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Hamzeh Mohammadi

LINEAR ABELIAN MODAL LOGIC

Abstract

A many-valued modal logic, called linear abelian modal logic LK(A) is intro-

duced as an extension of the abelian modal logic K(A). Abelian modal logic

K(A) is the minimal modal extension of the logic of lattice-ordered abelian

groups. The logic LK(A) is axiomatized by extending K(A) with the modal

axiom schemas □(φ ∨ ψ) → (□φ ∨□ψ) and (□φ ∧□ψ) → □(φ ∧ ψ). Complete-

ness theorem with respect to algebraic semantics and a hypersequent calculus

admitting cut-elimination are established. Finally, the correspondence between

hypersequent calculi and axiomatization is investigated.

Keywords: many-valued logic, modal logic, abelian logic, hypersequent calculus,

cut-elimination.

2020 Mathematical Subject Classification: 03B45, 03B50, 03F03, 03F05.

1. Introduction

Many-valued modal logics combine the Kripke frame semantics of classical
modal logic with a many-valued semantics at each world. As in the clas-
sical setting, they provide a compromise between the good computational
properties (decidability and low complexity) of propositional logics and
the expressivity of first-order logics. Such logics have been used to model
modal notions such as fuzzy similarity measures [14], fuzzy modal logic for
belief functions (see, e.g., [13, 11]), probabilistic logics (see, e.g., [12, 21]),
many-valued tense logics (see, e.g., [9, 16]),  Lukasiewicz µ-calculus [22],
continuous propositional modal logic [3], and serve as a basis for defining
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2 Hamzeh Mohammadi

fuzzy description logics (see, e.g., [2, 15, 24]), dealing with fuzzy concepts
and ontologies.

Several many-valued modal logics with propositional connectives inter-
preted in the ordered additive group of real numbers have been studied.
These logics make use of basic operations on the real numbers and have
been studied in a wide range of different contexts.

Recently, monadic logic of ordered abelian groups [19] and abelian
modal logic K(A) [10] are introduced by G. Metcalfe and co-authors.
Monadic logic of ordered abelian groups serves as a modal counterpart
of the one-variable fragment of a (monadic) first-order real-valued logic.
Propositional connectives are interpreted as the usual lattice and group
operations over the real numbers in abelian modal logic K(A).

Abelian modal logic K(A) is the minimal modal extension of the abelian
logic A. Abelian logic A is the logic of lattice-ordered abelian groups,
introduced independently by Meyer and Slaney [20] as a relevance logic,
and Casari [4] as a comparative logic. In both settings, A was defined via
axiom systems that are complete with respect to validity in the variety of
lattice-ordered abelian groups.

As mentioned in [19], there are several advantages to focusing on modal
extensions of Abelian logic, including that the language is rich enough to
interpret other logics (e.g., modal extensions of Lukasiewicz logic), the
semantics are based directly on structures studied in algebra and computer
science, and the logics are naturally separated into the group and lattice
fragments.

In [17], two embeddings of  Lukasiewicz logic into Meyer and Slaney’s
Abelian logic and analytic proof systems for abelian logic are presented. In
[10], a tableau calculus for the full logic K(A) and a sequent calculus for the
modal-multiplicative fragment of K(A) as first steps towards addressing
the corresponding (much more challenging) problems for the full logic, and
complexity result are obtained.

The first main contribution of this work is to provide an axiomatization
and algebraic semantics for the full logic K(A), which is addressed as an
open question in the concluding remarks of [10]. The second aim is to
develop a hypersequent calculus for the full logic K(A).

A real-valued modal logic, called linear abelian modal logic LK(A),
as an extension of the minimal normal modal logic K(A) is introduced.
An axiom system and also algebraic semantics for LK(A) are presented.
Indeed, LK(A) is an extension of K(A) with the modal axiom schemas:
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□(φ ∨ ψ) → (□φ ∨□ψ) and (□φ ∧□ψ) → □(φ ∧ ψ). The converse of the
these axioms, i.e., (□φ ∨ □ψ) → □(φ ∨ ψ) and (□φ ∧ □ψ) → □(φ ∧ ψ)
is derivable in LK(A). Thus, the modal operator □ distributes over the
both operators ∨ and ∧ with an equivalence. It is well known that usually,
necessity doesn’t distribute over disjunction with an equivalence in the
modal logic. So, it may be interesting to study logics like LK(A) in which
necessity distributes over disjunction with an equivalence.

Moreover, completeness of the axiom system with respect to both corre-
sponding appropriate algebras and linearly ordered algebras with a lattice-
ordered abelian groups reduct, using methods of abstract algebraic logic
is investigated. A hypersequent calculus called HLK(A) for LK(A), ex-
tending the sequent calculus for the modal-multiplicative fragment of K(A)
(introduced in [10]) is presented. Finally, the cut-elimination theorem and
the correspondence between the hypersequent calculus and the axiomati-
zation are established.

The paper is structured as follows. In the next section, syntax and se-
mantics of Linear Abelian Modal Logic are introduced. Then, in Section 3
the completeness theorem with respect to both appropriate algebras and
linearly ordered algebras is proved. The cut-elimination theorem as well
as the correspondence between the hypersequent calculus and the axiom-
atization are investigated in Section 4. Finally, Section 5 concludes the
paper.

2. Linear abelian modal logic

In this section, we introduce a many-valued modal logic, namely linear
abelian modal logic LK(A) as an extension of the minimal normal modal
logic K(A) extending Abelian logic A, the logic of lattice-ordered abelian
groups. We provide an axiom system and also algebraic and Kripke seman-
tics for LK(A). Finally, we establish a connection between algebraic and
Kripke semantics.

2.1. Axiomatizations

The language L□
A of linear abelian modal logic LK(A) is consisting of the

binary connective ∧,∨,→ and unary connective □. The formula of LK(A)
is defined inductively by
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φ := p |φ ∧ ψ |φ ∨ ψ |φ→ ψ |□φ,

where p is a propositional variable. To define further connectives, let

0̄ := p→ p, ¬φ := φ→ 0̄, φ+ ψ := ¬φ→ ψ, ♢φ := ¬□¬φ,

and φ↔ ψ := (φ→ ψ)∧ (ψ → φ). We also define 0φ := 0̄ and (n+ 1)φ :=
φ+(nφ) for each n ∈ N. Let us also denote by Fm the set of formulas of L□

A

over a countably infinite set of variables. An axiomatization of the minimal
normal modal logic K(A) is presented in Table 1. An axiom system of

Table 1. An Axiom System for Abelian Modal Logic K(A)

(B) (φ→ ψ) → ((ψ → χ) → (φ→ χ))
(I) φ→ φ

(C) (φ→ (ψ → χ)) → (ψ → (φ→ χ))
(A) ((φ→ ψ) → ψ) → φ

(+1) φ→ (ψ → φ+ ψ)
(+2) (φ→ (ψ → χ)) → ((φ+ ψ) → χ)
(0̄1) 0̄
(0̄2) φ→ (0̄ → φ)
(∧1) (φ ∧ ψ) → φ
(∧2) (φ ∧ ψ) → ψ
(∧3) ((φ→ ψ) ∧ (φ→ χ)) → (φ→ (ψ ∧ χ))
(∨1) φ→ (φ ∨ ψ)
(∨2) ψ → (φ ∨ ψ)
(∨3) ((φ→ χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ)
(K) □(φ→ ψ) → (□φ→ □ψ)

(Dn) □(nφ) → n□φ (n ≥ 2)
φ φ→ ψ

(mp)
ψ

φ
(nec)

□φ
φ ψ

(adj)
φ ∧ ψ

linear abelian modal logic LK(A) is defined over L□
A by extending K(A)

with the following modal axiom schemas:

(∨□) □(φ ∨ ψ) → (□φ ∨□ψ),

(∧□) (□φ ∧□ψ) → □(φ ∧ ψ).
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For a formula φ ∈ Fm, we write ⊢LK(A) φ if there exists a LK(A)-

derivation of φ, defined as usual as a finite sequence of L□
A-formulas that

ends with φ and is constructed inductively using the axioms and rules of
LK(A).

Proposition 2.1. For any φ,ψ ∈ Fm,

(i) ⊢LK(A) (□φ ∨□ψ) → □(φ ∨ ψ),

(ii) ⊢LK(A) □(φ ∧ ψ) → (□φ ∧□ψ),

(iii) ⊢LK(A) n□φ→ □(nφ) (n ≥ 2).

Proof: Derivation for (i) is obtained, using the axiom schemas (∨1), (K),
and (∨3), and also rules (nec), (mp) and (adj) as follows:

1. ⊢LK(A) φ→ (φ ∨ ψ) (∨1)

2. ⊢LK(A) □(φ→ (φ ∨ ψ)) (nec)

3. ⊢LK(A) □(φ→ (φ ∨ ψ)) → (□φ→ □(φ ∨ ψ)) (K)

4. ⊢LK(A) □φ→ □(φ ∨ ψ) (2, 3 and (mp))

5. ⊢LK(A) □ψ → □(φ ∨ ψ) (similarly)

6. ⊢LK(A) (□φ→ □(φ ∨ ψ)) ∧ (□ψ → □(φ ∨ ψ)) (4, 5 and (adj))

7. ⊢LK(A) (□φ → □(φ ∨ ψ)) ∧ (□ψ → □(φ ∨ ψ)) → ((□φ ∨ □ψ) →
(□(φ ∨ ψ))) (∨3)

8. ⊢LK(A) (□φ ∨□ψ) → (□(φ ∨ ψ)) (6, 7 and (mp)

Derivation for (ii) is obtained, similar to the derivation of (i), using the
axiom schemas (∧1), (K) and (∧3), and also rules (nec), (mp) and (adj),
and is omitted here. For derivation of (iii), observe that n□φ → □(nφ)
is derivable in LK(A) for n ≥ 2 using (nec) and (mp) together with the
axioms of LK(A). For instance, (□φ + □φ) → □(φ + φ) is derivable as
follows:

1. ⊢LK(A) φ→ (φ→ (φ+ φ)) (+1)

2. ⊢LK(A) □(φ→ (φ→ (φ+ φ))) (nec)

3. ⊢LK(A) □(φ→ (φ→ (φ+ φ))) → (□φ→ □(φ→ (φ+ φ))) (K)
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4. ⊢LK(A) □φ→ □(φ→ (φ+ φ)) (2, 3 and (mp))

5. ⊢LK(A) □(φ→ (φ+ φ)) → (□φ→ □(φ+ φ)) (K)

6. ⊢LK(A) □φ→ (□φ→ □(φ+ φ)) ((B), 4, 5 and (mp))

7. ⊢LK(A) (□φ→ (□φ→ □(φ+φ))) → (□φ+□φ→ □(φ+φ)) (+2)

8. ⊢LK(A) □φ+ □φ→ □(φ+ φ) (6, 7 and (mp))

2.2. Semantics

In this subsection, algebraic semantics for LK(A) are presented. Appro-
priate class of algebras for LK(A) is defined over lattice-ordered abelian
groups.

Definition 2.2. A lattice-ordered abelian group (abelian ℓ-group for short)
is an algebraic structure (A,∧,∨,+,¬, 0̄) such that (A,+,¬, 0̄) is an abelian
group, (A,∧,∨) is a lattice, and a+(b∨c) = (a+b)∨(a+c) for all a, b, c ∈ A.
In addition, we define a→ b = ¬a+ b, and a ≤ b iff a ∨ b = b.

Well-known examples of abelian ℓ-groups are

the integers Z = (Z,min,max,+,−, 0),

the rationals Q = (Q,min,max,+,−, 0),

and the reals R = (R,min,max,+,−, 0).

In fact, any of them generates the variety of Abelian ℓ-groups (see [18] for
more details).

Below we introduce algebras for the logic defined in the previous section,
the idea being to consider particular classes of residuated lattices where
the modal operator is interpreted by a special unary operator I on the
corresponding algebras.

Definition 2.3 (LK(A)-algebra). An LK(A)-algebra is an algebra A =
(A,∧,∨,+,¬, 0̄, I), where the reduct (A,∧,∨,+,¬, 0̄) is an abelian ℓ-group
and I is an unary operation satisfying:

1. I(x→ y) ≤ I(x) → I(y),

2. I(x ∨ y) = I(x) ∨ I(y),

3. I(x ∧ y) = I(x) ∧ I(y),
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4. I(x+ x) = I(x) + I(x),

5. I(0̄) = 0̄.

An A-valuation is a function V : Fm → A satisfying V (φ⋆ψ) = V (φ) ⋆
V (ψ) for ⋆ ∈ {∧,∨,→,+}, and V (□φ) = I(V (φ)). Formula φ is A-valid if
V (φ) ≥ 0̄ for each A-valuation V . We write |=LK(A) φ iff φ is valid in all
LK(A)-algebras.

Example 2.4. Consider the real number structure R = (R,min,max,+,−,
0, I), where I is defined as follows:

I : R −→ R
I(x) = min{x, 0},

One can easily prove that this structure is an LK(A)-algebra. Note that
min{x + y, 0} ≠ min{x, 0} + min{y, 0} (consider, for example x = 1 and
y = −1), i.e., I(x+ y) ̸= I(x) + I(y). While, min{x+ x, 0} = min{x, 0} +
min{x, 0}, i.e., I(x+ x) = I(x) + I(x).

3. Completeness

In this section, we will establish the completeness theorem with respect to
the corresponding algebraic semantics proceeding in the standard way (see
e.g [18, 5, 8]). Given T ⊆ Fm, the Lindenbaum algebra is defined in the
usual way as AT = (AT ,∧T ,∨T ,+T ,¬T , 0̄T , IT ) where AT = {[φ]T : φ ∈
Fm}, [φ]T = {ψ ∈ Fm : T ⊢LK(A) φ ↔ ψ}, [φ]T ⋆T [ψ]T = [φ ⋆ ψ]T for
⋆ ∈ {+,∨,∧}, ¬T [φ] = [¬φ]T , 0̄T = [0̄]T , and IT [φ]T = [□φ]T . The next
Lemma follows from various provabilities in LK(A) and the axioms.

Lemma 3.1. AT is an LK(A)-algebra.

To show that AT -validity corresponds to LK(A)-derivability from T ,
we make use of a specially defined valuation for this algebra that maps each
formula to its corresponding equivalence class.

Lemma 3.2. For any T ⊆ Fm and φ ∈ Fm:

T ⊢LK(A) φ iff 0̄ ≤ VT (φ),

where VT is the MT -valuation defined by VT (p) = [p]T for each proposi-
tional variable p.
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Proof: We first prove that VT (φ) = [φ]T for all formulas φ, by induction
on the complexity of φ. The case where φ is a variable follows by definition.
For the other cases, just note that for any connective ⋆ ∈ {+,∨,∧} (using
the induction hypothesis):

VT (φ ⋆ ψ) = VT (φ) ⋆ VT (ψ)

= [φ]T ⋆ [ψ]T

= [φ ⋆ ψ]T

For unary connective □, we have: VT (□φ) = IT (VT (φ)) = IT ([φ]T ) =
[□φ]T . The result then follows because [0̄]T ≤ [φ]T iff T ⊢LK(A) 0̄ → φ iff
T ⊢LK(A) φ.

Theorem 3.3 (Completeness). T |=LK(A) φ iff T ⊢LK(A) φ.

Proof: Soundness proceeds as usual by an induction on the height of
a derivation of φ in LK(A), showing that each axiom is valid and each
rule sound in all LK(A)-algebras. For the reverse direction, assume that
T ⊬LK(A) φ. By the previous lemma, VT (ψ) ≥ 0̄ for each ψ ∈ T where
VT (φ) ≱ 0̄. So T ⊭ φ.

We now turn our attention, following [6, 7, 8], next to completeness with
respect to linearly ordered algebras. First, let us say that a congruence filter
of an LK(A)-algebra A is a set F = {x ∈ A : ∃y ≤ x (yθ0̄)}, for some
congruence θ on A. The next Lemma follows from the fact that the reduct
of an LK(A)-algebra is an abelian ℓ-group.

Lemma 3.4. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a, b, c, d
∈ A. If a ≤ b and c ≤ d, then a+ c ≤ b+ d.

Corollary 3.5. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and
a, b ∈ A. If a, b ≤ 0̄, then (a+ b) ≤ (a ∨ b).

Proof: Let a, b ≤ 0̄, then a∨b ≤ 0̄ and so, by Lemma 3.4, (a∨b)+(a∨b) ≤
a ∨ b since (a ∨ b) ≤ (a ∨ b). Now, a ≤ a ∨ b and b ≤ a ∨ b follows that
a+ b ≤ (a ∨ b) + (a ∨ b) ≤ a ∨ b.

Lemma 3.6. F is a congruence filter of an LK(A)-algebra A iff (i) 0̄ ∈ F
(ii) if a ∈ F and a→ b ∈ F , then b ∈ F (iii) if a ∈ F then I(a) ∈ F .

Proof: That a congruence filter must satisfy (i), is almost immediate.
We check (ii) and (iii). If a ∈ F and a → b ∈ F , then there are u, v ∈ A
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such that u ≤ a, v ≤ a → b and uθa and vθ(a → b). So, by Lemma 3.4,
u + v ≤ a + (a → b) i.e., u + v ≤ a + (¬a + b). Therefore, by equations
0̄ + a = a and ¬a + a = 0̄ of the definition of abelian ℓ-group and the
compatibility of congruence with (+) , we have (u+ v) ≤ b and (u+ v)θb.
Thus, b ∈ F . If a ∈ F , then there is u ∈ A such that u ≤ a and uθa. It
follows that I(u) ≤ I(a) and I(u)θI(a), since u ≤ a i.e., u ∨ a = a follows
that I(u ∨ a) = I(a) so I(u) ∨ I(a) = I(a) i.e., I(u) ≤ I(a), and hence
I(a) ∈ F . Conversely, let F be a subset of A that satisfies the conditions,
and let θ be defined by aθb iff a → b ∈ F and b → a ∈ F . One can easily
show that θ is a equivalence relation. Thus, we may define equivalence
classes [a]F = {b | aθb}. We prove that θ is compatible with the operations
of LK(A)-algebras.

• θ is compatible with (+): If aθb and cθd, then a→ b, b→ a ∈ F and
c→ d, d→ c ∈ F , therefore (a→ b)+(c→ d), (b→ a)+(d→ c) ∈ F ,
as F is closed under (+). It follows that (¬a + b) + (¬c + d), (¬b +
a) + (¬d + c) ∈ F , and so ¬(a + c) + (b + d),¬(b+ d) + (a + c) ∈ F
i.e., (a+ c) → (b+ d), (b+ d) → (a+ c) ∈ F . Thus, (a+ c)θ(b+ d).

• θ is compatible with (∨): Since θ is an equivalence relation, we de-
fine equivalence classes [a]θ = {b | aθb}. Let A/θF be the set of all
equivalence classes. One verifies that
(A/θF ,∩,∪,+F ,¬F , 0F , IF ), where ∩,∪,+F ,¬F , 0F , IF are defined
component-wise from the ones of A, is an LK(A)-algebra. If aθb
and cθd, then [a]θ = [b]θ and [c]θ = [d]θ. It follows that [a]θ ∪ [c]θ =
[b]θ ∪ [d]θ, and so [a ∨ c]θ = [b ∨ d]θ. Therefore, (a ∨ c)θ(b ∨ d). The
compatibility of θ with (∧) is treated similarly.

• θ is compatible with (¬): If aθb , then a → b, b → a ∈ F , i.e.,
¬a + b,¬b + a ∈ F . Therefore, ¬b + ¬(¬a),¬a + ¬(¬b) ∈ F , i.e.,
¬a→ ¬b,¬b→ ¬a ∈ F . Thus ¬aθ¬b.

• θ is compatible with (I): If aθb , then a → b, b → a ∈ F . Therefore
I(a → b), I(b → a) ∈ F , as F is closed under I. It follows that
I(a) → I(b), I(b) → I(a) ∈ F . Thus, I(a)θI(b).

Now, by imitating [6], we define Fg(a) be the smallest congruence filter
containing a, and define inductively: I0(a) = a and In+1(a) = I(In(a)) ∧
In(a) for an LK(A)-algebra A and a ∈ A. Note that In+1(a) ≤ In(a),
thus, by induction, In(a) ≤ Im(a) for m ≤ n.
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Lemma 3.7. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a, b ∈
A. If a ≤ b, then In(a) ≤ In(b) for all n ∈ N.

Proof: We first observe that a ≤ b if and only if I(a) ≤ I(b):

a ≤ b iff a ∨ b = b iff I(a ∨ b) = I(b) iff I(a) ∨ I(b) = I(b) iff I(a) ≤ I(b).

Let a ≤ b, by induction on n we can easily prove In(a) ≤ In(b). For n = 0,
obviously I0(a) ≤ I0(b). Suppose In(a) ≤ In(b), then I(In(a)) ≤ I(In(b)).
It follows that I(In(a))∧In(a) ≤ I(In(b))∧In(b) i.e., In+1(a) ≤ In+1(b).

Lemma 3.8. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a, b ∈
A. Then In(a ∨ b) = In(a) ∨ In(b) for all n ∈ N.

Proof: First observe that by induction on n we can easily prove In(a) ≤ a
for all n ∈ N: For n = 0, I0(a) = a ≤ a. Suppose In(a) ≤ a, then In+1(a) =
I(In(a)) ∧ In(a) ≤ In(a) ≤ a. Suppose now that In(a ∨ b) = In(a) ∨ In(b),
then I(In(a∨b)) = I(In(a)∨In(b)), so I(In(a∨b)) = I(In(a))∨I(In(b)). It
follows that I(In(a∨ b))∧ In(a∨ b) = (I(In(a))∧ In(a))∨ (I(In(b))∧ In(b))
i.e., In+1(a ∨ b) = In+1(a) ∨ In+1(b).

Lemma 3.9. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a ∈ A.
Then

Fg(a) = {x ∈ A | ∃n,m ∈ N (mIn(a) ≤ x)},

where 1In(a) = In(a) and (n+ 1)In(a) = In(a) + nIn(a).

Proof: Let G = {x ∈ A | ∃n,m ∈ N (mIn(a) ≤ x)}. We show that
G ⊆ Fg(a); suppose x ∈ G, then there is n,m ∈ N such that mIn(a) ≤ x.
It follows that x ∈ Fg(a) because a ∈ Fg(a) and Fg(a) is closed upwards
and closed under I,+, and ∧. For the opposite direction, since a ∈ G, it
suffices to prove that G is a congruence filter. It is trivial that 0̄ ∈ G. If
x, x → y ∈ G, then there are m1, n1,m2, n2 ∈ N such that m1(In1

(a)) ≤ x
and m2(In2(a)) ≤ x→ y. But then easily (m1+m2)(In1+n2(a)) ≤ x+(x→
y) = x + (¬x + y) = y, and hence y ∈ G. Finally, G is closed under I.
If x ∈ G, then there are an m,n such that m(In(a)) ≤ x. It follows that
mIn+1(a) ≤ mI(In(a)) = I(mIn(a)) ≤ I(x), and I(x) ∈ G. Thus, by
Lemma 3.6, G is a filter and a ∈ G. It follows that Fg(a) ⊆ G.

Theorem 3.10. Every subdirectly irreducible LK(A)-algebra A is linearly
ordered.
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Proof: Assume for a contradiction that A is a subdirectly irreducible
LK(A)-algebra with minimum non-trivial filter F and elements a, b such
that a ≰ b and b ≰ a. Then, both Fg(a→ b) and Fg(b→ a) are non-trivial
filters; hence they both contain F . Let c ∈ F with c < 0̄. Then, there are
m1, n1,m2, n2 ∈ N such that In1

(m1(a → b)) = m1In1
(a → b) ≤ c < 0̄

and In2
(m2(b → a)) = m2In2

(b → a) ≤ c < 0̄. It follows, by Lemma 3.7,
that m1(a → b) < 0̄ and m2(b → a) < 0̄. Let m = max{m1,m2}, then
m(a → b) < 0̄ and m(b → a) < 0̄. Therefore, by Lemma 3.5, m(a →
b) + m(b → a) ≤ m(a → b) ∨ m(b → a). Then, again by Lemma 3.7,
In(m(a → b) + m(b → a)) ≤ In(m(a → b) ∨ m(b → a)) for all n. Now,
letting n = max{n1, n2}, we have the following contradiction:

0̄ = In(0̄) = In((m(¬a) +mb) + (m(¬b) +ma))

= In(m(a→ b) +m(b→ a))

≤ In(m(a→ b) ∨m(b→ a))

= In(m(a→ b)) ∨ In(m(b→ a))

= mIn(a→ b) ∨mIn(b→ a)

≤ m1In(a→ b) ∨m2In(b→ a)

≤ m1In1(a→ b) ∨m2In2(b→ a)

≤ c ∨ c = c < 0̄.

Hence, making use of Birkhoff’s subdirect representation theorem, we
have the following Corollary.

Corollary 3.11. Every LK(A)-algebra is isomorphic to a subdirect prod-
uct of a family of linearly ordered LK(A)-algebras.

4. A hypersequent calculus for LK(A)

In this section, a proof system for LK(A), called HLK(A) in the frame-
work of hypersequent, is presented. Hypersequent is a generalization of se-
quents introduced independently by Avron [1] and Pottinger [23]. HLK(A)
extends the sequent calculus for the modal multiplicative fragment of
K(A) [10]. Then, the cut elimination theorem is established and finally
it is shown that the axiomatic and hypersequent presentations really char-
acterize the same logics.
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Since in this section we will often be dealing with quite complicated
structures, let us recall some notational conveniences:

• φ,ψ, χ and Γ,∆,Π,Σ (sometimes with primes or numerical subscripts)
denote arbitrary formulas and finite multisets of formulas, respec-
tively. The multiset union Γ ⊎ ∆ is often denoted by Γ,∆. In addi-
tion, nΓ or sometimes Γn is used for Γ, . . . ,Γ (n times), and □Γ for
{□φ : φ ∈ Γ}.

• a sequent is an ordered pair of finite multisets of formulas Γ and
∆, written Γ ⇒ ∆. A hypersequent is a finite multiset of ordinary
sequents, written Γ1 ⇒ ∆1 | · · · |Γn ⇒ ∆n.

• G,H,G, H (possibly with primes) denote hypersequents, [Gi]
n
i=1 de-

notes the hypersequent G1 | . . . |Gn, and also {Gi}ni=1 denotes a set of
hypersequents G1, . . . ,Gn (perhaps the premises of some rule applica-
tion).

The intended interpretation of the hypersequent H = Γ1 ⇒ ∆1 | . . . |Γn ⇒
∆n is defined as follows:

I(H) = (
∑

Γ1 →
∑

∆1) ∨ · · · ∨ (
∑

Γn →
∑

∆n),

where Σ{φ1, . . . , φm} := φ1+. . .+φm and Σ∅ = 0̄. Axioms and rules of hy-
persequent calculus HLK(A) is presented in Table 2. For a hypersequent
H, we write ⊢HLK(A) H if there is a HLK(A)-derivation of H.
The following rules for other connectives are HLK(A)-derivable:

Γ, φ, ψ ⇒ ∆ |H
(L+)

Γ, φ+ ψ ⇒ ∆ |H
Γ ⇒ φ,ψ,∆ |H

(R+)
Γ ⇒ φ+ ψ,∆ |H

Γ ⇒ φ,∆ |H
(L¬)

Γ,¬φ⇒ ∆ |H
Γ, φ⇒ ∆ |H

(R¬)
Γ ⇒ ¬φ,∆ |H

Γ ⇒ ∆ |H
(L0̄)

Γ, 0̄ ⇒ ∆ |H
Γ ⇒ ∆ |H

(R0̄)
Γ ⇒ 0̄,∆ |H

Example 4.1. Below we provide an example of a HLK(A)-derivation to
get more familiar with this calculus.
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Table 2. Hypersequent Calculus HLK(A)

Axiom:

(AX)
Γ ⇒ Γ |H

Logical rules:

Γ, ψ ⇒ φ,∆ |H
(L→)

Γ, φ→ ψ ⇒ ∆ |H
Γ, φ⇒ ψ,∆ |H

(R→)
Γ ⇒ ∆, φ→ ψ |H

Γ, φ⇒ ∆ |Γ, ψ ⇒ ∆ |H
(L∧)

Γ, φ ∧ ψ ⇒ ∆ |H
Γ ⇒ φ,∆ |H Γ ⇒ ψ,∆ |H

(R∧)
Γ ⇒ ∆, φ ∧ ψ |H

Γ, φ⇒ ∆ |H Γ, ψ ⇒ ∆ |H
(L∨)

Γ, φ ∨ ψ ⇒ ∆ |H
Γ ⇒ φ,∆ |Γ ⇒ ψ,∆ |H

(R∨)
Γ ⇒ ∆, φ ∨ ψ |H

Modal rule:

Γ ⇒ nφ |H
(□n)

□Γ ⇒ n□φ |H

Structural rules:

Γ, φ⇒ ∆ |H Π ⇒ φ,Σ |H
(Cut)

Γ,Π ⇒ Σ,∆ |H
Γ ⇒ ∆ |Γ ⇒ ∆ |H

(EC)
Γ ⇒ ∆ |H

Γ ⇒ ∆ |H Π ⇒ Σ |H
(Mix)

Γ,Π ⇒ ∆,Σ |H
Γ,Π ⇒ Σ,∆ |H

(Split)
Γ ⇒ ∆ |Π ⇒ Σ |H

(AX)
φ⇒ φ |ψ ⇒ φ ∧ ψ

(AX)
φ,ψ ⇒ φ,ψ

(Split)
φ⇒ ψ |ψ ⇒ φ

(AX)
φ⇒ ψ |ψ ⇒ ψ

(R∧)
φ⇒ ψ |ψ ⇒ φ ∧ ψ

(R∧)
φ⇒ φ ∧ ψ |ψ ⇒ φ ∧ ψ

(□1)
φ⇒ φ ∧ ψ |□ψ ⇒ □(φ ∧ ψ)

(□1)
□φ⇒ □(φ ∧ ψ) |□ψ ⇒ □(φ ∧ ψ)

(L∧)
□φ ∧ □ψ ⇒ □(φ ∧ ψ)

(R →)
⇒ □φ ∧ □ψ → □(φ ∧ ψ)
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We now consider a more complicated family of rules, indexed by k ∈
N\{0} and n ∈ N, that is inspired by Denisa Diaconescu et al [10] and will
be very useful in subsequent cut-elimination and completeness proofs:

Γ0 ⇒ |H Γ1 ⇒ kφ1 |H · · · Γn ⇒ kφn |H
(□k,n) where kΓ=Γ0,...,Γn∆,□Γ ⇒ □φ1, . . . ,□φn,∆ |H

Critically for our later considerations, □k,n is HLK(A)-derivable for all
k ∈ N \ {0}, n ∈ N (for k = 1, omitting the applications of (EC) and
(Split)):

(AX)
∆ ⇒ ∆ |H

Γ0 ⇒ |H
(□0)

□Γ0 ⇒ |H

Γ1 ⇒ kφ1 |H
(□k)

□Γ1 ⇒ k□φ1 |H

Γn ⇒ kφn |H
(□k)

□Γn ⇒ k□φn |H
(Mix)

.

.

.
(Mix)

□(Γ1 . . . ,Γn) ⇒ k□φ1, . . . , k□φn |H
(Mix)

□(Γ0,Γ1 . . . ,Γn) ⇒ k□φ1, . . . , k□φn |H
(Split), (EC)

□Γ ⇒ □φ1, . . . ,□φn |H
(Mix)

∆,□Γ ⇒ □φ1, . . . ,□φn,∆ |H

In order to prove the cut elimination theorem, we begin by showing that
every cut-free HLK(A)-derivation can be transformed into a derivation in
a restricted calculus HLK(A)

r
consisting only of the rules (AX), logical

rules, (□k,n)(k ∈ N \ {0}, n ∈ N), (Split) and (EC).

Lemma 4.2. The following rules are height-preserving HLK(A)
r
-admissible.

H (EW)
Γ ⇒ ∆ |H

Γ ⇒ ∆ |H
(IW)

Γ,Π ⇒ ∆,Π |H

Proof: By induction on the height of the premises.

Lemma 4.3. All logical rules are HLK(A)
r
-invertible.

Proof: To cope with multiple occurrences of formulas, we will need to
show the invertibility of more general rules. To show that (L →) is
HLK(A)

r
-invertible, we prove that the following rule is admissible in

HLK(A)
r

[Γi, [φ→ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [ψ]λi ⇒ [φ]λi ,∆i]
n
i=1 |H
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proceeding by induction on the height of a HLK(A)
r
-derivation of [Γi, [φ→

ψ]λi ⇒ ∆i]
n
i=1 |H. If λ1 = · · · = λn = 0, then the result follows immedi-

ately, so let us assume without loss of generality that λ1 ≥ 1. Then for the
base case, ∆j = Γj ⊎ [φ→ ψ]λj for j ∈ {1, . . . , n}, and it suffices to observe
that ⊢HLK(A)r Γj , [ψ]λj ⇒ [φ]λj ,Γj , [φ→ ψ]λj |H. For the inductive step,
we observe that when the last rule applied is not (□k,n), the claim follows
immediately by applying the induction hypothesis, where necessary twice,
and the relevant rule. Suppose now that the last rule applied is (□k,n), so
[φ→ ψ]λj must occur also on the right of the sequent as follows:

Γ′
0 ⇒ |H Γ′

1 ⇒ k[χ1] |H · · · Γ′
n ⇒ k[χn] |H

(□k,n)
Ωj , [φ→ ψ]λj ,□Γ′ ⇒ □χ1, . . . ,□χn, [φ→ ψ]λj ,Ωj |H

where Γj = Ωj⊎[φ→ ψ]λj⊎□Γ′ and ∆j = □χ1⊎. . .⊎□χn⊎[φ→ ψ]λj⊎Ωj ,
and also kΓ′ = Γ′

0 ⊎Γ′
1 ⊎ . . .⊎Γ′

n. Then the claim follows by first applying
the induction hypothesis and then applying the rule (□k,n) and (R →)
(λj times) as follows: where G is obtained from H by applying induction
hypothesis.

Γ′
0 ⇒ |G Γ′

1 ⇒ kχ1 | G · · · Γ′
n ⇒ kχn | G

(□k,n)
Ωj , [φ]λj , [ψ]λj ,□Γ′ ⇒ □χ1, . . . ,□χn, [φ]λj , [ψ]λj ,Ωj | G

(R→)(λj times)
Ωj , [ψ]λj ,□Γ′ ⇒ □χ1, . . . ,□χn, [φ]λj , [φ→ ψ]λj ,Ωj | G

The proof of HLK(A)
r
-invertibility of the rule (R →) is very similar. To

show that (L∧) is HLK(A)
r
-invertible, we prove, more generally, that the

following rule is admissible in HLK(A)
r

[Γi, [φ ∧ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [φ]λi ⇒ ∆i |Γi, [ψ]λi ⇒ ∆i]
n
i=1 |H

proceeding by induction on the height of a HLK(A)
r
-derivation of [Γi, [φ∧

ψ]λi ⇒ ∆i]
n
i=1 |H. If λ1 = · · · = λn = 0, then the result follows immedi-

ately using (EC), so let us assume without loss of generality that λ1 ≥ 1.
For the base case, ∆j = Γj ⊎ [φ ∧ ψ]λj for j ∈ {1, . . . , n} and it suffices to
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observe that Γj , [φ]λj ⇒ Γj , [φ∧ψ]λj |Γj , [ψ]λj ⇒ Γj , [φ∧ψ]λj | G is deriv-
able. For example, suppose λj = 1 for j = 1, first we have the following
derivation:

(AX)
Γ,Γ, φ, ψ ⇒ Γ,Γ, ψ, φ | G

(Split)
Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, φ | G

(AX)
Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, ψ | G

(R∧)
Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, φ ∧ ψ | G.

Then, the conclusion is derived as follows:

(AX)
Γ, φ⇒ Γ, φ |Γ, ψ ⇒ Γ, φ ∧ ψ | G Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, φ ∧ ψ | G

(R∧)
Γ, φ⇒ Γ, φ ∧ ψ |Γ, ψ ⇒ Γ, φ ∧ ψ | G

For the inductive step, we observe that when the last rule applied is not
(□k,n), the claim follows immediately by applying the induction hypothesis,
where necessary twice, and the relevant rule (see e.g. [18] Lemma 5.18 for
more details). Suppose now that the last rule applied is (□k,n), so [φ∧ψ]λj

must occur also on the right of the sequent as follows:

Γ′
0 ⇒ |H Γ′

1 ⇒ kχ1 |H · · · Γ′
n ⇒ kχn |H

(□k,n)
Ω,□Γ′, [φ ∧ ψ]λj ⇒ □χ1, . . . ,□χn,Ω, [φ ∧ ψ]λj |H

where Γj = Ω ⊎ □Γ′, and ∆j = Ω ⊎ □χ1 ⊎ · · · ⊎ □χn ⊎ [φ ∧ ψ]λj and also
kΓ′ = Γ′

0 ⊎ . . . ⊎ Γ′
n. Then the conclusion is obtained by first applying

the induction hypothesis to the premises and then applying (□k,n), (EW),
(Split) and (R∧) as required. For example suppose that λj = 1, the claim
is derived as follows:

D1

Γ′
0 ⇒ |G Γ′

1 ⇒ kχ1 | G · · · Γ′
n ⇒ kχn | G

(□k,n)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ | G

(EW)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ | G

where G is obtained from H = [Γi, [φ ∧ ψ]λi ⇒ ∆i]
n
i=2 |H by applying

induction hypothesis. Similarly, we have

D2

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, ψ | G.
Then, by applying (R∧) we have:

D1 D2
(R∧).

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ ∧ ψ | G
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Now, by a similar argument, we have:

D′
1

2Γ′
0 ⇒ |G 2Γ′

1 ⇒ 2kχ1 | G · · · 2Γ′
n ⇒ 2kχn | G

(□2k,2n)
2Ω, 2□Γ′, φ, ψ ⇒ 2□χ1, . . . , 2□χn, 2Ω, φ, ψ | G

(Split).
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ | G

And, similar to the derivations D1 and D2, we have:

D′
2

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, ψ | G.

Now, by applying (R∧) we have:

D′
1 D′

2
(R∧).

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ ∧ ψ | G.

Finally, again by applying (R∧) the claim is obtained. The proof of
HLK(A)

r
-invertibility of the rule (R∨) is very similar. To show that (L∨)

is HLK(A)
r
-invertible, we prove that the following rules are admissible in

HLK(A)
r

[Γi, [φ ∨ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [φ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [φ ∨ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [ψ]λi ⇒ ∆i]
n
i=1 |H

proceeding by induction on the height of the derivations of the premises.
We only consider the case that the last rule applied in the derivation of
the premise is (□k,n); the other cases are treated easily. Suppose that the
last rule applied is (□k,n), so [φ ∨ ψ]λj must occur also on the right of
the sequent as follows:

Γ′
0 ⇒ |H Γ′

1 ⇒ kχ1 |H · · · Γ′
n ⇒ kχn |H

(□k,n),
Ω,□Γ′, [φ ∨ ψ]λj ⇒ □χ1, . . . ,□χn,Ω, [φ ∨ ψ]λj |H

where Γj = Ω ⊎ □Γ′, and ∆j = Ω ⊎ □χ1 ⊎ · · · ⊎ □χn ⊎ [φ ∧ ψ]λj and also
kΓ′ = Γ′

0⊎ . . .⊎Γ′
n. Then, for λj = 1, the conclusion is obtained as follows:

Γ′
0 ⇒ |G Γ′

1 ⇒ kχ1 | G · · · Γ′
n ⇒ kχn | G

(□k,n)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ | G

(EW)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ | G

R∨
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ ∨ ψ | G
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where G is obtained from H = [Γi, [φ ∨ ψ]λi ⇒ ∆i]
n
i=2 |H by applying in-

duction hypothesis. The HLK(A)
r
-invertibility of the rule (R∧) is proved

similarly.

Lemma 4.4. The rule (Mix) is HLK(A)
r
-admissible.

Proof: To show the HLK(A)
r
-admissibility of (Mix), we prove, more

generally, that the following rule is admissible

[Γi ⇒ ∆i]
n
i=1 |H [Πj ⇒ Σj ]mj=1 |H

[ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=1 | · · · |[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H

for all rij , sij ∈ N ∪ {0}. Proceeding by induction on the lexicographically
ordered pair consisting of the sum of the modal depth of the formulas in
the premises and the sum of the height of HLK(A)

r
-derivations D1 and D2

of [Γi ⇒ ∆i]
n
i=1 |H and [Πj ⇒ Σj ]

m
j=1 |H, respectively. If D1 and D2 have

height 0, then [Γi ⇒ ∆i]
n
i=1 |H and [Πj ⇒ Σj ]

m
j=1 |H are instances of (AX).

i.e., Γi = ∆i for some 1 ⩽ i ⩽ n, and Πj = Σj for some 1 ⩽ j ⩽ m, (in
particular if Γi, ∆i, Πj , and Σj contain only variables), then rijΓi⊎sijΠj =
rij∆i ⊎ sijΣj and so [ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=1 | · · · |[rimΓi, simΠm ⇒
rim∆i, simΣm]ni=1 |H is an instance of (AX). If the last application of rules
in D1 and D2 are not (□k,n) then the result follows easily by one (or two)
applications of the induction hypothesis and further applications of the
rule. For example, suppose D2 ends with

Π′, φ⇒ Σ1 |Π′, ψ ⇒ Σ1 |[Πj ⇒ Σj ]
m
j=2|H

(L∧),
Π′, φ ∧ ψ ⇒ Σ1|[Πj ⇒ Σj ]

m
j=2 |H

where Π1 = Π′ ⊎ [φ ∧ ψ]. An application of the induction hypothesis
to the HLK(A)

r
-derivation of the premise [Γi ⇒ ∆i]

n
i=1 together with a

HLK(A)
r
-derivation of

Π′, φ⇒ Σ1 |Π′, ψ ⇒ Σ1 |[Πj ⇒ Σj ]
m
j=2|H

yields

[ri1Γi, si1Π′, si1φ⇒ ri1∆i, si1Σ1]ni=1 | [ri1Γi, si1Π′, si1ψ ⇒ ri1∆i, si1Σ1]ni=1|
· · · |[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H.
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It follows then that the following hypersequent is HLK(A)
r
-derivable

using
∑n

i=1 si1 times applications of the rule (L∧):

[ri1Γi, si1Π′, si1 (φ∧ψ) ⇒ ri1∆i, si1Σ1]ni=1 | · · · |[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H.

The case where D2 ends with (R∨), (L →), (R →), (EC) or (Split) is
treated by a similar argument. If D2 ends with

Π′, φ⇒ Σ1 |[Πj ⇒ Σj ]
m
j=2|H Π′, ψ ⇒ Σ1 |[Πj ⇒ Σj ]

m
j=2|H

(L∨),
Π′, φ ∨ ψ ⇒ Σ1|[Πj ⇒ Σj ]

m
j=2 |H

where Π1 = Π′ ⊎ [φ ∨ ψ]. Then, by the induction hypothesis,

⊢HLK(A)[ri1Γi, si1Π′, si1φ⇒ ri1∆i, si1Σ1]ni=1| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H

⊢HLK(A) [ri1Γi, si1Π′, si1ψ ⇒ ri1∆i, si1Σ1]ni=1| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H

So, the conclusion is derived by
∑n

i=1 si1 times applications of (L∨). The
case where D2 ends with (R∧) is treated by a similar argument. Finally,
let us consider the case where D1 ends with an application of (□k,p) as
follows:

Γ0 ⇒ |G Γ1 ⇒ kφ1 |H · · ·Γp ⇒ kφp |H
(□k,p),

Ω,□Γ′ ⇒ □φ1, . . . ,□φp,Ω |H

where Γ1 = Ω ⊎ □Γ′ and ∆1 = [□φ1] ⊎ . . . ⊎ [□φp] ⊎ Ω, in addition kΓ′ =
Γ0 ⊎ . . . ⊎ Γp and H = [Γi ⇒ ∆i]

n
i=2 |H, and suppose D2 ends with

Π0 ⇒ |H Π1 ⇒ lψ1 |H · · ·Πq ⇒ lψq|H
(□l,q),

Θ,□Π′ ⇒ □ψ1, . . . ,□ψq,Θ|H

where Π1 = Θ⊎□Π′ and Σ1 = [□ψ1]⊎. . .⊎[□ψp]⊎Θ, in addition lΠ′ = Π0⊎
. . .⊎Πq and H = [Πj ⇒ Σj ]

m
j=2 |H. Then, applying the rule (□kl,r11p+s11q

),

we obtain the required HLK(A)
r
-derivation

r11 lΓ0, s11kΠ0 ⇒ |G {lΓi ⇒ klφi | G}
r11p
i=1 · · · {kΠj ⇒ klψj | G}

s11q
j=1

r11Ω, s11Θ, r11□Γ′, s11□Π′ ⇒
r11□φ1, . . . , r11□φp, s11□ψ1, . . . , s11□ψq, r11Ω, s11Θ | G

where,
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G = [ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=2| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=2 |H

and the premises are all HLK(A)
r
-derivable using the induction hypothe-

sis. For example,

r11 lΓ0, s11kΠ0 ⇒ |[ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=2| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=2|H

is derived as follows using the induction hypothesis (note that rij , sij ∈
N ∪ {0}):

Γ0 ⇒ | [Γi ⇒ ∆i]
n
i=2 |H Π0 ⇒ | [Πj ⇒ Σj ]

m
j=2 |H

r11 lΓ0, s11kΠ0 ⇒ |[ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=2| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=2|H

Theorem 4.5. HLK(A) admits cut-elimination.

Proof: To establish cut-elimination for HLK(A), it suffices to prove that
an uppermost application of (Cut) in a HLK(A)-derivation can be elimi-
nated; that is, we show that cutfree HLK(A)-derivations of the premises of
an instance of (Cut) can be transformed into a cut-free HLK(A)-derivation
of the conclusion. Observe first that the rule (□n) is HLK(A)

r
-derivable

using (□k,n) with k = n, φ1 = · · · = φn = φ and Γ1 = . . . = Γn =
Γ. Hence, the proof of Lemma 4.4 shows that any cut-free HLK(A)-
derivation can be transformed algorithmically into a HLK(A)

r
-derivation.

We prove (constructively) that the following rule called “cancellation” rule
is HLK(A)

r
-admissible:

[Γi, φi ⇒ φi,∆i]
n
i=1 |H (CAN).

[Γi ⇒ ∆i]
n
i=1 |H

Suppose then that there are cut-free HLK(A)-derivations of the premises
Γ, φ ⇒ ∆ |H and Π ⇒ φ,Σ |H of an uppermost application of (Cut). By
(Mix), we obtain a cut-free HLK(A)- derivation of Γ,Π, φ ⇒ φ,∆,Σ |H
and hence a HLK(A)

r
-derivation of this sequent. By cancellation rule,

we obtain a HLK(A)
r
-derivation of Γ,Π ⇒ ∆,Σ |H, which also gives the

desired cut-free HLK(A)-derivation. We prove the admissibility of the can-
cellation rule by induction on the lexicographically ordered triple consisting
of the sum of the modal depth of the formulas φi, 1 ≤ i ≤ n, sum of the
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complexities of the formulas φi, 1 ≤ i ≤ n, and the height of the deriva-
tion of the premise. For the base case, suppose that the formulas φi for
all 1 ≤ i ≤ n are variables. If the premise is an instance of (AX), then
Γi, φi = φi,∆i for some 1 ≤ i ≤ n, i.e., Γi = ∆i and so [Γi ⇒ ∆i]

n
i=1 is an

instance of (AX). We observe that when the last rule applied is not (□k,n),
the claim follows immediately by applying the induction hypothesis and,
where necessary, the relevant rule. Let us consider some cases; suppose
that the last rule applied is (L→) as follows:

Γ′
1, φ1, χ⇒ ψ,φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H (L→),

ψ → χ,Γ′
1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

where Γ1 = ψ → χ,Γ′
1. Then, the height of the premise is reduced and so

by applying the induction hypothesis the conclusion is obtained as follows:

Γ′
1, φ1, χ⇒ ψ,φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H (IH)

Γ′
1, χ⇒ ψ,∆1 | [Γi ⇒ ∆i]

n
i=2 |H (L→).

ψ → χ,Γ′
1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H

The cases where the last rule applied is (R →) or (Split) are very similar.
Suppose that the last rule applied is (L∧) as follows:

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]
n
i=2 |H (L∧),

ψ ∧ χ,Γ′
1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

where Γ1 = ψ ∧ χ,Γ′
1. Then, the height of the premise is reduced and so

by applying the induction hypothesis we have:

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]
n
i=2 |H (IH)

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1,⇒ ∆1 | [Γi ⇒ ∆i]
n
i=2 |H

Therefore, the sum of the complexities of the formulas φi is reduced, again
by applying the induction hypothesis the conclusion is obtained as follows:

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1,⇒ ∆1 | [Γi ⇒ ∆i]
n
i=2 |H (IH)

ψ,Γ′
1 ⇒ ∆1 |χ,Γ′

1,⇒ ∆1 | [Γi ⇒ ∆i]
n
i=2 |H (L∧).

ψ ∧ χ,Γ′
1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H
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The cases where the last rule applied is (R∨) or (EC) are very similar.
Suppose now that the last rules applied is (□k,m) as follows:

Π0 ⇒ |H Π1 ⇒ kψ1 |H · · · Πm ⇒ kψm |H
(□k,m),

Σ,□Π, φ1 ⇒ φ1,□ψ1, . . . ,□ψm,Σ |H

where H = [Γi, φi ⇒ φi,∆i]
n
i=2 |H, and kΠ = Π0 ⊎ Π1 ⊎ . . . ⊎ Πm, in

addition k = k0 + k1 + . . . + km. Thus, the sum of the complexities of
the formulas φi is reduced, by applying the induction hypothesis we have
HLK(A)

r
-derivations of

Π0 ⇒ | [Γi ⇒ ∆i]
n
i=2 |H

Π1 ⇒ kψ1 | [Γi ⇒ ∆i]
n
i=2 |H

...

Πm ⇒ kψm | [Γi ⇒ ∆i]
n
i=2 |H

Then, by applying the rule (□k,m), we have a HLK(A)
r
-derivation of

Σ,□Π,⇒ □ψ1, . . . ,□ψm,Σ | [Γi ⇒ ∆i]
n
i=2 |H

For the inductive step, suppose that φi = ψ → χ for some 1 ≤ i ≤ n,
then we use the invertibility of (L→) and (R→) and apply the induction
hypothesis twice. If φi has the form ψ ∧ χ for some 1 ≤ i ≤ n, then the
conclusion is obtained as follows:

Γ1, ψ ∧ χ⇒ ψ ∧ χ,∆1 | [Γi, φi ⇒ φi,∆i]
n
i=2 |H

(L∧−1)
Γ1, ψ ⇒ ψ ∧ χ,∆1 |Γ1, χ⇒ ψ ∧ χ,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

(R∧−1) twice
Γ1, ψ ⇒ ψ,∆1 |Γ1, χ⇒ χ,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

(IH) twice
Γ1 ⇒ ∆1 |Γ1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H

(EC)
Γ1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H

Note that by applying the invertibility of the logical rules the height and
sum of the complexities of the formulas in the premise can increase, but
the sum of the complexities of the formulas φi is reduced. The cases where
φi for some 1 ≤ i ≤ n has the form ψ ∨ χ are very similar. Lastly, suppose
that φi = □χ for some 1 ≤ i ≤ n, and the derivation ends with

Π0, k0χ⇒ |H Π1, k1χ⇒ kχ |H {Πi, kiχ⇒ kψi |H}pi=2 (□k,p),
Σ,□Π,□χ⇒ □χ,□ψ2, . . . ,□ψn,Σ |H
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where H = [Γi, φi ⇒ φi,∆i]
n
i=2 |H, and kΠ = Π0 ⊎ Π1 ⊎ . . . ⊎ Πp, in

addition k = k0 +k1 + . . .+kp. In this case, the sum of the modal depth of
the formulas φi is reduced. By the induction hypothesis, ⊢HLK(A)r Π1 ⇒
(k − k1)χ |H. By the HLK(A)

r
-admissibility of the rule (mix), we have

HLK(A)
r
-derivations of

k0Π1, (k − k1)Π0, (k − k1)k0χ⇒ (k − k1)k0χ |H

kiΠ1, (k−k1)Πi, (k−k1)kiχ⇒ (k−k1)kiχ, (k−k1)kψi |H for i ∈ {2, . . . , p}.

So, by the induction hypothesis, we have HLK(A)
r
-derivations of

k0Π1, (k − k1)Π0 ⇒ |G

kiΠ1, (k − k1)Πi ⇒ (k − k1)kψi | G for i ∈ {2, . . . , p},

where G = [Γi ⇒ ∆i]
n
i=2 |H. Now by an application of (□((k−k1)k,n−1)),

we have a HLK(A)
r
-derivation ending with

k0Π1, (k − k1)Π0 ⇒ |G {kiΠ1, (k − k1)Πi ⇒ (k − k1)kψi | G}pi=2

Σ,□Π ⇒ □ψ2, . . . ,□ψn,Σ | G

where (k − k1)kΠ = (k0 + k2 + · · · + kp)(Π0 ⊎ Π1 ⊎ . . . ⊎ Πp).

We now turn our attention to showing that the axiomatic and hyperse-
quent presentations really characterize the same logics, writing
+{φ1, . . . , φn} as shorthand for φ1 + . . .+ φn.

Lemma 4.6.

(i) If ⊢HLK(A) Γ, φ+ ψ ⇒ ∆ |H, then ⊢HLK(A) Γ, φ, ψ ⇒ ∆ |H.

(ii) If ⊢HLK(A) Γ ⇒ ∆, φ+ ψ |H, then ⊢HLK(A) Γ ⇒ ∆, φ, ψ |H.

Proof: For (i), since ⊢HLK(A) φ,ψ ⇒ φ+ ψ |H, if ⊢HLK(A) Γ, φ+ ψ ⇒
∆ |H, then by (Cut), ⊢HLK(A) Γ, φ, ψ ⇒ ∆ |H. The case (ii) is similar.

Lemma 4.7. If ⊢HLK(A)⇒ I(H), then ⊢HLK(A) H.

Proof: Let H = Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n. If

⊢HLK(A) (
∑

Γ1 →
∑

∆1) ∨ · · · ∨ (
∑

Γn →
∑

∆n),
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then by invertibility of the rules (R∨) and (R→),

⊢HLK(A) (
∑

Γ1 ⇒
∑

∆1) | · · · | (
∑

Γn ⇒
∑

∆n).

Hence, by Lemma 4.6, ⊢HLK(A) H.

Theorem 4.8. ⊢HLK(A) H iff ⊢LK(A) I(H).

Proof: For the left-to-right direction we proceed by induction on the
height of the derivation of H in HLK(A). If H is an instance of an axiom
of HLK(A), then it is easy to check that ⊢LK(A) I(H). For the inductive
step, suppose that H follows by some rule of HLK(A) from H1, . . . ,Hn.
By the induction hypothesis n times, we have ⊢LK(A) I(H1), . . . ,⊢LK(A)

I(Hn). For the non-modal rules of HLK(A) (see e.g. [18] for details), it
is easy to check that

⊢LK(A) I(H1) → (I(H2) → (· · · → (I(Hn) → I(H))) · · · )

and that hence, by (mp) n times, ⊢LK(A) I(H). For the modal rule,
suppose that ⊢LK(A) I(H) ∨ I(Γ ⇒ nφ). By Theorem 3.3, it is sufficient
to show that I(□Γ ⇒ n□φ |H) is valid in every LK(A)-algebra. Consider
a valuation v for such an algebra. Either v(I(H)) ≥ 0̄ and hence v(I(H)∨
I(□Γ ⇒ n□φ) ≥ 0̄ or v(I(Γ ⇒ nφ)) ≥ 0̄. If the latter, then I(v(I(Γ ⇒
nφ)) ≥ I(0̄)). But I(v(I(Γ ⇒ nφ))) = v(I(□Γ ⇒ n□φ)) so we are done.
For the right-to-left direction, we have (an easy exercise) that the axioms
of LK(A) are derivable in HLK(A). Moreover, (nec) corresponds to (□),
(adj) corresponds to (R∧), and (mp) can be derived from ⊢HLK(A)⇒ φ and
⊢HLK(A)⇒ φ → ψ, by using (Cut) twice with ⊢HLK(A) φ,φ → ψ ⇒ ψ.
Hence, if ⊢LK(A) I(H), then ⊢HLK(A)⇒ I(H), and so by Lemma 4.7,
⊢HLK(A)⇒ H.
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5. Concluding remarks

The paper is devoted to a proof-theoretic account of continuous modal
logics: many-valued modal logics with connectives interpreted locally by
continuous functions over sets of real numbers [10]. I have introduced
linear abelian modal logic LK(A), which is an extension of the abelian
modal logic K(A), where propositional connectives are interpreted using
lattice ordered group operations over the real numbers. I have provided
a hypersequent calculus admitting cut-elimination for LK(A). Moreover,
the correspondence between this calculus and the complete axiomatization
with respect to both appropriate algebras and linearly ordered algebras is
established.

I have only focused in this work on the extension of the sequent cal-
culus for the modal multiplicative fragment of K(A) to a hypersequent
calculus for the full logic. Clearly, there are many open questions still to
be addressed. The most pressing issue is to provide a suitable Kripke model
for LK(A) and prove the completeness theorem with respect to it. It seems
that adapting the Kripke semantics and prove completeness with respect to
the Kripke semantics is more tricky. Since the distributivity of box over the
operator “+”, i.e., □(φ + ψ) → □φ + □ψ is not derivable in the provided
hypersequent calculus, this formula should not be valid in Kripke models.
Therefore, it seems that we need some conditions on the accessibility rela-
tion in the Kripke models in which the formula □(φ ∨ ψ) → □φ ∨ □ψ is
valid, while the formula □(φ+ ψ) → □φ+ □ψ is not valid.
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tent logics, may appear to the reader as a contradiction in terms.2 S/He
might think that the present paper is, at best, of insignificant and techni-
cal importance or is, at worst, about an unconventional and deliberately
provocative interpretation of D2 which has now become a classic. What
we would like to avoid in this paper, foremost, is giving the reader the
impression that D2 might be argued not to be paraconsistent. We would
not like the reader to get the impression that setting up a system, where
p →d (¬p →d q) is a theorem, is in line with Jaśkowski’s original ideas on
discussive implication →d.

On the contrary, we would like to stress that while presenting his view
on the Duns Scotus law (see [23]), Jaśkowski points out that, since antiq-
uity, Aristotle’s view that two contradictory statements are not both true
has been a subject of criticism. Jaśkowski emphasizes that in the nine-
teenth and twentieth centuries, these views revived, under which it was
pointed out that there are convincing arguments that lead to contradictory
conclusions. So, he aimed to construct a system in which the implicational
law of overfilling p→ (¬p→ q) is not valid. The idea behind the construc-
tion of such a system was as follows: first, with regard to inconsistent sets
of statements, such a system does not always lead to overfilling of the set
of conclusions; second, it is supposed to be so rich as to enable practical
inference; and third, it should have an intuitive justification.

Due to the form of the posed problem, the choice of the implication
plays a crucial role in building such a system. Originally, using the modal
operator of possibility, Jaśkowski introduced discussive implication and, on
its basis, also the discussive equivalence. The system of modal sentences
that results from enriching the modal logic S5 with the relevant definitions
of discussive connectives is denoted as M2. On the basis of M2 Jaśkowski
is defining the system of the two-valued discussive sentential calculus. This
logic is quite rich and allows for the rejection of the implicational law of
overfilling.

2Following Jaśkowski’s approach [23, 22], we call a logic L paraconsistent iff there
are formulas A and B such that A → (¬A → B) is not valid in L. Following Akama and
da Costa [3], we call a logic L paracomplete iff there is a formula A such that A∨¬A is
not valid in L. This definition has already been used by Sette and Carnieli [47], although
they preferred the term (nowadays, rarely used) weakly-intuitionistic logic. For the other
definitions of paralogics (logics that are paraconsistent or paracomplete), the reader is
addressed to [3, 40].
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Interestingly, due to the use of classical conjunction in Jaśkowski’s first
paper [23] on discussive logic, one might suppose that discussive logic is
non-adjunctive. And indeed, while presenting examples of formulas that are
not theses of discussive logic, Jaśkowski considers p→d (q →d (p∧ q)). He
gives intuitions accompanying this: due to the fact that a certain thesis P
and another thesis Q were put forward in the discussion, it does not follow
that the thesis P ∧Q was also put forward, as it may happen that theses
P and Q were sustained by different participants in the discussion. The
intuitive explanation goes along with the formal justification. Of course,
the use of classical conjunction leads to (p ∧ ¬p) →d q, a version of the
overfilling law that is a thesis of such a variant of the discussive system.3

And only thanks to the non-adjunctive character of it, the implicational
version of the overfilling law does not become a thesis.

However, the history of discussive logic does not end with [23]. What
is nowadays treated as proper discussive logic is its variant with discussive
conjunction. Discussive conjunction completing the language of D2 is given
in a short paper [22]. Only there discussive conjunction ∧d is introduced
and in this way, the formula p →d (q →d (p ∧d q)) is becoming a thesis of
D2. On the other hand, (p ∧d ¬p) →d q is not a thesis of this final version
of D2. At least to some point, the second paper on discussive logic was
much less known than the first one. This was due to the fact that the paper
on discussive conjunction was written in Polish and much later translated
into English.4

On the other hand, we do not mean here Jaśkowski’s discussive logic
could not tolerate non-standard approaches. See, for example, [32], where
an extended version of Jaśkowski’s model of discussion with debaters em-
ploying modal operators explicitly is presented.

The motivation for this paper stems from conventional sources. First, it
correlates to the fact that paraconsistent and paracomplete logics co-exist
harmonically, with the latter being a junior counterpart of the former. (See
also endnote 21.) Moreover, we argue below that the logic we present here
is not the first paracomplete discussive logic in the literature. The second
conventional source is to employ modal logic (generally, S5) in defining

3Already, this fact could be used as a factor showing that Jaśkowski model of dis-
cussion can be applied to explore a non-paraconsistent domain as well.

4A detailed discussion of the subject may be found in [13].
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discussive connectives. Hence, we explore the possibility of changing some
of the usual definitions to achieve the clear-cut effect that paracomplete
logic results in.5 Let us detail these sources.

Despite the fact that in [2] Akama, Abe, and Nakamatsu do not dub
their constructive discursive logic with strong negation, CDLSN, paracom-
plete, there is no counterargument for not doing it. In Section 6 below, we
provide a comparative analysis of CDLSN and our logic. Here we would
like to stress the fact that the Jaśkowskian ideas, which led to one of the
first paraconsistent logics ever, permit a discussive paracomplete logic such
as CDLSN and a non-discussive paracomplete logic such as ours. This
view reveals the pair of paraconsistency–paracompleteness as a harmonious
tandem rather than a strictly opposed dichotomy. Indeed, the dichotomy
in question reveals itself strikingly in the case of many-valued logics.6 In
contradistinction to paraconsistent logic, which is sometimes dubbed logic
with truth-value gluts because a formula might be true and false simultane-
ously, paracomplete logic7 is sometimes dubbed logic with truth-value gaps
because a formula might be neither true nor false simultaneously. Let us
confine ourselves to the case of three-valued logics for this approach to para-
complete logic seems to be the most popular in the literature: A formula
of this kind is assigned the third truth-value which is not a designated one.
Hence, the law of excluded middle and certain inference rules related to it
fail (the italics are not ours): “A paracomplete logic is a logic, in which
the principle of excluded middle, i.e., A ∨ ¬A is not a theorem of that

5Notice that the first formal system, consciously conceived as a logic invalidating
Duns Scotus law, was developed by Stanis law Jaśkowski in 1948 [23], while ideas that
can be regarded as the basis of paracomplete logics were explored in the 1960s (for
example, [50]), with formal investigations in [29].

6Note that each logic that is thoroughly discussed in this paper is bivalent. Many-
valuedness is needed to clarify the argument. For this aim, we use the terms ‘logic
with truth-value gluts’ and ‘logic with truth-value gaps’, which come from many-valued
logic. At that, we warn against the identification of ‘logic with truth-value gluts’ with
paraconsistent logic and ‘logic with truth-value gaps’ with paracomplete logic. First,
not all paraconsistent and paracomplete logics are many-valued. Second, logics with
truth-value gluts and gaps are not always paraconsistent and paracomplete ones. As
was shown in [48], many-valued logics (with gaps and gluts) satisfying Rosser and Tur-
quette’s standard conditions [45, p. 26] have classical consequence relation. However, in
many-valued semantics, gluts usually lead to paraconsistency, and gaps usually lead to
paracompleteness.

7Among the first papers where this term appears are [29, 30].
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logic” [3, p. 8]. Note that A→ (¬A→ B), one of the Jaśkowskian stimuli,
might be a paracomplete theorem, and the situation is upside-down in the
case of paraconsistency (A ∨ ¬A is a D2-theorem).

To conclude the detalization of the second source, we find it proper
to briefly enlist some of the most famous paracomplete logics (apart from
intuitionistic logic and Kolmogorov’s system [25]): Kleene’s strong three-
valued logic K3 [24], whose absence of theoremhood led to setting up three-
valued paracomplete logics with theoremhoods and robust implications (the
ones validating modus ponens, etc.). Obviously, its implication extensions
are paracomplete, among them  Lukasiewicz’s three-valued logic  L3 [31] and
the three-valued logic PComp (S lupecki, Bryll, and Prucnal are likely to be
its authors [49]; the author of the name PComp is Popov [42]). There are
other well-known three-valued paracomplete logics: Kleene’s weak three-
valued logic Kw

3 [24], Bochvar’s B3 [10], Heyting-Gödel-Jaśkowski’s G3 [20,
18, 21], and Sette and Carnielli’s I1 [47]. As for four-valued paracomplete
logics, Pietz and Riveccio’s [41] ETL deserves attention. Most fuzzy logics
are paracomplete (and almost none of them is paraconsistent; see [7, 15]
for some rare examples of paraconsistent fuzzy logics). At last, let us
mention paradefinite [6] or paranormal [9, 43] logics, i.e., logics which are
both paracomplete and paraconsistent. The most influential logic among
them is Anderson-Belnap’s FDE [5].

The harmonious tandem discussed above seems to be more striking if
the reader pays attention to the fact that the Jaśkowskian ideas in question
were not axiomatized by himself but later. (Let us, again, refer the reader
to status quo in [38].) As a result, Jaśkowski’s followers give his semi-formal
intuitions about connecting robust discussive reasoning with S58 different
(even mutually contradicting) formal insights. Roughly, the key points of
those techniques are the same, though: two translation functions from a
discussive language into a modal language, and vice versa together with
the notion of the ‘M-counterpart of S5’ introduced by Perzanowski [39],
where ‘M’ stands for the modal possibility operator. Our approach, in
fact, follows the spirit of the techniques in question in spite of mirror-like
transformations of their key points. The notion of the ‘L-counterpart of
S5’, where ‘L’ stands for the modal necessity operator, is employed because
the transformed translation functions employ the necessity operator rather

8Furmanowski proves that S4 is enough to establish this connection [16]. This result
was strengthened by Perzanowski [39], and Nasieniewski and Pietruszczak [33, 34].
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than the possibility one. As one can see, it is not essential for S5, but it
would be if the whole strategy were applied, for example, to non-normal
modal logics. The notion of ‘L-counterpart of S5’ was also introduced by
Perzanowski, and it naturally corresponds to the set LS5 of all those S5-
theses at the beginning of which there is the necessity operator that was
used, in particular, by Kotas in giving his axiomatization of D2. Now the
ray highlights discussive left-, right disjunction rather than discussive left-,
right conjunction, as it has been done in the literature before. Hence, the
difference between paraconsistency and paracompleteness in the discussive
setting is shifted from the standard criterion that certain formulae are (not)
theorems of the logic in question to the non-standard criterion that certain
connectives are to be especially treated within certain discussive logics.
On this path, we believe, some alternatives to Jaśkowski’s, Akama-Abe-
Nakamatsu’s, and our approaches to discussive logic might be discovered.

2. On Jaśkowski’s discussive logic D2

Following Omori and Alama [38], we distinguish between the three lan-
guages, L , Lr, and Ll, over which D2 can be built. Note that such
a possibility is also used in a question asked by João Marcos and con-
sidered in [35]. The former has the alphabet {P,¬,∨,→d,∧, (, )}, where
P = {p, q, r, s, p1, . . .} is the set of propositional variables. The languages
Lr and Ll have right and left discussive conjunctions ∧r

d and ∧l
d, respec-

tively, instead of ∧. The sets of all L -, Lr-, and Ll-formulas are defined
in the standard way and denoted via F , Fr, and Fl, respectively. We
denote a propositional variable (in the metalanguage) by P , Q, etc., a dis-
cussive formula by A, B, C, etc., a modal formula by φ, ψ, γ, etc., and a
set of discussive formulas by X. The language Lm of the modal logic S5
has the alphabet ⟨P, {¬,∨,→,∧,□,♢, (, )}⟩. The set of all Lm-formulas is
defined in the standard way and denoted via Fm. We write φ ↔ ψ for
(φ→ ψ) ∧ (ψ → φ).

Following Jaśkowski, we give a translation function τ from F ∪Fr∪Fl

into Lm.

• τ(P ) = P , for any P ∈ P,

• τ(¬A) = ¬τ(A),

• τ(A ∨B) = τ(A) ∨ τ(B),

• τ(A→d B) = ♢τ(A) → τ(B),

• τ(A ∧B) = τ(A) ∧ τ(B),

• τ(A ∧r
d B) = τ(A) ∧ ♢τ(B),

• τ(A ∧l
d B) = ♢τ(A) ∧ τ(B).
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Jaśkowski [23] originally formulated D2 in L . However, in his next
paper [22] he switched to Lr.

9 The language Ll was used by da Costa, Du-
bikajtis, Kotas, Achtelik and others [27, 14, 1] as well as by Vasyukov [51].

As noted in [38, Proposition 1], τ(A ∧r
d B) ↔ τ(¬(B →d ¬A)) ∈

S5 and τ(A ∧l
d B) ↔ τ(¬(A →d ¬B)) ∈ S5. Obviously, in all three

languages ∧ can be expressed via ¬ and ∨. One may think about the fourth
conjunction, ∧b

d (we write ‘b’ for ‘both’, τ(A ∧b
d B) ↔ ♢τ(A) ∧ ♢τ(B)).

However, as noted by Ciuciura [12, p. 85], (A ∧b
d B) →d (¬(A ∧b

d B) →d C)
will be valid then.

We will denote the formulations of D2 in Lr and Ll, respectively, via
D2r and D2l. The set D2-tautologies is {A ∈ F |♢τ(A) ∈ S5}. Similarly,
the sets of D2r- and D2l-tautologies are {A ∈ Fr | ♢τ(A) ∈ S5} and
{A ∈ Fl | ♢τ(A) ∈ S5}, respectively. Nowadays, D2 is usually referred
to as the corrected version from [22] rather than from [23]: D2 = {A ∈
Fr |♢τ(A) ∈ S5}. It is this version of D2 with right discussive conjunction
that we employ in this paper.

3. Paracomplete versions of D2

We fix three languages, L ∗
r , L ∗

l , and L ∗
b , over which a variant of D2

can be built. The former has the alphabet {P,¬,∨r
d,→w

d ,∧, (, )}, where
∨r
d is right discussive disjunction. The language L ∗

l has left discussive
disjunction ∨l

d instead of ∨r
d.10 The language L ∗

b has ∨l
b
11 instead of ∨r

d.
The sets of all L ∗

r -, L ∗
l -, and L ∗

b -formulas are defined in the standard way
and denoted via F ∗

r , F ∗
l , and F ∗

b , respectively. We define a translation
function σ from one of the languages L ∗

r or L ∗
l or L ∗

b to Lm:

• σ(P ) = P , for any P ∈ P,

• σ(¬A) = ¬σ(A),

• σ(A ∧B) = σ(A) ∧ σ(B),

9Strictly speaking, it was not explicitly said whether the new conjunction was meant
to extend the original language or to replace the classical conjunction.

10As in the case of Jaśkowski’s original model, we also refer to a model of discussion
and try to articulate the respective translations in terms of the possible strategy of
debaters that could be applied by them while formulating their own statements. That is
why we let ourselves to treat the connectives of implication and disjunction as discussive.

11Again, ‘b’ stands for ‘both’.
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• σ(A→w
d B) = □σ(A) → σ(B),

• σ(A ∨r
d B) = σ(A) ∨□σ(B),

• σ(A ∨l
d B) = □σ(A) ∨ σ(B),

• σ(A ∨b
d B) = □σ(A) ∨□σ(B).

We define the following logics (we associate a logic with its set of tautolo-
gies), where i ∈ {l, r,b}:

• Dp
2i = {A ∈ F ∗

i |□σ(A) ∈ S5}.

In what follows, we write Dp
2 for Dp

2l.
Let us emphasize that, as follows from this definition, Dp

2 is embeddable
into S5 the translation σ. It is not excluded that one can map S5 in Dp

2,
but this issue requires further research.

Let us say a few words about the intuitions that led to such an under-
standing of discussive connectives. In the original formulation, we have:
“If anyone states that p, then q”, so from the point of view of a given par-
ticipant, there is not too much needed to say q. Here we have a much more
mistrustful or misgiving position: to say q, it is needed that all participants
state p.

However, the reader is not supposed to consider that such a debating
model is unrealistic. In a sense, each debating model with some debaters
having the power of veto is of this kind. To put it differently, participants
are equal in the Jaśkowskian paraconsistent debating model and are not in
the paracomplete one in quite the same way debaters are equal in expressing
their views on international policy in  Lazienki Królewskie, but in order to
reach consensus in the United Nations Security Council, the power of veto
that its five permanent members have is to be overcome. Generally, to some
extent, at least some part of scientific knowledge and juridical process is
built in this way: it is only when all the sources (witnesses, observers,
experiments, participants in an experiment) jointly say some thesis that
a specific conclusion can be added to the current state of knowledge.

One can similarly understand the case of disjunction (say, ∨r
d). Either I

am saying p or everyone is stating q, so this would express a kind of dilemma
where we have an opposition of my own statements against statements
expressed by all the other debaters. Note that the Jaśkowskian disjunction
is classical; hence, p ∨ ¬p is valid there to the effect that “Everyone is
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stating that p∨¬p” expresses the capacity of any participant to state this
particular logical law in the course of a debate independently of statements
expressed by the other debaters. Paracomplete disjunction here is not
classical; hence, p ∨r

d ¬p is invalid here to the effect that the underlying
dilemma “Either I am saying p or everyone is stating that ¬p” is, obviously,
not characteristic of any debate. To be sure, the paracomplete model of
discussion allows any participant to state logical laws, too, but p ∨r

d ¬p is
not among them.

Interestingly, discussive conjunction and disjunction are, in a sense, in-
terdefinable. More strictly, if we would like to compare standard discussive
logics and paracomplete discussive ones, we can use some additional trans-
lations that show that particular logics are interdefinable. This could be
proved inductively by restricting languages to the {¬,∧l

d}-part on the dis-
cussive side and to the {¬,∨l

d}-part on the paracomplete side. Of course,
this could also be extended to the full languages. So, using inductive hy-
potheses, we would obtain:

τ(¬(¬A ∧l
d ¬B)) = ¬(♢¬τ(A) ∧ ¬τ(B)) ↔ ¬♢¬τ(A) ∨ ¬¬τ(B) ↔

□τ(A) ∨ τ(B) ↔by ind □σ(A) ∨ σ(B) = σ(A ∨l
d B),

σ(¬(¬A ∨l
d ¬B)) = ¬(□¬σ(A) ∨ ¬σ(B)) ↔ ¬□¬σ(A) ∧ ¬¬σ(B) ↔

♢σ(A) ∧ σ(B) ↔by ind ♢τ(A) ∧ τ(B) = τ(A ∧l
d B).

The logic Dp
2 has the following axioms (where ⊥ denotes p ∧ ¬p).

Ax1 A→w
d (B →w

d A)

Ax2 (A→w
d (B →w

d C)) →w
d ((A→w

d B) →w
d (A→w

d C))

Ax3 ¬
(
A ∧ ¬(A ∧A)

)
Ax4 ¬

(
(A ∧B) ∧ ¬A

)
Ax5 ¬

(
¬(A ∧ ¬B) ∧ ¬¬(¬(B ∧ C) ∧ ¬¬(C ∧A))

)
Ax6 ¬¬A→w

d A

Ax7 ¬(¬(A→w
d ⊥) ∧ ¬A)

Ax8 ¬(¬¬((A→w
d ⊥) →w

d ⊥) ∧ ¬A)

Ax9 ¬
(
¬(¬(A ∧ ¬B) →w

d ⊥) ∧ ¬¬(¬(A→w
d ⊥) ∧ ¬¬(B →w

d ⊥))
)

Ax10 ¬
(
A ∧ ¬¬(A→w

d ⊥)
)

Ax11 ¬
(
¬
(
¬(A→w

d ⊥) ∧ ¬B
)
∧ ¬(A→w

d B)
)
.

Ax12 ¬
(
(A→w

d B) ∧ ¬¬(¬(A→w
d ⊥) ∧ ¬B)

)
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Ax13 ¬
(
(A ∨l

d B) ∧ ¬¬(¬¬(A→w
d ⊥) ∧ ¬B)

)
Ax14 ¬

(
¬(¬¬(A→w

d ⊥) ∧ ¬B) ∧ ¬(A ∨l
d B)

)
Ax15 A→w

d

((
¬¬

(
¬(A ∧ ¬B) →w

d ⊥
)
→w

d ⊥
)
→w

d B
)

Ax16 A→w
d ¬(A→w

d ⊥)

Ax17 ¬(A ∧ ¬B) →w
d (A→w

d B)

A A→w
d B

B
(MPw

d )

Lemma 3.1 (Deduction theorem). X,A ⊢Dp
2
B iff X ⊢Dp

2
A→w

d B.

Proof: The proof is textbookian in the presence of Ax1, Ax2, and (MPw
d ).

One can see that any proof given on the basis of classical logic expressed
in the language with ¬ and ∧ by means of Ax3–Ax5 and the respective
form of modus ponens can be transferred into a Dp

2-proof by Ax17.

Fact 3.2. For any thesis A of classical logic in the language with ¬ and ∧,
⊢Dp

2
A.

3.1. Lewis’s intensional implication and disjunction

Intensional implication and disjunction introduced by Lewis in the systems
S1-S5 had a deep influence on modern modal logic (especially the former,
which is mostly dubbed strict implication). It is the well-knownness of in-
tensional implication and disjunction that allows us to skip details (Lewis’s
motivation to introduce it, analyzing its pros and cons, etc.) and address
those properties of them that concern the purpose of our study only.12 We
begin with strict implication, which we do not denote with the Lewisian
fishhook but with →L, so that its traditional definition looks as follows:
φ →L ψ =df □(φ → ψ). We are interested in two arguments: the one by
Jaśkowski who rejects →L in the quality of discussive implication, and the
one by Lewis, who rejects the known classical equivalence between impli-
cation and disjunction.

12An accurate introduction to Lewis’s ideas and their impact on modern modal logic
is in [8].
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Let us remind the reader that Jaśkowski devotes a passage to the
Lewisian implication while describing the known solutions to the prob-
lem of formulating the logic of inconsistent systems [23, p. 40]. In more
detail, he rejects it due to its weakness: “But the set of the theses which
include strict implication only, and do not include material implication,
is very limited” [23, p. 40].13 Our implication is stronger than →L be-
cause □(φ → ψ) |=S5 □(□φ → ψ), and the opposite is false, though.14

Moreover, in contrast to →L, our implication is not paraconsistent because
¬A→w

d (A→w
d B) is valid. On the other hand, one of Lewis’s motivations

is to avoid paradoxes of material implication which are valid in our sys-
tem.15 Our implication is similar to →L with respect to the classical one,
viz., it is stronger than it because φ→ ψ |=S5 □φ→ ψ, and the opposite is
false, though. This fact means that Quine’s critique on →L, which roughly
bases on the fact that even for S1, if φ→ ψ is a theorem, then φ→L ψ is
a theorem, either, holds true for our implication [8].

Another suggestion by Lewis is about the classical equivalence between
implication and disjunction: A → B =df ¬A ∨ B. In our logic, it fails:
¬A ∨l

d B |= A→w
d B, and the opposite is false, though, because □(□¬φ ∨

ψ) |=S5 □(□φ→ ψ) with the opposite being false. This is in sharp contrast
to Lewis, who bases upon MacColl’s ideas that the failure of the above-
mentioned equivalence is caused by ¬A∨LB ̸|= A→L B, where ∨L stands
for the Lewisian disjunction, while the opposite is true: “Lewis infers that
disjunction too must be given a new intensional sense, according to which
(p ∨ q) holds just in case if p were not the case it would have to be the
case that q. Considerations of this sort, based on the distinction between
extensional and intensional readings of the connectives, were not original
to Lewis. Already [. . . ] MacColl [. . . ] claimed that (p → q) and (¬p ∨ q)
are not equivalent: (¬p ∨ q) follows from (p→ q), but not vice versa” [8].

13Perzanowski, who is the editor of the contemporary translation of both Jaśkowski’s
papers, notes: “Observe that the present criticism in comparison with the previous
one, is rather weak. Some calculi of the strict implication can thereby be treated as
paraconsistent ones” [23, p. 56].

14Recall that the same analysis shows that our implication is stronger than the
Jaśkowskian one.

15Note that avoiding those paradoxes is not our motivation whatsoever.
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4. Soundness and completeness

4.1. L-counterpart of S5

First of all, let us recall the axiomatics of the modal logic S5. It can be
axiomatized by following axioms and rules16:

All the axiom schemes of CPL (CPL)

□(φ→ ψ) → (□φ→ □ψ) (K)

□φ→ φ (T)

□φ→ □□φ (4)

♢□φ→ φ (Bd)

♢φ↔ ¬□¬φ (Def♢)

φ φ→ ψ

ψ
(MP)

φ

□φ
(Nec)

Instead of (Bd), the formula (B) φ → □♢φ is usually used. As it
is known (see, e. g., [17, p. 44–45]), these formulas are replaceable in all
normal logics.

Da Costa and Dubikajtis [14] as well as Omori and Alama [38] used the
notion of “M-counterpart of S5” denoted as M(S5) (following Perzanowski’s
terminology [39]), where M(S5) = {φ ∈ Fm| ⊢S5 ♢φ}. While changing
♢ to □ in the definitions of the discussive connectives, we also incline to-
wards an application of the same point of view when formally explicating
the point of view of an external observer in Jaśkowski’s model of discussion.
In the presented variant, the external observer would be more careful by
accepting a given discussive thesis only when its translated modal version
is necessarily accepted. That is why we use the notion of “L-counterpart of
S5” denoted as L(S5) (following Perzanowski’s terminology again, where
L(S5) = {φ ∈ Fm| ⊢S5 □φ}), in the definition of the proposed vari-
ant of discussive logic. However, observe the below Fact that follows
from [39, (3.6)].

Fact 4.1. L(S5) = S5.

Let us give an axiomatization of L(S5) (taking into account the given
above Fact 4.1, it is also an axiomatization of S5) corresponding to the

16‘CPL’ is for classical propositional logic, of course. We can consider any fixed
axiomatization of CPL or just take all theses of CPL.
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recalled above axiomatization of S5 and useful for our next considerations.
Thus, we present the system JL. It corresponds also in a way to Kotas’s
axiomatization of LS5 — the set of all theses of S5 having □ at the be-
ginning [26]. The relation ⊢JL is determined by the following axioms and
rules of inference.

AJL1 ♢□φ, where φ is an axiom scheme of a fixed axiomatization of
CPL,

AJL2 ♢□(□(φ→ ψ) → (□φ→ □ψ))

AJL3 ♢□(□φ→ φ)

AJL4 ♢□(φ→ ♢φ)17

AJL5 ♢□(□φ→ □□φ)

AJL6 ♢□(♢□φ→ φ)

AJL7 ♢□(♢φ↔ ¬□¬φ)

RJL1
φ ♢□(φ→ ψ)

ψ

RJL2
φ

□φ

Lemma 4.2. If ⊢JL φ, then ⊢S5 □φ.

Proof: Induction on the length of a derivation of φ in JL. Suppose that
⊢JL φ. Then φ is an axiom or is obtained by RJL1 or RJL2.

Let φ be an axiom. It is standard that if φ ∈ CPL or it is an instance
of (K), (T), (Td), (4), (Bd) or (Def♢), then □♢□φ ∈ S5. Thus, ⊢S5 □♢□φ,
i.e., ⊢S5 □φ.

17Of course, (Td): φ → ♢φ is derivable on basis of the given axiomatization of S5.
Note also that the axiom AJL4 is needed to rebuild ♢□ before formulae obtained by
(MP) (see Lemma 4.3 below). The need for AJL4, whose derivability on the basis of
the rest of the system ⊢JL goes beyond the scope of the paper, is connected with saving
1–1 correspondence between L(S5) and JL.
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Let φ be obtained by RJL1 from some formulas ψ and ♢□(ψ → φ).
By the inductive hypothesis, ⊢S5 □ψ and ⊢S5 □♢□(ψ → φ). Since ⊢S5

□♢□F ↔ □F , for any formula F (see, e. g. [17, p. 43]), we have ⊢S5 □(ψ →
φ). Since ⊢S5 □(ψ → φ) → (□ψ → □φ), we have ⊢S5 □φ.

Let φ be obtained by RJL2 from some formula ψ. Then φ has the
form of □ψ. By the inductive hypothesis, ⊢S5 □ψ. By Gödel’s rule, we get
⊢S5 □□ψ, i.e., ⊢S5 □φ.

Lemma 4.3. If ⊢S5 φ, then ⊢JL ♢□φ.

Proof: Induction on the length of a derivation of φ in S5. Suppose that
⊢S5 φ. Then φ is an axiom or is obtained by modus ponens (MP) or by
Gödel’s rule.

Let φ be an axiom. Then ♢□φ is an axiom of JL.
Let φ be obtained by (MP) from some formulas γ and γ → φ. By

the inductive hypothesis, ⊢JL ♢□γ and ⊢JL ♢□(γ → φ). Using AJL6

(i.e., ♢□(♢□γ → γ)) and RJL1, we get ⊢JL γ. Then, by RJL1, ⊢JL φ.
By RJL2, ⊢JL □φ. By AJL4, ⊢JL ♢□(□φ → ♢□φ). Hence, by RJL1,
⊢JL ♢□φ.

Let φ be obtained by Gödel’s rule from some formula γ. Then φ has
the form of □γ. By the inductive hypothesis, ⊢JL ♢□γ. Using AJL6 and
RJL1, we get ⊢JL γ. Applying RJL2 twice, we obtain ⊢JL □□γ. By AJL6

and RJL1, ⊢JL ♢□□γ, i.e., ⊢JL ♢□φ.

Lemma 4.4. φ ∈ L(S5) iff ⊢JL φ.

Proof: Suppose that φ ∈ L(S5). Then ⊢S5 □φ, by the definition of
L(S5). By Lemma 4.3, ⊢JL ♢□□φ. By AJL6, ⊢JL ♢□(♢□□φ→ □φ). By
RJL1, ⊢JL □φ. By AJL3, ⊢JL ♢□(□φ→ φ), hence, using RJL1, we infer
⊢JL φ.

Suppose that ⊢JL φ. Then ⊢S5 □φ, by Lemma 4.2. By the definition
of L(S5), φ ∈ L(S5).

4.2. L-counterpart of S5 and paracomplete discussive logic

The system JL introduced above employs a modal rather than a discussive
language.

Let us introduce a translation function π from Lm to L ∗
r , L ∗

l , and L ∗
b

(where ⊥ denotes p ∧ ¬p):
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• π(P ) = P , for any P ∈ P,

• π(¬φ) = ¬π(φ),

• π(♢φ) = ¬π(φ) →w
d ⊥,

• π(□φ) = ¬(π(φ) →w
d ⊥),

• π(φ ∧ ψ) = π(φ) ∧ π(ψ).

• π(φ ∨ ψ) = ¬(¬π(φ) ∧ ¬π(ψ)),

• π(φ→ ψ) = ¬(π(φ) ∧ ¬π(ψ)).

We are going to use the following two axiomatizations of S5 in the
{¬,∧,□}-language for the reasons connected with the translation π given
above. We use Rosser’s [44, p. 55] axiomatization of CPL in the {¬,∧}-
language.18

The given below consequence relation meant for S5 is denoted by ⊢S5¬∧ :

Ax1 ¬
(
φ ∧ ¬(φ ∧ φ)

)
Ax2 ¬

(
(φ ∧ ψ) ∧ ¬φ

)
Ax3 ¬

(
¬(φ ∧ ¬ψ) ∧ ¬¬(¬(ψ ∧ γ) ∧ ¬¬(γ ∧ φ))

)
Ax4 ¬

(
□¬(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ)

)
Ax5 ¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ)

Ax6 ¬(□φ ∧ ¬φ)

Ax7 ¬(□φ ∧ ¬□□φ)

Ax8 ¬(♢□φ ∧ ¬φ)

RS51
φ ¬(φ ∧ ¬ψ)

ψ
RS52

φ

□φ

Let us denote the function from Lm to Lm by δ that operates as π for ¬,
∧, ∨, and →, while for modal operators we assume that δ(♢φ) = ♢δ(φ)
and δ(□φ) = □δ(φ). We have an easy-to-see:

18The original Rosserian axioms look as follows: (1) P ⊃ PP , (2) PQ ⊃ P , (3)
P ⊃ Q. ⊃ .∼(QR)⊃∼(RP ). Note that due to the invalidity of (A →w

d B) →w
d ¬(A∧¬B)

on the basis of Dp
2, one cannot interpret implication in the Rosserian axiomatization

as →w
d .
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Fact 4.5. For any formula φ ∈ Fm

1. φ ∈ S5 iff ⊢S5¬∧ δ(φ),

2. if φ is expressed in the language with {♢,□,¬,∧} and ⊢S5¬∧ φ, then
φ ∈ S5.

We will use another consequence relation denoted as ⊢JL¬∧ that corre-
sponds to ⊢JL.

AJL1 ♢□¬
(
φ ∧ ¬(φ ∧ φ)

)
AJL2 ♢□¬

(
(φ ∧ ψ) ∧ ¬φ

)
AJL3 ♢□¬

(
¬(φ ∧ ¬ψ) ∧ ¬¬(¬(ψ ∧ γ) ∧ ¬¬(γ ∧ φ))

)
AJL4 ♢□¬

(
□¬(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ)

)
AJL5 ♢□(¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ))

AJL6 ♢□¬(□φ ∧ ¬φ)

AJL7 ♢□¬(φ ∧ ¬♢φ)

AJL8 ♢□¬(□φ ∧ ¬□□φ)

AJL9 ♢□¬(♢□φ ∧ ¬φ)

RJL1
φ ♢□¬(φ ∧ ¬ψ)

ψ
RJL2

φ

□φ

Fact 4.6. For any formula φ in the language with ♢,□,¬,∧:

⊢JL φ iff ⊢JL¬∧ φ

Lemma 4.7. The following rule is inferable on the basis of Dp
2:

D

¬¬(D →w
d ⊥) →w

d ⊥
(♢□π)
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Proof:

1. D assumption

2. ¬¬(D →w
d ⊥) premiss

3. ¬¬(D →w
d ⊥) →w

d (D →w
d ⊥) Ax6

4. D →w
d ⊥ (MPw

d ): 2, 3

5. ⊥ (MPw
d ): 1, 4

6. D ⊢Dp
2
¬¬(D →w

d ⊥) →w
d ⊥ Lemma 3.1: 1–5

Lemma 4.8. For any axiom Ax of ⊢JL¬∧ , ⊢Dp
2
π(Ax).

Proof:

• The case of AJL1: ♢□¬
(
φ ∧ ¬(φ ∧ φ)

)
.

Since π(♢□¬
(
φ∧¬(φ∧φ)

)
) = ¬¬

(
¬
(
π(φ)∧¬(π(φ)∧π(φ))

)
→w

d ⊥
)

→w
d ⊥, we apply (♢□π) for D = ¬

(
π(φ) ∧ ¬(π(φ) ∧ π(φ))

)
—an

instance of Ax3.

• The case of AJL2: ♢□¬
(
(φ ∧ ψ) ∧ ¬φ

)
.

Since π
(
♢□¬((φ∧ψ)∧¬φ)

)
= ¬¬

(
¬
(
(π(φ)∧π(ψ))∧¬π(φ)

)
→w

d ⊥
)

→w
d ⊥, we apply (♢□π) for D = ¬

(
(π(φ) ∧ π(ψ)) ∧ ¬π(φ)

)
—an

instance of Ax4.

• The case of AJL3: ♢□¬
(
¬(φ ∧ ¬ψ) ∧ ¬¬(¬(ψ ∧ γ) ∧ ¬¬(γ ∧ φ))

)
.

Since π
(
♢□¬(¬(φ∧¬ψ)∧¬¬(¬(ψ∧γ)∧¬¬(γ∧φ)))

)
= ¬¬

(
¬
(
¬(π(φ)

∧ ¬π(ψ)) ∧ ¬¬(¬(π(ψ) ∧ π(γ)) ∧ ¬¬(π(γ) ∧ π(φ)))
)
→w

d ⊥
)
→w

d ⊥,

we apply (♢□π) for D = ¬
(
¬(π(φ) ∧ ¬π(ψ)) ∧ ¬¬(¬(π(ψ) ∧ π(γ)) ∧

¬¬(π(γ) ∧ π(φ)))
)
—an instance of Ax5.
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• The case of AJL4: ♢□¬
(
¬□(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ)

)
.

Since π
(
♢□¬(¬□(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ))

)
= ¬¬

(
¬
(
¬¬((π(φ) ∧

¬π(ψ)) →w
d ⊥)∧¬¬(¬(π(φ) →w

d ⊥)∧¬¬(π(ψ) →w
d ⊥))

)
→w

d ⊥
)
→w

d

⊥, we apply (♢□π) forD = ¬
(
¬¬((π(φ)∧¬π(ψ)) →w

d ⊥)∧¬¬(¬(π(φ)

→w
d ⊥) ∧ ¬¬(π(ψ) →w

d ⊥))
)
—an instance of Ax9.

• The case of AJL5: ♢□(¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ)).

Since π(♢□(¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ))) = ¬¬
((

¬((¬π(φ)

→w
d ⊥) ∧ ¬¬¬(¬π(φ) →w

d ⊥)) ∧ ¬(¬¬(¬π(φ) →w
d ⊥) ∧ ¬(¬π(φ) →w

d

⊥))
)
→w

d ⊥
)

→w
d ⊥. We apply (♢□π) for D =

(
¬((¬π(φ) →w

d

⊥)∧¬¬¬(¬π(φ) →w
d ⊥))∧¬(¬¬(¬π(φ) →w

d ⊥)∧¬(¬π(φ) →w
d ⊥))

)
—

an instance of classical thesis that is inferable by Fact 3.2.

• The case of AJL6: ♢□¬(□φ ∧ ¬φ).

Since π(♢□¬(□φ ∧ ¬φ)) = ¬¬
(
¬(¬(π(φ) → ⊥) ∧ ¬π(φ)) →w

d ⊥
)

→w
d ⊥, we apply (♢□π) for D = ¬(¬(π(φ) → ⊥) ∧ ¬π(φ))—an

instance of Ax7.

• The case of AJL7: ♢□¬(φ ∧ ¬♢φ)

Since π(♢□¬(φ∧¬♢φ)) = ¬¬
(
¬(π(φ)∧¬(¬π(φ) →w

d ⊥)) →w
d ⊥

)
→w

d

⊥, we apply (♢□π) for D = ¬(π(φ) ∧ ¬(¬π(φ) →w
d ⊥))—following

from Ax7 by Fact 3.2.

• The case of AJL8: ♢□¬(□φ ∧ ¬□□φ).

Since π(♢□¬(□φ ∧ ¬□□φ)) = ¬¬
(
¬
(
¬(π(φ) →w

d ⊥) ∧ ¬¬(¬(π(φ)

→w
d ⊥) →w

d ⊥)
)
→w

d ⊥
)
→w

d ⊥, we apply (♢□π) forD = ¬
(
¬(π(φ) →w

d

⊥) ∧ ¬¬(¬(π(φ) →w
d ⊥) →w

d ⊥)
)
—an instance of Ax10.

• The case of AJL9: ♢□¬(♢□φ ∧ ¬φ).

Since ♢□¬(♢□φ ∧ ¬φ) = ¬¬
(
¬
(
(¬¬(π(φ) →w

d ⊥) →w
d ⊥) ∧ ¬π(φ)

)
→w

d ⊥
)
→w

d ⊥, we apply (♢□π) for D = ¬
(
(¬¬(π(φ) →w

d ⊥) →w
d ⊥)

∧ ¬π(φ)
)
—an instance of Ax8.
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Now we want to show that in Dp
2, the specific discussive connectives

→w
d and ∨l

d are properly characterized. Such characterizations are in the
form of discussive implications in both directions.

Lemma 4.9. For any C ∈ L ∗
l , it holds ⊢Dp

2
π(σ(C)) →w

d C.

Proof: First, we show that ⊢Dp
2
¬(π(σ(A))∧¬A). To obtain that for any

A, ⊢Dp
2
¬(π(σ(A)) ∧ ¬A), we can prove ¬(π(σ(A)) ∧ ¬A) and additionally

¬(A ∧ ¬π(σ(A))) using simultaneous induction on the construction of A.
The case when A is a variable is trivial due to the fact that (Ax3)–

(Ax5) with (MP) expressed for the language {∧,¬} constitute the complete
axiomatization of classical logic. Similarly, due to the fact that π(σ(¬B)) =
¬π(σ(B)) and π(σ(B∧C)) = π(σ(B))∧π(σ(C)), the cases of ∧ and ¬ follow
by inductive hypotheses for B and C, and extensionality for classical logic
expressed in {∧,¬}.

Case A = B →w
d C.

By definitions ¬
(
π(σ(B →w

d C)) ∧ ¬(B →w
d C)

)
= ¬

(
π(□σ(B) →

σ(C))∧¬(B →w
d C)

)
= ¬

(
¬(¬(π(σ(B)) →w

d ⊥)∧¬π(σ(C)))∧¬(B →w
d C)

)
and ¬

(
(B →w

d C) ∧ ¬π(σ(B →w
d C))

)
= ¬

(
(B →w

d C) ∧ ¬π(□σ(B) →
σ(C))

)
= ¬

(
(B →w

d C) ∧ ¬¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬π(σ(C)))

)
.

Consider the following inference.

1. ¬(B ∧ ¬π(σ(B))) inductive hypothesis

2. ¬(B ∧ ¬π(σ(B))) →w
d ¬(¬(B ∧ ¬π(σ(B))) →w

d ⊥) Ax16

3. ¬(¬(B ∧ ¬π(σ(B))) →w
d ⊥) 1, 2 and (MPw

d )

4. ¬
(
¬(¬(B ∧ ¬π(σ(B))) →w

d ⊥) ∧ ¬¬(¬(B →w
d ⊥) ∧ ¬¬(π(σ(B)) →w

d

⊥))
)

Ax9

5. ¬(¬(B∧¬π(σ(B))) →w
d ⊥) →w

d ¬(¬(B →w
d ⊥)∧¬¬(π(σ(B)) →w

d ⊥))
4, Ax17 and (MPw

d )

6. ¬(¬(B →w
d ⊥) ∧ ¬¬(π(σ(B)) →w

d ⊥)) 3, 5, and (MPw
d )

Next, applying the above inferred formula, an instance of the axiom
Ax11: ¬

(
¬
(
¬(B →w

d ⊥)∧¬C
)
∧¬(B →w

d C)
)
, the inductive hypothesis for

C: ¬(π(σ(C)) ∧ ¬C), and classical logic expressed in {∧,¬} (due to Fact
3.2) we obtain the required thesis ¬

(
π(σ(B →w

d C)) ∧ ¬(B →w
d C)

)
.
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For the case of ¬
(
(B →w

d C)∧¬π(σ(B →w
d C))

)
, consider the following

inference.

1. ¬(π(σ(B)) ∧ ¬B) inductive hypothesis

2. ¬(π(σ(B)) ∧ ¬B) →w
d ¬(¬(π(σ(B)) ∧ ¬B) →w

d ⊥) Ax16

3. ¬(¬(π(σ(B)) ∧ ¬B) →w
d ⊥) 1, 2 and (MPw

d )

4. ¬
(
¬(¬(π(σ(B)) ∧ ¬B) →w

d ⊥) ∧ ¬¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬¬(B →w

d

⊥))
)

Ax9

5. ¬(¬(π(σ(B))∧¬B) →w
d ⊥) →w

d ¬(¬(π(σ(B)) →w
d ⊥)∧¬¬(B →w

d ⊥))
4, Ax17 and (MPw

d )

6. ¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬¬(B →w

d ⊥)) 3, 5, and (MPw
d )

Similarly, using the obtained formula, Ax12, the inductive hypothesis for
C: ¬(C ∧ ¬π(σ(C))) and classical logic expressed in {∧,¬} we obtain the
required formula.

Case A = B ∨l
d C.

By definitions ¬
(
π(σ(B ∨l

d C)) ∧ ¬(B ∨l
d C)

)
= ¬

(
π(□σ(B) ∨ σ(C)) ∧

¬(B ∨l
d C)

)
= ¬

(
¬(¬¬(π(σ(B)) →w

d ⊥) ∧ ¬π(σ(C))) ∧ ¬(B ∨l
d C)

)
.

Again, taking into account ¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬¬(B →w

d ⊥)) and
¬(¬(B →w

d ⊥) ∧ ¬¬(π(σ(B)) →w
d ⊥)), applying an instance of the axiom

Ax14 ¬
(
¬(¬¬(B →w

d ⊥) ∧¬C) ∧¬(B ∨l
d C)

)
, the inductive hypothesis for

C, and extensionality for classical logic expressed in {∧,¬} (due to Fact
3.2) we obtain the required thesis.

The case of ¬
(
(B ∨l

d C)∧¬π(σ(B ∨l
d C))

)
is being treated analogously

with the help of Ax13.
Having proved ⊢Dp

2
¬(π(σ(A)) ∧ ¬A), the required thesis follows by

Ax17.

We need an additional, easy-to-see fact.

Fact 4.10. For any φ ∈ Fm, it holds π(φ) = π(δ(φ)).

Theorem 4.11. For any formula A of the discussive language:

A ∈ Dp
2 iff ⊢Dp

2
A
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Proof: Assume that A ∈ Dp
2. By definitions, □σ(A) ∈ S5, while by Fact

4.5 and definition of δ, ⊢S5¬∧ □δ(σ(A)), and again by Fact 4.5, □δ(σ(A)) ∈
S5. Hence, by Lemma 4.4 we have ⊢JL δ(σ(A)). By Fact 4.6, ⊢JL¬∧

δ(σ(A)). Consider a respective proof φ1, . . . , φn = δ(σ(A)), on the basis
of ⊢JL¬∧ . Now let us consider C1 = π(φ1), . . . , Cn = π(φn) = π(δ(σ(A))),
Cn+1 = π(δ(σ(A))) →w

d A, Cn+2 = A. Using Fact 4.10, we see that
Cn = π(σ(A)), Cn+1 = π(δ(σ(A))) →w

d A = π(σ(A)) →w
d A. By induction

on the length of the proof, we show that for each 1 ⩽ i ⩽ n + 2, ⊢Dp
2
Ci.

The case of axioms follows by Lemma 4.8.
Consider the cases of rules. Assume that φi, where 1 ⩽ i ⩽ n re-

sults from an application of RJL1, that is, there are 1 < j, k < i such
that φk = ♢□¬(φj ∧ ¬φi). By inductive hypothesis ⊢Dp

2
π(φj) and

⊢Dp
2
π(♢□¬(φj ∧ ¬φi)), i.e., ⊢Dp

2
¬¬(¬(π(φj) ∧ ¬π(φi)) →w

d ⊥) →w
d ⊥.

Consider the following sequence:

1. π(φj) by inductive hypothesis

2. ¬¬(¬(π(φj) ∧ ¬π(φi)) →w
d ⊥) →w

d ⊥ by inductive hypothesis

3. π(φj) →w
d

(
(¬¬

(
¬(π(φj)∧¬π(φi)) →w

d ⊥
)
→w

d ⊥) →w
d π(φi)

)
Ax15

4. π(φi) 2 × (MPw
d ): 1, 2, 3

Assume that φi, where 1 ⩽ i ⩽ n results from an application of RJL2,
that is, there is 1 < k < i such that φi = □φj . We have to show that ⊢Dp

2

π(□φj), i.e., ⊢Dp
2
¬(π(φj) →w

d ⊥). By the inductive hypothesis ⊢Dp
2
π(φj).

Consider the following sequence:

1. π(φj) by inductive hypothesis

2. π(φj) →w
d ¬(π(φj) →w

d ⊥) Ax16

3. ¬(π(φj) →w
d ⊥) (MPw

d ): 1, 2

For the last two elements in C1, . . . , Cn, Cn+1, Cn+2 = A we use Lemma
4.9 and (MPw

d ).
The reverse implication is obtained by routine checking.
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5. A modification of axiomatization

Now let us consider only the {¬,→w
d ,∧}-part of Dp

2.19 As the only rule
of inference, let ⊩Dp

2
denote the consequence relation as determined by

(MPw
d ) together with the axiom schemes listed below: Ax1–Ax5, Ax11,

Ax16–Ax17, and

¬((A→w
d B) ∧ (¬(A→w

d ⊥) ∧ ¬B)) (Impcl)

¬(((A→w
d ⊥) →w

d ⊥) ∧ ¬A) (Bd)

One can easily see that by Ax16, Ax17, positive logic expressed with →w
d ,

and classical logic in ¬ and ∧, and (Impcl) we have:

Fact 5.1.

⊩Dp
2
¬(A ∧ ¬B) →w

d (A→w
d ¬(B →w

d ⊥)) (K)

⊩Dp
2

(A→w
d B) →w

d ¬(¬(A→w
d ⊥) ∧ ¬B) (Imp)

Lemma 5.2.

⊩Dp
2
Ax9

⊩Dp
2
Ax12

Proof: By (K), (Imp), positive logic for →w
d we have:

• ¬(A ∧ ¬B) →w
d (A→w

d ¬(B →w
d ⊥)

• (A→w
d ¬(B →w

d ⊥) →w
d ¬(¬(A→w

d ⊥) ∧ ¬¬(B →w
d ⊥))

• ¬(A ∧ ¬B) →w
d ¬(¬(A→w

d ⊥) ∧ ¬¬(B →w
d ⊥))

• ¬
(
¬(¬(A ∧ ¬B) →w

d ⊥) ∧ ¬¬(¬(A→w
d ⊥) ∧ ¬¬(B →w

d ⊥))
)
,

The case of Ax12 is obvious from (Impcl) and classical logic expressed in
the language with ¬ and ∧.

19Since ∨l
d is definable in the considered language, for the language with ∨l

d, one could

just add two axioms: ¬((A∨l
dB)∧((A →w

d ⊥)∧¬B)), ¬(¬(A∨l
dB)∧¬((A →w

d ⊥)∧¬B)).
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Lemma 5.3. For any formula C in the language with {¬,→w
d ,∧}, it holds

⊩Dp
2
π(σ(C)) →w

d C.

Proof: First, we show that ⊩Dp
2
¬(π(σ(A))∧¬A). To obtain that for any

A, ⊩Dp
2
¬(π(σ(A)) ∧¬A), we can prove ¬(π(σ(A)) ∧¬A) and additionally

¬(A ∧ ¬π(σ(A))) using simultaneous induction on the construction of A.
The cases of a variable, ¬ and ∧ are being handled in the same way as

in the proof of Lemma 4.9.
Using the axioms Ax11, Ax16, and Ax17, as well as Ax9 and Ax12

(inferable by Lemma 5.2), we can repeat the proof of Lemma 4.9 in its part
for the case of →w

d .
Having proved ⊢Dp

2
¬(π(σ(A)) ∧ ¬A), the required thesis follows by

Ax17.

Theorem 5.4. For any formula A of the discussive language:

A ∈ Dp
2 iff ⊩Dp

2
A

Proof: Assume that A ∈ Dp
2. By definition, □σ(A) ∈ S5, so also σ(A) ∈

S5. By Fact 4.5 ⊢S5¬∧ δ(σ(A)). There is a proof φ1, . . . , φn = δ(σ(A)) on
the basis of the relation ⊢S5¬∧ . Now we consider a sequence C1 = π(φ1),
. . . , Cn = π(φn) = π(δ(σ(A))), Cn+1 = π(δ(σ(A))) →w

d A, Cn+2 = A. By
Fact 4.10, we see that Cn = π(σ(A)) and Cn+1 = π(σ(A)) →w

d A.
By induction on the length of the proof, we show that for each 1 ⩽ i ⩽

n+2, ⊩Dp
2
Ci. For the case of an axiom scheme Ax ∈ {Ax1, Ax2, Ax3}, we

have π(Ax) is an instance of an axiom scheme of ⊩Dp
2
. For the case of Ax4,

we see that π
(
¬
(
□¬(φ∧¬ψ)∧¬¬(□φ∧¬□ψ)

))
= ¬

(
¬(¬(π(φ)∧¬π(ψ)) →w

d

⊥) ∧ ¬¬(¬(π(φ) →w
d ⊥) ∧ ¬¬(π(ψ) →w

d ⊥))
)
. Thus, by Lemma 5.2, the

required thesis is an instance of a formula provable on the basis of ⊩Dp
2
.

For the case of Ax6, we see that π(¬(□φ ∧ ¬φ)) = ¬(¬(π(φ) →w
d

⊥) ∧ ¬π(φ)) But this follows from the thesis A→w
d A and (Imp).

For the case of Ax7, we have π(¬(□φ∧¬□□φ)) = ¬
(
¬(π(φ) →w

d ⊥) ∧
¬¬(¬(π(φ) →w

d ⊥) →w
d ⊥)

)
. By Ax16 we have A →w

d ¬(A →w
d ⊥) and

¬(A →w
d ⊥) →w

d ¬(¬(A →w
d ⊥) →w

d ⊥), hence A →w
d ¬(¬(A →w

d ⊥) →w
d

⊥), so the required formula follows by (Imp).
For the case of Ax8, we have π(¬(φ ∧ ¬□♢φ)) = ¬

(
π(φ) ∧ ¬¬((¬π(φ)

→w
d ⊥) →w

d ⊥)
)
. However, by (Bd) we have ¬(((¬A→w

d ⊥) →w
d ⊥)∧¬¬A),

hence by classical logic expressed in {¬,∧}, Ax17, by MPw
d we obtain ¬

(
A∧
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¬¬((¬A→w
d ⊥) →w

d ⊥)
)
, so the required scheme is an instance of the last

scheme.
Consider the rule cases. Assume that φi, where 1 ⩽ i ⩽ n results

from application of RS51, that is, there are 1 < j, k < i such that φk =
¬(φj ∧¬φi). By inductive hypothesis ⊩Dp

2
π(φj) and ⊩Dp

2
π(¬(φj ∧¬φi)),

i.e., ⊩Dp
2

(¬(π(φj) ∧ ¬π(φi))), but by Ax17 ⊩Dp
2
π(φj) →w

d π(φi), so
the required formula follows by (MPw

d ). The case of RS52 is a direct
consequence of the application of Ax16 and (MPw

d ).
For the formula Cn+1 we use Lemma 5.3, while Cn+2 is obtained by the

application of (MPw
d ).

The fact that if ⊩Dp
2
A, then A ∈ Dp

2 follows by routine checking.

6. Related work

Arguably, Akama, Abe, and Nakamatsu’s discursive logic is the first para-
complete discussive logic [2] that Jaśkowski’s discussive logic inspires.20

Being based on Nelson’s constructive logic with a strong negation N4 [4, 36]
(the name N4 is due to Wansing [52]), Akama et al. propose CDLSN,
constructive discursive logic with strong negation, where “discursive nega-
tion is defined similar to intuitionistic negation and discursive implication
is defined as material implication using discursive negation [2, p. 395] [. . . ]
CDLSN can be defined in two ways. One is to extend N4 with discursive
negation ¬d. The other is to weaken intuitionistic negation in N4. We
adopt the first approach [. . . ] Intuitionistic negation is not a discursive
negation” [2, p. 398]. Below, we highlight some (dis)similarities between
this and our approaches.

First, Akama et al.’s approach is not standard because it unemploys a
classically-based modal logic: “Most works on discursive logic utilize clas-
sical logic and S5 as a basis. However, we do not think that these are
essential. For instance, an intuitionist hopes to have a discursive system
in a constructive setting” [2, p. 397]. However, they argue that CDLSN
is a discussive logic (see [2, pp. 406–407]). Our motivation is not to set
up a discussive logic by any means. Rather, we would like to show that
non-discussive logics are obtainable if one sticks to the standard approach
for setting up discussive logic on the basis of a classically-based modal

20The below-mentioned exposition of both CDLSN itself and the ideas beyond it
does not claim completeness. The reader is consulted to address [2] for details.
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logic and at the same time employs a certain non-standard interpretation
of discussive connectives. In particular, the non-discussive logics in this
paper are obtained via non-standard interpretations of discussive disjunc-
tion. Alternatively and quite analogously, the non-standard interpretation
of discussive negation as ¬dA =df □¬A, which we briefly outline in Sec-
tion 3 above might be employed to set up non-discussive logic. We do not
get into details here, for it deserves a separate paper.

Second, both logics are similar because no version of the law of excluded
middle is valid. Hence, both of them are paracomplete.21 However, the
invalidity of these versions stems from different reasons. The intuitionistic-
like version, A ∨ ∼A (∼ is the original notation in [2] for the strong nega-
tion), as well as the discussive one, A∨¬dA, have intuitionistic disjunction
and are CDLSN-invalid due to the well-known properties of the given
intuitionistic(-like) negations and disjunction. Our version, A ∨d ¬A, is
quite opposite in a sense that it contains classical negation and discussive
disjunction. And its invalidity is due only to the interpretation of discus-
sive disjunction as A ∨d ¬A =df □A∨¬A, where □A∨¬A is S5-invalid.22

Third, with regard to discussive implications in both logics, one of ours
proves each formula from the classical implicative fragment, which is obvi-
ously not in line with Akama et al.’s intuitionistic-like motivation. Hence,
((A→w

d B) →w
d A) →w

d A is a theorem in our logic only.23 Moreover, being
a theorem in our logic, A→w

d A is not a CDLSN-theorem. Well-known in-
tuitionistically invalid formulae with (both strong and discussive) negations

21Their paracompleteness is in line with the history of logic, where paraconsistency
and paracompleteness often go hand-in-hand. As J.-Y. Béziau puts it: “Paraconsistent
logic and paracomplete logic appear therefore like husband and wife” [9, p. 12].

22The alternative approach which we sketch in Section 3 above is to interpret discus-
sive negation in a non-standard way as ¬d A =df □¬A. It gives us an S5-invalid formula
A ∨ □¬A.

23Let us notice that in general, paracompleteness (when referring to the invalidity of
the law of excluded middle) has not to entail that the implicational-negative part cannot
behave classically (it can be easily justified by considering a similar translation to ours,
where in the case of implication no modality is added). On the other hand, in Dp

2 for
example, the formula (¬p →w

d ¬q) →w
d (q →w

d p) belonging to classical logic expressed

in the implicational-negative language, is not a thesis of Dp
2. It can be invalidated by

using our translations. Indeed, consider the formulas obtained via the translation σ
given in Section 3 and equivalent on the basis of S5 to each of the following formulas:
□(□¬p → ¬q) → (□q → p); □(♢p ∨ ¬q) → (□q → p); (♢p ∨ □¬q) → (□q → p);
((♢p ∧ □q) ∨ (□¬q ∧ □q)) → p. One can easily see that the last formula is not a thesis
of S5, so, (¬p →w

d ¬q) →w
d (q →w

d p) is indeed not a thesis of Dp
2.
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predictably fail in CDLSN, say, ¬d ¬dA→w
d A, while their analogues with

the classical negation, say, ¬¬A →w
d A, are theorems in our logic. On the

other hand, say, A →w
d ¬d ¬dA as well as its analogue with the classical

negation A→w
d ¬¬A are valid in CDLSN and in our logic, respectively. At

last, in [2], the authors define discursive implication as material implication
using discursive negation, i.e., A→w

d B =df ¬dA∨B. Our analogue of this
definition, A →w

d B =df ¬A ∨d B, as well as ¬(A ∧ B) →w
d (¬A ∨d ¬B)

do not hold. Let us recall to the reader that our logic does not employ
any discussive conjunction, for the motivation is not focused on it but on
discussive disjunction.

7. Conclusion

With regard to future topics to study, let us point out two directions. The
former deals with developing the target logic. Following Perzanowski’s idea
(which he introduced in a comment on his translation of Jaśkowski’s paper
[22, p. 59]), Ciuciura [11] considers a quasi-discursive system ND+

2 which
has a discursive negation defined as follows:

• τ(¬dA) = ♢¬τ(A).

One may consider a paracomplete version of ND+
2 with the following

negation:

• σ(¬dA) = □¬σ(A).

As the reviewer kindly drew our attention, it should be clear by looking
at [37, Definition 11] that the three-valued logic I1 [47] is characterized in
a similar manner by considering the translation as follows, where ∼ and
→I are negation and implication of I1:

• σ(∼A) = □¬σ(A),

• σ(A→I B) = □σ(A) → □σ(B).

The paper [37] also makes use of the ‘diamond’ type implication and,
similarly to [11], the ‘diamond-not’ type negation in capturing P1 [46]:

• σ(∼A) = ♢¬σ(A),

• σ(A→I B) = ♢σ(A) → ♢σ(B).
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Yet another similar translation can be found in Kovač’s paper [28]:

• σ(A ∧B) = ♢σ(A) ∧ ♢σ(B),

• σ(A ∨B) = □σ(A) ∨□σ(B),

• σ(A→ B) = ♢σ(A) → □σ(B).

Jaśkowski is known to have rejected a many-valued tabular approach to
D2 with providing (arguably, quite weak) arguments in favour of the modal
approach that has been fruitfully developing for more than six decades
already (and the present paper is another one evidence of it). Nevertheless,
as in the case of D2, it would be interesting to develop the tabular many-
valued approach to Dp

2: in particular, to find out Dp
2-provabiity of (some

of) the formulae that are characteristic of paracomplete reasoning.
The latter direction of future research deals with applications of Dp

2.
Generally, the reader’s brief look at the axioms of Dp

2 acknowledges their
awkwardness: Dp

2 inherits this property from D2. As a result, it is ex-
tremely difficult to implement the current Hilbert-style axiomatization of
Dp

2 in practice, which implies the problem with proof searching. A possi-
ble solution to this problem would be to axiomatize Dp

2 as a Gentzen-style
(sequent-style) or a natural deduction calculus. To the best of the authors’
knowledge, no such calculi have yet been set up in the literature, not even
for D2. We believe that on this path there will be found a solution for the
notoriously difficult problem of independence of the axioms of discussive
logics that is still open even for D2.

On the other hand, let us remind the reader about the passage on
page 36 about Dp

2 modeling a discussion whose debaters are not equal in
the sense in which they are equal in a discussion modeled with D2. Such
modeling, which is an application of the target logic to argumentation
theory, would also stimulate setting up axiomatizations of Dp

2 mentioned
above.

Last, but not least, the present approach could be generalized by using
other (weaker) modal logics as a basis for corresponding systems, similar
to how the minimal variant D0 of D2 is axiomatized with the help of the
deontic normal logic D in [19].

Acknowledgements. We express our gratitude to an anonymous re-
viewer for the insightful feedback on our paper. The QuillBot software
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Department of Logic
Institute of Philsophy
Faculty of Philosophy and Social Sciences
Fosa Staromiejska 1a
87-100 Toruń, Poland

e-mail: mruczek@umk.pl

Yaroslav Petrukhin

University of  Lódź
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Abstract

Regions-based theories of space aim—among others—to define points in a geo-
metrically appealing way. The most famous definition of this kind is probably
due to Whitehead. However, to conclude that the objects defined are points in-
deed, one should show that they are points of a geometrical or a topological space
constructed in a specific way. This paper intends to show how the development
of mathematical tools allows showing that Whitehead’s method of extensive ab-
straction provides a construction of objects that are fundamental building blocks
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1. Introduction
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fragment of the world. Yet your ambitions go way beyond that. You aim
at a general mathematical theory that will reflect the essential, structural
properties of a large fragment of what we know as the universe. You know
it is feasible. Faithful and efficient systems of geometry are exactly such
theories, and they have been with us since antiquity. Developed at the
outset as tools to handle practical problems of relatively small commu-
nities, they turned into theories describing universal properties of larger
fragments of space, including the properties of the universe as such after
the emergence of non-Euclidean geometries. The rise of topology has been
driven by the search for space’s most general features, as well as for the
solution of real-world problems, Euler’s Königsberg bridges puzzle tour to
be one of them. Purely mathematical enterprise at the beginning, topol-
ogy flourished as a branch of mathematics with applications in macro- and
micro-scale. All those achievements were obtained by experiencing frag-
ments of our world only but turned out to be so powerful as to describe its
most general properties.

Put yourself into the shoes of an admirer of geometry and topology who,
at the same time, finds one thing to be a bit troubling—the fundamental
constituents of geometrical and topological spaces are points, highly ide-
alized, dimensionless objects that cannot be found in the space of private
experience. Thus you ask yourself the question: could points be mathe-
matically satisfactory explained employing the objects from the perspective
space?

One of the very first endeavors toward a positive answer to the ques-
tion was due to Alfred N. Whitehead [46, 47, 48]. He presented various
constructions of points out of which the one from Process and reality was
best developed and gained the attention of the community of logicians,
mathematicians, and philosophers.1 However, having defined points, the
English mathematician never bothered himself to show that the entities
constructed are building blocks of any space.

This paper’s goals are very modest, as we aim to show how the de-
velopment of formal methods from the XXth century lets us carry out
Whitehead’s construction in a rigorous mathematical manner and formu-
late a partial positive solution to the problem of existence of non-trivial

1To tell the truth, the constructions of points from [46, 47] were wrong, as observed
by de Laguna [7]. The reason was that initially, Whitehead worked with part of relation
only, and de Laguna suggested—and rightly so—going beyond it and adopting the notion
of containing (the modern non-tangential inclusion) as one of the primitives.
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topologies based on Whitehead points. In light of this, the paper does not
provide any new groundbreaking results in the field of region-based topol-
ogy but rather shows how various results obtained within it allow us to
draw a positive conclusion concerning Whitehead points: not only do exist
structures with Whitehead points, but these points are also building blocks
of topological spaces that were constructed in the area of representation
theory for Boolean algebras and their extensions.

2. The informal construction

Observe that the data you receive through your senses, concerning 
the spatial entities, contain various objects that we may collectively call 
regions. Both the laptop on your desk and the courtyard you see from 
the window of your office are regions, chunks of space. Those chunks are 
related to each other in various ways, of which two seem to be the most 
general: (a) one region may be part of another, as the screen is part of 
the laptop, (b) two regions may touch each other, as in the case of the 
laptop and the surface of the desk, or can be separated, like the pen in 
your backpack and the cup of coffee standing next to your left hand. Next 
to these, we have the idea of points as precise locations in space. These 
can be represented as collections of shrinking regions in space, tapering 
down to the precise locations. One of the main driving forces of region-
based theories is to capture this vague idea through parthood and contact.

One way is to write down axioms that could be justified by how we
seem to experience regions and their relations. We may engage both part-
hood and contact, as many authors did, or only just one of them, as was
done originally by Whitehead [48]. Let ‘⊑’ and ‘C’ be the two symbols that
denote, respectively, parthood and (binary) contact. We read ‘x ⊑ y’ as x
is part of y and ‘x C y, as x is contact with y or x touches y. The most
reasonable axioms for the former are probably those for one of the possible
systems of mereology2 that is a faithful representation of spatio-temporal
properties between regions and their parts. For contact, the standard ax-
ioms to be assumed are the following: every region is in contact with itself:
x C x, the contact is symmetrical: if x C y, then y C x; if x C y and y is part
of z, then x C z, which intuitively means that if x touches y, then every
region of which y is part must also touch x. This is the axiomatic basis.

2See e.g. [31, 32] and [44] for expositions of various mereological theories.
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Figure 1. Point as a limit of shrinking system of regions

Other axioms may be introduced, and we will get back to this in the sequel.
The way of proceeding directly from the sense data to axioms of a theory
can be named, after Pratt-Hartmann [34], the empiricist approach.

Whitehead’s [48] characterization of contact and definition of point ex-
tends over six pages of Process and reality and is preceded by 24 assump-
tions and 15 other definitions, a solid overkill, to say the least. Let’s get
straight to the bottom of Whitehead’s points as easy as it gets without delv-
ing into his philosophical motivations. For these, we refer the interested
reader to the excellent exposition of Varzi [45].

The English mathematician [48] follows the idea of the point from Fig-
ure 1. To do this properly, one must first say what it means for one region
to be a non-tangential part (we will often use the phrase ‘well-inside’ as a
synonym of ‘non-tangential inclusion’) of another: it is the case when the
former is not in contact with the complement of the latter3 or, as we will
often say, is separated from the complement (see Figure 2).

3If we are working in the classical mereology we have to be careful what we mean by
the complement as the zero region is absent. See [31] for details. In the case the main
theory does not assume a region that is the largest region, the notion of the complement
may have no sense at all, and we have to define the situation from Figure 2 in a different
way. This can be done, e.g. by requiring that y does not touch any region outside x.
We refer the reader again to the paper by Varzi [45].
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xy

Figure 2. Region y is a non-tangential part of region x.

On the Whiteheadian road to points, we begin with the definition of
abstractive sets of regions, i.e., those sets that:

(a) do not have any minimum with respect to part of relation, that is
every region constituting an abstractive set has a proper part that
is also in the set,

(b) their any two distinct elements are comparable with respect to non-
tangential part relation.

The idea is that abstractive sets represent objects such as two-dimensional
figures, planes, one-dimensional lines or segments (see Figure 3), and—last
but not least—points, as the readers will convince themselves looking at
Figure 1 again. The question is how to identify these abstractive sets that
represent points? To this end, we define the covering relation between ab-
stractive sets as follows: A covers B (in symbols: A ⪰ B) iff for every
region x in A there is a region y in B such that y is part of x. Now, if A
covers B and vice versa, both sets represent the same object, and we can
say those sets are equivalent. It is routine to verify that the equivalence
of abstractive sets is indeed an equivalence relation: reflexive, symmetri-
cal, and transitive. An equivalence class, say [A], represents a unique object
and therefore deserves to be called a geometrical object. Still, it does not
have to satisfy our intuition of point as dimensionless, «infinitely» small
entity. How to identify these geometrical objects that do? A way out is
via comparing geometrical objects in the following manner: [A] � [B] if
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and only if A ⪰ B. The relation � is a partial order, and if the partially
ordered set of all geometrical elements happens to have minimal elements,
then these elements truly deserve the name of points.

Figure 3. A small fragment of an abstractive set of two-dimensional
rectangles representing a one-dimensional segment, marked above by dots.

Yet do they? How can we be sure that these are good candidates for
points? After all, we have nothing to support this claim except for our
intuition: when we think about regions as extended objects of the spatio-
temporal continuum, ordered by the aforementioned armory of relational
concepts, then what we defined as points are abstract objects that are,
in a way, so «tiny» that they must be good representations of what we
may ever want to declare points. So far, so good, the problem is that the
intuition may fail, and the best way to avoid failure is to put it to strict
mathematical tests. To do this, we need proper formal machinery, and
thus we have to leave empiricism behind and take the path of rationalism,
as characterized by Pratt-Hartmann [34].

3. The cornerstone

How can we test objects for «pointhood»? The best method we have is that
of the representation theory known from universal algebra, which allows us
to show that given objects from some abstract or concrete algebraic struc-
ture are indeed points. The idea of representation is a formal embodiment
of reducing the unfamiliar and abstruse to familiar and comprehensible.
Or turning abstract into concrete.
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To get the feeling of the mechanism of representation, let us divide the 
class of Boolean algebras into two subclasses of (a) abstract and (b) con-
crete Boolean algebras, respectively. Abstract BAs are defined as specific 
structures with a distinguished domain whose elements are to satisfy cer-
tain conditions (axioms), usually for the binary operations of meet and 
join, the unary operation of complement, and the two individual constants: 
zero and one (unity). In the case of concrete BAs, we have a fixed set X, 
and take as the domain of the algebra a family S of its subsets that contains 
X and ∅, and is closed for the set-theoretical operations of intersection, 
union, and complement. Such a family is called a field of sets. More 
precisely, a concrete BA may be identified with a pair ⟨X, S⟩ such that S is 
a field of sets over X (see [43]). It is evident that every concrete BA 
is an abstract one. It is also true that every abstract algebra is isomor-
phic to a concrete algebra, although this statement is far from obvious. 
It was proved by Marshall Stone [42], who created the representation 
method relevant from this paper’s point of view.

Stone’s work’s motivations were purely mathematical—he aimed to un-
derstand what Boolean algebras are and how they relate to other math-
ematical entities. The first step towards understanding was to show that
given any (abstract) Boolean algebra B we can construct (in a canonical
way) a concrete algebra ⟨X,S⟩ that is isomorphic to B.

With an algebra B at hand, everything we have at our disposal is this
algebra (plus various mathematical tools that are normally used). The
situation is analogous to a construction of a term model of a first-order
theory by means of the Henkin method—we start with syntactical data,
and we turn it into a model of the theory. To tell the truth, Henkin’s
construction may be viewed as a special case of the Stone theorem (see
e.g., Exercises 4, 5, and 6 in pages 37–38 of [26])

With every—either abstract or concrete—algebra, there is associated
the notion of a filter, a non-empty subset F of (the domain of) B that
does not contain the zero element, is upward closed (in the sense of the
standard Boolean order), and is closed for the binary meet operation.

The special place in the representation theory is occupied by ultrafilters,
i.e., filters that are maximal in the family of all filters (in the sense of set-
theoretical inclusion), or equivalently, filters F that satisfy the following
condition: for any x ∈ B, either x is in F or its Boolean complement −x
is in F . Given an algebra B, we will denote the family of all its ultrafilters
by Ult(B), and we are going to use the letter ‘U ’ as ranging over Ult(B).
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Applying set-theoretical machinery, we can prove that every non-zero
object x ∈ B is an element of an ultrafilter. Moreover, we can show that if
x and y are distinct, then there is an ultrafilter U that contains exactly one
of these. Therefore, every object in B can be unequivocally represented by
all these ultrafilters to which it belongs. More formally, with every Boolean
algebra B we may associate an injective operation U : B → P(UltB) (from
the domain to the power set of the family of all ultrafilters of B) such that
U (x) := {U ∈ Ult(B) | x ∈ U } (the Stone mapping). It is routine to
verify that the image of this operation:

U [B] = {U (x) | x ∈ B}

is a field of sets. Indeed, Ult(B) = U (1) ∈ U [B] and ∅ = U (0) ∈ U [B].
U [B] is closed for intersections and unions since:

U (x) ∩U (y) = U (x · y) and U (x) ∪U (y) = U (x + y) ,

where · and + are the Boolean operations of meet and join, respectively;
and the closure for set-theoretical complementation stems from the follow-
ing equivalence:

U /∈ U (x)←→ x /∈ U ←→ −x ∈ U ←→ U ∈ U (−x) . (3.1)

To conclude, to an abstract Boolean algebra B we can always associate
a concrete isomorphic algebra ⟨Ult(B),S⟩ (with S := U [B]), that is iso-
morphic with B, its canonical representation. This is the content of the
set-theoretical version of the Stone representation theorem.

However, the construction may be carried on to a topological represen-
tation. The main advantage of this is that it allows using spatial intuitions
to draw consequences about the algebraic properties of Boolean algebras.
In the case of set-theoretical representation above, the algebra B is shown
to be isomorphic to a field of sets. In the case of the topological represen-
tation, it is proven that the field consists of distinguished—in one way or
another—subsets of a topological space.

With respect to these, two crucial observations are that (a) we may treat
ultrafilters as points—building blocks of point-based topologies, (b) with
the topological structure induced by sets U (x) taken as basic open sets.
The fact that U [B] satisfies the conditions of a basis stems from earlier
observations for this family: every ultrafilter is in U (1), and U (x)∩U (y) =
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U (x ·y). Let S be the topology on UltB with U [B] as a basis4, the Stone
topology. The pair ⟨Ult(B), S ⟩ bears the name of the Stone space for the
algebra B.

Let us have a look at the basic features of Stone spaces. Firstly, observe
that given any open basic set U (x), it is a straightforward consequence of
(3.1) that its complement is open too. This means that the basis for S
is built out of sets that are both closed and open (and are called clopen
for this reason). Such spaces are called zero-dimensional, and they are
not very intuitive from the point of view of properties of the perspective
space. If we take, e.g., the three-dimensional Cartesian space that serves
as the standard model of the (static) world around us, then we only find
two clopen sets: the whole space R3 and the empty set. For the other

1

x

−x

p

Figure 4. In Stone spaces, points cannot be located on boundaries
between regions, as there are no boundaries. The point p is either a point

of x or a point of the complement of x.

crucial property of Stone spaces, look at Figure 4. The intuition from the
perspective space is that when we divide a region into two parts, there is
such a thing as the boundary between the parts, and there are points that
are located on the boundary. However, this is impossible in Stone spaces.
The point p from the figure is an ultrafilter. Therefore either x is in p, or

4Recall that a basis for a topology on the set X is a family B of subsets of X such
that X =

⋃
B and for every B1, B2 ∈ B and every x ∈ B1 ∩ B2 there is B3 ∈ B

such that x ∈ B3 ⊆ B1 ∩ B2.
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the Boolean complement of x is in p. In topological parlance, we say that
the space is disconnected. For Stone spaces, the discontinuity phenomenon
takes an extreme form: the only connected components of those spaces are
singletons of points, i.e., the spaces are totally disconnected. Again, this
is not a very intuitive property from the point of view of the perspective
space. Actually, for the class of compact and Hausdorff spaces (a larger
class than that of Stone space), the two properties are equivalent, in the
sense that every compact Hausdorff space is zero-dimensional iff it is totally
disconnected (see [26, Theorem 7.5, p. 97]).

The aforementioned compactness is—in a way—a topological version of
finiteness: a space X is compact if for every family of open sets that covers
the whole space, there is its finite subfamily that covers X either. As every
open set is the sum of some family of basic open sets, we may replace ‘open’
with ‘basic open’ in the definition. In the case of Stone spaces, compactness
is a consequence of the Ultrafilter Theorem, which says that every set F
of elements of a BA such that F has the finite intersection property is
contained in an ultrafilter, where F has the finite intersection property iff
any finite subcollection of F has the non-zero meet: if x1, . . . xn ∈ F , then
x1 · . . . · xn ̸= 0. Using this, it is relatively easy to show that the Stone
space Ult(B) is compact.

Another key feature of Stone spaces is the Hausdorff separation axiom:
any two distinct points x and y can be separated by open sets, in the sense
that there are disjoint open set U and V around x and y, respectively. If
ultrafilters U1 and U2 are distinct, there must be an x which is in only one
of them, say U1. But then −x must be in U2, and thus U (x) and U (−x)
are disjoint (basic) open sets around the two ultrafilters, i.e., points of
the Stone space.

To conclude, with every Boolean algebra B, we can associate a topo-
logical space, the Stone space of B, which is Hausdorff, compact, and
zero-dimensional.5 Moreover, the algebra B is isomorphic to the family
CO(Ult(B))) of clopen sets of this space. Thusly, there is a way from
Boolean algebras to topological Stone spaces, i.e., structures with certain
spatial data.

5Topological spaces that have these three properties are often called Boolean spaces,
and the name is used with the intention to treat such spaces somewhat independently
from the Stone spaces of ultrafilters. However, as we will see, every Boolean space X
is a Stone space, in the sense that we can associate with X a Boolean algebra B whose
Stone space Ult(B) is an exact copy of X.
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However, there is also a way in the other direction. Any topological 
space X carries a Boolean algebra CO(X) of all its clopen subsets. In the 
case of Euclidean spaces Rn, this algebra will have only two elements: 
the whole space Rn and the empty set. More generally, every connected 
space will carry the two-element Boolean algebra of its clopen subsets. 
Things get interesting if we limit our attention to Stone spaces only. 
In such a case, we obtain a deep dependence between the class Stone of 
all Hausdorff, compact, and zero-dimensional spaces, and the class BA 
of all Boolean algebras.

Let us start with a Boolean algebra B. As we have seen, there is
a topological space that can be naturally associated with B, the Stone
space Ult(B). This space, on the other hand, carries a Boolean algebra
of its clopen subsets CO(Ult(B)), that is isomorphic to B, i.e., B and
CO(Ult(B)) cannot be structurally distinguished.

BA B Ult(B) Stone

CO(Ult(B)) BA

∋

i i−1

∈

∈

Figure 5. Any Boolean algebra B is indistinguishable from the Boolean
of clopen sets of the Stone space of B.

On the other hand, if we start from a Stone space X, then CO(X)
is a Boolean algebra, and Ult(CO(X)) is its Stone space, that is, as the
reader could expect, indistinguishable (homeomorphic is the technical jar-
gon) from X.

Stone X CO(X) BA

Ult(CO(B)) Stone

∋

h h−1

∈

∈

Figure 6. Any Stone space B is indistinguishable from the Stone space
of the Boolean algebra CO(X) of the clopen sets of X.
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Thus, Stone [42] demonstrated that there is a kinship between the world
of algebraic structures and the world of topological spaces. In particular,
when we focus on Boolean algebras and Stones spaces, the bondage is so
strong that we can say they are two sides of the same coin or two aspects
of the same abstract phenomenon.6

algebra topology

F

G

Boolean algebras

Stone spaces

Ult

CO

Figure 7. Boolean algebras and Stone topological spaces are very closely
related.

6The kinship also extends to homomorphisms between algebras and continuous map-
pings between the spaces, in the sense that to every homomorphism between BAs corre-
sponds a continuous mapping between their Stone mapping, and vice versa—with every
continuous mapping between Stone spaces, there is associated a homomorphism between
the algebras of their clopen sets. It is, roughly, the content of the famous Stone duality
between the categories of Boolean algebras with homomorphisms, and Stone spaces with
continuous mappings. For details, see, e.g., [24].
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4. The extension: De Vries algebras

If we look at the diagram in Figure 7 we see that there are two very natural
ways towards extending Stone results: we may encompass a larger (or
a different) class of topological spaces, but we may also tinker with algebras
taken into account. One of such tinkerings may, in particular, involve
extending the signature (the non-logical language).

Two ways

extension
of the class
of spaces

extension
of the

signature

frames and
locales

contact
algebras

De Vries
algebras

Figure 8. Possible extensions of the Stone duality

The extension of the class of topological spaces leads to a fruitful and
fascinating theory of frames and locales (see, e.g., [24], [29, 30]), which in
a nutshell can be described as a region-based theory of space in which the
notion of open set is taken as basic. It is probably most developed among all
region-based approaches. Yet, its objectives and main motivations (for the
exposition of these see, e.g., [25]) are not, at least directly, connected to the
leading topic of this paper.7 This is mainly due to the fact that we want to

7Mormann [28] presents a solution of what he calls a Whitehead’s problem in the
framework of Heyting algebras and continuous lattices, structures that are of particular
importance in the theory of frames and locales. However, his paper does not mention
Whitehead points and instead constructs topological spaces whose points are Dedekind
ideals (in the terminology adopted by us further in the paper, these could be called round
ideals). This is because Mormann defines the Whitehead problem as constructing spaces
of points from regions of a uniform dimension that sets of points can faithfully represent.
If the reader wishes, they may think about our paper as presenting a solution to the
same problem yet utilizing the specific technique of conjuring up points put forward in
Process and reality.
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narrow down the notion of region to those interpretations that are faithful
models of fragments of the perspective space, while the notion of open set
is probably the most encompassing among primitive concepts of point-free
theories.

Thus, we will follow the way of the signature extensions. The reasons
to do this may vary, and our primary motivation is that the language of
Boolean algebras does not differentiate between situations in which regions
are incompatible (in the sense that their Boolean product is zero) and
separated, and those where regions are incompatible but touch each other
(see Figure 9). Equivalently, Boolean algebras cannot discern the differ-
ence between the situation in which x is part of y but does not touch the
complement of y, and the one in which x is part of y and touches the com-
plement of y, i.e., from the point of view of Boolean algebras there is no
difference between the two scenarios in Figure 10.

x

y

u

v

Figure 9. The regions x and y are incompatible and touch one other,
while u and v are incompatible and separated.

Again, there may be different reasons to ponder Boolean algebras’ ex-
tensions, either with the touching relation or well-inside relation. As we
already saw in Section 2, proper (whatever it means now) construction of
points may require it. Nevertheless, the reasons may be less philosophical
and more practical as in the case of de Vries’s work [8], which will serve as
our starting point towards the justification of Whitehead’s construction.

De Vries’s aim was mathematical at heart: algebraization of the notion
of compactness of a topological space. De Vries’s algebras are just (com-
plete) Boolean algebras extended with a binary relation ≪ whose intended
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x

y

u

v

Figure 10. The region x is part of y but touches the complement of y,
while u is well-inside v.

interpretation is non-tangential inclusion (well-inside part). The axioms
concerning ≪ are the following:

1 ≪ 1 , (DV1)
x ≪ y −→ x ≤ y , (DV2)

x ≤ y ∧ y ≪ z ∧ z ≤ w −→ x ≪ w , (DV3)
x ≪ y ∧ x ≪ z −→ x ≪ y · z , (DV4)

x ≪ y −→ −y ≪ −x , (DV5)
x ≪ y −→ ∃z (x ≪ z ∧ z ≪ y) , (DV6)

(∀x ̸= 0)(∃y ̸= 0) y ≪ x . (DV7)

These may not be self-evident at first sight, so let us explain them in
a proper setting. The concrete De Vries algebras can be obtained from reg-
ular open algebras of κ-normal topological spaces.8 A subset x of a topo-
logical space is regular open if x is equal to the interior of its closure:
x = Int Cl x.9 From a geometrical point of view, regular open sets of Rn

are those open sets that do not have «surprises» in the form of cracks, holes,

8A space X is κ-normal (or weakly normal) iff any pair of its disjoint regular closed
sets can be separated by open sets (see [40]).

9Alternatively, regular open sets can be characterized as regular elements in the
lattice Ω(X) of all open sets of X. Such a lattice is a Heyting algebra and thus may
have elements that are not regular, in the sense that if x∗ is a relative complement of x,
then x∗∗ ≰ x (the reverse inclusion is always true). Thus x is regular open if x = x∗∗.
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punctures, or snags. For this reason, they are sometimes considered good
candidates for mathematical models of regions of the perspective space.10

As is well known, given a topological space X, the family of RO(X) of
its regular opens is a complete Boolean algebra with the operations defined
as follows:

U · V := U ∩ V U + V := Int Cl(U ∪ V ) − U := Int(X \ U)∨
i∈I

Ui := Int Cl
⋃
i∈I

Ui

∧
i∈I

Ui := Int
⋂
i∈I

Ui .

If we interpret the non-tangential inclusion in the standard way as:

U ≪ V :←→ Cl U ⊆ V ,

and assume that space X is κ-normal, then we will see that RO(X) is a De
Vries algebra, with (DV6) (the so-called interpolation axiom) corresponding
to the κ-normality of the space, and (DV7) to its weak version of regularity
according to which every non-empty open set V has a nonempty set U
whose closure is a subset of V . Since there are κ-normal spaces, there are
De Vries algebras.

To pin down points in a De Vries algebra, the Stone-like technique of
treating points as sets of regions is applied. To this end, the family of round
filters is distinguished, i.e., filters F that have the following property:

(∀x ∈ F )(∃y ∈ F ) y ≪ x .

It is easy to see that every De Vries algebra must have a round filter: {1},
trivial as it is. A less trivial example may be obtained if there is a non-zero
region distinct from the unity, say x. Then, by (DV7) and the Axiom of
Dependent Choices, we can come up with a sequence of non-zero elements:

. . . x2 ≪ x1 ≪ x0 = x ,

and the filter generated by the sequence: F := {y | (∃n ∈ ω) xn ≪ y}
must be round. An easy application of the Kuratowski-Zorn lemma 

10Nowadays the class of all regular open sets of Rn is usually considered too large to
model regions of the surrounding world. Various authors put forward different limita-
tions on it, see, e.g., [9, 10, 27, 33, 39].
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y
x

z

Figure 11. A geometrical interpretation of (DV6) axiom: between any
two regions x and y such that x is well-inside y we can squeeze in a third

region well-above x and well-inside y.

spaces.11

Let us have a look at two concrete examples. Take the real line R,
which is a normal (and the more so κ-normal) space. Consider the family
of intervals {(−1− 1/n, 1 + 1/n) | n ∈ ω+} whose elements are regular open
in R. The filter F generated by this family is round. However, it is not
maximal in the family of round filters. We can extend {(−1− 1/n, 1 + 1/n) |
n ∈ ω+} with some regular open sets well-inside (−1, 1) which will result
in a proper extension of F . Thus F does not represent a point, which is
good, since what all the regions in F have in common is the interval (−1, 1),
a continuum of points. For a positive example, take any point x ∈ R and let
RO(Ox) be the family of all regular opens around x. RO(Ox) is obviously
a filter, and since the real line is regular, it is round. But it must also be
maximal. For suppose F is a round filter extending RO(Ox), and let V
be an element of F but not of RO(Ox). Therefore x /∈ V . F is round,
so there is M ∈ F with Cl M ⊆ V . Thus, regularity entails existence of a
regular open set R around x that is disjoint from M . But both R and M

11The original de Vries [8] terminology was different: he called concordant and maxi-
mal concordant filters round filters and maximal round filters, respectively. With other
authors, the reader may also encounter terms contracting and maximal contracting fil-
ters. The latter are often called ends in the framework of proximity approach the
mereotopology. We have decided to use ‘round’ as it is currently the most established
practice among researchers within the field.

shows that there exist maximal round filters, and they are meant to be 
points of
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are elements of F , so F is an improper filter (i.e. F = RO(X)). Thus
RO(Ox) is maximal round filter. This is good since the family of all regular
open sets around x should uniquely determine x.

Due to the latter example, we may be tempted to think that De Vries
might have had a geometrical intuition of point similar to Whitehead’s.
However, a certain example shows that the ideas of compactness and com-
pactification were the leading ones for the Dutch mathematician, and it’s
a point of discrepancy between his and Whitehead’s approach. Consider
the following chain of regions of RO(R): {(n, +∞) | n ∈ ω}. The filter F
that it generates is round and thus is contained in a maximally round filter
F ′, a point. This filter represents a point at infinity in R, since it cannot
be RO(Ox) for any real number x. See also Figure 12 for a geometrical
intuition in the case of two-dimensional space.

Figure 12. De Vries points involve points at infinity.

Why do we maintain that this example shows that Whitehead and
De Vries had different objectives? The thing is that if we are to treat points
as unique locations in the perspective space, points at infinity do not fit into
this. Figuratively speaking, they are too far from our experience to enter
the domain of points. At the very end of Section 7 we will demonstrate
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that the above constructed maximal contracting filter is not a point in the
sense of Whitehead.

Maximal round filters are exactly those round filters that satisfy the
following condition:

x ≪ y −→ −x ∈ F ∨ y ∈ F , (†)

or, as the readers may easily convince themselves:

x C/ y −→ −x ∈ F ∨ −y ∈ F , (‡)

where contact is defined as:

x C y :←→ ¬(x ≪ −y) .

On the other hand, for the whole class of filters of a Boolean algebra we
have that F (not necessarily round) is an ultrafilter if and only if:

x · y = 0 −→ −x ∈ F ∨ −y ∈ F .

Therefore, if we have additional information that ≪ coincides with ≤ (or,
equivalently, contact is overlap), the family of maximal round filters is
exactly the family of ultrafilters since every region is incompatible with its
complement. However, in general, we cannot exclude existence of points
living on the borders of regions and their complements, as we did in the
case of spaces of ultrafilters (see figures 4 and 13). Even more can be
said: if x is in contact with −x, then there is a maximally round filter E
such that x /∈ E and −x /∈ E . This leads to an interesting conclusion: if
every non-zero region is in contact with its complement, then the space of
maximal round filters should be connected (if only there are such spaces).

There are, of course. The standard Stone-like assignment E : B →
P(MRF(B)), where B is a De Vries algebra and MRF(B) is the set of all
its maximal round filters leads to the family B := {E (x) | x ∈ B} which
satisfies the standard properties of a basis. The spaces ⟨MRF(B), O⟩ thus
constructed are Hausdorff, since if E1 ̸= E2, and there is a region x in, say
E1 \ E2, then there is a region y ∈ E1 well-inside x. By (†) either −y ∈ E2
or x ∈ E2, and since the second disjunct does not hold, the first is true.
But E (y) ∩ E (−y) = ∅, and E1 ∈ E (y) and E2 ∈ E (−y).
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1

x

−x

p

Figure 13. In spaces of maximally round filters, points may inhabit the
boundaries of regions and their complements, if the regions and their

complements are in contact, in the sense that ¬(x ≪ x).

gist of the paper with unnecessary technicalities. The important thing is
that to every De Vries algebra corresponds a certain topological space that
is Hausdorff compact. Similarly to the situation for Boolean algebras and
Stone spaces, given a topological space X that is Hausdorff compact, its
family of RO(X) with≪ interpreted as the topological well-inside inclusion
must be a De Vries algebra. Again, if we start with B, go to MRF(B) and
to RO(MRF(B)), then we have that either B can be densely embedded in
RO(MRF(B)), or is isomorphic with RO(MRF(B)), if complete. Since
we changed the class of algebras from Boolean to De Vries we need an
appropriate notion of isomorphism that remains essentially the same as
the standard one, with an extra condition stipulating that ≪ is preserved
in the following sense:

x ≪ y ←→ h(x) ≪ h(y) .

Every MRF(B) must also be compact. The proof is slightly more
complicated than the one for Stone spaces, and we skip it not to mar the
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We will call the mapping h De Vries isomorphism. To repeat, if the
initial algebra B is not complete, then the mapping E : B → RO(MRF(B))
is a dense De Vries embedding12 of B, and in the case B is complete, the
same mapping is a De Vries isomorphism.

DV B MRF(B) KHaus

RO(MRF(B)) DVc

∋

E

∈

∈

Figure 14. Let DV be the class of De Vries algebras, and KHaus the
class of compact topological spaces. Any De Vries algebra embeds densely
into the algebra of regular open sets of the compact Hausdorff space for B.

DVc B MRF(B) KHaus

RO(MRF(B)) DVc

∋

E E −1

∈

∈

Figure 15. Let DVc be the class of complete De Vries algebras. Any its
element B is indistinguishable from the De Vries algebra of regular open

sets of the compact Hausdorff space for B.

To conclude, De Vries, through pursuing his algebraic objectives, showed
a way to represent structures with a version of a point-free topological near-
ness as fully-fledged topological spaces. In the next section, we will see how
it helps to understand another classical point-free topology by a Polish lo-
gician Andrzej Grzegorczyk, which on the other hand, will let us show that
Whitehead points (or at least some of them) are indeed points of a certain
class of topological spaces.

12The embedding E is dense in quite a strong sense, that is if x, y ∈ RO(MRF(B))
are such that x ≪ y, then there is z ∈ B for which x ≪ E (z) ≪ y.
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KHaus X RO(X) DVc

MRF(RO(X)) KHaus

∋

h h−1

∈

∈

Figure 16. Any compact Hausdorff topological space X
is homeomorphic to the compact Hausdorff space of the complete

De Vries algebra of regular open sets of X.

5. The criterion of points

From the above, we can see that we have a general method of constructing
spaces from algebraic data via mimicking Stone’s technique to treat points
as subsets of the domain. So what would it mean to achieve the White-
head’s goal?, i.e., explain points in a geometrically appealing way. On the
intuitive level, Whitehead’s points are collections of regions related to each
other via spatially motivated relations. The intuition may be turned into
a precise notion in two steps: firstly, by imposing an algebraic structure on
regions to reflect the most general properties of the perspective space (i.e.,
extend the signature); secondly, by showing that the Whitehead’s minimal
geometrical objects reconstructed within such a structure as higher-order
objects are indeed points of a certain space.

More precisely—and more generally—suppose ⟨A, R1, . . . , Rn⟩ is an al-
gebraic structure with relations R1, . . . , Rn, all these together modelling
the universe of regions. Suppose P is the set of higher-order objects de-
fined within this structure. The main problem is now to find a topological
space with P as the underlying set of points (similarly as ultrafilters are
taken as points of Stone spaces, and maximally round filters as points of
compact Hausdorff spaces) that naturally models regions (elements of the
domain) and relations Ri. That is, A := ⟨A, R1, . . . , Rn⟩ is captured within
P as U′ = ⟨A′, R′

1, . . . , R′
n⟩ in a similar way as any Boolean algebra B is

captured as the algebra of clopen sets of its Stone space Ult(B). This, in
particular, means that A′ is a family of subsets of P, and that the set P
of points may be given an appropriate topology in which every Ri can be
modeled in such a way that Ri holds among regions iff R′

i holds among
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their point-based counterparts. Usually, subsets of regular open (or reg-
ular closed) sets of P are taken as models of regions (see footnote 10).
If this has been achieved, then we may say we have the solution to the
problem of points, as we have the representation of the original structure
in the structure built from higher-order elements of P that now deserve
the name of points. In this manner, every BA is represented in the space
of ultrafilters, and every De Vries algebra in the space of maximally round
filters. This justifies naming both ultrafilters and maximally round filters
as points. The idea is now to repeat the above steps with a proper algebraic
structure in place of A, and a set of Whitehead points in place of P.

In light of the theorems of Stone’s and De Vries’s, one could naturally
ask could either ultrafilters of maximally round filters serve as Whitehead
points? Why do they fall short? In the case of ultrafilters, the main problem
is hidden in the fact that if they are points, the contact relation collapses
to overlap. Indeed, suppose we have a mapping f that represents regions
of a Boolean algebra in P(Ult(B)), and that f is the standard Stone-like
function, that is, for every region x its points are all these ultrafilters U
that has x as an element. But then, as we observed earlier (see page 71),
there are no points on the boundaries of the regions, so the contact can only
be the overlap, i.e., we cannot model the situations in which objects are
external to each other and touch each other at the same time. Moreover, in
[16] it was shown that if contact and overlap coincide, in complete algebras,
there are no Whitehead points, so in general, ultrafilters cannot serve as
them.

This does not mean that ultrafilters are always bad candidates for build-
ing blocks of spaces of points in which the contact relation is to be modeled.
For example, Peter Roeper [36] starts with them, yet his points are not ul-
trafilters themselves, but equivalence classes of ultrafilters that, in the end,
can be shown to be maximal round filters (see [15]).

As for De Vries points, we have shown above that their class is too large
for the class of Whitehead points, in the sense that Whitehead points may
only form a proper subset of the set of all maximal round filters. We’ll get
back to this problem in Section 7.

For the completeness of the presentation, it should be emphasized that
higher-order constructions are not the only method of explaining points,
and some scholars either defined points in terms of regions (elements of
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the domain) or distinguished a subset of the domain as the collection of
points. The most important examples—in either topological or geometrical
setting—are [12, 13, 14, 21, 22, 35, 39].

6. Grzegorczyk points

This time we start with the contact relation. The difference is irrelevant
from a logical point of view, as with enough axioms the two approaches,
either via contact or via non-tangential inclusion, are definitionally equiva-
lent. However, the proper terminology well-chosen at the outset will equip
us with a user-friendly language. The purpose is to expose the point-free
topology of Grzegorczyk’s from [20], who by the way chose the third way
and based his system on the notion of separation, yet this is again an equiv-
alent approach to those used in this paper.13

Before we begin a proper, mathematical exposition of Grzegorczyk’s
construction and before we draw an analogy between this and Whitehead’s,
let us remind that it was Clarke [4, 5] who was the first scholar to undertake
the task of developing Whitehead’s meretopological ideas. He based his
system on the binary relation of connection, and the definition of a point
different from the original proposal of the English logician. However, as it
was later demonstrated by Biacino and Gerla [2], Clarke’s contact relation
collapses to overlap, and his axioms characterize the atomless complete
Boolean algebras. In consequence, Clarke’s points as defined in [5] are
nothing but ultrafilters. Thus, his approach falls short.

So, let us turn to contact and Boolean contact algebras as a unifying
framework. By a Boolean contact algebra14 we mean a Boolean algebra
extended with a binary relation C of contact that satisfies the following
constraints:

13Strictly speaking, Grzegorczyk did not work with Boolean algebras, but with mere-
ology, which is closely related to the former, see, e.g., [31]. The differences are mainly
hidden in technical intricacies, as mereologies generally do not have zero elements and
are thus semi-lattices.

14For an exposition of Boolean contact algebras see [1, 41].
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0 C/ x (C0)
x ≤ y ∧ x ̸= 0 −→ x C y, (C1)

x C y −→ y C x, (C2)
x ≤ y −→ ∀z ∈ B(z C x −→ z C y) , (C3)

x C y + z −→ x C y ∨ x C z . (C4)

We extend the inventory of relations by introducing non-tangential in-
clusion via the expected definition:

x ≪ y :←→ x C/ −y .

The reader will check easily that so defined ≪ has properties (DV1)–
(DV5). The remaining two De Vries axioms need additional assumptions
about C.

Grzegorczyk’s idea to introduce points was somewhat similar to those of
Whitehead and De Vries.15 Take a region and shrink it till you «squeeze»
a point out of it. However, what distinguishes his definition from the other
two is that he demanded that every set of regions that is a candidate for
a point satisfy the following (geometrical in spirit) property: if x and y are
regions such that each one overlaps all regions in a point candidate, then
x must touch y (see Figure 17). This requirement singles out Grzegorczyk
points among De Vries points, as we will see in a moment.

Formally, a Grzegorczyk representative of a point (G-representative for
short)16 in a Boolean contact algebra is a non-empty set Q of regions such
that:

0 /∈ Q , (r0)
∀u, v ∈ Q(u = v ∨ u ≪ v ∨ v ≪ u) , (r1)

(∀u ∈ Q)(∃v ∈ Q) v ≪ u , (r2)
(∀x, y ∈ R)(∀u ∈ Q)((u � x ∧ u � y) −→ x C y

)
, (r3)

where:
x � y :←→ x · y ̸= 0 .

15Historically, Grzegorczyk precedes De Vries, yet it is virtually impossible that the
two scholars were aware of each other’s work.

16Both the term and its abbreviation adopted from [3].
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It is not hard to see that if we take RO(R) and a point r, then the family
Q := {(r− 1/n, r + 1/n) | n ∈ ω+} is a G-representative. Of course, different
sets may represent the same point, as for example Qe := {(r− 1/n, r + 1/n) |
n ∈ E+}, Qo := {(r − 1/n, r + 1/n) | n ∈ O+} and Q do (E+ and O+

are, respectively, the sets of all positive even integers and of all positive
odd integers). It is easy to see that in the case of r (and any other real
number) there are uncountably many G-representatives. More generally, if
Q is a G-representative in a Boolean contact algebra, and x ∈ Q, then the
set {y ∈ Q | y ≤ x} is also a G-representative. To circumvent the problem
of a unique point identification we declare Grzegorczyk points (G-points)
of a Boolean contact algebra B to be filters generated by G-representatives
(whose set is denoted by Q(B)):

G ∈ Grz(B)←→ (∃Q ∈ Q(B)) G = {y ∈ B | ∃x ∈ Q y ≤ x} .

Figure 17. A representative of a point in the sense of Grzegorczyk:
if two regions overlap all elements of the representative, then they

must be in contact.



Mathematical Methods in Region-Based Theories of Space 89

Let x ◦◦F hold iff region x is in contact with every region in a filter
F : (∀y ∈ F ) y C x. Accordingly, x ◦◦/ F iff there is a region in F that is
separated from x. The reader will easily check that if F is round, then:

x ∈ F ←→ −x ◦◦/ F .

Interestingly, every Grzegorczyk point is a maximal round filter. Firstly,
every G-point G is a round filter, for if x ∈ G and Q generates G , then in Q
there is a region y ≤ x. But in Q there is z well-inside y, so z is well-inside
x either. Secondly, in [15] it was proven that a round filter F satisfies the
following condition:

(∀x, y ∈ B) (x ◦◦F ◦◦ y −→ x C y) (✠)

iff the condition (‡) is also true about F . Indeed, if x is separated from y,
applying (✠) in the contraposed form we obtain that either x◦◦/ F or y◦◦/ F ,
and so either −x is an element of F or −y is, as required. The reverse
implication is proven analogously. As the property (‡) uniquely identifies
maximal round filters, so does (✠). At the same time, the condition (r3)
for G-representatives, together with the definition of G-points, entail that
every Grzegorczyk point must satisfy (✠). So Grz(B) ⊆MRF(B). Does
the other inclusion hold? In general, no. If we look back at Figure 12 we
can see a fragment of a point at infinity that, in general, does not have to
be a G-point. To see this, imagine that we color the regions of the point
with two alternating colors, as in Figure 18. After coloring, we choose only
blue stripes, number them with natural numbers, and divide them into two
sets: of stripes tagged with even and of stripes tagged with odd numbers,
respectively. We can now take the suprema of the first set and the second
set to obtain regions that are apart yet overlap every region in the chain
we began with. The chain is included in a maximal round filter E , yet
E cannot be generated by any G-representative. Precisely because any
such a G-representative would have to be covered by the chain, thus failing
to satisfy the condition (r3). We must be careful here as the situation
is subtle, so let us repeat: the maximal round filter E must satisfy (✠),
since every maximal round filter satisfies the condition; it is only that no
G-representative can give rise to E .
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Figure 18. A construction towards showing that not every maximal
round filter is a Grzegorczyk point.

Let us show that G-points satisfy the criteria of the method from
page 84. The first step towards demonstrating this was done by Grze-
gorczyk himself, and more elaborate constructions were delivered in [15],
and [17, 18]. Grzegorczyk demonstrated that his points, together with
the Stone-like mapping, form a topological Hausdorff space, in which his
mereology-based separation structures can be represented. Grzegorczyk
also maintained that the spaces of his points have the following property:
for every point p, there exists an infinite strictly decreasing family of open
sets such that the intersection of the family is {p}. Yet this is not true, as
there are finite structures that are models of Grzegorczyk axioms, which
was proven in the papers by Gruszczyński and Pietruszczak. In those pa-
pers, a class of the so-called concentric topological spaces was singled out,
which are T1 spaces additionally satisfying the condition (R1) displayed be-
low on page 91. Later in [19] it was proven that this class forms a subclass
of the so-called lob-spaces – topological spaces with linearly ordered basis
at every point (see [6]). The subclass contains only regular spaces; that
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is, concentric spaces are those lob-spaces that are T1 and regular. Further,
both authors proved that every Grzegorczyk structure can be represented
as a subalgebra of the regular open algebra of a concentric space of Grze-
gorczyk points. Moreover, it was also proven that there is a one-to-one
correspondence between Grzegorczyk structures that satisfy the countable
chain condition and concentric spaces that satisfy the topological version of
the condition. As a result, abstract Grzegorczyk structures obtained con-
crete representation, and their existence was also established. The latter
follows from the fact that, e.g., the real line with the standard Euclidean
topology is a concentric space.

In the BCA setting, a Grzegorczyk contact algebra may be defined as
a Boolean contact algebra that satisfies two additional second-order Grze-
gorczyk’s axioms. The first of them says that every region has a G-repre-
sentative (and consequently, a G-point):

(∀x ∈ B)(∃Q ∈ Q) x ∈ Q . (G1)

According to the second, G-representatives (and so G-points either) exist
in those locations of space (understood as the unity of the algebra) where
regions touch each other:

x C y −→ (∃Q ∈ Q)(∀u ∈ Q) (u � x ∧ u � y) . (G2)

More precisely, the class of Grzegorczyk contact algebras is determined by
axioms (C0)–(C3), (G1), (G2), as (C4) is their consequence.

It is provable that the set of all values of the Stone-like mapping G : B →
P(Grz(B)) such that G (x) := {G ∈ Grz(B) | x ∈ G } is a basis, and thus
gives rise to a topological space ⟨Grz(B), O⟩. As we wrote above, the key
notion to understanding this space is the concept of a concentric space,
which is formally defined as a T1 space in which every point p has a local
basis Bp of regular open sets such that:

(∀U, V ∈ Bp) (U = V ∨ Cl U ⊆ V ∨ Cl V ⊆ U) . (R1)

The reader will notice that the condition is a point-based counterpart of
(r1) from page 87. Every concentric space is a regular space, yet generally,
the converse is not true. For example, the uncountable product of the
discrete space {0, 1} is regular but not concentric [37].
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If B is a Grzegorczyk contact algebra, then the space Grz(B) must be
a concentric space. Given any G-point G we know that it has been gen-
erated by some G-representative Q, and thusly, the family BG := {G (x) |
x ∈ Q} is a local basis at the point G that satisfies the condition (R1).
The fact that Grz(B) is T1 is routinely verified, since if G1 ̸= G2, then
G1 ⊈ G2 and G2 ⊈ G1 (for G-points are maximal objects). Therefore there
is a region x in G1 but not in G2, so G1(x) is an open set around the point
G1 but not around G2.

On the other hand, given a concentric space X, its algebra RO(X) is
a (complete) Grzegorczyk contact algebra.17

In [15] it was shown that every Grzegorczyk contact algebra B embeds
into a Grzegorczyk contact algebra of a concentric topological space, and
the embedding is an isomorphism in the case of completeness of B.

GCA B Grz(B) Conc

RO(Grz(B)) GCAc

∋

G

∈

∈

Figure 19. Let GCA be the class of Grzegorczyk contact algebras, and
Conc the class of concentric topological spaces. Any Grzegorczyk
algebra B embeds densely into the algebra of regular open sets

of the concentric space for B.

The path from the concentric topological spaces to Grzegorczyk algebras
is a bit more complicated, and it was only proven for Grzegorczyk contact
algebras and concentric spaces that satisfy, respectively, algebraical and
topological versions of the countable chain condition, which has not been
circumvented so far. By an antichain of a Boolean algebra we mean, stan-
dardly, a subset of its regions that are pairwise incompatible. In the case of
topological spaces, an antichain is a family of open sets whose intersections
are pairwise empty. The countable chain condition is satisfied either by an
algebra or a topological space if any antichain is at most countable.

17The proof of this fact can be found in [15] and [18].
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GCAc B Grz(B) Conc

RO(Grz(B)) GCAc

∋

G G −1

∈

∈

Figure 20. Any complete Grzegorczyk contact algebra B
is indistinguishable from the Grzegorczyk algebra of regular open sets

of the concentric space for B.

Firstly, if the condition holds for a Grzegorczyk algebra B, then its
space Grz(B) satisfies the topological version of the condition, and the
algebraical version transfers to RO(Grz(B)). The first dependence stems
from the fact that if every antichain of regions is at most countable and
the family of all sets of the form G (x) is a basis for Grz(B), then the space
must also satisfy the condition. If it did not, for an uncountable antichain
of its open sets we would find an uncountable antichain of sets of the form
G (x), and since:

x ⊥ y ←→ G (x) ∩ G (y) = ∅

the pre-images of G (x)s would form an uncountable chain of regions in B.
Secondly, it is evident that if a topological space satisfies the countable

chain condition, then its algebra of regular open sets must also satisfy it.
In light of these, it is easily seen that the situations from figures 19

and 20 transfer immediately to those structures that satisfy the condition.
Moreover, we can extend the representation to the one from Figure 21. For
complete Grzegorczyk algebras, we have then a one-to-one correspondence
between these that satisfy ccc, and concentric structures that have ccc.

To conclude, the results presented let us affirmatively respond to the
question: are Grzegorczyk points really points?18 As it turns out, thanks
to the results for G-points, we can positively answer the main problem of
this paper: are there any spaces of Whitehead points (in the sense of the
method from page 5)?

18Technical details of all constructions can be found in [15] and [17, 18].
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Concccc X RO(X) GCAc
ccc

Grz(RO(X)) Concccc

∋

h h−1

∈

∈

Figure 21. Any concentric space X satisfying the countable chain
condition is homeomorphic to the concentric space of the complete

Grzegorczyk algebra of regular open sets of X that satisfies
the condition either.

7. Spaces of Whitehead points

In [3] we find the proof that, under some reasonable constraints, the classes
of Grzegorczyk points and Whitehead points for a certain connection struc-
tures (mereological structures with the contact relation) coincide. In this
section, we rephrase the results of Biacino and Gerla in the framework of
contact algebras in order to apply their result (together with the results
from earlier sections) to the problem of representation theorem for White-
head points.

As we saw, Grzegorczyk points may be defined as filters, but they can
also be characterized as quotients with respect to the covering relation from
section 2. In the case of G-representatives we have that if Q1 covers Q2,
then Q2 covers Q1. This is a consequence of two facts: (a) if Q1 does not
cover Q2, then there are regions x ∈ Q1 and y ∈ Q2 that are separated
from each other, and (b) if Q1 covers Q2, then for all x ∈ Q1 and y ∈ Q2,
x and y are compatible.

Since covering is also transitive and reflexive, it must be an equivalence
relation (in the family of G-representatives, but not generally in the family
of all abstractive sets), and thus we can say that G-representatives Q1 and
Q2 represent the same location (in symbols: Q1 ∼ Q2) if and only if Q1
covers Q2 (and Q2 covers Q1).

The relation ∼ may be recovered from the set of G-points via the fol-
lowing equivalence:

Q1 ∼ Q2 ←→ (∃G ∈ Grz) Q1 ∪Q2 ⊆ G .
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The family of all equivalence classes of the relation ∼ in the set of
Grzegorczyk representatives:

Eq := Q/∼

may now be treated as the set of points, as there is a bijective correspon-
dence between elements of Eq and G-points given by function f : Eq →
Grz such that f([Q]) := GQ, where GQ is the G-point generated by Q.
Thus, Grzegorczyk points can be characterized by the Whiteheadian cov-
ering relation.

Let us observe that Whitehead’s abstractive sets are sets of regions that
satisfy Grzegorczyk conditions (r0), (r1), plus non-minimality constraint:

¬(∃x ∈ B)(∀y ∈ A) x ≤ y . (A)

Thus, it is immediate that if the Boolean contact algebra in focus is atom-
less, then its Grzegorczyk representatives must be abstractive sets. A less
obvious conclusion is that in every atomless contact algebra, every G-re-
presentative must be a Whitehead representative of a point either. To see
this, let us couch—after Biacino and Gerla—a mathematically satisfactory
definition of a Whitehead representative and a Whitehead point.

Unlike the covering relation on Grzegorczyk representatives, covering
on abstractive sets does not have to be an equivalence relation since it is
not generally symmetric. However, it is reflexive and transitive, so it gives
rise to the following equivalence relation19:

A1 ∼ A2 :←→ A1 ⪰ A2 ∧A2 ⪰ A1 .

In the case A1 ∼ A2, we say that the objects A1 and A2 are similar. The
intended meaning of similarity is a representation of the same geometrical
figure in space. Of course, unlike G-representatives, abstractive sets do not
have to represent the same precise location, and the idea is to identify those
that do. As ∼ is an equivalence, we can define—in Whitehead’s spirit—
geometrical objects as equivalence classes of abstractive sets with respect
to similarity, i.e., as elements of the family A/∼. This family equipped
with the following binary relation:

19Recall that A1 ⪰ A2 means A1 covers A2.
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[A1] ⊵ [A2] :←→ A1 ⪰ A2

is a partially ordered set (i.e., ⊵ is reflexive, anti-symmetrical, and transi-
tive).

We can now define Whitehead points and Whitehead representatives.
[A] ∈ A/∼ is a Whitehead point (W-point) iff [A] is maximal with respect
to ⊵: for every [A′] ∈ A/∼, if [A] ⊵ [A′], then [A] = [A′]. A ∈ A is a White-
head representative of a point (a W-representative) iff [A] is a Whitehead
point. The set of all Whitehead points and of all Whitehead representatives
will be denoted by, respectively, ‘W’ and ‘QW ’.

Observe that we can also characterize as W-representatives those ab-
stractive sets that satisfy the following equivalence:

A ∈ QW ←→ (∀X ∈ A) (A ⪰ X −→ X ⪰ A) .

As it was demonstrated in [16], the notion of the Whitehead point is con-
sistent, i.e., there are contact algebras with Whitehead points. However,
we can still ask: can we prove that there are topological spaces based on
Whitehead points obtained in the way described on page 84?, and can we
find any form of representation theorems for such spaces? Both questions
may be answered affirmatively in an indirect way using the result of Bia-
cino and Gerla: under additional assumptions, the set of Whitehead points
of a given contact algebra coincides with the set of Grzegorczyk points.

To prove that every G-point is a W-point it is enough to show that
every G-representative is a W-representative. This part is relatively easy,
and the result from [3] can actually be strengthened to the following (for
details, see [16])

Theorem 7.1. If B is a Boolean contact algebra that satisfies (DV7) then:
B is atomless iff in B every G-representative is a W-representative.

Proving that every W-representative is a G-representative is a bit harder,
and the original demonstration of [3] calls for a small modification. In the
class of all abstractive sets of a given Boolean algebra B we distinguish
those that countable abstractive sets can represent. By an ω-abstractive
set, we understand an abstractive set A for which there is a countable
abstractive set A′ such that A both covers A′ and is covered by A′. Ac-
cordingly, W ω-representatives will be those Whitehead representatives that
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are ω-abstractive sets. Let Qω
W be the set of all W ω-representatives of a

given Boolean contact algebra. We have:

Theorem 7.2. If B is a Boolean contact algebra that satisfies (DV6) and:

x /∈ {0, 1} −→ x C−x , (C6)

then every W ω-representative is a G-representative.

The small modification we mentioned is the inclusion of (C6) in the
premises of the theorem. Here, (C6) is a region-based version of connect-
edness, i.e., it says that every non-zero and non-unity region touches its
Boolean complement. For a more detailed analysis of this, we again refer
the reader to [16].

In light of the above and the earlier results, we may conclude that the set
Qω

G of those Grzegorczyk representatives that countable sets can faithfully
represent, we have the equality: Qω

G = Qω
W , and in consequence, Grzω =

Wω, where the former set is the set of Grzegorczyk points obtained from
the elements of Qω

G and the latter the set of Whitehead points obtained
from the elements of Qω

W .
We thus have reached a point at which we can formulate the following

theorem:

Theorem 7.3. Let B be an atomless Boolean contact algebra that satisfies
the interpolation axiom (DV6) and the connectedness axiom (C6). Suppose
we introduce both definitions of points—by Grzegorczyk and by Whitehead—
and extend the axioms with Grzegorczyk postulates (G1) and (G2). Suppose
Grzω ̸= ∅. Let ⟨Grz, O⟩ be the concentric topological space for B. Then its
subspace ⟨Grzω, Oω⟩ (where Oω := {Grzω ∩ V | V ∈ O}) is a topological
space whose points are W-points.

We can also conclude that there are spaces in which both sets of points
coincide on the whole space, not only its subspace. To this end, observe
that in the case of abstractive sets covering is anything but a form of
cofinality for ≥-relation: an abstractive set A covers an abstractive set B
iff B is cofinal with A. Putting the dual ≥ of part of relation in focus, and
assuming Axiom of Choice, every chain C in any Boolean contact algebra
has a cofinal well-ordered subchain C ′ with respect to ≥, where we refer
to the dual notion of the well-ordered set by requiring the existence of the
maximal element for ≥ in every non-empty subset of C ′. On the other
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hand, the countable chain condition entails that every infinite well-ordered
set of regions must be countable. Therefore:

Theorem 7.4. Let B be an atomless Boolean contact algebra that satis-
fies the interpolation axiom (DV6), the connectedness axiom (C6), and
the countable chain condition. Suppose we introduce both definitions of
points—by Grzegorczyk and by Whitehead—and we extend the axioms with
Grzegorczyk postulates (G1) and (G2). The concentric topological space
⟨Grz, O⟩ for B is a topological space in which Grz = Grzω, so it is a space
whose points are W-points.

Thanks to the above theorem, we can see that Grzegorczyk and White-
head points coincide in a large subclass of regular spaces: concentric spaces
that satisfy countable chain condition.20

Since the algebra RO(Rn) of regular open subsets of the n-dimensional
Euclidean space has all the properties from the premises of the theorem
above, we can conclude that:

Corollary 7.5. There are spaces of Whitehead points satisfying the re-
quirements of the method from page 84.

Let us conclude this section with a strict justification of the difference
between De Vries’s and Whitehead points mentioned on page 80. We know
there are structures in which Whitehead points are exactly Grzegorczyk
points. Yet on page 6 we have demonstrated how to construct a maximally
round filter that is not a G-point. This construction can be carried out in
R2, which is a space that satisfies all premises of Theorem 7.4. Thus,
in RO(R2) there is a De Vries point that is not a Whitehead point.

8. Summary

From the intuitions about the perspective space, we have come a long way
through the topological representation theorems for Boolean algebras and
De Vries algebras, Grzegorczyk contact algebras, to spaces of Whitehead
points. Because there are spaces of Grzegorczyk points and Grzegorczyk

20The result concerning the relationship between Grzegorczyk and Whitehead points
can be generalized by eliminating the countability assumption. This, however, calls for
a stronger, second-order version of (DV6). Details, again, can be found in [16].
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contact algebras whose G-points coincide with Whitehead points, we con-
cluded that there are topological spaces constructed in the Stone-like man-
ner whose fundamental objects are the English logician’s points.

One might say that this is a roundabout way to show that there are
topological spaces built out of Whitehead points. However, to our knowl-
edge, no better way has been found so far. The earlier analyses only pre-
sented the way to points via extensive abstraction or compared them to
other similar constructions. Yet, none of them pointed out that there are
indeed topological spaces of Whitehead points obtained via methods of
representation theorems.

The natural questions at this point are: can we generalize the result?,
can we drop the reference to Grzegorczyk points and build any representa-
tion (or, even better, duality) for Whitehead points directly? With positive
answers to these, we may try extending the scrutiny of both Grzegorczyk
and Whitehead constructions to algebraic structures weaker than Boolean
contact algebras, e.g., (extended) distributive contact lattices [11, 23], or
Stonian p-ortholattices [49], to name few.

These, in our opinion, are problems concerning the classical Whitehead
construction that has been neglected for too long. The path to under-
standing what Whitehead points are leads through the realms of logic and
mathematics.

Acknowledgements. I want to thank the anonymous referees whose apt
and valuable remarks helped me improve the paper substantially and elim-
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Bosbach’s non-commutative bricks as L-algebras. Wu and Yang [13] proved
that orthomodular lattices form a special class of L-algebras in different
ways. It was shown that every lattice-ordered effect algebra has an under-
lying L-algebra structure in Wu et al. [12]. Also, they proved that a basic
algebra which satisfies

(z ⊕ ¬x)⊕ ¬(y ⊕ ¬x) = (z ⊕ ¬y)⊕ ¬(x⊕ ¬y),

can be converted into an L-algebra. Conversely, if an L-algebra with 0
and some conditions such that it is an involutive bounded lattice can be
organized into a basic algebra, it must be a lattice-ordered effect algebra.
In addition, Aaly in [1], and Ciung in [5] studied the relationship between
logical algebraic structures and basic algebras with L-algebras, such as
BCK/ BCI-algebras, hoop, residuated lattice, equality and EQ-algebras.

A stabilizer is a part of a monoid acting on a set. Specifically, let
X be a monoid operating on a set X and let H be a subset of X. The
stabilizer of H, sometimes denoted St(H) is the set of elements as a of X
for which a(H) ⊆ H. The strict stabilizer is the set of a ∈ X for which
a(H) = H. In the other words, the stabilizer of H is the transporter of H to
itself. In recent years, many mathematicians have studied and investigated
the characteristics of stabilizers in logical algebraic structures. Also, some
of them have used a special type of stabilizers called co-annihilators and
have obtained interesting results in this field, and this concept has been
investigated on different structures, such as BL-algebra, EQ-algebra, hoop
and etc. For more information in this field, we refer the readers to the
references [3, 4, 6, 7, 11].

The main goal of this paper is to introduce the notion of stabilizers in
L-algebras and develop stabilizer theory in L-algebras. In this paper, we
introduce the notions of left and right stabilizers and investigate some re-
lated properties of them. Then, we discuss the relations among stabilizers,
ideal and co-annihilators. Also, we obtain that the set of all ideals in a
CKL-algebra forms a relative pseudo-complemented lattice. In addition,
we prove that right stabilizers in CKL-algebra are ideals. Then by us-
ing the right stabilizers produce a basis for a topology on L-algebra. We
show that the generated topology by this basis is Baire, connected, locally
connected and separable and we investigate the other properties of this
topology.
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2. Preliminaries

In this section, we gather some basic notions relevent to L-algebras which
will need in the next sections.

Definition 2.1 ([8]). An L-algebra is an algebraic structure (L;→, 1) of
type (2, 0) satisfying

(L1) x → x = x → 1 = 1 and 1 → x = x,

(L2) (x → y) → (x → z) = (y → x) → (y → z),

(L3) if x → y = y → x = 1, then x = y,

for any x, y, z ∈ L. Condition (L1) states that 1 is a logical unit, while
(L2) is related to the quantum Yang-Baxter equation. Note that a logical
unit is always unique. In addition, we can define the relation

x ≲ y if and only if x → y = 1,

on L. By (L1) and (L2), clearly this relation is reflexive and transitive,
respectively and by (L3), untisymmetric is proved. So, (L,≲) is a poset.
If L admits a smallest element 0, then it is called a bounded L-algebra.

Let L be bounded. We define a binary operation “′” on L by x′ = x → 0,
for all x ∈ L. If for any x ∈ L, x′′ = x, then the bounded L-algebra L is
called to have the double negation properties.

Proposition 2.2 ([10]). Let L be an L-algebra. Then x ≲ y implies
z → x ≲ z → y, for any x, y, z ∈ L.

Proposition 2.3 ([10]). For an L-algebra L, the following are equivalent:

(i) x ≲ y → x,

(ii) if x ≲ z, then z → y ≲ x → y,

(iii) ((x → y) → z) → z ≲ ((x → y) → z) → ((y → x) → z),

for any x, y, z ∈ L.

Definition 2.4 ([9]). An L-algebra L which satisfies

x → (y → x) = 1, (K)

for any x, y ∈ L is called a KL-algebra.
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A CKL-algebra is an L-algebra which satisfies

x → (y → z) = y → (x → z), (C)

for any x, y, z ∈ L (see [9]).

Clearly, every CKL-algebra is a KL-algebra, since for any x, y ∈ L, we
have

x → (y → x) = y → (x → x) = y → 1 = 1.

Proposition 2.5 ([2]). Assume (L,→, 1) is a CKL-algebra. Then for any
x, y, z ∈ L, the following properties hold:

(i) if x ≲ y, then z → x ≲ z → y,

(ii) x → (y → x) = 1, i.e., x ≲ y → x,

(iii) x ≲ (x → y) → y,

(iv) x ≲ y → z if and only if y ≲ x → z,

(v) if x ≲ y, then y → z ≲ x → z,

(vi) ((x → y) → z) → z ≲ ((x → y) → z) → ((y → x) → z),

(vii) z → y ≲ (y → x) → (z → x),

(viii) z → y ≲ (x → z) → (x → y),

If L has a least element 0, then

(ix) if x ≲ y, then y′ ≲ x′, where x′ = x → 0,

(x) x ≲ x′′, and x′ = x′′′,

(xi) x′ ≲ x → y,

(xii) ((x → y) → y) → y = x → y,

(xiii) If L has double negation, then x → y = y′ → x′.

Definition 2.6 ([8]). An L-algebra L is said to be a semi-regular if the
equation

((x → y) → z) → ((y → x) → z) = ((x → y) → z) → z,

holds in L. Also, L is called a regular L-algebra if in addition, for any
pair element x ≲ y in L, there is an element z ≳ x in L such that z → x = y.
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For a bounded L-algebra with negation, we set

x⋏ y = ((x → y) → x′)′, x⋎ y = (x′ → y′) → x. (2.1)

Proposition 2.7 ([10]). Let L be a semi-regular L-algebra with negation.
Then the equations

x → (y ⋏ z) = (x → y)⋏ (x → z)

(x⋎ y) → z = (x → z)⋏ (y → z)

hold for any x, y, z ∈ L.

Definition 2.8 ([8]). A subset I of an L-algebra L is called an ideal of L
if it satisfies the following conditions for all x, y ∈ L,
(I1) 1 ∈ I,

(I2) if x ∈ I and x → y ∈ I, then y ∈ I,

(I3) if x ∈ I, then (x → y) → y ∈ I,

(I4) if x ∈ I, then y → x ∈ I and y → (x → y) ∈ I.
The set of all ideals of L is denoted by Id(L).

Proposition 2.9 ([2]). Every ideal of L is upset.

If we consider the ideal of CKL-algebra, the conditions (I3) and (I4)
can be dropped. In fact, for any x ∈ I, by (C) and (I1) we have

x → ((x → y) → y) = (x → y) → (x → y) = 1 ∈ I,

for any y ∈ L. It follows by (I2) that (x → y) → y ∈ I. Thus (I3) holds.
Furthermore, if x ∈ I, then for any y ∈ L, by (K) we have x → (y → x) =
1 ∈ I and by (I2), y → x ∈ I.

For an L-algebra such as L, a binary relation ∼ is a congruence relation
[8] on L if it is an equivalence relation such that for any x, y, z ∈ L,

x ∼ y ⇔ (z → x) ∼ (z → y) and (x → z) ∼ (y → z).

Theorem 2.10 ([8]). Let (L,→, 1) be an L-algebra. Then every ideal I of
L defines a congruence relation on L, for any x, y ∈ L, where

x ∼I y ⇔ x → y, y → x ∈ I.
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Conversely, every congruence relation ∼ defines an ideal

I = {x ∈ L | x ∼ 1}.

Definition 2.11 ([8]). Let L and H be two L-algebras. Then a map f :
L → H is called an L-homomorphism if for any x, y ∈ L we have

f(x →L y) = f(x) →H f(y).

Obviously, f(1L) = 1H.

Note. From now on, we let (L,→, 1) or L, for short, be an L-algebra and
X be a non-empty subset of L.

3. Main results

3.1. Stabilizers on L-algebras

In this section, we introduce the notions of left and right stabilizers on
L-algebras and investigate some properties of them.

Definition 3.1. A left stabilizer and a right stabilizer of X are de-
fined as follows:

Sr(X) = {a ∈ L | for any x ∈ X, a → x = x}.
Sl(X) = {a ∈ L | for any x ∈ X, x → a = a}.

Example 3.2. (i) Assume (L = {a, b, c, 1},≲) is a chain where a < b < c <
1. Then (L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 1 1
b c 1 1 1
c b c 1 1
1 a b c 1

Clearly, Sr({b}) = Sl({b}) = {1}.
(ii) Suppose (L = {a, b, c, 1},≲) is a chain where a < b < c < 1. Then
(L,→, 1) is an L-algebra such that
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→ a b c 1
a 1 1 1 1
b b 1 1 1
c a b 1 1
1 a b c 1

If X1 = {c} and X2 = {a, b, 1}, then Sl(X1) = {a, b, 1} and Sr(X2) = {c, 1}.

Note. Sr(Sl(X)) is called a right-left stabilizer of X and we denote it
by (Sl(X))r, for short. Similarly, (Sr(X))l is a left-right stabilizer of X.

Proposition 3.3. For all x, y ∈ L and ∅ ̸= X,Y ⊆ L, the following state-
ments hold:

(i) 1 ∈ Sr(X) ∩ Sl(X).

(ii) If X ⊆ Y, then Sr(Y) ⊆ Sr(X) and Sl(Y) ⊆ Sl(X).

(iii) X ⊆ (Sr(X))l ∩ (Sl(X))r.

(iv) Sr(X) = (((Sr(X))l)r and Sl(X) = (((Sl(X))r)l.

(v) If {Xi}i∈I is a family of non-empty subsets of L, then Sr(
⋃
i∈I

Xi) =⋂
i∈I

Sr(Xi) and Sl(
⋃
i∈I

Xi) =
⋂
i∈I

Sl(Xi).

(vi) Sr(L) = Sl(L) = {1}.

(vii) Sr({1}) = Sl({1}) = L.

(viii) If x ∈ Sr({x}) ∩ Sl({x}), then x = 1.

(ix) If h : L → L is a homomorphism and x ∈ L, then h(Sr({x})) ⊆
Sr({h(x)}) and h(Sl({x})) ⊆ Sl({h(x)}).

(x) If L is a bounded L-algebra with DNP, then Sr({0}) = {1}.

(xi) If L is a bounded L-algebra, then Sr({0}) = {1} if and only if for
any x, y ∈ L, x → y, y → x ∈ Sr({0}) implies x = y.

Proof: (i) Clearly, by (L1), since for any x ∈ X, 1 → x = x, we get
1 ∈ Sr(X). In addition, by (L1), x → 1 = 1, and so 1 ∈ Sl(X). Hence,
1 ∈ Sr(X) ∩ Sl(X).
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(ii) Assume a ∈ Sr(Y). Then for any y ∈ Y, a → y = y. Since X ⊆ Y,
clearly, for any x ∈ X, a → x = x and so a ∈ Sr(X). Hence, Sr(Y) ⊆ Sr(X).
The proof of the other case is similar.

(iii) Suppose a ∈ X. Then for any y ∈ Sr(X), y → a = a, and so a ∈
(Sr(X))l. In addition, for any y ∈ Sl(X), a → y = y and so a ∈ (Sl(X))r.
Hence, a ∈ (Sr(X))l ∩ (Sl(X))r. Therefore, X ⊆ (Sr(X))l ∩ (Sl(X))r.
(iv) By (iii), we have X ⊆ (Sr(X))l and by (ii), we get ((Sr(X))l)r ⊆
Sr(X). Also, by (iii), Y ⊆ (Sl(Y))r. Consider Y = Sr(X). Then Sr(X) ⊆
((Sr(X))l)r. Hence, Sr(X) = (((Sr(X))l)r. The proof of the other case is
similar.

(v) Since Xi ⊆
⋃
i∈I

Xi, by (ii), Sr(
⋃
i∈I

Xi) ⊆ Sr(Xi), and so Sr(
⋃
i∈I

Xi) ⊆⋂
i∈I

Sr(Xi). Conversely, assume a ∈
⋂
i∈I

Sr(Xi), then for any i ∈ I, a ∈

Sr(Xi), and so for any xi ∈ Xi, a → xi = xi. Thus for any x ∈
⋃
i∈I

Xi,

there exists i ∈ I such that x ∈ Xi, and so a → x = x. So, a ∈ Sr(
⋃
i∈I

Xi).

Therefore, Sr(
⋃
i∈I

Xi) =
⋂
i∈I

Sr(Xi).

(vi) Clearly, by (i), {1} ⊆ Sr(L). Assume 1 ̸= a ∈ Sr(L). Then for any
x ∈ L, a → x = x. Let x = a. Then 1 = a → a = a, and so a = 1,
which is a contradiction. Hence, Sr(L) = {1}. The proof of the other case
is similar.

(vii) Obviously, Sr({1}),Sl({1}) ⊆ L. Suppose a ∈ L. Then by (L1),
a → 1 = 1 and 1 → a = a. Thus a ∈ Sr({1}) ∩ Sl({1}). Hence Sr({1}) =
Sl({1}) = L.
(viii) Straightforward.

(ix) Assume y ∈ h(Sl({x})). Then there exists a ∈ Sl({x}) such that
y = h(a). Since x → a = a and h is a homomorphism on L, we have

y = h(a) = h(x → a) = h(x) → h(a) = h(x) → y.

Thus y ∈ Sl({h(x)}). Hence, h(Sl({x})) ⊆ Sl(h(x)). The proof of the
other case is similar.

(x) Assume a ∈ Sr({0}). Then a → 0 = 0, and so a′ = 0. By hypothesis,
a′′ = 0′ = 1 and so a = 1. Thus Sr({0}) = {1}.
(xi) If Sr({0}) = {1} and x → y, y → x ∈ Sr({0}), then x → y = y → x =

1, and by (L3), we have x = y. Conversely, by (i), {1} ⊆ Sr({0}). Consider
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a ∈ Sr({0}). Since 1 → a = a ∈ Sr({0}) and a → 1 = 1 ∈ Sr({0}), we
get 1 → a, a → 1 ∈ Sr({0}). So, by assumption, we have a = 1. Hence,
Sr({0}) = {1}.

In the following example we show that for any non-empty subset X of
L, Sr(X) and Sl(X) are not ideals of L, in general.

Example 3.4. (i) According to Example 3.2(i), Sr({b}) = Sl({b}) = {1}.
So, both are ideals of L.
(ii) According to Example 3.2(ii), Sr({a, b, 1}) = {c, 1} is an ideal of L but
Sl({c}) = {a, b, 1} is not an ideal of L since b → c = 1 ∈ {a, b, 1} and
b ∈ {a, b, 1} but c /∈ {a, b, 1}.
(iii) Suppose (L = {a, b, c, 1},≲) is a poset where a, c < b < 1. Then
(L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 a 1
b a 1 c 1
c b 1 1 1
1 a b c 1

If X = {b}, then Sl(X) = {a, c, 1} is not an ideal of L, because a → b = 1 ∈
Sl(X) and a ∈ Sl(X), but b /∈ Sl(X).
(iv) Suppose (L = {a, b, c, 1},≲) is a poset where a < b, c < 1. Then
(L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 1 1
b c 1 c 1
c b b 1 1
1 a b c 1

Assume X = {b}. Then Sr(X) = Sl(X) = {c, 1} are ideals of L.

Proposition 3.5. If L is a KL-algebra and for any x, y ∈ L, (x → y) →
y = (y → x) → x, then for any X ⊆ L, Sr(X) = Sl(X).

Proof: Let a ∈ Sr(X). Then for any x ∈ X, a → x = x. Since L is a
KL-algebra, by Proposition 2.3, a ≲ x → a. By assumption,

(x → a) → a = (a → x) → x = x → x = 1.
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Thus, x → a ≲ a, and so by (L3), we have x → a = a. Hence, a ∈ Sl(X)
and so Sr(X) ⊆ Sl(X). The proof of the other case is similar.

Example 3.6. Assume L is an L-algebra as in Example 3.4(iv). This ex-
ample demonstrates Proposition 3.5.

In the following example we show that the condition (x → y) → y =
(y → x) → x in Proposition 3.5 is necessary.

Example 3.7. Let L be an L-algebra as in Example 3.2(ii). Clearly, L is a
KL-algebra but

(a → c) → c = 1 → c = c ̸= 1 = a → a = (c → a) → a.

As we see in this example, if X = {c}, then Sr(X) = {1} ̸= {a, b, 1} = Sl(X).

Theorem 3.8. If L is a CKL-algebra, Sr(X) is an ideal of L, for any
non-empty subset X of L.

Proof: By Proposition 3.3(i), 1 ∈ Sr(X). Assume a, a → b ∈ Sr(X), for
any a, b ∈ L. Then for any x ∈ X, a → x = x and (a → b) → x = x. Thus,

b → x ≲ (a → b) → (a → x) by Proposition 2.5(viii)

= a → ((a → b) → x) by (C)

= a → x since a → b ∈ Sr(X)
= x. since a ∈ Sr(X)

Thus, b → x ≲ x. By Proposition 2.5(ii), x ≲ b → x. Hence, b → x = x,
and so b ∈ Sr(X). Therefore, Sr(X) is an ideal of L.

The next example shows that the condition CKL-algebra in Theorem
3.8 is necessary.

Example 3.9. Suppose (L = {a, b, c, 1},≲) is a poset where a, c < b < 1.
Then (L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 a 1
b c 1 a 1
c a 1 1 1
1 a b c 1
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But L is not a CKL-algebra, since

a → (b → c) = a → a = 1 ̸= c = b → a = b → (a → c).

If X = {a}, then Sr(X) = {c, 1}, which is not an ideal of L, because since
c ∈ Sr(X) by (I3), we have to have b → c ∈ Sr(X), but b → c = a /∈ Sr(X).

By the following example we show that in any CKL-algebra, Sl(X) is
not an ideal of L.

Example 3.10. Suppose (L = {a, b, c, 1},≲) is a chain where a < b < c < 1.
Then (L,→, 1) is a CKL-algebra such that

→ a b c 1
a 1 1 1 1
b a 1 1 1
c a b 1 1
1 a b c 1

Assume X = {b}. Then Sl(X) = {a, 1} which is not an ideal of L, since
a → b = 1 ∈ Sl(X) and a ∈ Sl(X) but b /∈ Sl(X).

Remark 3.11. If L is a CKL-algebra with DNP, then by Proposition 2.5(xiii)
and (2.1), we have

x⋎ y = (x′ → y′) → x = (y → x) → x.

Proposition 3.12. Assume L is a CKL-algebra with DNP and a ∈ L. If
a⋎ x = 1, then for any x ∈ X, a ∈ Sr(X) ∩ Sl(X).

Proof: Since L is a CKL-algebra, by Proposition 2.5(ii), a ≲ x → a, for
any x ∈ X. By assumption and Remark 3.11, we have

1 = a⋎ x = (a′ → x′) → a = (x → a) → a.

So, x → a ≲ a. Thus by Proposition 2.5(ii), we get x → a = a, and
so a ∈ Sl(X). By similar discussion, we can prove a ∈ Sr(X). Hence,
a ∈ Sr(X) ∩ Sl(X).

Theorem 3.13. Let L be a semi-regular L-algebra with negation. If x⋎y ∈
Sr(X), then x ∈ Sr(X) or y ∈ Sr(X).
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Proof: Suppose x⋎ y ∈ Sr(X) such that x /∈ Sr(X) and y /∈ Sr(X). Then
for any a ∈ X, (x⋎ y) → a = a, x → a ̸= a and y → a ̸= a. By Proposition
2.3, a < x → a and a < y → a. Thus by Proposition 2.7 we have

a < (x → a)⋏ (y → a) = (x⋎ y) → a = a,

which is a contradiction. Hence, x ∈ Sr(X) or y ∈ Sr(X).

Theorem 3.14. Let L be a semi-regular L-algebra with negation. If I1, I2 ∈
Id(X) such that Sr(X) = I1 ∩ I2, then Sr(X) = I1 or Sr(X) = I2.

Proof: By the assumption, Sr(X) = I1 ∩ I2. So, clearly, Sr(X) ⊆ I1 and
Sr(X) ⊆ I2. Now, suppose I1, I2 ⊈ Sr(X). Then there exist a ∈ I1 \ Sr(X)
and b ∈ I2 \ Sr(X). Since I1, I2 ∈ Id(X), by Proposition 2.9, I1 and I2
are upset. So, a ≲ a ⋎ b and b ≲ a ⋎ b, we get a ⋎ b ∈ I1 ∩ I2. Thus
a⋎ b ∈ Sr(X). By Theorem 3.13, we obtain a ∈ Sr(X) or b ∈ Sr(X), which
is a contradiction. Hence, I1 ⊆ Sr(X) or I2 ⊆ Sr(X). Therefore, Sr(X) = I1
or Sr(X) = I2.

Note. The set ⊥X = {a ∈ L | a ⋎ x = 1, for all x ∈ X}, if x ⋎ a exists,
is called a co-annihilator of X. In the following theorem we investigate the
condition showing ⊥X = Sr(X) ∩ Sl(X).

Theorem 3.15. Consider L be a CKL-algebra with DNP. Then ⊥X =
Sr(X) ∩ Sl(X).

Proof: Assume a ∈⊥ X. Then for all x ∈ X, a ⋎ x = 1, and by Remark
3.11 and since x⋎ a = a⋎ x we have

1 = a⋎ x = (a → x) → x = (x → a) → a.

Thus, (a → x) → x = 1 and (x → a) → a = 1. Hence, a → x ≲ x
and x → a ≲ a. Also, by Proposition 2.5(ii), we have x ≲ a → x and
a ≲ x → a. Then a → x = x and x → a = a. Therefore, a ∈ Sr(X)∩Sl(X).
Conversely, suppose a ∈ Sr(X) ∩ Sl(X). Then a ∈ Sr(X) and a ∈ Sl(X).
Thus, for any x ∈ X, a → x = x and x → a = a. So (a → x) → x = 1 and
(x → a) → a = 1. By Remark 3.11, we have

(a → x) → x = (x → a) → a = a⋎ x = 1.

Hence, a ∈⊥ X. Therefore, ⊥X = Sr(X) ∩ Sl(X).
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Stabilizer topology

In this section, we use of the right and left stabilizers of an L-algebra and
produce a basis for a topology on it. Then we show that the generated
topology by this basis is Baire, connected, locally connected and separable
and investigate the other properties of this topology.

Definition 3.16. A map C : P(L) → P(L) is a closure operator if for
any X,Y ∈ P(L) we have

(C1) X ⊆ C(X),

(C2) If X ⊆ Y, then C(X) ⊆ C(Y),

(C3) C(C(X)) = C(X).
Theorem 3.17. Define ω : P(L) → P(L) such that ω(X) = (Sl(X))r, for
all X ∈ P(L). Then

(i) ω is a closure map.

(ii) X ⊆ ω(Y) if and only if ω(X) ⊆ ω(Y), for all Y ⊆ L.

(iii) γω = {X ∈ P(L) | ω(X) = X} is a basis for a topology on L.
Proof: (i) By Proposition 3.3(ii), (iii) and (iv) the proof is clear.

(ii) By (i) is clear.

(iii) Let γω = {X ∈ P(L) | ω(X) = X}. Obviously, ∅ ∈ γω. Also, by
Proposition 3.3(vi) and (vii), ω(L) = (Sl(L))r = Sr({1}) = L. Thus,
ω(L) = L, and so L ∈ γω. Now, suppose X,Y ∈ γω. Then ω(X) = X
and ω(Y) = Y. We show X ∩ Y ∈ γω. Since X ∩ Y ⊆ X,Y, by (i),
ω(X ∩ Y) ⊆ ω(X) and ω(Y). Thus, ω(X ∩ Y) ⊆ ω(X) ∩ ω(Y). In addition,
from X,Y ∈ γω, we have ω(X ∩ Y) ⊆ X ∩ Y . Moreover, by Proposition
3.3(iii), X ∩ Y ⊆ ω(X ∩ Y). Then ω(X ∩ Y) = X ∩ Y, and so X ∩ Y ∈ γω.
Therefore, γω is a basis.

Note. (i) According to the definition γω, clearly, (Stl(L))r = L and
(Stl(∅))r = ∅, so ∅,L ∈ γω and by Proposition 3.3(i), for any ∅ ≠ X ⊆ L,
1 ∈ (Stl(X))r, so for any X ∈ γω, 1 ∈ X. We have to notice that in general
form, X ∈ γω is not an ideal of L.
(ii) Since (Stl(∅))r = ∅, by Proposition 3.3(vi) and (vii), {∅, {1},L} ⊆ γω.

Definition 3.18. According to Theorem 3.17, the topological space, (L, τω)
is called a stabilizer topology.
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Note. Since in any CKL-algebra, Sr(X) ∈ Id(L), for any X ⊆ L, every
element of γω is an ideal of L.

Example 3.19.

(i) In Example 3.2(i), (L,→, 1) is an L-algebra. By Proposition 3.3(i)
and (vii), {1} ∈ ω(X), for all ∅ ̸= X ⊆ L. So, if 1 /∈ X, then
X /∈ γω. By some manipulations, we get γω = {∅,L, {1}}. Thus,
τω = {∅,L, {1}}. In addition, {1, b} /∈ γω, because Sl({1, b}) = {1}
and by Proposition 3.3(vii), Sr({1}) = L, then ω({1, b}) = L, and
so ω({1, b}) ̸= {1, b}.

(ii) Assume L is an L-algebra as in Examples 3.2(ii) and 3.10. Then
γω = {∅, {1}, {c, 1},L}.

(iii) Consider an L-algebra as in Example 3.4(iii). Then γω = {∅, {1},
{b, 1},L}.

(iv) According to Example 3.4(iv), γω = {∅, {1}, {b, 1}, {c, 1},L}.

Theorem 3.20. The stabilizer topology (L, τω) is
(i) connected.

(ii) locally connected.

(iii) Hausdorff space if and only if L = {1}.

Theorem 3.21. Let (L, τω) be a stabilizer topology. If ∅ ̸= X ⊆ L such
that 1 ∈ X, then X = L.

Proof: Suppose ∅ ̸= X ⊆ L such that 1 ∈ X. Consider x ∈ L. If x = 1,
then x ∈ X. Hence, X = L. Now, suppose 1 ̸= x ∈ L. Then there exists an
open subset U ∈ γω such that x ∈ U . Since 1 ∈ U , we have U∩(X\{x}) ̸= ∅.
Hence, x ∈ X, and so X = L.

Note. A topological space is called separable if it contains a countable
dense subset.

Corollary 3.22. (L, τω) is separable.

Proof: Since {1} ∈ γω, by Theorem 3.21, {1} = L. Hence, (L, τω) is
separable.
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Theorem 3.23. (L, τω) is Baire space, where L is a CKL-algebra.

Proof: Let U ∈ τω. Since L is a CKL-algebra, by Theorem 3.8, U ∈
Id(L) and so 1 ∈ U . Since 1 ∈ U by Theorem 3.21, U = L. Thus, every
open set of (L, τω) is dense. On the other side, for each collection of open
set Un, 1 ∈

⋂
n∈N

Un. Thus, by Theorem 3.21,
⋂

n∈N
Un = L, and so

⋂
n∈N

Un is

dense. Therefore, (L, τω) is Baire space.

In the following example, we show that (L, τω) is not a T0-space or
T1-space.

Example 3.24. In Example 3.2(i), γω = {∅,L, {1}}. Since b ̸= c, for b, c ∈
L, there is not U ∈ γω such that b ∈ U and c /∈ U . Therefore, (L, τω) is not
a T0-space. Obviously, (L, τω) is not a T1-space.

Theorem 3.25. Let L be a bounded CKL-algebra. If L has a cover of
Ui ∈ γω, for i ∈ I, then there exists i ∈ I such that Ui = L. Particularly,
L is compact.

Proof: Let L be bounded and {Ui}i∈I be a cover of L such that, for all
i ∈ I, Ui ∈ γω and L ⊆

⋃
i∈I

Ui. Since, for all i ∈ I, Ui ∈ γω, by Theorem

3.8, we have Ui ∈ Id(L). On the other side, L is bounded, then 0 ∈ L, and
so 0 ∈

⋃
i∈I

Ui. Thus, there exists i ∈ I such that 0 ∈ Ui. Since Ui ∈ Id(L)

and 0 ∈ Ui, by Proposition 2.9, Ui = L. Hence, there exists a finite family
of {Ui}i∈I such that L ⊆

⋃n
i=1Ui.

3.2. Generalization of stabilizers on L-algebras

In this section, we introduce the generalization of stabilizers on L-algebra
and investigate their properties and relation of them with stabilizers.

Definition 3.26. Let X,Y be two non-empty subsets of L. Then a right(left)
stabilizer of X with respect to Y are defined by

Str(X,Y) = {a ∈ L | for all x ∈ X, (a → x) → x ∈ Y},
Stl(X,Y) = {a ∈ L | for all x ∈ X, (x → a) → a ∈ Y}.

Example 3.27. According to Example 3.2(i), let X = {a, b} and Y =
{b, c, 1}. Then Str(X,Y) = {b, c, 1} and Stl(X,Y) = {b, c, 1}.
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Proposition 3.28. Let X,Y,Xi,Yi be non-empty subsets of L and I ∈
Id(L). Then the following statements hold:

(i) If Str(X,Y) = L or Stl(X,Y) = L, then X ⊆ Y.

(ii) If L is a CKL-algebra and I ⊆ Y, then Str(I,Y) = L and Stl(I,Y) =
L.

(iii) If L is a CKL-algebra, then Str(I, I) = L and Stl(I, I) = L.

(iv) Sr(X) ⊆ Str(X, I) and Sl(X) ⊆ Stl(X, I).

(v) If L is a KL-algebra, then Sr(X, {1}) = Str(X) and Sl(X, {1}) =
Stl(X).

(vi) If Xi ⊆ Yi and Xj ⊆ Yj , then Sr(Yi,Xj) ⊆ Str(Xi,Yj) and Sl(Yi,Xj)
⊆ Stl(Xi,Yj).

(vii) Str(X,
⋂
i∈I

Yi) =
⋂
i∈I

Str(X,Yi) and Stl(X,
⋂
i∈I

Yi) =
⋂
i∈I

Stl(X,Yi).

Proof: (i) Assume x ∈ X. Since X ⊆ L, we get x ∈ L, and so x ∈
Str(X,Y). Thus, for any a ∈ X, (x → a) → a ∈ Y. Consider a = x. Then
by (L1) we have

x = 1 → x = (x → x) → x ∈ Y.

Hence, X ⊆ Y. The proof of the other case is similar.

(ii) Clearly, Str(I,Y) ⊆ L. Assume x ∈ L. Then for any a ∈ I, by
Proposition 2.5(iii), a ≲ (x → a) → a. Thus by Proposition 2.9, (x →
a) → a ∈ I, and so (x → a) → a ∈ Y. Hence, x ∈ Str(I,Y), thus
L ⊆ Str(I,Y). Therefore, L = Str(I,Y). The proof of the other case is
similar.

(iii) By (ii) the proof is clear.

(iv) Let a ∈ Sr(X). Then for any x ∈ X, a → x = x and clearly, (a →
x) → x = 1. Since I ∈ Id(L), by (I1), 1 ∈ I and so (a → x) → x ∈ I. Thus,
a ∈ Str(X, I). Hence, Sr(X) ⊆ Str(X, I). The proof of the other case is
similar.

(v) Since {1} ∈ Id(L), by (iv), we have Sr(X) ⊆ Str(X, {1}). Assume a ∈
Str(X, {1}). Then for any x ∈ X, (a → x) → x ∈ {1}, and so a → x ≲ x.
By hypothesis and Proposition 2.3, x ≲ a → x, and so a → x = x. Hence,
x ∈ Sr(X). Therefore, Sr(X, {1}) = Str(X). The proof of the other case is
similar.
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(vi) Assume a ∈ Sr(Yi,Xj). Then for any x ∈ Yi, (a → x) → x ∈ Xj .
By assumption, Xi ⊆ Yi, thus for x ∈ Xi, we get (a → x) → x ∈ Xj .
In addition, Xj ⊆ Yj , so (a → x) → x ∈ Yj . Hence, a ∈ Str(Xi,Yj).
Therefore, Sr(Yi,Xj) ⊆ Str(Xi,Yj). The proof of the other case is similar.

(vii) Consider a ∈ Str(X,
⋂
i∈I

Yi). Then for any x ∈ X, we have (a →

x) → x ∈
⋂
i∈I

Yi. Thus, for all i ∈ I, we have (a → x) → x ∈ Yi. So,

a ∈ Str(X,Yi). Hence, a ∈
⋂
i∈I

Str(X,Yi). Therefore, Str(X,
⋂
i∈I

Yi) ⊆⋂
i∈I

Str(X,Yi). The proof of other side is similar.

In the following example we show that the condition CKL-algebra in
Proposition 3.28(ii) is necessary.

Example 3.29. According to Example 3.4(iii), L is not a CKL-algebra,
since

b → (c → a) = b → b = 1 ̸= b = c → a = c → (b → a).

Consider I = {1}, Y = {c, 1} and X = {a}. Then Str(X,Y) = {b, 1} ≠ L.

Proposition 3.30. Consider ∅ ̸= X,Y ⊆ L. If for any x, y ∈ L, (x →
y) → y = (y → x) → x, then Str(X,Y) = Stl(X,Y).

Proof: Let a ∈ Str(X,Y). Then for any x ∈ X, (a → x) → x ∈ Y. By
assumption, (x → a) → a ∈ Y, and so a ∈ Stl(X,Y). By the similar way,
Stl(X,Y) ⊆ Str(X,Y). Hence, Str(X,Y) = Stl(X,Y).

Proposition 3.31. Consider L be a CKL-algebra and I, J ∈ Id(L). Then
Str(I, J) ∈ Id(L).

Proof: By (L1), since for any a ∈ I, (1 → a) → a = 1 ∈ J, we get
1 ∈ Str(I, J). Assume a, a → b ∈ Str(I, J). Then for any x ∈ I, (a →
x) → x ∈ J and ((a → b) → x) → x ∈ J. Since x ∈ I, by assumption and
Proposition 2.5(ii), x ≲ a → x, and by Proposition 2.9 we get a → x ∈ I.
So, ((a → b) → (a → x)) → (a → x) ∈ J. In addition, by Proposition
2.5(viii) we have b → x ≲ (a → b) → (a → x), and by Proposition 2.5(vii),
we have

((a → b) → (a → x)) → (a → x) ≲ (b → x) → (a → x),
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Since ((a → b) → (a → x)) → (a → x) ∈ J and J ∈ Id(L), by Proposition
2.9, (b → x) → (a → x) ∈ J. Moreover, by Proposition 2.5(xii), a → x =
((a → x) → x) → x. Thus

((a → x) → x) → ((b → x) → x) = (b → x) → (((a → x) → x) → x)

= (b → x) → (a → x) ∈ J.

From J ∈ Id(L) and (a → x) → x ∈ J, by (I2), we have (b → x) → x ∈ J.
Hence, b ∈ Str(I, J). Therefore, Str(I, J) ∈ Id(L).

Theorem 3.32.

(i) For any I, J ∈ Id(L), Str(I, J) ∩ I ⊆ J.

(ii) If L is a CKL-algebra, then Str(I, J) is the greatest ideal of L such
that Str(I, J) ∩ I ⊆ J.

Proof: (i) Let a ∈ Str(I, J)∩I. Then a ∈ I and a ∈ Str(I, J). Thus for any
x ∈ I, (a → x) → x ∈ J. Consider x = a, so by (L1), (a → a) → a = a ∈ J.
Thus, Str(I, J) ∩ I ⊆ J.
(ii) By (i), obviously, Str(I, J) ∩ I ⊆ J. Suppose there exists K ∈ Id(L),
where K ∩ I ⊆ J. We show that K ⊆ Str(I, J). For this, assume a ∈ K and
x ∈ I. Thus by Proposition 2.5(ii) and (iii), a, x ≲ (a → x) → x. Since
I,K ∈ Id(L), by Proposition 2.9, we get (a → x) → x ∈ K ∩ I, and so
(a → x) → x ∈ J. Thus, a ∈ Str(I, J), and so K ⊆ Str(I, J). Therefore,
Str(I, J) is the greatest ideal of L such that Str(I, J) ∩ I ⊆ J.

Corollary 3.33. Assume L is a CKL-algebra. Then ⟨Id(L),⊓,⊔, {1},L⟩
is a relative pseudo-complement lattice where Str(I, J) is the relative pseudo-
complement of I with respect to J in Id(L) such that I⊓J = I∩J and I⊔J
is a generated ideal of L contains I ∪ J.

Proof: By Theorem 3.32 and [5, Definition 3.5 and Proposition 3.6], the
proof is straightforward.

4. Conclusion

The aim of this paper is to introduce the notion of stabilizers in L-algebras
and develop stabilizer theory in L-algebras. In this paper, the notions of
left and right stabilizers are introduced and some properties related to them
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has been investigated. Then, the relations among stabilizers, ideals and co-
annihilators are discussed. Also, it was shown that the set of all ideals in
a CKL-algebra forms a relative pseudo-complemented lattice. Also, it was
proved that all right stabilizers in CKL-algebra are ideals. Then by using
the right stabilizers, a basis for a topology on L-algebra was produced.
Finally, it was proved that the generated topology by this basis is Baire,
connected, locally connected and separable and the other properties of this
topology are investigated.

In future, we can introduce the notions of fuzzy left and right stabilizers
and investigate their related properties and discuss the relations among
fuzzy stabilizers, fuzzy ideals and fuzzy co-annihilators.

Acknowledgements. The authors are very indebted to the editor and
anonymous referees for their careful reading and valuable suggestions which
helped to improve the readability of the paper.
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Abstract

In this paper, considering L-algebras, which include a significant number of

other algebraic structures, we present a definition of modules on L-algebras (L-

modules). Then we provide some examples and obtain some results on L-modules.

Also, we present definitions of prime ideals of L-algebras and L-submodules

(prime L-submodules) of L-modules, and investigate the relationship between

them. Finally, by proving a number of theorems, we provide some conditions for

having prime L-submodules.

Keywords: L-algebra, L-module, L-submodule, prime L-submodule.

2020 Mathematical Subject Classification: 06F15, 03G25.

1. Introduction

In the study of set-theoretical solutions of the Yang-Baxter equation, the
cycloid equation, (x · y) · (x · z) = (y · x) · (y · z), plays a fundamental role,
see for example [6, 15]. Finding a solution to the Young-Baxter equation is
a research topic for many authors. Rump’s research in order to find a solu-
tion for that equation led to the introduction of L-algebras [16]. L-algebras
are related to algebraic logic and quantum structures. They are closely
related to non-classical logical algebras and quantum Yang-Baxter equa-
tion solutions. It was shown that many non-classical logical algebras can
be unified into L-algebras. For instance, the pseudo MV-algebras can be
characterized as semiregular L-algebras with negation [21]; Orthomodular
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lattices can be characterized as L-algebras [20], and every lattice-ordered
effect algebra gives rise to an L-algebra [19]. Also, Rump showed that an
L-algebra can be represented as an interval in a lattice ordered group if
and only if it is semiregular with an smallest element and bijective nega-
tion [18]. In short, there are effective relationships between L-algebras and
other algebraic structures. For example, we can consider them as Hilbert
algebras, locales, hoops, pseudo MV -algebras, etc. Other recent results on
the structure of the category of L-algebras can be found in [8].
Discussions about modular structures on algebraic structures have long
been of interest to scientists. For instance, the notion of BCK-module was
introduced in 1994 as an action of a BCK-algebra over a commutative group
[2], and it was extended in 2014 [3]; The notion of MV-modules was intro-
duced as an action of a PMV-algebra over an MV-algebra in 2003 [1]; Also,
the notion of MV -semimodules was introduced in 2013 [14], and the new
definition of MV -semimodules was presented in 2021 [13]. As mentioned,
there are effective connections between most algebraic structures. These
connections show a relationship between the modular structures associated
with these algebras. L- Algebras under conditions can be equivalent to
other algebras such as BCK-algebras, MV -algebras, etc. Considering that
we have spent a relatively large amount of time studying modular struc-
tures (for instance, see [3, 4, 9, 10, 11, 12, 13]), in order to complete and
consolidate our study in this field, we have decided to define L-modules
as an action of an L-algebra over an Abelian group. We hope that this
definition can help us to clarify the structure of L-algebras.

2. Preliminaries

In this section, we review the material that we will use in the paper.

Definition 2.1 ([7]). An L-algebra is an algebra (L;→, 1) of type (2, 0)
satisfying

(L1) x → x = x → 1 = 1, 1 → x = x;

(L2) (x → y) → (x → z) = (y → x) → (y → z);

(L3) x → y = y → x = 1 implies x = y, for all x, y, z ∈ L.

The relation x ≤ y if and only if x → y = 1, defines a partial order for any
L-algebra L. If L admits a smallest element 0, then it is called a bounded
L-algebra.
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Moreover, in the bounded L-algebra L, if the map ′ : L −→ L defined, by
x −→ x′ = x → 0 for every x ∈ L, is bijective, then we say that L has
negation.

Definition 2.2 ([17]). A KL-algebra is an L-algebra (L,→, 1) such that

x → (y → x) = 1 (K)

for every x, y ∈ L.
A CL-algebra is an L-algebra (L,→, 1) such that

(x → (y → z)) → (y → (x → z)) = 1 (C)

for every x, y, z ∈ L.

Definition 2.3 ([16]). Let (L;→, 1) be an L-algebra. Then a subset K of
L is called an L-subalgebra if x → y, y → x ∈ K, for all x, y ∈ K.
A subset I of L is called an ideal if the following hold for all x, y ∈ L:

(I1) 1 ∈ I,

(I2) x, x → y ∈ I implies y ∈ I,

(I3) x ∈ I implies (x → y) → y ∈ I,

(I4) x ∈ I implies y → x, y → (x → y) ∈ I. Denote by ID(L) the set of
all ideals of L.

If L satisfies condition (K), then (I4) can be omitted. Also, if L satisfies
condition (C), then , (I3) and (I4) can be omitted.

Definition 2.4 ([5]). For every subset Y ⊆ L, the smallest ideal of L
containing Y (i.e. the intersection of all ideals I ∈ ID(L) such that Y ⊆ I)
is called the ideal generated by Y and it will be denoted by [Y ). If Y = {x}
we write [x) instead of [{x}). In this case [x) is called a principal ideal of L.

3. L-modules

In this section, we present our definition of L-modules, and obtain some
results on them. Then we introduce the concepts of L-submodules and
prime L-submodules in L-modules. Finally, we investigate some conditions
for having a prime L-submodule.
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Note. If L is an L-algebra, then we denote (l → u) → u by l ↑ u, for
every l, u ∈ L.

Definition 3.1. Let L = (L;→, 0, 1) be a bounded L-algebra, and M =
(M,+) be an Abelian group. Then M is called an L-module, if there is an
operation · : L×M −→ M by (l,m) 7−→ l ·m such that for every l, u ∈ L
and m,n ∈ M , we have:

(LM1) 1 ·m = m;

(LM2) l · (m+ n) = l ·m+ l · n;

(LM3) (l → u) ·m = l′ ·m+ u ·m, for all pairs (l, u) with u ̸= 1.
Moreover, if we have

(LM4) (l ↑ u) ·m = l · (u ·m), for all pairs (l, u) with l ̸= 0,

then M is called an Extended L-module (or briefly EL-module).

Example 3.2. (i) Let L = {0, 1} and define an operation ” → ” on L by

→ 0 1
0 1 1
1 0 1

Then L = (L;→, 0, 1) is a bounded L-algebra. The map ′ : L −→ L by
0′ = 1 and 1′ = 0 is bijective. Consider the operation · : L × Z −→ Z by
0 · n = 0 and 1 · n = n, for every n ∈ Z. Then (LZ1) and (LZ2) are clear.
(LZ3) We have (0 → 0).n = 0′.n + 0.n, (1 → 1).n = 1′.n + 1.n and
(1 → 0).n = 1′.n+0.n, for every n ∈ Z. Then Z is an L-module. Moreover,
(LZ4) We have (0 ↑ 0).n = 0.(0.n) and (1 ↑ 1).n = 1.(1.n), for every n ∈ Z.
Therefore, Z is an EL-module.
(ii) Let A be a non-empty set. Then it is routine to see that (ρ(A);→, ∅, A)
is a bounded L-algebra, where X → Y = X ′ ∪ Y , for every X,Y ∈ ρ(A).
Since ∅ → ∅ = ∅ → A = A → A = A and A → ∅ = ∅, we get L = {∅, A} is
an L-subalgebra of ρ(A) and so it is an L-algebra. ConsiderM = (ρ(A),∆),
where X∆Y = X ∪Y \X ∩Y , for every X,Y ∈ ρ(A). It is easy to see that
M is an abelian group. Now, let the operation · : L×M → M be defined
by T · Y = T ∩ Y , for any T ∈ L and Y ∈ M . Then

(LM1) A · Y = A ∩ Y = Y , for every Y ∈ M ;

(LM2) It is routine to see that
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T · (X + Y ) = T ∩ (X∆Y ) = (T ∩X)∆(T ∩ Y ) = (T ·X) + (T · Y ),

for every T ∈ L and X,Y ∈ M ;

(LM3) We have

(A → A).X = (A ∪A′) ∩X = X = X ∩A = X ∩ (A′∆A)

= (A′ ∩X)∆(A ∩X) = A′ ·X +A ·X,

for every X ∈ M . By the similar way, we have

(∅ → ∅)·X = ∅′ ·X+∅·X and (A → ∅)·X = A′ ·X+∅·X, for every X ∈ M.

Hence, M is an L-module. Moreover,

(LM4) Since

A ↑ A = (A → A) → A = (A′ ∪A) → A = (A ∩A′) ∪A = A,

we have (A ↑ A) ·X = A · (A ·X), for every X ∈ M . By the similar way,
we have (∅ ↑ ∅) · X = ∅ · (∅ · X), for every X ∈ M . Therefore, M is an
EL-module.

Note. From now on, in this paper, we let L = (L;→, 1) be an L-algebra.

Definition 3.3. If l ↑ u = u ↑ l, for every l, u ∈ L, then we say that L is
L-commutative.

Example 3.4. (i) Let L = {0, l, u, 1} and define an operation “ → ” on L
by

→ 0 l u 1
0 1 1 1 1
l u 1 u 1
u l l 1 1
1 0 l u 1

Then (L;→, 1) is an L-algebra. Moreover, L is L-commutative.
(ii) According to Example 3.2 (i), L is L-commutative.
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(iii) Let L = {0, l, u, t, 1} and define operation “ → ” on L by

→ 0 l u t 1
0 1 1 1 1 1
l 0 1 l t 1
u 0 l 1 t 1
t t 1 1 1 1
1 0 l u t 1

Then (L;→, 1) is an L-algebra. Since l ↑ t = (l → t) → t = 1 ̸= l = (t →
l) → l = t ↑ l, L is not L-commutative.

In the following, we present a general example of L-module.

Proposition 3.5. Let L = (L;→, 0, 1) be bounded and L-commutative.
Then (L,+) is an Abelian group, where

l + u = (l → u)′ ↑ (u → l)′, for every l, u ∈ L.

Proof: At first, we show that 0 + l = l + 0 = l, for every l ∈ L. We have

l + 0 = (l → 0)′ ↑ (0 → l)′ = (l′)′ ↑ 1′ = l ↑ 0 = (l → 0) → 0 = (l′)′ = l.

By the similar way, we have 0 + l = l and so 0 + l = l + 0 = l, for every
l ∈ L. Also, since

l + l = (l → l)′ ↑ (l → l)′ = 1′ ↑ 1′ = 0 ↑ 0 = (0 → 0) → 0 = 1 → 0 = 0,

we conclude that every member of L has a counterpart in L. Now, with a
long and routine method, it can be seen

l + (u+ t) = (l + u) + t, for every l, u, t ∈ L.

Finally, since L is L-commutative, we have

l + u = (l → u)′ ↑ (u → l)′ = (u → l)′ ↑ (l → u)′u+ l, for every l, u ∈ L.

Therefore, (L,+) is an Abelian group.

Proposition 3.6. Let L = (L;∧,∨,′ , 0, 1) be a Boolean-algebra. Then L
is a bounded L-algebra. Moreover, L is L-commutative.
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Proof: We define l → u = l′ ∨ u, for every l, u ∈ L. Then

(L1) It is clear that l → l = l → 1 = 1 and 1 → l = l, for every l ∈ L.

(L2) For every l, u ∈ L, we have

(l → u) → (l → t) = (l′ ∨ u) → (l′ ∨ t) = (l′ ∨ u)′ ∨ (l′ ∨ t)

= (l ∧ u′) ∨ (l′ ∨ t) = ((l ∧ u′) ∨ l′) ∨ t

= ((l ∨ l′) ∧ (u′ ∨ l′)) ∨ t = (1 ∧ (u′ ∨ l′)) ∨ t

= (u′ ∨ l′) ∨ t.

On the other hand, by the similar way, we have (u → l) → (u → t) =
(u′ ∨ l′) ∨ t. Hence

(l → u) → (l → t) = (u → l) → (u → t), for every l, u ∈ L.

(L3) Let l → u = u → l = 1, for any l, u ∈ L. Then l′ ∨ u = u′ ∨ l = 1
and so

l ∧ u = (l ∧ l′) ∨ (l ∧ u) = l ∧ (l′ ∨ u) = l ∧ 1 = l.

This means that l ≤ u. By the similar way, we have u ≤ l and so u = l.
Thus, (L,→, 1) is an L-algebra. Note that 0 → l = 0′ ∨ l = 1 ∨ l = 1. So
0 ≤ l, for every l ∈ L and so L is bounded. Moreover, we have

l ↑ u = (l → u) → u = (l′ ∨ u)′ ∨ u = (l ∧ u′) ∨ u = (l ∨ u) ∧ (u ∨ u′)

= l ∨ u=(l ∨ u)∧(l ∨ l′)= l ∨ (u ∧ l′)= l ∨ (u′ ∨ l)′ = l ∨ (u → l)′

= (u → l) → l = u ↑ l, for every u, l ∈ L.

Therefore, L is L-commutative.

Example 3.7. Let L = (L;∧,∨,′ , 0, 1) be a Boolean-algebra. If l → u ̸= 1
implies u ≤ l, for every u, l ∈ L, then L is an L-module.

Proof: By Proposition 3.6, L is bounded and L-commutative, and by
Proposition 3.5, M = (L,+) is an Abelian group, where l+ u = (l → u)′ ↑
(u → l)′, for every l, u ∈ L. We define the operation · : L ×M −→ M by
l.m = l ∧m, for every l ∈ L and m ∈ M . Then

(LM1) 1 ·m = 1 ∧m, for every m ∈ M ;

(LM2) Since for every m,n ∈ M ,
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m+ n = (m → n)′ ↑ (n → m)′=((m → n)′ → (n → m)′) → (n → m)′

= ((m′ ∨ n)′ → (n′ ∨m)′) → (n′ ∨m)′

= ((m′ ∨ n) ∨ (n ∧m′))′ ∨ (n ∧m′)

= ((m ∧ n′) ∧ (n′ ∨m)) ∨ (n ∧m′)

= ((m ∧ n′) ∨ (n ∧m′)) ∧ ((n ∧m′) ∨ (n′ ∨m))

= ((m ∧ n′)∨n)∧((m ∧ n′)∨m)∧((n ∨m ∨ n)∧(n′ ∨m′ ∨m′))

= ((n ∨m) ∧ (n ∨ n′)) ∧ ((m ∨m′) ∧ (m′ ∨ n′)) ∧ (m ∧m)

= (n ∨m) ∧ (m′ ∨ n′) = ((n ∨m) ∧m′) ∨ ((n ∨m) ∧ n′)

= ((n ∧m′) ∨ (m ∧m′)) ∨ ((n ∧ n′) ∨ (m ∧ n′))

= (n ∧m′) ∨ (m ∧ n′),

we have

l · (m+ n) = l ∧ ((n ∧m′) ∨ (m ∧ n′)) = (l ∧ n ∧m′) ∨ (l ∧m ∧ n′)

= ((l ∧m) ∧ (l ∧ n)′) ∨ ((l ∧m)′ ∧ (l ∧ n))

= (l ∧m) + (l ∧ n) = l ·m+ l · n,

for every l ∈ L and m,n ∈ M.

(LM3) Let l → u ̸= 1 or l = u, for any l, u ∈ L. Then u ≤ l and so
u ∨ l = l and u ∧ l = u. Thus, for every m ∈ M ,

l′.m+ u.m = (l′ ∧m) + (u ∧m)

= ((l′ ∧m)′ ∧ (u ∧m)) ∨ ((l′ ∧m) ∧ (u ∧m)′)

= ((l ∨m′) ∧ (u ∧m)) ∨ ((l′ ∧m) ∧ (u′ ∨m′))

= ((u ∧m ∧ l)∨(u ∧m ∧m′)∨(l′ ∧m ∧ u′)∨(l′ ∧m ∧m′))

= (u ∧m ∧ l) ∨ (l′ ∧m ∧ u′) = m ∧ ((u ∧ l) ∨ (l′ ∧ u′))

= ((l ∨ u) → (l ∧ u)).m = (l → u).m.

Note that if l → u = 1, then l ≤ u. So by the similar way, we have
(l → u).m = l′.m+ u.m. Hence,

(l → u) ·m = l′ ·m+ u ·m, for all pairs (l,u) with u ̸= 1.

Therefore, L is an L-module.
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Proposition 3.8. Let L = (L;→, 0, 1) be bounded and L-commutative, I

be an ideal of L and L be an L-module. Then
L

I
is an L-module. Moreover,

if L is an EL-module, then
L

I
is an EL-module.

Proof: Since (L,+) is an Abelian group, it is easy to see that (
L

I
,⊕) is

An abelian group, where [l]⊕ [u] = [l+u], for every l, u ∈ L. We define the

operation • : L× L

I
−→ L

I
by l • [m] = [l ·m], for every l ∈ L and [m] ∈ L

I
.

Then

(L
L

I
1) By (LL1), we have 1 • [m] = [m], for every [m] ∈ L

I
;

(L
L

I
2) By (LL2), for every l ∈ L and [m], [n] ∈ L

I
, we have

1•([m]⊕[n])= l•[m+n]=[l·(m+n)]=[l·m+l·n]=[l·m]⊕[l·n]= l•[m]⊕l•[n];

(L
L

I
3) By (LL3), for every [m] ∈ L

I
and for all pairs (l, u) with u ̸= 1,

we have

(l → u)•[m] = [(l → u)·m] = [l′·m+u·m] = [l′·m]⊕[u·m] = l′•[m]⊕u•[m].

Then
L

I
is an L-module. Moreover,

(L
L

I
4) By (LL4), for every [m] ∈ L

I
and for all pairs (l, u) with l ̸= 0,

we have

(l ↑ u) • [m] = [(l ↑ u) ·m] = [l · (u ·m)] = l • [u ·m] = l • (u • [m]).

Therefore,
L

I
is an EL-module.

Note. From now on, in this paper, we let M be an Abelian group.

Let I ∈ ID(L). The relation ∼ on L is defined by

u ∼ l ⇔ u → l, l → u ∈ I, for every u, l ∈ L.
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It was proved that∼ is a congruence on L. Then (
L

I
;→, [1]) is an L-algebra,

where [u] → [l] = [u → l], for every u, l ∈ L (see [16]).

Theorem 3.9. Let M be an L-module, and I be an ideal of L such that
I ⊆ AnnL(M), where AnnL(M) = {l ∈ L : l ·m = 0, for every m ∈ M}.

Then M is an
L

I
-module. Moreover, if M is an EL-module, then M is an

E
L

I
-module.

Proof: Consider ′ :
L

I
−→ L

I
by ([l])′ = [l′], for every l ∈ L which is a

bijective mapping. Define the operation • :
L

I
× M −→ M by [l] • m =

l · m, for every [l] ∈ L

I
and m ∈ M . Let [l] = [u] and m = n, for every

[l], [u] ∈ L

I
and m,n ∈ M . Then l → u, u → l ∈ I ⊆ AnnL(M) and

so (l → u) · m = (u → l) · m = 0, for every m ∈ M . It results that
l′ ·m+ u ·m = u′ ·m+ l ·m = 0 and so l ·m− u ·m = l′ ·m− u′ ·m and
l ·m = −u′ ·m. Hence l ·m− u ·m = l′ ·m+ l ·m = (l → l) ·m = 1 ·m and
so l ·m− u ·m = 1 ·m. By the similar way, we have u ·m− l ·m = 1 ·m.
It results that l ·m − u ·m = u ·m − l ·m and so l ·m = u ·m. It means
that • is well defined. Now, we have:

(
L

I
M1) By (LM1), it is clear that [1] •m = m, for every m ∈ M ;

(
L

I
M2) By (LM2), we have

[l] • (m+ n) = l · (m+ n) = l ·m+ l · n = [l] •m+ l • n,

for every [l] ∈ L

I
and m,n ∈ M ;

(
L

I
M3) By (LM3), for every m ∈ M and for all pairs ([l], [u]) with

[u] ̸= [1], we have

([l] → [u])•m = [l → u]•m = (l → u) ·m = l′ ·m+u ·m = [l]′ •m+[u]•m.
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Note that l ̸= 1 implies [l] ̸= [1]. Hence, M is an
L

I
-module. Moreover,

(
L

I
M4) by (LM4), for every m ∈ M and for all pairs ([l], [u]) with

[l] ≠ [0], we have

([l] ↑ [u])•m = [l ↑ u]•m = (l ↑ u)·m = l·(u·m) = [l]•(u·m) = [l]•([u]•m).

Note that l = 0 implies [l] = [0]. Therefore, M is an E
L

I
-module.

Definition 3.10. Let M be an L-module, and S be a subgroup of M . If
S satisfies

l · s ∈ S, for every l ∈ L and s ∈ S,

then it is called an L-submodule of M .

Example 3.11. (i) By Example 3.2 (i), 2Z is an L-submodule of M .
(ii) According to Example 3.2 (ii), consider A = {a, b}. Then S1 = {∅, {a}}
and S2 = {∅, {b}} are L-submodules of M .

Let M be an L-module, and S be an L-submodule of M . Since (M,+)
is an Abelian group and S is a subgroup of M , we can apply the module

theory to present quotient L-module. So it is clear that (
M

S
,⊕) is an

Abelian group, where (m+S)⊕(n+S) = (m+n)⊕S, for every m,n ∈ M .

Proposition 3.12. Let M be an L-module, and S be an L-submodule of

M . Then
M

S
is an L-module. Moreover, if M is an EL-module, then

M

S
is an EL-module.

Proof: We define the operation • : L×M

S
−→ M

S
by l•(m+S) = l·m+S,

for every l ∈ L and m+ S ∈ M

S
. It is routine to see that • is well defined.

By (LM1) and (LM2), the proofs of (L
M

S
1) and (L

M

S
2) are routine.

(L
M

S
3) By (LM3), for all pairs (l, u) with u ̸= 1, we have
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(l → u) • (m+ S) = (l → u) ·m+ S = (l′ ·m+ u ·m) + S

= (l′ ·m+ S)⊕ (u ·m+ S)

= l′ • (m+ S)⊕ u • (m+ S),

for every m+ S ∈ M

S
. Then

M

S
is an L-module. Moreover,

(L
M

S
4) by (LM4), for all pairs (l, u) with l ̸= 0, we have

(l ↑ u) • (m+ S) = (l ↑ u) ·m+ S = l · (u ·m) + S

= l • (u ·m+ S) = l • (u • (m+ S)),

for every m+ S ∈ M

S
. Therefore,

M

S
is an EL-module.

Lemma 3.13. Let M be an EL-module, and I be an ideal of L. Then

IL(M) = {Σn
i=1ti ·mi : 0 ̸= ti ∈ I,mi ∈ M,n ∈ N}

is an L-submodule of M .

Proof: It is clear that IL(M) is a subgroup of M . Now, for every l ∈ L
and Σn

i=1ti ·mi ∈ IL(S), by (LM2), we have

l · Σn
i=1ti ·mi = l · (t1 ·m1) + l · (t2 ·m2) + · · ·+ l · (tn ·mn)

and so by (LM4),

l · Σn
i=1ti ·mi = (l ↑ t1) ·m1 + (l ↑ t2) ·m2 + · · ·+ (l ↑ tn) ·mn.

Since by (I3), ti ·mi ∈ I, for every 1 ≤ i ≤ n, we get l ·Σn
i=1ti ·mi ∈ IL(M).

Therefore, IL(M) is an L-submodule of M .

Definition 3.14. Let I be a proper ideal of L. Then I is called a prime
ideal of L, if l ↑ u ∈ I implies l ∈ I or u ∈ I, where l, u ∈ L.

Example 3.15. According to Example 3.4 (i), it is easy to see that I1 =
{1, l} and I2 = {1, u} are prime ideals of L.
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Theorem 3.16. Let M be an EL-module, S be an L-submodule of M and
P be a prime ideal of L. Then

SN,P = {m ∈ M : c ·m ∈ PL(M) + S, ∃ 0 ̸= c ∈ (L \ P ) ∪ {1}}

is an L-submodule of M and PL(M) + S ⊆ SN,P .

Proof: Let m,n ∈ SN,P . Then there are c1, c2 ∈ (L \ P ) ∪ {1} such that
0 ̸= c1, 0 ̸= c2 and c1 ·m, c2 · n ∈ P ·M + S. Consider c = c1 ↑ c2. It is
clear that c ∈ (L \ P ) ∪ {1}. Then by (LM4), we have

c · (m− n) = (c1 ↑ c2) · (m− n) = c1 · (c2 · (m− n))

= c1 · (c2 ·m− c2 · n) = c1 · (c2 ·m)− c1 · (c2 · n)

and so by Lemma 3.13, c · (m − n) ∈ PL(M) + S. Now, for every l ∈ L
and m ∈ SN,P , we show that l · m ∈ SN,P . Since m ∈ SN,P , there is
0 ̸= c ∈ (L \ P ) ∪ {1} such that c ·m ∈ PL(M). Then by Lemma 3.13 and
(LM4),

c · (l ·m) = (c ↑ l) ·m = (l ↑ c) ·m = l · (c ·m) ∈ PL(M).

Hence, SN,P is an L-submodule of M . Finally, let t · m ∈ PL(M). Then
we have 1 · (t ·m) ∈ PL(M) + S, where c = 1 ∈ (L \ P ) ∪ {1}. Therefore,
t ·m ∈ SN,P and so PL(M) ⊆ SN,P .

Theorem 3.17. Let I be an ideal of L, and M be an EL-module. Then
M

IL(M)
is an E

L

I
-module. Moreover, if M is an EL-module, then

M

IL(M)

is an E
L

I
-module.

Proof: The module
M

IL(M)
can be defined by Lemma 3.13. Then we

define the operation

• :
L

I
× M

IL(M)
−→ M

IL(M)
by [l] • (m+ IL(M)) = l ·m+ IL(M), for every

[l] ∈ L

I
and m+ IL(M) ∈ M

IL(M)
. Since

I • M

IL(M)
= {l • (m+ IL(M)) : l ∈ L,m ∈ M}

= {l ·m+ IL(M) : l ∈ L,m ∈ M} = IL(M),
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we have I ⊆ AnnL(
M

IL(M)
) and so with a proof similar to the proof of

Theorem 3.9, • is well defined.

(
L

I

M

IL(M)
1) By (LM1), [1]•(m+IL(M)) = 1·m+IL(M) = m+IL(M),

for every m ∈ M ;

(
L

I

M

IL(M)
2) By (LM2), we have

[l]•((m+IL(M))⊕(n+IL(M))) = [l] • (m+ n+ IL(M))

= l · (m+ n) + IL(M)

= l ·m+ l · n+ IL(M)

= (l ·m+ IL(M))⊕ (l · n+ IL(M))

= [l] • (m+ IL(M))⊕ [l] • (n+ IL(M)),

for every [l] ∈ L

I
and (m+ IL(M)), (n+ IL(M)) ∈ M

IL(M)
;

(
L

I

M

IL(M)
3) By (LM3), for every m + IL(M) ∈ M

IL(M)
and for all

pairs ([l], [u]) with [u] ̸= [1], we have

([l] → [u]) • (m+ IL(M)) = [l → u] • (m+ IL(M))

= (l → u) ·m+ IL(M)

= (l′ ·m+ u ·m) + IL(M)

= (l′ ·m+ IL(M))⊕ (u ·m+ IL(M))

= [l]′ • (m+ IL(M))⊕ [u] • (m+ IL(M));

Hence, M is an
L

I
-module. Moreover,

(
L

I

M

IL(M)
4) by (LM4), for every m+IL(M) ∈ M

IL(M)
and for all pairs

([l], [u]) with [l] ̸= [0], we have

([l] ↑ [u]) • (m+ IL(M)) = [l ↑ u] • (m+ IL(M)) = (l ↑ u) ·m+ IL(M)

= l · (u ·m) + IL(M) = [l] • (u ·m+ IL(M))

= [l] • ([u] • (m+ IL(M)).
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Therefore,
M

IL(M)
is an E

L

I
-module.

Definition 3.18. Let M be an L-module and S be a proper L-submodule
of M . Then S is called a prime L-submodule of M , if by l ·m ∈ S, we have
m ∈ S or l ∈ (S : M) = {l ∈ L : l ·M ⊆ S}.

Example 3.19. By Example 3.2(i), 2Z is a prime L-submodule of Z.

Note. Let M be an L-module, I ⊆ L and D ⊆ M . Then we set ID =
{i · d : i ∈ I and d ∈ D}, and It = {α ∈ L : t → α = 1}, for every t ∈ L. It
is clear that 1, t ∈ It and so It ̸= ∅.

Theorem 3.20. Let L be bounded and L-commutative, M be an L-module
and S be a proper L-submodule of M . Then S is a prime L-submodule
of M if and only if ItD ⊆ S implies D ⊆ S or It ⊆ (S : M), for any
L-submodule D of M and t ∈ L.

Proof: (⇒) Let S be a prime L-submodule of M and ItD ⊆ S, where D
is an L-submodule of M and t ∈ L. We show that D ⊆ S or It ⊆ (S : M).
Let It ⊈ (S : M) and D ⊈ S. Then there are x ∈ It and d ∈ D such that
x ·M ⊈ S and d /∈ S. Since ID ⊆ S, we have x · d ∈ S and so by d /∈ S,
we get x ∈ (S : M), which is a contradiction.
(⇐) Let by ItD ⊆ S, we have D ⊆ S or It ⊆ (S : M), for any L-submodule
D of M and t ∈ L. Suppose x · m ∈ S and m /∈ S, for any x ∈ L and
m ∈ M . For every α ∈ Ix, we have

α ·m = (1 → α) ·m = ((x → α) → α) ·m = (x ↑ α) ·m = (α ↑ x) ·m
= α · (x ·m) ∈ S.

Now, consider D =≺ m ≻= {y ·m : y ∈ L}. Then

IxD = {α · (y ·m) : α, y ∈ L} = {y · (α ·m) : α, y ∈ L} ⊆ S

and so Ix ⊆ (S : M) or D ⊆ S. Since m /∈ S, we have Ix ⊆ (S : M) and so
x ∈ (S : M). Therefore, S is a prime L-submodule of M .

Proposition 3.21. For every x, y ∈ L,

(i) x′ → (x → y) = 1;

(ii) (x → y) → x′ = (y → x) → y′.
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Proof: (i) By (L2), we have
x′ → (x → y) = (x → 0) → (x → y) = (0 → x) → (0 → y) = 1 → 1 =
1, for every x, y ∈ L. (ii) By (L2), we have
(x → y) → x′ = (x → y) → (x → 0) = (y → x) → (y → 0) = (y → x) →
y′, for every x, y ∈ L.

Lemma 3.22. Let L be a bounded KL-algebra, M be an EL-module and S
be a proper L-submodule of M . Then PS = (S : M)∪ {1} is an ideal of L.

Proof: (I1) It is clear that 1 ∈ PS .
(I2) Let x, x → y ∈ PS . Because of the nature of the definition of PS , we
need to consider three cases:

(1) If x = 1, then y = 1 → y = x → y ∈ PS .

(2) Let x → y = 1. Then for y = 1, the problem is solved. Thus, let
y ̸= 1. In this case, if x = 0, then by (LM3), m = 1 ·m = (0 → y) ·m =
1 · m + y · m = m + y · m and so y · m = 0, for every m ∈ M . It means
that y ∈ (S : M) and so y ∈ PS . Hence, suppose x ̸= 0 and y ̸= 1. Since
y = 1 → y = (x → y) → y = x ↑ y, by (LM4), we have

y ·m = (x ↑ y) ·m = (y ↑ x) ·m = y · (x ·m) ∈ S, for every m ∈ M.

Thus, y ∈ (S : M) and so y ∈ PS .

(3) Let x ̸= 1 and x → y ̸= 1. Then x ·m, (x → y) ·m ∈ S, for every
m ∈ M . It results that x ·m + (x → y) ·m ∈ S, for every m ∈ M . Now,
by Proposition 3.21(i) and (LM3), for every m ∈ M , we have

m = 1 ·m = (x′ → (x → y)) ·m = x ·m+ (x → y) ·m ∈ S,

which is a contradiction.

Therefore, PS = (S : M) ∪ {1} is an ideal of L.

Definition 3.23. Let L be bounded and M be an L-module. Then M is
called a torsion free L-module, if l ·m = 0 implies l = 0 or m = 0, for every
l ∈ L and m ∈ M .

Example 3.24. By Example 3.2(ii), M is a torsion free L-module.
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Theorem 3.25. Let L be a bounded KL-algebra, M be an EL-module and
S be a proper L-submodule of M . Then S is a prime L-submodule of M if

and only if PS = (S : M) ∪ {1} is a prime ideal of L and
M

S
is a torsion

free
L

PS
-module.

Proof: (⇒) Let S is a prime L-submodule of M . By Lemma 3.22, PS

is an ideal of L. At first, we show that PS is a prime ideal of L. Let
x ↑ y ∈ PS , for any x, y ∈ PS . We consider three cases:

(1) If x = 1 or y = 1, then x ∈ PS or y ∈ PS .

(2) If x ↑ y ̸= 1, x ̸= 1 and y ̸= 1, then by (LM4), we have x · (y ·m) =
(x ↑ y) · m ∈ S, for every m ∈ S. Hence, x ∈ (S : M) or y · m ∈ S, for
every m ∈ M . It results that x ∈ PS or y ∈ PS .

(3) Let x ↑ y = 1, x ̸= 1 and y ̸= 1. Then (x → y) → y = x ↑ y = 1
and so x → y ≤ y. Since y ≤ x → y, we have x → y = y and so by (LM3),

(x → y) ·m = x′ ·m+ y ·m = y ·m, for every, m ∈ M.

Then x′ ·m = 0 ∈ S and so x′ ∈ (S : M) or m ∈ S, for every m ∈ M . If
m ∈ S, for every m ∈ M , then M = S, which is a contradiction. Thus,
x′ ∈ (S : M) ⊆ PS and so by (I3), we have y = x → y = y′ → x′ ∈ PS .
Hence, PS is a prime ideal of L.

Now, we define the operation • :
L

PS
×M

S
−→ M

S
by [l]•(m+S) = l ·m+S,

for every [l] ∈ L

PS
and m + S ∈ M

S
. By the similar way to the proof of

Theorem 3.17,
M

S
is an

L

PS
-module. Finally, let [l] • (m+ S) = S, for any

[l] ∈ L

PS
and m+ S ∈ M

S
. Then l ·m+ S = S and so l ·m ∈ S. It results

that l ∈ (S : M) ⊆ PS or m ∈ S and so [l] = PS or m+ S = S. Therefore,
M

S
is a torsion free

L

PS
-module.
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l · m + S = S and so [l] = PS = [1] or m + S = S. It means that
l = 1 → l ∈ PS . Therefore, S is a prime L-submodule of M .

4. Conclusions and future works

In this paper, we have presented the definitions of L-modules, L-submodules
and prime L-submodules, and some results about prime L-submodules. We
intend to study L-modules in specific cases, too. For examples, free L-
modules, projective(injective) L-modules, and so on. Because L-algebras
cover a number of algebraic structures (such as BCK-algebras, etc.), the
results of this paper can be generalized to those algebraic structures. We
hope that we have taken an effective step in this regard.

Acknowledgements. The authors would like to thank referee for some
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