {CO-MIN}^{-\top , \bot }\vdash (p\land \neg p)\rightarrow q&&(3\text { and } 4).\end {align*}


$\relax \square $


$\mathsf {An\cap ECQPC}$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {An^-PC}^+$


$\mathsf {An^-PC}$


$\neg \neg (p\rightarrow p)$


$\mathsf {MPC}_{\neg }$


$\mathsf {An^-PC^+}\vdash (p\rightarrow \neg p)\rightarrow \neg p$


\begin {align*}&1.\;\mathsf {An^-PC}^+\vdash (p\rightarrow \neg p)\rightarrow (\neg \neg (p\rightarrow p)\rightarrow \neg p)&&(\mathsf {An^-})\\ &2.\;\mathsf {An^-PC}^+\vdash \neg \neg (p\rightarrow p)\rightarrow ((p\rightarrow \neg p)\rightarrow \neg p)&&(\text {From }1)\\ &3.;\mathsf {An^-PC}^+\vdash (p\rightarrow \neg p)\rightarrow \neg p&&(2\text { and }\mathsf {Ax}\text { of }\mathsf {An^-PC}^+).\end {align*}


$\mathsf {MPC}_\neg \vdash \neg \neg (p\rightarrow p)$


$\mathsf {MPC}_\neg \vdash (\mathsf {An^-})$


\begin {align*}&1.\;\mathsf {MPC_\neg }\vdash \neg (p\rightarrow p)\rightarrow \neg \neg (p\rightarrow p)&&\mathsf {(NECQ)}\\ &2.\;\mathsf {MPC_\neg }\vdash (\neg (p\rightarrow p)\rightarrow \neg \neg (p\rightarrow p))\rightarrow \neg \neg (p\rightarrow p)&&\mathsf {(An)}\\ &3.\;\mathsf {MPC_\neg }\vdash \neg \neg (p\rightarrow p)&&(1\text { and }2).\end {align*}


$\relax \square $


$\mathsf {An\cap ECQPC}$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {An\cap ECQPC}\subseteq \mathsf {ECQPC}$


$\mathsf {An\cap ECQPC}\subseteq \mathsf {MPC_\neg }$


$\mathsf {ECQPC}\vdash \neg \neg (p\rightarrow p)\lor (\neg (q\rightarrow q)\rightarrow r)$


$\mathsf {MPC_\neg }\vdash \neg \neg (p\rightarrow p)\lor (\neg (q\rightarrow q)\rightarrow r)$


$\mathsf {ECQPC}=\textbf {CO-MIN}^{-\top , \bot }$


$\mathsf {MPC_\neg }=\mathsf {An^-PC}^+$


$\mathsf {An^-PC}$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$A$


$\mathsf {ECQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {MPC}_\neg \vdash A$


$\mathsf {An^-PC}\vdash B\rightarrow A$


$B$


$\neg \neg (p\rightarrow p)$


$\mathsf {ECQPC}\vdash A$


$\mathsf {An^-PC}\vdash C\rightarrow A$


$C$


$\neg (q\rightarrow q)\rightarrow r$


$\mathsf {Ax5}$


$\mathsf {An^-PC}\vdash (B\lor C)\rightarrow A$


$B\lor C$


$\mathsf {An\cap \ ECQ}$


$\mathsf {An\cap ECQPC}\vdash A$


$\relax \square $


$\mathsf {CoECQPC}$


$\mathsf {An^-PC}$


$\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)$


$\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow ((p\land \neg p)\leftrightarrow p)$


$\mathsf {Ax6,7}$


\begin {align*}&1.\;\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow ((p\land \neg p)\leftrightarrow p)&&\\ &2.\;\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg (p\land \neg p)\leftrightarrow \neg p)&&((\mathsf {N})\text { and }1)\\ &3.\;\mathsf {CoECQPC}\vdash \neg (p\land \neg p)\rightarrow ((p\rightarrow \neg p)\rightarrow \neg p)&&(\text {From }2)\\ &4.\;\mathsf {CoECQPC}\vdash \neg q\rightarrow \neg (p\land \neg p)&&(\mathsf {(CoECQ)})\\ &5.\;\mathsf {CoECQPC}\vdash \neg q\rightarrow ((p\rightarrow \neg p)\rightarrow \neg p)&&(3\text { and }4)\\ &6.\;\mathsf {CoECQPC}\vdash (p\rightarrow \neg p)\rightarrow (\neg q\rightarrow \neg p)&&(\text {From } 5)\end {align*}


$\mathsf {An^-PC}\vdash \neg p\rightarrow \neg (q\land \neg q)$


\begin {align*}&1.\;\mathsf {An^-PC}\vdash \neg q\rightarrow \neg (q\land \neg q)&&(\mathsf {Ax7}\text { and }\mathsf {(Co)})\\ &2.\;\mathsf {An^-PC}\vdash (q\land \neg q)\rightarrow \neg q&&(\mathsf {Ax7})\\ &3.\;\mathsf {An^-PC}\vdash (q\land \neg q)\rightarrow \neg (q\land \neg q)&&(1\text { and }2)\\ &4.\;\mathsf {An^-PC}\vdash ((q\land \neg q)\rightarrow \neg (q\land \neg q))\rightarrow (\neg p\rightarrow \neg (q\land \neg q))&&(\mathsf {(An^-)})\\ &5.\;\mathsf {An^-PC}\vdash \neg p\rightarrow \neg (q\land \neg q)&&(3\text { and }4)\end {align*}


$\relax \square $


$\mathsf {IPC}$


$(\text {Intuitionistic logic})$


$\mathsf {AVQPC}$


$\mathsf {MPC_\neg }$


$(\text {Minimal logic})$


$\mathsf {ECQPC}$


$(\text {Co-minimal logic})$


$\mathsf {An\cap ECQPC}$


$\textbf {SUBMIN}^{-\top ,\bot }$


$\mathsf {An^-PC}$


$\mathsf {CoECQPC}$


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$\mathsf {NPC}$


$\textbf {SUBMIN}^{-\top ,\bot }$


$\mathsf {An\cap ECQPC}$


$\mathsf {An\cap ECQPC}$


$\mathsf {An\cap ECQPC}$


$\mathsf {N}$


$\langle |\mathfrak {A}|,\land _{\mathfrak {A}}, \lor _{\mathfrak {A}}\rangle $


$1_{\mathfrak {A}}$


$\leq _{\mathfrak {A}}$


\begin {equation*}a\leq _{\mathfrak {A}}b:\Leftrightarrow a\land _{\mathfrak {A}}b=a\end {equation*}


$a,b\in |\mathfrak {A}|$


$\mathsf {N}$


$\langle |\mathfrak {A}|,1_{\mathfrak {A}},\land _{\mathfrak {A}},\lor _{\mathfrak {A}},\rightarrow _{\mathfrak {A}},\neg _{\mathfrak {A}}\rangle $


$\rightarrow _{\mathfrak {A}}$


$\neg _{\mathfrak {A}}$


$|\mathfrak {A}|$


\begin {equation*}a\rightarrow _{\mathfrak {A}} b\coloneq \max \{c \in |\mathfrak {A}| \mid a \land _{\mathfrak {A}} c \leq _{\mathfrak {A}} b\};\end {equation*}


\begin {equation*}(a\leftrightarrow _{\mathfrak {A}} b)\rightarrow _{\mathfrak {A}}(\neg _{\mathfrak {A}} a\leftrightarrow _{\mathfrak {A}}\neg _{\mathfrak {A}} b)=1_{\mathfrak {A}},\end {equation*}


$a\leftrightarrow _{\mathfrak {A}}b$


$(a\rightarrow _{\mathfrak {A}}b)\land _{\mathfrak {A}}(b\rightarrow _{\mathfrak {A}}a)$


$\mathsf {N}$


$\mathfrak {A}$


\begin {equation*}a\leq _{\mathfrak {A}}b\Longleftrightarrow a\rightarrow _{\mathfrak {A}}b=1_{\mathfrak {A}}.\end {equation*}


$(\mathsf {An})^E:\ (x\rightarrow \neg x)\rightarrow \neg x=1$


$(\mathsf {An}^-)^E:\ (x\rightarrow \neg x)\rightarrow (\neg y\rightarrow \neg x)=1$


$(\mathsf {Co})^E:\ (x\rightarrow y)\rightarrow (\neg y\rightarrow \neg x)=1$


$(\mathsf {NECQ})^E:\ (x\land \neg x)\rightarrow \neg y=1$


$(\mathsf {ECQ})^E:\ (x\land \neg x)\rightarrow y=1$


$(\mathsf {AVQ})^E:\ \neg \neg (\neg (x\rightarrow x)\rightarrow y)=1$


$(\mathsf {An\cap ECQ})^E:\ \neg \neg (x\rightarrow x)\lor (\neg (y\rightarrow y)\rightarrow z)=1$


$\mathsf {(CoECQ)}^E:\ \neg x\rightarrow \neg (y\land \neg y)=1$


$E$


$\Psi =\{\land ,\lor ,\rightarrow \}$


$\mathcal {P}$


$\mathsf {N}$


$\mathsf {N}$


$v$


$\mathcal {P}$


$|\mathfrak {A}|$


$\overline {v}$


$\mathfrak {A}$


$A$


$\overline {v}(A)\coloneq v(A)$


$A=\neg B$


$\overline {v}(\neg B)\coloneq \neg _{\mathfrak {A}}\overline {v}(B)$


$A=B\otimes C$


$\overline {v}(B\otimes C)\coloneq \overline {v}(B)\otimes _{\mathfrak {A}}\overline {v}(C)$


$\otimes \in \Psi $


$\overline {v}$


$v$


$\overline {v}$


$v$


$v$


$A$


$v(A)=1_{\mathfrak {A}}$


$A$


$v$


$A$


$v$


$v$


$\mathfrak {A}$


$A$


$\mathfrak {A}$


$\mathfrak {A}\models A$


$\mathcal {C}$


$\mathsf {N}$


$\mathfrak {A}\models A$


$\mathfrak {A}$


$\mathcal {C}$


$A$


$\mathcal {C}$


$\Delta $


$A$


$\mathcal {C}$


$\mathsf {N}$


$\mathsf {N}$


$\mathfrak {A}\in \mathcal {C}$


$v$


$\mathfrak {A}$


$A$


$v$


$B$


$v$


$B\in \Delta $


$A$


$\Delta $


$\mathcal {C}$


$\Delta \models _{\mathcal {C}} A$


$\Delta $


$\models _{\mathcal {C}}A$


$\mathsf {N}$


$\mathsf {ECQPC}$


$\mathcal {C}_\mathsf {ECQ}$


$\mathsf {N}$


$\mathsf {ECQ}$


$A$


$\mathsf {ECQPC}\vdash A\ \Leftrightarrow \ \models _{\mathcal {C}_\mathsf {ECQ}} A.$


$\relax \square $


$\mathsf {N}$


$L$


$\mathcal {C}_L$


$\mathsf {N}$


$L$


$A$


$L\vdash A\ \Leftrightarrow \ \models _{\mathcal {C}_L} A.$


$\top $


$p\rightarrow p$


$\relax \square $


$\mathsf {N}$


$\mathfrak {A}$


$\mathfrak {A}$


$|\mathfrak {A}|\smallsetminus \{1_{\mathfrak {A}}\}$


$\mathfrak {A}$


$\star _{\mathfrak {A}}$


$\Psi =\{\land , \lor , \rightarrow \}$


$\Psi $


$\Psi $


$\mathfrak {A}$


$\langle |\mathfrak {A}|,1_{\mathfrak {A}},0_{\mathfrak {A}},\langle \otimes _{\mathfrak {A}}\mid \otimes \in \Psi \rangle \rangle $


$\Psi $


$\mathfrak {B}$


$\Psi $


$\mathfrak {A}$


$\mathfrak {B}$


$\Psi $


$\mathfrak {A}$


$\Psi $


$\mathfrak {B}$


$\mathsf {N}$


$g$


$a\in dom(g)$


$g_a$


$g$


$a$


$\mathsf {N}$


$\mathfrak {A}$


$g$


$|\mathfrak {A}|$


$\mathcal {P}$


$A$


$\chi _A^g(\mathfrak {A})$


$\mathfrak {A}$


$g$


$A$


$\chi _{A}^g(\mathfrak {A}):=\bigwedge \{(g_a\otimes g_b)\rightarrow g_{a\otimes _{\mathfrak {A}} b}\mid \otimes \in \Psi ,a,b\in |\mathfrak {A}|\}\cup \{g_{a\otimes _{\mathfrak {A}} b}\rightarrow (g_a\otimes g_b)\mid \otimes \in \Psi ,a,b\in |\mathfrak {A}|\}\rightarrow (g_{\star _{\mathfrak {A}}}\lor A)$


$\chi _A^g(\mathfrak {A})$


$\theta (\chi _A^g(\mathfrak {A}))$


$\mathsf {N}$


$\mathfrak {A}$


$v$


$v(g_{\star _{\mathfrak {A}}})$


$\mathsf {N}$


$\mathsf {N}$


$A$


$A$


$\mathsf {N}$


$\mathsf {N}$


$\mathsf {N}$


$\mathfrak {A}=\langle |\mathfrak {A}|,1_{\mathfrak {A}},\land _{\mathfrak {A}},\lor _{\mathfrak {A}},\rightarrow _{\mathfrak {A}},\neg _{\mathfrak {A}}\rangle $


$0_{\mathfrak {A}}$


$\mathfrak {A}^H=\langle |\mathfrak {A}|,1_{\mathfrak {A}^H},0_{\mathfrak {A}^H},\land _{\mathfrak {A}^H},\lor _{\mathfrak {A}^H},\rightarrow _{\mathfrak {A}^H},\neg _{\mathfrak {A}^H}\rangle $


\begin {equation*}|\mathfrak {A}^H|\coloneq |\mathfrak {A}|,1_{\mathfrak {A}^H}\coloneq 1_{\mathfrak {A}},0_{\mathfrak {A}^H}\coloneq 0_{\mathfrak {A}},\land _{\mathfrak {A}^H}\coloneq \land _{\mathfrak {A}},\lor _{\mathfrak {A}^H}\coloneq \lor _{\mathfrak {A}},\rightarrow _{\mathfrak {A}^H}\coloneq \rightarrow _{\mathfrak {A}}, \text {and}\end {equation*}


\begin {equation*}\neg _{\mathfrak {A}^H}a\coloneq a\rightarrow _{\mathfrak {A}}0_{\mathfrak {A}}.\end {equation*}


$H$


$F$


$H$


$H$


$a,b\in F$


$a\land _H b\in F$


$a\in F$


$a\leq _H b$


$b\in F$


$a\in H$


$\{b\in H\mid a\leq b\}$


$a$


$a$


$\mathfrak {A}$


$F$


$|\mathfrak {A}|$


$F$


$\mathfrak {A}$


$F$


$1_{\mathfrak {A}}\in F$


$a\in F$


$a\rightarrow _{\mathfrak {A}} b\in F$


$b\in F$


$\mathfrak {A}$


$F$


$\mathfrak {A}$


$\sim _F$


$\mathfrak {A}$


\begin {align*}a\sim _F b:\Longleftrightarrow a\rightarrow _{\mathfrak {A}} b\in F \text { and } b\rightarrow _{\mathfrak {A}} a\in F \text { for any } a,b\in |\mathfrak {A}|.\end {align*}


$\sim _F$


$\mathfrak {A}$


$a\in |\mathfrak {A}|$


$\sim _F$


$[a]_F\coloneq \{b\in |\mathfrak {A}|\mid a\sim _Fb\}$


$\{[a]_F\mid a\in |\mathfrak {A}|\}$


$|\mathfrak {A}|/F$


$\mathfrak {A}/F=\langle |\mathfrak {A}|/F,1_{\mathfrak {A}/F},0_{\mathfrak {A}/F},\land _{\mathfrak {A}/F},\lor _{\mathfrak {A}/F},\rightarrow _{\mathfrak {A}/F},\neg _{\mathfrak {A}/F}\rangle $


$[a]_F,[b]_F\in |\mathfrak {A}|/F$


$1_{\mathfrak {A}/F}\coloneq [1_{\mathfrak {A}}]_F$


$0_{\mathfrak {A}/F}\coloneq [0_{\mathfrak {A}}]_F$


$[a]_F\land _{\mathfrak {A}/F}[b]_F\coloneq [a\land _{\mathfrak {A}}b]_F$


$[a]_F\lor _{\mathfrak {A}/F}[b]_F\coloneq [a\lor _{\mathfrak {A}}b]_F$


$[a]_F\rightarrow _{\mathfrak {A}/F}[b]_F\coloneq [a\rightarrow _{\mathfrak {A}}b]_F$


$\neg _{\mathfrak {A}/F}[a]_F\coloneq [\neg _{\mathfrak {A}}a]_F$


$\mathfrak {A}/F$


$\mathsf {N}$


$\mathfrak {A}$


$\mathfrak {B}$


$\mathsf {N}$


$F$


$\mathfrak {B}^H$


$\Psi $


$\mathfrak {A}^H$


$\mathfrak {B}^H/F$


$A$


$g:|\mathfrak {A}|\rightarrow \mathcal {P}$


$\mathfrak {B}\models \chi _A^g(\mathfrak {A})$


$\mathsf {N}$


$\mathfrak {C}$


$\mathfrak {D}$


$\mathfrak {D}\not \models \chi _A^g(\mathfrak {C})$


$g:|\mathfrak {C}|\rightarrow \mathcal {P}$


$A$


$v$


$v(\theta (\chi _A^g(\mathfrak {C})))\not \leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}}\lor A)$


$\theta (\chi _A^g(\mathfrak {C}))$


$\chi _A^g(\mathfrak {C})$


$\chi _{g{\star _{\mathfrak {C}}}}^g(\mathfrak {C})$


$g_{\star _{\mathfrak {C}}}$


$v(\theta (\chi _{g{\star _{\mathfrak {C}}}}^g(\mathfrak {C})))=v(\theta (\chi _A^g(\mathfrak {C})))$


$v(g_{\star _{\mathfrak {C}}})\leq _{\mathfrak {D}} v(g_{\star _{\mathfrak {C}}}\lor A)$


$v(\theta (\chi _{g{\star _{\mathfrak {C}}}}^g(\mathfrak {C})))\leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}})$


$v(\theta (\chi _A^g(\mathfrak {C})))\leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}}\lor A)$


$v(\theta (\chi ^g_{g_{\star _{\mathfrak {C}}}}(\mathfrak {C})))\not \leq _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}})$


$\mathfrak {D}\not \models \chi ^g_{g_{\star _{\mathfrak {C}}}}(\mathfrak {C})$


$G$


$\mathfrak {D}$


$v(\theta (\chi ^g_{g_{\star _{\mathfrak {C}}}}(\mathfrak {C})))$


$G$


\begin {equation}v(g_{\star _{\mathfrak {C}}})\not \in G;\tag {9}\label {equation9}\end {equation}


\begin {equation}[v(g_{c\otimes d})]_G=[v(g_c\otimes g_d)]_G\text { for any $c,d\in |\mathfrak {C}|$ and $\otimes \in \Psi $}.\tag {10}\label {equation10}\end {equation}


$v':\mathfrak {C}\rightarrow \mathfrak {D}/G$


$v'(c)\coloneq [v(g_c)]_G$


$c\in |\mathfrak {C}|$


$v'$


$\Psi $


$\Psi $


$v'$


$\land $


$c,d\in |\mathfrak {C}|$


\begin {align*}v'(c\land _{\mathfrak {C}}d)&=[v(g_{c\land _{\mathfrak {C}}d})]_G \\ &=[v(g_c\land g_d)]_G\\ &=[v(g_c)\land _{\mathfrak {D}}v(g_d)]_G\\ &=[v(g_c)]_G\land _{\mathfrak {D}/G}[v(g_b)]_G\\ &=v'(c)\land _{\mathfrak {D}/G}v'(d).\end {align*}


$\lor $


$\rightarrow $


$v'$


$v'(c)=v'(d)$


$[v(g_c)]_G=[v(g_d)]_G$


$c,d\in |\mathfrak {C}|$


\begin {align*}v(g_c)\leftrightarrow _{\mathfrak {D}} v(g_d)&=(v(g_c)\rightarrow _{\mathfrak {D}}v(g_d))\land _{\mathfrak {D}}(v(g_d)\rightarrow _{\mathfrak {D}}v(g_c))\\ &=v(g_c\rightarrow g_d)\land _{\mathfrak {D}}v(g_d\rightarrow g_c)\end {align*}


$[v(g_c)]_G=[v(g_d)]_G$


$v(g_c\rightarrow g_d)\land _{\mathfrak {D}}v(g_d\rightarrow g_c)\in G$


$v(g_{c\rightarrow _{\mathfrak {C}}d}),v(g_{d\rightarrow _{\mathfrak {C}}c})\in G$


$1_{\mathfrak {D}}\leftrightarrow _{\mathfrak {D}}v(g_{1_{\mathfrak {C}}})=v(g_c\rightarrow g_c)\leftrightarrow _{\mathfrak {D}} v(g_{c\rightarrow _{\mathfrak {C}}c})$


$v(g_c\rightarrow g_c)\leftrightarrow _{\mathfrak {D}} v(g_{c\rightarrow _{\mathfrak {C}}c})\in G$


$v(g_{1_{\mathfrak {C}}})\in G$


$c\not = d$


$c\rightarrow _{\mathfrak {C}}d\not =1_{\mathfrak {C}}$


$d\rightarrow _{\mathfrak {C}} c\not = 1_{\mathfrak {C}}$


$\mathfrak {C}$


$\star _{\mathfrak {C}}$


$c\rightarrow _{\mathfrak {C}}d\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$d\rightarrow _{\mathfrak {C}}c\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$c\rightarrow _{\mathfrak {C}}d\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$v(g_{c\rightarrow _{\mathfrak {C}}d}\rightarrow g_{\star _{\mathfrak {C}}})\leftrightarrow _{\mathfrak {D}}v(g_{(c\rightarrow _{\mathfrak {C}}d)\rightarrow _{\mathfrak {C}}\star _{\mathfrak {C}}})=(v(g_{c\rightarrow _{\mathfrak {C}}d})\rightarrow _{\mathfrak {D}}v(g_{\star _{\mathfrak {C}}}))\leftrightarrow _{\mathfrak {D}}v(g_{1_{\mathfrak {C}}})$


$v(g_{c\rightarrow _{\mathfrak {C}}d}\rightarrow g_{\star _{\mathfrak {C}}})\leftrightarrow _{\mathfrak {D}}v(g_{(c\rightarrow _{\mathfrak {C}}d)\rightarrow _{\mathfrak {C}}\star _{\mathfrak {C}}}),v(g_{1_{\mathfrak {C}}}),v(g_{c\rightarrow _{\mathfrak {C}}d})\in G$


$v(g_{\star _{\mathfrak {C}}})\in G$


$d\rightarrow _{\mathfrak {C}}c\leq _{\mathfrak {C}}\star _{\mathfrak {C}}$


$c=d$


$v'$


$\mathfrak {C}$


$\mathfrak {D}$


$\mathsf {N}$


$\mathfrak {A}$


$\mathfrak {B}$


$F$


$\mathfrak {B}^H$


$\Psi $


$\mathfrak {A}^H$


$\mathfrak {B}^H/F$


$\mathfrak {B}^H\models \chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})$


$g:|\mathfrak {A}|\rightarrow \mathcal {P}$


$\chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})$


$\neg $


$\mathfrak {B}\models \chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})$


$v$


$A$


$g:|\mathfrak {A}|\rightarrow \mathcal {P}$


$v(\theta (\chi _A^g(\mathfrak {A})))=v(\theta (\chi ^g_{\star _{\mathfrak {A}}}(\mathfrak {A})))\leq _{\mathfrak {B}}v(g_{\star _{\mathfrak {A}}})\leq _{\mathfrak {B}}v(g_{\star _{\mathfrak {A}}}\lor A)$


$\mathfrak {B}\models \chi _A^g(\mathfrak {A})$


$\relax \square $


$n$


$a_n,r_n$


$s_n$


\begin {equation*}a_n\coloneq \{i\mid i<n\},r_n\coloneq a_n\cup \{n+1\},s_n\coloneq r_n\cup \{n+3\}\end {equation*}


$\mathfrak {A}$


$\underline {\mathfrak {A}}$


$0_{\underline {\mathfrak {A}}}$


$\mathfrak {A}$


$\neg $


$\neg _{\underline {\mathfrak {A}}}a\coloneq a\rightarrow _{\underline {\mathfrak {A}}}0_{\underline {\mathfrak {A}}}$


$\underline {\mathfrak {A}}$


$\underline {\mathfrak {A}}$


$a\in |\underline {\mathfrak {A}}|$


$a\rightarrow _{\underline {\mathfrak {A}}}0_{\underline {\mathfrak {A}}}$


$0_{\underline {\mathfrak {A}}}\rightarrow _{\underline {\mathfrak {A}}}a$


$a=0_{\underline {\mathfrak {A}}}$


$1_{\underline {\mathfrak {A}}}$


$a\not =0_{\underline {\mathfrak {A}}}$


$c\not =0_{\underline {\mathfrak {A}}}$


$0_{\mathfrak {A}}\leq _{\underline {\mathfrak {A}}}a\land _{\underline {\mathfrak {A}}}c$


$a\land _{\underline {\mathfrak {A}}}c\not \leq 0_{\underline {\mathfrak {A}}}$


$a\rightarrow _{\underline {\mathfrak {A}}}0_{\underline {\mathfrak {A}}}=0_{\underline {\mathfrak {A}}}$


$0_{\underline {\mathfrak {A}}}\rightarrow _{\underline {\mathfrak {A}}} a=1_{\underline {\mathfrak {A}}}$


$\rightarrow $


$\relax \square $


$n$


$|\mathfrak {A}_n|=\{a_0,\ldots ,a_{n+8}\}\cup \linebreak \{r_0,\ldots ,r_{n+6}\}\cup \{s_0,s_{n+4},\mathbb {N}\}$


$x,y\in |\mathfrak {A}_n|, x\rightarrow _{\mathfrak {A}_n}y=\bigcup \{z\in |\mathfrak {A}_n|\mid x\cap z\subseteq y\},\neg _{\mathfrak {A}_n}x=x\rightarrow _{\mathfrak {A}_n}a_0$


$\mathfrak {A}_n$


$\lor $


$\land $


$\cup $


$\cap $


$n$


$\mathfrak {A}_n=\langle |\mathfrak {A}_n|,\mathbb {N},a_0,\cap ,\cup ,\rightarrow _{\mathfrak {A}_n},\neg _{\mathfrak {A}_n}\rangle $


$\underline {\mathfrak {A}_n}$


$a_{n+8}$


$n$


$\underline {\mathfrak {A}_0},\underline {\mathfrak {A}_1}$


$\underline {\mathfrak {A}_2}$


$\{\rightarrow \}$


$\mathfrak {A}_n$


$\mathfrak {A}_m$


$\leq _{\mathfrak {A}_n}$


$r_1, a_2, s_0$


$r_{n+5}, a_{n+6},s_{n+4}$


$r_{m+5}, a_{m+6},s_{m+4}$


$\{\rightarrow \}$


$n$


$m$


$n\not =m$


$\underline {\mathfrak {A}_n}$


$\{\rightarrow \}$


$\underline {\mathfrak {A}_m}/F$


$\underline {\mathfrak {A}_m}$


$F$


$\underline {\mathfrak {A}_m}$


$\mathsf {IPC}$


$\mathsf {AVQPC}$


$\mathsf {MPC_\neg }$


$\mathsf {ECQPC}$


$\mathsf {An\cap ECQPC}$


$\mathsf {An^-PC}$


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$\mathsf {NPC}$


$\mathsf {IPC}$


$\mathsf {ECQPC}$


$\mathsf {MPC}_\neg $


$\mathsf {An\cap ECQPC}$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {ECQPC}$


$\underline {\mathfrak {A}_n}$


$n$


$I\subset \mathbb {N}$


$\mathcal {A}_n$


$L^1(I)$


$N^1(\underline {\mathfrak {A}_k})\models \mathcal {A}_l$


$k\not =l$


$\mathcal {A}_n \in L^1(I)$


$n\in I$


$N^1(\underline {\mathfrak {A}_n})\not \models \mathcal {A}_n$


$\mathsf {IPC}$


$\mathsf {ECQPC}$


$n$


\begin {align*}N^1(\underline {\mathfrak {A}_n})=\langle |N^1(\underline {\mathfrak {A}_n})|,1_{N^1(\underline {\mathfrak {A}_n})},\land _{N^1(\underline {\mathfrak {A}_n})},\lor _{N^1(\underline {\mathfrak {A}_n})},\rightarrow _{N^1(\underline {\mathfrak {A}_n})},\neg _{N^1(\underline {\mathfrak {A}_n})}\rangle \end {align*}


\begin {align*}|N^1(\underline {\mathfrak {A}_n})|&\coloneq |\underline {\mathfrak {A}_n}|,\\ 1_{N^1(\underline {\mathfrak {A}_n})}&\coloneq \mathbb {N},\\ \land _{N^1(\underline {\mathfrak {A}_n})}&\coloneq \land _{\underline {\mathfrak {A}_n}},\\ \lor _{N^1(\underline {\mathfrak {A}_n})}&\coloneq \lor _{\underline {\mathfrak {A}_n}},\\ \rightarrow _{N^1(\underline {\mathfrak {A}_n})}&\coloneq \rightarrow _{\underline {\mathfrak {A}_n}},\end {align*}


$\neg _{N^1(\underline {\mathfrak {A}_n})} a:= \begin {cases} a_{n+8}& \text { if }a=0_{\underline {\mathfrak {A}_n}};\\ 0_{\underline {\mathfrak {A}_n}}&\text { otherwise}, \end {cases}$


$a\in |N^1(\underline {\mathfrak {A}_n})|$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(N),(ECQ)}$


$\mathsf {(An\cap ECQ)}$


$\mathsf {(N)}$


$a,b\in |N^1(\underline {\mathfrak {A}_n})|$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}&(\neg _{N^1(\underline {\mathfrak {A}_n})} a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} b)\\ &=(a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}(0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\\ &=(a\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$\mathsf {(N)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$a=0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b)&\rightarrow _{N^1(\underline {\mathfrak {A}_n})}(\neg _{N^1(\underline {\mathfrak {A}_n})} 0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} b)\\ &=(0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}(a_{n+8}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\\ &=0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}}\\ &=\mathbb {N}.\end {align*}


$0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b=0_{\underline {\mathfrak {A}_n}}$


$0_{\underline {\mathfrak {A}_n}}\leftrightarrow _{N^1(\underline {\mathfrak {A}_n})}b=(0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}b)\land _{N^1(\underline {\mathfrak {A}_n})}(b\rightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})$


$b\rightarrow _{N^1(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}}=0_{\underline {\mathfrak {A}_n}}$


$\mathsf {(N)}$


$a=0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$\mathsf {(N)}$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(ECQ)}$


$a,b\in |N^1(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\land _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} a)\rightarrow _{N^1(\underline {\mathfrak {A}_n})}b&=0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}b\\ &=\mathbb {N}.\end {align*}


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(ECQ)}$


$(\mathsf {An\cap ECQ})$


$(\mathsf {ECQ})$


$I$


$g:|N^1(\underline {\mathfrak {A}_n})|\rightarrow \mathcal {P}$


$\mathcal {A}_n$


$\chi ^g_{(g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}}}(N^1(\underline {\mathfrak {A}_n}))$


$L^1(I)$


$\mathcal {A}_n$


$\mathsf {ECQPC}$


$n\in I$


$L^1(I)$


$\mathsf {N}$


$N^1(\underline {\mathfrak {A}_k})\models \mathcal {A}_l$


$k,l$


$k\not =l$


$N^1(\underline {\mathfrak {A}_l})^H=\underline {\mathfrak {A}_l}$


$\{\rightarrow \}$


$\underline {\mathfrak {A}_l}$


$\underline {\mathfrak {A}_k}/F$


$k$


$k\not =l$


$F$


$\underline {\mathfrak {A}_k}$


$\Psi $


$\underline {\mathfrak {A}_l}$


$\underline {\mathfrak {A}_k}/F$


$k$


$l$


$k\not =l$


$F$


$\underline {\mathfrak {A}_k}$


$k$


$l$


$k\not =l$


$N^1(\underline {\mathfrak {A}_k})\models \mathcal {A}_l$


\begin {align*}\mathcal {A}_n\in L^1(I)\Leftrightarrow n\in I.\end {align*}


$\Leftarrow $


$\Rightarrow $


$n\not \in I$


$\mathcal {A}_n\not \in L^1(I)$


$N^1(\underline {\mathfrak {A}_n})$


$\mathsf {(N)}$


$\mathsf {(ECQ)}$


$\mathcal {A}_m$


$m\not =n$


$N^1(\underline {\mathfrak {A}_n})\not \models \mathcal {A}_n$


$g^{-1}$


$g$


$g^{-1}:\{g_a\in \mathcal {P}\mid a\in |N^1(\underline {\mathfrak {A}_n})|\}\rightarrow |N^1(\underline {\mathfrak {A}_n})|$


$g^{-1}(g(a))=a$


$v$


$|N^1(\underline {\mathfrak {A}_n})|$


$g^{-1}$


$v(\theta (\chi _{(g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}}}^g(N^1(\underline {\mathfrak {A}_n}))))=\mathbb {N}$


$v(g_a\otimes g_b)=a\otimes _{N^1(\underline {\mathfrak {A}_n})} b=v(g_{a\otimes _{N^1(\underline {\mathfrak {A}_n})} b})$


$a,b\in |N^1(\underline {\mathfrak {A}_n})|$


$\otimes \in \Psi $


$v((g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\not =\mathbb {N}$


$v(((g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\lor g_{\star _{\mathfrak {A}}})=\star _{\mathfrak {A}}\not =\mathbb {N}$


$N^1(\underline {\mathfrak {A}_n})\not \models \chi ^g_{(g_{0_{\underline {\mathfrak {A}}_n}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})}(N^1(\underline {\mathfrak {A}_n}))$


\begin {align*}v((g_{0_{\underline {\mathfrak {A}_n}}}&\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\\ &=(v(g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} v(g_{0_{\underline {\mathfrak {A}_n}}}))\rightarrow _{N^1(\underline {\mathfrak {A}_n})}\neg _{N^1(\underline {\mathfrak {A}_n})} v(g_{0_{\underline {\mathfrak {A}_n}}}))\\ &=(0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}a_{n+8})\rightarrow _{N^1(\underline {\mathfrak {A}_n})}a_{n+8}\\ &=\mathbb {N}\rightarrow _{N^1(\underline {\mathfrak {A}_n})}a_{n+8},\end {align*}


$v((g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\rightarrow \neg g_{0_{\underline {\mathfrak {A}_n}}})\not =\mathbb {N}$


$N^1(\underline {\mathfrak {A}_n})\not \models \mathcal {A}_n$


$\mathcal {A}_n$


$L^1(I)$


$\mathsf {ECQPC}$


$\mathcal {A}_m$


$m\in I$


$L^1(I)\subseteq \{A\mid N^1(\underline {\mathfrak {A}_n})\models A\}$


$\mathcal {A}_n\not \in L^1(I)$


$L^1(I)\not = L^1(J)$


$I$


$J$


$I\not =J$


$\mathsf {IPC}\vdash (p\rightarrow \neg p)\rightarrow \neg p$


$\mathsf {IPC}$


$\mathcal {A}_n$


$n$


$\mathsf {IPC}\vdash \mathcal {A}_n$


$I$


$\mathsf {ECQPC}\subsetneq L^1(I) \subsetneq \mathsf {IPC}$


$I$


$\mathsf {IPC}$


$\mathsf {ECQPC}$


$L^5(I)$


$\mathcal {A}_n$


$\mathsf {An\cap ECQPC}$


$n\in I$


$\relax \square $


$\mathsf {IPC}$


$\mathsf {AVQPC}$


$\mathsf {ECQPC}$


$\mathsf {An\cap ECQPC}$


$n$


\begin {align*}N^2(\underline {\mathfrak {A}_n})=\langle |N^2(\underline {\mathfrak {A}_n})|,1_{N^2(\underline {\mathfrak {A}_n})},\land _{N^2(\underline {\mathfrak {A}_n})},\lor _{N^2(\underline {\mathfrak {A}_n})},\rightarrow _{N^2(\underline {\mathfrak {A}_n})},\neg _{N^2(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^2(\underline {\mathfrak {A}_n})}$


$\neg _{N^2(\underline {\mathfrak {A}_n})} a:= \mathbb {N}$


$a\in |N^2(\underline {\mathfrak {A}_n})|$


$N^2(\underline {\mathfrak {A}_n})$


$\mathsf {(N),(An),(AVQ)}$


$\mathsf {(An\cap ECQ)}$


$\mathsf {(N)}$


$a,b\in |N^2(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}&(\neg _{N^2(\underline {\mathfrak {A}_n})} a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})}\neg _{N^2(\underline {\mathfrak {A}_n})} b)\\ &=(a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})} b)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}(\mathbb {N}\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N})\\ &=(a\leftrightarrow _{N^2(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$N^2(\underline {\mathfrak {A}_n})$


$\mathsf {(N)}$


$(\mathsf {An})$


$a\in |N^2(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\neg _{N^2(\underline {\mathfrak {A}_n})} a)\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\neg _{N^2(\underline {\mathfrak {A}_n})}a&=(a\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N})\rightarrow _{N^2(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$N^2(\underline {\mathfrak {A}_n})$


$\mathsf {(An)}$


$\mathsf {(AVQ)}$


$(\mathsf {An\cap ECQ})$


$(\mathsf {An})$


$n$


$\mathcal {B}_n\coloneq \chi ^g_{(g_{\mathbb {N}}\land \neg g_{\mathbb {N}})\rightarrow g_{0_{\underline {\mathfrak {A}_n}}}}(N^2(\underline {\mathfrak {A}_n}))$


$N^2(\underline {\mathfrak {A}_n})$


$\mathcal {B}_n$


$(\mathsf {ECQ})$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {AVQPC}$


$\mathsf {MPC}_\neg $


$n$


\begin {align*}N^3(\underline {\mathfrak {A}_n})=\langle |N^3(\underline {\mathfrak {A}_n})|,1_{N^3(\underline {\mathfrak {A}_n})},\land _{N^3(\underline {\mathfrak {A}_n})},\lor _{N^3(\underline {\mathfrak {A}_n})},\rightarrow _{N^3(\underline {\mathfrak {A}_n})},\neg _{N^3(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^3(\underline {\mathfrak {A}_n})}$


$\neg _{N^3(\underline {\mathfrak {A}_n})} a:=a\rightarrow _{N^3(\underline {\mathfrak {A}_n})} a_0$


$a\in |N^3(\underline {\mathfrak {A}_n})|$


$N^3(\underline {\mathfrak {A}_n})$


$\mathsf {(N)\text { and }(An)}$


$\mathsf {(N)}$


$a,b\in |N^3(\underline {\mathfrak {A}_n})|$


$\mathsf {(N)}$


$N^3(\underline {\mathfrak {A}_n})$


$(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}b)\land _{N^3(\underline {\mathfrak {A}_n})}(b\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\leq _{N^3(\underline {\mathfrak {A}_n})}a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0$


$(b\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a)\land _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\leq _{N^3(\underline {\mathfrak {A}_n})}b\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0$


$\mathsf {(An)}$


$a\in |N^3(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}&\neg _{N^3(\underline {\mathfrak {A}_n})}a)\rightarrow _{N^3(\underline {\mathfrak {A}_n})}\neg _{N^3(\underline {\mathfrak {A}_n})}a\\ &=(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0))\rightarrow _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\\ &=(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\rightarrow _{N^3(\underline {\mathfrak {A}_n})}(a\rightarrow _{N^3(\underline {\mathfrak {A}_n})}a_0)\\ &=\mathbb {N}.\end {align*}


$(\mathsf {An})$


$N^3(\underline {\mathfrak {A}_n})$


$n$


$\mathcal {D}_n\coloneq \chi ^g_{\neg \neg (\neg (g_{\mathbb {N}}\rightarrow g_{\mathbb {N}})\rightarrow g_{0_{\underline {\mathfrak {A}_n}}})}(N^3(\underline {\mathfrak {A}_n}))$


$N^3(\underline {\mathfrak {A}_n})$


$\mathcal {D}_n$


$(\mathsf {AVQ})$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {An\cap ECQPC}$


$\mathsf {An^-PC}$


$n$


\begin {align*}N^6(\underline {\mathfrak {A}_n})=\langle |N^6(\underline {\mathfrak {A}_n})|,1_{N^6(\underline {\mathfrak {A}_n})},\land _{N^6(\underline {\mathfrak {A}_n})},\lor _{N^6(\underline {\mathfrak {A}_n})},\rightarrow _{N^6(\underline {\mathfrak {A}_n})},\neg _{N^6(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^4(\underline {\mathfrak {A}_n})}$


$\neg _{N^6(\underline {\mathfrak {A}_n})} a:=a_{n+8}$


$a\in |N^6(\underline {\mathfrak {A}_n})|$


$N^6(\underline {\mathfrak {A}_n})$


$(\mathsf {N})$


$(\mathsf {An^-})$


$n$


\begin {equation*}\mathcal {F}_n\coloneq \chi ^g_{\neg \neg (g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow g_{0_{\underline {\mathfrak {A}_n}}})\lor (\neg (g_{\mathbb {N}}\rightarrow g_{\mathbb {N}})\rightarrow g_{0_{\underline {\mathfrak {A}_n}}} )}(N^6(\underline {\mathfrak {A}_n})).\end {equation*}


$N^6(\underline {\mathfrak {A}_n})$


$\mathcal {F}_n$


$(\mathsf {An\cap ECQ})$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {An^-PC}$


$\mathsf {CoPC}$


$n$


\begin {align*}N^{7}(\underline {\mathfrak {A}_n})=\langle |N^{7}(\underline {\mathfrak {A}_n})|,1_{N^{7}(\underline {\mathfrak {A}_n})},\land _{N^{7}(\underline {\mathfrak {A}_n})},\lor _{N^{7}(\underline {\mathfrak {A}_n})},\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})},\neg _{N^{7}(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^7(\underline {\mathfrak {A}_n})}$


$\neg _{N^{7}(\underline {\mathfrak {A}_n})} a:= \begin {cases} \mathbb {N}& \text { if }a=0_{\underline {\mathfrak {A}_n}};\\ a_0&\text { otherwise }, \end {cases}$


$a\in |N^{7}(\underline {\mathfrak {A}_n})|$


$N^7(\underline {\mathfrak {A}_n})$


$\mathsf {(Co)}$


$\mathsf {(N)}$


$\mathsf {(Co)}$


$a,b\in N^{7}(\underline {\mathfrak {A}_n})$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _n(&\neg _{N^{7}(\underline {\mathfrak {A}_n})} b\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\neg _{N^{7}(\underline {\mathfrak {A}_n})} a)\\ &=(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}(a_0\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}a_0)\\ &=(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$\mathsf {(Co)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b=0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}&(\neg _{N^{7}(\underline {\mathfrak {A}_n})}b\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\neg _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\\&=\mathbb {N}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}(a_0\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\mathbb {N})\\ &=\mathbb {N}.\end {align*}


$\mathsf {(Co)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b=0_{\underline {\mathfrak {A}_n}}$


$a\not = 0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


\begin {align*}(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}&(\neg _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}\neg _{N^{7}(\underline {\mathfrak {A}_n})} a)\\ &=(a\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}0_{\underline {\mathfrak {A}_n}})\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}(\mathbb {N}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}a_0)\\ &=0_{\underline {\mathfrak {A}_n}}\rightarrow _{N^{7}(\underline {\mathfrak {A}_n})}a_0\\ &=\mathbb {N}.\end {align*}


$\mathsf {(Co)}$


$a\not =0_{\underline {\mathfrak {A}_n}}$


$b\not =0_{\underline {\mathfrak {A}_n}}$


$\mathsf {(Co)}$


$N^{7}(\underline {\mathfrak {A}_n})$


$\mathsf {N}$


$n$


$\mathcal {G}_n\coloneq \chi ^g_{(g_{a_0}\rightarrow \neg g_{a_0})\rightarrow (\neg g_{0_{\underline {\mathfrak {A}_n}}}\rightarrow \neg g_{a_0})}(N^{7}(\underline {\mathfrak {A}_n}))$


$N^{7}(\underline {\mathfrak {A}_n})$


$\mathcal {G}_n$


$(\mathsf {An}^-)$


$N^1(\underline {\mathfrak {A}_n})$


$\mathcal {A}_n$


$\mathsf {(An)}$


$\relax \square $


$\mathsf {CoPC}$


$\mathsf {NECQPC}$


$n$


\begin {align*}N^{8}(\underline {\mathfrak {A}_n})=\langle |N^{8}(\underline {\mathfrak {A}_n})|,1_{N^{8}(\underline {\mathfrak {A}_n})},\land _{N^{8}(\underline {\mathfrak {A}_n})},\lor _{N^{8}(\underline {\mathfrak {A}_n})},\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})},\neg _{N^{8}(\underline {\mathfrak {A}_n})}\rangle \end {align*}


$\neg _{N^8(\underline {\mathfrak {A}_n})}$


$\neg _{N^{8}(\underline {\mathfrak {A}_n})} a:= \begin {cases} \mathbb {N}& \text { if }a=a_{n+8};\\ a_{n+8}&\text { otherwise }, \end {cases}$


$a\in |N^{8}(\underline {\mathfrak {A}_n})|$


$N^{8}(\underline {\mathfrak {A}_n})$


$\mathsf {(N)}$


$\mathsf {(NECQ)}$


$\mathsf {(N)}$


$a,b\in N^{8}(\underline {\mathfrak {A}_n})$


$a\not = a_{n+8}$


$b\not =a_{n+8}$


\begin {align*}(a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)&\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(\neg _{N^{8}(\underline {\mathfrak {A}_n})} a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b)\\&=(a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8})\\ &=(a\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\mathbb {N}\\ &=\mathbb {N}.\end {align*}


$\mathsf {(N)}$


$a\not =a_{n+8}$


$b\not =a_{n+8}$


$a= a_{n+8}$


$b\not =a_{n+8}$


\begin {align*}(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})} b)&\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(\neg _{N^{8}(\underline {\mathfrak {A}_n})} a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b)\\ &=(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}(\mathbb {N}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8})\\ &=(a_{n+8}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}b)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}\\ &=\mathbb {N}.\end {align*}


$\mathbb {N}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}=a_{n+8}$


$\mathbb {N}\leftrightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}=(\mathbb {N}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8})\land _{N^{8}(\underline {\mathfrak {A}_n})}(a_{n+8}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\mathbb {N})$


$\mathbb {N}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}a_{n+8}=a_{n+8}$


$\mathsf {(N)}$


$a=a_{n+8}$


$b\not =a_{n+8}$


$\mathsf {(NECQ)}$


$a,b\in |N^{8}(\underline {\mathfrak {A}_n})|$


\begin {align*}(a\land _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} a)\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b&=a_{n+8}\rightarrow _{N^{8}(\underline {\mathfrak {A}_n})}\neg _{N^{8}(\underline {\mathfrak {A}_n})} b\\ &=\mathbb {N}.\end {align*}


$\mathsf {(NECQ)}$


$N^{8}(\underline {\mathfrak {A}_n})$
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invited talks, eighteen contributed talks, and eighteen short presentations 
accepted through a light reviewing process.

Given that non-classical logics form a broad and diverse area of research 
within logic, the contributions collected in this issue address a wide range of 
topics. They include, among others, proof-theoretic properties of connexive 
implication, term-modalities, until-free fragments of linear temporal logic, 
and subminimal intuitionistic negation.

The article “Cut-Elimination and Normalization Theorems for Con­
nexive Logics over Wansing’s C1” by Norihiro Kamide develops a unified 
Gentzen-style proof-theoretical framework for a family of connexive logics 
based on Wansing’s constructive connexive logic C. Within this framework, 
the author introduces sequent calculi and natural deduction systems (in­
cluding variants with general elimination rules) for C and its extensions—
C3, MC, and CN—obtained by adding the law of excluded middle, Peirce’s 
law, or both. The paper proves cut-elimination theorems for the sequent 
calculi, normalisation theorems for the corresponding natural deduction 
systems, and establishes their equivalence. In addition, similar results 
are obtained for a family of paraconsistent logics (N-family) over Nelson’s 
four-valued logic N4. Compared to earlier work, the article extends and 
refines proofs, corrects errors from a prior conference version, and provides 
detailed technical developments that yield an integrated proof-theoretical 
treatment of connexive and related paraconsistent logics. The article by 
Takahiro Sawasaki, “Semantic Incompleteness of Liberman et al. (2020)’s 
Hilbert-Style Systems for Term-Modal Logics with Equality and Non-Rigid 
Terms”, establishes that the Hilbert-style systems proposed by Liberman 
et al. [1] for term-modal logics are semantically incomplete when extended 
with standard modal axioms (T, D, 4, 5). Term-modal logic, which allows 
modal operators indexed by first-order terms, is important in epistemic and 
deontic contexts, but the author shows that certain formulas valid in the 
intended Kripke semantics are unprovable in these systems. In particular, 
the validity of the formula x = c → (P (x) → P (c)) highlights the gap. 
To demonstrate this, the paper develops a non-standard Kripke semantics 
in which the interpretation of constants and function symbols depends on 
the relations they occur with, thereby exposing the systems’ limitations. 
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The paper also corrects a mischaracterised frame correspondence in Liber­
man et al.’s paper, providing refined technical results on the relationship 
between syntax, semantics, and completeness in this family of logics.

Norihiro Kamide and Sara Negri’s paper “Unified Sequent Calculi and 
Natural Deduction Systems for Until-free Linear-time Temporal Logics” 
introduces a unified Gentzen-style proof-theoretic framework for until-free 
propositional linear-time temporal logic (LTL) and its intuitionistic variant. 
It develops both single-succedent sequent calculi and natural deduction sys­
tems that extend Gentzen’s classical (LK, NK) and intuitionistic (LI, NI) 
calculi in a uniform way. The main results establish the equivalence be­
tween the proposed sequent calculi and natural deduction systems, prove 
cut-elimination theorems for the calculi, and show normalisation theorems 
for the deduction systems. By doing so, the article provides a modular, 
consistent, and proof-theoretically robust foundation for reasoning in these 
temporal logics, clarifying their structural properties and relations to clas­
sical proof theory.

Finally, the article “Continua of Logics Related to Intuitionistic and 
Minimal Logics” by Kaito Ichikura investigates the landscape of logical sys­
tems lying between and around intuitionistic and minimal logics. Building 
on Vakarelov’s work on co-minimal and subminimal logics [2], the paper re­
formulates earlier approaches in a uniform framework and introduces a sim­
pler characterisation of the intersection of minimal and co-minimal logics. 
Using algebraic semantics (Wroński’s method) rather than neighborhood 
semantics, the author demonstrates the existence of continua of distinct 
logics situated between these systems, thereby extending classical results 
on the cardinality of intermediate logics. The study not only clarifies the 
relations among various subminimal systems (such as SUBMIN, CO-MIN, 
and their fragments), but also provides simpler proofs of known results 
and shows how algebraic tools can yield new insights into the fine-grained 
structure of the logical space below intuitionistic logic.
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middle. Natural deduction systems with general elimination rules are also in­
troduced for the C-family. Theorems establishing the equivalence between the 
proposed sequent calculi and natural deduction systems are demonstrated. Cut-
elimination and normalization theorems are established for the proposed sequent 
calculi and natural deduction systems, respectively. Additionally, similar results 
are obtained for a family (N-family) of paraconsistent logics over Nelson’s con­
structive four-valued logic N4. 

Keywords: connexive logic, cut-elimination theorem, normalization theorem.

2020 Mathematical Subject Classification: 03B50, 03B53.

1. Introduction

Connexive logics are recognized as philosophically plausible paraconsistent 
contradictory logics [3, 22, 40, 43]. A distinguishing feature of connexive 
logics is their validation of the so-called Aristotle’s theses: ∼(α→∼α) and 
∼(∼α→α), and the so-called Boethius’ theses: (α→β)→∼(α→∼β) and 
(α→∼β)→∼(α→β). On the one hand, the roots of connexive logics can 
be traced back to Aristotle and Boethius. On the other hand, modern 
perspectives on connexive logics were established by Angell [3] and Mc­
Call [22].

A basic constructive connexive logic referred to as C, considered a 
variant of Nelson’s constructive four-valued logic N4 [2, 24, 19], was in­
troduced by Wansing in [40]. Furthermore, C was extended by Wans­
ing in [40] to introduce a constructive connexive modal logic, serving as 
a constructive connexive analogue of the smallest normal modal logic K. 
For further details on connexive logics, including C, refer to, for example, 
[3, 22, 40, 4, 17, 20, 43, 30, 26] and the references therein.

In this study, a unified Gentzen-style framework for proving cut-eli­
mination and normalization theorems is employed to investigate several 
connexive logics over Wansing’s C. The term “unified Gentzen-style frame­
work” means that we can handle cut-elimination theorems in Gentzen-
style sequent calculi and normalization theorems in Gentzen-style natural 
deduction systems uniformly, with equivalences between these calculi and 
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systems. Additionally, natural deduction systems with general elimination 
rules are added to this framework.

The logics under consideration include Omori and Wansing’s connexive 
logic C3 [30], Wansing’s material connexive logic MC [43], and Cantwell’s 
connexive logic CN [4]. The relationships among these logics can be sum­
marized as follows: C3 is obtained from C by adding the law of excluded 
middle ¬α∨α, MC is obtained from C by adding Peirce’s law
((α→β)→α)→α, and CN is obtained from C3 by adding Peirce’s law.

On the one hand, Gentzen-style or G3-style sequent calculi for C, C3, 
CN and some intermediate logics between C and C3 have been introduced 
and investigated [40, 30, 6, 25], along with a Gentzen-style natural deduc­
tion system for the implicational fragment of C [13]. On the other hand, 
a unified Gentzen-style framework for C, C3, MC, and CN has not been 
established. Therefore, we construct such a framework in this study. This 
framework enables an integrated proof-theoretical treatment of these log­
ics and establishes a natural correspondence between sequent calculi and 
natural deduction systems for them.

We now discuss some related works on sequent calculi for connexive 
logics. The cut-elimination theorem for a Gentzen-style sequent calculus, 
referred to as sC, was proved by Wansing in [40], although the name sC was 
not used by him. The cut-elimination theorems for G3-style sequent cal­
culi, namely G3C and G3C3at for C and C3, respectively, were established 
by Omori and Wansing in [30]. In this context, G3C3at is a sequent cal­
culus that incorporates the rule of atomic excluded middle (at-ex-middle) 
in place of the rule of excluded middle (ex-middle). The admissibility of 
(ex-middle) in G3C3at was also demonstrated by them. Consequently, 
the cut-elimination theorem for a G3-style sequent calculus, referred to as 
G3C3, which is obtained from G3C3at by replacing (at-ex-middle) with 
(ex-middle), was also demonstrated by them in [26]. Additionally, the 
first-order extensions of G3C, G3C3at, and G3C3 were also introduced 
and investigated by them. The systems G3C, G3C3at, and G3C3 were also 
used by Niki and Wansing in [26] to explore the provable contradictions of 
C and C3.
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Several sequent calculi for some intermediate logics between C and C3 
have recently been studied by Niki in [25]. A three-sided sequent calculus 
for CN, under the name CC/TTm, has recently been introduced and in­
vestigated by Égré et al. in [6]. A natural deduction system, NC2, and 
a two-sorted typed λ-calculus, 2λ, were introduced and investigated by 
Wansing in [42] for the bi-connexive propositional logic 2C. Natural deduc­
tion systems for two variants of connexive logics concerning non-classical 
interpretations of a certain kind between negation and implication were 
studied by Francez in [9]. In addition, some extensions of C were studied 
by Olkhovikov in [27, 28] and by Omori in [29], although these studies are 
not concerned with sequent calculus or natural deduction system.

The structure of this paper is as follows.
In Section 2, we introduce Gentzen-style sequent calculi for C, C3, MC, 

and CN, referred to as sC, sC3, sMC, and sCN, respectively. Furthermore, 
we prove the cut-elimination theorems for these calculi. The calculi sC3, 
sMC, and sCN are obtained from sC by adding the excluded middle rule 
(ex-middle), the Peirce rule (Peirce), and both (ex-middle) and (Peirce), 
respectively. Moreover, we introduce alternative Gentzen-style sequent cal­
culi for MC and CN, referred to as sMC∗ and sCN∗, respectively. These 
calculi are obtained from sC by adding the generalized excluded middle rule 
(g-ex-middle) and both (ex-middle) and (g-ex-middle), respectively. We 
then prove a theorem establishing the cut-free equivalence between sMC∗

(sCN∗) and sMC (sCN, resp.), along with presenting the cut-elimination 
theorems for sMC∗ and sCN∗.

In Section 3, we introduce Gentzen-style natural deduction systems for 
C, C3, MC, and CN, referred to as nC, nC3, nMC, and nCN, respectively. 
We then prove a theorem establishing equivalence between nC, (nC3, nMC, 
and nCN), and sC, (sC3, sMC∗, and sCN∗, resp.). Furthermore, we prove 
the normalization theorems for nC, nC3, nMC, and nCN.

In Section 4, we introduce natural deduction systems with general elim­
ination rules [33, 37], for C, C3, MC, and CN, referred to as gC, gC3, gMC, 
and gCN, resp. We then prove a theorem establishing equivalence between 
gC, (gC3, gMC, and gCN), and sC, (sC3, sMC∗, and sCN∗, resp.). Further­
more, we prove the normalization theorems for gC, gC3, gMC, and gCN.
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In Section 5, we show some similar results on a family (N-family) of pa­
raconsistent logics over Nelson’s constructive four-valued logic N4 [2, 24]. 
The N-family is obtained from N4 by adding Peirce’s law, the law of ex­
cluded middle, and/or the law of generalized excluded middle.

In Section 6, we conclude this study and provide some final remarks.

2. Gentzen-style sequent calculi and cut-elimination 
theorems

Formulas of connexive logics are constructed using countably many propo­
sitional variables, the logical connectives ∧ (conjunction), ∨ (disjunction), 
→ (implication), and ∼ (connexive negation). We use small letters p, q, ...
to denote propositional variables, Greek small letters α, β, ... to denote for­
mulas, and Greek capital letters Γ,∆, ... to denote finite (possibly empty) 
sets of formulas. A sequent is an expression of the form Γ ⇒ γ. We use 
the expression L ⊢ S to represent the fact that a sequent S is provable in 
a sequent calculus L. We say that “a rule R of inference is admissible in a 
sequent calculus L” if the following condition is satisfied: For any instance

S1 · · ·Sn

S

of R, if L ⊢ Si for all i, then L ⊢ S. Furthermore, we say that “R is 
derivable in L” if there is a derivation from S1, · · · , Sn to S in L.

We introduce Gentzen-style sequent calculi LJ+ [34], sC [40], sC3, sMC, 
and sCN for positive intuitionistic logic, C [40], C3 [30], MC [43], and CN 
[4], respectively.
Definition 2.1 (LJ+, sC, sC3, sMC, and sCN).

1. LJ+ is defined by the initial sequents and structural and logical in­
ference rules of the following form, for any propositional variable p:

p,Γ ⇒ p (init1)

Γ ⇒ α α,Σ ⇒ γ

Γ,Σ ⇒ γ
(cut)
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Γ ⇒ α β,∆ ⇒ γ

α→β,Γ,∆ ⇒ γ
(→left)

α,Γ ⇒ β

Γ ⇒ α→β
(→right)

α, β,Γ ⇒ γ

α∧β,Γ ⇒ γ
(∧left)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α∧β (∧right)

α,Γ ⇒ γ β,Γ ⇒ γ

α∨β,Γ ⇒ γ
(∨left)

Γ ⇒ α
Γ ⇒ α∨β (∨right1)

Γ ⇒ β

Γ ⇒ α∨β (∨right2).

2. sC is obtained from LJ+ by adding the negated initial sequents and 
logical inference rules of the following form, for any propositional 
variable p:

∼p,Γ ⇒ ∼p (init2)

α,Γ ⇒ γ

∼∼α,Γ ⇒ γ
(∼left) Γ ⇒ α

Γ ⇒ ∼∼α (∼right)

Γ ⇒ α ∼β,∆ ⇒ γ

∼(α→β),Γ,∆ ⇒ γ
(∼→left)

α,Γ ⇒ ∼β
Γ ⇒ ∼(α→β)

(∼→right)

∼α,Γ ⇒ γ ∼β,Γ ⇒ γ

∼(α∧β),Γ ⇒ γ
(∼∧left)

Γ ⇒ ∼α
Γ ⇒ ∼(α∧β)

(∼∧right1)
Γ ⇒ ∼β

Γ ⇒ ∼(α∧β)
(∼∧right2)

∼α,∼β,Γ ⇒ γ

∼(α∨β),Γ ⇒ γ
(∼∨left)

Γ ⇒ ∼α Γ ⇒ ∼β
Γ ⇒ ∼(α∨β)

(∼∨right).

3. sC3 is obtained from sC by adding the excluded middle rule of the 
form:

∼α,Γ ⇒ γ α,Γ ⇒ γ

Γ ⇒ γ
(ex-middle).
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4. sMC is obtained from sC by adding the Peirce rule of the form:

α→β,Γ ⇒ α

Γ ⇒ α
(Peirce).

5. sCN is obtained from sC3 by adding (Peirce).

Remark 2.2.

1. It is known that single-succedent Gentzen-style sequent calculi for 
classical logic are obtained from Gentzen’s sequent calculus LJ (or 
other variants such as the G3-style sequent calculus G3ip) for in­
tuitionistic logic by adding one of (ex-middle), (Peirce), and their 
variants. These single-succeddent calculi have been studied by sev­
eral researchers [5, 7, 10, 1, 36, 23, 12, 15]. For a survey on these 
calculi, see, for example, [12, 15].

2. (ex-middle), which corresponds to the law of excluded middle ∼α∨α, 
was introduced and investigated by von Plato [36, 23], although the 
name (ex-middle) was not used by him. He showed that (ex-middle) 
can be restricted to the inference rule of the form:

∼p,Γ ⇒ γ p,Γ ⇒ γ

Γ ⇒ γ
(at-ex-middle)

where p is a propositional variable. Namely, (at-ex-middle) and (ex-
middle) are equivalent over intuitionistic logic. He proved the cut-
elimination theorems for some sequent calculi with (at-ex-middle) or 
(ex-middle).

3. (Peirce), which corresponds to the Peirce law ((α→β)→α)→α, was 
introduced and investigated by Curry [5], Felscher [7], Gordeev [10], 
and Africk [1]. The cut-elimination theorem for LJ + (Peirce) was 
proved by them. Specifically, Africk [1] obtained a simple embedding-
based proof of the cut-elimination theorem for LJ + (Peirce). The 
subformula property for a version of LJ + (Peirce) without the falsity 
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constant ⊥ was shown by Gordeev. Specifically, he proved in [10] 
that β in (Peirce) can be restricted to a subformula of some formulas 
in (Γ, α).

4. Gentzen’s LK for classical logic, LJ + (ex-middle), and LJ + (Peirce) 
are theorem-equivalent within the language {∧,∨,→,¬,⊥}. How­
ever, sC3, sMC, and sCN (and their corresponding logics C3, MC, 
and CN) are not logically-equivalent. This fact will be formally shown 
in Theorem 2.7.

Proposition 2.3.  Let L be LJ+, sC, sC3, sMC, or sCN. For any formula 
α and any set Γ of formulas, we have: L ⊢ α,Γ ⇒ α.
Proof: By induction on α. □

Proposition 2.4.  Let L be LJ+, sC, sC3, sMC, or sCN. The following 
rule is admissible in cut-free L:

Γ ⇒ γ

α,Γ ⇒ γ
(we).

Proof: By induction on the proofs P  of Γ ⇒ γ of (we) in cut-free L. □
The following cut-elimination theorems for LJ+ and sC are well-known.

Theorem 2.5 (Cut-elimination for LJ+ and sC [34, 40]).  Let L be LJ+
or sC. The rule (cut) is admissible in cut-free L.

We now show the cut-elimination theorems for sC3, sMC, and sCN.
Theorem 2.6 (Cut-elimination for sC3, sMC, and sCN).  Let L be sC3, 
sMC, or sCN. The rule (cut) is admissible in cut-free L.
Proof (Sketch): We give a sketch of the proof.

• First, we show the cut-elimination theorem for sC3. It is known that 
the cut-elimination theorem for the G3-style sequent calculus G3C3 for 
C3, which has (ex-middle), holds [30]. Then, we can show the cut-free 
equivalence between G3C3 and sC3. Thus, from this equivalence and the 
cut-elimination theorem for G3C3, we obtain the cut-elimination theorem 
for sC3.
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• Second, we show the cut-elimination theorem for sMC. It is known 
that the cut-elimination theorem for LJ + (Peirce) holds. This theorem was 
proved directly and indirectly by using the methods by Gordeev [10] and 
Africk [1]. Thus, the cut-elimination theorem for the negation-less fragment 
(i.e., LJ+ + (Peirce)) of LJ + (Peirce) holds because LJ + (Peirce) is a 
conservative extension of LJ+ + (Peirce) by the cut-elimination theorem 
for LJ + (Peirce). Then, we can show a theorem for embedding (cut-free) 
sMC into (cut-free) LJ+ + (Peirce), and by using this theorem, we can show 
the cut-elimination theorem for sMC. We will show this in the following.

Prior to showing the embedding theorem, we introduce a translation of 
sMC to LJ+ + (Peirce). Let Φ be a set of propositional variables and Φ′

be the set {p′ | p ∈ Φ} of propositional variables. Then, the language LMC

of sMC is defined using Φ, ∧, ∨, →, and ∼. The language LInt+ of LJ+
is obtained from LMC by replacing ∼ with Φ′. A mapping f  from LMC to 
LInt+ is defined inductively by:

1. for any p ∈ Φ, f(p) := p and f(∼p) := p′ ∈ Φ′,
2. f(α ♯ β) := f(α) ♯ f(β) with ♯ ∈ {∧,∨,→},
3. f(∼∼α) := f(α),
4. f(∼(α∧β)) := f(∼α)∨f(∼β),
5. f(∼(α∨β)) := f(∼α)∧f(∼β),
6. f(∼(α→β)) := f(α)→f(∼β).

An expression f(Γ) denotes the result of replacing every occurrence of 
a formula α in Γ by an occurrence of f(α). We remark that a similar 
translation defined as above has been used by Gurevich [11], Rautenberg 
[32] and Vorob’ev [38] to embed Nelson’s constructive logic [2, 24] into 
positive intuitionistic logic.

We then obtain the following theorem for embedding sMC into LJ+ +
(Peirce):

1. sMC ⊢ Γ ⇒ γ iff  LJ+ + (Peirce) ⊢ f(Γ) ⇒ f(γ),
2. sMC − (cut) ⊢ Γ ⇒ γ iff  LJ+ + (Peirce) − (cut) ⊢ f(Γ) ⇒ f(γ).

The proof of this theorem is almost the same as that for the theorem for em­
bedding sC or a Gentzen-style sequent calculus for Nelson’s paraconsistent 
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four-valued logic N4 into LJ+. For more information on these embedding 
theorems, see, for example, [18, 19, 17, 20, 14].

We are ready to prove of the cut-elimination theorem for sMC. Suppose 
that sMC ⊢ Γ ⇒ γ. Then, we have LJ+ + (Peirce) ⊢ f(Γ) ⇒ f(γ) by 
the statement (1) of the theorem, and hence LJ+ + (Peirce) − (cut) ⊢
f(Γ) ⇒ f(γ) by the cut-elimination theorem for LJ+ + (Peirce). Then, by 
the statement (2) of the theorem, we obtain sMC − (cut) ⊢ Γ ⇒ γ.

• Finally, the cut-elimination theorem for sCN can be proved in a similar 
way as for sMC. □

Theorem 2.7 (Separation of C, C3, MC, and CN).  The logics C, C3, MC, 
and CN are not logically-equivalent.
Proof: To show this, we use sC, sC3, sMC, sCN, and Theorem 2.6. Let 
p and q be distinct propositional variables. Then, we consider only the 
following facts:

1. ⇒ ((p→q)→p)→p is provable in cut-free sMC, but not provable in 
cut-free sC3,

2. ⇒ ∼p∨p is provable in cut-free sC3, but not provable in cut-free sMC.

The unprovabilities of these sequents are guaranteed by Theorem 2.6. We 
thus show the case for sMC − (cut) ⊢ ⇒ ((p→q)→p)→p by:

p⇒ p (init1) q ⇒ q (init1)
p→q, p⇒ q (→left)

p→q ⇒ p→q (→right) p⇒ p (init1)

p→q, (p→q)→p⇒ p
(→left)

(p→q)→p⇒ p
(Peirce)

⇒ ((p→q)→p)→p
(→right)

and the case for sC3 − (cut) ⊢ ⇒ ∼p∨p by:

∼p⇒ ∼p (init2)
∼p⇒ ∼p∨p (∨right1)

p⇒ p (init1)
p⇒ ∼p∨p (∨right2)

⇒ ∼p∨p (ex-middle).
□
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Next, we introduce alternative Gentzen-style sequent calculi sMC∗ and 
sCN∗ for MC and CN, respectively. These calculi will be used to prove the 
normalization theorems for the natural deduction systems nMC and nCN 
for MC and CN, respectively.
Definition 2.8 (sMC∗ and sCN∗).

1. sMC∗ is obtained from sC by adding the generalized excluded middle 
rule of the form:

α→β,Γ ⇒ γ α,Γ ⇒ γ

Γ ⇒ γ
(g-ex-middle).

2. sCN∗ is obtained from sC3 by adding (g-ex-middle).

Remark 2.9.

1. (g-ex-middle), which corresponds to the generalized law of excluded 
middle (α→β)∨α, was introduced and investigated by Kamide in [12], 
although the name (g-ex-middle) was not used by him. He proved 
the cut-elimination theorem for LJ + (g-ex-middle) using the method 
by Africk [1].

2. LJ + (g-ex-middle) is regarded as a sequent calculus for classical logic. 
Actually, (g-ex-middle) and (ex-middle) are equivalent over positive 
intuitionistic logic. (g-ex-middle) is regarded as a generalization of 
(ex-middle) if we assume the falsity constant ⊥ and the definition 
∼α := α→⊥. (g-ex-middle) is also regarded as a generalization of 
(Peirce) and it was referred to as generalized Peirce rule (named (g-
Peirce)) in [12].

3. The following is an example proof of ⇒ (p→q)∨p in cut-free sMC∗:

p⇒ p (init1) q ⇒ q (init1)
p→q, p⇒ q (→left)

p→q ⇒ p→q (→right)

p→q ⇒ (p→q)∨p
(∨right1)

p⇒ p (init1)

p⇒ (p→q)∨p
(∨right2)

⇒ (p→q)∨p
(g-ex-middle).
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Proposition 2.10. Let L be sMC∗ or sCN∗. For any formula α and any 
set Γ of formulas, we have: L ⊢ α,Γ ⇒ α.
Proof: By induction on α. □

Proposition 2.11.  Let L be sMC∗ or sCN∗. The rule (we) is admissible 
in cut-free L.
Proof: Similar to the proof of Proposition 2.4. □

Theorem 2.12 (Equivalence between sMC (sCN) and sMC∗ (sCN∗)).  Let 
L1 and L2 be the sequent calculi sMC and sCN, respectively. Let L∗

1 and 
L∗
2 be the sequent calculi sMC∗ and sCN∗, respectively. For any i ∈ {1, 2}, 

we have:

1. Li ⊢ Γ ⇒ γ iff L∗
i ⊢ Γ ⇒ γ,

2. Li − (cut) ⊢ Γ ⇒ γ iff L∗
i − (cut) ⊢ Γ ⇒ γ.

Proof: We show only (2). The fact that Li − (cut) ⊢ Γ ⇒ γ implies L∗
i

− (cut) ⊢ Γ ⇒ γ is obvious because (Peirce) is an instance of (g-ex-middle). 
Thus, we show that L∗

i − (cut) ⊢ Γ ⇒ γ implies Li − (cut) ⊢ Γ ⇒ γ by 
induction on the proofs P  of Γ ⇒ γ in L∗

i − (cut). We distinguish the cases 
according to the last inference of P  and show only the following case.

Case (g-ex-middle): The last inference of P  is of the form:
....

α→β,Γ ⇒ γ

....
α,Γ ⇒ γ

Γ ⇒ γ
(g-ex-middle).

By induction hypotheses, we have: Li − (cut) ⊢ α→β,Γ ⇒ γ and Li −
(cut) ⊢ α,Γ ⇒ γ. Then, we obtain the required fact:

.... Ind.hyp.
α→β,Γ ⇒ γ

.... Ind.hyp.
α,Γ ⇒ γ

γ→α, α→β,Γ ⇒ γ
(→left)

α→β,Γ ⇒ γ
(Peirce).

□
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Theorem 2.13 (Cut-elimination for sMC∗ and sCN∗).Let L be sMC∗ or 
sCN∗. The rule (cut) is admissible in cut-free L.
Proof: By Theorems 2.6 and 2.12. □

3. Gentzen-style natural deduction systems
and normalization theorems

We now define Gentzen-style natural deduction systems NJ+, nC, nC3, 
nMC, and nCN for positive intuitionistic logic, C, C3, MC, and CN, re­
spectively. We use the notation [α] in the definitions of natural deduction 
systems to denote the discharged assumption (i.e., the formula α is a dis­
charged assumption by the underlying logical inference rule).
Definition 3.1 (NJ+, nC, nC3, nMC, and nCN).

1. NJ+ is defined as the logical inference rules of the form: 2

[α]....
β

α→β
(→I)

α→β α

β
(→E)

α β

α∧β (∧I) α∧β
α (∧E1)

α∧β
β

(∧E2)

α
α∨β (∨I1)

β

α∨β (∨I2) α∨β

[α]....
γ

[β]....
γ

γ (∨E).

2The discharge in (→I) can be vacuous. Namely, the following rule is an instance of 
(→I):

β

α→β.
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2. nC is obtained from NJ+ by adding the negated logical inference rules 
of the form:

α
∼∼α (∼∼I) ∼∼α

α (∼∼E)

[α]....
∼β

∼(α→β)
(∼→I)

∼(α→β) α

∼β (∼→E)

∼α
∼(α∧β)

(∼∧I1)
∼β

∼(α∧β)
(∼∧I2)

∼(α∧β)

[∼α]....
γ

[∼β]....
γ

γ (∼∧E)

∼α ∼β
∼(α∨β)

(∼∨I) ∼(α∨β)
∼α (∼∨E1)

∼(α∨β)
∼β (∼∨E2).

3. nC3 is obtained from nC by adding the rule of excluded middle of 
the form:

[∼α]....
γ

[α]....
γ

γ (EM).

4. nMC is obtained from nC by adding the generalized rule of excluded 
middle of the form:

[α→β]....
γ

[α]....
γ

γ (GEM).

5. nCN is obtained from nC3 by adding (GEM).
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Remark 3.2.

1. (EM) and its restricted version (EM-at) with the propositional vari­
able discharged assumptions were originally introduced by von Plato 
[36], and called there Gem (for generalized excluded middle) and Gem-
at, respectively. He proved normalization theorems for systems with 
(EM) or (EM-at).

2. Using (EM) and (GEM), we can prove the formulas ∼α∨α and
(α→β)∨α by:

[∼α]1
∼α∨α (∨I1)

[α]1

∼α∨α (∨I2)
∼α∨α (EM)1

[α→β]1

(α→β)∨α
(∨I1)

[α]1

(α→β)∨α
(∨I2)

(α→β)∨α (GEM)1.

3. Using (GEM), we can prove the formula ((α→β)→α)→α by:

[(α→β)→α]1 [α→β]2

α (→E) [α]2

α (GEM)2

((α→β)→α)→α
(→I∗)1.

4. The following Peirce rule was introduced by Curry [5] and studied by 
Zimmermann [44]:

[α→β]....
α
α (PE).

Natural deduction systems with (PE) were considered by them for 
classical logic and the normalization theorems for these systems were 
proved by them.
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5. (PE) is regarded as an instance of (GEM), and using (PE), we can 
prove the formula ((α→β)→α)→α by:

[(α→β)→α]1 [α→β]2

α (→E)

α (PE)2

((α→β)→α)→α
(→I)1.

6. In this study, we do not consider the natural deduction systems nC 
+ (PE) and nC + (EM) + (PE) because reduction conditions for 
nC + (PE) and nC + (EM) + (PE) cannot be defined in a similar 
and uniform way as for nMC and nCN. Moreover, we do not know 
if nC + (PE) (nC + (EM) + (PE)) and nMC (nCN, respectively) 
are logically-equivalent or not. Namely, we have not yet proved the 
equivalence (or difference) of nC + (PE) (nC + (EM) + (PE)) and 
nMC (nCN, respectively).

7. The {→,∼}-fragment of nC was introduced and investigated by Ka­
mide in [13], wherein the strong normalization theorem for the frag­
ment was proved.

Next, we define some notions for the natural deduction systems.
Definition 3.3. The inference rules (→I), (∧I), (∨I1), (∨I2), (∼∼I), (∼→I), 
(∼∧I1), (∼∧I2), (∼∨I), (EM), and (GEM) are called introduction rules, and 
the inference rules (→E), (∧E1), (∧E2), (∨E), (∼∼E), (∼→E), (∼∧E), 
(∼∨E1), and (∼∨E2) are called elimination rules. The notions of major 
and minor premises of the inference rules without (EM) and (GEM) are 
defined as usual. The notions of derivation, (open and discharged) assump­
tions of derivation, and end-formula of derivation are also defined as usual. 
Any derivation starts with an assumption α can be considered a derivation 
of α from itself. For a derivation D, we use the expression oa(D) to denote 
the set of open assumptions of D and the expression end(D) to denote the 
end-formula of D. A formula α is said to be provable in a natural deduction 
system N  if there exists a derivation in N  with no open assumptions whose 
end-formula is α.
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Remark 3.4. There are no notions of major and minor premises of (EM) 
and (GEM). Namely, both the premises of (EM) and (GEM) are neither 
major nor minor premise. In this study, (EM) and (GEM) are treated as 
introduction rules.

Next, we define a reduction relation ▷ on the set of derivations in the 
natural deduction systems. Prior to defining ▷, we define some notions 
concerning ▷.
Definition 3.5. Let L be nC, nC3, nMC, or nCN. Let α be a formula 
occurring in a derivation D in L. Then, α is called a maximum formula in 
D if α satisfies the following conditions:

1. α is the conclusion of an introduction rule, (∨E), or (∼∧E),
2. α is the major premise of an elimination rule.

A derivation is said to be normal if it contains no maximum formula. The 
notion of substitution of derivations to assumptions is defined as usual. We 
assume that the set of derivations is closed under substitution.
Definition 3.6 (Reduction relation).  Let γ be a maximum formula in a 
derivation that is the conclusion of an inference rule R.

1. The definition of the reduction relation ▷ at γ in nC is obtained by 
the following conditions.
(a) R is (→I) and γ is α→β:

[α].... D
β

α→β
(→I)

.... E
α

β
(→E)

▷

.... E
α.... D
β.

(b) R is (∧I) and γ is α1∧α2:
.... D1

α1

.... D2

α2

α1∧α2
(∧I)

αi
(∧Ei)  ▷ 

.... Di

αi

where i is 1 or 2.
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(c) R is (∨I1) or (∨I2) and γ is α1∨α2:
.... D
αi

α1∨α2
(∨Ii)

[α1].... E1
δ

[α2].... E2
δ

δ
(∨E)  ▷ 

.... D
αi.... Ei
δ

where i is 1 or 2.
(d) R is (∨E):

.... D1

α∨β

[α].... D2

γ

[β].... D3

γ
γ (∨E)

.... E1
δ1

.... E2
δ2

δ
R′

 ▷ 

.... D1

α∨β

[α].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

[β].... D3

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(∨E)

where R′ is an arbitrary inference rule, and both E1 and E2 are 
derivations of the minor premises of R′ if they exist.

(e) R is (∼∼I), and γ is ∼∼α:
.... D
α

∼∼α (∼∼I)

α (∼∼E) ▷

.... D
α.

(f) R is (∼→I) and γ is ∼(α→β):
[α].... D
∼β

∼(α→β)
(∼→I)

.... E
α

∼β (∼→E)
▷

.... E
α.... D

∼β.
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(g) R is (∼∧I1) or (∼∧I2) and γ is ∼(α1∧α2):
.... D

∼αi

∼(α1∧α2)
(∼∧I1)

[∼α1].... E1
δ

[∼α2].... E2
δ

δ
(∼∧E)  ▷ 

.... D
∼αi.... Ei
δ

where i is 1 or 2.
(h) R is (∼∧E):

.... D1

∼(α∧β)

[∼α].... D2

γ

[∼β].... D3

γ
γ (∼∧E)

.... E1
δ1

.... E2
δ2

δ
R′

 ▷ 

.... D1

∼(α∧β)

[∼α].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

[∼β].... D3

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(∼∧E)

where R′ is an arbitrary inference rule, and both E1 and E2 are 
derivations of the minor premises of R′ if they exist.

(i) R is (∼∨I) and γ is ∼(α1∨α2):
.... D1

∼α1

.... D2

∼α2

∼(α1∨α2)
(∼∨I)

∼αi
(∼∨Ei) ▷

.... Di

∼αi

where i is 1 or 2.
(j) The set of derivations is closed under ▷.

2. The definition of the reduction relation ▷ at γ in nC3 is obtained 
from the conditions for the reduction relation ▷ at γ in nC by adding 
the following condition.
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(a) R is (EM) and γ is γ1→γ2, γ1∧γ2, γ1∨γ2, ∼∼γ′, ∼(γ1→γ2), 
∼(γ1∧γ2), or ∼(γ1∨γ2):

[∼α].... D1

γ

[α].... D2

γ
γ (EM)

.... E1
δ1

.... E2
δ2

δ
R′

 ▷ 

[∼α].... D1

γ

.... E1
δ1

.... E2
δ2

δ
R′

[α].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(EM)

where R′ is (→E), (∧E1), (∧E2), (∨E), (∼∼E) (∼→E), (∼∧E), 
(∼∨E1), or (∼∨E2), and both E1 and E2 are derivations of the 
minor premises of R′ if they exist.

3. The definition of the reduction relation ▷ at γ in nMC is obtained 
from the conditions for the reduction relation ▷ at γ in nC by adding 
the following condition.

(a) R is (GEM) and γ is γ1→γ2, γ1∧γ2, γ1∨γ2, ∼∼γ′, ∼(γ1→γ2), 
∼(γ1∧γ2), or ∼(γ1∨γ2):

[α→β].... D1

γ

[α].... D2

γ
γ (GEM)

.... E1
δ1

.... E2
δ2

δ
R′

 ▷ 

[α→β].... D1

γ

.... E1
δ1

.... E2
δ2

δ
R′

[α].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(GEM)
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where R′ is (→E), (∧E1), (∧E2), (∨E), (∼∼E) (∼→E), (∼∧E), 
(∼∨E1), or (∼∨E2), and both E1 and E2 are derivations of the 
minor premises of R′ if they exist.

4. The definition of the reduction relation ▷ at γ in nCN is obtained 
from the conditions for the reduction relation ▷ at γ in nC3 by adding 
the other conditions of nMC. Namely, it is defined as all the conditions 
for both nC3 and nMC.

Prior to proving the normalization theorems for nC, nC3, nMC, and 
nCN, we need the following lemma.
Lemma 3.7.  Let N1, N2, N3, and N4 be nC, nC3, nMC, and nCN, respec­
tively. Let S1, S2, S3, and S4 be sC, sC3, sMC∗, and sCN∗, respectively. 
For any i ∈ {1, 2, 3, 4}, the following hold.

1. If D is a derivation in Ni such that oa(D) = Γ and end(D) = β, then 
Si ⊢ Γ ⇒ β,

2. If Si − (cut) ⊢ Γ ⇒ β, then we can obtain a derivation D′ in Ni such 
that

(a) oa(D′) ⊆ Γ,
(b) end(D′) = β,
(c) D′ is normal.

Proof: 

1. We prove 1 by induction on the derivations D of Ni such that oa(D) 
= Γ and end(D) = β. We distinguish the cases according to the last 
inference of D. We show some cases.

(a) Case (EM): D is of the form:
[∼α]Γ1.... D1

γ

[α]Γ2.... D2

γ
γ (EM)
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where oa(D) = Γ1 ∪ Γ2 and end(D) = γ. By induction hypoth­
esis, we have Si ⊢ ∼α,Γ1 ⇒ γ and Si ⊢ α,Γ2 ⇒ γ. Then, we 
obtain the required fact Si ⊢ Γ1,Γ2 ⇒ γ:

.... Ind. hyp.
∼α,Γ1 ⇒ γ.... (we)

∼α,Γ1,Γ2 ⇒ γ

.... Ind. hyp.
α,Γ2 ⇒ γ.... (we)

α,Γ1,Γ2 ⇒ γ

Γ1,Γ2 ⇒ γ
(ex-middle)

where (we) is admissible in Si − (cut) by Propositions 2.4 and 
2.11.

(b) Case (∼∼E): D is of the form:
Γ.... D1

∼∼α
α (∼∼E)

where oa(D) = Γ and end(D) = α. By induction hypothesis, we 
have Si ⊢ Γ ⇒ ∼∼α. Then, we obtain the required fact Si ⊢
Γ ⇒ α:

.... Ind. hyp.
Γ ⇒ ∼∼α

.... Prop.2.3
α⇒ α

∼∼α⇒ α (∼∼left)

Γ ⇒ α
(cut).

(c) Case (∼→I): We divide this case into two subcases.
i. Subcase 1: D is of the form:

Γ.... D′

∼β
∼(α→β)

(∼→I)

where oa(D) = Γ and end(D) = ∼(α→β). By induction 
hypothesis, we have Si ⊢ Γ ⇒ ∼β. Then, we obtain that Si

⊢ Γ ⇒ ∼(α→β):
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.... Ind. hyp.
Γ ⇒ ∼β
α,Γ ⇒ ∼β (we)

Γ ⇒ ∼(α→β)
(∼→right)

where (we) is admissible in Si − (cut) by Propositions 2.4 
and 2.11.

ii. Subcase 2: D is of the form:
[α] Γ.... D′

∼β
∼(α→β)

(∼→I)

where oa(D) = Γ and end(D) = ∼(α→β). By induction 
hypothesis, we have Si ⊢ α,Γ ⇒ ∼β. Then, we obtain the 
required fact Si ⊢ Γ ⇒ ∼(α→β):

.... Ind. hyp.
α,Γ ⇒ ∼β

Γ ⇒ ∼(α→β)
(∼→right).

(d) Case (∼→E): D is of the form:
Γ1.... D1

∼(α→β)

Γ2.... D2

α

∼β (∼→E)

where oa(D) = Γ1 ∪ Γ2 and end(D) = ∼β. By induction hy­
potheses, we have Si ⊢ Γ1 ⇒ ∼(α→β) and Si ⊢ Γ2 ⇒ α. Then, 
we obtain the required fact Si ⊢ Γ1,Γ2 ⇒ ∼β:

.... Ind. hyp.
Γ2 ⇒ α

.... Ind. hyp.
Γ1 ⇒ ∼(α→β)

.... Prop.2.3
α⇒ α

.... Prop.2.3
∼β ⇒ ∼β

∼(α→β), α⇒ ∼β
(∼→left)

α,Γ1 ⇒ ∼β
(cut)

Γ1,Γ2 ⇒ ∼β
(cut).
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(e) Case (∼∧E): D is of the form:
Γ1.... D1

∼(α∧β)

[∼α]Γ2.... D2

γ

[∼β]Γ3.... D3

γ
γ (∼∧E)

where oa(D) = Γ1 ∪ Γ2 ∪ Γ3 and end(D) = γ. By induction hy­
potheses, we have Si ⊢ Γ1 ⇒ ∼(α∧β), Si ⊢ ∼α,Γ2 ⇒ γ,
and Si ⊢ ∼β,Γ3 ⇒ γ. Then, we obtain the required fact
Si ⊢ Γ1,Γ2,Γ3 ⇒ γ:

.... Ind. hyp.
Γ1 ⇒ ∼(α∧β)

.... Ind. hyp.
∼α,Γ2 ⇒ γ.... (we)

∼α,Γ2,Γ3 ⇒ γ

.... Ind. hyp.
∼β,Γ3 ⇒ γ.... (we)

∼β,Γ2,Γ3 ⇒ γ

∼(α∧β),Γ2,Γ3 ⇒ γ
(∼∧left)

Γ1,Γ2,Γ3 ⇒ γ
(cut)

where (we) is admissible in Si − (cut) by Propositions 2.4 and 
2.11.

(f) Case (∼∨I): D is of the form:

Γ1.... D1

∼α

Γ2.... D2

∼β
∼(α∨β)

(∼∨I)

where oa(D) = Γ1 ∪ Γ2 and end(D) = ∼(α∨β). By induction 
hypotheses, we have Si ⊢ Γ1 ⇒ ∼α and Si ⊢ Γ2 ⇒ ∼β. Then, 
we obtain the required fact Si ⊢ Γ1,Γ2 ⇒ ∼(α∨β):

.... Ind. hyp.
Γ1 ⇒ ∼α.... (we)

Γ1,Γ2 ⇒ ∼α

.... Ind. hyp.
Γ2 ⇒ ∼β.... (we)

Γ1,Γ2 ⇒ ∼β
Γ1,Γ2 ⇒ ∼(α∨β)

(∼∨right)



Cut-elimination and Normalization Theorems for Connexive Logics… 181

where (we) is admissible in Si − (cut) by Propositions 2.4 and 
2.11.

2. We prove 2 by induction on the derivations D of Γ ⇒ β in Si −
(cut). We distinguish the cases according to the last inference of D. 
We show some cases.
(a) Case (init2): D is of the form:

∼p,Γ ⇒ ∼p (init2).

In this case, we obtain a required normal derivation D′ by:
∼p

where oa(D′) = {∼p} ⊆ {∼p} ∪ Γ and end(D′) = ∼p.
(b) Case (ex-middle): D is of the form:

.... D1

∼α,Γ ⇒ γ

.... D2

α,Γ ⇒ γ

Γ ⇒ γ
(ex-middle).

By induction hypotheses, we have normal derivations E1 and E2
in Ni of the form:

(∼α,Γ)∗.... E1
γ

(α,Γ)∗.... E2
γ

where oa(E1) = ({∼α} ∪ Γ)∗ ⊆ {∼α} ∪ Γ, oa(E2) = ({α} ∪ Γ)∗

⊆ {α}∪Γ, end(E1) = γ, and end(E2) = γ. Then, we distinguish 
the cases according to ({∼α}∪Γ)∗ and ({α}∪Γ)∗. We consider 
the following cases: (1) ∼α ̸∈ ({∼α} ∪ Γ)∗, (2) α ̸∈ ({α} ∪ Γ)∗, 
and (3) ∼α ∈ ({∼α} ∪ Γ)∗ and α ∈ ({α} ∪ Γ)∗.

i. Subcase (1): We obtain a required normal derivation D′ in 
Ni by:

Γ∗
.... E1
γ

where oa(D′) = Γ∗ ⊆ Γ and end(D′) = γ.
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ii. Subcase (2): We obtain a required normal derivation D′ in 
Ni by:

Γ∗
.... E2
γ

where oa(D′) = Γ∗ ⊆ Γ and end(D′) = γ.
iii. Subcase (3): We obtain a required normal derivation D′ in 

Ni by:
([∼α] Γ)∗.... E1

γ

([α] Γ)∗.... E2
γ

γ (EM)

where oa(D′) = Γ∗ ⊆ Γ and end(D′) = γ.

(c) Case (∼∼left): D is of the form:
.... E

α,Γ ⇒ γ

∼∼α,Γ ⇒ γ
(∼∼left).

By induction hypothesis, we have a normal derivation E ′ in Ni

of the form:
(α,Γ)∗.... E ′

γ

where oa(E ′) = ({α} ∪Γ)∗ ⊆ {α} ∪Γ and end(E ′) = γ. In what 
follows, we show only the case for ({α} ∪Γ)∗ ≡ {α} ∪Γ. In this 
case, we obtain a required normal derivation D′ in Ni by:

∼∼α
α (∼∼E) Γ.... E ′

γ

where oa(D′) = {∼∼α} ∪ Γ and end(D′) = γ.
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(d) Case (∼→left): D is of the form:
.... D1

Γ ⇒ α

.... D2

∼β,∆ ⇒ γ

∼(α→β),Γ,∆ ⇒ γ
(∼→left).

By induction hypotheses, we have normal derivations E1 and E2
in Ni of the form:

Γ∗
.... E1
α

(∼β,∆)∗.... E2
γ

where oa(E1) = Γ∗ ⊆ Γ, end(E1) = α, oa(E2) = ({β} ∪ ∆)∗ ⊆
{β} ∪ ∆, and end(E2) = γ. In what follows, we show only the 
case for Γ∗ ≡ Γ and ({β} ∪ ∆)∗ ≡ {β} ∪ ∆. In this case, we 
obtain a required normal derivation D′ in Ni by:

∼(α→β)

Γ.... E1
α

∼β (∼→E)
∆.... E2

γ

where oa(D′) = {∼(α→β)} ∪ Γ ∪∆ and end(D′) = γ.
(e) Case (∼∧left): D is of the form:

.... D1

∼α,Γ ⇒ γ

.... D2

∼β,Γ ⇒ γ

∼(α∧β),Γ ⇒ γ
(∼∧left).

By induction hypotheses, we have normal derivations E1 and E2
in Ni of the form:

(∼α,Γ)∗.... E1
γ

(∼β,Γ)∗.... E2
γ
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where oa(E1) = ({∼α}∪Γ)∗ ⊆ {∼α}∪Γ, oa(E2) = ({∼β}∪Γ)∗

⊆ {∼β} ∪ Γ, and end(E1) = end(E2) = γ. In what follows, we 
show only the case for ({∼α}∪Γ)∗ ≡ {∼α}∪Γ and ({∼β}∪Γ)∗

≡ {∼β}∪Γ. In this case, we obtain a required normal derivation 
D′ in Ni by:

∼(α∧β)

[∼α]Γ.... E1
γ

[∼β]Γ.... E2
γ

γ (∼∧E)

where oa(D′) = {∼(α∧β)} ∪ Γ and end(D′) = γ.
(f) Case (∼∨right): D is of the form:

.... D1

Γ ⇒ ∼α

.... D2

Γ ⇒ ∼β
Γ ⇒ ∼(α∨β)

(∼∨right).

By induction hypotheses, we have normal derivations E1 and E2
in Ni of the form:

Γ∗
.... E1

∼α

Γ∗
.... E2

∼β

where oa(E1) = oa(E2) = Γ∗ ⊆ Γ, end(E1) = ∼α, and end(E2) 
= ∼β. In what follows, we show only the case for Γ∗ ≡ Γ. In 
this case, we obtain a required normal derivation D′ in Ni by:

Γ.... E1
∼α

Γ.... E2
∼β

∼(α∨β)
(∼∨I)

where oa(D′) = Γ and end(D′) = ∼(α∨β).
□
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We then obtain the following theorems.
Theorem 3.8 (Equivalence between nC-family and sC-family).  Let N1, 
N2, N3, and N4 be nC, nC3, nMC, and nCN, respectively. Let S1, S2, S3, 
and S4 be sC, sC3, sMC∗, and sCN∗, respectively. For any formula α and 
any i ∈ {1, 2, 3, 4}, Si ⊢ ⇒ α iff α is provable in Ni.
Proof: Taking ∅ as Γ in Lemma 3.7, we obtain the claim. □

Theorem 3.9 (Normalization for nC, nC3, nMC, and nCN).  Let N  be nC, 
nC3, nMC, or nCN. All derivations in N  are normalizable. More precisely, 
if a derivation D in N  is given, then we can obtain a normal derivation D′

in N  such that oa(D′) ⊆ oa(D) and end(D′) = end(D).
Proof: Let N1, N2, N3, and N4 be nC, nC3, nMC, and nCN, respec­
tively. Let S1, S2, S3, and S4 be sC, sC3, sMC∗, and sCN∗, respectively. 
Let i be 1, 2, 3, or 4. Suppose that a derivation D in Ni is given, and 
assume that oa(D) = Γ and end(D) = β. Then, by Lemma 3.7 (1), we 
obtain Si ⊢ Γ ⇒ β. By the cut-elimination theorem for Si (i.e., Theorems 
2.5, 2.6, and 2.13), we obtain Si − (cut) ⊢ Γ ⇒ β. Then, by Lemma 3.7 
(2), we can obtain a normal derivation D′ in Ni such that oa(D′) ⊆ oa(D) 
and end(D′) = end(D). □

4. Natural deduction systems with general 
elimination rules and normalization theorems

We define natural deduction systems with general elimination rules, re­
ferred to as gNJ+, gC, gC3, gMC, and gCN, for positive intuitionistic 
logic, C, C3, MC, and CN, respectively. For these systems, we use the 
same notations and notions as those for the previously introduced systems.
Definition 4.1 (gNJ+, gC, gC3, gMC, and gCN).

1. gNJ+ is obtained from NJ+ by replacing (→E), (∧E1), and (∧E2) 
with the general elimination rules of the form:
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α→β α

[β]....
γ

γ (→GE)
α∧β

[α, β]....
γ

γ (∧GE).

2. gC is obtained from gNJ+ by adding (∼∼E), (∼→E), (∼∨E1),
(∼∨E2), and the negated general elimination rules of the form:

∼∼α

[α]....
γ

γ (∼∼GE)
∼(α→β) α

[∼β]....
γ

γ (∼→GE)

∼(α ∨ β)

[∼α,∼β]....
γ

γ (∼∨GE).

3. gC3 is obtained from gC by adding (EM).

4. gMC is obtained from gC by adding (GEM).

5. gCN is obtained from gC3 by adding (GEM).

Remark 4.2. The rules (→GE), (∧GE), (∼∼GE), (∼→GE), and (∼∨GE) 
are referred to as general elimination rules. These rules are considered as 
elimination rules. For more information on general elimination rules and 
systems incorporating them, see [33, 37, 23].

Next, we define reduction relations on the set of derivations in natural 
deduction systems with general elimination rules. We employ the same 
notions, such as the maximum formula and normal derivation, as those 
used for nC, nC3, nMC, or nCN.
Definition 4.3 (Reduction relation).  Let γ be a maximum formula in a 
derivation that is the conclusion of an inference rule R.

1. The definition of the reduction relation ▷ at γ in gC is obtained by 
the following conditions.
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(a) R is (→I) and γ is α→β:

[α].... D
β

α→β
(→I)

.... E1
α

[β].... E2
γ

γ (→GE)  ▷ 

.... E1
α.... D
β.... E2
γ.

(b) R is (∧I) and γ is α1∧α2:
.... D1

α

.... D2

β

α∧β (∧I)

[α, β].... E
γ

γ (∧GE)  ▷ 

.... D1

α

.... D2

β.... E
γ.

(c) R is (∨I1) or (∨I2) and γ is α1∨α2: The same condition as the 
one defined in Definition 3.6.

(d) R is (∨E): The same condition as the one defined in Definition 
3.6.

(e) R is (∼∼I), and γ is ∼∼α:
.... D
α

∼∼α (∼∼I)

[α].... E
γ

γ (∼∼GE)  ▷ 

.... D
α.... E
γ.

(f) R is (∼→I) and γ is ∼(α→β):

[α].... D
∼β

∼(α→β)
(∼→I)

.... E1
α

[∼β].... E2
γ

γ (∼→GE)  ▷ 

.... E1
α.... D
∼β.... E2
γ.

(g) R is (∼∧I1) or (∼∧I2) and γ is ∼(α1∧α2): The same condition 
as the one defined in Definition 3.6.
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(h) R is (∼∧E): The same condition as the one defined in Definition 
3.6.

(i) R is (∼∨I) and γ is ∼(α1∨α2):
.... D1

∼α

.... D2

∼β
∼(α∨β)

(∼∨I)
[∼α,∼β].... E

γ
γ (∼∨GE)  ▷ 

.... D1

∼α

.... D2

∼β.... E
γ.

(j) The set of derivations is closed under ▷.

2. The definition of the reduction relation ▷ at γ in gC3 is obtained 
from the conditions for the reduction relation ▷ at γ in gC by adding 
the following condition.

(a) R is (EM) and γ is γ1→γ2, γ1∧γ2, γ1∨γ2, ∼∼γ′, ∼(γ1→γ2), 
∼(γ1∧γ2), or ∼(γ1∨γ2):

[∼α].... D1

γ

[α].... D2

γ
γ (EM)

.... E1
δ1

.... E2
δ2

δ
R′

 ▷ 

[∼α].... D1

γ

.... E1
δ1

.... E2
δ2

δ
R′

[α].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(EM)

where R′ is (→GE), (∧GE), (∨E), (∼∼GE) (∼→GE), (∼∧E), 
or (∼∨GE), and both E1 and E2 are derivations of the minor 
premises of R′ if they exist.

3. The definition of the reduction relation ▷ at γ in gMC is obtained 
from the conditions for the reduction relation ▷ at γ in gC by adding 
the following condition.
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(a) R is (GEM) and γ is γ1→γ2, γ1∧γ2, γ1∨γ2, ∼∼γ′, ∼(γ1→γ2), 
∼(γ1∧γ2), or ∼(γ1∨γ2):

[α→β].... D1

γ

[α].... D2

γ
γ (GEM)

.... E1
δ1

.... E2
δ2

δ
R′

▷

[α→β].... D1

γ

.... E1
δ1

.... E2
δ2

δ
R′

[α].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(GEM)

where R′ is (→GE), (∧GE), (∨E), (∼∼GE) (∼→GE), (∼∧E), or (∼∨GE), 
and both E1 and E2 are derivations of the minor premises of R′ if they exist.

4. The definition of the reduction relation ▷ at γ in gCN is obtained 
from the conditions for the reduction relation ▷ at γ in gC3 by adding 
the other conditions of gMC.

Lemma 4.4.  Let G1, G2, G3, and G4 be gC, gC3, gMC, and gCN, respec­
tively. Let S1, S2, S3, and S4 be sC, sC3, sMC∗, and sCN∗, respectively. 
For any i ∈ {1, 2, 3, 4}, the following hold.

1. If D is a derivation in Gi such that oa(D) = Γ and end(D) = β, then 
Si ⊢ Γ ⇒ β,

2. If Si − (cut) ⊢ Γ ⇒ β, then we can obtain a derivation D′ in Gi such 
that

(a) oa(D′) ⊆ Γ,

(b) end(D′) = β,

(c) D′ is normal.
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Proof: 

1. We prove 1 by induction on the derivations D of Gi such that oa(D) 
= Γ and end(D) = β. We distinguish the cases according to the last 
inference of D. We show some cases.

(a) Case (∼∼E): D is of the form:

Γ1.... D1

∼∼α

[α] Γ2.... D2

γ
γ (∼∼GE)

where oa(D) = Γ1 ∪ Γ2 and end(D) = γ.
i. Subcase (1): The discharge of (∼∼GE) is vacuous. In this 

case, by induction hypothesis, we have Si ⊢ Γ2 ⇒ γ. We 
then obtain the required fact by:

.... Ind. hyp.
Γ2 ⇒ γ.... (we)

∼∼α,Γ1,Γ2 ⇒ γ

where (we) is admissible in cut-free Si by Proposition 2.4.

ii. Subcase (2): α is the discharged assumption of (∼∼GE). In 
this case, by induction hypothesis, we have Si ⊢ α,Γ2 ⇒ γ. 
We then obtain the required fact by:

.... Ind. hyp.
α,Γ2 ⇒ γ.... (we)

α,Γ1,Γ2 ⇒ γ

∼∼α,Γ1,Γ2 ⇒ γ
(∼∼left)

where (we) is admissible in cut-free Si by Proposition 2.4.
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(b) Case (∼→GE): D is of the form:
Γ1.... D1

∼(α→β)

Γ2.... D2

α

[∼β] Γ3.... D3

γ
γ (∼→GE)

where oa(D) = Γ1 ∪ Γ2 ∪ Γ3 and end(D) = γ.
i. Subcase (1): The discharge of (∼→GE) is vacuous. In this 

case, by induction hypothesis, we have Si ⊢ Γ3 ⇒ γ. We 
then obtain the required fact by:

.... Ind. hyp.
Γ3 ⇒ γ.... (we)

Γ1,Γ2,Γ3 ⇒ γ

where (we) is admissible in cut-free Si by Proposition 2.4.
ii. Subcase (2): ∼β is the discharged assumption of (∼→GE). 

In this case, by induction hypotheses, we have the following: 
Si ⊢ Γ1 ⇒ ∼(α→β), Si ⊢ Γ2 ⇒ α, and Si ⊢ ∼β,Γ3 ⇒ γ. We 
then obtain the required fact by:

.... Ind. hyp.
Γ1 ⇒ ∼(α→β)

.... Ind. hyp.
Γ2 ⇒ α

.... Ind. hyp.
∼β,Γ3 ⇒ γ

∼(α→β),Γ2,Γ3 ⇒ γ
(∼→left)

Γ1,Γ2,Γ3 ⇒ γ
(cut).

(c) Case (∼∨GE): D is of the form:
Γ1.... D1

∼(α∨β)

[∼α,∼β] Γ2.... D2

γ
γ (∼∨GE)

where oa(D) = Γ1 ∪ Γ2 and end(D) = γ.
i. Subcase (1): The discharge of (∼∨GE) is vacuous. In this 

case, by induction hypothesis, we have Si ⊢ Γ2 ⇒ γ. We 
then obtain the required fact by:
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.... Ind. hyp.
Γ2 ⇒ γ.... (we)

Γ1,Γ2 ⇒ γ

where (we) is admissible in cut-free Si by Proposition 2.4.
ii. Subcase (2): ∼α and/or ∼β is (are) the discharged assump­

tion(s) of (∼∨GE). We show only the case that ∼β is only 
the discharged assumption of (∼∨GE). In this case, by in­
duction hypotheses, we have Si ⊢ Γ1 ⇒ ∼(α∨β) and Si ⊢
∼β,Γ2 ⇒ γ. We then obtain the required fact by:

.... Ind. hyp.
Γ1 ⇒ ∼(α∨β)

.... Ind. hyp.
∼β,Γ2 ⇒ γ

∼α,∼β,Γ2 ⇒ γ
(we)

∼(α∨β),Γ2 ⇒ γ
(∼∨left)

Γ1,Γ2 ⇒ γ
(cut)

where (we) is admissible in cut-free Si by Proposition 2.4.

2. We prove 2 by induction on the derivations D of Γ ⇒ β in Si −
(cut). We distinguish the cases according to the last inference of D. 
We show some cases.

(a) Case (∼∼left): D is of the form:
.... E

α,Γ ⇒ γ

∼∼α,Γ ⇒ γ
(∼∼left).

By induction hypothesis, we have a normal derivation E ′ in Gi

of the form:

(α,Γ)∗.... E ′

γ
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where oa(E ′) = ({α} ∪Γ)∗ ⊆ {α} ∪Γ and end(E ′) = γ. In what 
follows, we show only the case for ({α} ∪Γ)∗ ≡ {α} ∪Γ. In this 
case, we obtain a required normal derivation D′ in Gi by:

∼∼α

[α] Γ.... E ′

γ
γ (∼∼GE)

where oa(D′) = {∼∼α} ∪ Γ and end(D′) = γ.
(b) Case (∼→left): D is of the form:

.... D1

Γ ⇒ α

.... D2

∼β,∆ ⇒ γ

∼(α→β),Γ,∆ ⇒ γ
(∼→left).

By induction hypotheses, we have normal derivations D′
1 and 

D′
2 in Gi of the form:

Γ∗
.... D′

1
α

(∼β,∆)∗.... D′
2

γ

where oa(E1) = Γ∗ ⊆ Γ, end(E1) = α, oa(E2) = ({∼β} ∪∆)∗ ⊆
{∼β} ∪∆, and end(E2) = γ. In what follows, we show only the 
case for Γ∗ ≡ Γ and ({∼β} ∪∆)∗ ≡ {∼β} ∪∆. In this case, we 
obtain a required normal derivation D′ in Gi by:

∼(α→β)

Γ.... D′
1

α

[∼β] ∆.... D′
2

γ
γ (∼→GE)

where oa(D′) = {∼(α→β)} ∪ Γ ∪∆ and end(D′) = γ.
(c) Case (∼∨left): D is of the form:

.... E
∼α,∼β,Γ ⇒ γ

∼(α∨β),Γ ⇒ γ
(∼∨left).
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By induction hypothesis, we have a normal derivation E ′ in Gi

of the form:
(∼α,∼β,Γ)∗.... E ′

γ

where oa(E ′) = ({∼α,∼β}∪Γ)∗ ⊆ {∼α,∼β}∪Γ and end(E ′) = 
γ. In what follows, we show only the case for ({∼α,∼β} ∪ Γ)∗

≡ {∼α,∼β} ∪ Γ. In this case, we obtain a required normal 
derivation D′ in Gi by:

∼(α∨β)

[∼α,∼β] Γ.... E ′

γ
γ (∼∨GE)

where oa(D′) = {∼(α∨β)} ∪ Γ and end(D′) = γ. □

Theorem 4.5 (Equivalence between gC-family and sC-family).  Let G1, 
G2, G3, and G4 be gC, gC3, gMC, and gCN, respectively. Let S1, S2, S3, 
and S4 be sC, sC3, sMC∗, and sCN∗, respectively. For any formula α and 
any i ∈ {1, 2, 3, 4}, Si ⊢ ⇒ α iff α is provable in Gi.
Proof: By Lemma 4.4. □

Theorem 4.6 (Equivalence between gC-family and nC-family). Let G1, 
G2, G3, and G4 be gC, gC3, gMC, and gCN, respectively. Let N1, N2, N3, 
and N4 be nC, nC3, nMC, and nCN, respectively. For any formula α and 
any i ∈ {1, 2, 3, 4}, α is provable in Gi iff α is provable in Ni.
Proof: By Theorems 3.8 and 4.5. □

Theorem 4.7 (Normalization for gC, gC3, gMC, and gCN).  Let G be gC, 
gC3, gMC, or gCN. All derivations in G are normalizable.
Proof: Similar to the proof of Theorem 3.9. We use Lemma 4.4 and 
Theorems 2.5, 2.6, and 2.13. □
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5. Systems and theorems for N-family

5.1. Gentzen-style sequent calculi and cut-elimination theorems

A Gentzen-style sequent calculus sN4 for N4 is obtained from sC by replac­
ing (∼→left) and (∼→right) with the negated logical inference rules of the 
form:

α,∼β,Γ ⇒ γ

∼(α→β),Γ ⇒ γ
(∼→left⋆)

Γ ⇒ α Γ ⇒ ∼β
Γ ⇒ ∼(α→β)

(∼→right⋆)

which correspond to the axiom scheme ∼(α→β) ↔ α∧∼β. For more in­
formation on this calculus, see, for example, [18, 19].

We then obtain the following Gentzen-style sequent calculi for the N-
family in a similar way as for the C-family:

1. sN4e = sN4 + (ex-middle),

2. sN4p = sN4 + (Peirce),

3. sN4ep = sN4 + (ex-middle) + (Peirce),

4. sN4g = sN4 + (g-ex-middle),

5. sN4eg = sN4 + (ex-middle) + (g-ex-middle).

Then, we obtain the cut-elimination theorems for these calculi, the cut-
free equivalence between sN4p (sN4ep) and sN4g (sN4eg, resp.), and the 
separation theorem for the N4-based logics that correspond to sN4, sN4e, 
sN4p, and sN4ep.
Remark 5.1. As presented in [15], a single-succedent Gentzen-style sequent 
calculus for classical logic is obtained from a single-succedent Gentzen-
style sequent calculus for N4 by adding (ex-middle) and the structural and 
logical inference rules of the following form:

Γ ⇒
Γ ⇒ α

(we-right) Γ ⇒ ∼α Γ ⇒ α
Γ ⇒ γ

(explosion).
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Namely, sN4e + (we-right) + (explosion) becomes a sequent calculus for 
classical logic, although the definition of sequent should be modified as 
Γ ⇒ γ where γ is a formula or the empty set. Additionally, we remark that 
sC + (explosion) becomes a sequent calculus for trivial logic (i.e., it is a 
meaningless logic).

5.2. Gentzen-style natural deduction systems
and normalization theorems

A Gentzen-style natural deduction system nN4 for N4 is obtained from nC 
by replacing (∼→I), and (∼→E) with the negated logical inference rules 
of the form:

α ∼β
∼(α→β)

(∼→I⋆) ∼(α→β)
α (∼→E1⋆)

∼(α→β)

∼β (∼→E2⋆)

which correspond to the axiom scheme ∼(α→β) ↔ α∧∼β. For more in­
formation on this system, see, for example, [31, 39, 13].

We then obtain the following Gentzen-style natural deduction systems 
for the N-family in a similar way as for the C-family:

1. nN4e = nN4 + (EM),

2. nN4g = nN4 + (GEM),

3. nN4eg = nN4 + (EM) + (GEM).
Of course, we must introduce the appropriate reduction relations with 

respect to these systems, modifying the reduction relations with respect to 
nC, nC3, nMC, and nCN. For example, we must introduce the following 
reduction conditions for the case when R is (∼→I) and γ is ∼(α→β), 
instead of the condition for the same case in nC, nC3, nMC, and nCN:

1. Subcase 1:
.... D1

α

.... D2

∼β
∼(α→β)

(∼→I⋆)

α (∼→E1⋆)  ▷ 

.... D1

α.



Cut-elimination and Normalization Theorems for Connexive Logics… 197

2. Subcase 2:

.... D1

α

.... D2

∼β
∼(α→β)

(∼→I⋆)

∼β (∼→E2⋆)  ▷ 

.... D2

∼β.

Then, we obtain the normalization theorems for these systems and the 
equivalence between nN4-family and sN4-family.
Remark 5.2. Natural deduction systems for a family of many-valued logics 
including Nelson’s constructive three-valued logic N3 [2, 24] has recently 
been introduced and investigated by Kürbis and Petrukhin in [21]. For 
more information on natural deduction systems for N4, N3, and related 
logics, see, for example, [31, 39, 35, 13, 41].

5.3. Natural deduction systems with general elimination rules 
and normalization theorems

A natural deduction system with general elimination rules, gN4, for N4 
is obtained from nN4 by replacing (→E), (∧E1), (∧E2), (∼∼E), (∼∨E1), 
(∼∨E2), (∼→E1⋆), and (∼→E2⋆) with (→GE), (∧GE), (∼∼GE), (∼∨GE), 
and the negated general elimination rule of the form:

∼(α→β)

[α,∼β]....
γ

γ (∼→GE⋆).

For more information on this system, see, [13].
We then obtain the following natural deduction systems with general 

elimination rules, for the N-family in a similar way as for the C-family:

1. gN4e = gN4 + (EM),
2. gN4g = gN4 + (GEM),
3. gN4eg = gN4 + (EM) + (GEM).
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Of course, we must introduce the appropriate reduction relations with 
respect to these systems, modifying the reduction relations with respect to 
nN4, nN4e, nN4g, and nN4eg. For example, we must introduce the follow­
ing reduction condition for the case when R is (∼→I) and γ is ∼(α→β), 
instead of the condition for the same case in nN4, nN4e, nN4g, and nN4eg:

.... D1

α

.... D2

∼β
∼(α→β)

(∼→I⋆)

[α,∼β].... E
γ

γ (∼→GE⋆) ▷

.... D1

α

.... D2

∼β.... E
γ.

Then, we obtain the normalization theorems for these systems and the 
equivalence between gN4-family and sN4-family. Additionally, we also ob­
tain the equivalence between gN4-family and nN4-family.

6. Concluding remarks

In this study, we introduced the Gentzen-style sequent calculi sC, sC3, 
sMC, and sCN for the C-family: C, C3, MC, and CN, respectively. We 
proved the cut-elimination theorems for these calculi. We also introduced 
alternative Gentzen-style sequent calculi sMC∗ and sCN∗ for MC and CN, 
respectively. We then proved the theorem for cut-free equivalence between 
sMC∗ (sCN∗) and sMC (sCN, respectively) and the cut-elimination theo­
rem for sMC∗ and sCN∗.

Furthermore, we introduced the Gentzen-style natural deduction sys­
tems nC, nC3, nMC, and nCN for the C-family. We then proved the 
normalization theorems for nC, nC3, nMC, and nCN. Additionally, we in­
troduced the natural deduction systems with general elimination rules, gC, 
gC3, gMC, and gCN for the C-family. We then proved the normalization 
theorems for gC, gC3, gMC, and gCN.

Additionally, we have shown similar results for the N-family of paracon­
sistent logics based on Nelson’s constructive four-valued logic N4. Thus, 
we have demonstrated that the proposed proof-theoretic framework can 
handle a wide range of non-classical logics, including connexive and para­



Cut-elimination and Normalization Theorems for Connexive Logics… 199

consistent logics. We have established a unified method for proving the 
cut-elimination and normalization theorems for these logics. In particular, 
we have obtained computational interpretations for the standard connexive 
logics C, C3, MC, and CN using the proposed natural deduction systems.

We remark that similar results can also be obtained for the family of 
paraconsistent logics with the conflation connective [8]. Specifically, we can 
consider a Gentzen-style sequent calculus for such a logic, derived from sC 
by replacing (∼→left) and (∼→right) with negated logical inference rules 
of the form:

Γ ⇒ ∼α ∼β,∆ ⇒ γ

∼(α→β),Γ,∆ ⇒ γ
(∼→leftc)

∼α,Γ ⇒ ∼β
Γ ⇒ ∼(α→β)

(∼→rightc)

where (∼→leftc) and (∼→rightc) correspond to the axiom ∼(α→β) ↔
∼α→∼β of conflation. This conflation axiom is generally denoted as
−(α→β) ↔ −α→−β using the conflation connective − [8], which serves 
as the logical counterpart of the conflation operator used in the algebraic 
structure of bilattices.

In future work, we intend to obtain similar results for extended interme­
diate connexive logics with the intuitionistic negation connective ¬ or the 
absurdity constant ⊥. These extended connexive logics include C⊥, C⊥

3 , 
and Niki’s intermediate connexive logics, Cab

po and Cab
we [25]. As discussed 

by Niki, Gentzen-style sequent calculi for Cab
po and Cab

we are considered to 
include logical inference rules, referred to as the potential omniscience rule 
and weak negation rules, respectively, of the form:

∼α,Γ ⇒ α,Γ ⇒
Γ ⇒ (po-omni)

∼α,Γ ⇒ γ α,Γ ⇒
Γ ⇒ γ

(we-neg)

which correspond to the axiom ¬¬(∼α∨α) of potential omniscience and the 
axiom ¬α→∼α of weak negation, respectively. The corresponding natural 
deduction rules for (po-omni) and (we-neg) can be considered respectively 
of the form:
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[∼α]....
⊥

[α]....
⊥

⊥ (PO)

[∼α]....
γ

[α]....
⊥

γ (WN).

where ¬α can be defined as ¬α := α→⊥ using ⊥.
In other future work, from a technical perspective, we aim to prove the 

strong normalization and Church-Rosser theorems for the proposed natural 
deduction systems nC, nC3, nMC, nCN, gC, gC3, gMC, gCN, nN4e, nN4g, 
nN4eg, gN4e, gN4g, gN4eg, as well as for natural deduction systems for the 
intermediate connexive logics, including C⊥, C⊥

3 , Cab
po, and Cab

wn. However, 
these issues remain unresolved at present.
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1. Introduction

This paper is an extended version of Sawasaki [10]. In [10] we proved the 
semantic incompleteness of Liberman et al. [8]’s Hilbert-style system HK
for the minimal normal term-modal logic K with equality and non-rigid 
terms. In this paper, we further prove the semantic incompleteness of all 
the expansions that [8] has obtained from HK by adding some of axioms 
T,D, 4 and 5. This paper also addresses an incorrect frame correspondence 
result given in [8].

Term-modal logic, developed by Thalmann [12] and Fitting et al. [4], 
is a family of first-order modal logics having term-modal operators [t] in­
dexed with terms t in the first-order language. In the language of term-
modal logic, for example, [x]P (x), [f(x)]P (x) and ∀x[f(x)]P (x) are formu­
las. Term-modal logic is more expressive than multi-modal propositional 
logic and has been applied to epistemic logic in e.g. [7, 8, 13] and deontic 
logic in e.g. [11, 5, 6]. Some other developments of term-modal logic have 
been overviewed e.g. in [8, pp. 22–24] and [5, pp. 48–50].

The logics developed in Liberman et al. [8] are first-order dynamic epis­
temic logics for epistemic planning, and term-modal logic is invoked as its 
underlying logic. Technically speaking, their term-modal logics are two-
sorted normal term-modal logics of the constant domain with equality and 
non-rigid terms. They make their logics two-sorted because, while letting 
the domain of a model include both agents and objects, they read an epis­
temically interpreted term-modal operator Kt as “agent t knows.” The 
language defined in [8] allows Ktϕ to be a formula only if t is a term for 
an agent, and thereby excludes the possibility that terms denoting objects 
appear in the argument of the term-modal operator. In [8, p. 17], HK and 
its expansions with T,D, 4 and 5 are claimed to be strongly complete with 
respect to the class of all the corresponding frames. Most of these results 
were originally presented in [1]. Later, two issues concerning action models 
and reduction axioms were fixed in the erratum [9] of [8].

Unfortunately, HK and its expansions are semantically incomplete. In 
particular, the valid first-order formula x = c→ (P (x) → P (c)) is unprov­
able. To be more precise, for a set Γ ⊆ {T,D, 4, 5 }, we can prove that 
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this formula is valid over the class of all frames to which Γ corresponds 
but is not provable in the system HKΓ obtained from HK by adding Γ. 
To this end, in Section 3 we introduce a non-standard Kripke semantics 
which makes the meanings of constants and function symbols relative to 
the meanings of relation symbols combined with them.

This paper will proceed as follows. In Section 2 we first introduce the 
syntax in [8]. Since there are some minor defects on the definitions for 
type, we do this with some modifications. Then we introduce the Kripke 
semantics and the Hilbert-style systems given in [8], addressing an incorrect 
frame correspondence result. In Section 3 we prove the semantic incom­
pleteness of the expansions of HK by introducing a non-standard Kripke 
semantics.

2. Syntax, Semantics and Hilbert-style Systems

We will first introduce the syntax presented in [8, pp. 3–4] with some 
modifications. The idea there is to define the notions of term and formula 
while assigning (sequences of) types “agt”, “obj” or “agt_or_obj” to all 
symbols like variables or relation symbols. It is basically the same idea as 
in Enderton [2, Section 4.3], but there is an important difference. In the 
syntax of [8], not only agt or obj but also agt_or_obj may be assigned 
to the arguments of function symbols and relation symbols, so that P (x)
seems to be intended to become a formula even when x has type agt and 
P  takes type agt_or_obj.

However, the original definitions 1–3 for the syntax seem to have two 
minor defects. First, the original definition 1 for type assignment and the 
original definition 2 for term are dependent upon one another, thus they are 
circular definitions. Second, while P (x) seems to be intended to become 
a formula when x has type agt and P  takes type agt_or_obj, it does 
not actually become a formula since the original definition 3 for formula 
requires that the type of x and the type of the argument of P  must be the 
same. Accordingly, for example, x = x cannot be a formula in any signature 
since the type of x is either agt or obj but the type of the arguments of =
is always agt_or_obj.



210 Takahiro Sawasaki

To amend the above two defects, we redefine the syntax in [8, pp. 3–4] 
as follows.
Definition 2.1 (Signature).  Let Var be a countably infinite set of vari­
ables, Cn a countable set of constants, Fn a countable set of function sym­
bols, and Rel a countable set of relation symbols containing the equal­
ity symbol =. Let ⟨TYPE,≼⟩ be also the ordered set of types where TYPE
= { agt, obj, agt_or_obj } and ≼ is the reflexive ordering on TYPE with 
agt ≼ agt_or_obj and obj ≼ agt_or_obj, i.e.,

≼ := { ⟨τ, τ⟩ | τ ∈ TYPE } ∪ { ⟨agt, agt_or_obj⟩, ⟨obj, agt_or_obj⟩ }.

A type assignment t : Var∪ Cn∪ Fn∪ Rel →
⋃︁

n∈N TYPE
n is an assignment 

mapping

1. a variable x to a type t(x) ∈ { agt, obj } such that both Var ∩
t−1[{ agt }] and Var∩t−1[{ obj }] are countably infinite, where t−1[X]
is the inverse image of a set X;

2. a constant c to a type t(c) ∈ { agt, obj };
3. a function symbol f  to a sequence of types t(f) ∈ TYPEn×{ agt, obj }

for some n ∈ N;
4. the equality symbol = to the sequence of types t(=) =

⟨agt_or_obj, agt_or_obj⟩;
5. a relation symbol P  distinct from = to a sequence of types t(P ) ∈

TYPEn for some n ∈ N.

The tuple ⟨Var, Cn, Fn, Rel, t⟩ is called a signature.
Definition 2.2 (Term of Type).  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature. 
The set of terms of types is defined as follows.

1. any variable x ∈ Var is a term of type t(x).
2. any constant c ∈ Cn is a term of type t(c).
3. If t1, . . . , tn are terms of types τ1, . . . , τn and f  is a function symbol in 

Fn such that t(f) = ⟨τ ′1, . . . , τ ′n, τ ′n+1⟩ and τi ≼ τ ′i , then f(t1, . . . , tn)
is a term of type τ ′n+1.
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For convenience, henceforth we use a type assignment t to mean its uniquely 
extended assignment by letting t(f(t1, . . . , tn)) = τ  for each term of the 
form f(t1, . . . , tn) of type τ .
Definition 2.3 (Language).  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature. The 
language is the set of formulas ϕ defined in the following BNF.

ϕ ::= P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | Ksϕ | ∀xϕ,

where t1, . . . , tn, s are terms with t(s) = agt and P ∈ Rel such that t(P )
= ⟨τ1, . . . , τn⟩ and t(ti) ≼ τi. Note here that P  can be =.
As usual, we use the notations t ̸= s := ¬(t = s), ϕ → ψ := ¬(ϕ ∧ ¬ψ), 
∃xϕ := ¬∀x¬ϕ, ⊥ := P ∧¬P  for some fixed nullary relation symbol P , and 
⊤ := ¬⊥.

We believe that our definitions successfully capture what was intended 
in the original definitions 1–3. On top of these definitions, we will follow [8, 
p. 4] to define the notions of free variable and bound variable in a formula 
as usual, where the set of free variables in Ktϕ is defined as the union of 
the set of variables in t and the set of free variables in ϕ. For a variable x, 
terms t, s and a formula ϕ such that t(x) = t(s) and no variables in s are 
bound variables in ϕ, we also define substitutions t(s/x) and ϕ(s/x) of s for 
x in t and ϕ in a usual manner, except that (Ktϕ)(s/x) = Kt(s/x)ϕ(s/x). 
Whenever we write t(s/x) or ϕ(s/x), we tacitly assume that t(x) = t(s)
and no variables in s are bound variables in ϕ. We also define the lengths 
of term and formula as usual.

Let us now introduce the Kripke semantics presented in [8, pp. 5–6].
Definition 2.4 (Frame, [8, Def. 4]).  A frame is a tuple F = ⟨D,W,R⟩
where

1. D := Dagt_or_obj := Dagt ⊔Dobj is the disjoint union of a non-empty 
set Dagt of agents and a non-empty set Dobj of objects;

2. W  is a non-empty set of worlds;

3. R is a mapping that assigns to each agent i ∈ Dagt a binary relation 
Ri on W , i.e., R : Dagt → P(W ×W ).
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Definition 2.5 (Model, [8, Def. 5]).  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signa­
ture. A model is a tuple M = ⟨D,W,R, I⟩ where ⟨D,W,R⟩ is a frame and 
I is an interpretation that maps

1. a pair ⟨c, w⟩ of some c ∈ Cn and w ∈W  to an element I(c, w) ∈ Dt(c);

2. a pair ⟨f, w⟩ of some f ∈ Fn and w ∈W  to a function I(f, w) : (Dτ1 ×
· · · ×Dτn) → Dτn+1 , where t(f) = ⟨τ1, . . . , τn, τn+1⟩;

3. a pair ⟨=, w⟩ of the equality symbol = and some w ∈ W  to the set 
I(=, w) =

{︁
⟨d, d⟩ | d ∈ Dagt_or_obj

}︁
;

4. a pair ⟨P,w⟩ of some P ∈ Rel \ {= } and w ∈W  to a subset I(P,w)
of Dτ1 × · · · ×Dτn , where t(P ) = ⟨τ1, . . . , τn⟩.

Definition 2.6 (Valuation, [8, Def. 6, 7]).  Let ⟨Var, Cn, Fn, Rel, t⟩ be 
a signature. A valuation is a mapping σ : Var → D such that σ(x) ∈
Dt(x) and the valuation σ[x ↦→ d] is the same valuation as σ except for 
assigning to a variable x an element d ∈ Dt(x). Given a valuation σ, a 
world w and an interpretation I in a model, the extension [[t]]I,σw  of a term 
t is defined by [[x]]I,σw = σ(x), [[c]]I,σw = I(c, w), and [[f(t1, . . . , fn)]]I,σw =
I(f, w)([[t1]]

I,σ
w , . . . , [[tn]]

I,σ
w ).

Definition 2.7 (Satisfaction, [8, Def. 8]).  The satisfaction M,w |=σ ϕ
of a formula ϕ at a world w in a model M  under a valuation σ is defined 
as follows.

M,w |=σ P (t1, . . . , tn) iff ⟨[[t1]]I,σw , . . . , [[tn]]
I,σ
w ⟩ ∈ I(P,w) (P  can be =)

M,w |=σ ¬ϕ iff M,w ̸|=σ ϕ

M,w |=σ ϕ ∧ ψ iff M,w |=σ ϕ and M,w |=σ ψ

M,w |=σ ∀xϕ iff M,w |=σ[x ↦→d] ϕ for all d ∈ Dt(x)

M,w |=σ Ktϕ iff M,w′ |=σ ϕ for all w′ ∈W  such that
⟨w,w′⟩ ∈ R[[t]]I,σw
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Definition 2.8 (Validity, [8, p. 25]).  A formula ϕ is valid over a frame 
F  if for all models M  based on F , all worlds w ∈ W  and all valuations σ, 
it holds that M,w |=σ ϕ. A formula ϕ is valid over a class F of frames if 
for all frames F ∈ F, ϕ is valid over F .
Remark 2.9. Instead of the x-variant of a valuation σ used in [8], we adopted 
the notion of σ[x ↦→ d] to give the satisfaction for ∀xϕ. This change is just 
for the clarity of our proof and does not affect the satisfiability of formulas.
For ease of reference, henceforth we call this semantics TML-semantics.

To state precisely our result on the semantic incompleteness in the next 
section, we import the frame correspondence results in [8, p. 18] with some 
modifications. Let us define the notion of frame correspondence as usual 
and say that a frame ⟨W,D,R⟩ is reflexive, serial, transitive or euclidean if 
Ri is so for all i ∈ Dagt. We then have the following frame correspondences.
Proposition 2.10.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature and x ∈ Var

with t(x) = agt.

1. T := ∀x(Kxϕ→ ϕ) corresponds to the class of all reflexive frames.
2. D := ∀x¬Kx⊥ corresponds to the class of all serial frames.
3. 4 := ∀x(Kxϕ → KxKxϕ) corresponds to the class of all transitive 

frames.
4. 5 := ∀x(¬Kxϕ→ Kx¬Kxϕ) corresponds to the class of all euclidean 

frames.

We can find this proposition in [8, p. 18] if t(x) is supposed to be agt.
In addition to Proposition 2.10, however, [8] also makes the following 

claims at the same page, where #X denotes the cardinality of a set X:1

(a) AOx⃗n
y := ∃x1 · · ·xn

(︁
(
⋀︁

i<j≤n xi ̸= xj) ∧ ∀y
⋁︁

i≤n y = xi
)︁

corresponds to the class of all frames such that #D = n;
(b) Ax⃗n

y := ∃x1 · · ·xn
(︁
(
⋀︁

i≤nKxi⊤)∧ (
⋀︁

i<j≤n xi ̸= xj)∧∀y(Ky⊤ →
⋁︁

i≤n y = xi)
)︁

corresponds to the class of all frames such that #Dagt = n,

1In [8, p. 18], AOx⃗n
y  and Ax⃗n

y  are called M and N, respectively.
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Amongst these, (a) is false in the current two-sorted language. Consider a 
signature such that all of x1, . . . , xn, y have type agt. Then, it is easy to 
check that the validity of AOx⃗n

y  over a frame entails #Dagt = n. Hence it 
follows from Dobj ̸= ∅ that n < #Dagt +#Dobj = #D, which contradicts 
(a). The frame property to which AOx⃗n

y  corresponds is actually as follows, 
where |y| denotes the set {xi | t(y) = t(xi), 1 ≤ i ≤ n } and τ  denotes the 
converse type of a type τ .
Proposition 2.11.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature such that x1, 
. . ., xn, y are pairwise distinct variables. Then AOx⃗n

y  corresponds to the 
class of all frames such that #Dt(y) = #|y| and #D

t(y)
≥ (n−#|y|).

Proof: Suppose that AOx⃗n
y  is valid over a frame F . Taking a world w, an 

interpretation I and a valuation σ arbitrarily, we obtain ⟨F, I⟩, w |=σ AOx⃗n
y . 

We then have some pairwise distinct elements d1, . . . , d#|y| ∈ Dt(y) and 
d#|y|+1, . . . , dn ∈ D

t(y)
 such that for all d ∈ Dt(y) the following disjunction 

holds: d = d1  or · · ·  or d = d#|y|  or d = d#|y|+1  or · · ·  or d = dn. 
Since d ∈ Dt(y) and d#|y|+1, . . . , dn ∈ D

t(y)
, this disjunction is equivalent 

to the disjunction that d = d1  or · · ·  or d = d#|y|. Thus, #Dt(y) = #|y|
and #D

t(y)
≥ (n−#|y|).

For the other direction, suppose #Dt(y) = #|y| and #D
t(y)

≥ (n −
#|y|). We show that ⟨F, I⟩, w |=σ AOx⃗n

y  for any interpretation I, any 
world w and any valuation σ. By our supposition we have some pairwise 
distinct elements d1, . . . , d#|y| ∈ Dt(y) and d#|y|+1, . . . , dn ∈ D

t(y)
 such 

that Dt(y) = { d1, . . . , d#|y| }. Note here that t(xk1
) = · · · = t(xk#|y|) =

t(y) and t(xk#|y|+1
) = · · · = t(xkn) = t(y) for some variables xk1 , . . . , xkn

coming from x1, . . . , xn. Letting σ′ = σ[xk1 ↦→ d1] · · · [xkn ↦→ dn] and σ′′

= σ[x1 ↦→ σ′(x1)] · · · [xn ↦→ σ′(xn)], we have ⟨F, I⟩, w |=σ′′
⋀︁

i<j≤n xi ̸=
xj . On top of that, we have ⟨F, I⟩, w |=σ′′ ∀y

⋁︁
i≤#|y| y = xki

 hence 
⟨F, I⟩, w |=σ′′ ∀y

⋁︁
i≤n y = xi. Thus, ⟨F, I⟩, w |=σ AOx⃗n

y . □
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On the other hand, (b) is true on some reading, but then just a corollary 
of Proposition 2.11. For, (b) can be true only if we presuppose on the 
meta-level that Ax⃗n

y  is a well-formed formula under a given signature Σ, 
which means after all to presuppose at the meta-level that all of x1, . . . , xn
have type agt under Σ. Then Ax⃗n

y  is just an equivalent variant of AOx⃗n
y

corresponding to the class of all frames such that #Dagt = n, as shown 
below.
Corollary 2.12.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature such that x1, . . ., 
xn, y are pairwise distinct variables with t(x1) = · · · = t(xn) = t(y) = agt. 
Then each of AOx⃗n

y  and Ax⃗n
y  corresponds to the class of all frames such that 

#Dagt = n.

Thus we may treat Ax⃗n
y  as AOx⃗n

y  with t(x1) = · · · = t(xn) = t(y) = agt.

 Axioms
 all propositional tautologies

UE ∀xϕ→ ϕ(y/x) K Kt(ϕ→ ψ) → (Ktϕ→ Ktψ)
Id t = t BF† ∀xKtϕ→ Kt∀xϕ
PS x = y → (ϕ(x/z) → ϕ(y/z)) KNI x ̸= y → Ktx ̸= y
∃Id c = c→ ∃x(x = c)
DD x ̸= y  if t(x) ̸= t(y)

 Inference rules
MP  From ϕ and ϕ→ ψ, infer ψ
KG  From ϕ, infer Ktϕ
UG‡  From ϕ→ ψ, infer ϕ→ ∀xψ

†: x does not occur in t and ‡: x is not free in ϕ.

Table 1: The Hilbert-style system HK for term-modal logic K

Finally, we introduce the Hilbert-style system HK for the minimal nor­
mal term-modal logic K and some expansions of it presented in
[8, pp. 17–18]. The Hilbert-style system HK is defined as in Table 1. 
For its expansions, put AX = {T,D, 4, 5 } throughout the paper. Given 
a set Γ ⊆ AX, the Hilbert-style system HKΓ is defined to be the system 
obtained from HK by adding all axioms in Γ. The notion of proof in HKΓ
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is defined as usual. It is easy to check that HKAX and HS5 := HK{T, 5 }
have the same provability.
Remark 2.13.  In [8, Theorem 3], the strong completeness of some expan­
sions of HKΓ with AOx⃗n

y  and Ax⃗′
n′

y′  is also claimed. Since there are some 

signatures and some n, n′ ≥ 1 such that the addition of AOx⃗n
y  and Ax⃗′

n′
y′

make HKΓ inconsistent, in those cases we cannot prove the semantic in­
completeness of those expansions. On the other hand, the side conditions 
of AOx⃗n

y  and Ax⃗′
n′

y′  to keep the consistency of HKΓ ∪ {AOx⃗n
y ,A

x⃗′
n′

y′ } are 
somewhat complicated.2 Thus, for simplicity we confine ourselves to the 
expansions with axioms in AX.

Before going to the next section, we note that UE and PS are particularly 
relevant to the semantic incompleteness of HKΓ. As remarked in Fagin 
et al. [3, pp. 88–89], the ordinary first-order axioms ∀xϕ → ϕ(t/x) and 
t = s → (ϕ(t/z) → ϕ(s/z)) are not valid in Kripke semantics for first-
order modal logic where constants or function symbols are interpreted as 
non-rigid. Probably because of this reason, [8] instead adopted UE and 
PS that are the variable-restricted versions of these ordinary first-order 
axioms. The problem is that UE and PS or their combinations with other 
axioms are not sufficient to derive a valid formula x = c→ (P (x) → P (c))
over the class of all frames.

3. Semantic Incompleteness

In this section, for all Γ ⊆ AX we prove the semantic incompleteness of 
HKΓ by showing that x = c→ (P (x) → P (c)) is valid over the class of all 
frames to which Γ corresponds in the TML-semantics but not provable in 
HKΓ. For the former, since any valid formula over the class of all frames is 
also valid over the class of all frames to which Γ corresponds, it is sufficient 
to show that x = c→ (P (x) → P (c)) is valid over the class of all frames in 
the TML-semantics. As expected, it is straightforward to show this fact.

2The following two side conditions are at least necessary: (1) if t(y) = t(y′) then 
#|y| = #|y′|; (2) if t(y) ̸= t(y′) then #|y| ≥ (n′ −#|y′|) and #|y′| ≥ (n−#|y|).
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Proposition 3.1.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature, x ∈ Var, c ∈ Cn

and P ∈ Rel with t(P ) = ⟨agt_or_obj⟩. A formula x = c → (P (x) →
P (c)) is valid over the class of all frames in the TML-semantics.

For the latter, since any unprovable formula in HS5 is also unprovable 
in HKΓ, it is sufficient to show that x = c→ (P (x) → P (c)) is not provable 
in HS5. To this end, we introduce a new semantics in which HS5 is sound 
with respect to the class of all reflexive, symmetric and transitive frames 
but x = c→ (P (x) → P (c)) is not valid over this class of frames.
Definition 3.2 (Non-standard Model).  Let ⟨Var, Cn, Fn, Rel, t⟩ be a sig­
nature. A non-standard model is a tuple N = ⟨D,W,R, J⟩ where ⟨D,W,R⟩
is a frame in the sense of Definition 2.4 and J is an interpretation that maps

1. a triple ⟨c, w,X⟩ of some c ∈ Cn, some w ∈W  and some X ⊆ Dn for 
some n ∈ N to an element J(c, w,X) ∈ Dt(c);

2. a triple ⟨f, w,X⟩ of some f ∈ Fn, some w ∈ W  and some X ⊆ Dn

for some n ∈ N to a function J(f, w,X) : (Dτ1 × · · ·×Dτn) → Dτn+1
, 

where t(f) = ⟨τ1, . . . , τn+1⟩;

3. a pair ⟨=, w⟩ of the equality symbol = and some w ∈ W  to the set 
J(=, w) =

{︁
⟨d, d⟩ | d ∈ Dagt_or_obj

}︁
;

4. a pair ⟨P,w⟩ of some P ∈ Rel \ {= } and some w ∈ W  to a subset 
J(P,w) of Dτ1 × · · · ×Dτn , where t(P ) = ⟨τ1, . . . , τn⟩.

Here is the intuition. A subset X of Dn is a set of sequences consisting 
of either/both of agents and objects. Thus, the set X mentioned in the 
meanings J(c, w,X) and J(f, w,X) of a constant c and a function symbol 
f  can serve as the meaning of a relation symbol. This trick enables us 
to make the meanings of constants and function symbols relative to the 
meanings of relation symbols combined with them.

We then define the notion of satisfaction of formulas in non-standard 
models. In what follows, we use the same notion of valuation as in the 
TML-semantics and define the extension [[t]]J,σw,X  of a term t in a given non-
standard model similarly by letting [[x]]J,σw,X = σ(x), [[c]]J,σw,X = J(c, w,X)

and [[f(t1, . . . , tn)]]J,σw,X = J(f, w,X)([[t1]]
J,σ
w,X , . . . , [[tn]]

J,σ
w,X).



218 Takahiro Sawasaki

Definition 3.3 (Satisfaction in Non-standard Model).  The satisfaction
N,w |=σ ϕ of a formula ϕ at a world w in a non-standard model N  under 
a valuation σ is defined as follows.

N,w |=σ P (t1, . . . , tn) iff ⟨[[t1]]J,σw,J(P,w), . . . , [[tn]]
J,σ
w,J(P,w)⟩ ∈ J(P,w)

(P  can be =)
N,w |=σ ¬ϕ iff N,w ̸|=σ ϕ

N,w |=σ ϕ ∧ ψ iff N,w |=σ ϕ and N,w |=σ ψ

N,w |=σ ∀xϕ iff N,w |=σ[x↦→d] ϕ for all d ∈ Dt(x)

N,w |=σ Ktϕ iff N,w′ |=σ ϕ for all w′ ∈W  such that
⟨w,w′⟩ ∈ R[[t]]J,σ

w,∅

What we should pay attention here is the satisfactions of atomic for­
mula P (t1, . . . , tn) and term-modal formula Ktϕ. In the satisfaction of 
P (t1, . . . , tn) in non-standard models, the meaning [[ti]]J,σw,J(P,w) of each ti
in P (t1, . . . , tn) is determined by the interpretation J , the valuation σ, 
the world w and the meaning J(P,w) of the relation symbol P  combined 
with terms t1, . . . , tn. Thus, as explained in the following Example 3.4, the 
meaning of a constant c occurring in P (c) could be different from that of c
occurring in Q(c).
Example 3.4.  Let lewis∈ Cn with t(lewis)= agt and SL,CF ∈ Rel with 
t(SL) = t(CF ) = ⟨agt⟩, and consider a non-standard model such that 
J(SL,w)={i ∈ Dagt | i is one of the authors of Symbolic Logic}, J(CF,w)
=

{︁
i ∈ Dagt | i is the author of Counterfactuals

}︁
, J(lewis, w, J(SL,w)) is 

C. I. Lewis and J(lewis, w, J(CF,w)) is D. Lewis. Then, the meaning 
J(lewis, w, J(SL,w)) of lewis occurring in SL(lewis) is different from 
the meaning J(lewis, w, J(CF,w)) of lewis occurring in CF (lewis). Note 
that, although J(lewis, w, J(SL,w)) ∈ J(SL,w) in the above non-standard 
model, we can technically assign to J(lewis, w, J(SL,w)) D. Lewis to have 
a non-standard model such that J(lewis, w, J(SL,w)) /∈ J(SL,w).

On the other hand, because the meaning [[t]]J,σw,∅ of t in Kt is determined 
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independently of the meaning of any relation symbol, the satisfaction of 
Ktϕ in non-standard model is in effect the same as the satisfaction of Ktϕ
in models of the TML-semantics. By this fact we can validate axioms K
and BF in this semantics.

The notions of validity is defined as in the TML-semantics. For ease of 
reference, henceforth we call this semantics non-standard semantics.

Now it is easy to see that x = c→ (P (x) → P (c)) is not valid over the 
class of all reflexive, symmetric and transitive frames in the non-standard 
semantics.
Proposition 3.5.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature, x ∈ Var, c ∈ Cn

with t(x) = t(c) and P ∈ Rel with t(P ) = ⟨agt_or_obj⟩. A formula 
x = c→ (P (x) → P (c)) is not valid over the class of all reflexive, symmetric 
and transitive frames in the non-standard semantics.
Proof: We may assume t(x) = t(c) = agt without loss of generality. 
Let N = ⟨D,W,R, J⟩ be a non-standard model such that w ∈ W , Ri

is reflexive, symmetric and transitive for all i ∈ Dagt, Dagt = {α, β }, 
J(c, w, { ⟨d, d⟩ | d ∈ Dagt_or_obj }) = α, J(c, w, {α }) = β and J(P,w) =

{α }. Let σ be also a valuation such that σ(x) = α. Since [[x]]J,σw,J(=,w)

= σ(x) = α = J(c, w, { ⟨d, d⟩ | d ∈ Dagt_or_obj }) = J(c, w, J(=, w)) =

[[c]]J,σw,J(=,w), we have N,w |=σ x = c. It is also easy to see N,w |=σ P (x). 
However, since [[c]]J,σw,J(P,w) = J(c, w, J(P,w)) = J(c, w, {α }) = β, it fails 
that N,w |=σ P (c). Therefore x = c→ (P (x) → P (c)) is not valid over the 
class of all reflexive, symmetric and transitive frames in the non-standard 
semantics. □

On the other hand, we can use the following lemmas to prove the sound­
ness of HS5 in the non-standard semantics, and thereby obtain the unprov­
ability of x = c→ (P (x) → P (c)) in HS5.
Lemma 3.6.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature and x, y ∈ Var with 
t(x) = t(y). Let ⟨D,W,R, J⟩ be also a non-standard model, w a world, X
a subset of Dn for some n ∈ N and σ a valuation. For all terms t,

[[t(y/x)]]J,σw,X = [[t]]
J,σ[x ↦→σ(y)]
w,X .
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Proof: By induction on the length of terms. □

Lemma 3.7.  Let ⟨Var, Cn, Fn, Rel, t⟩ be a signature, x, y ∈ Var with t(x) =
t(y) and N = ⟨D,W,R, J⟩ a non-standard model. For all worlds w, all 
valuations σ and all formulas ϕ,

N,w |=σ ϕ(y/x) iff N,w |=σ[x ↦→σ(y)] ϕ.

Proof: By induction on the length of formulas. □

Theorem 3.8 (Soundness).  If ϕ is provable in HS5, then ϕ is valid 
over the class of all reflexive, symmetric and transitive frames in the non-
standard semantics.
Proof: It is sufficient to prove that all axioms in HS5 are valid and that 
all inference rules preserve validity. Since the proof of the latter is done as 
usual, we see only the former.

• For any propositional tautology, its validity is obvious since the non-
standard semantics gives the ordinary satisfactions for ¬ and ∧.

• For UE, i.e., ∀xϕ → ϕ(y/x), suppose N,w |=σ ∀xϕ. Then we have 
N,w |=σ[x ↦→σ(y)] ϕ. Thus by Lemma 3.7 N,w |=σ ϕ(y/x) holds, as 
required.

• For Id, i.e., t = t, its validity is obvious.
• For PS, i.e., x = y → (ϕ(x/z) → ϕ(y/z)), its validity is shown by 

induction on ϕ.

– For ϕ being of the form P (t1, . . . , tn), suppose N,w |=σ x = y
and N,w |=σ P (t1, . . . , tn)(x/z). Since

⟨[[t1(x/z)]]J,σw,J(P,w), . . . , [[tn(x/z)]]
J,σ
w,J(P,w)⟩ ∈ J(P,w),

we can use σ(x) = σ(y) and Lemma 3.6 to obtain

⟨[[t1(y/z)]]J,σw,J(P,w), . . . , [[tn(y/z)]]
J,σ
w,J(P,w)⟩ ∈ J(P,w).

Thus N,w |=σ P (t1, . . . , tn)(y/z).
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– For ϕ being of the forms ¬ψ or ψ∧γ, the proof is straightforward.
– For ϕ being of the form ∀z′ψ, notice first that z′ ̸= x and z′ ̸= y

since x, y are assumed not to be bound in ϕ whenever we write 
ϕ(x/z) and ϕ(y/z). Suppose N,w |=σ x = y and N,w |=σ

(∀z′ψ)(x/z). If z′ = z, obviously N,w |=σ (∀z′ψ)(y/z). If z′ ̸=
z, then we have N,w |=σ ∀z′ψ(x/z) thus N,w |=σ[z′ ↦→d] ψ(x/z)
for all d ∈ Dt(z′). Since we have N,w |=σ[z′ ↦→d] x = y for all 
d ∈ Dt(z′), by the inductive hypothesis we obtain N,w |=σ[z′ ↦→d]

ψ(y/z) for all d ∈ Dt(z′). Therefore, N,w |=σ (∀z′ψ)(y/z).
– For ϕ being of the form Ktψ, suppose N,w |=σ x = y and 
N,w |=σ (Ktψ)(x/z). Then N,w′ |=σ ψ(x/z) for all w′ ∈ W
such that ⟨w,w′⟩ ∈ R[[t(x/z)]]J,σ

w,∅
. Now, we have N,w′ |=σ x = y

for all w′ ∈W , and [[t(x/z)]]J,σw,∅ = [[t(y/z)]]J,σw,∅ by σ(x) = σ(y) and 
Lemma 3.6. So by the inductive hypothesis we obtain N,w′ |=σ

ψ(y/z) for all w′ ∈ W  such that ⟨w,w′⟩ ∈ R[[t(y/z)]]J,σ
w,∅

. Thus, 
N,w |=σ (Ktψ)(y/z).

• For ∃Id, i.e., c = c→ ∃x(x = c), notice that N,w |=σ[x ↦→J(c,w,J(=,w))]

x = c. Then we have N,w |=σ ∃x(x = c) hence N,w |=σ c = c →
∃x(x = c), as required.

• For DD, i.e., x ̸= y if t(x) ̸= t(y), suppose t(x) ̸= t(y) and let N , w
and σ be arbitrary. By the definition of valuation, each of σ(x) and 
σ(y) is in Dt(x) and Dt(y), respectively. Since t(x) ̸= t(y), Dt(x) and 
Dt(y) must be disjoint. Thus N,w |=σ x ̸= y, as required.

• For K, i.e., Kt(ϕ → ψ) → (Ktϕ → Ktψ), suppose N,w |=σ Kt(ϕ →
ψ) and N,w |=σ Ktϕ. Let w′ be any world such that ⟨w,w′⟩ ∈ R[[t]]J,σ

w,∅
. 

Then we have N,w′ |=σ ϕ → ψ and N,w′ |=σ ϕ. Thus N,w′ |=σ ψ, 
as required.

• For BF, i.e., ∀xKtϕ → Kt∀xϕ for x not occurring in t, suppose 
N,w |=σ ∀xKtϕ. To show N,w |=σ Kt∀xϕ, let w′ be any world such 
that ⟨w,w′⟩ ∈ R[[t]]J,σ

w,∅
 and take any d ∈ Dt(x). By our supposition, we 

have N,w |=σ[x ↦→d] Ktϕ. Now [[t]]J,σw,∅ = [[t]]
J,σ[x ↦→d]
w,∅  holds since x does 
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not occur in t. Thus by ⟨w,w′⟩ ∈ R
[[t]]

J,σ[x↦→d]

w,∅
, we have N,w′ |=σ[x ↦→d]

ϕ, as required.
• For KNI, i.e., x ̸= y → Ktx ̸= y, suppose N,w |=σ x ̸= y. By 

definition, obviously N,w′ |=σ x ̸= y for all worlds w′. Thus N,w |=
Ktx ̸= y, as required.

• For T, i.e., ∀x(Kxϕ → ϕ), suppose N,w |=σ[x ↦→d] Kxϕ for any d ∈
Dt(x). Since ⟨w,w⟩ ∈ Rσ[x ↦→d](x) by the reflexivity of the frame of N , 
we have N,w |=σ[x↦→d] ϕ, as required.

• For 5, i.e., ∀x(¬Kxϕ → Kx¬Kxϕ), suppose N,w |=σ[x ↦→d] ¬Kxϕ
for any d ∈ Dt(x). To show N,w |=σ[x↦→d] Kx¬Kxϕ, it is suffi­
cient to show N, v |=σ[x↦→d] ¬Kxϕ for any world v such that ⟨w, v⟩ ∈
Rσ[x ↦→d](x). Now by our supposition we have some world u such that 
⟨w, u⟩ ∈ Rσ[x ↦→d](x) and N, u ̸|=σ[x ↦→d] ϕ. Since ⟨v, u⟩ ∈ Rσ[x ↦→d](x) by 
the euclideaness of the frame of N , we have N, v |=σ[x↦→d] ¬Kxϕ, as 
required.

By the above argument the proof has completed. □

Theorem 3.9.  Let Σ = ⟨Var, Cn, Fn, Rel, t⟩ be a signature, x ∈ Var, 
c ∈ Cn with t(x) = t(c) and P ∈ Rel with t(P ) = ⟨agt_or_obj⟩. A 
formula x = c→ (P (x) → P (c)) is not provable in HS5.
Proof: If x = c→ (P (x) → P (c)) is provable in HS5, then by the sound­
ness (Theorem 3.8) it must be valid over the class of all reflexive, symmet­
ric and transitive frames in the non-standard semantics, which contradicts 
Proposition 3.5. □

We can now get the semantic incompleteness of HKΓ contradicting 
Theorem 3 in [8], as follows.
Theorem 3.10 (Semantic Incompleteness of HKΓ).  Let Γ ⊆ AX. The 
Hilbert-style system HKΓ is semantically incomplete with respect to the 
class of all frames to which Γ corresponds in the TML-semantics, i.e., 
there exists some formula ϕ such that ϕ is valid over the class of all frames 
to which Γ corresponds in the TML-semantics, but not provable in HKΓ.
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Proof: By Proposition 3.1 it follows that x = c→ (P (x) → P (c)) is valid 
over the class of all frames to which Γ corresponds in the TML-semantics. 
On the other hand, by Theorem 3.9 it follows that x = c→ (P (x) → P (c))
is not provable in HKΓ. □

Corollary 3.11 ([10, Corollary 1]).  The Hilbert-style system HK is 
semantically incomplete with respect to the class of all frames in the TML-
semantics.

4. Conclusion

In this paper, for a set Γ ⊆ AX = {T,D, 4, 5 }, we proved that Liber­
man et al.[8]’s Hilbert-style system HKΓ for the term-modal logic KΓ with 
equality and non-rigid terms is semantically incomplete with respect to the 
class of all frames to which Γ corresponds (Theorem 3.10). We also cor­
rected the frame property to which [8] claims that axiom AOx⃗n

y  corresponds 
(Proposition 2.11).

We make two remarks here. The first remark is that [8] also fails to 
prove the decidability of HK{AOx⃗n

y ,A
x⃗′

n′
y′ } with n′ < n and t(x′1) = · · · =

t(x′n′) = t(y′) = agt ([8, item 1 of Proposition 7]). Let F be the class of all 
frames to which {AOx⃗n

y ,A
x⃗′

n′
y′ } corresponds. The proof in [8] depends on 

a claim that Dobj is finite for any frame in F. However, this is not the case 
in some signatures. A simple counterexample is the case in which t(x1)
= · · · = t(xn′) = t(y) = agt and t(xn′+1) = · · · = t(xn) = obj. Then 
Proposition 2.11 tells us only that every frame in F satisfies #Dagt = n′

and #Dobj ≥ (n−n′), so we can find a frame in F such that Dobj is infinite.
The second remark is that, as the problematic first-order formula x =

c → (P (x) → P (c)) suggests, the semantic incompleteness of HKΓ is ir­
relevant to its term-modal or two-sorted aspects. To make the point clear, 
let L be a first-order modal language having equality, constants, function 
symbols and only the ordinary non-indexed modal operator □ as its modal 
operators. Say that the semantics for first-order modal logic (the FOML-
semantics for short) is the Kripke semantics of the constant domain given 
to L in which the accessibility relation is a binary relation on worlds, and 
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constants and function symbols are interpreted relative to worlds. Using a 
semantics similar to the non-standard semantics introduced in Section 3, 
we can in fact prove that the Hilbert-style system naturally obtained from 
HKΓ by changing from the two-sorted term-modal language to L becomes 
semantically incomplete with respect to the corresponding class of frames 
in the FOML-semantics. The question to be asked here is how we can ob­
tain a sound and complete Hilbert-style system with respect to this class 
of frames in the FOML-semantics. To the best of our knowledge, such a 
Hilbert-style system seems to have never been provided together with a de­
tailed proof in the literature.3

A further direction to be pursued is to give sound and complete Hilbert-
style systems for term-modal logics including K with equality and non-rigid 
terms. Such systems, for example, might be obtained as slight modifications 
of the system given in Fagin et al. [3, p. 90]. Another further direction 
that might be worth studying is to apply the non-standard semantics to 
the analysis of natural language. As Example 3.4 suggests, it is reasonable 
to see J(P,w) in J(c, w, J(P,w)) as a kind of context uniquely determining 
the denotation of a constant c at a world w. Thus, the non-standard 
semantics could be used for a semantics capturing the context-dependency 
of the denotations of nouns in natural language.

Acknowledgements. I would like to thank an anonymous reviewer for 
this journal for their comments on an earlier version of this paper.

3As for a sound and complete proof system with respect to the multi-modal FOML-
semantics with the epistemic accessibility relation for each agent, Fagin et al. [3, p. 90] 
offered a Hilbert-style system having two first-order principles A(t/x) → ∃xA and t =
s→ (A(t/z) ↔ A(s/z)) as axioms with a restriction that t, s must be variables if A has 
any occurrence of an (non term-modal) epistemic operator Ka. However, the proof of 
this system’s completeness is omitted.
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systems for both the classical and intuitionistic versions of these temporal logics. 
Theorems establishing the equivalence between the proposed sequent calculi and 
natural deduction systems are proved. Furthermore, the cut-elimination theo­
rems for the proposed sequent calculi and the normalization theorems for the 
proposed natural deduction systems are established. 

Keywords: linear-time temporal logic, intuitionistic linear-time temporal logic, 
sequent calculus, natural deduction, cut-elimination theorem, normalization the­
orem.
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1. Introduction

1.1. Until-free LTL and its intuitionistic variant

Linear-time temporal logic (LTL) and its fragments and variants have been 
extensively studied [45, 33, 14, 3, 4, 6, 18, 15, 10, 8, 9, 32, 23, 17, 11].2 The 
fragment of LTL without the until operator U is referred to as until-free 
LTL. Numerous Gentzen-style sequent calculi for LTL and until-free LTL 
have been introduced and investigated [33, 43, 44, 49, 4, 18, 15, 10, 23]. 
Several natural deduction systems for LTL and until-free LTL have also 
been explored [3, 6].

This study focuses on until-free LTL and its intuitionistic variant as 
the main target logics.3 One reason for this focus is its high compatibility 

2LTL was traditionally studied, for example, in [45, 14]. The fragment of LTL 
without the until operator U was investigated, for example, in [33, 3, 4, 18, 32, 23].

3The until operator U in LTL presents a certain difficulty in constructing a simple 
cut-free, two-sided, LK-compatible Gentzen-style sequent calculus. An extension of 
Kawai’s Gentzen-style sequent calculus LTω , referred to as LTU

ω , with the addition 
of U, was considered in [25], although it is unknown whether the cut-elimination and 
completeness theorems for LTU

ω  hold or not. A few alternative cut-free and complete 
sequent calculi extended by adding U were developed in [15, 10]. However, we cannot 
use these calculi in this study, as they are not compatible with the present approach, 
which treats both sequent calculi and natural deduction systems in a uniform manner.
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with Gentzen’s LK and NK for classical logic and Gentzen’s LI and NI4 for 
intuitionistic logic [48, 46]. Specifically, the proposed Gentzen-style single-
succedent sequent calculus and Gentzen-style natural deduction system for 
until-free LTL can be seen as natural extensions of LI and NI, respectively.

In addition, the intuitionistic variant of until-free LTL is considered 
because of its strong compatibility with Gentzen’s LI and NI. Specifically, 
the proposed Gentzen-style single-succedent sequent calculus and Gentzen-
style natural deduction system for this intuitionistic variant are subsystems 
of the corresponding systems for until-free LTL. These subsystems are ob­
tained in a modular way from the systems of until-free LTL by removing 
the temporal versions of the rules of excluded middle.5

1.2. Sequent calculi and natural deduction systems

Gentzen-style sequent calculi for LTL have been previously explored in the 
literature. Kawai introduced the sequent calculus LTω for first-order until-
free LTL, proving both cut elimination and completeness [33].6 Baratella 
and Masini developed the 2-sequent calculus 2Sω for first-order until-free 
LTL, and established the cut-elimination and completeness theorems [4]. 
Kamide demonstrated an equivalence theorem between the propositional 
fragments of LTω and 2Sω, providing alternative proofs of cut elimina­
tion as a consequence of this equivalence [18]. Further, Kamide presented 
embedding-based proofs of the cut-elimination and completeness theorems 
for LTω and its propositional fragment [23]. This study introduces a single-
succedent version, G3cLTω, of LTω and its intuitionistic variant, G3iLTω.

4We remark that Gentzen designated his intuitionistic calculus by NI, however, his 
handwriting for capital I was in the old Sütterlin handwriting, that, as explained by von 
Plato in [55], p. 83, has been rendered by capital J in printing. This practice has been 
followed, with rare exceptions, to these days, but recent literature shows a return to the 
originally intended nomenclature, see e.g. [51]. We shall follow the original notation also 
for the intuitionistic sequent calculus, with LI instead of LJ.

5The proposed sequent calculus for until-free LTL includes the sequent calculus 
version of the rule of excluded middle, referred to as (ex-middle), and the proposed 
natural deduction system for until-free LTL includes the natural deduction version of 
the rule of excluded middle, referred to as (EXM).

6We have not yet obtained a cut-free and complete extension of LTω with the until 
operator.
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The Gentzen-style natural deduction systems PNK and PNJ were intro­
duced by Baratella and Masini [3] for classical and intuitionistic until-free 
LTLs, respectively. These systems, PNK and PNJ, are regarded as exten­
sions of Gentzen’s NK and NI, and were referred to by the authors as the 
“logics of positions”. In a separate development, Bolotov et al. introduced 
the natural deduction system PLTLND [6] for full classical propositional 
LTL, including the until operator U. The system PLTLND employs labelled 
formulas of the form i : α and a temporal induction rule that deals with 
the next-time operator X and the “globally in the future” operator G. It 
is notable that PNK, PNJ, and PLTLND utilize an induction rule and do 
not incorporate infinite premiss rules for handling temporal operators. In 
contrast, the natural deduction systems proposed in this study employ in­
finite premiss rules and do not rely on an induction rule. This alternative 
approach provides a novel natural deduction system, NLTω, of LTω and its 
intuitionistic variant, NILTω.

1.3. The approach of this study

In this study, we introduce a unified Gentzen-style framework for until-free 
propositional LTL and its intuitionistic variant. This framework seam­
lessly integrates both Gentzen-style single-succedent sequent calculi and 
Gentzen-style natural deduction systems. Specifically, it allows us to estab­
lish an equivalence between these systems and to demonstrate that the cut-
elimination theorems for the single-succedent sequent calculi imply the nor­
malization theorems for the natural deduction systems.

The primary aim and original contribution of this study lie in providing 
a unified treatment for both sequent calculi and natural deduction systems 
within the context of until-free LTL.7 Until now, these systems have been 

7The unified treatment or approach also means that we can obtain a natural corre­
spondence between the sequent calculus and the natural deduction system. More specif­
ically, a natural correspondence refers to a correspondence between the cut-elimination 
theorem for the sequent calculus and the normalization theorem for the natural deduc­
tion system. Thus, the unified approach implies that we can handle these fundamental 
theorems in a uniform way.
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studied separately for LTL and its fragments, rather than in a unified man­
ner. This is in contrast to recent work where a unified treatment of sequent 
calculus and tableaux calculus for branching-time temporal logics has been 
explored by Abuin et al. [1]. Our unified approach not only bridges the 
gap (i.e., non-uniformity) between sequent calculi and natural deduction 
systems in until-free LTL but also facilitates the transfer of meta-results 
between these formalisms, providing a significant theoretical advantage for 
their applications.

To address the issue of the correspondence between cut elimination and 
normalization, we require a Gentzen-style single-succedent sequent calcu­
lus. This necessity arises because the cut-elimination theorem for the typ­
ical Gentzen-style multiple-succedent sequent calculi in standard classical 
LTL does not imply the normalization theorem for the corresponding natu­
ral deduction system. A similar situation is observed in classical logic when 
comparing Gentzen’s LK and NK. In contrast, it is well-established that 
the cut-elimination theorem for the single-succedent calculus LI directly 
implies the normalization theorem for NI in intuitionistic logic.8 There­
fore, our approach involves developing an LI-like single-succedent sequent 
calculus tailored for our target logic.

1.4. The proposed single-succedent sequent calculi

To obtain a classical single-succedent sequent calculus, we use the following 
temporal (single-succedent) excluded middle rule:

Xi¬α,Γ ⇒ γ Xiα,Γ ⇒ γ

Γ ⇒ γ
(ex-middle)

where Xi is an i-times nested next-time operator. By employing this rule, 
we can prove the law of excluded middle, α∨¬α, for arbitrary formulas 
α. The non-temporal version of this rule, without Xi, was originally intro­
duced by von Plato [53, 41]. Pursuing the idea of correspondence between 
cut elimination and normalization, von Plato developed a single-succedent 

8See, for example, [41] and the references therein.
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sequent calculus for classical logic and proved cut elimination and nor­
malization for the corresponding sequent calculus and natural deduction 
systems. Building on this approach, we aim to extend these concepts to 
the target temporal logic. In fact, the G3-style single-succedent sequent 
calculus G3cLTω proposed in this study can be seen as a temporal ex­
tension of von Plato’s calculus. Moreover, the cut-elimination result for 
G3cLTω serves as an extension of his cut-elimination results for classical 
logic. Additionally, an important advantage of this approach is that a 
single-succedent sequent calculus for an intuitionistic variant of the target 
logic can be easily derived from G3cLTω by just removing (ex-middle).

1.5. The proposed natural deduction systems

To obtain the corresponding natural deduction system for until-free LTL, 
we use rules of the form:

[Xi¬α]....
γ

[Xiα]....
γ

γ (EXM) Xi¬α Xiα
γ (EXP)

[Xiα]....
Xj¬γ

[Xiα]....
Xjγ

Xi¬α
(¬I)

where (EXM) corresponds to (ex-middle). As mentioned above, the non-
temporal version of (EXM) was originally introduced by von Plato [53,
41]; the non-temporal versions of (EXP) and (¬I) were instead originally 
introduced by Gentzen. For detailed information on these rules, see [54, 55].

Rule (EXP) has been applied in various contexts: Bolotov and Shangin 
[7] utilized it to construct the paracomplete logic PCont; Kürbis and Petru­
khin [36] developed natural deduction systems for a family of many-valued 
logics, including N3, using this rule; Kamide and Negri [26, 30] employed 
it to formalize Gurevich logic [16] and Nelson logic [42, 2]. Additionally, 
Priest [47] proposed rules similar to (EXP) for creating natural deduction 
systems for logics in the FDE (First Degree Entailment) family.

Rule (EXP) is considered a counterpart to (EXM) and is particularly 
useful for handling natural deduction systems where negation is treated as 
a primitive connective, rather than being defined through implication and 
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the falsity constant. In this study, the proposed natural deduction system 
NLTω can be seen as a modified temporal extension of von Plato’s classical 
system, enhanced by incorporating (EXP) and (¬I). The normalization re­
sult for NLTω extends von Plato’s normalization result for classical logic. 
Moreover, a significant advantage of this approach is that a natural de­
duction system for an intuitionistic variant of until-free LTL can be easily 
obtained from NLTω by omitting rule (EXM).

We address some remarks on previous results presented in the papers 
[26, 30] concerning natural deduction systems for logics of strong negation. 
The paper [26] introduced natural deduction systems for Gurevich logic, in­
tuitionistic logic, and classical logic using (EXP) and/or (EXM) and proved 
normalization theorems for the natural deduction systems of Gurevich logic 
and intuitionistic logic. However, [26] contained errors related to these nor­
malization theorems. These errors arose from inappropriate definitions in 
the natural deduction system NI⋆ for intuitionistic logic.

These issues were identified by Arnon Avron during the 1st Workshop 
on Contradictory Logics, held in Bochum on December 6-8, 2023. He 
pointed out a gap in an earlier version of NI⋆, specifically the absence of 
the non-temporal version of (¬I). These errors have been corrected in the 
subsequent papers [30, 29]. The results of this study reflect the corrected 
findings in [30, 29].

1.6. Paper structure

The paper is structured as follows: In Section 2, we explore Gentzen-style 
sequent calculi and their cut-elimination theorems for until-free proposi­
tional LTL. We begin by presenting Kawai’s Gentzen-style sequent calcu­
lus LTω and introducing the newly proposed Gentzen-style single-succedent 
sequent calculus G3cLTω. Subsequently, we prove the cut-elimination the­
orem for G3cLTω using an extension of the standard methodology for G3-
style sequent calculi, namely, by first proving invertibility of (most of) the 
rules and admissibility of weakening and contraction.

In Section 3, we begin by introducing the newly proposed Gentzen-style 
natural deduction system NLTω for until-free propositional LTL. We also 
define the reduction relation for NLTω. Subsequently, we establish the 
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normalization theorem for NLTω by exploiting the equivalence theorem 
between NLTω and G3cLTω.

In Section 4, we introduce and investigate a Gentzen-style sequent cal­
culus G3iLTω and a Gentzen-style natural deduction system NILTω for 
an intuitionistic variant of the until-free propositional LTL. The systems 
G3iLTω and NILTω are derived from G3cLTω and NLTω, respectively, by 
removing (ex-middle), and its corresponding rule (EXM). All the structural 
results and the cut-elimination theorem for G3iLTω follow directly from the 
corresponding results for G3cLTω. Then, we establish the normalization 
theorem for NILTω using the translation that gives the equivalence between 
NILTω and G3iLTω.

Section 5 concludes this study with some additional remarks.

2. Sequent calculus and cut elimination

In this study, we assume standard notions and terminologies regarding 
Gentzen-style sequent calculus and Gentzen-style natural deduction sys­
tem, and do not provide precise definitions for some of these familiar no­
tions and terminologies.

Formulas of the logic discussed in this study are constructed using 
countably many propositional variables, the logical connectives → (impli­
cation), ¬ (negation), ∧ (conjunction), ∨ (disjunction), G (globally in the 
future), F (eventually in the future), and X (next-time). We use small let­
ters p, q, ... to denote propositional variables and Greek small letters α, β, ...
to denote formulas.

We use Greek capital letters Γ,∆, ... to denote finite (possibly empty) 
multisets9 of formulas. For any ♯ ∈ {G,F,X} and any multisets Γ of 
formulas, we use an expression ♯Γ to denote the multisets {♯γ | γ ∈ Γ}. 
The symbol ≡ is used to denote the equality of multisets of symbols. The 

9For the newly introduced G3-style calculi we shall consider a definition based on 
multisets. This will also be the case for natural deduction although the practice of 
multiple-discharge makes the choice less visible. Additionally, for the sake of comparison 
between our calculus and Kawai’s calculus LTω , LTω is also presented in this study 
using a multiset-based formulation. This modification is not essential to the results of 
this study.
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symbol ω is used to represent the set of natural numbers. An expression 
Xiα for any i ∈ ω is defined inductively by X0α ≡ α and Xn+1α ≡ XnXα. 
We use lower-case letters i, j and k to denote any natural numbers.

We will define Kawai’s Gentzen-style sequent calculus LTω [33] and a 
new alternative Gentzten-style single-succedent sequent calculus G3cLTω. 
Prior to defining these sequent calculi, we need to define some additional 
notions and notations.
Definition 2.1.  A sequent for LTω is an expression of the form Γ ⇒ ∆, 
and a sequent for G3cLTω is an expression of the form Γ ⇒ γ where γ is 
a formula or the empty set. We use the expression L ⊢ S to represent the 
fact that a sequent S is derivable in a sequent calculus L. We say that “a 
rule R is admissible in a sequent calculus L” if the following condition is 
satisfied: For any instance S1···Sn

S  of R, if L ⊢ Si for all i, then L ⊢ S.
Additionally, we have to define the notion of height of a derivation. 

This notion is formulated in a general way and is applicable to all the 
sequent calculi here presented. Derivations built using these rules are thus 
(in general) infinite trees, with countable branching but where (as may 
be proved by induction on the definition of derivation) each branch has 
finite length. The leaves of the trees are the initial sequents. To make this 
precise, we give a formal definition of the notion of derivation D and the 
associated notions of its height ht(D) and its end-sequent.
Definition 2.2.

1. Any sequent Γ ⇒ ∆, where some formula Xip occurs in both Γ and 
∆, is a derivation of height 0 and with end-sequent Γ ⇒ ∆.

2. If each Dn is a derivation of height αn, with end-sequent Γn ⇒ ∆n

and
. . . Γn ⇒ ∆n . . .

Γ ⇒ ∆
R

is an inference (i.e. an instance of a rule), then
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. . .

Dn

Γn ⇒ ∆n . . .

Γ ⇒ ∆
R

is a derivation, its height is the countable ordinal supn(αn) + 1, and 
its end-sequent is Γ ⇒ ∆.

3. Thus, each derivation D has a countable ordinal height, denoted 
ht(D), which is the successor of the supremum of the heights of its 
immediate subderivations. It follows that, if D′ is a sub-derivation of 
D, then ht(D′) < ht(D).

4. We say that “a rule R of the form S1···Sn

S  is height-preserving admis­
sible in a sequent calculus L” if the following condition is satisfied: If 
the premisses are derivable with height at most n then also the con­
clusion is derivable with the same bound on the derivation height. 
Furthermore, we say that “R is derivable in L” if there is a derivation 
from S1, · · · , Sn to S in L.

First, we introduce LTω.
Definition 2.3 (LTω).  In the following definitions, i and k represent 
arbitrary natural numbers (i.e., i, k ∈ ω).

The initial sequents of LTω are of the following form for any proposi­
tional variable p:

Xip⇒ Xip (init)

The structural rules of LTω are of the form:

Γ ⇒ ∆, α α,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
(cut)

Γ ⇒ ∆
α,Γ ⇒ ∆

(we-left) Γ ⇒ ∆
Γ ⇒ ∆, α

(we-right)

α, α,Γ ⇒ ∆

α,Γ ⇒ ∆
(co-left)

Γ ⇒ ∆, α, α

Γ ⇒ ∆, α
(co-right).
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The logical rules of LTω are of the form:

Γ ⇒ ∆,Xiα Xiβ,Γ ⇒ ∆

Xi(α→β),Γ ⇒ ∆
(→left)

Xiα,Γ ⇒ ∆,Xiβ

Γ ⇒ ∆,Xi(α→β)
(→right)

Γ ⇒ ∆,Xiα

Xi¬α,Γ ⇒ ∆
(¬left)

Xiα,Γ ⇒ ∆

Γ ⇒ ∆,Xi¬α
(¬right)

Xiα,Xiβ,Γ ⇒ ∆

Xi(α∧β),Γ ⇒ ∆
(∧left)

Γ ⇒ ∆,Xiα Γ ⇒ ∆,Xiβ

Γ ⇒ ∆,Xi(α∧β)
(∧right)

Xiα,Γ ⇒ ∆ Xiβ,Γ ⇒ ∆

Xi(α∨β),Γ ⇒ ∆
(∨left)

Γ ⇒ ∆,Xiα,Xiβ

Γ ⇒ ∆,Xi(α∨β)
(∨right)

Xi+kα,Γ ⇒ ∆

XiGα,Γ ⇒ ∆
(Gleft)

{ Γ ⇒ ∆,Xi+jα }j∈ω

Γ ⇒ ∆,XiGα
(Gright)

{ Xi+jα,Γ ⇒ ∆ }j∈ω

XiFα,Γ ⇒ ∆
(Fleft)

Γ ⇒ ∆,Xi+kα

Γ ⇒ ∆,XiFα
(Fright).

Remark 2.4.

1. The calculus LTω introduced here is a modified propositional version 
of Kawai’s sequent calculus [33] for until-free first-order linear-time 
temporal logic. Kawai’s original sequent calculus was developed as a 
first-order system incorporating the Barcan formula. In that system, 
the next-time operator was not used as a modal operator but rather 
as a special symbol.

2. Note that (Gright) and (Fleft) have infinitely many premises and can 
also be represented as:

{ Γ ⇒ ∆,Xi+jα | j∈ω }
Γ ⇒ ∆,XiGα

(Gright)
{ Xi+jα,Γ ⇒ ∆ | j∈ω }

XiFα,Γ ⇒ ∆
(Fleft).
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3. The following cut-elimination theorem holds for LTω. Rule (cut) is 
admissible in cut-free LTω. For the details, see [33, 18, 23].

4. The cut-elimination theorem for the original first-order LTω was prov­
ed by Kawai in [33] and was indirectly re-proved for a slightly modified 
version of LTω by Kamide in [18], via the cut-free equivalence between 
LTω and Baratella-Masini’s cut-free 2-sequent calculus 2Sω [4]. Addi­
tionally, Kamide provided an alternative proof for the cut-elimination 
theorem for the slightly modified LTω in [23]. This alternative proof 
was based on a theorem that embeds LTω into a Gentzen-style se­
quent calculus for infinitary logic. For more information on the cut-
elimination theorem for LTω, see [33, 18, 23].

Next, we introduce G3cLTω. We use the same names for the rules of 
G3cLTω as those of LTω.
Definition 2.5 (G3cLTω).  In the following definitions, i and k denote 
arbitrary natural numbers and γ denotes either a formula or the empty 
multiset.

The initial sequents of G3cLTω are of the following form for any propo­
sitional variable p:

Xip,Γ ⇒ Xip (init).10

The structural rules of G3cLTω are of the form: 11

Γ ⇒
Γ ⇒ α

(we-right).

The logical rules of G3cLTω are of the form:

Xi(α→β),Γ ⇒ Xiα Xiβ,Γ ⇒ γ

Xi(α→β),Γ ⇒ γ
(→left)

Xiα,Γ ⇒ Xiβ

Γ ⇒ Xi(α→β)
(→right)

10The context Γ is required in (init), which distinguishes it from LTω .
11As will be shown, weakening-left, contraction-left, and cut rules are admissible in 

G3cLTω .
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Xi¬α,Γ ⇒ Xiα

Xi¬α,Γ ⇒
(¬left)

Xiα,Γ ⇒
Γ ⇒ Xi¬α

(¬right)

Xi¬α,Γ ⇒ γ Xiα,Γ ⇒ γ

Γ ⇒ γ
(ex-middle)

Xiα,Xiβ,Γ ⇒ γ

Xi(α ∧ β),Γ ⇒ γ
(∧left)

Γ ⇒ Xiα Γ ⇒ Xiβ

Γ ⇒ Xi(α ∧ β)
(∧right)

Xiα,Γ ⇒ γ Xiβ,Γ ⇒ γ

Xi(α ∨ β),Γ ⇒ γ
(∨left)

Γ ⇒ Xiα

Γ ⇒ Xi(α ∨ β)
(∨right1)

Γ ⇒ Xiβ

Γ ⇒ Xi(α ∨ β)
(∨right2)

XiGα,Xi+kα,Γ ⇒ γ

XiGα,Γ ⇒ γ
(Gleft)

{ Γ ⇒ Xi+jα }j∈ω

Γ ⇒ XiGα
(Gright)

{ Xi+jα,Γ ⇒ γ }j∈ω

XiFα,Γ ⇒ γ
(Fleft) Γ ⇒ Xi+kα

Γ ⇒ XiFα
(Fright).

Remark 2.6.

1. Similar to Gentzen’s LK and the single-succedent sequent calculus 
for classical logic, a theorem can be established to demonstrate the 
equivalence between LTω and G3cLTω, assuming the admissibility of 
structural rules, including (cut). However, a proof is omitted here, as 
it was presented in [28] for similar systems. For details on the proof of 
such an equivalence theorem, see [28], where the equivalence between 
a slightly modified version of LTω and a non-G3-style version, SLTω, 
of G3cLTω was established.

2. Alternatively, the equivalence between LTω and G3cLTω can be es­
tablished through the equivalence among LTω, SLTω, and NLTω. 
Here, SLTω refers to the non-G3-style single-succedent sequent
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calculus introduced in [28], and NLTω is introduced both in the 
present study and in [28]. Since NLTω and (a slightly modified ver­
sion of) LTω are common to both studies, the required equivalence 
theorem can be obtained.

3. Rule (ex-middle) is a characteristic feature of G3cLTω. By utilizing 
this rule, we can formalize a single-succedent sequent calculus. This 
rule is a temporal generalization of the original rule introduced by 
von Plato [53, 41]. Von Plato originally developed a single-succedent 
sequent calculus for classical logic using this rule and proved the cut-
elimination theorem for it. Therefore, G3cLTω can be viewed as a 
temporal extension of his calculus, and the cut-elimination result for 
G3cLTω extends his cut-elimination result for classical logic.

4. In [53, 41], (ex-middle) and the following rule were introduced:

¬p,Γ ⇒ γ p,Γ ⇒ γ

Γ ⇒ γ
(ex-middle-at)

where p is a propositional variable. In [53, 41], the following results 
were presented. The cut rule and rule (ex-middle) are admissible 
in certain versions of cut-free LI that include (ex-middle-at). As a 
consequence of these results, these versions possess a weak subformula 
property that allows for propositional variables and their negations.

Proposition 2.7.  Let L be LTω or G3cLTω. The sequents of the form 
Xiα,Γ ⇒ Xiα for any formula α, any multiset Γ of formulas, and any nat­
ural number i are derivable in L.
Proof: By induction on α. We show some cases.

1. Case α ≡ ¬β:
.... Ind. hyp.

Xi¬β,Xiβ,Γ ⇒ Xiβ

Xiβ,Xi¬β,Γ ⇒
(¬left)

Xi¬β,Γ ⇒ Xi¬β
(¬right).
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2. Case α ≡ β→γ:
.... Ind. hyp.

Xi(β→γ),Xiβ ⇒ Xiβ

.... Ind. hyp.
Xiγ,Γ ⇒ Xiγ

Xiβ,Xi(β→γ),Γ ⇒ Xiγ
(→left)

Xi(β→γ),Γ ⇒ Xi(β→γ)
(→right).

3. Case α ≡ Gβ:
.... Ind. hyp.

{ XiGβ,Xi+jβ,Γ ⇒ Xi+jβ }j∈ω

{ XiGβ,Γ ⇒ Xi+j }j∈ω

(Gleft)

XiGβ,Γ ⇒ XiGβ
(Gright).

□

Proposition 2.8.  The rule of left weakening

Γ ⇒ γ

α,Γ ⇒ γ
(we-left)

is height-preserving admissible in G3cLTω.
Proof: By straightforward induction on the height of the derivation since 
weakening is in-built in initial sequents and all the rules have an arbitrary 
context on the left. □

Lemma 2.9.  All the logical rules of G3cLTω with the exception of (→left), 
(∨right1), (∨right2), (Fright) are hp-invertible. Rule (→left) is hp-invertible 
with respect to the right premiss.
Proof: By induction on the height of the derivation of the conclusion of 
each rule. We show the case of invertibility of (→left) with respect to the 
right premiss, all the other cases being similar. Assume ⊢0 X

i(α→β),Γ ⇒ γ. 
Then we have an initial sequent with γ ∈ Γ and γ is of the form Xjp, 
i.e. ⊢0X

i(α→β), Xjp,Γ′ ⇒ Xjp. Then also Xiβ,Xjp,Γ′ ⇒ Xjp is an ini­
tial sequent, i.e., ⊢0 X

iβ,Γ ⇒ γ.
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Let us assume the statement to be true for n and prove it for n + 1. 
We consider the last rule applied in the derivation. If it is (→left) with 
Xi(α→β) principal, the right premiss gives the desired conclusion. If some 
other formula is principal in the last step, assume for example that the 
last step is (→left) with another principal formula. So we have ⊢n+1

Xi(α→β), Xj(ϵ→δ),Γ′ ⇒ γ and the premisses give ⊢n X
i(α→β),Γ′ ⇒ Xjϵ 

and ⊢n X
i(α→β), Xjδ,Γ′ ⇒ γ. By inductive hypothesis we thus obtain ⊢n

Xiβ,Γ′ ⇒ Xjϵ and ⊢n Xiβ,Xjδ,Γ′ ⇒ γ and a step of (→left) gives the 
conclusion ⊢n+1 X

iβ,Xj(ϵ→δ),Γ′ ⇒ γ. □

Lemma 2.10.  The rule of left contraction

α, α,Γ ⇒ γ

α,Γ ⇒ γ
(co-left)

is hp-admissible in G3cLTω.

Proof: By induction on the height of the derivation of the premiss. In the 
base case, with height zero, the premiss is an initial sequent and clearly also 
the conclusion is an initial sequent. Otherwise, we assume that the premiss 
has derivation height n + 1 and assume the statement true for derivation 
height n. We proceed by cases on the rule used to derive α, α,Γ ⇒ γ. 
If it is derived by (we-right) we have ⊢n α, α,Γ ⇒, so by induction hy­
pothesis ⊢n α,Γ ⇒ and by (we-right) ⊢n+1 α,Γ ⇒ γ. We proceed in a 
similar way if α, α,Γ ⇒ γ is the conclusion of a right rule: we apply the 
induction hypothesis to the premiss(es) of the rule, and then obtain the 
required fact. If instead α, α,Γ ⇒ γ is the conclusion of a left rule, we 
distinguish two cases: either α is principal in the last rule, or it is not. In 
this latter case, we apply the induction hypothesis to the premiss(es) of 
the last rule and then obtain the required fact. Otherwise, in the former 
case, we consider the last rule applied and distinguish two sub-cases, de­
pending on whether the last rule is invertible. We observe that all the left 
rules with the exception of (→left) are invertible. Additionally, (→left), 
(¬left), and (Gleft) have been made invertible with the repetition in the 
premiss of the principal formula. These cases are straightforward because 
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we find the duplication in the premiss of the rule and the induction hypoth­
esis applies. In the case of an invertible rule, say we have a derivation of 
⊢n+1 Xi(α ∨ β),Xi(α ∨ β),Γ ⇒ γ and the premisses of the last rule give ⊢n

Xiα,Xi(α ∨ β),Γ ⇒ γ and ⊢n Xiβ,Xi(α ∨ β),Γ ⇒ γ. By hp-invertibility 
of (∨left) we obtain ⊢n Xiα,Xiα,Γ ⇒ γ and ⊢n Xiβ,Xiβ,Γ ⇒ γ, so by 
induction hypothesis we have ⊢n Xiα,Γ ⇒ γ and ⊢n Xiβ,Γ ⇒ γ. Applica­
tion of (∨left) gives the conclusion ⊢n+1 Xi(α ∨ β),Γ ⇒ γ. If the last rule is 
(→left), we have ⊢n+1 Xi(α→β),Xi(α→β),Γ ⇒ γ, and the premisses of the 
rule give ⊢n Xi(α→β),Xi(α→β),Γ ⇒ Xiα and ⊢n Xi(α→β),Xiβ,Γ ⇒ γ. 
By inductive hypothesis the former gives ⊢n Xi(α→β),Γ ⇒ Xiα and the 
letter by (partial) hp-invertibility of (→left) gives ⊢n Xiβ,Xiβ,Γ ⇒ γ, 
so again by inductive hypothesis we obtain ⊢n Xiβ,Γ ⇒ γ, and thus by 
(→left), ⊢n+1 Xi(α→β),Γ ⇒ γ. □

For G3c [41], the proof of cut elimination eliminates a topmost cut by 
induction on the complexity of the cut formula and subinduction on the 
sum of the heights of the derivations of the premisses of cuts. To adapt 
the proof to a G3-style calculus with infinitary rules, we proceed as in [39]: 
heights are given by ordinals, and we shall employ the standard notion of 
(natural or Hessenberg) addition α#β for countable ordinals α and β (cf. 
e.g. 10.1.2B in [52] for the definition). We recall that # is commutative 
and that if α < α′ then α#β < α′#β.

The rank π(I) of an instance I of (cut) with cut-free premisses D and 
D′ is the pair comprising the depth d(A) of the cut formula and the natural 
sum h(D)#h(D′) of the heights of the premisses. We will call the second 
component the total height of the cut. Pairs are ordered lexicographically.

Ordinals are well-ordered, so we can reason by (transfinite) induction; 
since we actually do it for pairs, we call this transfinite lexicographic induc­
tion. It can be converted to ordinary transfinite induction by turning pairs 
into ordinals, e.g. the pair (δ, σ) can be converted to δ · ϵ0 + σ, where ϵ0
has the useful property of being greater than any possible value of σ; but 
pairs are conceptually clearer.
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Lemma 2.11. In

Γ ⇒ α α,Σ ⇒ γ

Γ,Σ ⇒ γ
(cut)

if the premisses admit cut-free derivations in G3cLTω, then the conclusion 
also admits a cut-free derivation.
Proof: By transfinite lexicographic induction on the rank of instances 
of cut and case analysis. We first show the reduction steps for cuts with 
cut formula principal in both premisses, i.e. principal cuts. Then we show 
how non-principal cuts are reduced by permutation, maintaining the cut 
formula but reducing the sum of heights. We give the details only of the 
permutations of cuts into the first premiss; permutations into the second 
premiss are covered generically.

1. If the cut formula is principal in each premiss for instances of initial 
sequents, then the conclusion is already an initial sequent, so the cut 
can be eliminated.

2. If the first premiss is an instance of an initial sequent with the atom 
Xip principal and Xip is the cut formula, then the conclusion may be 
obtained by admissible (we-left) from the second premiss, regardless 
of the rule used in the second premiss, as in

Γ,Xip⇒ Xip Xip,Γ′ ⇒ γ

Γ,Xip,Γ′ ⇒ γ
(cut)

3. If the cut formula XiFα is principal in each premiss, then we consider 
the cut

Γ ⇒ Xi+kα

Γ ⇒ XiFα
(Fright)

{Xi+jα,Γ′ ⇒ γ}j∈ω

XiFα,Γ′ ⇒ γ
(Fleft)

Γ,Γ′ ⇒ γ
(cut)
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which we transform into

Γ ⇒ Xi+kα Xi+kα,Γ′ ⇒ γ

Γ,Γ′ ⇒ γ
(cut)

a cut on a smaller formula. The case with cut formula XiGα is treated 
in a dual way.

4. Principal cuts with formulas with binary connectives and quantifiers 
as outermost logical constant are reduced as in the standard proof 
for G3c (cf. [41]).

5. If the second premiss is an instance of an initial sequent with the 
atom Xip principal and Xip is the cut formula, then the conclusion 
may be obtained by (we-left) from the first premiss, regardless of the 
rule used in the first premiss.

6. If the second premiss is an instance of an initial sequent with the for­
mula Xip principal but Xip not the cut formula, then the conclusion 
is already an initial sequent, regardless of the rule used in the first 
premiss.

7. If the cut formula α is not principal in the left premiss, we reason by 
cases on the last rule used to derive it. Since the calculus is single 
succedent, the rule cannot be a right rule.

8. It is (Fleft), we have

{Γ,Xi+jβ ⇒ α}j∈ω

Γ,XiFβ ⇒ α
(Fleft)

α,Γ′ ⇒ γ

Γ,Γ′,XiFβ ⇒ γ
(cut)

which can be transformed to

. . .

Γ,Xi+jβ ⇒ ∆, α α,Γ′ ⇒ γ

Γ,Γ′,Xi+jβ ⇒ γ
(cut)

. . .

Γ,Γ′,XiFβ ⇒ γ
(Fleft)
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i.e., the cut is “permuted upwards” to each of the premisses of (Fleft), 
with unchanged cut formula γ and reduced total height. All the other 
cases of non-principal cuts with finitary rules are treated in a similar 
way.

9. If the cut formula α is not principal in the second premiss, and that 
premiss is not an initial sequents, then a standard permutation into 
the second premiss is applicable, with resulting cut(s) of reduced 
height.

Observe that in each case we have reduced the rank of the cut. □

Theorem 2.12.  Rule (cut) is admissible in G3cLTω.
Proof: It remains to show that an arbitrary derivation using instances 
(possibly infinite in number) of rule (cut) can be transformed to a cut-
free derivation. Since this number may be infinite, we argue by transfinite 
induction on the height of the derivation. Consider a derivation D; if it does 
not end with (cut), but with a step by rule R, then, by inductive hypothesis, 
each premiss (which has height less than ht(D)) can be transformed to a 
cut-free derivation (with conclusion unchanged), and thus so, by adding 
an R-step, can D. Otherwise, if D ends with a cut, the derivations of its 
premisses both have height less than ht(D); by inductive hypothesis, each 
can be transformed to a cut-free derivation (with conclusion unchanged). 
We now use the Lemma to obtain a cut-free derivation of the conclusion 
of D. □

3. Natural deduction and normalization

3.1. Natural deduction

Next, we define a Gentzen-style natural deduction system NLTω for until-
free propositional linear-time temporal logic. As usual in a definition of a 
natural deduction system we use the notation [α] to denote a discharged as­
sumption (i.e., the formula α is a discharged assumption by the underlying 
logical rule).
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Definition 3.1 (NLTω).  Let i and k be arbitrary natural numbers.12 
The logical rules of NLTω are of the following form, where the discharge in 
rules that discharge assumptions can be simple, vacuous, or multiple:13

[Xiα]....
Xiβ

Xi(α→β)
(→I)

Xi(α→β) Xiα

Xiβ
(→E)

Xi¬α Xiα
γ (EXP)

[Xi¬α]....
γ

[Xiα]....
γ

γ (EXM)

[Xiα]....
Xj¬γ

[Xiα]....
Xjγ

Xi¬α
(¬I)

Xiα Xiβ

Xi(α∧β)
(∧I)

Xi(α∧β)
Xiα

(∧E1)
Xi(α∧β)

Xiβ
(∧E2)

Xiα

Xi(α∨β)
(∨I1)

Xiβ

Xi(α∨β)
(∨I2) Xi(α∨β)

[Xiα]....
γ

[Xiβ]....
γ

γ (∨E)

{ Xi+jα }j∈ω

XiGα
(GI)

XiGα
Xi+kα

(GE)

12In this definition, α, β, and γ represent arbitrary formulas. In particular, compared 
with the definition in the sequent calculus, γ is treated as a formula rather than as a 
formula or the empty multiset.

13Observe that, for example, as an instance of (→I) we include a rule of the form:

Xiβ

Xi(α→β)
(Wk).
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Xi+kα

XiFα
(FI) XiFα {

[Xi+jα]....
γ }j∈ω

γ (FE).

Remark 3.2.

1. Rules (EXP), (EXM), and (¬I) are characteristic features of NLTω. 
Rules (EXP) and (¬I) are temporal generalizations of the original 
rules introduced by Gentzen. Rule (EXM) is a temporal general­
ization of the original rule introduced by von Plato [53, 41]. The 
non-temporal versions of (EXP), (EXM), and (¬I) were also used by 
Kamide and Negri in [30] for constructing natural deduction systems 
for logics of strong negation.

2. An extended intuitionistic natural deduction system with the follow­
ing restricted version (EXM-at) of (the original non-temporal version 
of) (EXM) was introduced by von Plato who also proved a normal­
ization theorem for this system [53]:

[¬p]....
γ

[p]....
γ

γ (EXM-at)

where p is a propositional variable. This system was introduced as 
a natural deduction system for classical propositional logic. It was 
thus shown in [53] that (EXM) can be restricted to (EXM-at) without 
changing the provability in classical propositional logic.

3. Using (EXP) and (EXM), we can prove the formulas of the form 
(¬α∧α)→γ and ¬α∨α, respectively:

[¬α∧α]1
¬α (∧E1)

[¬α∧α]1
α (∧E2)

γ (EXP)

(¬α∧α)→γ
(→I)1

[¬α]1
¬α∨α (∨I1)

[α]1

¬α∨α (∨I2)
¬α∨α (EXM)1.
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4. Using (¬I) and (EXP), we can prove the formulas of the form α→¬¬α
and ¬¬(α→α):

[¬α]2 [α]1

¬α (EXP)
[¬α]2 [α]1

α (EXP)

¬¬α (¬I)2
α→¬¬α (→I)1

and

[α]3

α→α (→I)3 [¬(α→α)]1

α→α (EXP)

[α]2

α→α (→I)2 [¬(α→α)]1

¬(α→α)
(EXP)

¬¬(α→α)
(¬I)1

5. (GI) has infinitely many premisses and is also represented as:

Xiα Xi+1α Xi+2α · · · Xi+nα · · ·
XiGα

(GI).

6. (FE) has infinitely many premisses and is also represented as:

XiFα

[Xiα]....
γ

[Xi+1α]....
γ

[Xi+2α]....
γ · · ·

[Xi+nα]....
γ · · ·

γ (FE).

Next, we define some notions for NLTω.
Definition 3.3. Rules (→I), (∧I), (∨I1), (∨I2), (¬I), (GI), (FI), and (EXM) 
are called introduction rules, and rules (→E), (∧E1), (∧E2), (∨E), (GE), 
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(FE), and (EXP) are called elimination rules. The notions of major and 
minor premisses of the rules without (EXM) and (EXP) are defined as 
usual. If Xi¬α and Xiα are both premisses of (EXP), then Xi¬α and Xiα
are called the major and minor premisses of (EXP), respectively. The no­
tions of derivation, (open and discharged) assumptions of a derivation, and 
end-formula of a derivation are also defined as usual. For a derivation D, 
we use the expression oa(D) to denote the multiset of open assumptions of 
D and the expression end(D) to denote the end-formula of D. A formula 
α is said to be provable in a natural deduction system L if there exists a 
derivation of L with no open assumption whose end-formula is α.

Remark 3.4. There are no notions of the major and minor premisses of 
(EXM) and (¬I). Namely, the premisses of (EXM) and (¬I) are neither 
major nor minor premisses. In this study, (EXP) is treated as an elimina­
tion rule, and (EXM) is treated as an introduction rule.

In order to define the notion of normal derivations in NLTω, we define 
a reduction relation ▷ on the set of derivations in NLTω. Before defining 
▷, we introduce some notions related to ▷. 

Definition 3.5. Let α be a formula occurring in a derivation D in NLTω. 
Then, α is called a maximum formula in D if α satisfies the following 
conditions:

1. α is the conclusion of an introduction rule, (∨E), or (EXP),

2. α is the major premiss of an elimination rule.

A derivation is said to be normal if it contains no maximum formula. The 
notion of substitution of derivations for assumptions is defined as usual. 
We assume that the set of derivations is closed under substitution.

Definition 3.6 (Reduction relation).  Let γ be a maximum formula in a 
derivation that is the conclusion of a rule R.

The definition of the reduction relation ▷ at γ in NLTω is obtained by 
the following conditions.
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1. R is (→I) and γ is Xi(α→β):

[Xiα].... D
Xiβ

Xi(α→β)
(→I)

.... E
Xiα

Xiβ
(→E)

▷

.... E
Xiα.... D
Xiβ.

2. R is (EXP):

.... D1

Xi¬δ

.... D2

Xiδ
γ (EXP)

.... E1
π1

.... E2
π2

π R′
▷

.... D1

Xi¬δ

.... D2

Xiδ
π (EXP)

where R′ is an arbitrary rule, and both E1 and E2 are derivations of 
the minor premisses of R′ if they exist.

3. R is (¬I), γ is Xi¬α, and β is the conclusion of (EXP):

[Xiα].... D1

Xj¬δ

[Xiα].... D2

Xjδ

Xi¬α
(¬I)

.... E
Xiα

β
(EXP)

▷

.... E
Xiα.... D1

Xj¬δ

.... E
Xiα.... D2

Xjδ
β

(EXP).
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4. R is (¬I), γ is Xi¬δ, and Xiδ is the conclusion of (EXP):

[Xiδ].... D1

Xj¬β

[Xiδ].... D2

Xjβ

Xi¬δ
(¬I)

.... E
Xiδ

Xiδ
(EXP)

▷

.... E
Xiδ.

5. R is (EXM) and γ is Xi(γ1→γ2), Xi(γ1∧γ2), or Xi(γ1∨γ2):

[Xi¬α].... D1

γ

[Xiα].... D2

γ
γ (EXM)

.... E1
δ1

.... E2
δ2

δ
R′

▷

[Xi¬α].... D1

γ

.... E1
δ1

.... E2
δ2

δ
R′

[Xiα].... D2

γ

.... E1
δ1

.... E2
δ2

δ
R′

δ
(EXM)

where R′ is (→E), (∧E1), (∧E2), or (∨E), and both E1 and E2 are 
derivations of the minor premisses of R′ if they exist.

6. R is (EXM), γ is Xi¬δ, and Xiδ is the conclusion of (EXP):

[Xi¬α].... D1

Xi¬δ

[Xiα].... D2

Xi¬δ
Xi¬δ

(EXM)

.... E
Xiδ

Xiδ
(EXP)

▷

.... E
Xiδ.
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7. R is (∧I) and γ is Xi(α1∧α2):
.... D1

Xiα1

.... D2

Xiα2

Xi(α1∧α2)
(∧I)

Xiαi

(∧Ei)
▷

.... Di

Xiαi

where i is 1 or 2.

8. R is (∨I1) or (∨I2) and γ is Xi(α1∨α2):
.... D

Xiαi

Xi(α1∨α2)
(∨Ii)

[Xiα1].... E1
δ

[Xiα2].... E2
δ

δ
(∨E)

▷

.... D
Xiαi.... Ei
δ

where i is 1 or 2.

9. R is (∨E):

.... D1

Xi(α∨β)

[Xiα].... D2

π

[Xiβ].... D3

π
π (∨E)

.... En
{ δn }

δ
R′

▷

.... D1

Xi(α∨β)

[Xiα].... D2

π

.... En
{ δn }
δ

R′

[Xiβ].... D3

π

.... En
{ δn }
δ

R′

δ
(∨E)

where R′ is an arbitrary rule, and E1, E2, ... , En, ... are derivations 
of the minor premisses of R′ if they exist.
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10. R is (GI) and γ is XiGα:
.... Dj

{ Xi+jα }j∈ω

XiGα
(GI)

Xi+kα
(GE)

▷

.... Dk

Xi+kα

where k ∈ ω.

11. R is (FI) and γ is XiFα:
.... Dk

Xi+kα

XiFα
(FI)

[Xi+jα].... Ej
{ δ }j∈ω

δ
(FE)

▷

.... Dk

Xi+kα.... Ek
δ

where k ∈ ω.

12. R is (FE):

.... D
XiFα

[Xi+jα].... Dj

{ π }j∈ω

π (FE)

.... En
{ δn }

δ
R′

▷

.... D
XiFα

[Xi+jα].... Dj

π

.... En
{ δn }

{ δ }j∈ω
R′

δ
(FE)

where R′ is an arbitrary rule, and E1, E2, ... , En, ... are derivations 
of the minor premisses of R′ if they exist.
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13. The set of derivations is closed under ▷.
Remark 3.7 . We could consider some other reduction conditions that can 
reduce a redundant derivation to a simpler derivation. The following are ex­
amples of such conditions. However, in this study, we do not introduce these 
conditions. If we did, we would have to appropriately change the notion of 
normal form according to these additional reduction conditions.

1. R is (EXP) and γ is in the premisses of (EXM):

[Xi¬α]1

.... D1

Xiα
γ (EXP)

.... D2

Xi¬α [Xiα]1

γ (EXP)

γ (EXM)1

▷

.... D2

Xi¬α

.... D1

Xiα
γ (EXP).

2. R is (EXM), γ is the minor premiss of (EXP), and ¬γ is the conclusion 
of (EXP):

[Xi¬α].... D1

γ

[Xiα].... D2

γ
γ (EXM)

.... E
¬γ

¬γ (EXP) ▷

.... E
¬γ.

Definition 3.8. If D′ is obtained from D by the reduction relation defined 
in Definition 3.6 then this fact is denoted by D▷D′. A sequence D0,D1, ...
of derivations is called a reduction sequence if it satisfies the following con­
ditions:

1. Di ▷Di+1 for all i ≥ 0,
2. the last derivation in the sequence is normal if the sequence is finite.

A derivation D is called normalizable if there is a finite reduction sequence 
starting from D.
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3.2. Equivalence and normalization

In the following discussion, a derivation of Γ ⇒ in G3cLTω is interpreted 
as a derivation D in NLTω such that oa(D) = Γ and end(D) = ¬p∧p.
Definition 3.9.  A multiset ∆ of formulas is called a multiset reduct of a 
multiset Γ of formulas if ∆ is obtained from Γ by multiplying formulas in 
Γ, where zero multiplicity is also permitted.14 For example, {α, α, α, β} is 
a multiset reduct of {α, β, γ}. Note that the relation of being a multiset 
reduct is reflexive and transitive.

We use an expression Γ∗ to denote a multiset reduct of Γ. We also use 
an expression Γ ⊆∗ ∆ to denote the fact that Γ is a multiset reduct of ∆.
Lemma 3.10.  The following hold:

1. If D is a derivation in NLTω such that oa(D) = Γ and end(D) = β, 
then G3cLTω ⊢ Γ ⇒ β,

2. If G3cLTω ⊢ Γ ⇒ β, then we can obtain a derivation D′ in NLTω

such that

(a) oa(D′) ⊆∗ Γ,
(b) end(D′) = β,
(c) D′ is normal.

Proof:

1. We prove this by induction on the height of the derivations D of 
NLTω such that oa(D) = Γ and end(D) = β. We distinguish the 
cases according to the last rule of D. We show some cases.

(a) Case (→I): This case is divided into three cases.

14The notion of multiset reduct was introduced in [40, pp. 1805, Definition 1]. It 
is sometimes thought that natural deduction would not be able to express the rule of 
weakening and therefore derivability in natural deduction is defined as: γ is derivable 
from Γ if there is a derivation with open assumptions contained in Γ. Instead of this, 
the notion of multiset reduct was introduced.
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i. D is of the form:

[Xiα] Γ.... E
Xiγ

Xi(α→γ)
(→I)

where oa(D) = {Xiα} ∪ Γ and end(D) = γ. By induction 
hypothesis, we have G3cLTω ⊢ Xiα,Γ ⇒ Xiγ. Then, we 
obtain that G3cLTω ⊢ Γ ⇒ Xi(α→γ):

.... Ind. hyp.
Xiα,Γ ⇒ Xiγ

Γ ⇒ Xi(α→γ)
(→right).

ii. D is of the form:

Γ.... E
Xiγ

Xi(α→γ)
(→I)

where oa(D) = Γ and end(D) = γ. By induction hypothesis, 
we have G3cLTω ⊢ Γ ⇒ Xiγ. Then, we obtain that G3cLTω

⊢ Γ ⇒ Xi(α→γ):

.... Ind. hyp.
Γ ⇒ Xiγ

Xiα,Γ ⇒ Xiγ
(we-left)

Γ ⇒ Xi(α→γ)
(→right)

where (we-left) is admissible in G3cLTω by Proposition 2.8.
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iii. D is of the form:

[Xiα,Xiα] Γ.... E
Xiγ

Xi(α→γ)
(→I)

where oa(D) = {Xiα,Xiα} ∪ Γ and end(D) = γ. By in­
duction hypothesis, we have G3cLTω ⊢ Xiα,Xiα,Γ ⇒ Xiγ. 
Then, by applying an admissible step of contraction we ob­
tain that G3cLTω ⊢ Γ ⇒ Xi(α→γ):

.... Ind. hyp.
Xiα,Xiα,Γ ⇒ Xiγ

Xiα,Γ ⇒ Xiγ
(co-left)

Γ ⇒ Xi(α→γ)
(→right)

where (co-left) is admissible in G3cLTω by Lemma 2.10. All 
the other cases where multiple discharge of assumptions is 
used in natural deduction are handled in a similar way via 
admissible contraction steps and we shall not detail them 
further.

(b) Case (¬I): D is of the form:

[Xiα]Γ1.... D1

Xj¬γ

[Xiα]Γ2.... D2

Xjγ

Xi¬α
(¬I)

where oa(D) = Γ1 ∪ Γ2 and end(D) = Xi¬α. By induction 
hypotheses, we have G3cLTω ⊢ Xiα,Γ1 ⇒ Xj¬γ and G3cLTω ⊢
Xiα,Γ2 ⇒ Xjγ. Then, we obtain that G3cLTω ⊢ Γ1,Γ2 ⇒ Xi¬α:
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.... Ind. hyp.
Xiα,Γ1 ⇒ Xj¬γ

.... Ind. hyp.
Xiα,Γ2 ⇒ Xjγ

Xi¬γ,Xiα,Γ2 ⇒ Xjγ
(we-left)

Xj¬γ,Xiα,Γ2 ⇒
(¬left)

Xiα,Xiα,Γ1,Γ2 ⇒
(cut)

Xiα,Γ1,Γ2 ⇒
(co-left)

Γ1,Γ2 ⇒ Xi¬α
(¬right)

where (we-left) and (co-left) are admissible in G3cLTω by Propo­
sition 2.8 and Lemma 2.10, respectively.

(c) Case (EXP): D is of the form:

Γ1.... E1
Xi¬α

Γ2.... E2
Xiα

β
(EXP)

where oa(D) = Γ1∪Γ2 and end(D) = β. By induction hypothe­
ses, we have G3cLTω ⊢ Γ1 ⇒ Xi¬α and G3cLTω ⊢ Γ2 ⇒ Xiα. 
Then, we obtain the required fact that G3cLTω ⊢ Γ1,Γ2 ⇒ β:

.... Ind. hyp.
Γ2 ⇒ Xiα

.... Ind. hyp.
Γ1 ⇒ Xi¬α

.... Prop. 2.7
Xi¬α,Xiα⇒ Xiα

Xi¬α,Xiα⇒
(¬left)

Xiα,Γ1 ⇒
(cut)

Γ1,Γ2 ⇒ (cut)

Γ1,Γ2 ⇒ β
(we-right)

where (cut) is admissible in G3cLTω by Theorem 2.12.
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(d) Case (EXM): D is of the form:

[Xi¬α]Γ1.... E1
γ

[Xiα]Γ2.... E2
γ

γ (EXM)

where oa(D) = Γ1∪Γ2 and end(D) = γ. By induction hypothe­
ses, we have G3cLTω ⊢Xi¬α,Γ1⇒γ and G3cLTω ⊢Xiα,Γ2⇒γ. 
Then, we obtain the required fact that G3cLTω ⊢ Γ1,Γ2 ⇒ γ:

.... Ind. hyp.
Xi¬α,Γ1 ⇒ γ.... (we-left)

Xi¬α,Γ1,Γ2 ⇒ γ

.... Ind. hyp.
Xiα,Γ2 ⇒ γ.... (we-left)

Xiα,Γ1,Γ2 ⇒ γ

Γ1,Γ2 ⇒ γ
(ex-middle)

where (we-left) is admissible in G3cLTω by Proposition 2.8.
(e) Case (GI): D is of the form:

Γj.... Pj

{ Xi+jα }j∈ω

XiGα
(GI)

where oa(D) = Γ =
⋃︂
j∈ω

Γj and end(D) = XiGα. By induction 

hypotheses, we have G3cLTω ⊢ Γj ⇒ Xi+jα for all j ∈ ω. Then, 
we obtain the required fact G3cLTω ⊢ Γ ⇒ XiGα:
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.... Ind. hyp.
Γj ⇒ Xi+jα.... (we-left)

{ Γ ⇒ Xi+jα }j∈ω

Γ ⇒ XiGα
(Gright)

where (we-left) is admissible in G3cLTω by Proposition 2.8. 
Note that the induction hypothesis is applied for each of the 
denumerable set of premisses.

(f) Case (GE): D is of the form:

Γ.... D′

XiGα
Xi+kα

(GE)

where oa(D) = Γ and end(D) = Xi+kα. By induction hypothe­
sis, we have G3cLTω ⊢ Γ ⇒ XiGα. Then, we obtain the required 
fact that G3cLTω ⊢ Γ ⇒ Xi+kα:

.... Ind. hyp.
Γ ⇒ XiGα

.... Prop. 2.7
XiGα,Xi+kα⇒ Xi+kα

XiGα⇒ Xi+kα
(Gleft)

Γ ⇒ Xi+kα
(cut)

where (cut) is admissible in G3cLTω by Theorem 2.12.
(g) Case (FI): D is of the form:

Γ.... D′

Xi+kα

XiFα
(FI)

where oa(D) = Γ and end(D) = XiFα. By induction hypothesis, 
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we have G3cLTω ⊢ Γ ⇒ Xi+kα. Then, we obtain the required 
fact that G3cLTω ⊢ Γ ⇒ XiFα:

.... Ind. hyp.
Γ ⇒ Xi+kα

Γ ⇒ XiFα
(Fright).

(h) Case (FE):
D is of the form:

Γ′
.... D′

XiFα {

[Xi+jα]Γj.... Dj

γ }j∈ω

γ (FE)

where oa(D) = Γ′ ∪ Γ with Γ =
⋃︂
j∈ω

Γj and end(D) = γ. By in­

duction hypotheses, we have G3cLTω ⊢ Γ′ ⇒ XiFα and G3cLTω

⊢ Xi+jα,Γj ⇒ γ for all j ∈ ω. Then, we obtain the required fact, 
that G3cLTω ⊢ Γ′,Γ ⇒ γ by the following derivation where the 
induction hypothesis is applied for each of the denumerable set 
of premisses:

.... Ind. hyp.
Γ′ ⇒ XiFα

.... Ind. hyp.
Xi+jα,Γj ⇒ γ.... (we-left)

{ Xi+jα,Γ ⇒ γ }j∈ω

XiFα,Γ ⇒ γ
(Fleft)

Γ′,Γ ⇒ γ
(cut)

where (cut) and (we-left) are admissible in G3cLTω by Theorem 
2.12 and Proposition 2.8, respectively.

2. We prove this by induction on the derivations D of Γ ⇒ β in G3cLTω. 
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We distinguish the cases according to the last rule of D. We show 
some cases.

(a) Case (init): D is of the form:
.... D

Xip,Γ ⇒ Xip.

Then, we have a normal derivation E in NLTω of the form:
.... E

Xip

where oa(E) = {Xip} ⊆∗ {Xip} ∪ Γ and end(E) = Xip.
(b) Case (we-right): D is of the form:

.... D′

Γ ⇒
Γ ⇒ α

(we-right)

By induction hypothesis, we have a normal derivation E ′ in 
NLTω of the form:

Γ∗
.... E ′

¬p∧p

where oa(E ′) = Γ∗ ⊆∗ Γ and end(E ′) = ¬p∧p. Then, we obtain 
a required normal derivation E by:

Γ∗
.... E ′

¬p∧p
¬p (∧E1)

Γ∗
.... E ′

¬p∧p
p (∧E2)

α (Exp)

where oa(E) = Γ∗ ⊆∗ Γ and end(E) = α.
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(c) Case (¬left): D is of the form:
.... D′

Xi¬α,Γ ⇒ Xiα

Xi¬α,Γ ⇒
(¬left).

By induction hypothesis, we have a normal derivation E ′ in 
NLTω of the form:

(Xi¬α,Γ)∗.... E ′

Xiα

where oa(E ′) = (Xi¬α,Γ)∗ ⊆∗ {Xi¬α} ∪ Γ and end(E ′) = Xiα. 
Then, we obtain a required normal derivation E by:

Xi¬α

(Xi¬α,Γ)∗.... E ′

Xiα
¬p∧p (EXP)

where oa(E) = (Xi¬α,Xi¬α,Γ)∗ ⊆∗ {Xi¬α} ∪ Γ and end(E) = 
¬p∧p (i.e., ⊥). We remark that {Xi¬α,Xi¬α} ∪ Γ is a multiset 
reduct of {Xi¬α} ∪ Γ. We also remark that the last rule (EXP) 
in E cannot be replaced with (→E), because using (→E) entails 
a possibility of developing a non-normal derivation. Namely, 
there is a possibility of the case that the last rule of E ′ is (→I).

(d) Case (¬right): D is of the form:
.... D′

Xiα,Γ ⇒
Γ ⇒ Xi¬α

(¬right).

By induction hypothesis, we have a normal derivation E ′ in 
NLTω of the form:
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(Xiα,Γ)∗.... E ′

¬p∧p

where oa(E ′) = (Xiα,Γ)∗ ⊆∗ {Xiα} ∪ Γ and end(E ′) = ¬p∧p. 
Then, we obtain a required normal derivation E by:

[Xiα]1 Γ∗
.... E ′

¬p∧p
¬p (∧E1)

[Xiα]1 Γ∗
.... E ′

¬p∧p
p (∧E2)

Xi¬α
(¬I)1

where oa(E) = Γ∗ ⊆∗ Γ and end(E) = Xi¬α.
(e) Case (ex-middle): D is of the form:

.... D1

Xi¬α,Γ ⇒ γ

.... D2

Xiα,Γ ⇒ γ

Γ ⇒ γ
(ex-middle).

By induction hypotheses, we have normal derivations E1 and E2
in NLTω of the form:

(Xi¬α,Γ)∗.... E1
γ

(Xiα,Γ)∗.... E2
γ

where oa(E1) = (Xi¬α,Γ)∗ ⊆∗ {Xi¬α} ∪ Γ, oa(E2) = (Xiα,Γ)∗

⊆∗ {Xiα} ∪ Γ, end(E1) = γ, and end(E2) = γ. Then, we obtain 
a required normal derivation E by:

[Xi¬α]Γ∗
.... E1
γ

[Xiα]Γ∗
.... E2
γ

γ (EXM)

where oa(E) = Γ∗ ⊆∗ Γ and end(E) = γ.
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(f) Case (Gleft): D is of the form:

.... D′

XiGα,Xi+kα,Γ ⇒ γ

XiGα,Γ ⇒ γ
(Gleft).

By induction hypothesis, we have a normal derivation E ′ in 
NLTω of the form:

(XiGα Xi+kα Γ)∗.... E ′

γ

where oa(E ′) = (XiGα,Xi+kα,Γ)∗ ⊆∗ {XiGα,Xi+kα} ∪ Γ and 
end(E ′) = γ. Then, we obtain a required normal derivation E
by:

(XiGα....
XiGα
Xi+kα

(GE)
Γ)∗........ E ′

γ

where oa(E) = (XiGα,XiGα,Γ)∗ ⊆∗ {XiGα}∪Γ and end(E)=γ.
(g) Case (Gright): D is of the form:

.... D′

{ Γ ⇒ Xi+jα }j∈ω

Γ ⇒ XiGα
(Gright).
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By induction hypotheses, we have normal derivations Ej for all 
j ∈ ω in NLTω of the form:

Γ∗
j.... Ej

Xi+jα

where oa(Ej) = Γ∗
j ⊆∗ Γj with Γ∗ =

⋃︂
j∈ω

Γ∗
j ⊆∗ Γ, and end(Ej) 

= Xi+jα. Then, we obtain a required normal derivation E by:

Γ∗
j.... Ej

{ Xi+jα }j∈ω

XiGα
(GI)

where oa(E) = Γ∗ ⊆∗ Γ and end(E) = XiGα.
(h) Case (Fleft): D is of the form:

.... D′

{ Xi+kα,Γ ⇒ γ }j∈ω

XiFα,Γ ⇒ γ
(Fleft).

By induction hypotheses, we have normal derivations Ej for all 
j ∈ ω in NLTω of the form:

(Xi+jα Γj)
∗

.... Ej
γ

where oa(Ej) = (Xi+jα,Γj)
∗ ⊆∗ {Xi+jα}∪Γj with Γ∗ =

⋃︂
j∈ω

Γ∗
j

⊆∗ Γ and end(Ej) = γ. Then, we obtain a required normal 
derivation E by:
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XiFα {

[Xi+jα]1 Γ∗
j.... Ej

γ }j∈ω

γ (FE)1

where oa(E) = (XiFα,Γ)∗ ⊆∗ {XiFα} ∪ Γ and end(E) = γ.
(i) Case (Fright): D is of the form:

.... D′

Γ ⇒ Xi+kα

Γ ⇒ XiFα
(Fright).

By induction hypothesis, we have a normal derivations E ′ in 
NLTω of the form:

Γ∗
.... E ′

Xi+kα

where oa(E ′) = Γ∗ ⊆∗ Γ and end(E ′) = Xi+kα. Then, we obtain 
a required normal derivation E by:

Γ∗
.... E ′

Xi+kα

XiFα
(FI)

where oa(E) = Γ∗ ⊆∗ Γ and end(E) = XiFα. □

We obtain the following required theorems.
Theorem 3.11 (Equivalence between NLTω and G3cLTω).  For any for­
mula α, G3cLTω ⊢ ⇒ α iff α is derivable in NLTω.
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Proof: Taking ∅ as Γ in Lemma 3.10, we obtain the required fact. □

Theorem 3.12 (Normalization for NLTω).  All derivations in NLTω are 
normalizable. More precisely, if a derivation D in NLTω is given, then we 
can obtain a normal derivation E in NLTω such that oa(E) ⊆∗ oa(D) and 
end(E) = end(D).
Proof: Suppose that a derivation D in NLTω is given, and suppose that 
oa(D) = Γ and end(D) = β. Then, by Lemma 3.10 (1), we obtain G3cLTω

⊢ Γ ⇒ β. Then, by Lemma 3.10 (2), we can obtain a normal derivation E
in NLTω such that oa(E) ⊆∗ oa(D) and end(E) = end(D). □

4. Intuitionistic variant

4.1. Sequent calculus and cut elimination

The language of G3iLTω is the same as defined in Section 2 for G3cLTω. 
A sequent for G3iLTω is an expression of the form Γ ⇒ γ where Γ is a 
(possibly empty) multiset of formulas and γ is a formula or the empty 
multiset. The same notions and notations as introduced and presented in 
Section 2 are used for G3iLTω.

We now define G3iLTω.
Definition 4.1 (G3iLTω).  G3iLTω is obtained from G3cLTω by deleting 
(ex-middle).

We have the following propositions.
Proposition 4.2.  The sequents of the form Xiα,Γ ⇒ Xiα for any formula 
α, any set Γ of formulas, and any natural number i are derivable in G3iLTω.
Proof: Similar to the proof of Proposition 2.7. By induction on α. □

Proposition 4.3.  Rule (we-left) is height-preserving admissible in G3iLTω.
Proof: Similar to the proof of Proposition 2.8. □

Proposition 4.4.  Rule (co-left) is height-preserving admissible in
G3iLTω.
Proof: Similar to the proof of Proposition 2.10. □
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Theorem 4.5.  The rule (cut) is admissible in G3iLTω.
Proof: Similar to the proof of Theorem 2.12. □

We also obtain the following constructive property for G3iLTω.
Theorem 4.6 (Timed disjunction property for G3iLTω).  For any formulas 
α and β and any i ∈ ω, if G3iLTω ⊢ ⇒ Xi(α∨β), then either G3iLTω ⊢
⇒ Xiα or G3iLTω ⊢ ⇒ Xiβ.
Proof: Immediate by Theorem 4.5. □

4.2. Natural deduction and normalization

The same notions and notations as introduced and presented in Section 3 
are used for NILTω.

First, we define NILTω.
Definition 4.7 (NILTω).  NILTω is obtained from NLTω by deleting 
(EXM).

Next, we define the reduction relation on NILTω.
Definition 4.8 (Reduction relation).  The definition of the reduction 
relation on NILTω is obtained form Definition 3.6 in NLTω by deleting the 
conditions concerning (EXM).

We then obtain the following lemma.
Lemma 4.9.  We have the following statements.

1. If D is a derivation in NILTω such that oa(D) = Γ and end(D) = β, 
then G3iLTω ⊢ Γ ⇒ β,

2. If G3iLTω ⊢ Γ ⇒ β, then we can obtain a derivation D′ in NILTω

such that

(a) oa(D′) ⊆∗ Γ,
(b) end(D′) = β,
(c) D′ is normal.

Proof: Similar to the proof of Lemma 3.10. □
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We then obtain the following required theorems.
Theorem 4.10 (Equivalence between NILTω and G3iLTω).  For any for­
mula α, G3iLTω ⊢ ⇒ α iff α is derivable in NILTω.
Proof: Similar to the proof of Theorem 3.11. We use Lemma 4.9. □

Theorem 4.11 (Normalization for NILTω).  All derivations in NILTω are 
normalizable. More precisely, if a derivation D in NILTω is given, then we 
can obtain a normal derivation E in NILTω such that oa(E) ⊆∗ oa(D) and 
end(E) = end(D).
Proof: Similar to the proof of Theorem 3.12. We use Lemma 4.9. □

5. Conclusion and remarks

5.1. Conclusion

In this study, we introduced a unified Gentzen-style proof-theoretic frame­
work for until-free propositional linear-time temporal logic (LTL) and its 
intuitionistic variant.

First, we proposed the Gentzen-style single-succedent sequent calculus 
G3cLTω for until-free propositional LTL. Subsequently, we proved the cut-
elimination theorem for G3cLTω following the methodology for G3-style 
sequent calculi with infinitary rules, as in [39].

Second, we introduced the Gentzen-style natural deduction system NLTω

for until-free propositional LTL, along with a reduction relation for NLTω. 
Following this, we established the normalization theorem for NLTω by uti­
lizing the equivalence theorem between NLTω and G3cLTω.

Third, we introduced and investigated a Gentzen-style sequent calcu­
lus, G3iLTω, and a Gentzen-style natural deduction system, NILTω, for 
an intuitionistic variant of the until-free propositional LTL. The systems 
G3iLTω and NILTω are derived from G3cLTω and NLTω by omitting the 
rules (ex-middle) and (EXM), respectively. The cut-elimination theorem 
for G3iLTω is then immediate as a subcase of the cut-elimination theorem 
for G3cLTω. Subsequently, we established the normalization theorem for 
NILTω by utilizing the equivalence theorem between NILTω and G3iLTω.
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5.2. Remarks on the merits of our approach

We now highlight the merits of our approach. In particular, we emphasize 
the advantages of the proposed infinitary systems, which incorporate logical 
inference rules with infinitely many premises. These systems exhibit three 
key features: uniformity, modularity, and compatibility.

Regarding uniformity, by employing inference rules with infinitely many 
premises, we can treat both Gentzen-style sequent calculi and Gentzen-style 
natural deduction systems in a uniform manner. In particular, we estab­
lish a natural correspondence between the Gentzen-style single-succedent 
sequent calculi G3cLTω and G3iLTω and the Gentzen-style natural deduc­
tion systems NLTω and NILTω, respectively.

Regarding modularity, the systems with infinitary rules can be extended 
in a modular way. In particular, G3cLTω and NLTω are obtained from 
G3iLTω and NILTω simply by adding the rules (ex-middle) and (EXM), 
respectively. This modularity, together with uniformity, is a distinctive 
advantage not available in previously proposed systems.

By using rules with infinitely many premises, we also gain an advantage 
in establishing smoothly a Glivenko theorem for G3cLTω and G3iLTω. This 
result is an analogue of the Glivenko theorem for Gentzen’s LK and LI in 
classical and intuitionistic logics. This theorem is formally presented as 
follows: For any formula α, G3cLTω ⊢ ⇒ α if and only if G3iLTω ⊢ ⇒ ¬¬α. 
The proof of this theorem can be given in a similar way as presented in [22].

In addition to these merits, by using rules with infinitely many premises, 
we can obtain certain theorems for embedding G3cLTω and G3iLTω into 
a Gentzen-style sequent calculus LKω for infinitary classical logic and a 
Gentzen-style sequent calculus LIω for infinitary intuitionistic logic, re­
spectively. These theorems can be proved in the same way as presented in 
[19, 23].

Further, we can construct finite fragments of G3cLTω and G3iLTω, 
in which the infinite domain ω of rules with infinitely many premises is 
restricted to a finite domain ωl = {n ∈ ω | n ≤ l} for a fixed positive 
integer l. A system based on LTω of this kind was studied, for example, 
in [21]. These systems have been shown to be embeddable into LK or LI, 
and hence are decidable.
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The above-mentioned merits imply that our framework is highly com­
patible with the traditional frameworks of classical logic, intuitionistic logic, 
infinitary classical logic, and infinitary intuitionistic logic. This naturally 
extends the traditional proof theory for these standard logics. This was 
the basic aim of this study.

5.3. Remarks on next-time fragments

The next-time fragments (i.e., the {G,F}-less fragments) of the proposed 
systems possess several desirable properties. To fix the terminology, let 
XTω, SXTω, SIXTω, NXTω, and NIXTω denote the next-time fragments 
of LTω, G3cLTω, G3iLTω, NLTω, and NILTω, respectively.

Then, the cut-elimination theorems for XTω, SXTω, and SIXTω hold 
by virtue of the cut-elimination theorems for XTω, G3cLTω, and G3iLTω

and their conservativeness. We can demonstrate theorems for embedding 
XTω and G3iLTω into Gentzen-style sequent calculi for classical logic and 
intuitionistic logic, respectively. Such a Gentzen-style sequent calculus, 
referred to here as LK, for classical logic is the X-less fragment of XTω (i.e., 
LK is obtained from XTω by deleting all occurrences of Xi). Similarly, such 
a Gentzen-style sequent calculus, referred to here as LI, for intuitionistic 
logic is the X-less fragment of SIXTω (i.e., LI is obtained from SIXTω by 
deleting all occurrences of Xi).

The equivalence between NXTω (or NIXTω) and SXTω (or SIXTω, re­
spectively) can also be established. The normalization theorems for NXTω

and NIXTω can be demonstrated similarly to those for NLTω and NILTω, 
since NXTω and NIXTω are proper subsystems of NLTω and NILTω, re­
spectively.

As demonstrated above, we can derive the theorems for embedding XTω

and SIXTω into LK and LI, respectively. By virtue of these theorems, we 
can also establish the decidability of XTω and SIXTω, as well as the Craig 
interpolation theorems for XTω and SIXTω. These results, based on the 
embedding theorems into LK and LI, cannot be obtained for LTω and 
G3iLTω because these systems are not embeddable into LK and LI, respec­
tively. Instead, they can be embedded into Gentzen-style sequent calculi 
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LKω and LIω for infinitary logic and infinitary intuitionistic logic, respec­
tively, which are known to be undecidable. Additionally, it is well-known 
that the Craig interpolation theorem does not hold for LTL. For more infor­
mation on Craig interpolation theorem for the next-time fragment of LTL, 
see [24]. In conclusion, XTω and SIXTω are analogous to classical logic 
and intuitionistic logic, respectively, while LTω and G3iLTω are analogous 
to infinitary logic and infinitary intuitionistic logic, respectively.

5.4. Related and future works

Gentzen-style sequent calculi and natural deduction systems for some ex­
tended intuitionistic variants of until-free propositional LTL with paracon­
sistent negation were examined by Kamide and Wansing in [31], where 
the corresponding display sequent calculi were also discussed. Kamide 
clarified the relationship among until-free propositional LTL, first-order 
monadic omega-logic, propositional generalized definitional reflection logic, 
and propositional infinitary logic in [25], using Gentzen-style sequent cal­
culi for the investigation. Recently, Kamide proposed and investigated 
refutation-aware Gentzen-style sequent calculi for until-free propositional 
LTL in [27], although their intuitionistic variants and Gentzen-style natural 
deduction systems were not studied.

Gentzen-style natural deduction systems and related typed λ-calculi for 
various fragments of LTL and related modal logics have been extensively 
studied [3, 5, 6, 12, 13, 34, 37, 38, 35, 50, 56, 20] to establish a foundation 
for staged computation in multi-level programming. Gentzen-style natural 
deduction systems and sequent calculi for variants of the next-time frag­
ment of LTL were surveyed and investigated in [20], where Davies’ logic for 
binding-time analysis was also discussed.

From an application perspective, Davies [12] proposed a typed λ-calculus 
λ◦ (including a next-time operator ⃝ insted of X) for a fragment of intu­
itionistic LTL to discuss multi-level binding-time analysis. Taha et al. [50] 
introduced an extension of λ◦ called MetaML, which incorporates proper­
ties like run-time generation and persistent code. Moggi et al. [37] further 
developed an extension of MetaML called AIM (an idealized MetaML), and 
Benaissa et al. [5] proposed a refinement of AIM known as λBN.
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Davies and Pfenning [13] introduced an alternative typed λ-calculus λ[]
(incorporating an S4-type modal operator []) for intuitionistic S4-modal 
logic, aimed at analyzing staged computation. Nanevski [38] and Kim et 
al. [34] explored various type systems based on λ[], while Yuse and Igarashi 
[56] introduced λ◦[], a type system combining λ◦ and λ[], designed to man­
age both persistent code (using []) and ephemeral code (using ⃝).

In future work, we aim to prove the strong normalization and Church-
Rosser theorems for NLTω and NILTω, as well as for their first-order exten­
sions. Additionally, we plan to introduce the corresponding typed λ-calculi 
for NLTω and NILTω with the Curry-Howard correspondence, and to apply 
these calculi to the analysis of staged computation in multi-level program­
ming.

Acknowledgements. We would like to thank the anonymous referees 
for their valuable comments. 

References
[1] A. Abuin, A. Bolotov, M. Hermo, P. Lucio, Tableaux and sequent calculi 

for CTL and ECTL: Satisfiability test with certifying proofs and models,
Journal of Logical and Algebraic Methods in Programming 130, 
100828, (2023), DOI: https://doi.org/10.1016/J.JLAMP.2022.100828.

[2] A. Almukdad, D. Nelson, Constructible falsity and inexact predicates,
Journal of Symbolic Logic, vol. 49(1) (1984), pp. 231–233, DOI: 
https://doi.org/10.2307/2274105.

[3] S. Baratella, A. Masini, A proof-theoretic investigation of a logic of posi­
tions, Annals of Pure and Applied Logic, vol. 123 (2003), pp. 135–162, 
DOI: https://doi.org/10.1016/S0168-0072(03)00021-6.

[4] S. Baratella, A. Masini, An approach to infinitary temporal proof theory,
Archive for Mathematical Logic, vol. 43(8) (2004), pp. 965–990, DOI: 
https://doi.org/10.1007/S00153-004-0237-Z.

https://doi.org/10.1016/J.JLAMP.2022.100828
https://doi.org/10.2307/2274105
https://doi.org/10.1016/S0168-0072(03)00021-6
https://doi.org/10.1007/S00153-004-0237-Z


276 Norihiro Kamide, Sara Negri

[5] Z.-E.-A. Benaissa, E. Moggi, W. Taha, T. Sheard, Logical modalities and 
multi-stage programming, [in:] Proceedings of Workshop on Intu­
itionistic Modal Logics and Applications (IMLA’99) (1999), 15 pp.

[6] A. Bolotov, A. Basukoski, O. M. Grigoriev, V. Shangin, Natural deduction 
calculus for linear-time temporal logic, [in:] Proceedings of the 10th 
European Conference on Logics in Artificial Intelligence (JELIA 
2006), vol. 4160 of Lecture Notes in Computer Science (2006), pp. 56–68, 
DOI: https://doi.org/10.1007/11853886_7.

[7] A. Bolotov, V. Shangin, Natural deduction system in paraconsistent set­
ting: Proof search for PCont, Journal of Intelligent Systems, vol. 21(1) 
(2012), pp. 1–24, DOI: https://doi.org/10.1515/JISYS-2011-0021.

[8] B. Boretti, S. Negri, Decidability for Priorean linear time using a fixed-
point labelled calculus, [in:] Proceedings of the 18th International 
Conference on Automated Reasoning with Analytic Tableaux 
and Related Methods (TABLEAUX), vol. 5607 of Lecture Notes in 
Computer Science (2009), pp. 108–122, DOI: https://doi.org/10.1007/978-
3-642-02716-1_9.

[9] B. Boretti, S. Negri, On the finitization of Priorean linear time, [in:] 
M. D’Agostino, G. Giorello, F. Laudisa, T. Pievani, C. Sinigaglia (eds.),
New Essays in Logic and Philosophy of Science, College Publica­
tions, London (2010), pp. 67–79.

[10] K. Brünnler, M. Lange, Cut-free sequent systems for temporal logic, Jour­
nal of Logical and Algebraic Methods in Programming, vol. 76(2) 
(2008), pp. 216–225, DOI: https://doi.org/10.1016/J.JLAP.2008.02.004.

[11] S. Cerrito, V. Goranko, S. Paillocher, Partial model checking and partial 
model synthesis in LTL using a Tableau-based approach, [in:] Proceed­
ings of the 8th International Conference on Formal Structures 
for Computation and Deduction (FSCD) (2023), pp. 23:1–23:21, 
DOI: https://doi.org/10.4230/LIPICS.FSCD.2023.23.

[12] R. Davies, A Temporal-Logic Approach to Binding-Time Analysis, [in:]
Proceedings of the 11th Annual IEEE Symposium on Logic 
in Computer Science (LICS), IEEE Computer Society (1996), 
pp. 184–195, DOI: https://doi.org/10.1109/LICS.1996.561317.

https://doi.org/10.1007/11853886_7
https://doi.org/10.1515/JISYS-2011-0021
https://doi.org/10.1007/978-3-642-02716-1_9
https://doi.org/10.1007/978-3-642-02716-1_9
https://doi.org/10.1016/J.JLAP.2008.02.004
https://doi.org/10.4230/LIPICS.FSCD.2023.23
https://doi.org/10.1109/LICS.1996.561317


Unified Sequent Calculi and Natural Deduction Systems for LTLs 277

[13] R. Davies, F. Pfenning, A modal analysis of staged computation, Journal 
of the ACM, vol. 48(3) (2001), pp. 555–604, DOI: https://doi.org/10.
1145/382780.382785.

[14] E. A. Emerson, Temporal and modal logic, Elsevier and MIT Press (1990), 
pp. 995–1072, DOI: https://doi.org/10.1016/B978-0-444-88074-1.50021-4.

[15] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, F. Orejas, A cut-free 
and invariant-free sequent calculus for PLTL, vol. 4646 of Lecture Notes 
in Computer Science, Springer (2007), pp. 481–495, DOI: https://doi.org/
10.1007/978-3-540-74915-8_36.

[16] Y. Gurevich, Intuitionistic logic with strong negation, Studia Logica, 
vol. 36 (1977), pp. 49–59.

[17] S. Huang, R. Cleaveland, A tableau construction for finite linear-time tem­
poral logic, Journal of Logical and Algebraic Methods in Program­
ing, vol. 125 (2022), p. 100743, DOI: https://doi.org/10.1016/J.JLAMP.
2021.100743.

[18] N. Kamide, An equivalence between sequent calculi for linear-time temporal 
logic, Bulletin of the Section of Logic, vol. 35(4) (2006), pp. 187–194.

[19] N. Kamide, Embedding Linear-Time Temporal Logic into Infini­
tary Logic: Application to Cut-Elimination for Multi-agent Infinitary 
Epistemic Linear-Time Temporal Logic, [in:] M. Fisher, F. Sadri, 
M. Thielscher (eds.), Computational Logic in Multi-Agent Systems, 
Springer Berlin Heidelberg, Berlin, Heidelberg (2009), pp. 57–76, DOI:
https://doi.org/10.1007/978-3-642-02734-5_5.

[20] N. Kamide, Notes on an extension of Davies’ logic for binding-time anal­
ysis, Far East Journal of Applied Mathematics, vol. 44(1) (2010), 
pp. 37–57.

[21] N. Kamide, Bounded linear-time temporal logic: A proof-theoretic in­
vestigation, Annals of Pure and Applied Logic, vol. 163(4) (2012), 
pp. 439–466, DOI: https://doi.org/10.1016/J.APAL.2011.12.002.

[22] N. Kamide, Temporal Gödel-Gentzen and Girard translations, Math­
ematical Logic Quarterly, vol. 59(1–2) (2013), pp. 66–83, DOI: 
https://doi.org/10.1002/MALQ.201100083.

https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1007/978-3-540-74915-8_36
https://doi.org/10.1007/978-3-540-74915-8_36
https://doi.org/10.1016/J.JLAMP.2021.100743
https://doi.org/10.1016/J.JLAMP.2021.100743
https://doi.org/10.1007/978-3-642-02734-5_5
https://doi.org/10.1016/J.APAL.2011.12.002
https://doi.org/10.1002/MALQ.201100083


278 Norihiro Kamide, Sara Negri

[23] N. Kamide, Embedding theorems for LTL and its variants, Mathematical 
Structures in Computer Science, vol. 25(1) (2015), pp. 83–134, DOI: 
https://doi.org/10.1017/S0960129514000048.

[24] N. Kamide, Interpolation theorems for some variants of LTL, Reports 
on Mathematical Logic, vol. 50 (2015), pp. 3–30, URL: https://rml.
tcs.uj.edu.pl/rml-50/1-kamide.pdf.

[25] N. Kamide, Relating first-order monadic omega-logic, propositional linear-
time temporal logic, propositional generalized definitional reflection logic 
and propositional infinitary logic, Journal of Logic and Computa­
tion, vol. 27(7) (2017), pp. 2271–2301, DOI: https://doi.org/10.1093/
LOGCOM/EXX006.

[26] N. Kamide, Natural deduction with explosion and excluded middle, 
[in:] Proceedings of the 53rd IEEE International Symposium 
on Multiple-valued Logic (ISMVL 2023) (2023), pp. 24–29, DOI: 
https://doi.org/10.1109/ISMVL57333.2023.00016.

[27] N. Kamide, Refutation-Aware Gentzen-Style Calculi for Propositional 
Until-Free Linear-Time Temporal Logic, Studia Logica, vol. 111(6) 
(2023), pp. 979–1014, DOI: https://doi.org/10.1007/S11225-023-10052-7.

[28] N. Kamide, S. Negri, A unified Gentzen-style framework for until-free 
LTL, vol. 415 of Electronic Proceedings in Theoretical Computer Science 
(2024), pp. 165–179, DOI: https://doi.org/10.4204/EPTCS.415.16.

[29] N. Kamide, S. Negri, Proof theory for extended Belnap–Dunn and intu­
itionistic logics, Studia Logica, (2025), DOI: https://doi.org/10.1007/
s11225-025-10203-y, online first.

[30] N. Kamide, S. Negri, Unified natural deduction for logics of strong 
negation, Notre Dame Journal of Formal Logic, vol. 66(4) (2025), 
pp. 543–580, DOI: https://doi.org/10.1215/00294527-2025-0016.

[31] N. Kamide, H. Wansing, Combining linear-time temporal logic with con­
structiveness and paraconsistency, Journal of Applied Logic, vol. 8(1) 
(2011), pp. 33–61, DOI: https://doi.org/10.1016/J.JAL.2009.06.001.

https://doi.org/10.1017/S0960129514000048
https://rml.tcs.uj.edu.pl/rml-50/1-kamide.pdf
https://rml.tcs.uj.edu.pl/rml-50/1-kamide.pdf
https://doi.org/10.1093/LOGCOM/EXX006
https://doi.org/10.1093/LOGCOM/EXX006
https://doi.org/10.1109/ISMVL57333.2023.00016
https://doi.org/10.1007/S11225-023-10052-7
https://doi.org/10.4204/EPTCS.415.16
https://doi.org/10.1007/s11225-025-10203-y
https://doi.org/10.1007/s11225-025-10203-y
https://doi.org/10.1215/00294527-2025-0016
https://doi.org/10.1016/J.JAL.2009.06.001


Unified Sequent Calculi and Natural Deduction Systems for LTLs 279

[32] N. Kamide, H. Wansing, A paraconsistent linear-time temporal logic,
Fundamenta Informaticae, vol. 106(1) (2011), pp. 1–23, DOI:
https://doi.org/10.3233/FI-2011-374.

[33] H. Kawai, Sequential calculus for a first order infinitary temporal logic,
Zeitschrift für Mathematische Logik und Grundlagen der Mathe­
matik, vol. 33 (1987), pp. 423–432, DOI: https://doi.org/10.1002/MALQ.
19870330506.

[34] I. Kim, K. Yi, C. Calcagno, A polymorphic modal type system for lisp-
like multi-staged languages, [in:] J. G. Morrisett, S. L. P. Jones (eds.),
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium 
on Principles of Programming Languages (POPL), ACM (2006), 
pp. 257–268, DOI: https://doi.org/10.1145/1111037.1111060.

[35] K. Kojima, A. Igarashi, On constructive linear-time temporal logic, [in:]
Proceedings of Intuitionistic Modal Logics and Applications 
Workshop (IMLA’08) (2008), 12 pp.

[36] N. Kürbis, Y. Petrukhin, Normalisation for some quite interesting many-
valued logics, Logic and Logical Philosophy, vol. 30(3) (2021), 
pp. 493–534.

[37] E. Moggi, W. Taha, Z.-E.-A. Benaissa, T. Sheard, An Idealized MetaML: 
Simpler, and More Expressive, [in:] S. D. Swierstra (ed.), Proceedings of 
the 8th European Symposium on Programming (ESOP’99), vol. 
1576 of Lecture Notes in Computer Science, Springer (1999), pp. 193–207, 
DOI: https://doi.org/10.1007/3-540-49099-X_13.

[38] A. Nanevski, Meta-programming with names and necessity, [in:] M. Wand, 
S. L. P. Jones (eds.), Proceedings of the Seventh ACM SIGPLAN 
International Conference on Functional Programming (ICFP 
’02), ACM (2002), pp. 206–217, DOI: https://doi.org/10.1145/581478.
581498.

[39] S. Negri, Geometric rules in infinitary logic, [in:] O. Arieli, A. Zaman­
sky (eds.), Arnon Avron on Semantics and Proof Theory of Non-
Classical Logics, Outstanding Contributions to Logic, Springer 
(2021), pp. 265–293.

https://doi.org/10.3233/FI-2011-374
https://doi.org/10.1002/MALQ.19870330506
https://doi.org/10.1002/MALQ.19870330506
https://doi.org/10.1145/1111037.1111060
https://doi.org/10.1007/3-540-49099-X_13
https://doi.org/10.1145/581478.581498
https://doi.org/10.1145/581478.581498


280 Norihiro Kamide, Sara Negri

[40] S. Negri, J. von Plato, Sequent calculus in natural deduction style, Journal 
of Symbolic Logic 66 (4), (2001), pp. 1803–1816, DOI: https://doi.org/
10.2307/2694976.

[41] S. Negri, J. von Plato, Structural Proof Theory (2001), DOI:
https://doi.org/10.1017/CBO9780511527340.

[42] D. Nelson, Constructible falsity, Journal of Symbolic Logic, vol. 14 
(1949), pp. 16–26, DOI: https://doi.org/10.2307/2268973.

[43] B. Paech, Gentzen-Systems for propositional temporal logics, [in:] 
E. Börger, H. K. Büning, M. M. Richter (eds.), CSL ’88, Springer 
Berlin Heidelberg, Berlin, Heidelberg (1989), pp. 240–253, DOI: https:
//doi.org/10.1007/BFb0026305.

[44] R. Pliuškevičius, Investigation of finitary calculus for a discrete linear time 
logic by means of infinitary calculus, [in:] J. Bārzdinš, D. Bjørner (eds.),
Baltic Computer Science, Springer Berlin Heidelberg, Berlin, Heidel­
berg (1991), pp. 504–528, DOI: https://doi.org/10.1007/BFb0019366.

[45] A. Pnueli, The temporal logic of programs (1977), pp. 46–57, DOI:
https://doi.org/10.1109/SFCS.1977.32.

[46] D. Prawitz, Natural deduction: a proof-theoretical study (1965), 
DOI: https://doi.org/10.2307/2271676.

[47] G. Priest, Natural Deduction Systems for Logics in the FDE Family, [in:] 
H. Omori, H. Wansing (eds.), New Essays on Belnap-Dunn Logic, 
Springer International Publishing, Cham (2019), pp. 279–292, DOI:
https://doi.org/10.1007/978-3-030-31136-0_16.

[48] M. E. Szabo, Collected papers of Gerhard Gentzen, [in:] M. E. Szabo (ed.),
Studies in Logic and the Foundations of Mathematics, North-
Holland (1969), DOI: https://doi.org/10.2307/2272429, english transla­
tion.

[49] M. E. Szabo, A sequent calculus for Kröger logic, [in:] A. Salwicki (ed.),
Logics of Programs and Their Applications, Springer Berlin Hei­
delberg, Berlin, Heidelberg (1983), pp. 295–303, DOI: https://doi.org/10.
1007/3-540-11981-7_21.

https://doi.org/10.2307/2694976
https://doi.org/10.2307/2694976
https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.2307/2268973
https://doi.org/10.1007/BFb0026305
https://doi.org/10.1007/BFb0026305
https://doi.org/10.1007/BFb0019366
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.2307/2271676
https://doi.org/10.1007/978-3-030-31136-0_16
https://doi.org/10.2307/2272429
https://doi.org/10.1007/3-540-11981-7_21
https://doi.org/10.1007/3-540-11981-7_21


Unified Sequent Calculi and Natural Deduction Systems for LTLs 281

[50] W. Taha, T. Sheard, Multi-Stage Programming with Explicit Annota­
tions, [in:] J. P. Gallagher, C. Consel, A. M. Berman (eds.), Proceed­
ings of the ACM SIGPLAN Symposium on Partial Evaluation 
and Semantics-Based Program Manipulation (PEPM ’97), ACM 
(1997), pp. 203–217, DOI: https://doi.org/10.1145/258993.259019.

[51] L. Tranchini, Natural deduction for bi-intuitionistic logic, Journal 
of Applied Logic, vol. 25(Supplement) (2017), pp. S72–S96, DOI: 
https://doi.org/10.1016/J.JAL.2017.12.001.

[52] A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, vol. 45 of 
Cambridge Tracts in Theoretical Computer Science, Cambridge University 
Press, (2000), DOI: https://doi.org/10.1017/CBO9781139168717.

[53] J. von Plato, Proof theory of full classical propositional logic (1999), 
manuscript, 16 pp.

[54] J. von Plato, Elements of Logical Reasoning (2014), DOI:
https://doi.org/10.1017/CBO9781139567862.

[55] J. von Plato, Saved from the Cellar: Gerhard Gentzen’s Short­
hand Notes on Logic & Foundations of Mathematics (2017), DOI:
https://doi.org/10.1007/978-3-319-42120-9.

[56] Y. Yuse, A. Igarashi, A modal type system for multi-level generating ex­
tensions with persistent code, [in:] A. Bossi, M. J. Maher (eds.), Pro­
ceedings of the 8th International ACM SIGPLAN Conference 
on Principles and Practice of Declarative Programming, ACM 
(2006), pp. 201–212, DOI: https://doi.org/10.1145/1140335.1140360.

Norihiro Kamide
Nagoya City University
School of Data Science
Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya
467-8501, Aichi, Japan
e-mail: drnkamide08@kpd.biglobe.ne.jp

https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/J.JAL.2017.12.001
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139567862
https://doi.org/10.1007/978-3-319-42120-9
https://doi.org/10.1145/1140335.1140360
drnkamide08@kpd.biglobe.ne.jp


282 Norihiro Kamide, Sara Negri

Sara Negri
University of Genoa
Department of Mathematics
via Dodecaneso 35
16146 Genoa, Italy
e-mail: sara.negri@unige.it

Funding information: This research was supported by JSPS KAKENHI Grant Num­
ber 23K10990, the project “Infinity and Intensionality: Towards A New Synthesis” 
funded by the Research Council of Norway, and the project “Modalities in Substruc­
tural Logics: Theory, Methods and Applications MOSAIC”, funded by the Community 
Research and Development Information Service (CORDIS) of the European Commis­
sion. The second author also acknowledges the MIUR Excellence Department Project 
awarded to Dipartimento di Matematica, Università di Genova, CUP D33C23001110001 
and the “Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Appli­
cazioni” (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM).
Conflict of interests: None.
Ethical considerations: The Authors assure of no violations of publication ethics and 
take full responsibility for the content of the publication.
The percentage share of the author in the preparation of the work: Nori­
hiro Kamide %,  Sara Negri 50%
Declaration regarding the use of GAI tools: Not used.

sara.negri@unige.it


Bulletin of the Section of Logic
Volume 54/2 (2025), pp. 283–323

https://doi.org/10.18778/0138-0680.2025.06

Kaito Ichikura 

CONTINUA OF LOGICS RELATED TO 
INTUITIONISTIC AND MINIMAL LOGICS

Presented by: Michał Zawidzki
Received: January 25, 2025, Received in revised form: April 18, 2025,
Accepted: June 6, 2025, Published online: July 7, 2025
© Copyright by the Author(s), 2025
Licensee University of Lodz – Lodz University Press, Lodz, Poland

This article is an open access article distributed under the terms and con­
ditions of the Creative Commons Attribution license CC-BY-NC-ND 4.0.

Abstract

We analyze the relationship between logics around intuitionistic logic and mini­
mal logic. We characterize the intersection of minimal logic and co-minimal logic 
introduced by Vakarelov, and reformulate logics given in the previous studies 
by Vakarelov, Bezhanishvili, Colacito, de Jongh, Vargas, and Niki in a uniform 
language. We also compare the new logic with other known logics in terms of the 
cardinalities of logics between them. Specifically, we apply Wronski’s algebraic 
semantics, instead of neighborhood semantics used in the previous studies, to 
show the existence of continua of logics between known logics and the new logic. 
This result is an extension of the conventional results, and the proof is given in 
a simpler way. 

Keywords: intuitionistic logic, minimal logic, subminimal logic, co-minimal logic, 
Yankov formula.

https://doi.org/10.18778/0138-0680.2025.06
https://publicationethics.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


284 Kaito Ichikura

1. Introduction

In this paper, we explore the relation between known and new logics with 
a focus on subminimal logics, which were introduced by [13, 12]. Since 
we have two backgrounds, we will first describe the backgrounds and then 
clarify the aims of the paper.

1.1. Vakarelov’s logics and Minimal logic

Intuitionistic logic contains ex contradictione quodlibet (ECQ for short), 
which is the inference rule deriving any conclusion B from A and ¬A. 
Minimal logic, which is introduced by [6], is the logic excluding ECQ from 
Intuitionistic logic. When we treat classical, intuitionistic and minimal log­
ics, negation is usually defined by making use of the absurdity constant and 
implication, i.e., ¬A := A→ ⊥. We call this kind of negation intuitionistic 
negation by following the terminology used by [13, 12]. Using intuitionistic 
negation, minimal logic is the weakest logic with respect to the strength of 
negation, on the assumption that the implication is at least intuitionistic.

However, there is another way to treat negation in classical/intuitio­
nistic/minimal logics. That is, to take negation as a primitive logical 
connective with one argument. We call this kind of negation subminimal 
negation by following the terminology used in [13] again. In [13], submini­
mal negation was introduced to analyze strong negation in a more general 
framework. By using subminimal negation, we can analyze properties of 
negation in a more detailed way than intuitionistic negation, and we can 
define logics weaker than minimal logic, which we shall call subminimal 
logics.

In this paper, we are interested in two systems introduced in [13]. One 
is the ⊥-free fragment of SUBMIN (Definition 6.1), which is one of the 
subminimal logics. The other is co-minimal logic (CO-MIN for short) 
(Definition 2.7), which has ECQ. The positive fragment of CO-MIN coin­
cides with that of intuitionistic logic, but CO-MIN is neither weaker nor 
stronger than minimal logic. Moreover, CO-MIN is stronger than SUB­
MIN. The relationship between the four systems discussed by Vakarelov 
can be summarized as follows.
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Intuitionistic logic

Minimal logicCO-MIN

SUBMIN

Figure 1: Main systems discussed by Vakarelov

Note here that the systems above the lines are strictly stronger than 
the lower systems.

1.2. Subminimal logics

Let us now move on to the second background. In [3, 4], several subminimal 
logics that are closely related to SUBMIN were introduced. By using sub­
minimal negation instead of intuitionistic negation, we can treat negation 
separately from implication and absurdity. Then, the following properties 
of negation do not hold automatically.

(Co) (A→ B) → (¬B → ¬A) (Contraposition);

(NECQ) (A ∧ ¬A) → ¬B (Negative Ex Contradiction Quodibet);

(N) (A↔ B) → (¬A↔ ¬B) (Congruence).

Hence we can obtain systems by adding these as axioms to the positive 
fragment of intuitionistic logic with subminimal negation and the following 
hierarchy.
Furthermore, [3] established the soundness and completeness theorems for 
the newly introduced subminimal logics using neighborhood semantics.

The relationship between logics has been analyzed by measuring of the 
cardinality of logics between them. In [17], the existence of a continuum of 
logics between classical and intuitionistic logics is proved, by using algebraic 
semantics. As a related result, [9] showed the existence of a continuum of 
logics between some intutitionistic modal logics. Another result that is 
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Intuitionistic logic

Minimal logic

CoPC

NeFPC

NPC

Figure 2: Systems discussed by Colacito, Bezhanishvili and de Jongh

directly related to the above systems can be found in [1] in which the 
existence of continua of logics between the systems included in the above 
figure is established.

Although SUBMIN was mentioned in [3] its relationship to the logics 
introduced in [13] was not clarified. It was Niki who revealed, in [8], the 
relations between SUBMIN and subminimal logics included in Figure 2. 
As a result, the systems are related as summarized in the following figure. 
Note that Niki refers to the ⊥-free system SUBMIN (SUBMIN− for 
short) as An−PC.

1.3. The aims of the paper

Building on the two backgrounds, we have two aims for this paper. First, 
we investigate the systems introduced by Vakarelov in some further detail. 
More specifically, we observe that there is a simpler characterization of
CO-MIN and introduce the intersection of CO-MIN and minimal logic. 
Second, we establish some new results concerning the existence of continua 
of logics between systems that are not discussed so far in the literature. 
The results are established by making use of the techniques introduced in 
[15], and this strategy has the advantage of simplifying the proofs for the 
previous results established in [1].



Continua of Logics Related to Intuitionistic and Minimal Logics 287

Intuitionistic logic

Minimal logic

SUBMIN− or An−PC

CoPC

NECQPC

NPC

Figure 3: Systems discussed by Colacito, Bezhanishvili and de Jongh, after 
Niki’s clarification

The remainder of this paper is structured as follows. In Section 2, we 
introduce proof systems for subsystems of intuitionistic logic and establish 
some results related to the first aim. In Section 3 we define algebraic 
semantics for the systems defined in Section 2, as a preparation for the 
main result. In Section 4, we show the existence of continua of logics 
between the logics discussed in this paper, and this will be related to the 
second aim. In Section 5, we conclude the paper by summarizing the main 
findings of the paper and pointing out some directions for further research. 
In the appendix, we prove the soundness and completeness theorems for 
the main logics of this paper using the Kripke semantics introduced by 
Vakarelov in [13].

2. Proof system

We shall use the language L¬ consisting of denumerable propositional vari­
ables, ∧,∨,→ and ¬. The set of propositional variables is denoted by P. We 
define formulas of L¬ as follows: A := p | ¬A | (A∧A) | (A∨A) | (A→ A), 
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and employ the abbreviation A↔ B := (A→ B) ∧ (B → A). The formula 
A[p1/B1, . . . , pn/Bn] is obtained by replacing all occurrences of pi in A
with Bi for each i = 1, . . . , n and leaving all other variables fixed. We call 
this operation substitution.
Definition 2.1 (NPC [3]). We define the Hilbert system NPC by adding a 
negative axioms to the positive axiom and rules of intuitionistic/minimal 
logic.
Axioms

• Ax1: p→ (q → p);

• Ax2: (p→ (q → r)) → ((p→ q) → (p→ r));

• Ax3: p→ (p ∨ q);
• Ax4: q → (p ∨ q);
• Ax5: (p→ r) → [(q → r) → ((p ∨ q) → r)];

• Ax6: (p ∧ q) → p; Ax7 : (p ∧ q) → q;

• Ax8: p→ (q → (p ∧ q));
• (N): (p↔ q) → (¬p↔ ¬q).

Inference rules

• (MP): If A and A→ B, then B;

• (Sub): If A, then A[p1/B1, . . . , pn/Bn], where p1, . . . , pn are proposi­
tional variables in A and B1, . . . , Bn are formulas.

For a formula A, a sequence A1, . . . , An is a proof  of A in NPC, if Ai satisfies 
one of the following for any 1 ≤ i ≤ n:

1. Ai is an axiom;
2. Ai is the result of applying (MP) to formulas Aj and Ak for some 
j, k < i;

3. Ai is the result of applying (Sub) to a formula Aj for some j < i;
4. An = A.

NPC ⊢ A denotes that there is a proof  of A in NPC. Unless there is a risk 
of misunderstanding, the set {A | NPC ⊢ A} is also denoted by NPC.
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For a set of formulas Γ, a formula A, a sequence A1, . . . , An is a de­
duction of A from Γ in NPC, if Ai satisfies one of the following for any 
1 ≤ i ≤ n:

1. Ai is in NPC or in Γ;
2. Ai is the result of applying (MP) to formulas Aj and Ak for some 
j, k < i;

3. An = A.

Γ ⊢NPC A denotes there is a deduction of A from Γ in NPC.
In considering deductions with hypothesis, (Sub) is not allowed.

If (Sub) were allowed, p ⊢ q would be derived for any p and q.
We consider the following axioms related to negation.

Definition 2.2 (Additional Axioms).

• (An) : (p→ ¬p) → ¬p;
• (An−) : (p→ ¬p) → (¬q → ¬p);
• (Co) : (p→ q) → (¬q → ¬p);
• (NECQ) : (p ∧ ¬p) → ¬q;
• (ECQ) : (p ∧ ¬p) → q;
• (AVQ) : ¬¬(¬(p→ p) → q);
• (An ∩ ECQ) : ¬¬(p→ p) ∨ (¬(q → q) → r);
• (CoECQ) : ¬p→ ¬(q ∧ ¬q).

By adding the above axioms, we obtain the following Hilbert systems.

• NECQPC is the Hilbert system adding (NECQ) to NPC. NECQ is an 
abbreviation of negative ex contradiction quodibet.

• CoPC is the Hilbert system adding (Co) to NPC (in this case, (N) is 
redundant [3]). Co is an abbreviation of contraposition.

• An−PC is the Hilbert system adding (An−) to NPC.
• CoECQPC is the Hilbert system adding (CoECQ) to NPC. CoECQ is 

an abbreviation of contraposition of ex contradiction quodibet.
• An ∩ ECQPC is the Hilbert system adding (An ∩ ECQ) to An−PC.
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• MPC¬ is the Hilbert system adding (An) to NPC. An is an abbrevia­
tion for absorption of negation.

• ECQPC is the Hilbert system adding (ECQ) to NPC. ECQ is an 
abbreviation of ex contradiction quodibet.

• AVQPC is the Hilbert system adding (AVQ) and (An) to NPC. AVQ
is an abbreviation of avoidability of quodibet.

• IPC is the Hilbert system adding (ECQ) and (An) to NPC. (In this 
case, (N) is redundant, see Lemma 2.5.)

Note that the system AVQPC was introduced in [14].1 For each Hilbert 
system, the deducibility relation “Γ ⊢ A” is defined as in the NPC case.

In [3, 8] the systems NeF,CoPC,An−PC and MPC¬ are defined in the 
language with ⊤. The systems NECQPC,CoPC,An−PC and MPC¬ we de­
fined above are the ⊤-free fragments of them, respectively. This can be 
proved in the same way as CO-MIN and CO-MIN−⊤,⊥ in Appendix.

Unless there is a risk of misinterpretation, for any Hilbert system H
above, we denote the set {A | H ⊢ A} by H in the same way as NPC.

For each Hilbert system H defined above, the set {A | H ⊢ A} can be 
summed up in one concept. Because we use it later, we define it as follows.
Definition 2.3.  A super-N-logic (sN-logic, for short) in the language L¬
is any set L of L¬-formulas satisfying the conditions:

• NPC ⊆ L;
• L is closed under modus ponens;
• L is closed under substitution.

As mentioned, for each Hilbert system H defined above, the set {A |
H ⊢ A} is an sN-logic.
Lemma 2.4 (Deduction theorem).  Let Γ ∪ {A,B} be a set of formulas. 
The following holds:

Γ ∪ {A} ⊢NPC B ⇔ Γ ⊢NPC A→ B.

1This formulation was given by [7].
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To prove Deduction theorem, we need only Ax1 and Ax2 and the fact 
that (MP) is the unique inference rule in deductions. So, it holds for all 
Hilbert systems defined above.

We will use Deduction theorem without a mentioning in what follows.
Lemma 2.5.  Let IPC−(N) be the Hilbert system removing (N) from IPC. 
IPC−(N) ⊢ (N).

Proof: We can show IPC−(N) ⊢ (¬p∧ q ∧ (p↔ q)) → (p∧¬p) as follows: 
We can prove ¬p, q and p ↔ q from ¬p ∧ q ∧ (p ↔ q) by using Ax6, 7. 
Since we can show p from q and p↔ q by (MP), we can show p ∧ ¬p from 
¬p ∧ q ∧ (p↔ q) by Ax8. Then we have the following: 

1. IPC−(N) ⊢ (¬p ∧ q ∧ (p↔ q)) → (p ∧ ¬p)

2. IPC−(N) ⊢ (¬p ∧ q ∧ (p↔ q)) → ¬q ((ECQ) and 1)

3. IPC−(N) ⊢ (¬p ∧ (p↔ q)) → (q → ¬q) (From 2)

4. IPC−(N) ⊢ (¬p ∧ (p↔ q)) → ¬q ((An) and 3)

5. IPC−(N) ⊢ (p↔ q) → (¬p→ ¬q) (From 4)

6. IPC−(N) ⊢ (p↔ q) → (¬q → ¬p) (The same way as 1-5)

7. IPC−(N) ⊢ (p↔ q) → (¬p↔ ¬q) (Ax8, 5 and 6). □

Lemma 2.6. NPC ⊆ NECQPC ⊆ CoPC ⊆ An−PC ⊆ MPC¬.
Proof: By combining the results of [3, Page 12] and [8, Page 970], we 
have NPC ⊆ NeFPC ⊆ CoPC ⊆ An−PC ⊆ MPC¬. In their proofs, the axiom 
for ⊤ is not used. Since NPC,NECQPC,CoPC,An−PC,MPC¬ are ⊤-free 
fragment of them. □

Hereinafter Lemma 2.6 is used without reference.
We shall show that co-minimal logic (CO-MIN for short (cf. [13])) is 

a conservative extension of ECQPC.
To define CO-MIN, we shall use the language L¬,⊤,⊥ consisting of 

L¬, ⊤, ⊥. We define formulas of L¬,⊤,⊥ as follows: A := p | ⊤ | ⊥ | ¬A |
(A ∧A) | (A ∨A) | (A→ A).
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Definition 2.7 (cf. [13]).  CO-MIN is the Hilbert system obtained by 
adding the axioms ⊥ → p, p → ⊤, ¬p → ¬¬⊤ and ¬⊤ → p to CoPC in 
L¬,⊤,⊥.

We define CO-MIN−⊤,⊥ as the Hilbert system adding the axioms 
¬p→ ¬¬(q → q) and ¬(p→ p) → q to CoPC in L¬.

The following lemma shows that CO-MIN is a conservative extension 
for CO-MIN−⊤,⊥.
Lemma 2.8.  Given a formula A in the language of L¬,

CO-MIN ⊢ A ⇔ CO-MIN−⊤,⊥ ⊢ A.

Proof: See Appendix. □

Next, we show the equivalence between CO-MIN−⊤,⊥ and ECQPC.
Lemma 2.9. ECQPC contains An−PC.
Proof: It suffices to show that ECQPC ⊢ (p→ ¬p) → (¬q → ¬p).

We can show ECQPC ⊢ ((p→ ¬p) ∧ ¬q) → (q ↔ p) as follows:
We can show p→ ¬p and ¬q from (p→ ¬p)∧¬q by Ax6, 7. Assume q, 

then we can show p from ¬q by (ECQ). Assume p, then we can show ¬p
from p→ ¬p, and so q by (ECQ) again.

Then we have the following:

1. ECQPC ⊢ ((p→ ¬p) ∧ ¬q) → (q ↔ p)

2. ECQPC ⊢ ((p→ ¬p) ∧ ¬q) → (¬q → ¬p) ((N) and 1)
3. ECQPC ⊢ (p→ ¬p) → (¬q → ¬p) (From 2). □

Lemma 2.10. ECQPC is equivalent to CO-MIN−⊤,⊥.
Proof: Since p → p is derivable, ¬(p → p) → q is equivalent to the 
instance ((p → p) ∧ ¬(p → p)) → q of ECQ. Then it suffices to show that 
ECQPC ⊢ ¬p→ ¬¬(q → q). 
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1. ECQPC ⊢ ¬(q → q) → ¬¬(q → q)

2. ECQPC ⊢ (¬(q → q) → ¬¬(q → q)) → (¬p→ ¬¬(q → q)) (An−)

3. ECQPC ⊢ ¬p→ ¬¬(q → q) (1 and 2).

For the other direction, it suffices to show CO-MIN−⊤,⊥ ⊢ (p ∧ ¬p) → q.

1. CO-MIN−⊤,⊥ ⊢ (p ∧ ¬p) → (p↔ (p→ p))

2. CO-MIN−⊤,⊥ ⊢ (p ∧ ¬p) → (¬p→ ¬(p→ p)) ((N) and 1)

3. CO-MIN−⊤,⊥ ⊢ (p ∧ ¬p) → ¬(p→ p) (From 2)

4. CO-MIN−⊤,⊥ ⊢ ¬(p→ p) → q (Ax of CO-MIN−⊤,⊥)

5. CO-MIN−⊤,⊥ ⊢ (p ∧ ¬p) → q (3 and 4). □

In order to show An ∩ ECQPC is the intersection of ECQPC and MPC¬, 
we show the following lemma.
Lemma 2.11.  The Hilbert system An−PC+ consisting of An−PC plus the 
axiom ¬¬(p→ p) is equivalent to MPC¬.
Proof: An−PC+ ⊢ (p→ ¬p) → ¬p can be shown as follows. 

1. An−PC
+ ⊢ (p→ ¬p) → (¬¬(p→ p) → ¬p) (An−)

2. An−PC
+ ⊢ ¬¬(p→ p) → ((p→ ¬p) → ¬p) (From 1)

3.;An−PC
+ ⊢ (p→ ¬p) → ¬p (2 and Ax of An−PC+

).

For the converse, it suffices to show MPC¬ ⊢ ¬¬(p → p), since MPC¬ ⊢
(An−).

1. MPC¬ ⊢ ¬(p→ p) → ¬¬(p→ p) (NECQ)

2. MPC¬ ⊢ (¬(p→ p) → ¬¬(p→ p)) → ¬¬(p→ p) (An)

3. MPC¬ ⊢ ¬¬(p→ p) (1 and 2). □

Lemma 2.12. An ∩ ECQPC is the intersection of ECQPC and MPC¬.
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Proof: By Lemma 2.9, to prove An ∩ ECQPC ⊆ ECQPC and
An ∩ ECQPC ⊆ MPC¬, it suffices to show that ECQPC ⊢ ¬¬(p → p) ∨
(¬(q → q) → r) and MPC¬ ⊢ ¬¬(p → p) ∨ (¬(q → q) → r), but it is 
immediate from Lemma 2.10 and Lemma 2.11.

For the other direction, note that ECQPC = CO-MIN−⊤,⊥ and
MPC¬ = An−PC

+, so An−PC is contained in the intersection of ECQPC and 
MPC¬. Suppose that A is in the intersection of ECQPC and MPC¬. Since 
MPC¬ ⊢ A, An−PC ⊢ B → A, where B is a conjunction of substitution 
instances of ¬¬(p → p). Since ECQPC ⊢ A, An−PC ⊢ C → A, where 
C is a conjunction of substitution instances of ¬(q → q) → r. By Ax5, 
An−PC ⊢ (B ∨ C) → A. Since B ∨ C is equivalent to a conjunction of 
instances of An ∩ ECQ, we obtain An ∩ ECQPC ⊢ A. □

It will be seen below that SUBMIN can be further formalized differ­
ently.
Lemma 2.13. CoECQPC is equivalent to An−PC.
Proof: We show that CoECQPC ⊢ (p→ ¬p) → (¬q → ¬p).

We can infer CoECQPC ⊢ (p→ ¬p) → ((p ∧¬p) ↔ p) by using Ax6, 7. 

1. CoECQPC ⊢ (p→ ¬p) → ((p ∧ ¬p) ↔ p)

2. CoECQPC ⊢ (p→ ¬p) → (¬(p ∧ ¬p) ↔ ¬p) ((N) and 1)

3. CoECQPC ⊢ ¬(p ∧ ¬p) → ((p→ ¬p) → ¬p) (From 2)

4. CoECQPC ⊢ ¬q → ¬(p ∧ ¬p) ((CoECQ))

5. CoECQPC ⊢ ¬q → ((p→ ¬p) → ¬p) (3 and 4)

6. CoECQPC ⊢ (p→ ¬p) → (¬q → ¬p) (From 5)

For the other direction, we show that An−PC ⊢ ¬p→ ¬(q ∧ ¬q).
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1. An−PC ⊢ ¬q → ¬(q ∧ ¬q) (Ax7 and (Co))
2. An−PC ⊢ (q ∧ ¬q) → ¬q (Ax7)

3. An−PC ⊢ (q ∧ ¬q) → ¬(q ∧ ¬q) (1 and 2)
4. An−PC ⊢ ((q ∧ ¬q) → ¬(q ∧ ¬q)) → (¬p→ ¬(q ∧ ¬q)) ((An−))

5. An−PC ⊢ ¬p→ ¬(q ∧ ¬q) (3 and 4) □

The results concerning the relations between the systems so far can be 
summarized as follows.

IPC
(Intuitionistic logic)

AVQPC

MPC¬
(Minimal logic)

ECQPC
(Co-minimal logic)

An ∩ ECQPC

SUBMIN−⊤,⊥ or An−PC or CoECQPC

CoPC

NECQPC

NPC

See the Appendix for SUBMIN−⊤,⊥. The systems other than
An ∩ ECQPC were defined using different languages and the relations were 
already known. The relation of An ∩ ECQPC to other systems is a new 
result of this paper, but at this point, it is not yet clear whether it can be 
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separated from other systems. In Section 4, using algebraic semantics, we 
separate An ∩ ECQPC from the others. Before presenting the main results, 
we will first prepare some tools that we will use in the proofs of the main 
results.

3. Algebraic semantics

We now turn to introduce algebraic semantics for logics in the previous 
section.
Definition 3.1 (N-algebra (cf. [3])).  Let ⟨|A|,∧A,∨A⟩ be a lattice with 
the greatest element 1A. The order ≤A in the lattice is defined by

a ≤A b :⇔ a ∧A b = a

for any a, b ∈ |A|. The N-algebra ⟨|A|, 1A,∧A,∨A,→A,¬A⟩ is given by 
defining a binary operator →A and an unary operator ¬A over |A| as follows:

a→A b := max{c ∈ |A| | a ∧A c ≤A b};

(a↔A b) →A (¬Aa↔A ¬Ab) = 1A,

where a↔A b is an abbreviation of (a→A b) ∧A (b→A a).
For any N-algebra A, the following holds in the same manner as Heyting 

algebras:
a ≤A b⇐⇒ a→A b = 1A.

This relation will be used without notice in what follows.
We now define the following algebraic conditions that correspond to the 

axioms.
Definition 3.2 (Additional conditions for negation).  The following con­
ditions corresponding to the additional inference rules in Definition 2.2 are 
defined as follows:

1. (An)E : (x→ ¬x) → ¬x = 1;
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2. (An−)E : (x→ ¬x) → (¬y → ¬x) = 1;
3. (Co)E : (x→ y) → (¬y → ¬x) = 1;
4. (NECQ)E : (x ∧ ¬x) → ¬y = 1;
5. (ECQ)E : (x ∧ ¬x) → y = 1;
6. (AVQ)E : ¬¬(¬(x→ x) → y) = 1;
7. (An ∩ ECQ)E : ¬¬(x→ x) ∨ (¬(y → y) → z) = 1;
8. (CoECQ)E : ¬x→ ¬(y ∧ ¬y) = 1.

These conditions are also denoted without E unless there is a risk of 
misunderstanding.

In what follows, we fix Ψ = {∧,∨,→}. Recall that P is the set of 
propositional variables.
Definition 3.3 (Valuation of N-algebra).  For any N-algebra and any map 
v from P to |A|, the valuation v in A is defined as follows:

1. If A is a propositional variable, then v(A) := v(A);
2. If A = ¬B, then v(¬B) := ¬Av(B);
3. If A = B ⊗ C, then v(B ⊗ C) := v(B)⊗A v(C), for ⊗ ∈ Ψ.

Since v is uniquely determined for any v, by this definition the valuation v
is also written as v unless there is a risk of misunderstanding.

For given a valuation v and any formula A, if v(A) = 1A, then we say 
that A is true in v. If A is true in v for any valuation v in A, then we 
say that A is true in A, which is denoted by A |= A. For a class C of 
N-algebras, if A |= A for any A in C, then we say that A is true in C. For 
any set ∆ of formulas, any formula A and any class C of N-algebras, if, 
for any N-algebra A ∈ C and valuation v in A, A is true in v whenever B
is true in v for any B ∈ ∆, then we say A is true under ∆ in C which is 
denoted by ∆ |=C A. If ∆ is empty, it is denoted by |=C A.

We can prove the completeness theorem for the logics defined above and 
these N-algebras. In particular, here we show the completeness theorem 
regarding ECQPC.
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Theorem 3.4.  Let CECQ be the class of N-algebras that validate ECQ. For 
any formula A, the following holds:

ECQPC ⊢ A ⇔ |=CECQ
A.

Proof: With regard to the forward implication, it can be proved by 
induction on the length of the deduction. For the other direction, it can 
be proved in the same manner as Heyting algebras (cf. [2, page 195]). □

Thus, completeness theorems can be proved in the same manner for the 
remaining logics. In more general, we can show the following.
Theorem 3.5 (Completeness theorem).  For sN-logic L, let CL be the class 
of N-algebras in which all theorems of L are true. For any formula A, the 
following holds:

L ⊢ A ⇔ |=CL
A.

Proof: We can show this theorem in the same way as [3, page 51] by 
replacing ⊤ with p→ p. □

4. The existence of continua of logics between pairs 
of logics below intuitionistic logic

In this section, we show the main theorem: there are continua of logics 
between logics introduced in Section 2. In order to show it, we introduce 
the following definitions and lemmas. Most of them are introduced by [15]. 
The Heyting algebras are defined as usual.

4.1. Preliminaries

Definition 4.1 (Second greatest element (cf. [15])).  Given a N-algebra 
A, we say that A has the second greatest element if the greatest element 
exists in |A|∖ {1A}. We write the second greatest element in A as ⋆A if it 
exists.

The role of the second greatest element will be explained when we in­
troduce Yankov formulas.

Recall that Ψ = {∧,∨,→}.
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Definition 4.2 (Ψ-reduct, Ψ-embedding (cf. [15])).  For any Heyting 
algebra A, we define the following:

1. The algebra ⟨|A|, 1A, 0A, ⟨⊗A | ⊗ ∈ Ψ⟩⟩ is the Ψ-reduct.

2. For a Heyting algebra B, a Ψ-embedding from A to B is an embedding 
from the Ψ-reduct of A to the Ψ-reduct of B .

The following is a generalization of Yankov formulas (cf. [16]).
Definition 4.3 (Yankov formula of N-algebra).  In what follows, for any 
function g and a ∈ dom(g), ga denotes the value of g at a. For any finite 
N-algebra A with the second greatest element, any injection g from |A|
to P, and any formula A, the Yankov formula χg

A(A) with A, g and A is 
defined as follows:

χg
A(A) :=

⋀︁
{(ga ⊗ gb) → ga⊗Ab | ⊗ ∈ Ψ, a, b ∈ |A|} ∪ {ga⊗Ab → (ga ⊗ gb) |

⊗ ∈ Ψ, a, b ∈ |A|} → (g⋆A
∨A).

The antecedent of χg
A(A) is denoted by θ(χg

A(A)).
Yankov formula will be used when we separate logics and make continua 

of logics. For any finite N-algebra A with the second greatest element, the 
antecedent of Yankov formula asserts that algebraic operators except for 
negation are rewritten by corresponding logical connectives. The succedent 
of Yankov formula is defined by using the second greatest element. In 
a valuation v making the antecedent of Yankov formula true, v(g⋆A

) is 
interpreted as the second greatest element in the model. If we choose N-
algebra appropriately, the succedent of Yankov formula is interpreted as the 
second greatest element, then the N-algebra refutes the Yankov formula.

The difference from the conventional definition of the Yankov formula 
is in the succedent of the formula: We added the formula A. In order to 
separate logics, we take an instance of the axioms concerning negation as 
A in the proof of the main theorem.

In the following, we will prove some lemmata to prove the main theorem.
An N-algebra with the minimum element can be reformed into a Heyting 

algebra by modifying the negation.
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Definition 4.4 (Heyting algebraization of N-algebra).  For any N-algebra 
A = ⟨|A|, 1A,∧A,∨A,→A,¬A⟩ with the minimum element 0A, the Heyting 
algebra AH = ⟨|A|, 1AH , 0AH ,∧AH ,∨AH ,→AH ,¬AH ⟩ is defined as follows:

|AH | := |A|, 1AH := 1A, 0AH := 0A,∧AH := ∧A,∨AH := ∨A,→AH :=→A, and

¬AHa := a→A 0A.

Definition 4.5 (Filter).  For any lattice H, a filter F  of H is a nonempty 
subset of H satisfying the following 1 and 2:

1. If a, b ∈ F , then a ∧H b ∈ F ;

2. If a ∈ F  and a ≤H b, then b ∈ F .
Given a ∈ H, the filter {b ∈ H | a ≤ b} is the smallest filter containing 

a. We refer to this as the filter generated by a.
Proposition 4.6.  For any Heyting algebra A and any subset F  of |A|, F
is a filter of A if and only if F  satisfies both of the following 1 and 2:

1. 1A ∈ F ;

2. If a ∈ F  and a→A b ∈ F , then b ∈ F .
Definition 4.7 (Quotient algebra of Heyting algebra).  For any Heyting 
algebra A and any filter F  of A, the binary relation ∼F  over A is defined 
as follows:

a ∼F b :⇐⇒ a→A b ∈ F  and b→A a ∈ F  for any a, b ∈ |A|.

It is easy to show that this binary relation ∼F  is a congruence relation 
over A. We define the congruence class of a ∈ |A| with respect to ∼F  by 
[a]F := {b ∈ |A| | a ∼F b}. The set of congruence classes {[a]F | a ∈ |A|} is 
denoted by |A|/F .

The quotient algebra
A/F = ⟨|A|/F, 1A/F , 0A/F ,∧A/F ,∨A/F ,→A/F ,¬A/F ⟩ is defined as follows: 
for any [a]F , [b]F ∈ |A|/F

1. 1A/F := [1A]F ;

2. 0A/F := [0A]F ;
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3. [a]F ∧A/F [b]F := [a ∧A b]F ;

4. [a]F ∨A/F [b]F := [a ∨A b]F ;

5. [a]F →A/F [b]F := [a→A b]F ;

6. ¬A/F [a]F := [¬Aa]F .

It is easy to show that A/F  is a Heyting algebra.
The following is a generalization of Lemma 2 in [15] to Yankov formula 

of N-algebra.
Lemma 4.8.  Let A and B be finite N-algebras with the second greatest 
elements such that, for each filter F  of BH , there is no Ψ-embedding from 
AH to BH/F . Then, for any formula A and any injection g : |A| → P, 
B |= χg

A(A) holds.
Proof: Recall that any Heyting algebra is an N-algebra. We first show 
the statement for finite Heyting algebras C and D with the second greatest 
elements.

To show the contraposition, assume D ̸|= χg
A(C) for some g : |C| → P

and a formula A. Then there is a valuation v such that v(θ(χg
A(C))) ̸≤D

v(g⋆C
∨ A), where θ(χg

A(C)) is the antecedent of χg
A(C). Consider an­

other Yankov formula χg
g⋆C(C) for a propositional variable g⋆C

. Since 
v(θ(χg

g⋆C(C))) = v(θ(χg
A(C))) and v(g⋆C

) ≤D v(g⋆C
∨A), v(θ(χg

g⋆C(C))) ≤D

v(g⋆C
) implies a contradiction, namely v(θ(χg

A(C))) ≤D v(g⋆C
∨A). There­

fore v(θ(χg
g⋆C

(C))) ̸≤D v(g⋆C
) and so D ̸|= χg

g⋆C
(C) holds.

Take the filter G of D generated by v(θ(χg
g⋆C

(C))). From the construc­
tion of G, we have the following:

v(g⋆C
) ̸∈ G; (9)

[v(gc⊗d)]G = [v(gc ⊗ gd)]G for any c, d ∈ |C| and ⊗ ∈ Ψ. (10)

Let v′ : C → D/G be the map defined by v′(c) := [v(gc)]G for any c ∈ |C|. 
We prove v′ is a Ψ-embedding.

We see that each operators in Ψ is preserved by v′. For ∧, we have the 
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following equation for each c, d ∈ |C|.

v′(c ∧C d) = [v(gc∧Cd)]G

= [v(gc ∧ gd)]G
= [v(gc) ∧D v(gd)]G

= [v(gc)]G ∧D/G [v(gb)]G

= v′(c) ∧D/G v
′(d).

The cases ∨ and → can be shown in the same manner.
We can see that v′ is an injection as follows.
Assume v′(c) = v′(d). Then [v(gc)]G = [v(gd)]G holds, and so for any 

c, d ∈ |C|,

v(gc) ↔D v(gd) = (v(gc) →D v(gd)) ∧D (v(gd) →D v(gc))

= v(gc → gd) ∧D v(gd → gc)

By [v(gc)]G = [v(gd)]G, we have v(gc → gd) ∧D v(gd → gc) ∈ G, and so 
v(gc→Cd), v(gd→Cc) ∈ G from (10).

Furthermore, the equation 1D ↔D v(g1C) = v(gc → gc) ↔D v(gc→Cc)
holds. Since we have v(gc → gc) ↔D v(gc→Cc) ∈ G, we obtain that
v(g1C) ∈ G.

If we assume c ̸= d, then c→C d ̸= 1C or d→C c ̸= 1C hold. Since C has 
the second greatest element ⋆C, we have c →C d ≤C ⋆C or d →C c ≤C ⋆C. 
We assume c →C d ≤C ⋆C. Then the equation v(gc→Cd → g⋆C

) ↔D

v(g(c→Cd)→C⋆C
) = (v(gc→Cd) →D v(g⋆C

)) ↔D v(g1C) holds.
Since we have v(gc→Cd → g⋆C

) ↔D v(g(c→Cd)→C⋆C
), v(g1C), v(gc→Cd) ∈

G, we obtain v(g⋆C
) ∈ G. But this contradicts (9). If d→C c ≤C ⋆C we can 

derive a contradiction in the same manner. Therefore we obtain c = d, and 
v′ is an embedding. This completes a proof of the statements for Heyting 
algebras C and D.

Next we show the statement for any finite N-algebra A and B with the 
second greatest elements. Assume that, for each filter F  of BH , there is no 
Ψ-embedding from AH  to BH/F . Then, from the above argument, BH |=
χg
⋆A(A) holds for any injection g : |A| → P. Since χg

⋆A(A) does not contain 
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the negation ¬, it implies B |= χg
⋆A(A). Then, for any valuation v, any 

formula A and any g : |A| → P, we have v(θ(χg
A(A))) = v(θ(χg

⋆A(A))) ≤B

v(g⋆A
) ≤B v(g⋆A

∨A), and so B |= χg
A(A). □

Definition 4.9.  For any natural number n, subsets of natural numbers 
an, rn and sn are defined as follows:

an := {i | i < n}, rn := an ∪ {n+ 1}, sn := rn ∪ {n+ 3}

Lemma 4.10.  For any Heyting algebras A, let A be the algebra obtained 
by adding a new minimum element 0A to A and changing the definition of 
negation ¬ into ¬Aa := a→A 0A. Then A is a Heyting algebra.

Proof: It is immediate that A is a lattice by the definition. For any 
a ∈ |A|, a →A 0A and 0A →A a exist as follows. If a = 0A, then both of 
them are equal to 1A. If a ̸= 0A, then c ̸= 0A implies 0A ≤A a ∧A c and so 
a ∧A c ̸≤ 0A. Therefore, a →A 0A = 0A. The equation 0A →A a = 1A is 
immediate from the definition of →. □

In order to distinct logics, we construct countably many algebras in the 
following.

For any natural number n, let us put |An| = {a0, . . . , an+8} ∪
{r0, . . . , rn+6} ∪ {s0, sn+4,N} and for any x, y ∈ |An|, x →An

y =
⋃︁
{z ∈

|An| | x ∩ z ⊆ y},¬An
x = x→An

a0.

The set An forms a Heyting algebra by taking algebraic operations ∨
and ∧ as set operations ∪ and ∩.

Lemma 4.11 (cf. Lemma 5.7 in [15]).  For any natural number n, An =
⟨|An|,N, a0,∩,∪,→An

,¬An
⟩ is a Heyting algebra.

Hence An is a Heyting algebra with the second greatest element an+8

for any natural number n by Lemma 4.11.
A0,A1 and A2 are represented with Hasse diagrams as in Figure 4.
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N

a8

a7 r6

r5 a6 s4

a5 r4

r3 a4

a3 r2

r1 a2 s0

a1 r0

a0

0A0

N

a9

r7 a8

s5 a7 r6

r5 a6

a5 r4

r3 a4

a3 r2

r1 a2 s0

a1 r0

a0

0A1

N

a10

a9 r8

s6r7 a8

a7 r6

r5 a6

a5 r4

r3 a4

a3 r2

r1 a2 s0

a1 r0

a0

0A2

Figure 4: Heyting algebras A0,A1 and A2

Consider an {→} embedding from An to Am. Since it preserves the 
order ≤An

, r1, a2, s0 must be mapped into themselves respectively, and 
rn+5, an+6, sn+4 must be mapped into rm+5, am+6, sm+4, via {→}-embed­
ding. This is the key point of the lemma below.
Lemma 4.12 (cf. [15]).  For any natural numbers n and m, the following 
statement holds: If n ̸= m, then An cannot be {→}-embedded into a quotient 
algebra Am/F  of Am for any filter F  of Am.
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4.2. Main Results

The main results of this paper are summarized as the following theorem.

Theorem 4.13.  There exist continua of logics in each line in the figure 
below.

IPC

AVQPC

MPC¬ECQPC

An ∩ ECQPC

An−PC

CoPC

NECQPC

NPC

(i)
(ii)

(iii)

(iv) (v)

(vi)

(vii)

(viii)

(ix)

Hereafter, when the number in the above figure is used as anything 
other than a subscript, it is used to indicate a proof of the existence of 
continua of logics between the two logics.
Lemma 4.14.  There is a continuum of logics between IPC and ECQPC. 
The same holds between MPC¬ and An ∩ ECQPC.
Proof: We prove this lemma as follows.

Step 1. We construct countably many models N1(An) of ECQPC based on 
An in Lemma 4.11.



306 Kaito Ichikura

Step 2. For each natural number n and each set I ⊂ N of natural numbers, 
we define Yankov formula An and logic L1(I).

Step 3. We show N1(Ak) |= Al if k ̸= l.

Step 4. We show An ∈ L1(I) iff n ∈ I by proving N1(An) ̸|= An.

Step 5. We show that there is continuum of logics between IPC and ECQPC.

Step 1. For any natural number n, the algebra

N1(An) = ⟨|N1(An)|, 1N1(An),∧N1(An),∨N1(An),→N1(An),¬N1(An)⟩

is defined as follows:

|N1(An)| := |An|,
1N1(An) := N,

∧N1(An) := ∧An ,

∨N1(An) := ∨An
,

→N1(An) :=→An
,

and

¬N1(An)a :=

{︄
an+8  if a = 0An ;

0An
 otherwise,

 for any a ∈ |N1(An)|.

We show that N1(An) validates the conditions (N), (ECQ) and (An ∩ ECQ).
For (N), let a, b ∈ |N1(An)|. If a ̸= 0An

 and b ̸= 0An
, then

(a↔N1(An) b) →N1(An)(¬N1(An)a↔N1(An) ¬N1(An)b)

= (a↔N1(An) b) →N1(An) (0An
↔N1(An) 0An

)

= (a↔N1(An) b) →N1(An) N

= N.
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Hence (N) holds for a ̸= 0An  and b ̸= 0An . If a = 0An  and b ̸= 0An , then 

(0An ↔N1(An) b) →N1(An) (¬N1(An)0An ↔N1(An) ¬N1(An)b)

= (0An
↔N1(An) b) →N1(An) (an+8 ↔N1(An) 0An

)

= 0An
→N1(An) 0An

= N.

The equality 0An
↔N1(An) b = 0An

 follows from
0An

↔N1(An) b = (0An
→N1(An) b)∧N1(An)(b→N1(An) 0An

) and b→N1(An)

0An
= 0An

. Hence (N) holds for a = 0An
 and b ̸= 0An

. The remaining case 
can be proven in the same manner. So (N) holds in N1(An).

For (ECQ), let a, b ∈ |N1(An)|. Then

(a ∧N1(An) ¬N1(An)a) →N1(An) b = 0An →N1(An) b

= N.

So N1(An) validates (ECQ).
It is immediate that (An ∩ ECQ) follows from (ECQ).

Step 2. Take a nonempty proper subset I of natural numbers and an 
injection g : |N1(An)| → P, and let An be χg

(g0An
→¬g0An

)→¬g0An

(N1(An)). 

Let L1(I) be the logic adding axioms An into ECQPC for n ∈ I. Note that 
L1(I) is a sN-logic.

Step 3. We show that N1(Ak) |= Al for natural numbers k, l with k ̸= l. 
Note that N1(Al)

H = Al. There is no {→}-embedding from Al to Ak/F
for any natural number k with k ̸= l and any filter F  of Ak by Lemma 4.12, 
and so there is no Ψ-embedding Al to Ak/F  for any natural number k and 
l with k ̸= l and any filter F  of Ak. Therefore for any natural number k
and l with k ̸= l, N1(Ak) |= Al holds from Lemma 4.8.

Step 4. We can also prove the following.

An ∈ L1(I) ⇔ n ∈ I.
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Since ⇐ is obvious, we show ⇒. We assume n ̸∈ I and show that An ̸∈
L1(I). Since N1(An) validates (N), (ECQ) and Am for each m ̸= n, it 
is enough to show N1(An) ̸|= An. Let g−1 be the inverse map of g, i.e., 
g−1 : {ga ∈ P | a ∈ |N1(An)|} → |N1(An)| such that g−1(g(a)) = a. 
Take a valuation v into |N1(An)| which is an extension of g−1. Then 
v(θ(χg

(g0An
→¬g0An

)→¬g0An

(N1(An)))) = N since v(ga⊗gb) = a⊗N1(An) b =

v(ga⊗N1(An)b
) for any a, b ∈ |N1(An)| and any ⊗ ∈ Ψ. On the other hand, 

v((g0An
→ ¬g0An

) → ¬g0An
) ̸= N and so v(((g0An

→ ¬g0An
) → ¬g0An

) ∨
g⋆A

) = ⋆A ̸= N. Therefore, N1(An) ̸|= χg
(g0An

→¬g0An
)→¬g0An

)(N
1(An)). 

Then 

v((g0An
→ ¬g0An

) → ¬g0An
)

= (v(g0An
) →N1(An) ¬N1(An)v(g0An

)) →N1(An) ¬N1(An)v(g0An
))

= (0An
→N1(An) an+8) →N1(An) an+8

= N →N1(An) an+8,

and so v((g0An
→ ¬g0An

) → ¬g0An
) ̸= N. Therefore N1(An) ̸|= An from 

the construction of An. Since L1(I) is the minimum logic containing each 
axioms of ECQPC and Am for m ∈ I, we have L1(I) ⊆ {A | N1(An) |= A}. 
Thus we obtain An ̸∈ L1(I). This is the end of Step 4.

Step 5. By the result of Step 4, it follows that L1(I) ̸= L1(J) for any 
nonempty proper subsets I and J of natural numbers with I ̸= J .

Since IPC ⊢ (p→ ¬p) → ¬p, IPC proves succedent of An for any natural 
number n, and so IPC ⊢ An.

Then, for any nonempty proper subset I of natural numbers, ECQPC ⊊
L1(I) ⊊ IPC hold. Since the choice of I is continuum, there is continuum 
of logics between IPC and ECQPC. We can show (v) by letting L5(I) be 
the logic adding axioms An into An ∩ ECQPC for n ∈ I in the same manner 
as (i). □

Lemma 4.15.  There is a continuum of logics between IPC and AVQPC. 
The same holds between ECQPC and An ∩ ECQPC.
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Proof: For any natural number n, the algebra

N2(An) = ⟨|N2(An)|, 1N2(An),∧N2(An),∨N2(An),→N2(An),¬N2(An)⟩

is defined in the same way as Lemma 4.14 except for negation. ¬N2(An) is 
defined as follows:

¬N2(An)a := N for any a ∈ |N2(An)|.

First, we see that N2(An) validates the conditions (N), (An), (AVQ) and 
(An ∩ ECQ).

For (N), take any a, b ∈ |N2(An)|. Then 

(a↔N2(An) b) →N2(An)(¬N2(An)a↔N2(An) ¬N2(An)b)

= (a↔N2(An) b) →N2(An) (N ↔N2(An) N)
= (a↔N2(An) b) →N2(An) N
= N.

So N2(An) validates (N).
For (An), let a ∈ |N2(An)|. Then

(a→N2(An) ¬N2(An)a) →N2(An) ¬N2(An)a = (a→N2(An) N) →N2(An) N

= N.

So N2(An) validates (An). The case (AVQ) can be shown in the same way.
It is immediate that (An ∩ ECQ) holds from (An).
For any natural number n, we define Bn := χg

(gN∧¬gN)→g0An

(N2(An)). 

Using N2(An), Bn and (ECQ) instead of N1(An), An and (An), respectively, 
we can show (ii) and (iv) in the same manner as (i). □

We can show the remining cases in the same way as Lemma 4.14.
Lemma 4.16.  There is a continuum of logics between AVQPC and MPC¬.
Proof: For any natural number n, the algebra

N3(An) = ⟨|N3(An)|, 1N3(An),∧N3(An),∨N3(An),→N3(An),¬N3(An)⟩
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is defined in the same way as Lemma 4.14 except for negation. ¬N3(An) is 
defined as follows:

¬N3(An)a := a→N3(An) a0 for any a ∈ |N3(An)|.

First, we see that N3(An) validates conditions (N) and (An).
For (N), take any a, b ∈ |N3(An)|. It is immediate that (N) holds in 

N3(An) in view of the following.
(a→N3(An) b) ∧N3(An) (b→N3(An) a0) ≤N3(An) a→N3(An) a0,
(b→N3(An) a) ∧N3(An) (a→N3(An) a0) ≤N3(An) b→N3(An) a0.
For (An), take any a ∈ |N3(An)|. Then 

(a→N3(An)¬N3(An)a) →N3(An) ¬N3(An)a

= (a→N3(An) (a→N3(An) a0)) →N3(An) (a→N3(An) a0)

= (a→N3(An) a0) →N3(An) (a→N3(An) a0)

= N.

Hence (An) hold in N3(An).
For any natural number n, we define

Dn := χg
¬¬(¬(gN→gN)→g0An

)(N
3(An)). Using N3(An), Dn and (AVQ) instead 

of N1(An), An and (An), respectively, we can show (iii) in the same way 
as (i). □

Lemma 4.17.  There is a continuum of logics between An ∩ ECQPC and 
An−PC.
Proof: For any natural number n, the algebra

N6(An) = ⟨|N6(An)|, 1N6(An),∧N6(An),∨N6(An),→N6(An),¬N6(An)⟩

is defined in the same way as Lemma 4.14 except for negation. ¬N4(An) is 
defined as follows:

¬N6(An)a := an+8 for any a ∈ |N6(An)|.

We can show N6(An) validates (N) and (An−) in the same way as (ii).
For any natural number n, we define
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Fn := χg
¬¬(g0An

→g0An
)∨(¬(gN→gN)→g0An

)(N
6(An)).

Using N6(An), Fn and (An ∩ ECQ) instead of N1(An), An and (An) re­
spectively, we can show (vi) in the same manner as (i). □

Lemma 4.18.  There is a continuum of logics between An−PC and CoPC.
Proof: For any natural number n, the algebra

N7(An) = ⟨|N7(An)|, 1N7(An),∧N7(An),∨N7(An),→N7(An),¬N7(An)⟩

is defined in the same way as Lemma 4.14 except for negation. ¬N7(An) is 
defined as follows:

¬N7(An)a :=

{︄
N  if a = 0An ;

a0  otherwise ,
 for any a ∈ |N7(An)|.

First, we see that N7(An) validates conditions (Co) and (N).
We see that (Co). Let a, b ∈ N7(An). If a ̸= 0An  and b ̸= 0An , then 

(a→N7(An) b) →n (¬N7(An)b→N7(An) ¬N7(An)a)

= (a→N7(An) b) →N7(An) (a0 →N7(An) a0)

= (a→N7(An) b) →N7(An) N
= N.

Hence (Co) holds for a ̸= 0An
 and b ̸= 0An

. If a ̸= 0An
 and b = 0An

, then 

(0An →N7(An) b) →N7(An)(¬N7(An)b→N7(An) ¬N7(An)0An)

= N →N7(An) (a0 →N7(An) N)
= N.

Hence (Co) holds for a ̸= 0An
 and b = 0An

. If a ̸= 0An
 and b ̸= 0An

, then 



312 Kaito Ichikura

(a→N7(An) 0An) →N7(An)(¬N7(An)0An →N7(An) ¬N7(An)a)

= (a→N7(An) 0An
) →N7(An) (N →N7(An) a0)

= 0An
→N7(An) a0

= N.

Hence (Co) holds for a ̸= 0An
 and b ̸= 0An

. The remaining case can be 
proven in the same manner. So (Co) holds in N7(An). The cases (N) can 
be shown in the same manner.

For any natural number n, we define
Gn := χg

(ga0
→¬ga0

)→(¬g0An
→¬ga0

)(N
7(An)). Using N7(An), Gn and (An−)

instead of N1(An), An and (An) respectively, we can show (vii) in the same 
manner as (i). □

Lemma 4.19.  There is a continuum of logics between CoPC and NECQPC.
Proof: For any natural number n, the algebra

N8(An) = ⟨|N8(An)|, 1N8(An),∧N8(An),∨N8(An),→N8(An),¬N8(An)⟩

is defined in the same way as Lemma 4.14 except for negation. ¬N8(An) is 
defined as follows:

¬N8(An)a :=

{︄
N  if a = an+8;

an+8  otherwise ,
 for any a ∈ |N8(An)|.

First, we see that N8(An) validates the conditions (N) and (NECQ). 
For (N), let a, b ∈ N8(An). If a ̸= an+8 and b ̸= an+8, then 

(a↔N8(An) b) →N8(An) (¬N8(An)a↔N8(An) ¬N8(An)b)

= (a↔N8(An) b) →N8(An) (an+8 ↔N8(An) an+8)

= (a↔N8(An) b) →N8(An) N
= N.

sHence (N) holds for a ̸= an+8 and b ̸= an+8. If a = an+8 and b ̸= an+8, 
then
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(an+8 ↔N8(An) b) →N8(An) (¬N8(An)an+8 ↔N8(An) ¬N8(An)b)

= (an+8 ↔N8(An) b) →N8(An) (N ↔N8(An) an+8)

= (an+8 ↔N8(An) b) →N8(An) an+8

= N.
The equality N ↔N8(An) an+8 = an+8 follows from N ↔N8(An) an+8 =

(N →N8(An) an+8) ∧N8(An) (an+8 →N8(An) N) and N →N8(An) an+8 =

an+8. Hence (N) holds for a = an+8 and b ̸= an+8. The remaining case 
can be proven in the same manner.

For (NECQ), let a, b ∈ |N8(An)|, then

(a ∧N8(An) ¬N8(An)a) →N8(An) ¬N8(An)b = an+8 →N8(An) ¬N8(An)b

= N.
Hence (NECQ) holds in N8(An).

For any natural number n, we define
Hn := χg

(ga0
→gan+8

)→(¬gan+8
→¬ga0

)(N
8(An)). Using N8(An), Hn and (Co)

instead of N1(An), An and (An) respectively, we can show (viii) in the 
same manner as (i). □

Lemma 4.20.  There is a continuum of logics between NECQPC and NPC.
Proof: For any natural number n, the algebra

N9(An) = ⟨|N9(An)|, 1N9(An),∧N9(An),∨N9(An),→N9(An),¬N9(An)⟩

is defined in the same way as Lemma 4.14 except for negation. ¬N9(An) is 
defined as follows:

¬N9(An)a :=

{︄
N  if a = N;
an+8  otherwise ,

 for any a ∈ |N9(An)|.

As in the case of (viii), we can show that N9(An) validates (N).
For any natural number n, we define Hn := χg

(gN∧¬gN)→¬gan+8
(N9(An)). 

Using N9(An), Hn and (NECQ) instead of N1(An), An and (An) respec­
tively, we can show (ix) in the same manner as (i). □
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Lemma 4.19 and Lemma 4.20 are already proved in [1, Proposition 3.5] 
using neighborhood semantics.

5. Concluding remarks

5.1. Summary of the main results

In [13], it was clear that SUBMIN is a subsystem of both co-minimal 
logic and minimal logic, but it was not clear if SUBMIN is the strongest 
logic among the systems that are contained in both co-minimal logic and 
minimal logic. We identified that SUBMIN is not the strongest logic, but 
An ∩ ECQPC is the strongest logic. Moreover, we presented new formal­
izations of co-minimal logic and SUBMIN that clarify their relationships 
with ECQ. Furthermore, we applied the method used in [15] and simplified 
the proofs of the results offered in [1] and obtained new results that are 
not included in [1]. Figure 5 summarizes the main results of this paper.
Note here that there exist continua of logics in each line in the figure above, 
as we proved in Theorem 4.13.

5.2. Future Directions

There is still much work to be done in this area of research. Some directions 
that seem to be worth exploring are described here.

ECQ and substructural logics For proof systems, this paper focused 
on Hilbert systems. But we can also define sequent calcului for these logics 
(cf. [8, 3, 11]). Then, given the deep connections between substructural 
logics and algebraic semantics, it will be interesting to explore the sub­
structural versions of LN, which is a sequent calculus version of NPC, and 
its extensions. Note that the existence of continua of logics between pairs 
of substructural logics is explored in [10]. Therefore, it would be interest­
ing to examine whether the method used in this paper can be applied to 
substructural versions of LN and related systems.
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IPC
(Intuitionistic logic)

AVQPC

MPC¬
(Minimal logic)

ECQPC
(Co-minimal logic)

An ∩ ECQPC

SUBMIN or An−PC

CoPC

NECQPC

NPC

Figure 5: Summary of the results presented in the paper

Another method We used algebraic semantics for showing the existence 
of continua of logics between pairs of logics related to intuitionistic logic 
and minimal logic. It is known that there is a duality (“Priestley duality”) 
between the class of Priestley spaces and the class of bounded distributive 
lattices. Since N-algebras are distributive lattices, we might be able to 
use topological semantics to obtain yet another proof for the existence of 
continua of logics.2

2This idea was pointed out by Prof. Hanamantagouda P. Sankappanavar after the 
presentation based on an earlier draft of this paper at Non-Classical Logics: Theory 
and Applications 2024. I would like to thank Prof. Sankappanavar for this interesting 
comment.
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No gap between logics This paper focused on the existence of continua 
of logics between logics related to intuitionistic logic and minimal logic. 
However, there are pairs of intermediate logics where no logic exists between 
the pair, as shown in [5]. More specifically, if we consider the family of 
extensions of intuitionistic logic, known as the n-valued Gödel logic Gn, 
then for n ≥ 3, no logic exists between Gn and Gn+1. In view of this result, 
it will be interesting to see if extensions of the logics we considered in this 
paper will have similar results.

First-order logics We discussed only propositional logics in this paper, 
but of course it will be interesting to consider first-order logics. If we add 
universal and existential quantifiers to these logics with the usual axioms 
and rules, without the additional axioms such as the constant domain ax­
iom, then we can show immediately the existence of continua of logics 
between first-order expansions of logics discussed in this paper by consid­
ering propositional logics to be predicate logics with only zero argument 
predicate symbols. However, other cases remain to be explored in further 
detail.

Appendix: Kripke semantics for logics above An−PC

Definition 6.1. We define the following Hilbert systems:
• SUBMIN is the Hilbert system obtained by adding axioms ⊥ → p, 
p→ ⊤ and ¬p→ ¬¬⊤ to CoPC in L¬,⊤,⊥.

• SUBMIN−⊤,⊥ as the Hilbert system adding axioms ¬p→ ¬¬(q →
q) to CoPC in L¬.

• MIN is the Hilbert system obtained by adding axioms ⊥ → p, p→ ⊤, 
¬p→ ¬¬⊤ and ¬¬⊤ to CoPC in L¬,⊤,⊥.

• MIN−⊤,⊥ as the Hilbert system adding axioms ¬p → ¬¬(q → q)
and ¬¬(p→ p) to CoPC in L¬.

Kripke semantics for the logic SUBMIN ((F,G)-semantics for short) 
was introduced in [13].
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Definition 6.2 (cf. [13]).  An (F,G)-frame F for An−PC is a quadruple 
(W,≤, F,G) satisfying the following:

• (W,≤) is a quasi-order, i.e., ≤ is a reflexive and transitive relation on 
W  (we call an element of W  a world);

• F,G are upward closed subsets of W  such that F  is a subset of G.

An (F,G)-model M is a pair (F ,V) satisfying the following:
• F is an (F,G)-frame;
• V is a mapping assigning an upward closed set of worlds to each 

propositional variable.

A valuation of formulas in L¬,⊤,⊥ is inductively defined as follows:
• M, w ⊩(F,G) ⊤ for all w ∈W ;
• M, w ̸⊩(F,G) ⊥ for all w ∈W ;
• M, w ⊩(F,G) p⇐⇒ w ∈ V(p);
• M, w ⊩(F,G) A ∧B ⇐⇒ M, w ⊩(F,G) A and M, w ⊩(F,G) B;
• M, w ⊩(F,G) A ∨B ⇐⇒ M, w ⊩(F,G) A or M, w ⊩(F,G) B;
• M, w ⊩(F,G) A→ B ⇐⇒ ∀v ≥ w[M, v ⊩(F,G) A⇒ M, v ⊩(F,G) B];
• M, w ⊩(F,G) ¬A⇐⇒ ∀v ≥ w[M, v ⊩(F,G) A⇒ v ∈ F ] and w ∈ G.

F |=(F,G) A denotes that (F ,V), w ⊩(F,G) A for all V and w ∈ W . 
M |=(F,G) A denotes that M, w ⊩(F,G) A for all w ∈ W . For any set 
of formulas Γ, Γ |=(F,G) A denotes M, w ⊩(F,G) B for any B ∈ Γ implies 
M, w ⊩(F,G) A, for any M and w ∈ W , where W  is the set of worlds of 
M.

By imposing conditions on (F,G)-frame, the soundness and complete­
ness theorems holds with some already defined logics.
Fact 6.3 (cf. [13]).

1. Γ ⊢SUBMIN A⇐⇒ Γ |=(F,G) A.
2. Γ ⊢MIN A ⇐⇒ Γ |=(F,G) A for the class of (F,G)-semantics with 
G =W .

3. Γ ⊢CO-MIN A⇐⇒ Γ |=(F,G) A for the class of (F,G)-semantics with 
F = ∅.

4. Γ ⊢IPC A ⇐⇒ Γ |=(F,G) A for the class of (F,G)-semantics with 
G =W  and F = ∅, where IPC is intuitionistic logic.
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By excluding the conditions on ⊤ and ⊥, (F,G)-semantics for formulas 
in L¬ can be given. Then we can show the soundness and completeness in 
the same way.
Fact 6.4.

1. Γ ⊢SUBMIN−⊤,⊥ A⇐⇒ Γ |=(F,G) A.
2. Γ ⊢MIN−⊤,⊥ A⇐⇒ Γ |=(F,G) A for the class of (F,G)-semantics with 
G =W .

3. Γ ⊢CO-MIN−⊤,⊥ A ⇐⇒ Γ |=(F,G) A for the class of (F,G)-semantics 
with F = ∅.

4. Γ ⊢IPC−⊤,⊥ A⇐⇒ Γ |=(F,G) A for the class of (F,G)-semantics with 
G =W  and F = ∅.

Hence, for ⊤ and ⊥ free formula A, CO-MIN ⊢ A ⇔ CO-MIN−⊤,⊥ ⊢
A is immediate from the above facts. The same argument holds for the re­
maining cases. Furthermore, SUBMIN−⊤,⊥ is equivalent to An−PC, and 
MIN−⊤,⊥ is equivalent to MPC¬ (cf. [8]).

The soundness and completeness theorems can be shown for
An ∩ ECQPC and AVQPC by adding similar conditions for F  and G.
Definition 6.5 (An ∩ ECQ-frame and AVQ-frame).  For an (F,G)-frame 
without ⊤ and ⊥, F ′ denotes := {w ∈W | ∀v ≥ w(v ̸∈ F )}. We define the 
following conditions:

• An ∩ ECQ-frames are (F,G)-frames with F ′ ∪G =W .
• AVQ-frames are (F,G)-frames such that ∀u ≥ w[u ̸∈ F ′] implies w ∈
F  for all w ∈W  and G =W  hold.

We write ⊩An∩ECQ, |=An∩ECQ,⊩AVQ and |=AVQ for validity with respect 
to the classes of An ∩ ECQ-frames and AVQ-frames.
Definition 6.6 (cf. [14]). A sub-normal Kripke frame is a tuple
(W,≤, F ) satisfying the following:

• (W,≤) is a quasi-order, i.e., ≤ is a reflexive and transitive relation on 
W  (we call an element of W  a world);

• F  is an upward closed subset of W  such that for every w ̸∈ F , there 
is v ∈W  such that w ≤ v and for every u ∈W , if v ≤ u, then u ̸∈ F .
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For any AVQ-frame (W,≤, F,G), G is uniquely determined only by W
and F , and so the AVQ-frame can be rewritten as (W,≤, F ). In [14], sub-
normal Kripke frame (W,≤, F ) was introduced. Because the condition for 
F  in AVQ-frane is the contraposition of the condition for F  in sub-normal 
Kripke frame, AVQ-frame is sub-normal frame, and vice versa. Because our 
definition of AVQ-frame is more convenient for the proof for soundness, we 
use the definition of AVQ-frame.

We show the soundness and completeness of An ∩ ECQPC for the class 
of An ∩ ECQPC-frames.
Theorem 6.7 (Soundness of An ∩ ECQPC).  If Γ ⊢An∩ECQPC A, then
Γ |=An∩ECQ A.
Proof: We show this statement by induction on the length of the deduc­
tion. Here we show only the cases for the negative axiom (An ∩ ECQ), since 
the remaining case can be proven in the same manner as [8]. Let (F ,V)
and w ∈W  be arbitrary.

Suppose (F ,V), w ̸⊩An∩ECQ ¬¬(p→ p). First, we observe that
(F ,V), v ⊩An∩ECQ ¬¬(p → p)  iff v ∈ G for any v ∈ W . We show 
(F ,V), u ̸⊩An∩ECQ ¬(q → q) for every u ≥ w , which implies w ⊩An∩ECQ

¬(q → q) → r. Since w ̸∈ G, w ∈ F ′ and so u ̸∈ F  for every u ≥ w. By the 
definition of the valuation, (F ,V), u ̸⊩An∩ECQ ¬(q → q) for every u ≥ w. □

In what follows, we call a set of formulas ∆ saturated if the following 
conditions hold,

• There is a formula A such that A ̸∈ ∆ (nontriviality);

• ∆ ⊢An∩ECQPC A⇒ A ∈ ∆;

• ∆ ⊢An∩ECQPC A ∨B ⇒ ∆ ⊢An∩ECQPC A or ∆ ⊢An∩ECQPC B.
Theorem 6.8 (Completeness of An ∩ ECQPC).  If Γ |=An∩ECQ A, then
Γ ⊢An∩ECQPC A.
Proof: Given Γ ̸⊢An∩ECQ A, we construct a saturated set Γ0 ⊃ Γ such 
that Γ0 ̸⊢An∩ECQ A. Then the canonical model M = (W,≤, F,G,V) with 
respect to Γ0 is defined standardly. For F  and G, we define F := {∆ |
¬B ∈ ∆ for all B}and G := {∆ | ¬B ∈ ∆ for some B}. It is sufficient 
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to show F ′ ∪ G = W , since the remaining case can be proven in the
same way as [8].

Suppose ∆ ̸∈ G, and so ¬B ̸∈ ∆ for any B. Hence ¬¬(p → p) ̸∈ ∆. 
By An ∩ ECQPC ⊢ ¬¬(p → p) ∨ (¬(q → q) → C) for any formula C, 
¬(q → q) → C ∈ ∆. By nontriviality of saturated set, ¬(q → q) ̸∈ ∆′ for 
any ∆′ ≥ ∆, and so we obtain ∆′ ̸∈ F  for any ∆′ ≥ ∆, and so ∆ ∈ F ′. □

We next show the soundness and completeness of AVQPC for the class 
of AVQPC-frames.
Theorem 6.9 (Soundness of AVQPC).  If Γ ⊢AVQPC A, then Γ |=AVQPC A.
Proof: We show this statement by induction on the length of the deduc­
tion. Here we show only the cases for the negative axiom (AVQPC), since 
the remaining case can be proven in the same manner as [8]. Let (F ,V)
and w ∈W  be arbitrary.

Suppose (F ,V), u ⊩AVQ ¬(¬(p → p) → q) for u ≥ w. We want to show 
u ∈ F . By assumption, (F ,V), v ⊩AVQ ¬(p → p) → q implies v ∈ F  for 
any v ≥ u. If (F ,V), v ⊩AVQ ¬(p → p) → q, then v ∈ F . Otherwise, 
(F ,V), v′ ⊩AVQ ¬(p → p) and (F ,V), v′ ̸⊩AVQ q for some v′ ≥ v ≥ u. By 
the definition of AVQ-frame, u ∈ F . □

For the completeness, we need the following lemma.
Lemma 6.10. MPC¬ ⊢ ¬A↔ (A→ ¬(p→ p)).
Proof: MPC¬ ⊢ ¬A→ (A→ ¬(p→ p)) is immediate from (NECQ).
For the other direction, by (NECQ), MPC¬ ⊢ ((A → ¬(p → p)) ∧ A) →
(A → ¬A), and so MPC¬ ⊢ (A → ¬(p → p)) → (A → ¬A). By (An), 
MPC¬ ⊢ (A→ ¬A) → ¬A, and so MPC¬ ⊢ (A→ ¬(p→ p)) → ¬A. □

Theorem 6.11 (Completeness of AVQPC).  If Γ |=AVQA, then Γ⊢AVQPCA.
Proof: Given Γ ̸⊢AVQ A, we construct a saturated set Γ0 ⊃ Γ such that 
Γ0 ̸⊢AVQ A. Then the canonical model M = (W,≤, F,G,V) with respect 
to Γ0 is defined standardly. For F  and G, we define F := {∆ | ¬B ∈
∆ for all B} and G := {∆ | ¬B ∈ ∆ for some B}. It is sufficient to show 
∀∆′ ≥ ∆[∆′ ̸∈ F ′] implies ∆ ∈ F  for all ∆ ∈ W , since the remaining case 
can be proven in the same manner as [8], and G = W  is obvious: Take 
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any ∆ ∈ W  and suppose ∆′ ̸∈ F ′ for any ∆′ ≥ ∆ · · · (⋆). We want to 
show ∆ ∈ F . Suppose ∆ ̸∈ F , and so ¬B ̸∈ ∆ for some B. By (Co), 
AVQPC ⊢ (B → (p → p)) → (¬(p → p) → ¬B). Hence ¬(p → p) ̸∈ ∆. 
Let C0, C1, C2 . . . be an enumeration of all formulas. By (AVQ) and the 
previous lemma, AVQPC ⊢ ((¬(p → p) → C0) → ¬(p → p)) → ¬(p → p), 
and so (¬(p → p) → C0) → ¬(p → p) ̸∈ ∆. Hence, there is a saturated 
∆0 ⊇ ∆ such that ¬(p→ p) → C0 ∈ ∆0 and ¬(p→ p) ̸∈ ∆0. By repeating 
this operation, we can take a sequence of saturated set ∆0 ⊆ ∆1 ⊆ ∆2 ⊆
. . . and a saturated set 

⋃︁
i∈ω ∆i. By the nontriviality of saturated set, 

¬(p → p) ̸∈ ∆′ for any ∆′ ≥
⋃︁

i∈ω ∆i, and so ∆′ ̸∈ F  and ∪i∈ω∆
i ∈ F ′. 

But this contradicts (⋆), and so ∆ ∈ F . □
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