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INTRODUCTION: BILATERALISM
AND PROOF-THEORETIC SEMANTICS (PART II)

Most of the papers contained in this special issue1 are results from contribu-
tions at a conference on this topic, which took place at the Ruhr University
Bochum in March 2022. Since the topic of proof-theoretic semantics (PTS)
can by now be considered as well-established in the logic community and
has been exclusively dealt with at several conferences and in many publica-
tions2, this introduction’s focus will be on the part of logical bilateralism.
Before summarizing the content of this special issue, a brief overview of the
development in the field will be given, though this is not meant and does
not aim to be an exhaustive account of the existing literature.3

There are rather different approaches branded as bilateralism in the lit-
erature, whose differences are mostly not made explicit, though. Although
the origin of bilateralism is Rumfitt’s [20] seminal paper in the sense that
the concrete term and idea are introduced therein and spelled out thor-
oughly, there are some predecessors to the general idea that are frequently
cited, like [12], [22], and [8].4 The most frequent characterization that is

1For editorial reasons it was decided to have actually two issues on this topic, which
is why this introduction will appear in both parts and only differ in the presentation of
the papers contained in the respective issue.

2See, e.g., [21, 4, 9, 11].
3Parts of the following paragraphs can also be found in a joint paper by Heinrich

Wansing and myself on the topic of multilateralism [27]. In its introductory part we
give an overview of the literature on bilateralism as well as of the existing but scarce
literature extending this concept to multilateralism.

4A paper which is not often mentioned in this context, probably due to the fact that

© Copyright by Author(s),  Lódź 2023
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it was written in German, but which deserves recognition in this context is [24]. Von

 Kutschera is concerned with the relation between the notions of proof and refutation

 

https://doi.org/10.18778/0138-0680.2023.24
https://publicationethics.org/


268 Sara Ayhan

used for bilateralism is that it is a theory of meaning displaying a sym-
metry between certain notions (or often rather: conditions governing these
notions), which have not been considered being on a par by ‘conventional’
theories of meaning. The relevant notions are most often assertion and
denial, or assertibility and deniability, sometimes also acceptance and re-
jection.5 While the former are usually taken to describe speech acts, the
latter are usually – though not always (see [19] for a thorough distinction)
– considered to describe the corresponding internal cognitive states or at-
titudes. ‘Assertibility’ and ‘deniability’, on the other hand, are of a third
kind, since they can be seen to describe something like properties of propo-
sitions. The symmetry between these respective concepts is often described
with expressions like “both being primitive”, “not reducible to each other”,
“being on a par”, and “of equal importance”. Another point to characterize
bilateralism, which is often mentioned, though not as frequent or central
as the former point,6 is that in a bilateral approach the denial of A is not
interpreted in terms of, or as the assertion of the negation of A but that it
is the other way around: In bilateralism rejection and/or denial are usually
considered as conceptually prior to negation.

Ripley [18, 19] distinguishes two camps of bilateral theories of meaning 
in terms of “what kinds of condition on assertion and denial they appeal 
to” [19, p. 50]: a warrant-based approach and a coherence-based approach, 
for the latter of which he himself argues [17] and which was firstly devised 
by Restall [13, 14].7 As references for the first camp, which Ripley calls the 
‘orthodox’ bilateralism, [12], [22], and [20] are given. Warrant-based bilat-
eralism takes the relevant conditions to be the ones under which proposi-
tions can be warrantedly asserted or denied. Coherence-based bilateralism, 

that it could just as well be done the other way around, or, although in the paper he
does differently, that both could be seen as primitive. Thus, it seems that he voices
quite bilateralist ideas.

5To give some examples of references using a characterization of essentially this
flavor: [5, 7, 10, 16, 20, 26].

6The following use this as an additional characterization (while also using the essen-
tial characterization that the references in fn. 4 use): [2, 3, 17, 23]. This is not to say
that this point does not occur in other works on bilateralism but that it is not used as
a characterizing feature of bilateralism there.

7In [19] this one is called the “bounds-based bilateralism”. Interestingly, Restall
does not use the expression “bilateralism” at all in the cited works, only later does this
term become part of his terminology, e.g., in [15].

and claims, e.g., that it is not necessary to define the latter in terms of the former but
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which collections of propositions can be coherently asserted and/or denied
together.

What the two approaches have in common is that they were both meant,
as they were originally devised, to motivate a PTS approach using classical
instead of intuitionistic logic. What they tend to differ in, though, is their
design and interpretations of proof systems. Rumfitt [20] uses a natural
deduction system with signed formulas for assertion and denial, i.e., rules
do not apply to propositions but to speech acts. He argues that the short-
comings that a classical natural deduction calculus has from a PTS point of
view are overcome once we consider a calculus containing introduction and
elimination rules determining not only the assertion conditions for formulas
containing the connective in question but also the denial conditions. Thus,
he means to give a motivation how the rules of classical logic lay down the
meaning of the connectives.8

Restall [13], opting for the coherence-based approach, does the same but
comes from another direction in suggesting a bilateral reading of classical
sequent calculus (i.e., with multiple conclusions) incorporating the speech
acts of assertion and denial. In a nutshell, he proposes that having the
derivation of a sequent Γ ⊢ ∆, means that the position of asserting each
of the members of Γ while simultaneously denying each of the members of
∆ would be ‘out of bounds’. In a recent paper, though, Restall [15] seems
convinced by Steinberger’s [23] criticism of multiple-conclusion systems as
not adhering to our natural inferential practice and he considers an ap-
proach using a natural deduction system instead, which does not employ
signed formulas but rather uses different positions for certain commitments
from which the inference is drawn to the conclusion.9

What Ripley [19] mentions in a footnote is that there are also other 
kinds of bilateralism, which do not fit into either camp because they do 
not consider speech acts (i.e., assertion and denial) as the primary notions 
to act upon in the context of PTS but rather notions being on a par with 
proof, provability, or verification, i.e., refutation, refutability, or falsifica-
tion, respectively. The point of interest is, thus, to implement different 

8For critical assessments of that paper, see, e.g., [6, 2, 10, 5].
9The motivation is still to make a case for classical logic being usable in a PTS

framework, although Restall does not seem too dogmatic about anything being ‘the
best’ logic. He also wants to show how such a system can be used for substructural
logics.

on the other hand, takes the relevant conditions to be the conditions under
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between different inferential relationships, which has been devised, e.g., in
[25, 26].

These different varieties of bilateralism depicted above are actually very
well represented in this special issue. It is even the majority of the contribu-
tions dealing with what can be called – in one way or another – ‘unorthodox’
bilateralism.

In the paper “Fractional-valued modal logic and soft bilateralism” Mario
Piazza, Gabriele Pulcini and Matteo Tesi outline yet another, unorthodox
variety of bilateralism, which they call soft bilateralism to demarcate their
approach from more traditional conceptions. It is ‘bilateral’ because the
rules in the calculi they introduce are meant to deal with both derivability
and underivability. It is only ‘softly’ bilateral due to their conception of
the speech act of denial, namely as rejection in the sense of proving the
unprovability of a formula rather than in the sense of the stronger notion
of directly refuting that formula. Based on this approach they argue for
considering fractional semantics – a semantics whose values are the ratio-
nal numbers in the closed interval [0,1] – for a family of modal logics and
investigate and prove certain properties for these systems.

There are also papers, though, which deal with issues of ‘orthodox’
bilateralism. Nils Kürbis’ paper “Supposition: A problem for bilateralism”
spells out an important objection that can be raised against a system of
natural deduction with signed formulas to be interpreted as speech acts in
Rumfitt-style. The argument against such a system is as simple as it is
compelling: Natural deduction systems work with assumptions. Making
an assumption is also to be considered as a kind of speech act. Embedding
speech acts within other speech acts is – as it is widely agreed upon – not
possible. Thus, we cannot make sense of the use of assumptions in a proof
system which implements bilateralism in such a way.

Leonardo Ceragioli’s paper “Bilateral rules as complex rules” deals with 
the same kind of proof system and more specifically, two objections raised 
in [5] about issues caused by the so-called coordination principles, which 
are needed in such a bilateralist system besides the operational rules. The 
first objection i s that in a  bilateralist f ramework the notorious connective 
tonk cannot be ruled out by the criterion of harmony as it can be usually 
done in a unilateralist framework and that thus, there can be (at least 
on a certain understanding of the term) a reduction procedure for tonk, 
which indeed would be highly undesirable from the viewpoint of PTS. The 

derivability relations in a proof-theoretic framework expressing a duality
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zero-ary connective, which Gabbay [5] presents and which he claims to be
in harmony. However, together with the coordination principles they would
trivialize the system, i.e., they should not be admitted, although they seem
fine by the harmony criterion. Ceragioli’s proposed solution to these two
issues is based on reinterpreting bilateral systems as systems with complex
rules and applies the results existing on such systems to the special case of
bilateralism.

Last but not least, the paper by Pedro del Valle-Inclan “Harmony and
normalisation in bilateral logic” builds upon former work by the author
and co-author Julian Schlöder [1] in which they propose a specific notion of
proof-theoretic harmony for bilateralist contexts. In the present paper del
Valle-Inclan argues that this notion also leads to a special notion of normal
form. Based on this, he goes on to prove normalization results for two
(Rumfitt-style) bilateralist calculi for classical logic, which are subsequently
compared to other existing results in this area.
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küle, Archiv für mathematische Logik und Grundlagenforschung,

vol. 12 (1969), pp. 104–118, DOI: https://doi.org/10.1007/BF01969697.

[25] H. Wansing, Proofs, disproofs, and their duals, [in:] V. Goranko, L. Bek-

lemishev, V. Sheht (eds.), Advances in Modal Logic, vol. 8, College

Publications (2010), pp. 483–505.

[26] H. Wansing, A more general general proof theory, Journal of Applied

Logic, vol. 25 (2017), pp. 23–46, DOI: https://doi.org/10.1016/j.jal.2017.

01.002.

[27] H. Wansing, S. Ayhan, Logical Multilateralism (2023), submitted.

https://doi.org/10.1111/j.1747-9991.2011.00422.x
https://doi.org/10.1111/j.1747-9991.2011.00422.x
https://doi.org/10.1080/00048402.2011.630010
https://doi.org/10.1080/00048402.2011.630010
https://doi.org/10.1093/oxfordhb/9780198830528.013.21
https://doi.org/10.1093/mind/109.436.781
https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/
https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/
https://doi.org/10.1111/j.0003-2638.1996.00001.x
https://doi.org/10.1111/j.0003-2638.1996.00001.x
https://doi.org/10.1007/s10992-010-9153-3
https://doi.org/10.1007/s10992-010-9153-3
https://doi.org/10.1007/BF01969697
https://doi.org/10.1016/j.jal.2017.01.002
https://doi.org/10.1016/j.jal.2017.01.002


274 Sara Ayhan

Sara Ayhan

Ruhr University Bochum
Institute of Philosophy
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Abstract

In a recent paper, under the auspices of an unorthodox variety of bilateralism, we

introduced a new kind of proof-theoretic semantics for the base modal logic K,

whose values lie in the closed interval [0, 1] of rational numbers [14]. In this

paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism”

– we generalize the fractional method to encompass extensions and weakenings

of K. Specifically, we introduce well-behaved hypersequent calculi for the deontic

logic D and the non-normal modal logics E and M and thoroughly investigate

their structural properties.

Keywords: modal logic, general proof theory (including proof-theoretic seman-

tics), many-valued logics.

2010 Mathematical Subject Classification: 03B45, 03F03, 03B50.

1. Introduction

From a general perspective, the distinctive aspect of bilateralism is that it
recognizes and isolates two different dimensions of logic which are placed
on a par: assertion and denial. Although often neglected in the history
of logic, denial can be seen as a perfectly sensible logical notion which
follows its own specific inferential trajectories [6, 17]. Since the notion of
logical denial admits several consistent meanings, the proper logical realm
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of bilateralism is still a matter of philosophical controversy. Therefore,
over the last few decades, various proposals concerning the possibility of a
bilateral reading of logic have flourished [19, 4, 22, 17].

On the one hand, Rumfitt has argued that the natural theoretical back-
drop against which bilateralism takes place is classical logic; and in ef-
fect, bilateralism has traditionally been adopted to give a coherent proof-
theoretic account of classical logic. On the other hand, more recently, this
view has been challenged by Kürbis, who claims that a bilateral account
of intuitionistic logic is also possible [8, 9]. This stance seems perfectly
sensible, as the acts of assertion and denial can also be rephrased in proper
intuitionistic terms.

In what follows, we propose a particular conception of bilateralism,
which can accommodate non-classical logics or extensions of classical logic,
such as substructural logics and modal logic. As it is well known, the notion
of denial in bilateralism is primitive and cannot be reduced to the asser-
tion of a negation. Our proposal is based on interpreting the act of denial
by means of the logically “soft” notion of rejection. A formula A can be
considered as rejected just in case it does not admit a proof within the ref-
erence system. For example, in classical propositional logic contradictions
and truth-functional contingencies all qualify as rejectable formulas [18].
This is why we label this type of bilateralism as “soft” to distinguish it
from other narrower interpretations, whereby denial is logically analyzed
as refutation, i.e. in terms of a derivation of grounds for the denial of the
proposition.

In this paper, we introduce calculi for a family of modal logics that
operate within a soft bilateral framework by combining rules for handling
derivable as well as underivable sequents.1 This hybrid approach to infer-
ence rules is both technically useful, as it allows for a more comprehensive
understanding of the logic without reducing it to the set of its theorems,
and conceptually profound, as it is closely linked to the venerable notion
of analyticity, which is essential for manipulating information about under-
ivability in a well-behaved proof-theoretic setting.

Mainstream proof-theoretic semantics embraces the meaning-as-use pa-
radigm, which entails shifting the focus from analyzing truth-conditions to
understanding the inference patterns that govern the recursive construc-

1Proof-systems combining together rules for dealing with valid and invalid syntactic
expressions are sometimes called ‘hybrid’ in the literature on rejection systems [20, 6].
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tion of proofs [21, 15, 5]. In proof-theoretic semantics, the meaning of
connectives is primarily conveyed through the top-down reading of their
respective introduction rules.

As standard bilateralism is conceptually linked to proof-theoretic se-
mantics, our account of bilateralism also yields its peculiar semantics in
terms of proofs, which we call fractional semantics. While proof-theoretic
semantics is mainly concerned with intuitionistic logic, we have recently
shown how a fractional semantics can be provided for a wide class of log-
ics, including classical logic [12], the minimal normal modal logic K [14],
and the multiplicative-additive fragment of linear logic MALL [13].

The term “fractional” is used to describe semantics in which formulas
are interpreted as values in the closed interval [0, 1] of rational numbers.
In the fractional setting, a reference proof system is used as an algorithm
to decompose a formula A into a set of clauses C(A), which are ordinary
sequents in the case of classical logic, and hypersequents when K and MALL
are being analyzed. The interpretation of A, denoted by JAK, is obtained by
calculating the ratio of true clauses in C(A) to the total number of clauses
produced by the decomposition. This interpretation function measures the
degree to which A is satisfied, or the “quantity of truth” in A2. Needless
to say, we must be able to carry out such a decomposition for any formula
A in the language, including the case in which A is neither provable nor
refutable. Therefore, a “soft” variety of bilateralism is necessary to ensure
that this is possible.

Methodologically, the proof-theoretic platform on which the fractional
evaluation is built needs to meet the following requirements:

• Invertibility: for each logical rule in the calculus, the derivability
of the conclusion always implies the derivability of (each of) the
premise(s).

• Stability: any complete decomposition of the endsequent (end-hyper-
sequent) always returns the same set of top-sequents (top-hyperse-
quents).

2In interpreting the formulas of classical logic, we use Kleene’s system G4 enriched
with a ‘complementary’ axiom introducing whatever clause Γ ⊢ ∆ such that Γ ∩ ∆ = ∅
[12]. Consider for instance the formula A ≡ p → (p∧q). The enriched system decomposes

it into the set of clauses {p ⊢ p; p ⊢ q}, so that JAK = 1/2 = 0.5. Actually, this formula
can be rewritten as (p → p) ∧ (p → q) and this form clearly displays that fact that A is
formed by two components of which only one displays an identity.
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• Termination of the proof search: any decomposition of a given end-
sequent (end-hypersequent) always terminates yielding either a proof
or a rejection.

On one hand, invertibility and termination guarantee the possibility of
turning any set of clauses C(A) into some sort of canonical form for A (its
conjunctive normal form, in classical logic). On the other hand, stability
is what allows us to call the described fractional evaluation a ‘semantics’,
making the value JAK a derivation-invariant.

The technical aim of this paper is to extend the fractional approach
proposed for modal logic to other systems beyond K. After reviewing
the main proof-theoretic ingredients, the paper shows how to apply the
fractional approach to basic deontic logic D as well as non-normal modal
logics E and M. E is the minimal non-normal modal logic characterized
by neighborhood semantics. M extends E by introducing the axiom of
distributivity of □ over conjunction. The paper investigates the structural
properties of these systems and establishes the admissibility of the rules
of weakening, contraction, and cut using purely finitary and constructive
methods.

2. The systems

2.1. Separating modality and classicality

As we have remarked above, in order to apply the fractional method to 
modal logic, we need to design a calculus which meets some proof-theoretic 
desiderata. In particular, stability, finiteness of the proof-search space and 
invertibility.

Achieving finiteness of the proof-search space is perhaps the most del-
icate item when dealing with non-classical logics or extensions of classical
logic. In fact, if we stick to a standard sequent calculus setting, we of-
ten lose invertibility. On the other hand, if we supplement the structure
of sequents, we can obtain invertible rules, but often at the cost of losing
finiteness of the proof-search space.

To meet all of these requirements, we find it natural to switch to a
hypersequent formulation of the modal logics we are considering. The
use of hypersequents proves to be well-suited as it maintains a strong ver-
sion of the formula interpretation, meaning that any syntactic object can
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be interpreted as a formula in the language. Furthermore, hypersequents
provide a way to disentangle the classical content of a sequent from its
modal residual elements, which is a key step in obtaining finiteness of the
proof-search space.

2.2. The calculus HK

We shall be mainly working with hypersequents, introduced under a differ-
ent name by Mints in the early seventies of the last century [11, 10] and
independently by Pottinger [16], then further elaborated (and so named)
by Avron [1, 2, 3]. Hypersequents come as a generalization of the standard
notion of sequent in the style of Gentzen. A sequent is a syntactic expres-
sion of the form Γ ⇒ ∆, where Γ,∆ are finite multisets of modal formulas
from the set F recursively defined by the grammar:

F ::= AT | ¬F |F → F |F ∧ F |F ∨ F |□F

with AT collecting the atomic sentences. As usual, ♢A is taken to abridge
the formula ¬□¬A. If Γ = [A1, A2, . . . , An], then

∧
Γ and

∨
Γ are the

two formulas A1 ∧ A2 ∧ · · · ∧ An and A1 ∨ A2 ∨ · · · ∨ An, respectively. If
Γ = ∅, then we set

∧
Γ = ⊤ and

∨
Γ = ⊥, where ⊤ and ⊥ stand for an

arbitrarily selected tautology and contradiction, respectively. With □Γ we
mean the multiset [□A1,□A2, . . . ,□An]. For any formula A we denote
with An the multiset containing exactly n occurrences of A.

In general, if M and N are two multisets, we indicate with M ⊎N and
#M their multiset union andM ’s cardinality, respectively. A hypersequent,
denoted by G,H, . . ., is defined as a finite (possibly empty) multiset of
sequents written as follows:

Γ1 ⇒ ∆1 |Γ2 ⇒ ∆2 | · · · |Γn ⇒ ∆n.

We shall keep calling ‘sequents’ those hypersequents listing exactly one
sequent. The set collecting hypersequents is here indicated with H . Prac-
tically speaking, a hypersequent G turns out to be valid whenever at least
one of the sequents listed in G is valid. Here the meaning of the term ‘valid’
has to be specified in progress, depending on the logical context.

The following definition introduces the notion of hyperclause which ex-
tends that of clause for standard sequents of classical logic.
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axioms

ax
1 □Π1,Γ1, p ⇒ ∆1, p | · · · |□Πn,Γn ⇒ ∆n

ax Γi ∩∆i = ∅ for 1 ⩽ i ⩽ n
0 □Π1,Γ1 ⇒ ∆1 | · · · |□Πn,Γn ⇒ ∆n

logical rules

i G |Γ ⇒ ∆, A
¬ ⇒

i G |Γ,¬A ⇒ ∆

i G |A,Γ ⇒ ∆
⇒ ¬

i G |Γ ⇒ ∆,¬A

i G |Γ, A,B ⇒ ∆
∧ ⇒

i G |Γ, A ∧B ⇒ ∆

i G |Γ ⇒ ∆, A
j
G |Γ ⇒ ∆, B

⇒ ∧
i·j

G |Γ ⇒ ∆, A ∧B

i G |Γ, A ⇒ ∆
j
G |Γ, B ⇒ ∆

∨ ⇒
i·j

G |Γ, A ∨B ⇒ ∆

i G |Γ ⇒ ∆, A,B
⇒ ∨

i G |Γ ⇒ ∆, A ∨B

i G |Γ ⇒ ∆, A
j
G |Γ, B ⇒ ∆ →⇒

i·j
G |Γ, A → B ⇒ ∆

i G |Γ, A ⇒ ∆, B ⇒→
i G |Γ ⇒ ∆, A → B

modal operator rule

i G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□ ,

i G |□Γ,Γ′ ⇒ □A,□∆,∆′
where Γ′ ⊎∆′ ⊆ AT

Figure 1. The HK sequent calculus (read 1 as ⊢ and 0 as ⊣).

Γ1 ⇒ ∆1 | · · · |Γn ⇒ ∆n

such that no rule of the calculus can be upwardly applied to it. An iden-
tity hyperclause is such that, for some i, Γi ⊎ ∆i ̸= ∅; otherwise, it is
complementary.

Example 2.2. An identity hyperclause and a complementary hyperclause,
respectively:

p ⇒ p |□(□p → p) ⇒ ⇒ p | ⇒ p |□(□p → p) ⇒

Figure 1 presents the ‘softly’ bilateral hypersequent calculus HK. The

rules of HK operate on hypersequents prefixed by the symbols ‘⊢’ and ‘⊣ ’:
we write ⊢ G and ⊣ G to assert the validity and invalidity of G, respec-

Definition 2.1 (Hyperclauses). A hyperclause is a hypersequent
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ax⊣⇒ p | ⇒ p |□(□p → p) ⇒
□⊣⇒ □p, p |□(□p → p) ⇒

ax.
⊢ p ⇒ p |□(□p → p) ⇒ →⇒

⊣ □p → p ⇒ p |□(□p → p) ⇒
□⊣ □(□p → p) ⇒ □p ⇒→

⊣⇒ □(□p → p) → □p

Figure 2. An example of HK proof

tively. For the sake of a more compact notation, in Figure 1 the HK rules
are expressed by writing 1 and 0 to indicate the two signs ‘⊢’ and ‘⊣ ’,
respectively. The calculus is equipped with two axiom rules: the ordinary
ax-rule introduces any identity hyperclause, whilst the ax-rule specifically
introduces complementary hyperclauses.

From now on, we will indicate derivations with small Greek letters
π, ρ, . . .. We recall that the height h(π) of a derivation π is given by the
number of hypersequents figuring in one of its longest branches. Moreover,
we indicate with top(π) the multiset of π’s top-hypersequents.

Example 2.3. Figure 2 displays a HK-derivation ending in ⊣⇒ □(□p →
p) → □p , that is a formal rejection for the sequent ⇒ □(□p → p) → □p.

Remark 2.4. The □-rule is the only inference schema in which the hy-
persequent structure comes effectively into play. Intuitively speaking, a
□-application in its bottom-up reading allows us to decompose a sequent-
component in a hypersequent by splitting its classical part from modal
residues. In fact, each time the rule is applied, a new hypersequent com-
ponent is added, thus starting a parallel derivation.

Furthermore, notice that the side condition on the □-rule about con-
texts Γ′ and ∆′ is crucial to avoid pathological situations like the one

indicated below, in which HK proves both ⊢ G and ⊣ G.

ax
⊢ t | p ⇒ p

□⊢ p ⇒ p,□t

ax
⊢ t ⇒ t |□t ⇒ p

□⊢ p,□t ⇒ □t →⇒
⊢ p, p → □t ⇒ □t

ax
⊢⇒ t | p ⇒ p

ax⊣⇒ t | p,□t ⇒ →⇒
⊣⇒ t | p, p → □t ⇒

□⊣ p, p → □t ⇒ □t

The other modal systems are obtained by adjusting the system HK as
indicated below.
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• HD is obtained by adding to HK the rule:

i G |Π ⇒ Σ |Γ ⇒
d where Π,Σ ⊂ AT

i G |□Γ,Π ⇒ Σ

and by revising the ax-rule as follows:

where Γi,∆i ⊂ AT
⊣ Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n

• HM is obtained by substituting the □-rule in HK with the following
inference pattern:

i G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

i G |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

where Π,Σ are multisets of atomic formulas, i ∈ {1, ...,m}, and j ∈
{1, ..., n}. We also need to replace the ax-rule with the following
version:

where Γi,∆i ⊂ AT
⊣ □Π1,Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n,□Σn

• The system HE is obtained from HK by replacing the □-rule with the
following inference schema:

i G | [⇒ Ai ↔ Bj ] |Γ ⇒ ∆
e

i G |□A1, ...,□Am,Γ ⇒ ∆,□B1, ...,□Bn

where Γ,∆ are multisets of atomic formulas and i ∈ {1, ...,m} and
j ∈ {1, ..., n}. We also need to replace the ax-rule with the following
version:

where Γi,∆i ⊂ AT
⊣ □Π1,Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n,□Σn
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⊢ G |Γ ⇒ ∆
LW

⊢ G |A,Γ ⇒ ∆

⊢ G
EW

⊢ G |H
⊢ G |A,A,Γ ⇒ ∆

LC
⊢ G |A,Γ ⇒ ∆

⊢ G |Γ ⇒ ∆
RW

⊢ G |Γ ⇒ ∆, A

⊢ G |Γ ⇒ ∆ |Γ ⇒ ∆
EC

⊢ G |Γ ⇒ ∆

⊢ G |Γ ⇒ ∆, A,A
RC

⊢ G |Γ ⇒ ∆, A

⊢ G |Γ ⇒ ∆, A ⊢ H |A,Π ⇒ Σ
Cut

⊢ G |H |Γ,Π ⇒ ∆,Σ

Figure 3. Admissible structural rules

3. Structural analysis

In this section we spell out the details of a purely syntactical cut-elimination
procedure for these systems. In a previous work [13], cut-elimination was
established in the form of closure under cut due to soundness and complete-
ness of the system. We shall now give a purely syntactic proof thereof.

We recall the standard proof-theoretic definitions and measures. In
particular, the degree of a formula is defined as the number of occurrences
of connectives in it.

We also recall that a rule is height-preserving admissible when (i) the
derivability of the premises entails the derivability of the conclusion and
(ii) the height of the conclusion’s derivation does not exceed that of the
derivations of the premises. Additionally, we need the following notation:

given a calculus HX, we denote by HX the calculus obtained by removing
its complementary axiom.

Lemma 3.1. The rules of the calculus HK are height-preserving invertible.

Proof: The proof is by induction on the height of the derivation of the
conclusion of the rule. We consider only the case of the modal operator,
the other ones are routine. Given a hypersequent shaped as

⊢ G |□Γ,Γ′ ⇒ □A,□∆,∆′,

by inspection of the rules of the system, it can only come as a conclusion
of the □-rule. On the other hand, if □A is the principal formula, then the
premise is the desired conclusion. If the principal formula is a formula in
□∆, say □B, then we have:
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⊢ G |Γ ⇒ B |□Γ,Γ′ ⇒ □A,□∆′′,∆′
□⊢ G |□Γ,Γ′ ⇒ □A,□∆′′,□B,∆′

Since the height gets decreased, we can apply the induction hypothesis
which yields a derivation ending in ⊢ G |Γ ⇒ B |□Γ,Γ′ ⇒ □A,□∆′′,∆′.
The desired conclusion then follows by a final application of the □-rule.

Lemma 3.2. The weakening rules (EW ), (LW ) and (RW ) are both admis-
sible.

Proof: Admissibility of the rule of external weakening (EW ) follows from
a straightforward induction on the height of derivations. On the contrary,
to establish the admissibility of the weakening rules (LW ) and (RW ) we
need to argue by double induction, with the main induction hypothesis on
the degree of the formula to be added and the secondary induction hypoth-
esis on the height of the derivation under consideration. In particular:

If n = 0, then if the hypersequent ⊢ G |□Γ,Γ′ ⇒ ∆ is derivable, so are
both ⊢ G |A,□Γ,Γ′ ⇒ ∆ and ⊢ G |□Γ,Γ′ ⇒ ∆, A.

If n > 0 and the last rule is not a □-application, then we apply the
secondary induction hypothesis to the premise(s) and then the rule again.
Otherwise, if the last rule applied is a □-application, we distiguish three
subcases.

• If A is an atomic formula, then we apply the secondary induction
hypothesis and then the rule again.

• If A is a modal formula □B we have:

⊢ G |Γ ⇒ C |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □C,□∆,∆′

If we want to add □B to the succedent we can simply apply the
secondary induction hypothesis and then the rule again. Otherwise,
we get the following configuration:

⊢ G |Γ ⇒ C |□Γ,Γ′ ⇒ □∆,∆′
LW

⊢ G |Γ ⇒ C |□Γ,□B,Γ′ ⇒ □∆,∆′
LW

⊢ G |Γ, B ⇒ C |□Γ,□B,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′,□B,⇒ □C,□∆,∆′
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The first application of LW is removed by secondary induction hy-
pothesis, while the second by the primary induction hypothesis.

• It remains to consider the case in which A is a formula whose principal
connective is one among ∧, ∨, and →. In these case, we decompose
the formula A by applying invertibility of the rules for the classical
connectives, then we add the formulas as described in the preceding
subcases.

Lemma 3.3. The rules of contraction (LC) and (RC) and external con-
traction (EC) are all height-preserving admissible.

Proof: By simultaneous induction on the height of derivations. Exter-
nal contraction follows by a straightforward induction on the height of the
derivation under analysis by applying height-preserving invertibility of
the logical rules.

Internal contraction is slightly more delicate to handle. The critical
situation is the one in which we have a hypersequent ⊢ G |□Γ,Γ′ ⇒
□A,□A,□∆,∆′ and the formula □A is principal in the last rule applied.
In this case, we consider the premise

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □A,□∆,∆′

and we proceed in the following way

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □A,□∆,∆′

Inv-□⊢ G |Γ ⇒ A |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
EC

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □A,□∆,∆′

Theorem 3.4. The cut-rule is admissible.

Proof: The proof is by double induction with main induction hypothesis
on the degree of the cut-formula and the secondary induction hypothesis
on the sum of the height of the derivation of the premises of the cut.

We distinguish the following cases. If the right premise of the cut is
an initial sequent, then, when the cut formula is not active, we remove it.
Otherwise, the conclusion follows by weakening.

If the right premise of the cut is the conclusion of a logical rule different
from □ , we distinguish two subcases according to whether the cut-formula
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is principal or not. In the former case, we apply the invertibility of the
corresponding rule and we replace the cut-application under consideration
with cuts on formulas of smaller degree. In the latter case we permute the
cut upwards.

If the last inference step is a □-application, then the cut-formula is
either atomic or a modal formula. In both cases, we argue by induction on
the left premise of the cut. The relevant case is the one in which the last
rule applied is □ . We have:

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□

⊢ G |□Γ,Γ′ ⇒ □∆,□A,∆′

⊢ H |A,Π ⇒ B |□A,□Π,Π′ ⇒ □Σ,Σ′
□

⊢ H |□A,□Π,Π′ ⇒ □Σ,□B,Σ′
Cut

⊢ G |H |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,□B,∆′,Σ′

The cut is removed as follows (we avoid writing the contexts for better
readability). First, we apply a cross-cut:

⊢ □Γ,Γ′ ⇒ □∆,□A,∆′ ⊢ A,Π ⇒ B |□A,□Π,Π′ ⇒ □Σ,Σ′
Cut⊢ A,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′

The cut is removed by applying the secondary induction hypothesis. The
reduction is then completed as follows:

⊢ Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′ ⊢ A,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′
Cut

⊢ Γ,Π ⇒ B |□Γ,Γ′ ⇒ □∆,∆′ |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′
LW,RW

⊢ Γ,Π ⇒ B | (□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′)2
EC⊢ Γ,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′

□⊢ □Γ,□Π,Γ′,Π′ ⇒ □∆,□B,□Σ,∆′,Σ′

where the cut-rule is removed by primary induction hypothesis on the de-
gree of the cut-formula.

We consider now the system HD. In this case the analysis proceeds
analogously. Of course, the admissibility of the structural rules needs to
be established once again.

Lemma 3.5. Every rule is height-preserving invertible in HD.

Proof: The only new case to be detailed is the one involving the rule d.
In this case the proof is immediate, as the only applicable rule is d which
acts on all the formulas in the antecedents.
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Lemma 3.6. The weakening rules (EW ), (LW ) and (RW ) are admissible.

Proof: External weakening is established by a straightforward induction
on the height of the derivation. Proving the admissibility of W requires
a double induction, with main induction hypothesis on the degree of the
formula and secondary induction hypothesis on the height of derivations.

The only new case to detail is the one involving rule d. As usual, we
need to proceed by cases. If the formula to be added is an atomic formula,
then we simply apply the secondary induction hypothesis and then the rule
again. If it is a boxed formula to be added in the antecedent, then we apply
the primary induction hypothesis on the degree of the formula and then
the rule again.

In the remaining cases we first decompose the formulaand we then ob-
tain some hypersequents which contain only boxed formulas in the an-
tecedents of the components and atomic formulas. Hence we apply the
primary induction hypothesis and then we apply the rules in the reverse
order.

Lemma 3.7. The rules of contraction are height-preserving admissible.

Proof: The proof is by induction on the height of the derivation. The
only new case to discuss is the one involving the rule d. We have:

⊢ G |A,A,Γ ⇒ |Π ⇒ Σ
d

⊢ G |□A,□A,□Γ,Π ⇒ Σ

We proceed as follows:

⊢ G |A,A,Γ ⇒ |Π ⇒ Σ
LC

⊢ G |A,Γ ⇒ |Π ⇒ Σ
d

⊢ G |□A,□Γ,Π ⇒ Σ

The application of LC is removed by the induction hypothesis on the height
of the derivation.

Theorem 3.8. The cut rule is admissible in HD.

Proof: By double induction. We discuss only the new interesting case.

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □∆,□A,∆′

⊢ H |A,Π ⇒ |Θ ⇒ Σ
d

⊢ H |□A,□Π,Θ ⇒ Σ
Cut

⊢ G |H |□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′
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We proceed as follows:

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′ ⊢ H |A,Π ⇒ |Θ ⇒ Σ
Cut

⊢ G |H |Γ,Π ⇒ |Θ ⇒ Σ |□Γ,Γ′ ⇒ □∆,∆′
d

⊢ G |H |□Γ,□Π,Θ ⇒ Σ |□Γ,Γ′ ⇒ □∆,∆′
LW,RW

⊢ G |H | (□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′)2
EC

⊢ G |H |□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′

The cut is replaced by a cut on a formula of smaller degree and the con-
clusion is obtained applying the rule d followed by weakening and contrac-
tion.

We now consider the case ofHM. Since by now the reader should be ac-
quainted with the strategies employed to establish the structural properties
of this kind of calculi we shall not get into the details.

Lemma 3.9. Every rule is height-preserving invertible.

Proof: We deal with m. If ⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□C,Σ is
an initial sequent, so is ⊢ G |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒
□∆,□B,Σ. If it is the conclusion of a rule, we apply the induction hy-
pothesis to each of the premises and then the rule again. For example, we
have:

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□C,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□C,Σ

We proceed as follows:

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□C,Σ
IH

⊢ G |A1 ⇒ B | . . . |An ⇒ B |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

⊢ G |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

Lemma 3.10. The rules (EW ), (LW ) and (RW ) are admissible.

Proof: EW . Straightforward by induction on the height of the derivation.
With respect to W we argue by double induction as above with minor
changes.

Lemma 3.11. The rules (EC), (LC) and (RC) are height-preserving ad-
missible.
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Proof: By induction on the height of the derivation. We deal with the
only relevant cases.

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□B,Σ

We proceed as follows:

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
Inv-m

⊢ G | (A1 ⇒ B)2 | . . . | (An ⇒ B)2 |□A1, . . . ,□An,Π ⇒ □∆,Σ
EC

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

If the formula to contract is in the antecedent, we proceed analogously,
possibly exploiting external contraction and the induction hypothesis on
the height of the derivation.

The last step is the cut-elimination theorem.

Theorem 3.12. The cut rule is admissible in HM.

Proof: By double induction on the degree of the cut formula and the
sum of the height of the derivations of the premises of the cut. We discuss
the case in which the cut formula is principal in both the premises in an
application of the rule m.

G |A1 ⇒ C1 | . . . |An ⇒ C1 |□A1, . . . ,□An,Γ ⇒ □∆,∆′
m

G |□A1, . . . ,□An,Γ ⇒ □∆,□C1,∆
′

H |C1 ⇒ D | . . . |Cn ⇒ D |□C1, . . . ,□Cn,Π ⇒ □Σ,Σ′
m

H |□C1, . . . ,□Cn,Π ⇒ □Σ,□D,Σ′

Cut
G |H |□A1, . . . ,□An,Γ,□C2, . . . ,□Cn,Π ⇒ □Σ,□D,Σ′,□∆,∆′

We construct the following derivation (we omit the contexts for better
readability):

⊢ □A1, . . . ,□Am,Γ ⇒ □∆,□C1,∆
′ ⊢ C1 ⇒ D | . . . |Cn ⇒ D |□C1, . . . ,□Cn,Π ⇒ □Σ,Σ′

Cut
⊢ C1 ⇒ D | . . . |Cn ⇒ D |□A1, . . . ,□Am,Γ,□C2, . . . ,□Cn,Π ⇒ □Σ,Σ′,□∆,∆′

The cut is removed by secondary induction hypothesis. Next, we cut on C1.
We write S as an abbreviation for ⊢ □A1, . . . ,□Am,Γ,□C2, . . . ,□Cn,Π ⇒
□Σ,Σ′,□∆,∆′. We have:

⊢ A1 ⇒ C1 | . . . |Am ⇒ C1 |□A1, . . . ,□Am,Γ ⇒ □∆,∆′ ⊢ C1 ⇒ D | . . . |Cn ⇒ D | S
Cut

⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D |□A1, . . . ,□Am,Γ ⇒ □∆,∆′ | S
LW,RW,EC

⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D | S
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We now apply again a cut on C1 between ⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |
Cn ⇒ D | S and ⊢ C1 ⇒ D | . . . |Cn ⇒ D | S which yields (modulo contrac-
tion)

⊢ A1 ⇒ D |A2 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D | S

By repeating this procedure (formalizable by induction on m), we get:

⊢ A1 ⇒ D |A2 ⇒ D | . . . |Am ⇒ D | . . . |Cn ⇒ D | S

An application of the rule m gives the desired conclusion.

The last system that we analyze is HE. We state the preliminary
structural properties omitting the proofs which can be obtained along the
same lines as the previously discussed systems.

Proposition 3.13. The rule of weakening is admissible. Every rule of the
calculus is height-preserving invertible. The rule of contraction is height-
preserving admissible.

To conclude the section we discuss cut-elimination for the case of HE.
Instead of lingering on abstract technicalities, we give a concrete example
of reduction and we leave to the reader the generalization of the argument.

⊢ G | ⇒ A ↔ C | ⇒ B ↔ C |Γ ⇒ ∆
e

⊢ G |□A,□B,Γ ⇒ ∆,□C

⊢ G′ | ⇒ C ↔ D | ⇒ C ↔ E |Π ⇒ Σ
e

⊢ G′ |□C,Π ⇒ Σ,□D,□E
Cut

⊢ G |G′ |□A,□B,Γ,Π ⇒ ∆,Σ,□D,□E

We first observe that the rule:

⊢ G | ⇒ A ↔ B ⊢ G′ | ⇒ B ↔ C
Eq

⊢ G |G′ | ⇒ A ↔ C

is admissible via cuts on formulas of lower size. Hence we propose the
following reduction containing applications of Eq (we omit the contexts
and the turnstiles and the applications of the rule EC for reasons of space):

⇒ A ↔ C | ⇒ B ↔ C

⇒ A ↔ C | ⇒ B ↔ C ⇒ C ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ C | ⇒ C ↔ E ⇒ C ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ A ↔ E | ⇒ B ↔ C ⇒ A ↔ D | ⇒ B ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ A ↔ E | ⇒ B ↔ E
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All the cuts are removed by primary induction hypothesis on the degree
of the cut formula.

Theorem 3.14. The cut rule is admissible in HE.

As a matter of fact, proofs in the hypersequent calculi here proposed
amount to the decomposition of the endsequent into non further analyz-
able top-hypersequents. The calculi enjoy invertibility of every rule with
preservation of the height. In addition, as it will be shown in the next
section, the decomposition is unique or, which is equivalent, the calculus
enjoys the stability property.

4. Development of fractional semantics

4.1. Conservativity over the base logic

Conservativity stems from the soundness and the completeness of the cal-
culus. Soundness is established with respect to structures which interpret
modal logics.

Definition 4.1. An E-neighborhood model is a triple ⟨W, I,V⟩, where W is
a non-empty set, I : W → P(P(W)) and V : AT → P(W). Truth conditions
for a formula A in a world x in a model are inductively defined as follows:

• x ⊩ p if and only if x ∈ V(P ).

• x ⊩ B ∧ C if and only if x ⊩ B and x ⊩ C.

• x ⊩ B ∨ C if and only if x ⊩ B or x ⊩ C.

• x ⊩ ¬B if and only if x ⊮ B.

• x ⊩ □B if and only if {y | y ⊩ B} ∈ I(x).

An M-neighborhood model is an E-neighborhood model with the additional
condition: if a ∈ I(x) and a ⊆ b then b ∈ I(x). A K-neighborhood model
is an M-neighborhood model in which, if a ∈ I(x) and b ∈ I(x) then we
get both a ∩ b ∈ I(x) and I(x) ̸= ø, for every x. A D-neighborhood model
is a K-neighborhood model satisfying the following additional condition:
a ∈ I(x) ⇒ ac /∈ I(x).

The definition of validity for a hypersequent in this setting is as follows:
G is valid if one of its components it valid.
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Proposition 4.2. If HX proves ⊢⇒ A, then A is valid.

Proof: The proof is by induction on the height of the derivation in the
corresponding hypersequent calculus. We discuss the case of HE as an
example. Suppose the hypersequent ⊢ G | [⇒ Ai ↔ Bj ] |Γ ⇒ ∆ is valid,
hence one of the components is valid. If any component in G or Γ ⇒ ∆ is
valid, then so is the conclusion, trivially. If for some i, j Ai ↔ Bj is valid,
then this implies that □Ai ↔ □Bj is valid and therefore the validity of
the conclusion follows.

As regards completeness, it suffices to establish that whenever we have
a derivation of the Hilbert style calculus for a given modal logic, the cor-
responding sequent is derivable in our calculus too.

We recall here the modular presentation of the Hilbert style systems for
the logics considered here.

• The system E is axiomatized by adding to a Hilbert-style calculus for
classical propositional logic the rule:

⊢ A ↔ B
E⊢ □A ↔ □B

• The system M is axiomatized by adding to E the rule:

⊢ A → B
M⊢ □A → □B

• The system K is axiomatized by adding to a Hilbert-style calculus for
classical propositional logic the axiom □(A → B) → (□A → □B)
and the rule:

⊢ A
RN⊢ □A

• The system D is axiomatized by adding to K the axiom □A → ♢A.

Theorem 4.3. If X proves ⊢ A, then HX ⊢⇒ A for X ∈ {K,M,D}.

Proof: The proof is by induction on the height of the derivation in the
system X. We give an example of the derivation of the axiom D in HD:
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⊢ A ⇒ A
L¬⊢ A,¬A ⇒

d⊢ □A,□¬A ⇒
R→⊢ □A ⇒ ¬□¬B
R→⊢⇒ □A → ¬□¬A

With respect to the rules of the calculus, we show the admissibility of the
rule M in the calculus HM:

⊢⇒ A → B
Inv→⊢ A ⇒ B

EW
⊢ A ⇒ B |□A ⇒

m
⊢ □A ⇒ □B

R→⊢⇒ □A → □B

of modus ponens:

⊢⇒ A
⊢⇒ A → B

Inv→⊢ A ⇒ B
Cut⊢⇒ B

and of the E rule in HE:

⊢⇒ A ↔ B e
⊢ □B ⇒ □A

R→⇒ □B → □A

⊢⇒ B ↔ A e
⊢ □A ⇒ □B

R→⊢⇒ □A → □B
R∧⊢⇒ □A ↔ □B

As a corollary of the embedding we get the completeness of the resulting
system. Soundness is obtained as usual through a straightforward induction
on the height of the derivation of the system and thus we omit the details.

Corollary 4.4. The systems HX are sound and complete with respect
to the logics X.

Proof: If A is valid, then it is derivable in the corresponding axiomatic

calculus and so in HX.
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4.2. Fractional valued non-normal modal logics

In order to develop a fractional interpretation of non-normal modal logics,
we need to show that the assignment of values to formula does not depend
on the specific shape of the derivations.

Theorem 4.5 (Stability). If π and ρ are two HX-derivations ending with
the same hypersequent, then top(π) = top(ρ).

Proof: The proof is standardly led by induction on the height n of the
derivation of π. If n = 0, then the claim comes straightforwardly. Other-
wise we distinguish cases according to the last rule applied. We consider
the case in which the last inference is an application of a unary rule, that
is:

π′

...
i G′

r
i G

We apply the invertibility of the rule r to get a derivation ρ′ of G′. Since
the height of π′ is strictly lower than that of π, we can apply the induction
hypothesis to get top(π′) = top(ρ′), which immediately yields the desired
conclusion.

Due to the stability property, we can now consider the multiset of top-
hypersequents associated with a given formula as a derivation-invariant
notion. That is, the multiset decomposition remains stable through differ-
ent derivations of the same hypersequent.

Definition 4.6. Given a formula A, topX(A) is the multiset of the top-

hyperclauses in any of the HX-derivation ending in (⊢ or ⊣) ⇒ A. The
multiset topX(A) is partitioned into the two multisets top1X(A) and top0X(A)
collecting all the hyperclauses signed by ‘⊢’ and the hyperclauses signed
by ‘⊣ ’, respectively.

Definition 4.7 (Fractional evaluation function). Let Q∗ = [0, 1] ∩Q, i.e.,
Q∗ is the set of the rational numbers in the closed interval [0, 1]. For each
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system X, the evaluation function
q
·

y
X

: F 7→ Q∗ is defined as follows:
for any logical formula A,

q
A

y
X

=
#top1X(A)

#topX(A)

Let us emphasize some basic features about the evaluation function 
defined above. First, as already noticed, the Stability property makes 
the fractional evaluation of formulas a derivation-invariant, therefore the 
fractional method can be regarded as a semantics to all intents and 
purposes. Second, invertibility of of the rules of the calculus ensures that 
the relevant information stored in the conclusion is entirely preserved 
through the decomposition procedure. Third, the assignment is conser-
vative over the base logic, as valid formulas are mapped to the maximum 
fractional value. The next theorem establishes the latter point.

Theorem 4.8 (Conservativity). The formula A is X-valid just in caseq
A

y
X

= 1.

Proof: (⇐) If
q
A

y
X

= 1, then there is a HX ending in ⊢⇒ A. By
applying the soundness theorem we can infer the X-validity of A.

(⇒) If A is X-valid, then by completeness there is a HX derivation
ending in ⊢⇒ A, so every initial top-hypersequent expresses an identity
and therefore we get

q
A

y
X

=
#top1X(A)

#topX(A)
=

#top1X(A)

#top1X(A)
= 1

Let F c be the language of classical propositional logic. The next the-
orem establishes the surjectivity of the interpretation function

q
·
y
. In

particular, we have:

Theorem 4.9. For any q ∈ Q∗: (i) there is a formula A ∈ F c s.t.
q
A

y
X

=

q, and (ii) there is a formula B ∈ F − F c s.t.
q
B

y
X

= q.

Proof: Let q = m/n, where m,n ∈ N+ and m ⩽ n. (i) Consider the
formula

∧
(p∨¬p)m ∧

∧
pn−m. It is immediate to see that

q∧
(p∨¬p)m ∧∧

pn−m
y
X

= m/n = q.

(ii) We provide details for the modal logic E, other systems can be
handled analogously. We consider now the modal formula

∧
(□p → □p)m∧
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∧
(□p)2n−m in F − F c. It turns out, similarly, that

q∧
(□p → □p)m ∧∧

(□p)2n−m
y
X

= 2m/2n = m/n = q.

Remark 4.10. By combining Theorem 4.9 and the density of Q∗, it is easy
to verify that for, any modal system X and any pair of modal formulas A,
B with

q
A

y
X

<
q
B

y
X
, we can always find a third formula C ∈ F c such

that
q
A

y
X

<
q
C

y
X

<
q
B

y
X
.

The previous theorem extends the result that has already been estab-
lished for the modal logic K and serves as a bridge between classical and
modal propositional logic. Specifically, for any modal formula, it is possi-
ble to provide a classical formula that has the same identity content as the
modal one, as determined by the fractional interpretation. To illustrate
this qualitative analysis, consider the modal formula □(□p → p) → □p
such that

q
□(□p → p) → □p

y
M

= 0.5. The decomposition algorithm
ejects the modal component and returns the classical formula (p ∨ ¬p) ∧ p
whose fractional interpretation is

q
(p ∨ ¬p) ∧ p

y
M

= 0.5. In fact, the de-
composition of the formula leads to two initial sequents: a tautological one
and a complementary one.

5. Concluding remarks

We have developed new logical calculi for modal logic D, as well as the non-
normal modal logics M and E. These systems are able to combine some of
the most important proof-theoretic features: the subformula property (as a
consequence of the cut-elimination theorem), finiteness of the proof-search
space, and invertibility of the logical rules. By fine-tuning a variety of
bilateralism based on the notion of rejection as underivability, we showed
how to articulate a proof-based interpretation of the modal logics under
focus.

We acknowledge that there are differences between canonical proof-
theoretic semantics and fractional semantics, to the extent that a semantics
in terms of proofs does not necessarily qualify as proof-theoretic. In partic-
ular, the fractional technique results in a multi-valued interpretation of the
formulas in the language, whereas proof-theoretic semantics is completely
disengaged from any “quantitative” form of evaluation. This fact deserves
special consideration as it suggests that, when decidable systems are under
consideration, the syntax/semantics dichotomy can be overcome by means
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of a proof-based interpretation, which nonetheless entails a quantitative
evaluation of the formulas in the language.

To conclude, we would like to say something about the problem of
devising a proof-theoretic semantics for the modal operator of necessity.
According to Kürbis, a proof-theoretic semantics should be seriously re-
garded as defective without a proper account of the □-modality [7]. The
technical achievements in this paper show that modal formulas can be max-
imally analyzed by means of a set of logical rules which have the effect of
progressively detecting the modal components as residual elements. That
is, the “quantity of identity” present in a modal formula can be measured
in essentially the same way as in classical logic, provided that the classical
content has been properly isolated. The lesson to be learned is that, if we
consider the fractional method as a legitimate variant of proof-theoretic
semantics, the issue raised by Kürbis can be circumvented inasmuch as
modal formulas can be evaluated without taking the meaning of the □-
modality directly into account. In this sense, we believe that our work is
a step towards a proof-theoretic semantics for modal logics Nonetheless,
the problem of providing a fully satisfactory proof-theoretic account of the
□-modality remains an open and challenging task, which requires further
investigation and research.
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SUPPOSITION: A PROBLEM FOR BILATERALISM

Abstract

In bilateral logic formulas are signed by + and −, indicating the speech acts

assertion and denial. I argue that making an assumption is also speech act.

Speech acts cannot be embedded within other speech acts. Hence we cannot

make sense of the notion of making an assumption in bilateral logic. Attempts

to solve this problem are considered and rejected.

Keywords: Assertion, denial, negation, supposition, assumption, speech acts.

1. Introduction

According to bilateralist inferentialist semantics for the logical constants,
their meanings are determined, not merely by rules of inference specify-
ing their use in deductive arguments, but by rules specifying their use in
deductive arguments that appeal to two primitive speech acts of assertion
and denial. It is part of a wider position in the theory of meaning, pro-
posed by Price, which, quite generally, ‘takes the fundamental notion for
a recursive theory of sense to be not assertion conditions alone, but these
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in conjunction with rejection, or denial conditions’ [30, 162]. As Rumfitt
puts it, ‘mastering the sense of an atomic sentence A will involve learning
methods whose deployment might entitle one either to affirm it or to reject
it’ [34, 797]. Accordingly, rules of inference in bilateral logic do not merely
specify which conclusions follow from which premises, but they do so in a
way that construes premises and conclusions as assertions or denials.

The most prominent system of bilateral logic has been proposed by
Rumfitt [34], building on work by Smiley [37]. Humberstone [20] proposed
a similar system around the same time as Rumfitt. Their formalism has
been taken up by various writers with an interest in inferentialism or proof-
theoretic semantics, such as Restall [32] and Francez [4].1

In this paper I shall point out a fundamental problem for the framework
of bilateral logic. In bilateral logic, all formulas are supposed to be asserted
or denied. Logical inference involves making and discharging assumptions,
as witnessed also by the rules of bilateral logic. Assertion and denial are
speech acts. Making an assumption is also a speech act. Hence bilateral
logic demands that assertions and denials may be assumed and discharged.
But this cannot be done, as speech acts cannot be iterated. Bilateral logic
as it stands is thus incoherent.2

The final section considers two attempts to solve this problem by incor-
porating speech acts for supposition within bilateral logic or interpreting
deductions in bilateral logic as conditional assertions and denials. I con-
clude that neither approach is successful.

2. Bilateral logic

The rules of bilateral logic are applied to asserted or denied formulas.
It builds on the claim that there is ‘a readily comprehensible variety of
actual deductive practice in which the components of arguments express

1Rumfitt’s system was devised with an eye on a formalisation of classical logic that
respects Dummettian considerations on harmony. For a different and striking account
of a natural proof system for classical logic see Restall [33].

2It has been observed before that treating assumptions like assertions or denials may
pose a problem for bilateralist logic, e.g. by Incurvati and Smith [22, 230], Hjortland [19,
464, footnote 23] and myself ([26], [27, 221]), but as far as I am aware the present paper
contains the first sustained discussion of the issue. Although I hope there to be some
agreement, the other authors’ remarks are too brief for it to be possible to assess whether
they would accept the analysis of the source and the precise nature of the problem put
forward here. The present paper keeps a promise to expound the details of my objection.
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the assignation of affirmative or negative force to propositional contents’
[34, 798]. Smiley and Rumfitt motivate this by examples of how questions
and answers may figure in arguments.

Frege suggested that we can represent the content of a sentence, which
we may also call a proposition or a thought, by a ‘propositional question’3,
a question that asks for the answer ‘Yes’ or ‘No’.4 An assertion can then be
effected by answering ‘Yes’ to such a question. This is as far as Frege went,
who did not afford the answers ‘Yes’ and ‘No’ the same status, but preferred
to keep only ‘Yes’ as primitive and to treat ‘No’ as analysed in terms ‘Yes’
and sentential negation. With some justice bilateralists observe that prima
facie the answers ‘Yes’ and ‘No’ are on a par. Bilateralists hold that, just as
an assertion may be effected by the answer ‘Yes’, a denial may be effected
by answering ‘No’. According to Smiley, ‘a mechanism for rejection is there
for anyone who wishes to use it, in the shape of an answer to a yes-or-no
question. Questioner and answerer are usually different people, but if one
puts the question to oneself, one comes up with the forms “P? Yes” and
“P? No”. I suggest that “...? Yes?” is a very passable realization of
Frege’s assertion-sign, the “judgment stroke” in his turnstile notation, and
that “...? No” is an equally passable realization of a rejection-sign’ [37, 1].
Notice that there are not two things, answering a propositional question
with ‘Yes’ or ‘No’ and asserting or denying the corresponding declarative
sentence: answering ‘Yes’ to a propositional question just is to assert the
thought expressed; answering ‘No’ just is to deny it.

Rumfitt adapts an example of Smiley’s, itself inspired by one of Frege’s,
to illustrate how propositional questions and their answers, and accordingly
assertions and denials, may be used in deductive arguments:5

3This is Geach’s translation of Frege’s Satzfrage [14, 143].
4Frege’s view is slightly more nuanced, as he also acknowledges that the propositional

question contains more than just the thought, namely the request that the question be
answered. This nuance is of no consequence for present purposes. See [10, 62] and
[11, 145].

5It is questionable whether Rumfitt’s is a good example to motivate the bilateral
cause. Weiss [43, 98] observes that if ‘No’ in the first premise is taken to reject the
entire conditional, and that conditional is material, as Smiley and Rumfitt agree it is,
then, by bilateral logic, the first premise already entails the conclusion and the second
premise is superfluous. For the example to work as one that illustrates a two premise
argument with a conclusion, the first premise must be understood as an assertion of
the conditional ‘If the accused was in Berlin at the time of the murder, he could not
have committed the crime’, i.e. as the answer ‘Yes’ to the corresponding propositional
question.
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If the accused was in Berlin at the time of the murder, could he have
committed it? No.
Was the accused in Berlin at the time of the murder? Yes.
So: Could he have committed the murder? No.

Smiley’s example, where ∗ indicates rejection and no star assertion, is:

If the accused was not in Berlin at the time of the murder, he did not
commit the murder.
∗The accused was in Berlin at the time of the murder.
So: ∗ The accused committed the murder.

Transposing it into question and answer format, the result is:

If the accused was not in Berlin, he did not commit the murder? Yes.
Was the accused in Berlin at the time of the murder? No.
So: Did the accused commit the murder? No.

Humberstone observes that Smiley’s notation is confusing and does not
capture the supposedly equal status of assertion and denial [20, 345]. It is
preferable to introduce two symbols, one for assertion and one for denial.
Humberstone and Rumfitt use + and −: ‘Where A is a declarative sentence
(or formula), let us introduce the signed sentences (or formulae) + A and
− A to abbreviate Smiley’s amalgams of questions with answers ⌜Is it the
case that A? Yes⌝ and ⌜Is it the case that A? No⌝.’ [34, 800] Result:

+ If the accused was not in Berlin, he did not commit the murder.
− The accused was in Berlin at the time of the murder.

So: − The accused committed the murder.

Thus, bilateralists argue, assertions and denials can be premises and con-
clusions in deductive arguments.

To specify the meanings of the logical constants in a bilateral inferential
semantics, rules of inference must be formulated that specify the conditions
under which formulas with the constants as main operators may be asserted
and denied.

Rumfitt and Humberstone call the premises and conclusions of the rules
of their bilateral logics signed formulas, i.e. signed by + and − representing
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the speech acts of assertion and denial. Lower case Greek letters range over
signed formulas. α∗ designates the conjugate of α, the result of reversing
its sign from + to − and conversely. For each connective c, there are
assertive rules specifying the grounds for and consequences of asserting a
formula with c as main operator and rejective rules specifying the grounds
for and consequences of denying such a formula [34, 800ff]. For purposes
of illustration it suffices to give only some rules of some of the connectives
of Rumfitt’s system. The system below is, however, complete in the sense
that the missing assertive and rejective rules for ¬ and ⊃ as well as those
for the other logical constants, defined as usual in terms of ¬ and ⊃, are
derivable:6

i
+ A
Π
+ B

+⊃I ∶ i
+ A ⊃ B

+ A ⊃ B + A
+⊃E ∶

+ B

+ A
−¬I ∶

− ¬A
− ¬A

−¬E ∶
+ A

Reductio:

iα
Π
�

iα∗

Non-Contradiction:
α α∗

�

Reductio and Non-Contradiction are bilateral versions of common princi-
ples, but here they have the character of structural rules governing the
framework in which deductions are carried out rather than that of opera-
tional rules for logical constants. They codify relations between assertions
and denials.

6This claim assumes that Rumfitt’s requirement that the rule of Non-Contradiction
be restricted to atomic premises is not imposed. This restriction is not relevant to what
is at issue in the present paper. Kürbis’s normalisation proof for Rumfitt’s system [28]
appeals to the unrestricted version, which may speak against imposing it. The proof
contains a deplorable oversight, noted with a sketch of a correction in [29]
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3. Force and content

Frege distinguishes the content of a sentence from the force with which it
is put forward. Following the widely accepted treatment of this distinction
by Hare, Searle and others, the same content can be asserted to be true, it
can be asked whether it is true, it can be commanded that it be made true,
it can be wished that it were true, etc..7 Asserting, asking, commanding,
wishing are activities speakers engage in: they are speech acts. Different
such acts can have the same content. A speech act, being an activity, is
not a proposition, and so it is not the kind of thing that can be used as
a component in constructing larger propositions by sentential operators.
Actions cannot be embedded into contexts that require propositions.8

A typical account of why the speech act of assertion cannot form part
of propositions is found in Reichenbach’s Elements of Symbolic Logic:

Assertion is used in three different meanings: it denotes, first,
the act of asserting; second, the result of this act, i.e., an expres-
sion of the form ‘⊢ p’; third, a statement which is asserted, i.e. a
statement ‘p’ occurring within an expression ‘⊢ p’. It should be
noticed that it is not possible to define the verb ‘assert’ in terms
of the assertion sign. One might suppose that such a definition
could be constructed by regarding the sentence ‘“p” is asserted’
as having the same meaning as the expression ‘⊢ p’. But the
coordination is not possible because ‘⊢ p’ is not a sentence. [31,
346]

7See, e.g., Hare [18, Sec 2.1], Searle [36, 22f, 29ff], Stenius [38, 1f]. Frege’s view is once
more more nuanced than the received view, as was pointed out to me by Mark Textor.
In ‘On Sense and Reference’, Frege expresses the view that imperatives and optatives
do not express thoughts: ‘A subordinate clause with “that” after “command,” “ask,”
“forbid,” would appear in direct speech as an imperative. Such a clause has no referent
but only a sense. A command, a request, are indeed not thoughts, yet they stand on
the same level as thoughts. Hence in subordinate clauses depending upon “command,”
“ask,” etc., words have their indirect referents. The referent of such a clause is therefore
not a truth value but a command, a request, and so forth.’ [7, 38f] (Black’s translation
[14, 68].) This is a curious passage and of great interest, but I set it aside. The received
view surely has much to be said for it, and Frege’s point is orthogonal to present issues
in as far as imperatives and optatives are adduced only for heuristic purposes and the
focus of this paper lies elsewhere. I set this nuance aside, too.

8I set aside the question whether there are mental acts corresponding to speech acts
that do not involve linguistic items. The discussion of Frege below mentions judgements,
but for present purposes these can be assimilated to assertions.
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Reichenbach then refers to his earlier analysis of the assertion sign as an
example of a pragmatic sign. ‘Expressions including a pragmatic sign are
not propositions. They are not true or false, as is shown by the fact that
they cannot be negated. [...] Since assertive expressions are not proposi-
tions, they cannot be combined by propositional operations.’ [31, 337] This
position is widely accepted, in particular by bilateralists.9

Speech acts can be described or reported by sentences in the third
person10 such as ‘He asked whether p’ and ‘She asserted that q’. This
differs from the performance of the speech act. If I report that she asserted
that q, no such speech act with content expressed by ‘q’ need have been
performed: my report may be mistaken. By contrast, if she asserts that q,
a speech act with content expressed by ‘q’ has been performed, no matter
whether q is true or false. Sentences describing or reporting speech acts
are true or false. Speech acts are performed or not.

In bilateral logic, A represents the content of a speech act, + and − the
forces assertion and denial. It makes no sense to put an action into the an-
tecedent of a conditional, for instance: hence the sequence of symbols
(+ A) ⊃ B is meaningless. It is crucial that that which is represented
by + and − in bilateral logic cannot be embedded:

It would be a confusion to construe the sign of rejection “−”
as a notational variant for the negation operator “¬”. Whether
in a formal or a natural language, a sign of negation is a freely it-
erating sentence-forming operator on sentences: A, ⌜¬A⌝, ⌜¬¬A⌝,
etc. are all well-formed formulae. The sign of rejection, by con-
trast, was explained as the formal correlate of the operation of
forming an interrogative sentence from a declarative sentence
and appending the answer “No”, and this operation cannot be
iterated. “Is it the case that two is not a prime number? No”
makes perfectly good sense, but “Is it the case that is it the
case that two is a prime number? No? No” is gibberish. The
sign “−”, then, does not contribute to propositional content,
but indicates the force with which that content is promulgated.

9Of course, now that the option has been mentioned, it may only be a matter of
time before someone appears who rejects it.

10Sentences in the first person, such as ‘I assert that q’, by contrast, may achieve
both, describe the utterer as performing a speech act and performing it, as pointed out
to me by Mark Textor.
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Just as one asserts the entire content expressed by A by inscri-
bing ⌜+ A⌝, so one expressly rejects that same content by in-
scribing ⌜− A⌝. The symbol “+”, in a word, is a Fregean as-
sertion sign or Urtheilsstrich; and the symbol “−” is a cognate
rejection sign or Verneinungsstrich. [34, 802f]

If expressions such as (+ A) ⊃ B or − − A were legitimate, − and + would
be mere notational variants of negation and the truth operator, expressing
the trivial truth function mapping True to True and False to False, rather
than indicators of the speech acts assertion and denial.

Bilateralists accept what Geach calls the The Frege Point : ‘A thought
may have just the same content whether you assent to its truth or not;
a proposition may occur in discourse now asserted, now unasserted, and
yet be recognizably the same proposition.’ [13, 254f] According to Geach,
a phrase cannot carry the assertoric force of an utterance or inscription
if a sentence containing that phrase can be embedded into larger sentences,
in particular if it can form the antecedent of a conditional: in such a con-
text, the sentence is not asserted, hence the phrase that supposedly carried
assertoric force cannot, after all, have done so [13, 262f]. The Frege Point
provides a test for whether an expression carries the force of a speech act:
if a sentence containing the expression can be embedded into a larger sen-
tence so that the speech act is not performed by an utterance of the latter,
then the expression cannot carry the force of the speech act.11

Geach went so far as to conclude that in ordinary language ‘there is
no naturally used sign of assertion [...]. That is why Frege had to devise
a special sign.’ [13, 262f] Bilateralists disagree with Geach’s verdict: ‘Yes’
is such a sign. To argue this point, Rumfitt turns the test provided by the
Frege Point into one for signs for speech acts: if a sentence containing a

11Geach observes that expressions such as ‘the fact that’ carry assertoric force even
when occurring in embedded sentences. Geach analyses ‘Jim is aware of the fact that his
wife is unfaithful’ as a ‘double barrelled assertion’ ‘equivalent to the pair of assertions
“Jim is convinced that his wife is unfaithful” and “Jim’s wife is unfaithful”.’ [13, 259]
The occurrence of the phrase ‘the fact that’ is not, however, a sign carrying the assertoric
force of the sentence as a whole, but only of the clause following ‘that’. In asserting
‘If Jim is aware of the fact that his wife is unfaithful, then he is not showing it’, an
example I owe to Mark Textor, I do not assert that Jim is aware of the fact that his wife
is unfaithful, but only that his wife is unfaithful. Standing alone the phrase ‘the fact
that’ cannot be used to indicate the assertoric force of a sentence, as it forms a noun
phrase from a sentence, not a sentence. ‘The fact that p obtains’ is again not the sign
of assertoric force, as in asserting ‘If the fact that p obtains, then q’, I am not asserting
that the fact that p obtains.
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certain expression, or just some individual expression, cannot be embedded,
this indicates that the sentence contains, or that the expression is, a sign
of a speech act.12 Other expressions that indicate speech acts are those
for greetings, such as ‘Hullo’, or for valedictions, such as ‘Adieu’, or for
the expression of gratitude, such as ‘Thank you’: none of these can be
embedded.

‘It is assertible that’ or ‘It is deniable that’ are not correct renderings of
the bilateralist’s + and −: sentences beginning with them can be embedded
in larger sentence, such as ‘If it is assertible that p, then p’, ‘If it is deniable
that p, then ¬p’, ‘It is deniable that it is assertible that p’ or ‘It is assertible
that it is deniable that p’. ‘It is assertible that’ and ‘It is deniable that’ are
sentential operators. The + and − of bilateral logic are signs that convey
the forces of speech acts, in the same category as Frege’s judgement stroke.

4. Supposition

One reason why Frege held that the distinction between sense and force 
is necessary is that it is possible to assume a proposition without assert-
ing it, or, as he put it, without judging it to be true: ‘This separation 
of the judgement from that which is judged appears to be unavoidable, 
as otherwise a mere assumption, the positing of a case without judging 
whether it arises, could not be expressed.’ [6, 21f] Consequently, Frege ex-
plains, he introduces the judgement stroke, a vertical line, to indicate that 
a proposition is judged or asserted to be true. It is to be put to the left 
of ‘the horizontal’, in his early work called ‘the content stroke’ [5, § 2]. In 
a footnote, Frege continues: ‘The judgement stroke cannot be used in the 
formation of a functional expression, because in combination with other 
symbols it does not serve to designate an object. “|— 2 + 3 = 5” does not 
designate anything, it asserts something.’ [6, 22] In another footnote Frege 
writes: ‘To judge is not merely to grasp a thought, but to acknowledge its 
truth.’ [7, 34] We can assume propositions ‘for the sake of the argument’ 
and derive logical consequences from them without thereby having to take 
a stance on whether they are true or not. In assuming that there is a

12This may need qualification, if there are expressions that prevent a sentence con-
taining them from being embeddable or that cannot be embedded, but that are not signs
of speech acts.
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set containing all and only those sets that do not contain themselves for
purposes of reductio, I am not asserting that proposition.

It is true that, despite his acknowledgement of the need for distin-
guishing assertion from assumption, Frege did not apply it as one might
expect: all propositions of Begriffsschrift and Grundgesetze are marked
with the judgement stroke and thus asserted. Propositions that could form
assumptions in the process of reasoning appear in the antecedents of as-
serted conditionals.13 It took later developments until systems of logic were
formalised that deploy Frege’s insight. According to Gentzen, the main dif-
ference between his systems of natural deduction and the ‘logistic’ calculi,
as he called them, is that in his systems deductions begin with formulas
that are assumed, rather than with axioms that are asserted:

The essential difference between NJ-derivations [i.e. in natural
deduction for intuitionist logic] and derivations in the systems
of Russell, Hilbert and Heyting is the following: In the latter,
correct formulas are derived from a number of ‘logically basic
formulas’ [i.e. axioms] by means of few rules of inference; natu-
ral deduction, however, does not in general start from logically
basic propositions, but from a s s u m p t i o n s [...], which are
followed by logical inferences. A later inference then makes the
result again independent of the assumption. [15, 184]14

13Notice, however, how Frege proceeds in the appendix to the second volume of
Grundgesetze: deriving Russell’s contradiction in Begriffsschrift, Frege informs us that
he will ‘leave out the judgement stroke because truth is in doubt’ [8, 256]. Curiously,
this passage is omitted by Geach and Black in their translation of the appendix. Frege
here draws logical inferences from propositions that are not judged; his practice betrays
his doctrine that from mere assumptions nothing can be inferred ([9, 387], [12, 47]).
There would, hence, be a way of expressing mere assumptions in Frege’s logical practice,
namely, by refraining from applying the judgement stroke. But this is not a method
Frege uses in his official development of logic. At the beginning of Grundgesetze and
elsewhere, a formula without a judgement stroke attached is taken to be the name of a
truth value. A proposition can only ever name a truth value, be it the True or the False.
To judge is to take the step from the sense of a sentence, the thought, to its reference,
its truth value [7, 35]. In judging, we proceed from a thought to its truth value, or
rather from the thought to the True. According to Frege’s official doctrine, inference
requires that process to have been made. See Textor’s reconstruction of Frege’s theory
of judgement, where he explains: ‘Judgement and inference are “level-crossing” mental
acts. In them the judger advances from a thought to its truth-value.’ [40, 639]

14This differs slightly from Szabo’s translation [16, 75].
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Roughly around the same time Jaśkowski makes virtually the same obser-
vation:

In 1926 Prof. J.  L u k a s i e w i c z called attention to the fact
that mathematicians in their proofs do not appeal to the the-
ses of the theory of deduction, but make use of other meth-
ods of reasoning. The chief means employed in their method
is that of an arbitrary supposition. The problem raised by
Mr.  L u k a s i e w i c z was to put these methods under the form
of structural rules and to analyze their relation to the theory of
deduction. [23, 5]

Jaśkowski solves  Lukasiewicz’s problem by formalising a system of natural
deduction. Like Gentzen, Jaśkowski continues to point out that assump-
tions are made to be discharged, that an implication derived from a con-
clusion derived under a supposition does not depend on the supposition:
‘It would remain true even in case the suppositions used [in its derivation]
should be false.’ [23, 6] Both Gentzen and Jaśkowski underline that making
and discharging assumptions is essential to the process of logical inference
as captured by natural deduction.

Making an assumption is not often listed amongst examples of speech
acts. It is, however, quite clear that to make an assumption is to perform
a speech act. It is to do something with the content of a sentence, with a
proposition or a thought, and to engage in a linguistic activity. An assump-
tion can have the same content as an assertion, a question, a command or
a wish and is distinguished from them by what is done with the content.
Dummett concurs that ‘in supposition, a thought is expressed but not as-
serted: “Suppose ...” must be taken as a sign of the force [...] with which
the sentence is uttered.’ [2, 309] Although this observation is virtually
immediate once the distinction between force and content is drawn, it is
possible to give more evidence and argument for it. Doing so contributes
to an analysis of this speech act. I shall follow Jaśkowski and call speech
act of the making of an assumption supposition.15

Supposition shares features with other speech acts. It is similar to
requests and commands in that suppositions are often expressed using the

15For a detailed analysis of the norms governing suppositions and how supposition
differs from other speech acts, see [17]. Green also remarks, as I will below, on the fact
that there are conventional ways of marking supposition in natural deduction, showing
that supposition is a speech act.
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imperative: ‘Let a be an F ’, ‘Assume p’, ‘Suppose q’. If the use of the
imperative indicates a speech act, this suggests that its use in supposition
does so, too.

Supposition has a specific purpose: it marks the first step in argumen-
tation or logical deduction. Supposition comes with the intention to draw
an inference. Gentzen and Jaśkowski go even further: the intention is to
produce a chain of inferences with the aim of discharging the assumption
made. Thus, like commands, requests and questions, suppositions prompt
further actions, the former answers and the carrying out of the command
or request, the latter further steps in an argument or deduction. If in the
former cases, this is due to the fact that speech acts have been performed,
this suggests that supposition is also a speech act.16

There are conventions marking assertions, question and commands. Of-
ten these are not sure-fire indications, but in general fair enough to deter-
mine which speech act has been performed. If a sentence ends with a full
stop, this is a rough and ready indication that it is an assertion; if it ends
in a question mark, this is a rough and ready indication that it is a ques-
tion; if it ends in an exclamation mark and is in the imperative mood, this
is a rough and ready indication that it is a command, if issued by a per-
son with the relevant authority. There are also conventions marking when
something has been assumed. In the four most popular systems of natural
deduction, these are quite precise rather than rough and ready:

(1) By writing formulas at the top nodes of a proof tree with no line
on top (Gentzen);

(2) By writing an S at the beginning of the formula and a numeral
to the left, with a prefix if the assumption is in the scope of other
assumptions (Jaśkowski);

(3) By writing ‘hyp’ to the right of the formula and ∣ to its left, with
further lines ∣ to the left if the assumption is in the scope of other
assumptions (Fitch);

(4) By writing an assumption number to the left of the formula and
an ‘A’ to its right (Lemmon).

16When I presented an early version of this material at a work in progress seminar in
London, Mark Textor asked whether one can’t just suppose without drawing inferences.
Keith Hossack responded that this is not supposition, but entertaining a thought.
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Thus, just as there are conventions marking the speech acts assertion,
question, command and request, there are conventions marking supposi-
tion. This feature, too, puts supposition into the realm of speech acts.
Notice that there is no conventional mark indicating that a thought is ex-
pressed: the sentence expressing the thought suffices.

The test provided by the Frege Point provides further reasons for count-
ing supposition amongst the speech acts. If the conventional signs of sup-
position are such that they cannot be embedded, this is an indication that
it is a speech act. And this is indeed the case. Conventional signs for
supposition in ordinary English, such as ‘Suppose A’, ‘Let a be an F ’ and
‘Assume p’ cannot be embedded. ‘If suppose A, then B’, ‘Suppose assume
A’, ‘It is not the case that let a be an F ’ are gibberish. Similarly for the
conventional signs of supposition in formal systems of natural deduction.
Expressions such as ‘(Sp) ⊃ q’, ‘(1. ∣ p hyp) ⊃ q’ and (1 p A)⊃ q are
illformed, and although the formula that occupies a top node of a proof
tree can occur in the antecedent of a conditional, it makes no sense to put
the top nodes of proof trees into that position. In Jaśkowski’s and Fitch’s
system, assumptions can be made in the scope of other assumptions, but
this is not the same as embedding an assumption in another. To make an
assumption in the scope of another is to perform two speech acts one after
the other. It is not to embed one speech act in another. No provision has
been made for strings of symbols such as ‘1. 2. SSpq’ or ‘∣ ∣ p hyp q hyp’,
or similar strings with q omitted. But as the systems of Gentzen and Lem-
mon show, the notion of the scope of an assumption is not essential. Be
that as it may, no provision has been made in Lemmon’s system for strings
of symbols such as ‘1 2 p A q A’ either, and in Gentzen’s system, where
supposition is effected by writing a formula on top of a line indicating an
inference with nothing above it, there isn’t even anything that might count
as an attempt to embed one supposition within another.

Finally, although we can describe or report that an assumption has been
made by a sentence such as ‘It is assumed that p’, this is not the same as
supposition. It does not have the same effect. We cannot render what is
being done when an assumption is made by the phrase ‘It is assumed that’.
The inference ‘It is assumed that p, it is assumed that p → q, therefore q’
is invalid: It may be true that it is assumed that p and that it is assumed
that p → q, while it is false that q, because it is possible to assume false-
hoods. Nonetheless, from the supposition that p → q and the supposition
that p, q follows logically. ‘It is assumed that’ is a sentential operator, not
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an indicator of a speech act: it can be used to describe or report which
assumptions have been made, but ‘It is assumed that p’ cannot take the
place of performing the speech act of assuming that p. The description
or report may be true or false; the assumption is made or not. Compare
with Frege’s assertion sign: it indicates the assertoric force of an inscrip-
tion without asserting that the inscription is asserted; the latter is done
by means of the sentential operator ‘It is asserted that’. Like assertion,
supposition is not something that is part of the proposition assumed. It is
something that is done with a proposition.17

Supposition is different from merely grasping or expressing a thought.
Thoughts can be grasped without being assumed, e.g. when I grasp the
components p and q in complex sentences such as ¬p and p → q. We can
test whether someone has grasped a thought expressed by ‘p’ by asking ‘Do
you understand this sentence?’. Even when the answer is ‘Yes’, this need
not be the preparation for a chain of reasoning. Grasping or expressing a
thought need not be followed by inferences.

As pointed out by Frege, supposition is evidently something other than
assertion. For further illustration, consider Descartes at the end of his
first meditation: ‘I will suppose [...] that there is an evil spirit who is
supremely powerful and intelligent, and does his utmost to deceive me.’
[1, 65] Descartes assumes this, but does not assert it: he assumes it to see
what follows in his quest for a rational reconstruction of his beliefs on firm
foundations. It is also an assumption to be discharged. Descartes aims to
draw conclusions that do not depend on this assumption. Anything can be
assumed, at least in formal logic, and maybe even in philosophy, but as-
sertion is governed by stricter norms and not anything can be (felicitously,
sincerely) asserted. Not many people have ever been in a position where
they would assert ‘I am being deceived by an evil spirit’.18 The assertion

17As Frege says, to judge is something utterly peculiar and incomparable. [7, 35]
Nothing other than a judgement has the effects of a judgement; in particular, a descrip-
tion that a judgement that p has been made (by someone or other) need not involve a
judgement that p. Van der Schaar gives an account of the difference between judging and
describing a judgement, of the first person perspective and the third person perspective
on judgements [42]. Similar remarks apply to supposition.

18Saints Ignatius of Loyola and Teresa of Avila came close. Both report in their
autobiographies the realisation that some of the thoughts and feelings that arose during
their meditations were temptations and effectively assert that they were being deceived
by evil demons. But even they do not quite report having asserted ‘I am being deceived
by an evil demon’ in the present tense. Note the difference: For Descartes, the thought ‘I
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that p does, the supposition that p does not, commit to the truth of p.
Speakers use assertions to express their beliefs; they do not use supposi-
tions for that purpose. Although supposition has features in common with
command, question or request, it is a speech act that differs from them,
too. As Dummett observes, a command can be followed up by a question
‘Have you done it yet?’, but ‘Let a be an F ’ or ‘Suppose p’, can’t be fol-
lowed up by such a question. [2, 309] For a similar reason, suppositions are
not requests either. Supposition is also different from asking a question:
I can assume a proposition without wondering whether it is true or not.
A question is a challenge to provide an answer; a supposition can be made
without any view on settling the question whether it is true or not – indeed,
once an assumption is discharged, its truth value is irrelevant to the truth
of the conclusion.

5. Supposition as a problem for bilateralism

Formulas of bilateral logic are prefixed by + or −, representing the speech
acts of assertion and denial. Being a speech act, supposition requires a
propositional content as that which is supposed. An assertion or a denial is
not a propositional content. Thus it is not possible to assume an expression
such as + A or − A. Every formula of bilateral logic is already put forward
with assertive or rejective force. There is therefore no sense to assuming
such a formula. Speech acts cannot be embedded. ‘Assume + A’ and
‘Assume − A’ are therefore meaningless.

Nonetheless, formulas of the form + A and − A are supposed to feature
as assumptions in deductions in bilateral logic. The rules + ⊃ I and Re-
ductio show as much. They permit the discharge of signed formulas. The
conclusion of an application of these rules no longer depends on the signed
formulas discharged. That which is discharged is an assumption.

As pointed out by Jaśkowski and Gentzen, supposition is an essential
feature of inference. But we cannot make sense of the notion of making
an assumption in bilateral logic, where every formula is prefixed with a
sign for assertion or denial. Bilateral logic demands we do something that

am being deceived by an evil demon’ occurs within disinterested philosophical reflection.
For Teresa and Ignatius, it is the cause of extreme distress. The difference between the
supposition and the assertion couldn’t be more dramatic.
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cannot be done: to embed the speech acts of assertion and denial within
the speech act of supposition. Bilateral logic as it stands is thus incoherent.

According to bilateralists, + A and − A can be rendered as propositional
questions and their answers. Doing so starkly presents the predicament.
‘Suppose was the accused in Berlin at the time of the murder? Yes’ makes
no sense. ‘Suppose is it the case that A? No’ and ‘Assume is it the case
that A? Yes’ are of the same kind of gibberish as Rumfitt’s example to
illustrate that + and − cannot be embedded (p. 307), and so is ‘Let is a an
F? Yes’.19

We can assume that something has been asserted or that something is
assertible. ‘Suppose it is asserted that A’ or ‘Assume that A is assertible’
make sense. But they are different from assuming that A. To assume
a proposition is not to assume that anyone asserted it. To assume that
A is assertible is different from assuming that A. If B follows from the
assumption that A, then I can infer ‘If A, then B’. If B follows from the
assumption that A is assertible, I can infer that ‘If it is assertible that A,
then B’. These are not the same. To take an example of Dummett’s, let
A be ‘You will go into that room’ and B ‘You will die before nightfall’,
so that in ‘If you go into that room, you will die before nightfall’, ‘the
event stated in the consequent is predicted on condition of the truth of the
antecedent (construed as in the future tense proper [i.e., not the future tense
expressing present tendencies]), not of its justifiability.’ [3, 193] Suppose
that the present tendencies are that you will go into that room, but you
later change your mind, don’t go and don’t die before nightfall. Then
the conditional ‘If it is assertible that you go into that room, you will die
before nightfall’ is false, as the antecedent is true and the consequent is
false, while the conditional ‘If you go into that room, you will die before
nightfall’ is true, if the room is one in which everyone is killed who enters
before nightfall. The distinction between assuming that a proposition is
assertible and assuming the proposition is pertinent for bilateralists like
Price and Rumfitt, for whom a crucial aspect of the motivation for adopting
the bilateral approach to meaning is their claim that it enables them to
draw the distinction between truth and assertibility. (See [30, 167] and
[35].) Besides, ‘Suppose it is asserted that A’ or ‘Assume that it is assertible
that A’ cannot render correctly the bilateralists’ attempts at assuming + A
and − A: + A and − A represent speech acts of assertion and denial, not

19How about ‘P? Suppose Yes’ or ‘Let a be an F? Yes’? See Section 6.



Supposition: A Problem for Bilateralism 317

reports that any such speech acts have been performed or assertions that
they could be performed.20 ‘It is asserted that’ and ‘It is assertible that’
are sentential operators, not indicators of speech acts.21

Maybe bilateralists could respond that their logic is one that works
without supposition: the rules specify how to proceed to further assertions
and denials from assertions and denials that have in fact been made.22

Compare with Frege’s view that only from true premises can something
be concluded. We can, however, discount this option: the framework of
natural deduction chosen by bilateral logicians betrays that this cannot be
the intention, as it does not fit the Fregean account of inference. Seeking
a way out along the Fregean route and providing an axiomatic system of
logic in which some axioms are asserted, others denied is also not conducive
to the expressed aim of providing an inferential semantics for the logical
constants: it is to give up on the project of specifying the meanings of the
connectives in terms of rules of inference.

The notion of the discharge of assumption merits further consideration.
It is the second essential aspect of inference pointed out by Gentzen and
Jaśkowski. In unilateral systems of logic, if a rule permitting discharge of
assumptions is applied, the conclusion no longer depends on their truth.
What could it mean to discharge a speech act of assertion or denial? Dis-

20To assume that an assertion has been made or a question answered is irrelevant
to logic, or at least it does not cover all the cases logic is concerned with: Descartes
need not have asserted that he is deceived by an evil demon, nonetheless he and we can
proceed from that assumption and see what follows, draw consequences and potentially
reject the assumption, if we reach a contradiction. And rejecting an assumption here
means: to derive its negation, which we are then entitled to assert, if we assert also all
the other premises used in the argument. Rejecting an assumption in the sense relevant
to logic is not like rejecting an assertion (as in metalinguistic negation): it is the step
after deriving a contradiction (or otherwise unpalatable proposition) from it (and other
assumptions or asserted propositions), that is, it is to derive and assert its negation (on
the basis of other assumptions).

21The items to which bilateralist logic is applied can hardly be possible assertions.
I doubt that mainstream bilateralists are happy to admit that there are possible asser-
tions, so the only way to make sense of the claim that A is a possible assertion is to
say that A is assertible. Maybe bilateralists could reject the Frege Point and adopt a view
that aims to imbue propositions with an intrinsic assertoric or rejective force, a force that
is canceled if they are embedded into other speech acts, such as supposition? Jesperson
argues forcefully against such a view [24]. The view also goes against the evidence pro-
vided by Rumfitt that bilateralists accept the Frege Point and do not think speech acts
can be embedded.

22As Dorothy Edgington and Mark Textor wondered.



318 Nils Kürbis

charging an assumption is not like retracting an assertion. To see this, it
suffices to compare Frege’s retraction of Basic Law V and Descartes’s dis-
charge of the assumption that he is being deceived by an evil spirit. But
a few more words may be in order. If an assertion has been made, or a
question raised and answered, a speech act has been performed. And even
though I can retract an assertion or change my mind what the answer to a
question is, the assertion or question and answer cannot be made undone:
they are events that have happened, and we cannot, as it were, remove
them from the universe by a process such as applying implication intro-
duction or reductio ad absurdum. It is possible to cancel the commitment
to the correctness of an assertion previously made, but that is not like dis-
charging an assumption: cancelling a previous assertion is not done by an
application of a rule of inference. Cancelling a commitment to a previous
assertion is not analogous to the process of inferring further propositions
that have the content of the assertion as a component; indeed, no such
process would appear to make sense, as it would appear to require having
the assertion as a component. Discharging an assumption is also a notion
bilateralists cannot make sense of. There is no process that does to the
speech act of assertion (or denial, for that matter) what discharge does to
assumptions.

That it makes no sense to discharge an assertion is further evidence
that we cannot assume assertions either: the possibility of its discharge is
an essential feature of making an assumption.

What about Smiley’s and Rumfitt’s ‘readily comprehensible variety of
actual deductive practice’ that uses propositional questions and their an-
swers? There is no need to appeal to the bilateralist machinery to make
sense of such inferences. One may, instead, appeal to Textor’s account,
who argues that ‘Yes’ and ‘No’ used in answering questions are not force
indicators, but prosentences [41]. Thus any such aspect of deductive prac-
tice can be reconstructed without appeal to speech acts of assertion and
denial.

6. Attempts to solve the problem

One might object that the difficulty pointed out in the last section is less
than a problem and more of an omission: bilateral logic is incomplete and
needs to recognise further speech acts besides those marked by + and −;
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in particular, it needs to recognise also the speech act of supposition.23

Could we not answer ‘Suppose yes’ to questions such as ‘Was the accused
in Berlin?’ and mark the speech act of supposition thereby? The first thing
to note here is that this is not what Smiley, Rumfitt and Humberstone are
doing, according to whom + and − are to be read as assertion and denial,
not supposition.24 ‘Yes’ and ‘No’ are not ‘Suppose yes’ and ‘Suppose no’,
and if the former are represented by + and −, the latter are not represented
by them, and hence we should have to add further signs for supposition.

Such an approach has been followed up by Kearns [25]. Kearns is a
bilateralist at heart: he accepts that there are primitive speech acts of
assertion and rejection, which he represents by ⊢ and ⊣. Correspondingly,
there are two kinds of supposition, supposing as true, which he represents
by ⨽, and supposing as false, represented by ¬ [25, 335]. Every formula in
a deduction is signed by one of these four symbols. To keep the system
simple, Kearns only considers rules for ⊢ and ⨽, and he only explicitly
states some of the rules for conjunction, disjunction and negation. Even
so, the system brings with it certain complications, as it needs to be settled
what to do with conclusions that are derived from a mixture of asserted
and supposed premises. This leads to a large number of rules: conjunction
introduction, for instance, has three forms. Kearns has a principle for
deciding whether the conclusion of an inference is asserted or supposed: if
the only suppositions on which the premises of a rule depend are those to
be discharged by its application, then the conclusion is asserted; otherwise
it is supposed. Only suppositions can be discharged.25

23Mark Textor suggested I put my point like this. The following also owes to discus-
sions with Greg Restall.

24Evidently, we can’t read + and − as ‘Suppose the accused as in Berlin etc.? Yes’ as
that, if we admit it at all, asserts that it is supposed that the accused was in Berlin, and
this is different from supposing that the accused was in Berlin. Cf. pp. 313 and 316.

25There are unexplained question marks in the rules for disjunction and negation
elimination [25, 336]. I interpret them as meaning that these formulas may either be
asserted or supposed. There is a typo in negation elimination, a version of classical re-
ductio ad absurdum: negations are missing from the discharged suppositions. Vacuous
discharge appears to be forbidden in disjunction elimination, which is why its minor
premises can only be supposed, while in negation elimination, it is permitted above sup-
posed premises. Kearns says versions of ex contradictione quodlibet (vacuous discharge
above both premises in negation elimination) are valid, as long as at least one premise
and the conclusion are supposed; if both premises are asserted, it is not permitted to pro-
ceed to the assertion (and presumably the supposition) of an arbitrary formula; rather,
‘once a person finds herself [in such a position], she must abandon some of her beliefs’
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There is, however, no need to consider all these variations. A rule of
inference of Kearns’s logic is that from an assertion of A, its supposition
follows: from ⊢ A infer ⨽A. It would therefore suffice to formulate only
rules for when all premises are supposed and leave the cases with asserted
premises as derived rules of inference. What is more, as a consequence
of Kearns’s principle for deciding whether a conclusion is asserted or sup-
posed, it suffices to give rules that conclude with suppositions, and then
add the global condition that the conclusion of a deduction is asserted if
all the premises it depends on are asserted, supposed otherwise. It is clear,
however, that prefixing ⨽ to all premises and conclusions is superfluous.
The situation is thus exactly as in a system such as Gentzen’s, where as-
sumptions are not marked in any special way, and a deduction of A from
formulas Γ entitles us to assert A if we assert all formulas in Γ.26

The fact that Kearns permits suppositions to be conclusions of infer-
ences presents a more general problem. Kearns’s notion of supposition is
prised apart from the notion of discharge. For instance, if ⨽A ∧B is con-
cluded from ⨽A and ⊢ B, it cannot be discharged further down in the proof.
Kearns considers supposition to be something weaker than assertion. In
some sense or other that may be true: a supposition does not commit in
the way an assertion does. But no such sense is pertinent for logic. Suppo-
sition is not a weaker kind of assertion, but something different altogether.
Assumptions stand at the beginning of deductions and are not the result of
inference. And as Gentzen and Jaśkowski observe, assumptions are made
to be discharged: it is of the essence of an assumption that it may be
discharged by an application of a rule of inference further down in the de-

[25, 337]. Abandoning a belief is then not discharging it and deriving the assertion (or
supposition) of its negation.

26In Jaśkowski’s system, suppositions are marked by S, while asserted formulas are
not marked by anything. ‘The above conventions [of how to construct deductions in
his system of natural deduction] lead us to some new expressions [those beginning with
‘S’] which must be considered as significant ones. [. . . ] We shall retain for the term
“proposition” the meaning already given, namely the significant propositions of the
usual theory of deduction’ [23, 7], i.e. an axiomatisation of the propositional calculus by
 Lukasiewicz in which all formulas are asserted. There would be no need for a separate
symbol indicating supposition, as suppositions are already marked by their position in
the deduction, standing, as they do, to the right of prefixes composed of numerals indi-
cating scope, each supposition with its unique prefix. Propositions, whether concluded
by the discharge of suppositions or used as premises, do not get prefixes. It is worth
noting that formulas concluded under suppositions are not marked by anything other
than the prefix of the suppositions under which they stand.
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duction. Consequently, in their systems of natural deduction, assumptions
only stand at the beginning of deductions and introduce the formulas from
which the deduction is going to take its course. I conclude that Kearns’s
⨽ does not represent the speech act of supposition, as supposition plays
a different role from that played by ⨽ in Kearns’s system.27

The forgoing considerations also shows Kearns’s rule ‘from ⊢ A infer
⨽A’ to be absurd. A conclusion drawn on the basis of a deduction in which
all assumptions are discharged is asserted outright and there is no sense in
which it is supposed. Kearns, however, must say that it is, as according to
him, from the assertion of the conclusion of this deduction, its assumption
follows.

These problems are not just problems that mar Kearns’s approach.
Any approach that insists on adding speech acts of supposition to those of
assertion and denial would need to answer the questions Kearns has aimed
addressed, and if all formulas in a deduction are supposed to be marked by
signs for speech act, the question remains what speech act is supposed to
follow from supposed formulas.

Maybe the most reasonable thing would be not to sign conclusions of
inferences by markers for speech acts at all. Evidently, even marking con-
clusions only by + and − if they are concluded exclusively from asserted and
denied formulas would open up the problem of Kearns’s approach again:
what should we conclude if one premise of a rule is signed and the other
isn’t. And so we are back to Jaśkowski.

One might try to solve the problem posed by supposition for bilateral-
ism by observing that even if speech acts cannot be embedded, there are
speech acts that are conditional: there are conditional commands, requests
and bets, for instance, such as ‘If you go to the shops, get some beers’ or ‘I
bet a tenner it’ll rain if I don’t take an umbrella’. The request and the bet
are made on condition of other things taking place. If you don’t go to the
shops, the request is void. If I take an umbrella the bet is off. It is plausible
to add conditional assertion to the list of conditional speech acts. Indeed,
it is plausible that if a conclusion is drawn on from assumptions, it is as-
serted conditionally on those assumptions. An expression like ‘therefore’

27The act of drawing a conclusion is often marked by ‘therefore’: ‘Suppose A and
suppose B, therefore suppose A ∧ B’ is once more gibberish, to use Rumfitt’s word,
and hence, as according to Kearns concluding ⨽A is meaningful, ⨽ cannot be a sign for
the speech act of supposition that is pertinent to logic. One will observe that putting
a question and answer after ‘therefore’ does not fare much better.
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that signals an inference also bears the marks of a speech act. Consider this
example: Let a be an F . But no F is a G. Therefore, a is not a G. Here
we have three speech acts: a supposition, an assertion and the announce-
ment of a conclusion. The result is a conditional assertion: The conclusion
that a is not a G is asserted conditionally upon a’s being an F . There
is also a practice of recording the conditional assertions resultant upon a
deduction as Γ ⊢ A and of calculi for deriving the further commitments
incurred by conditional assertions, i.e. single conclusion sequent calculus.
A deduction, then, consists in a series of speech acts: it begins with sup-
positions or propositions the truths of which are accepted, continues with
announcements of propositions inferred, and results in a conditional as-
sertion of its conclusion, if any assumptions remain undischarged, or its
outright assertion, if not.28

This is an attractive way of understanding the result of a unilateral
deduction. The question is how to apply it to bilateral logic.

If there are conditional assertions, the bilateralist can add conditional
denials. The product of a deduction is a conditional assertion or a condi-
tional denial. Undischarged formulas + A and − A should then represent
the conditions on on which the conclusion of the deduction is asserted or
denied. But this does not get the conditions right. A speech act conditional
upon the assertion or denial of a proposition is different from a speech act
conditional upon its truth or falsity. A conditional request, command or bet
is conditional upon the truth of the proposition expressing the condition,
not the performance of a speech act with that proposition as its content.
Similarly, the condition of a conditional assertion should be expressed by
A or ¬A, as it is done in a unilateral system, not by + A or − A, as the
bilateralist would have to insist. It is crucial to the bilateralist that + and
− are speech acts: the bilateralist needs to ensure that + and − are not
merely notational variants of the trivial truth function and negation, and
the way to do this is to insist on their status as speech acts. A must be
different from + A, ¬A from − A. But if + A and − A mark the conditions
of the speech act, they are no different from A and ¬A.

28Eliot Michaelson, Michael Potter and Bernhard Weiss pressed me on this issue, and
it is to them that I owe the objection. In our four systems of natural deduction, it is not
marked whether any of the formulas from which the deduction proceeds are accepted
as true unless they are axioms: they are all treated as assumptions. But it would be
straightforward to add a convention for indicating such formulas, the most immediate
one being to treat them the way axioms are already treated.
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This is also seen by looking at the conditional. A conditional assertion
of the kind that is at issue here, one put forward on the grounds of a
deduction of a conclusion from assumptions, is equivalent to the assertion
of a conditional. This follows from the bilateral rules for ⊃.29 This shows
that the condition of the assertion is A, not + A: + A cannot go into the
antecedent of the conditional. Only A can go there.

7. Conclusion

The core of the argument of this paper is the following. Supposition is a
speech act. In bilateral logic, the premises and conclusions of inferences
are asserted or denied. Speech acts cannot be iterated. Thus there cannot
be any assumptions in bilateral logic. But this is absurd: assumptions and
their discharge are essential to logic.

One might protest: something in this argument must be wrong, for if
that were so, then what is it that bilateral logicians are doing when they
assume and discharge formulas of the form + A and − A. My best diagnosis
is that the practice of bilateral logician shows that their + and − are non-
embeddable truth and negation operators. The description of − and + as
speech acts does not match their use.

All this may just point to an incompleteness in the bilateral account of
deduction: other speech acts need to be acknowledged besides those marked
by + and −. However, an attempt of doing just that has been shown to be
inadequate. It is also not adequate to read deductions in bilateral logic,
analogously to a plausible way of reading deductions in unilateral logic,

29This marks a difference between conditional assertion and conditional requests and
commands. There is a difference between a conditional bet and a bet on a conditional;
a conditional request and a request of a conditional. If bet on the conditional, that if
I don’t take an umbrella, then it will rain, I’ve won if I take an umbrella. If I request
the conditional that if you go to the shop, then you buy beer, you’ve complied if you
don’t go to the shop. By contrast, there seems to be no such distinction in the case of
assertion: a conditional assertion and the assertion of a conditional amount to the same
thing, at least in the system we are considering, where the deduction theorem holds. If
the condition of a conditional assertion reached by deductive inference is not fulfilled,
although I am not committed to the assertion of the conclusion, I am still committed
to the conditional that follows by implication introduction. In conditional assertion,
I am committed to asserting the conclusion if the condition holds; in the assertion
of a conditional, I am committed to the consequence drawn by modus ponens, if the
condition holds. In this respect conditional assertion is thus different from conditional
bets and requests.
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as conditional assertions and denials. The burden of proof lies on the
bilateralist to indicate how the account is to be amended.
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[23] S. Jaśkowski, On the Rules of Suppositions in Formal Logic, Studia Logica,

vol. 1 (1934), pp. 5–32.

[24] B. Jespersen, Two Tales of the Turnstile, Journal of Applied Logics,

vol. 8(2) (2021), pp. 511–530.

[25] J. Kearns, Propositional Logic of Supposition and Assertion, Notre Dame

Journal of Formal Logic, vol. 38(3) (1997), pp. 325–349, DOI: https:

//doi.org/10.1305/ndjfl/1039700742.

[26] N. Kürbis, Intuitionist Bilateralism: Negations, Implications and some

Observations and Problems about Hypotheses, [in:] J. Fichot, T. Piecha

(eds.), Beyond Logic. Proceedings of the Conference held in

Cerisy-la-Salle, 22–27 May 2017 (2017), pp. 429–438, DOI: https:

//doi.org/10.15496/publikation-18676.

https://doi.org/10.1007/BF01201353, 10.1007/BF01201363
https://doi.org/10.1007/BF01201353, 10.1007/BF01201363
https://doi.org/10.1111/0029-4624.00216
https://doi.org/10.1093/0198810776.001.0001
https://doi.org/10.1093/0198810776.001.0001
https://doi.org/10.1215/00294527-2798700
https://doi.org/10.1023/A:1004747920321
https://doi.org/10.1023/A:1004747920321
https://doi.org/10.1093/analys/ans048
https://doi.org/10.1093/analys/ans048
https://doi.org/10.1305/ndjfl/1039700742
https://doi.org/10.1305/ndjfl/1039700742
https://doi.org/10.15496/publikation-18676
https://doi.org/10.15496/publikation-18676


326 Nils Kürbis

[27] N. Kürbis, Proof and Falsity. A Logical Investigation, Cambridge Uni-

versity Press (2019), DOI: https://doi.org/10.1017/9781108686792.

[28] N. Kürbis, Normalisation for Bilateral Classical Logic with some Philo-

sophical Remarks, The Journal of Applied Logics, vol. 8(2) (2021),

pp. 531–556.

[29] N. Kürbis, Note on ‘Normalisation for Bilateral Classical Logic with some

Philosophical Remarks’, Journal of Applied Logics, vol. 8(7) (2021),

pp. 2259–2261.

[30] H. Price, Sense, Assertion, Dummett and Denial, Mind, vol. 92 (1983),

pp. 161–173, DOI: https://doi.org/10.1093/mind/XCII.366.161.

[31] H. Reichenbach, Elements of Symbolic Logic, Macmillan, London

(1966).

[32] G. Restall, Multiple Conclusions, [in:] P. Hájek, L. Valdés-Villanueva,
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BILATERAL RULES AS COMPLEX RULES

Abstract

Proof-theoretic semantics is an inferentialist theory of meaning originally devel-

oped in a unilateral framework. Its extension to bilateral systems opens both

opportunities and problems. The problems are caused especially by Coordina-

tion Principles (a kind of rule that is not present in unilateral systems) and

mismatches between rules for assertion and rules for rejection. In this paper,

a solution is proposed for two major issues: the availability of a reduction proce-

dure for tonk and the existence of harmonious rules for the paradoxical zero-ary

connective •. The solution is based on a reinterpretation of bilateral rules as com-

plex rules, that is, rules that introduce or eliminate connectives in a subordinate

position. Looking at bilateral rules from this perspective, the problems faced by

bilateralism can be seen as special cases of general problems of complex systems,

which have been already analyzed in the literature. In the end, a comparison with

other proposed solutions underlines the need for further investigation in order to

complete the picture of bilateral proof-theoretic semantics.

Keywords: bilateralism, separability, harmony.

1. Introduction

The aim of this paper is to solve some problems faced by a specific flavour
of proof-theoretic semantics when applied to bilateral systems. A complete
reconstruction of the state of the art of this field of study or its history is
far beyond the limits of this contribution, but some of its key aspects have
to be reminded. The same holds for bilateralism: we do not intend to give
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the full picture regarding this vast topic, but we will remind some aspects
that will be relevant to the problems here at issue.

Proof-theoretic semantics is an approach toward meaning (especially
for the logical language), which – as opposed to model-theoretic semantics
– assigns meaning without referring to things external to the language and
the linguistic practices, such as models or structures. It is a vast and het-
erogeneous field of study, with different ramifications, tied together by the
adoption of proof – as opposed to truth – as the key ingredient of semantics.
In its original formulation due to Dummett and Prawitz, proof-theoretic
semantics focuses primarily (if not only) on natural deduction systems, and
so on systems containing only Operational Rules.1 For these rules, some
criteria of acceptability are given:

• For I-rules, something like a complexity condition is usually imposed,
with the clause that in all its applications, the conclusion should be
more complex than both the premises and the discharged assump-
tions;2

• For E-rules, a criterion called harmony guarantees that they are con-
sequences of, and so justified by, the corresponding I-rules.

While there is no consensus about which shape the criterion of harmony
should take, it is usually agreed that Inversion Principle should be at least
one of its ingredients or presuppositions:3

“Let α be an application of an elimination rule that has B as
consequence. Then, deductions that satisfy the sufficient con-
dition [· · · ] for deriving the major premiss of α, when combined
with deductions of the minor premisses of α (if any), already
“contain” a deduction of B ; the deduction of B is thus obtain-
able directly from the given deductions without the addition
of α.”

In practice, a pair of rules for a logical constant suits this principle iff
there are some reduction steps that: take every derivation in which the

1See [28] (general proof theory) and [6].
2See [6] p. 258. This criterion has been criticized in [8], where the author proposes

a new criterion.
3[27], p. 33. For a historical account of the development of this principle, see [24].
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major premise of an E-rule is derived using an I-rule as input; return a
derivation of the conclusion of the E-rule which is constructed by combining
the derivations of the premises of the I-rule and the (eventual) derivations
of the minor premises of the E-rule.

To make this intuition more precise, Prawitz introduces the notion of
maximal formulae:

Definition 1.1 (Maximal Formulae). Given a derivation D, a maximal
formula in it is a formula that is the conclusion of an I-rule and the major
premise of an E-rule.

With this definition, we can observe that Inversion Principle asks that for
each maximal formula generated applying a pair of I and E-rules, there is
a reduction step that removes it. As an example, the maximal formula in
the derivation on the left is removed in that on the right:

...
D1

A

[A]

...
D2

B⊃I
A ⊃ B⊃E

B

⇝

...
D1

A
...

D2
B

It should be clear that Inversion Principle does not entail that maximal
formulae can be avoided in general, since a reduction step can generate
new maximal formulae. As an example, if in the previous example the
derivation D1 of A ends with an application of an I-rule and the derivation
D2 of B from A starts with an application of an E-rule of which A is its
major premise, the reduction gives birth to a new maximal formula, that is
A. The generation of new maximal formulae poses the problem of circular
reductions and in general of the eliminability of all maximal formulae.4

So, defining as in normal form a derivation in which there are no maximal
formulae, there are two properties eligible for harmony:

existence of normal form Given a derivation of C from Γ, there is a
derivation in normal form of the same conclusion from at most the
same assumptions;

4As opposed to the eliminability of each maximal formula, for which Inversion Prin-
ciple is enough.
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normalization Given a derivation of C from Γ, there is an effective pro-
cedure leading from it to a derivation in normal form of the same
conclusion from at most the same assumptions.

In the most traditional versions of proof-theoretic semantics, when har-
mony is not equated with Inversion Principle tout court,5 it usually entails
both this principle and the request for normalization.6 In our discussion
about Rumfitt’s bilateral system, we will follow him and consider normal-
ization as the key ingredient of harmony. Our aim will be to remain as
adherent as possible to this traditional conception of proof-theoretic se-
mantics, while endorsing bilateralism and solving the issues pointed out
against Rumfitt’s system.

Of course, this overview of proof-theoretic semantics is far from com-
plete, and covers just the orthodox developments of this discipline that fol-
low Dummett and Prawitz in favouring single-conclusion natural deduction
and harmony criteria based on normalization. Admittedly, there are gener-
alizations and different approaches departing from this traditional flavour
of proof-theoretic semantics. As an example, there are some attempts to
generalize this kind of investigation in the direction of sequent calculus.7

Nonetheless, Rumfitt’s bilateral system is a development of this early tradi-
tion, and the author is explicitly skeptical about meaning-theoretical usages
of sequent calculus.8 Moreover, none of the criticisms that we will consider
about this system crosses the limits of this traditional approach. Hence,
later alternative approaches to proof-theoretic semantics can be overlooked
in what follows.

Even though there are some issues with ex falso quodlibet, we can con-
sider part of the received wisdom that traditional unilateral proof-theoretic
semantics leads to the justification of intuitionistic logic.9 On the contrary,

5As suggested in [16].
6To be honest, the situation is far more complex than that. For a recent analysis

of the precise relation between normalization and validity in proof-theoretic semantics,
see [38].

7Inter alia, see [14] for inferentialism and proof-theoretic semantics, and [34] for a
bilateralist analysis of these calculi.

8[36], p. 795.
9See [17] for the problems that proof-theoretic semantics has in defining the meaning

of ⊥, and [1] for the problems encountered in trying to prove that ex falso quodlibet suits
Dummett and Prawitz’s definitions of proof-theoretic validity.
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+A +B
∧I+

+(A ∧B)

+(A ∧B)
∧E+

+A

+(A ∧B)
∧E+

+B

−(A ∧B)

[−A]

...
C

[−B]

...
C

∧E−
C

−A
∧I− −(A ∧B)

−B
∧I− −(A ∧B)

+(A ∨B)

[+A]

...
C

[+B]

...
C

∨E+

C

+A
∨I+

+(A ∧B)

+B
∨I+

+(A ∧B)

−A −B
∨I− −(A ∨B)

−(A ∨B)
∨E−

−A

−(A ∨B)
∨E−

−B

[+A]

...
+B

⊃I+
+(A ⊃ B)

+A −B
⊃I− −(A ⊃ B)

+(A ⊃ B) +A
⊃E+

+B

−(A ⊃ B)
⊃E−

+A

+A
¬I− −(¬A)

−(A ⊃ B)
⊃E−

−B

−A
¬I+

+(¬A)
−(¬A)

¬E−
+A

+(¬A)
¬E+

−A

Figure 1. Operational rules
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while there are some attempts in this direction, there is no clear and uncon-
tended justification of classical logic inside such a unilateral perspective.10

In [36], Rumfitt investigates the possibility of justifying classical logic
by focusing on a bilateral reformulation of natural deduction. He uses +A
to mean that A is asserted and −A to mean that A is rejected, and proposes
a system consisting of two kinds of rules:

Operational Rules: rules governing the introduction or elimination of
connectives inside propositions prefixed by a sing + or by a sign −;

Coordination Principles: principles dealing with propositions prefixed
by a sing + or by a sign − regardless of their logical structure.

In Figure 1 the Operational Rules endorsed by Rumfitt are displayed.11

In Figure 2 two alternative sets of Coordination Principles for a bilateral
classical system are displayed: the three on the top (the two rules of Re-
ductio and the rule of Non-Contradiction) or the two on the bottom (the
two rules of Smiley).12 We will work mostly with the system composed of
the Operational Rules together with the two Smiley, but sometimes we will
consider Reductio and Non-Contradiction as well.

Rumfitt explicitly endorses a criterion of harmony based on normal-
ization for the acceptability of the Operational Rules, but has to provide
new criteria for the Coordination Principles. Indeed, being developed in
a unilateral framework, proof-theoretic semantics deals traditionally only
with Operational Rules and gives criteria only for the acceptability of such
rules. Rumfitt proposes different criteria for the Coordination Principles,
which nonetheless have been proved to be untenable.13 At the beginning

10An anonymous referee suggests that Sandqvist’s semantics for classical logic in
[37] counts as such an uncontended justification. I thank them for this suggestion.
Sandqvist’s result is surely thought-provoking for proof-theoretic semantics and uncon-
tested as a formal result, leaving aside some formal issues regarding disjunction and
existential quantifier. Anyway, it develops a notion of validity that is very different from
the one based on harmony, as remarked also in [26]. What I mean here is that there
are no uncontroversial justifications of classical logic inside the specific flavour of proof-
theoretic semantics that relies on harmony and normalization, and to which Rumfitt’s
work belongs, even though there are some attempts in this direction: [22], [32] and [25]
inter alia.

11[36], pp. 800–802.
12[36], p. 804.
13[9] and [18], p. 635.
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of our investigation, it will just be enough to focus on harmony for Oper-
ational Rules and leave open the issue of Coordination Principles. Later
on, the problem of providing a working criterion for Coordination Princi-
ples will become central and we will see that a common criterion for both
Operational Rules and Coordination Principles can be found.

Before moving to more technical topics, let us discuss a conceptual dif-
ficulty about bilateral systems, since (apart from its intrinsic interest) it
will become relevant later on. Kürbis has shown (see the contribution to
this volume) that the interpretation of + and − as speech acts is untenable,
and has proposed a proof-and-refutation route to bilateralism, as opposed
to an assertion-and-rejection one. In a nutshell, his argument is the fol-
lowing: since asserting, denying, and making an assumption are all speech
acts, and speech acts cannot be iterated (as an example, in Rumfitt’s vo-
cabulary the expression + + p is forbidden), then Rumfitt cannot adopt
assumptions in his system.14 While I find his objection well-defended and
convincing, in this paper I will focus on what seems to me an orthogonal
issue. I will just treat + and − as two modalities, without discussing their
nature, and try to address some well-known problems of this system.15

What will come out are considerations coherent with Kürbis’ objection,
but independent from it.16

The structure of the article is the following. In section 2 we will deal
with the first objection regarding bilateral systems in proof-theoretic se-
mantics. In particular, in subsection 2.1 we will display the problem and
argue the need for a formal solution, in subsection 2.2 we will propose our

14An early exposition of this argument can be found in [19]. An anonymous ref-
eree asks whether Hjortland’s bilateral sequent system in [15] escapes Kürbis’ objection.
Even though it is an interesting observation, I have some reservations about such a
solution. Indeed, while sequent calculi are formalized without assumptions, their infer-
ential interpretation considers formulae in the antecedent as open assumptions, and this
speaks against the referee’s proposal. Moreover, see note 7 for inferentialism and sequent
calculi.

15These modalities are reminiscent of Wittgenstein’s reading of negation (see [31],
pp. 178–182 and [21] pp. 60–61), even though in Rumfitt’s system they are endorsed
not in place of negation, but alongside it.

16An anonymous referee objected that modalities can be nested, while this is forbid-
den for + and −. I agree that this restriction is quite peculiar. Anyway, when I say
that + and − should be treated as modalities, I mean that they should undergo the
same scrutiny of the rest of the language and, first of all, be considered for harmony and
separability. The restriction on their occurrence only as outermost terms can maybe
undermine their reading as simple modalities, but not this point.
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[+A]

...
⊥

Reductio −A

+A −A
Non-Contradiction ⊥

[−A]

...
⊥

Reductio
+A

[+A]

...
+B

[+A]

...
−B

Smiley
−A

[−A]

...
+B

[−A]

...
−B

Smiley
+A

Figure 2. Coordination principles

solution, and in subsection 2.3 we will discuss some consequences regarding
separability. In section 3 we will deal with the second objection. In partic-
ular, in subsection 3.1 we will display the problem and evaluate a formal
solution present in the recent literature, and in subsection 3.2 we will ex-
tend the proposal developed in subsection 2.2 so to cover this objection as
well. In section 4 we will develop a comparison between our proposal and
the other alternatives present in the literature. In section 5 we will sum up
and conclude.

2. Tonk in bilateral systems

2.1. Gabbay’s reduction for tonk

Prior’s connective tonk

A
tonkI

A tonk B
A tonk B

tonkE
B

is the most famous example of pathological connective in proof-theoretic
semantics.17 It was presented as an objection to an early version of infer-
entialism proposed by Popper and Kneale, which adopted a completely de-
scriptive approach toward rules: no restrictions were imposed for the rules
to attach meaning to the logical constants. One of the features of norma-
tive approaches to inferentialism like proof-theoretic semantics, which on

17[30].
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the countrary impose criteria for the acceptability of rules, should be that
they exclude pathological connectives like tonk. Indeed, it can be observed
that unilateral proof-theoretic semantics excludes tonk, on the ground that
it leads to non-reducible maximal formulae: the only derivation of B from
A pass through an application of tonkI followed immediately by an appli-
cation of tonkE.

The first objection to bilateralism that we will consider focuses precisely
on the behavior of tonk inside this framework. Michael Gabbay points
out that, as opposed to standard unilateral systems, in Rumfitt’s bilateral
system the rules for tonk cannot be excluded by the usual criterion of
harmony.18 Of course, in order to comply with bilateralism, tonk-rules have
to be modified to work with assertions and rejections, but this step does not
pose any problem: we just add + to both the premise and the conclusion
of each tonk-rule. The problem emerges when we observe that the usual
maximal formula obtained for tonk can now be “reduced” by inserting
some applications of Coordination Principles between the conclusion of the
I-rule and the assumption of the E-rule.

+A
tonkI

+(A tonk B)
tonkE

+B

⇝ +A
tonkI

+(A tonk B)

[+(A tonk B)]
1

tonkE
+B [−B]

2

Smiley,1
−(A tonk B)

Smiley,2
+B

Even though this “reduction” manages to derive B from A without
passing through maximal formulae, Francez argues that the second deriva-
tion does not qualify as a real reduction of the first, because it does not
avoid the need to introduce and then to eliminate a tonk-formula, but just
spreads it out in the derivation.19 In this way, the detour is still there,
although it is not in plain view.

While I agree with Francez in his evaluation that this should not count
as a proper reduction, I believe that he misinterpreted Gabbay’s intentions.
Indeed Gabbay never claims that what he proposes is a valid reduction, but
just points out that there is no formal criterion that detects a maximal
formula in the derivation on the right. In other words, since according to
Francez the derivation on the right does not qualify as in normal form, it
should qualify as containing a maximal formula. Nonetheless, the standard

18[13].
19[12], section 5.
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definition of such a notion is useless for this purpose, and the observation
that the detour on the left is just “spread out” in the derivation on the
right is just an intuitive observation, which cannot do the work of a formal
criterion. As a consequence, in the bilateral systems we should take care
also of these hidden detours (or fake normal derivations) by providing a
formal criterion for them. When this is done, the reduction procedure can
be evaluated and, if necessary, updated. I am not sure whether this is the
original objection planned by Gabbay or a reformulation of it, but what is
important is that there seems to be no answer to it in Francez’s paper.

It can be seen that something similar happens when we have disjunc-
tion in a natural deduction system and we are forced to consider maximal
sequences in addition to maximal formulae in defining normal form. If we
do not define maximal sequences, then we could eventually use ∨-rules to
“reduce” some maximal formulae, by moving an application of ∨E between
the I and the E-rule in the following way:20

A ∨B

[A]

...
C⊕I
D⊕E
E

[B]

...
C⊕I
D⊕E
E∨E

E

⇝
A ∨B

[A]

...
C⊕I
D

[B]

...
C⊕I
D∨E

D⊕E
E

This move is available both in “normal” unilateral systems and in bilateral
ones, before the definition of maximal sequences, and mirrors Gabbay’s
objection that tonk-formulae are reducible in bilateral systems.

Admittedly, this fake reduction procedure cannot be applied to every
maximal formula, since it asks for a very specific position of the maximal
formula in relation to an application of ∨E. As a consequence, it cannot
be used to argue for the harmony of the tonk-rules, or in general of rules
that generate irreducible maximal formulae. Indeed, if in general a pair of
rules gives rise to non-reducible maximal formulae, even accepting this fake
reduction, the vast majority of maximal formulae would remain without
reduction. Nonetheless, when we have rules with particularly restrictive

20We will use ⊕ and ⊖ for generic logical constant.



Bilateral Rules as Complex Rules 339

side conditions, this “reduction” could be sufficient to argue for their har-
mony. As an example, let us consider what happens if we add to tonkI the
following conditions of applicability:

• the conclusion of tonkI or the conclusion of the rule that is applied
immediately after tonkI must be one of the minor premises of ∨E;

• an identical application of tonkI and, eventually, of the other rule
occurring immediately after must conclude also the sub-derivation of
the other premise of ∨E.21

These odd clauses entail that the only acceptable applications of tonk-rules
that generate maximal formulae have the form

A ∨B

[A]

...
C

tonkI
C tonkD

tonkE
D

[B]

...
C

tonkI
C tonkD

tonkE
D∨E

D

But this is precisely the maximality that can be reduced if we do not
consider maximal sequences alongside maximal formulae. So, the exclusion
of this weakened version of tonk requires maximal sequences.

The situation here clearly resembles Gabbay’s objection because, with-
out a generalization of maximality that includes maximal sequences, we are
forced to conclude that all maximal formulae generated by these weakened
tonk-rules can be reduced according to the pattern that we already saw:
by moving ∨E between tonkI and tonkE. Hence, without the definition of
maximal sequences it seems that we need to accept this weakened refor-
mulation of the tonk-rules. However, some of these “reducible” derivations
prove blatantly unacceptable consequences, such as:

21The extra clause that the major premise of ∨E is an assumption (open or closed)
may be added in order to prevent problems for the reduction of maximal formulae of
disjunctive form.
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A ∨A

[A]
tonkI

A tonk B
tonkE

B

[A]
tonkI

A tonk B
tonkE

B∨E
B

Of course, the solution here is just to extend the characterization of
maximality so as to covermaximal sequences as well. This leads to rejecting
the alleged reduction, because the derivation on the right is not in normal
form and it even contains amaximal sequence longer than the one contained
in the derivation on the left.22 In the same way, the rejection of Gabbay’s
proposed reduction should be grounded on an extension of maximality.
Unfortunately, such an explicit generalization is missing in Francez’s paper,
so we can not see his answer as satisfactory. In the following sections, we
will search for a generalization of maximality that deals with Gabbay’s
objection.

2.2. Complex maximality

My proposal is to apply to Gabbay’s provocatory reduction a generaliza-
tion of maximality developed by Milne in order to justify classical logic in
traditional unilateral proof-theoretic semantics.

Dummett defined the following notions regarding the structure of an
I-rule:23

Purity Only one logical constant figures in each rule;

Simplicity Every logical constant which occurs in a rule, occurs as prin-
cipal operator;

Directness Discharged assumptions are completely general, rules do not
specify some connectives that must occur in them.

The I-rules of Gentzen’s system NJ suit all these properties, apart from
¬I, which is not pure since ⊥ occurs in it. Moreover, Dummett proposes a
pure, even though oblique (that is, non-direct), rule for negation, so that

22Of course, this is not the whole story about maximal sequences, which must be
considered to prove normalization, regardless of these fake reductions. See [27].

23[6], p. 257.
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at least purity and simplicity can be obtained for the complete unilateral
system for intuitionistic logic.24

Nevertheless, while all these properties are clearly desiderata for an I-
rule, not least for feasibility reasons, it is far from clear that they should
be required as necessary conditions. Indeed, as we have just seen, in each
system for intuitionistic logic at least one of them fails and even Dummett
pointed out that they together constituted an “exorbitant” demand.25 De-
spise this early and authoritative declaration, there are quite few attempts
to generalize proof-theoretic semantics by allowing for impure and complex
(non-simple) rules.26 The first real attempt of including complex rules in
proof-theoretic semantics is [22], in which the author gives a harmonious
and, to some extent, separable unilateral system for classical logic.27

Milne proposes the following impure and complex rules for classical
conditional and classical negation:28

[A]

...

B{∨D}
⊃IMln

(A ⊃ B){∨D}

[A]

...
D¬IMln ¬A ∨D

Here, the meaning of curly brackets is that the formula between them may
either be or not be present, the rule remaining valid anyway. In other
words, Milne’s rules can introduce ⊃ both as the principal connective of a
formula and inside a disjunction, depending on the premise.

24The rule (displayed in [7], p. 89) is

[A]

.

..

B

[A]

.

..

¬B
¬A

. Read shows why obliquity, in

this case, is not a problem by pointing out that all derivations containing applications
of this rule can be modified so as to ensure that, for each of these applications, the
discharged hypotheses are always less complex than the conclusion (and so the rule
follows Dummett’s complexity condition). See [33] for a complete analysis.

25[6], p. 257.
26Having worked on this subject, I strongly suspect that the main reasons are not

ideological, but rather practical: trying to prove something about or in a system with
complex rules can be very frustrating!

27I have pushed further some of Milne’s intuitions in [2], which nonetheless lacks
much of the elegance of Milne’s work.

28[22], p. 514.
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The adoption of these complex rules comes with the need to revise
the definition of maximal formula. Indeed, when ⊃ and ¬ are introduced
inside a disjunction, they cannot be directly eliminated. There need to be
an application of ∨E that enables such an elimination. As a consequence,
in the following derivation (A ⊃ B) ∨ C counts as a maximal formula:

[A]1

...
D1

B ∨ C ⊃I, 1
(A ⊃ B) ∨ C

[A ⊃ B]2 A
⊃E

B
...

D2
D

[C]2

...
D3

D
∨E, 2

D

The reduction of such a derivation should remove both I and E-rule for
⊃, possibly maintaining ∨E. Milne proposes the following reduction step:

A
...

D1
B ∨ C

[B]2

...
D2

D

[C]2

...
D3

D ∨E, 2
D

The need for such a revision of maximality can be shown by considering
the following weakened rule for tonk.

A ∨ C
tonkI

(A tonk B) ∨ C
A tonk B

tonkE
B

Since there are no curly brackets, as opposed to Milne’s rule for⊃, the intro-
duction of tonk inside a disjunction is not optional but explicitly required
by the rule. In other words, the premise of tonkI must be a disjunction and
tonk cannot be introduced as the principal connective of the conclusion,
but only inside the disjunction itself.

The complex structure of tonkI does not allow for the construction of
a traditional maximal formula, since it cannot be paired with an imme-
diate application of tonkE. Moreover, tonkI should not count as an I-rule
for disjunction, so that an immediate application of ∨E to its conclusion
does not generate any maximality by itself.29 As a consequence, in or-
der to reject this complex reformulation of tonk we need an extension in

29For some objections to this conclusion, see [39] and [40], p. 345.



Bilateral Rules as Complex Rules 343

the definition of maximal formula which singles out the maximality in the
following derivation of B from A ∨B.

A ∨B
tonkI

(A tonk B) ∨B

[A tonk B]1
tonkE

B [B]1
∨E, 1

B

There seems to be some obvious similarities between this derivation
and the alleged reduction proposed by Gabbay for the bilateral version of
tonk. Indeed, in both cases there is an application of tonkI that is followed
(indirectly) by an application of tonkE, with some applications of extra
rules between them. These extra rules are in both cases rules for the more
external logical constants in the conclusions of the I-rules for tonk: in
Milne’s unilateral case, they are ∨-rules; in Gabbay’s bilateral case, they
are Coordination Principles, that is rules for + and −. Moreover, also
the meaning-theoretical justification of the application of such extra rules
could rely on the same basis in both cases: the dependence of meaning
of classical conditional and negation (and of the complex reformulation of
tonk, of course) upon disjunction in Milne’s system, and the dependence of
meaning of all the connectives (tonk included) upon + and − in Rumfitt’s
bilateral system. Of course, this is just an intuitive analysis of the analogy
between Milne’s complex maximality and Gabbay’s reduction for tonk. To
check whether complex maximality can solve Gabbay’s objection, we need
to take into consideration the formal developments of Milne’s ideas.

Unfortunately, Milne does not propose any formal criterion for his gen-
eralization of maximality, even though he discusses informally the cases
with negation and implication and provides an interesting semantic anal-
ysis for them. However, in a previous work, I have provided a general
definition of maximal formulae in unilateral systems with complex rules,
and I have proved that there are harmonious complex systems for both
intuitionistic and classical logic.30 In the rest of this section, we will see
how this definition can be adapted to bilateral systems, and what follows
from its application in this framework.

30See [2]. To solve an issue about circularity of meaning, in this previous paper I have
worked with single-assumption (and single-conclusion) systems, but I do not want to pose
the same restriction here. Also because circularity of meaning seems to be ineliminable
for bilateral systems, as concluded in section 2.3.
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First of all, the formal definition of dependence of meaning is the ex-
pected one:31

Definition 2.1 (Dependence of Meaning). For every pair of logical terms
⊖ and ⊕, the meaning of ⊕ depends on the meaning of ⊖ (⊖ ≺ ⊕) iff
there is a sequence of logical terms ◦1, . . . , ◦n such that ◦1 = ⊖, ◦n = ⊕
and for every 1 ≤ i < n, ◦i occurs in the premisses or in the discharged
assumptions of an I-rule for ◦i+1.

For example, since ⊥ occurs in ¬I in NJ the meaning of ¬ depends on
that of ⊥, and since ∨ occurs in the premise of ⊃IMln in Milne’s system the
meaning of ⊃ depends on that of ∨. As for Rumfitt’s bilateral system, the
meaning of the connectives depends on that of + and −, since these terms
occur in their I-rules. Moreover, the Coordination Principles characterize
the meaning of + and −, pointing out that each of them depends circularly
on the other one.32 Indeed, we will treat each Coordination Principle as
contemporarily an I-rule for the modality in the conclusion and an E-rule
for the modalities in the premises or in the discharged assumptions.33 In
particular, Reductio introduces one of the modalities in the conclusion,
eliminating the other one, and for this reason it counts as an element of
⊕I+ or ⊕I−, depending on the modality of its conclusion, and an element
of ⊕E+ or ⊕E−, depending on the modality of its discharged assumption.
Moreover, since Non-Contradiction eliminates both modalities, it belongs
to both ⊕E+ and ⊕E−. Hence, since meaning dependence is transitive by
definition, each connective depends on both + and −.

As for Smiley, it surely works as an E-rule for the modality that is not
in the conclusion, and as an I-rule for the modality that is in it. However,
the occurrence of the introduced modality in one of the premises of Smiley
makes inaccurate to characterize it as just an I-rule for it: it rather seems
both an I and an E-rule for the modality in the conclusion. For this reason,
it seems less confusing to use Reductio and Non-Contradiction when dealing
with separability and harmony.

31Notice that meaning-dependence between logical terms is defined on the base of
their occurrence in the rules, not in their applications (that is, in inferences).

32For now, let us take for granted that this is not a problem. See end of section 2.3.
33This interpretation of the logical terms in the discharged assumptions as eliminated

is not uncontroversial. As an example, [23] treats them as introduced connectives, and
so Peirce’s rule and Classical reductio ad absurdum as I-rules.
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To be more precise, the use of Reductio and Non-Contradiction, in place
of Smiley, seems needed to prove that + and − can be characterized with
harmonious rules, that is, to prove that Coordination Principles are in har-
mony with each other. However, given the circular dependence between +
and − and the fact that each Coordination Principle eliminates at least one
of these modalities, the choice between Reductio and Non-Contradiction, or
Smiley is irrelevant to prove harmony and separability of the Operational
Rules, regardless of complex maximality. These aspects will become clearer
after the display of the formal criteria for harmony and separability, in this
and in the following section. In particular, in the proof of Theorem 2.6, we
will use Smiley until we take into account maximal formulae that are the
conclusion of Reductio.

The definition of maximal formulae for complex systems rests on the
notions of elimination path and active logical term in an inference:

Definition 2.2 (Elimination Path (E-path)). Given a derivation D, a list
of formulae A1, . . . , An is an E-path iff for every m such that 1 ≤ m ≤ n,
Am is:

1. the major premise of an E-rule, Am+1 is one of its discharged as-
sumption, and Am does not depend on Am+1 before the discharge;34

or

2. the major premise of an E-rule that does not discharge assumptions,
and Am+1 is its conclusion.35

Definition 2.3 (Active Logical Term in an Inference). An occurrence of
a logical term in a formula A is active in an inference iff the inference is an
application of a rule in which, in the formula exemplified by A, the term
already has the same occurrence.

The first definition is quite simple. An E-path is a list of major premises
of E-rules such that, the next element after such a premise is one of the
discharged assumptions of the rule, if there is one, or its conclusion other-
wise. Sometimes, for brevity we will speak of E-rules of an E-path, to refer

34The last clause about the dependence of Am on Am+1 excludes E-paths that go
from the major premise of an E-rule Am to the discharged assumption that is above
Am. This clause is not needed in [2], because the systems there presented do not contain
E-rules that discharge open assumptions above their major premises.

35We will apply this second clause only for Non-Contradiction, as we will see in the
proof of Theorem 2.6.
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to the E-rules that have formulae of the E-path as major premises. The
second notion is a little tricky, but an example will clarify its definition. In
the derivation

[+B]1
⊃I+

+(A ∧ C) ⊃ B −(A ∧ C) ⊃ B
Smiley, 1

−B

⊃ and + in +(A∧C) ⊃ B are active in the instantiation of ⊃I+, since their
occurrence are already present in the schema of ⊃I+. On the contrary, the
occurrence of ∧ in the same formula is not active, since conjunction does
not occur in the schema of ⊃I+.

With the previous notions at hand, we can give the following definition:

Definition 2.4 (Maximal Formulae). Given a derivation D, a formula
A that occurs in it is a maximal formula iff it is the conclusion of an
application of ⊕I+ (⊕I−) and the first formula of an E-path such that:

1. the last rule of the E-path is ⊕E+ (⊕E−), and the last formula of the
E-path is identical to A;36

2. each rule in the E-path eliminates occurrences of logical terms that
are active in the conclusion of the application of ⊕I, or logical terms
on which those depend.

If the E-path contains only one formula, we say that the maximal formula
is simple. Otherwise, we say that it is complex. Notice that, since Coordi-
nation Principles are considered as I and/or E-rules for the modalities, a
formula that is conclusion of Reductio (which counts as ⊕I+ or ⊕I−) and
premise of Non-Contradiction (which counts as ⊕E+ or ⊕E−) is maximal
according to this definition. Moreover, notice that Reductio can introduce
only simple maximal formulae, not complex ones, since only one logical
term occurs actively in its conclusion, and the E-path can go on only with
an application of Non-Contradiction, which ends the E-path.

Regarding Operational Rules, in each application of an I-rule of Rum-
fitt’s bilateral system, the only logical terms active in the conclusion are
the connective introduced and the modality in which it is introduced (+

36In the unilateral systems presented in [2], the restriction on the form of the last
formula of the E-path is not needed because of the specific form of its E-rules.
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or −). Moreover, the only dependences of meaning are the circular one be-
tween + and −, and the dependence of every connective on at least one of
the modalities (and so indirectly on both of them, for transitivity). Apart
from this, there is no other occurrence of connectives in the I-rules that
establish dependences of meaning. As a consequence, complex maximal
formulae can only be composed of an I-rule for a connective ⊕ inside a
modality, followed by an E-path of Coordination Principles that ends with
⊕E for the same modality. Simple maximal formulae remain the standard
ones individuated by Rumfitt in which an I-rule is immediately followed by
an E-rule for the same connective and the same modality. Let us see some
examples of maximal formulae and some of their properties.

First of all, it is quite clear that according to Definition 2.4 we have a
simple maximal formula for tonk in

+A
tonkI

+(A tonk B)
tonkE

+B

and a complex maximal formula in

+A
tonkI

+(A tonk B)

[+(A tonk B)]
1

tonkE
+B [−B]

2

Smiley, 1
−(A tonk B)

Smiley, 2
+B

Indeed, the conclusion of tonkI starts an E-path, since it is the major
premise of a Smiley. The E-path continues with the occurrence of −B
discharged by this Smiley (see the first clause of the Definition 2.2), and
then with the occurrence of +(A tonk B) discharged by the Smiley that
has −B as premise. This occurrence of +(A tonk B) then ends the E-path,
being the premise of tonkE.

So, our formal criterion of maximality confirms the previous intuition
about the non-normality of Gabbay’s reduction. There is however some-
thing more to say about complex maximality in bilateral systems. What is
peculiar in Rumfitt’s system is that there are complex maximal formulae
for every pair of I and E-rules, such as:
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+A +B
∧I+

+A ∧B

[+A ∧B]1
∧E+

+A [−A]2
Smiley, 1

−A ∧B
Smiley, 2

+A

Moreover, they are all quite easily reducible to traditional simple maximal
formulae. In this case, to:

+A +B
∧I+

+A ∧B
∧E+

+A

It should not come as a surprise that equivalent maximal formulae can
be individuated when Reductio and Non-Contradiction are used in place
of Smiley, such as:

+A +B
∧I+

+A ∧B

[+A ∧B]1
∧E+

+A [−A]2
Non-Contradiction ⊥

Reductio, 1
−A ∧B

Non-Contradiction ⊥
Reductio, 2

+A

Here, the E-path originated with the conclusion of ∧I+ continues with
the ⊥ that is concluded by Non-Contradiction (an E-rule that does not
discharge assumptions, see the second clause of Definition 2.2), then with
−A that is discharged by Reductio, then ⊥ and +A ∧ B, which ends the
E-path. Moreover, also this complex maximal formula reduces to its simple
counterpart.

This general reducibility of the complex maximality to the simple one is
particularly interesting. Indeed, in Rumfitt’s system the generalization of
the definition of maximal formula to include complex cases seems ineffec-
tive – even though justified from a meaning-theoretic point of view –, and
poses just minor problems for normalizability, as we will see. Nonetheless,
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it is the key ingredient to reject Gabbay’s alleged reduction for tonk. On
the contrary, in Milne’s system complex maximality properly extends sim-
ple maximality.37 Indeed, maximal formulae obtained using his complex
version of I-rules for negation and implication are not reducible to maximal
formulae obtained using their simple counterparts, and this is the reason
why they must be addressed independently, as Milne himself does.

In Rumfitt’s system, the reducibility of complex maximal formulae to
simple maximal formulae holds for tonk-rules as well. The difference is
that, while with well-behaving connectives the reduction can then go on
and lead to a normal derivation, simple maximal formulae for tonk are not
reducible, so the reduction has to stop there. Hence, Gabbay is wrong
not only because his alleged reduction for tonk is not in normal form,
but also because the reduction procedure goes in the opposite direction of
what he claims: what he is proposing is not a reduction to a normal form,
but a step backward from a non-normal derivation with a simple maximal
formula to one with a complex maximal formula.

Let us now substantiate the previous intuitive analysis with a formal
treatment of normalization for Rumfitt’s system that deals with complex
maximality. First of all, we will need a formal definition of maximal se-
quence:

Definition 2.5 (Maximal Sequences). Given a derivation D, a list of iden-
tical formulae that occur in it A1, . . . , An is a maximal sequence iff A1 is
the conclusion of an application of ⊕I+ (⊕I−) and the first formula of an
E-path such that:

1. each rule in the E-path eliminates occurrences of logical terms that
are active in the conclusion of the application of ⊕I, or logical terms
on which those depend;

2. if the E-path contains more than one formula, then the last formula
of the E-path is the second formula of the maximal sequence A2, and,
for each 1 < i < n, Ai is a minor premise of an application of ∨E+

or ∧E−;

37This holds for the systems in [2] as well.
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3. if the E-path contains just one formula, then it is the first formula
of the maximal sequence A1, and, for each 1 ≤ i < n, Ai is a minor
premise of an application of ∨E+ or ∧E−;

4. An is the major premise of ⊕E+ (⊕E−).

In summary, the structure of a maximal sequence is the following. It
starts with the conclusion of an I-rule ⊕I. If it is the major premise of
the E-rule ⊕E or the minor premise of ∨E+ or ∧E−, we have a simple
maximal sequence like the usual ones considered by Prawitz. Otherwise,
the conclusion of ⊕I is the first formula of an E-path. In this case, the
last formula of the E-path is the second formula of the maximal sequence
and can be a minor premise of ∨E+ or ∧E−, or the major premise of the
E-rule ⊕E. In the last case, we have a complex maximal formula, which
is a specific case of complex maximal sequence. As usual, a derivation in
which there are no maximal sequences is called in normal form.

Finally, let us prove normalization for this complex reformulation of
maximality:

Theorem 2.6 (Normalization). For every derivation D of the system con-
sisting of Rumfitt’s Operational Rules in table 1 together with both the rules
of Smiley in table 2, or together with both the rules of Reductio and the rule
of Non-Contradiction in the same table, there is a reduction procedure that
leads from D to a derivation D′ in normal form with the same conclusion
of D and the same or less open assumptions.

Proof: The structure of the proof is the following. In the first part, we
will prove the result for the system constructed with the two Smiley as
the only Coordination Principles. Then, we will extend the result to the
system with Reductio and Non-Contradiction in place of Smiley.

First of all, let us see the reduction steps for the complex maximal
sequences. For reasons of space, we will not show the reduction steps for
all of them. In particular, we will focus on the case of positive sequences and
we will assume that the Smiley that starts the E-path discharges positive
formulae. Nonetheless, all the other cases are trivial variations of those
here displayed.
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Let us consider the complex maximal sequence:

[+A]1

...
D1

+B
⊕I+

+C

[+A]1

+C ∨ F [+C]n

[+F ]n+1

...
D2

+C
∨E+, n+1

+C
∨E+ or ∧E−, n+2,...,m

...
D3

+C
⊕E+

+E
Smiley × n− 2, 3,...,n

...
D4 −A

Smiley, 2
−D

...
D5 −C

Smiley, 1
−A

It can be reduced to a complex maximal formula in just one step:

[+A]1

...
D1

+B
⊕I+

+C

[+A]1

[+C]n
⊕E+

+E
Smiley × n− 2, 3,...,n

...
D4 −A

Smiley, 2
−D

...
D5 −C

Smiley, 1
−A

This in turn can be reduced to a simple maximal formula in the following
way:
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[+A]1

[+A]1

...
D1

+B
⊕I+

+C
⊕E+

+E
Smiley × n− 2, 3,...,n

...
D4 −A

Smiley, 1
−A

Notice that no new maximal sequences can be generated. For simple ones
this is obvious. For complex ones, D1 is composed above D2, so from
the last point of Definition 2.2 it follows that no new E-path for complex
maximal sequences is generated. When A is not an open assumption of the
derivation D1, we can drop the last application of Smiley, as done in the ex-
amples already shown for maximal formulae introduced by ∧I+. Of course,
the simple maximal formulae and maximal sequences are reducible, as al-
ready noticed by Rumfitt.38 Hence, for each maximal sequence a reduction
step is available. Let us now prove normalization stricto sensu, that is that
reduction steps can be composed to reduce all maximal sequences, and so
lead to a derivation in normal form.

Our proof of normalization is a development of Prawitz’s normalization
for NJ.39 The definitions of degree and length of a maximal sequence are as
usual. The proof is by induction on ⟨d, l, e⟩, where d is the highest degree of
a maximal sequence in D, l is the sum of the lengths of maximal sequences
in D of degree d, and e is the sum of the lengths of the E-paths of complex
maximal sequences in D of degree d. We assume that ⟨d′, l′, e′⟩ < ⟨d, l, e⟩
iff d′ < d, or d′ = d and l′ < l, or d′ = d, l′ = l and e′ < e.

We prove that, given a derivation D not in normal form with induction
value v = ⟨d, l, e⟩, we can find a derivation D′ with an induction value less
than v of the same conclusion, from the same or fewer assumptions. Let
us choose a maximal sequence α of degree d with the following properties:

38In general, the availability of reduction steps for simple maximal sequences in Rum-
fitt’s bilateral system is a well-established starting point of the discussion about bilat-
eralism. The problem is how to extend this result to obtain at least coherence, and how
to treat Coordination Principles.

39[27], pp. 50–51.
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1. there are no maximal sequences of degree d above α; and

2. if α is a simple maximal sequence, then there are no simple maximal
sequences of degree d that are above or contain the other premises of
the inference of which the last formula of α is premise.40

If the maximal sequence is simple, we apply the standard reduction
steps for Rumfitt’s bilateral system. They clearly reduce d or l, if it is a
simple maximal formula, and l, if it is a simple maximal sequence longer
than one. In both cases, we obtain a derivation D′ with a value of ⟨d, l, e⟩
that is less than v. The reduction steps do not generate any new maximal
sequence of degree d. This is well known for simple maximal sequences and
easy to see for complex maximal sequences as well. As an example, let
us focus on the case of permutative conversions that reduce the length of
simple maximal sequences. If +B∨C (or −B∧C) is major premise of ∨E+

(respectively ∧E−), it does not begin an E-path, sice ∨ (respectively ∧) is
active only in applications of ∨I+ (respectively ∧I−). Hence, even though
there is a change in the derivation of the minor premises of ∨E+ (∧E−), it
cannot generate any new complex maximal sequence.

If the maximal sequence is complex, we apply the reduction steps dis-
played at the beginning of this proof. If the maximal sequence is longer
than two, then the reduction step reduces the value of l. Otherwise, the
reduction step reduces the value of e. In both cases, the value of ⟨d, l, e⟩ is
decreased. As we have already argued in the first part of the proof, no new
maximal sequence is generated by these reduction steps. Hence, the result
follows by induction.

So far, we have considered a system with Smiley as Coordination Prin-
ciple. Let us show that the use of Reductio and Non-Contradiction in
its place does not constitute any problem. First of all, Smiley is clearly
derivable from the other two rules: just derive ⊥ from +B and −B us-
ing Non-Contradiction, and then discharge the open assumption +A (or
−A) to derive −A (or +A) using Reductio. Moreover, as we have seen,
the cyclic dependence of meaning between + and − entails that we can use

40This second clause is required by Prawitz to make permutative conversions effective
in reducing the inductive value of the derivation. Since the reduction procedure for
complex maximal sequences is very different and does not use permutative conversions,
this clause can be dropped for them.
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both Reductio and Non-Contradiction in the E-path of amaximal sequence.
Hence, the occurrences of Smiley in the reductions can be substituted with
occurrences of Reductio and Non-Contradiction without affecting the nor-
malization process. This is the reason why we claimed that for the harmony
of the Operational Rules (and for separability as well), the adoption of Re-
ductio and Non-Contradiction, or Smiley makes no difference.

However, while using Smiley it is not clear how we should address
simple maximality regarding Coordination Principles, that is regar-
ding + and −, with Reductio and Non-Contradiction we clearly have maxi-
mal formulae, when the conclusion of an application of Reductio is premise
of an application of Non-Contradiction. Fortunately, in these cases we can
easily find a reduction, such as:

+A

[+A]1

...
⊥

Reductio, 1
−A

Non-Contradiction ⊥

⇝

+A

...
⊥

Moreover, given a derivation D and chosen a maximal sequence according
to the instruction seen previously, this reduction step clearly reduces the
value of d or l.

The conclusion of an application of Reductio can also be the first for-
mula of a simple maximal sequence that ends with an application of Non-
Contradiction. In this case, a permutative conversion can be provided. As
an example, the derivation

+B ∨ C

[+A]1 [+B]2

...
D1 ⊥

Reductio, 1
−A

[+C]2

...
D2 −A

∨E+, 2 −A +A
Non-Contradiction ⊥

can be reduced to the derivation
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+B ∨ C

[+A]1 [+B]2

...
D1 ⊥

Reductio, 1
−A +A

Non-Con ⊥

[+C]2

...
D2 −A +A

Non-Con ⊥
∨E+, 2⊥

Of course, a similar reduction can be provided also when the maximal se-
quence applies ∧E− instead of ∨E+. In this case as well, given a derivation
D and chosen a maximal sequence according to the instructions seen pre-
viously, the reduction step reduces the value of l.41

As for complex maximal sequences, let me remind the reader that the
conclusion of Reductio cannot be the first formula of an E-path, since there
is only one active logical term in its conclusion. Hence, complex maximality
is not an issue in this case. In conclusion, normalization holds also for the
system composed with Reductio and Non-Contradiction in place of Smiley.

Given Theorem 2.6, it follows that the generalization of the notion of
maximal formula does not exclude the well-behaved system proposed by
Rumfitt. In other words, the complex maximal formulae and maximal se-
quences constructed using Rumfitt’s Operational Rules and Coordination
Principles are all reducible. Moreover, in [2] I have shown that also in uni-
lateral systems this generalization does not exclude well-behaved systems,
but on the contrary extends the class of acceptable systems. As we have
claimed in the introduction, normalization is usually the key ingredient
of any proof-theoretic criterion of harmony that decides the acceptability
for a set of rules, at least in the flavour of proof-theoretic semantics that is
based on Dummett’s and Prawitz’s works – and to which Rumfitt’s bilater-
alism belongs. Hence, since the adoption of complex maximality results in a
proof of normalization for a classical bilateral system, it is compatible with
the standard approach to validity endorsed in proof-theoretic semantics,
and at most extends the class of its valid systems. The only systems ruled

41Notice that the second clause imposed for the selection of the maximal sequence
to be reduced is relevant here, since if there is a maximal sequence of degree d in the
derivation of the right minor premise of ∨E+ the value of l remains unchanged at the end
of the reduction.
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out by this extension of maximality are pathological systems that use com-
plex rules to introduce paradoxical connectives avoiding simple maximal
formulae (such as the introduction of tonk in the scope of the disjunction),
or to fake a reduction process (such as in Gabbay’s case).

2.3. Weak separability

Complex rules, like all impure rules, impose a dependence of meaning be-
tween logical constants. As an example, it is part of the received wisdom
that the meaning of intuitionistic negation depends upon that of ⊥. This
is the semantic counterpart of the occurrence of this constant in the I-rule
for negation, that is of the impurity of ¬I. In the same way, the occurrence
of disjunction in Milne’s rule for the introduction of classical negation and
conditional entails that the meaning of both ⊃ and ¬ depends upon that
of ∨.

For separability, the fact that the meaning of ¬ depends upon that of
⊥ means that in order to prove that C follows logically from Γ the ⊥-rules
(that is ex falso quodlibet) could be needed together with those for ¬, even if
¬ occurs in Γ∪{C} but ⊥ does not.42 A clear example of this phenomenon
is that any derivation of A∧¬A ⊢ C, with C fully general, requires ex falso.
Traditionally, instead of considering the meaning of intuitionistic negation
as depending on that of absurdity, ¬A has been sometimes considered just
a shortening for A ⊃ ⊥. With complex rules, this solution is not viable
and meaning-dependence becomes an incontestable phenomenon of the sys-
tem.43 This leads to revising the traditional definition of separability in
the following way:

Definition 2.7 (Weak Separability). To prove a logical consequence Γ ⊢ C
we only need to use the rules for the logical constants that occur in Γ or
C, together with the rules for the constants on which those depend. That
is, in order to prove a logical consequence Γ ⊢ C, it is enough to use the
rules for the constants ◦1, . . . , ◦n such that for every 1 ≤ i ≤ n:

• ◦i occurs in Γ or C; or

• for some j ≠ i such that 1 ≤ j ≤ n, ◦j occurs in Γ or C and ◦i ≺ ◦j .
42We will use Γ ⊢ C to indicate that C is a logical consequence of Γ.
43Cozzo investigated something similar, even though for non-logical terms: see [3],

pp. 246–250, [4], pp. 32–34 and [5], p. 305. Also Prawitz developed a similar idea for
logical terms, apparently independently of Milne: see [29].
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To see a clear example of why such a weakening of separability is needed,
let us just consider the following proof of the purely implicational classical
theorem usually called Peirce’s law :44

[A]1
∨I

A ∨B⊃I, 1
A ∨ (A ⊃ B)

[(A ⊃ B) ⊃ A]4 [A ⊃ B]2
⊃E

A [A]3
∨E, 2,3

A⊃I, 4
((A ⊃ B) ⊃ A) ⊃ A

Since disjunction does not occur in the conclusion, Peirce’s law is not in-
tuitionistically valid and the only difference between Milne’s classical ⊃I
and intuitionistic ⊃I is the possibility of introducing ⊃ inside a disjunction,
the usage of ∨-rules is obviously needed in the previous derivation. Hence,
Milne’s system does not suit separability, even though it can be shown to
suit weak separability.

Rumfitt claims that his system is separable, but he considers only Op-
erational Rules to show this result. It is far from obvious that separability
holds when we consider + and − as well, asking for example that in or-
der to prove purely assertive consequences (that is, consequences that have
only +-formulae both between the assumptions and as the conclusion) only
rules for assertion are needed. On the contrary, any derivation of the purely
assertive consequence +¬¬A ⊢ +A seems to require an application of rules
for the rejection of ¬-formulae, such as:

+(¬¬A)
¬E+

−(¬A)
¬E−

+A

The generalization of maximality seen in the previous paragraph gives
ground for considering + and− too for separability, since they contribute to
the meaning of the connectives and Coordination Principles can be used to
construct complex maximality. Moreover, Kürbis’ observations about the
problems of interpreting these signs as standing for speech acts suggests
that they should be treated more like modalities and so, arguably, consid-
ered for separability as well.45 Other circumstantial pieces of evidence that

44[22], p. 527.
45We have seen briefly Kürbis’ observations at the end of section 1.
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+ and − should be considered for separability can be provided: changing
Coordination Principles entails a change in the logic,46 some criteria are
needed to balance + and − rules for the same connective.47 Nonetheless,
considering these signs for separability also means adopting a weakened
version of this requirement. Indeed, assertion and rejection are used to
give meaning to all the connectives, and if the Coordination Principles de-
fine the meaning of + and −, it seems obvious that there can only be a
cyclic dependence of meaning of each of them upon the other. Hence, weak
separability for Rumfitt’s bilateral system asks that all logical consequences
are provable using only rules for the connectives that occur in the premises
or in the conclusion of the consequence, signed with the signs that occur in
the consequence, together with Coordination Principles.48 As an example,
if both premises and conclusion of a consequence are signed + and ⊕ occurs
in its premises or in its conclusion, we can use ⊕+-rules and Coordination
Principles, while we should not use ⊕−-rules. With this clarification, we
obtain:

Theorem 2.8 (Weak Separability). Weak separability holds for the system
consisting of Rumfitt’s Operational Rules in table 1 together with both the
rules of Smiley in table 2, or together with both the rules of Reductio and
the rule of Non-Contradiction in the same table.

Proof: The part about the connectives is given by Rumfitt: in order
to prove Γ ⊢ C we need to use only rules for connectives that occur in
Γ∪{C}.49 About + and −, showing that for every connective ⊕, ⊕+-rules
(⊕−-rules) are derivable from ⊕−-rules (⊕+-rules) together with Coordi-
nation Principles is sufficient to establish the result. Indeed, from this
derivability it follows that any application of a ⊕−-rule can be substituted
with an application of the ⊕+-rules and of Coordination Principles. Hence,
it cannot be necessary to use ⊕−-rules to prove that C follows from Γ if
− does not occur neither in the premises nor in the conclusion. The same

46[18]
47We will deal with this issue in section 3.1.
48In his [20], the author asks for the normalization of Reductio followed by E-rules

or Non-Contradiction. In concrete, this means considering Coordination Principles (and
sometimes even Operational Rules, as we will see) as meaning conferring rules for +
and −.

49See [36].
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argument proves that ⊕+-rules are not needed to derive consequences that
regard only rejections.

We will not give a complete proof of the derivability of all the rules of
assertion (rejection) for a connective from the rules of rejection (assertion)
for the same connective together with Coordination Principles, since they
are quite easy. The example of implication will be sufficient to illustrate
the procedure:

• The rule ⊃+I is derived by

[−A ⊃ B]1
⊃E−

+A

...
+B

[−A ⊃ B]1
⊃E−

−B
Smiley, 1

+A ⊃ B

• The rule ⊃+E is derived by

+A ⊃ B

+A [−B]1
⊃I− −A ⊃ B

Smiley, 1
+B

• The rule ⊃−I is derived by

+A [+A ⊃ B]1
⊃E+

+B −B
Smiley, 1

−A ⊃ B
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−A ⊃ B

[−A]2 [+A]1
Smiley

+B
⊃I+, 1

+A ⊃ B
Smiley, 2

+A

• The rule ⊃−E2 is derived by

−A ⊃ B

[+B]1
⊃I+

+A ⊃ B
Smiley, 1

−B

Whether cyclic dependencies of meaning like the one between + and −
are acceptable in logic is at least a controversial issue.50 Here I will not
discuss this issue, which would need a further article in itself, but I will be
satisfied with having pointed at what seems to me the deepest problem of
the bilateral systems.

That bilateral systems have problems with complexity criterion and
non-circularity of meaning-dependence should not come as a surprise. In-
deed, Milne already considered the possibility of reading

[¬A]

...
⊥

Classical Reductio
A

as an I-rule for the atomic formula in the conclusion, and of course the main
obstacle for such a reading is the complexity criterion.51 The same criterion
is still violated if we substitute − to ¬ and add + to the conclusion, so
obtaining the bilateral rule of Reductio. Moreover, it can be observed
that in the bilateral framework the complexity condition is violated less
heavily, since the conclusion of Reductio is not less complex but has the
same complexity of its discharged assumption, but only at the cost of a
violation of the circularity of meaning-dependence between + and −.

50Dummett clearly rejects such a possibility in [6], p. 257. Nonetheless, the same
criticism that has been raised against his complexity criterion could maybe be used
against this non-cyclic requirement.

51[21], p. 59.

• The rule ⊃−E1 is derived by
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3. Bullet and the balance between assertion and
rejection

3.1. Gabbay’s reappraisal of Read’s •

In section 2 we have seen one of the objections raised by Gabbay against
bilateral systems and we have evaluated a possible solution that rests on
a generalization of maximality. Here we will consider another objection
raised in the same paper and evaluate whether a common solution to both
these problems can be found.

While the first objection was a reinterpretation of tonk inside the bilat-
eral framework, the second one is a reinterpretation in the same framework
of Read’s •, an inferentialist version of liar’s paradox.52 Gabbay presents
the following set of rules for this zero-ary connective:

+A −A
•I+ +•

+A −A
•I− −•

+•
•E+

+A
+•

•E+

−A
−•

•E−
+A

−•
•E−

−A

It can be shown that they are harmonious in bilateral systems, since any
maximal formula obtained by pairing an I-rule (for assertion or for rejec-
tion) with the corresponding E-rule can be reduced. They are nonetheless
unacceptable, since they lead any system that is equipped with the stan-
dard Coordination Principles to trivialism:

[+•]1
•E+

+B

[+•]1
•E+

−B
Smiley, 1 −•

•E−
+A

[+•]1
•E+

+B

[+•]1
•E+

−B
Smiley, 1 −•

•E−
−A

Francez proposes a diagnosis of what is wrong with these rules and a for-
mal criterion to exclude them.53 He claims that the problem is not a dishar-
mony between I and E-rules, but a lack of balance between rules for as-
sertion and rules for rejection. According to Francez, bilateralism should

52[32], p. 141. Prawitz’s inferentialist interpretation of Russell’s paradox displays
some similarities with Read’s rules; see [27], p. 95.

53His answer to Gabbay is in [12], but the principle he employs in his reply was
already formulated in his [11].
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endorse a principle of coherence that prohibits the assertion and the re-
jection of the same formula. Technically, in order to assure this principle,
he asks that the rules of rejection be a function of the rules of assertion,
labeling Horizontal Balance this condition. The formal details of this func-
tionality are very complex, and there is no need to go into the details here.
What is important is that, technically speaking, his principle works fine for
this objection (even though not for the one regarding tonk, still raised by
Gabbay).54

There are, however, some more conceptual perplexities that could be
raised. Francez’s requirement of coherence is explicitly inspired by a simi-
lar requirement imposed by Restall, who nonetheless works in a completely
different framework. Restall proposes a meaning-theoretical and inferen-
tialist reading of sequent calculus, and his principle of coherence is just a
reading of the uncontroversial axiom A ⇒ A, which works as starting point
of every sequent calculus. On the contrary, in Rumfitt’s bilateralism, to
endorse coherence means both to exclude the rules of Incoherence

+A
Incoherence −A

−A
Incoherence

+A

from the set of Coordination Principles, and to ask that they are not deriv-
able rules of the system. So in this case there is a positive restriction to be
imposed, which moreover raises both conceptual and formal issues.

The first formal problem is that Horizontal Balance applies only to
Operational Rules and leads to Coherence only if Coordination Principles
behave well. Hence, since Francez poses no restriction on Coordination
Principles, we can only be sure that the rules of Incoherence are not deriv-
able using Operational Rules, as would be the case with Gabbay’s •-rules,
but we cannot prevent their adoption as Coordination Principles or exclude
that they are derivable because of the Coordination Principles. The reason
why Francez seems not to consider this as an issue is that he works with
a predetermined set of Coordination Principles, but this solution seems ad
hoc: it would be clearly preferable to have a criterion for Coordination
Principles as we have for Operational Rules.

The second formal problem is that rejecting the rules of Incoherence by
decree seems to be unjustified, since these rules have nothing wrong per se.
Indeed they lead to trivialism only together with standard Coordination
Principles, while by themselves they “just” establish the interderivability

54The formal details are developed in [10] and in section 4.4.1.7 of [11].
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of +A and −A, leading to maybe unpalatable consequences but neither to
trivialism nor to proof of ⊥. Arguably, this outcome prevents endorsing
Incoherence if we want to preserve the reading of + and − as assertion and
rejection, but the acceptability of a rule in itself, due to inferentialist rea-
sons, should not be mixed with its adequacy to its standard interpretation.
As an example, the issue of inferentialist acceptability of a set of rules for
classical conditional should not be confused with the issue of whether the
conditional we use in everyday arguments has classical properties or not.

In summary, from a formal point of view both issues suggest that,
without a criterion that deals with Coordination Principles as well as Op-
erational Rules, the problems raised by • can only be moved, not solved.
Moreover, also from a purely conceptual point of view the adoption of a
principle of coherence is far from obvious from the perspective of proof-
theoretic semantics. Indeed, Restall’s inferentialism, which inspires Fran-
cez’s solution, explicitly departs from the standard Dummettian antirealist
theory of meaning, which is at the core of proof-theoretic semantics, and
relies on a theory of meaning based on Brandom’s works.55

3.2. The search for a solution

Having dismissed Francez’s analysis of Gabbay’s rules for •, we are in
need of a solution that explains what is wrong with them. It seems to
me that, following the interpretation of bilateralism outlined in section 2
(and especially in subsection 2.2), we can retort a criticism pointed out
by Gabbay himself against Read’s • to Gabbay’s bilateral reformulation of
this zero-ary connective.

Read proposed the following rules for • in a standard unilateral frame-
work

¬••I •
•

[¬•]
...
C•E

C

arguing that they are in harmony with each other, since each maximal
formula obtained from an application of •I immediately followed by •E

55See [34] and [35] inter alia. For a comparison between these two approaches to
inferentialism, see [42] and [41].
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can be removed. Nonetheless, together with standard rules for negation
they supply a closed proof of ⊥:

[•]2
[•]2 [¬•]1

•E, 1 ¬•
¬E ⊥¬I, 2 ¬•

[•]2
[•]2 [¬•]1

•E, 1 ¬•
¬E ⊥¬I, 2 ¬••I •¬E ⊥

A first standard objection to the acceptability of these rules is that they
are not really harmonious, but just suit Inversion Principle. Indeed, even
though each maximal formula can be removed, not for every derivation
this procedure leads to a derivation without maximal formulae, that is to a
normalization of the derivation. As an example, the closed derivation of ⊥
just seen cannot be given in normal form.56 In the original formulation of
proof-theoretic semantics, this objection leads to rejecting the set of rules
that causes the non-normalizability. This is indeed the choice made by
Prawitz when the same issue arises regarding his inferentialist version of
Russell’s paradox.57 Nonetheless, Read rejects this objection, accepting In-
version Principle as the only criterion for harmony. A discussion of Read’s
position regarding harmony and Inversion Principle exceeds the scope of
this article. Nonetheless, it should be noticed that the lack of normaliz-
ability cannot be used as an objection against Gabbay’s bilateral version
of •. Indeed, first of all, only the E-rules of bilateral • are used in the
proof of ⊥ that we have just displayed. Moreover, the reduction step for
a maximal formula obtained via introduction and elimination rules for •
completely erases the occurrence of • itself, as opposed to the reduction
step for the unilateral version of these rules proposed by Read. So, even
taking for granted Prawitz’s requirement of normalizability, it can at most
exclude Read’s •, but not Gabbay’s.

There is anyway another objection to Read’s • that, taken together with
the interpretation of + and − presented in section 2, could be extended to
cover Gabbay’s bilateral version as well. Ironically enough, this objection
is raised by Gabbay himself in the same paper in which he proposes his

56Tranchini shows that the reduction procedure goes in circle: [43], p. 413.
57[27], p. 95.
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bilateral •. Gabbay observes that, even though Read considers it only as an
introduction rule, •I is also an elimination rule for ¬.58 As a consequence,
•I should suit Inversion Principle also qua E-rule for negation. But this is
clearly not the case, since there is no reduction procedure for the maximal
formula ¬• in the derivation:59

[•]
...
⊥¬I ¬••I •

Of course, since Inversion Principle is at least a necessary requirement for
harmony, lacking it •-rules cannot be harmonious.

In the previous section, we have seen that to solve Gabbay’s puzzle re-
garding the reduction of tonk-formulae we have to consider bilateral Oper-
ational Rules as if they were complex rules introducing or eliminating their
connectives in the scope of + and −, and to extend the notion of maximal
formulae accordingly. We have also seen that according to this interpreta-
tion the meaning of the logical constants depends on those of + and −, and
that this dependence of meaning requires both a weakening of separability
and considering Coordination Principles as meaning-determining rules for
+ and −.

Given this reinterpretation of what goes on in bilateralism, Gabbay’s
objection against Read’s •-rules can be retorted against his own •-rules.
Indeed, following his argument, •I+ and •E− count also as E-rules for −,
•I− and •E+ also as E-rules for +, •E+ also as an I-rule for −, and •E−

also as an I-rule for +. This entails that Gabbay’s rules are not really
harmonious if considered together with standard Coordination Principles.
Indeed, for example, the derivation

+•
•E+

−A +A−E ⊥
cannot be reduced, as •E+ intended qua I-rule for − would on the contrary
require.

58[13], p. S113.
59Peter Milne claimed that •-rules do not suit Inversion Principle already in his [23],

but gives only an indirect argument for such a conclusion.
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This line of reasoning makes the unacceptability of • rely on the avail-
ability of the standard Coordination Principles. Indeed, their disharmony
holds only in relation to this or other sets of Coordination Principles, and
not in itself. Far from being a problem, it seems to me that, since Co-
ordination Principles are needed to obtain ⊥ from the rules for •, it is
plausible that they should be excluded by our criterion only when these
Principles are present. Moreover, this feature could work as a solution to
the problems that we saw at the end of subsection 3.1 regarding the rules
of Incoherence and Francez’s proposal of a Horizontal Balance between
rules for assertion and rules for rejection. Our main reservations against
Francez’s criterion and the exclusion of the rules of Incoherence were that:

1. the rules of Incoherence lead to triviality only if endorsed together
with some sets of Coordination Principles;

2. Horizontal Balance cannot be applied to Coordination Principles;

3. when applied to Operational Rules, it does not take into consideration
the Coordination Principles, which are nonetheless needed to obtain
triviality of the system.

Let us now check how our proposal could deal with them, and whether the
involvement of Coordination Principles in our solution could be of some
use.

About the first point, such as bilateral rules for • are evaluated in
combination with Coordination Principles, the same can be done for the
rules of Incoherence. Also in this case, an example of irreducible maximality
can be displayed. Indeed, in the derivation

+A
Incoherence −A +A

Non-Contradiction ⊥

Incoherence works as an I-rule for − and Non-Contradiction as an E-rule
for the same term, and so −A is a maximal formula for which no reduction
is available. As a consequence, Incoherence is excluded by our criterion,



Bilateral Rules as Complex Rules 367

but not for itself; only on the background assumption of the standard Co-
ordination Principles.60 Since Incoherence is a Coordination Principle and
it is not excluded by ad hoc decisions but because of a general criterion,
this observation answers both point 1 and point 2. As for the third point,
it clearly does not hold for our criterion, since the evaluation of the Opera-
tional Rules for • leads to a rejection explicitly because of the Coordination
Principles, so our proposal seems to solve all the open issues seen in the
previous section.

Nevertheless, someone could object that we are posing a too strong re-
striction on the Operational Rules by asking that they cohere also with
Coordination Principles when considered as I or E-rules for + and −. In-
deed, if ¬I+ is also an I-rule for + and ⊃E− is also an E-rule for +, they
form together the following maximality, which is irreducible:

−A
+I

+(¬A) −B
+E

−(¬A ⊃ B)

So, we are in danger of proving that Rumfitt’s system is not in harmony
and throwing away the baby with the dirty water.

Nonetheless, we should not be too hasty in abandoning our alleged
solution. Indeed, it should be taken into account that Gabbay’s rules for •
extend the logical consequences regarding only + and −, since they make
provable +A ⊣⊢ −A, while Rumfitt’s rules for negation and implication do
not. Of course they extend the provable results regarding ¬, ⊃, + and −,
but not the consequences regarding only these last two terms. The rules
for negation and those for implication constitute, in more formal terms, a
conservative extension of the system composed of only the Coordination
Principles. As a consequence, there is ground to claim that while Gabbay’s
rules for • work also as I and E-rules for + and −, this is not true for
the rules of negation and implication. The intuitive principle that we are

60An anonymous referee asks whether there are some formal reasons to drop Inco-
herence instead of Non-Contradiction. It seems to me that the only reasons for this
choice regard the intended meaning of + and −, and that there are no formal reasons to
dismiss Incoherence in a context in which the other Coordination Principles are absent.
The situation here resembles the one evaluated by Dummett about harmonious rules
that are nonetheless unacceptable, if proposed to capture the meaning of counterfactual
conditional. In other words, harmony can be enough for the formal acceptability of a
rule, but not for its adequacy with respect to actual usage. See [6], p. 206. [33] as well
proposes harmony as just a precondition for validity.
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applying here is the same that we implicitly relied on when we, contra
Steinberger, rejected to Milne’s I-rules for classical negation and conditional
the status of I-rules for disjunction.61 In conclusion, even though some
technicalities are needed, our criterion can exclude bilateral •, bilateral
tonk and the rule of Incoherence, without at the same time excluding the
well-behaving part of Rumfitt’s system.62

4. Comparison with other proposals

We have already seen that our proposal of treating bilateral rules as com-
plex has some advantages over Francez’s proposal of a principle of Horizon-
tal Balance. Indeed, using this approach we have provided both a solution
to Gabbay’s puzzle of the ‘reduction’ for tonk-rules, and a criterion for
Coordination Principles. Nonetheless, it must be admitted that Francez’s
criterion is much more elegant than mine, since the adoption of complex
rules entails a great complication both in constructing the proofs inside the
system, and in proving metatheorems about the system itself.

There is nonetheless another, more recent proposal that we have con-
sidered only in passing, and that we should compare with our analysis.
In a recent paper, Kürbis has proposed a normalization procedure for a
variation of Rumfitt’s system.63 What is peculiar about his work is that
he has taken into consideration Coordination Principles as well, asking for
the reduction of maximal formulae obtained: with only Operational Rules,
with only Coordination Principles, and with both Operational Rules and
Coordination Principles.

61See section 2.2. The same principle is applied also in my work about complex rules
in unilateral systems; see [2], p. 1043.

62A referee wonders whether ¬I+ could be considered an I-rule for ¬ and + together,
instead of an I-rule for both of them taken separately. I thank them for this suggestion.
I share their feeling about this interpretation of ¬I+. Anyway, there are some difficulties,
and this reinterpretation cannot be seen as a general solution to the apparent maximality
between Operation Rules and Coordination Principles. Indeed, in order to keep our
rejection of Gabbay’s •, we need to interpret •E+ as an I-rule for −. Moreover, even
rejecting to ¬I+ its status of I-rule for +, on the basis that it introduces positive formulae
only if their most external connective is ¬, it is hard to do the same for ⊃E−. Indeed,
just like for •E+, the only logical term occurring in the conclusion of ⊃E− is +. So,
in order to reject Gabbay’s • but keep the ordinary rules for the logical connectives,
a criterion relying on conservative extension seems needed anyway.

63[20]; a strengthening of Kürbis’ result has been proposed by Pedro del Valle-Inclan
in his contribution to this conference.
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While there are some similarities between Kürbis’ approach and mine,
they should not be confused with each other. Confronting the requirements
of these two criteria in general would take too long, so we will instead
analyze how they behave in some relevant situations, focusing on a variation
of Gabbay’s rules for • presented by Kürbis himself: two binary connectives
that he calls conk and honk and that, like •-rules, are harmonious but leads
to triviality.64 Of course, Kürbis’ revision of harmony is expressly designed
to exclude these connectives, so the issue is whether our criterion can do
the same.

Let us start by considering the rules for honk:

−A +B
honkI+

+Ahonk B
+Ahonk B

honkE+
1 −A

+Ahonk B
honkE+

2 +B

+A −B
honkI− −Ahonk B

−Ahonk B
honkE−

1 +A
−Ahonk B

honkE−
2 −B

Our criterion excludes honk in the same way in which it excludes •, that is
honkE+

1 can be read also as an I-rule for − and honkE−
1 also as an I-rule for

+. Interpreted in this way, they do not suit harmony with respect to the
other Coordination Principles. The other honk-rules are harmonious and
so we could propose an amended version of honk composed of solely honkI,
honkE+

2 and honkE−
2 , which indeed does not lead to triviality. So, at least

for this first connective, our criterion can be used in place of Kürbis’ one.
The rules for conk are similar to those for honk, but with a relevant

difference: all rules have the same modality both in the premise and in the
conclusion.

+A +B
conkI+

+Aconk B
+Aconk B

conkE+

+A
+Aconk B

conkE+

+B

−A −B
conkI− −Aconk B

−Aconk B
conkE−

−A
−Aconk B

conkE−
−B

This being the case, it is plain that we cannot exclude conk by applying
the same strategy seen for •. Indeed, none of conk-rules can be interpreted
as introducing or eliminating + or −. On the contrary, Kürbis’ criterion
excludes this connective as well, and so we have to admit the incompleteness
of our criterion.

64[20], pp. 537–538.
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Moreover, even though Kürbis never explicitly states this, his criterion
excludes also Gabbay’s alleged reduction for tonk, which we have seen in
section 2. Indeed, in Gabbay’s reduction of a tonk-maximality

+A
tonkI

+(A tonk B)

[+(A tonk B)]
1

tonkE
+B [−B]

2

Non-Contradiction ⊥
Reductio1 −(A tonk B)

Non-Contradiction ⊥
Reductio2

+B

the occurrence of −AtonkB immediately after ⊥ is a maximal formula
according to the definition given by Kürbis, since it is the conclusion
of an application of Reductio and a premise of an application of Non-
Contradiction.65 Hence, Kürbis’ extension of maximality can be used in
place of our proposal in order to solve this puzzle.

We can nonetheless strike a blow for our criterion. Indeed, even though
our proposal has problems to exclude conk, it seems an open issue whether
Kürbis’ criterion can exclude Gabbay’s rules for •, which are on the con-
trary excluded by our criterion.66 Surely, it is possible to proof both +•
and −• using derivations that are normal according to Kürbis definition,
as displayed in:

[+•]1
•E+

+B

[+•]1
•E+

−B
Non-Contr ⊥

Red 1 −•

[−•]1
•E+

+B

[−•]1
•E+

−B
Non-Contr ⊥

Red 1 +•

Admittedly, in order to go a step further and obtain triviality, we need an
application of an E-rule for •, which would lead to maximality according
to Kürbis’ definition. Nonetheless, the availability of normal closed proofs
for both +• and −• suggests at least that some more careful reflection is
needed regarding these requirements.

65The occurrence of +(AtonkB) on the left branch should not be maximal, since the
other premise of Non-Contradiction is not a conclusion of an I-rule. Moreover, notice
that according to our Definition 2.4, −(A tonkB) is a simple maximal formula like for
Kürbis, and +(AtonkB) is a complex maximal formula.

66Kürbis seems to be aware of this lack, see [20], p. 539 note 5.
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In conclusion, both criteria seem unable to exclude at least one clearly
pathological set of rules, with no clear solution on the horizon: my proposal
being unable to exclude conk and Kürbis’ proposal having at least some
trouble to exclude bilateral •. Even though the objections that could be
raised against my criterion are more serious than the ones raised against
Kürbis’, there seems to be enough ground to argue that neither of them is
the full story. Maybe a more in-depth comparison between the proposals
could lead to a deeper understanding of what is still lacking in the picture,
but such a comparison would require a further paper of its own.

5. Conclusion

We have opened this article with a brief introduction about the devel-
opment of bilateral systems in proof-theoretic semantics, focusing on the
difficulty of individuating a clear criterion of acceptability for Coordina-
tion Principles. Then we have moved to two major objections raised by
Gabbay against bilateral systems: an alleged reduction procedure for tonk
and the availability of paradoxical but harmonious rules for a bilateral re-
formulation of Read’s •.

First of all, in Section 2 we have focused on tonk, arguing that an ex-
tension in the definition of maximal formulae is needed in order to reject
Gabbay’s reduction. We have found such an extension by applying to bilat-
eralism some ideas taken from Milne’s work on complex rules. Nonetheless,
this solution has forced us to consider + and − as well for separability and
so to skip to a weakened version of this notion, a change that is in line with
Milne’s work. In passing, we have observed that the main problems regard-
ing bilateralism seem to remain: the circular interdependence of meaning
of + and − and the violation of the complexity condition by Coordination
Principles.

Then, in Section 3 we have moved to •, analyzing the solution proposed
by Francez and finding it conceptually unsatisfactory (even though for-
mally unquestionable), the main problem being the lack of a criterion for
Coordination Principles. Hence, we have claimed that some Operational
Rules should be considered as I and E-rules for + and −, together with Co-
ordination Principles. This gives ground for a common criterion for both
Coordination Principles and Operational Rules, which suffices to exclude
• and accept the standard Coordination Principles. The worry that this
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criterion excludes well-behaving Operational Rules as well is dealt with
through a solution that is still in line with Milne’s work.

In the end, in Section 4 we displayed a comparison with other solutions
to the problems of bilateralism present in the literature. In particular, the
comparison with Kürbis’ criterion seems to show that both proposals are
to some extent incomplete, even though Kürbis’ one in a less serious way
than mine, and so that further investigations seem desirable.
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1. Introduction

According to inferentialists the meaning of logical vocabulary is given by
the rules governing its use in inferences. There is nothing more to the
meaning of, for example, disjunction, than the rules governing when to
infer, and what to infer from, certain sentences containing ‘or’. It follows
that one can define a connective by laying down rules that govern it, like
the introduction and elimination rules of natural deduction systems.

Inferentialism faces an objection first posed by Arthur Prior [8]. Con-
sider the binary operator ‘tonk’ defined by the following rules:

A
(tonk I)

A tonk B
A tonk B

(tonk E)
B

By chaining an application of (tonk I) with an application of (tonk
E) one can deduce two arbitrary sentences from each other. According
to Prior, inferentialists have to conclude that any sentence follows from
any other. Inferentialists, on their part, typically reject the assumption
that any set of rules adequately defines a connective. They hold that
there is something wrong with the rules for ‘tonk’, something that makes
it an illegitimate piece of vocabulary. This has given rise to the search for
a criterion to determine which rules are acceptable definitions, a project
which has come to be known, following Dummett [3], as the search for a
criterion of proof-theoretic harmony.

The most common approach to harmony appeals to an intuitive notion
of ‘balance’. A set of introduction and elimination rules is balanced if the
elimination rules are neither too strong nor too weak with respect to the
introductions (and vice versa). The elimination rule for tonk, for instance,
is held to be too strong with respect to its introduction rule. The idea
is that (tonk E) allows one to derive ‘too much’ from ‘A tonk B’, given
what (tonk I) requires in order to derive such a sentence. Over the years a
host of non-equivalent explications of this intuitive notion of balance have
been put forward (see Steinberger [10] for a brief overview). By and large
they all have something in common: the usual formalisations of classical
logic come out disharmonious. Thus, or so it is argued, inferentialism is
incompatible with classical logic.

Ian Rumfitt [9] has argued that bilateralism can solve this incompati-
bility. According to Rumfitt’s bilateralism the speech acts of assertion and
rejection should be taken as primitive, rather than analysed in terms of
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each other. Furthermore, he argues, the meaning of classical connectives
must be given bilaterally, by means of rules governing the assertion and the
rejection of sentences containing them. By stipulating assertive and rejec-
tive rules for each connective, he is able to provide a calculus for classical
logic that satisfies the usual requirements of harmony.

Rumfitt’s position has been recently challenged by del Valle-Inclan and
Schlöder [2]. They argue that bilateral calculi require their own notion of
harmony, distinct from the standard (or ‘unilateral’) ones. Thus, although
Rumfitt’s system is harmonious according to criteria fit for unilateral sys-
tems, this is not enough to vindicate classical logic from an inferentialist
point of view. They propose a bilateral criterion of harmony and show,
using a result by Fernando Ferreira [4], that Rumfitt’s system is not har-
monious according to it. To solve the problem, they put forward a new
Rumfitt-style formalisation of classical logic.

The aim of this paper is to explore the relation between del Valle-Inclan
and Schlöder’s criterion of harmony, on the one hand, and normalisation on
the other. I will first show how their harmony criterion suggests a natural
notion of normal form for bilateral calculi. Then, I will show that their
calculus, as well as a closely related one, normalise. Derivations in nor-
mal form have the usual desirable features; the subformula and separation
properties, in particular, can be obtained as corollaries of normalisation.
Finally, I will briefly compare the present notion of normal form with pro-
posals by Nils Kürbis [6] and Marcello D’Agostino, Dov Gabbay, and Sanjay
Modgyl [1].

The paper is structured as follows: Section 2 recaps Rumfitt’s position
and del Valle-Inclan and Schlöder’s criticism. Sections 3 and 4 prove nor-
malisation and corollaries for two (harmonious) bilateral calculi for classical
logic. Section 5 compares the present normalisation results with previous
ones, and Section 6 concludes.

2. Rumfitt, bilateralism and harmony

There are two core tenets to Rumfitt’s bilateralism. The first is that asser-
tion and rejection are distinct, primitive speech acts that serve to express
different attitudes towards propositional content (assent and dissent, re-
spectively). The second is that both assertion and rejection play a role in
our inferential practice. From an inferentialist point of view, it follows that
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to specify the meaning of a connective one must give rules that govern both
the assertion and rejection of sentences containing it. Rumfitt does this by
means of a natural deduction calculus for signed formulae, that is, standard
formulae preceded by force indicators ‘+’ and ‘−’. If A is a propositional
formula, +A is to be interpreted as the assertion of A, and −A as its rejec-
tion; force indicators cannot be iterated or embedded. Rumfitt proposes
the following operational rules for the classical connectives:2

Conjunction:

+A1 +A2
(+∧I)

+A1 ∧A2

+A1 ∧A2
(+∧E)

+Ai

−Ai
(−∧I)

−A1 ∧A2

−A1 ∧A2

[−A1]
1

D1

φ

[−A2]
1

D2

φ
(−∧E)1φ

Disjunction:

+Ai
(+∨I)

+A1 ∨A2

+A1 ∨A2

[+A1]
1

D1

φ

[+A2]
1

D2

φ
(+∨E)1φ

−A1 −A2
(−∨I)

−A1 ∨A2

−A1 ∨A2
(−∨E)

−Ai

Implication:

[+A1]
1

D
+A2

(+ → I)1
+A1 → A2

+A1 → A2 +A1
(+ →E)

A2

2A note about notation: roman letters range over unsigned formulae, greek letters
over signed formulae, brackets indicate discharged assumptions, and both vacuous and
multiple discharges are allowed. When there are two formulae separated by ‘/’ below the
horizontal line, as in rule (− → E), an application of the rule in question can conclude
either formulae, not both simultaneously (all rules are single-conclusion).



Harmony and Normalisation in Bilateral Logic 381

+A1 −A2
(− →I)

−A1 → A2

−A1 → A2
(− →E)

+A1/−A2

Negation:

−A
(+¬I)

+¬A

+¬A
(+¬E)

−A

+A
(−¬I)

−¬A

−¬A
(−¬E)

+A

In addition to operational rules Rumfitt’s calculus contains coordination
principles. These are rules that govern the interaction between ‘+’ and ‘−’,
rather than specific connectives. They are meant to capture our conven-
tions regarding the assertion and rejection of the same content. Rumfitt’s
coordination principles are (Rejection) and Smilean reductio:

+A −A
(Rejection)

⊥

[+A]1

D
⊥

(SR1)1−A

[−A]1

D
⊥

(SR2)1
+A

The principle of (Rejection) states that the assertion and rejection of
the same content are incompatible.3 The two halves of Smilean reductio
state (respectively) that if the assertion of a formula leads to absurdity
one may reject it, and if the rejection of a formula leads to absurdity,
then one may assert it. On top of this, Smilean reductio also encodes a
form of explosion, through the vacuous discharge of assumptions. A more
perspicuous representation of Rumfitt’s commitments about the interplay
between assertion and rejection can be given by the following coordination
principles of Explosion and Bilateral Excluded Middle:

+A −A
(ex)φ

[+A]1

D1

φ

[−A]1

D2

φ
(bem)1φ

3Note that Rumfitt, following Tennant [11], takes ‘⊥’ as a punctuation sign indicat-
ing a logical dead end. It is not a sentence, and therefore cannot be signed, embedded
in formulae, or appear as a topmost node in derivations.
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It is routine to check that:

Remark 2.1. (Rejection), (SR1) and (SR2) are derivable from (ex) and
(bem) and vice versa.

Rumfitt’s operational rules satisfy all the standard criteria of harmony,
and it is intuitively clear why this should be so. Take the rules for negation:
in order to apply (+¬ I) one needs to derive a sentence of the form −A,
which is exactly what one gets from an application of (+¬ E). Similarly,
in order to apply (−¬ I) one needs to derive a sentence of the form +A,
which is precisely what an application of (+¬ E) yields. In other words,
its operational rules of the same sign are inverses of each other. Something
similar, of course, applies to the other connectives.

Del Valle-Inclan and Schlöder [2] argue that Rumfitt-style bilateral cal-
culi call for a more demanding notion of harmony. In unilateral natural
deduction what one can do with a connective is determined by operational
rules alone; the relation between operational rules, then, is all that uni-
lateral harmony needs to take into account. In bilateral calculi, however,
coordination principles permit further inferential steps. And crucially, this
means that connectives whose operational rules are balanced according
to all the usual standards can become tonk-like when they interact with
coordination principles. They give the following connective ‘bink’ as an
example:

+A −A
(+ bink I)

+binkA
+binkA

(+ bink E1)
+A

+binkA
(+ bink E2)

−A

−A
(− bink I)

−binkA
−binkA

(− bink E)
−A

The assertive introduction and elimination rules of bink are inverses of each
other, and so are its rejective rules. Indeed, bink is harmonious according
to all the usual (unilateral) standards of harmony. If bink interacts with
Smilean reductio, however, it trivialises the calculus it is part of. The
following derivation, for instance, shows that there is a proof of −A for
any A:
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[+binkA]1
(+ bink E1)

+A

[+ binkA]1
(+ bink E2)

−A
⊥

(SR1)1−binkA
(−bink E)

−A

Examples like this show that a bilateral criterion of harmony must take
into consideration both the relation between introduction and elimination
rules, on the one hand, and the relation between operational rules and
coordination principles on the other. Del Valle-Inclan and Schlöder propose
the following criterion of bilateral harmony:

Bilateral harmony: A connective c is bilaterally harmonious
iff (i) (+cI) and (+cE) are unilaterally harmonious; (ii) (−cI)
and (−cE) are unilaterally harmonious; (iii) all coordination
principles are preserved by the rules for c (i.e. when all coor-
dination principles are restricted to atomic sentences, all their
instances for sentences containing c as their main operator are
derivable).

To put it simply: whatever unilateral harmony may be, bilateral har-
mony is that plus preservation of all coordination principles. For further
examples, and a more thorough defence of the criterion, the reader is re-
ferred to [2].

Fernando Ferreira [4] has shown that Rumfitt’s operational rules do not
preserve Smilean reductio. Rumfitt’s system, therefore, is not harmonious.
To solve the problem del Valle Inclan and Schlöder propose slight modi-
fications to the rejective rules for conjunction and the assertive rules for
disjunction. Their rules for rejected conjunctions are:4

[+A]1

D
−B

(−∧I)1−A ∧B
−A ∧B +A

(−∧E)
−B

4These rules for conjunction are also independently discussed in Nils Kürbis’ [5]
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[−A]1

D
+B

(+∨I)1
+A ∨B

+A ∨B −A
(+∨E)

+B

These rules are analogous to the usual rules for the material conditional,
and it is easy to check that they are harmonious according the usual uni-
lateral criteria. In addition, they preserve all the coordination principles
we have considered. More generally, call the set of Rumfitt’s operational
rules with the present modifications B. Then:

Remark 2.2. All the rules in B preserve Smilean reductio, (Rejection), (ex)
and (bem).

Remark 2.2. follows trivially from the normalisation results to be proved
below.

In what follows I will refer to the calculus consisting of B, (SR1), (SR2)
and (Rejection) as HB1, and the calculus consisting of B, (ex) and (bem)
as HB2. It follows from the observation that the modified operational
rules are unilaterally harmonious, combined with Remark 2.2, that HB1

and HB2 are harmonious in del Valle-Inclan and Schlöder’s sense. It is
also routine to check that:

Remark 2.3. HB1 and HB2 are equivalent to Rumfitt’s calculus (i.e. φ is
derivable from Γ in Rumfitt’s calculus iff it is derivable from Γ in HB1 and
HB2).

HB1 and HB2, then, are bilaterally harmonious formalisations of clas-
sical logic. We can finally examine the relation between harmony and
normalisation. I will discuss HB1 first, and deal with HB2 in Section 4.

3. Harmony and normalisation: HB1

All derivations in normal form, according to Dag Prawitz’s original result 
[7], share a central feature: no formula occurrence in them is simultane-
ously the consequence of an introduction rule and the major premise of an 
elimination. This is usually thought to be related to harmony. The idea 
is that if the operational rules of a connective are ‘balanced’, one should 
gain nothing by first introducing and then immediately eliminating a con-

Their rules for asserted disjunctions are:



Harmony and Normalisation in Bilateral Logic 385

a derivation.5 This is the core principle behind normalisation, and so for
normal derivations in HB1 we also require that:

(i) No conclusion of an I-rule is a major premise of an E-rule.

The notion of bilateral harmony proposed by del Valle-Inclan and Schlö-
der suggests a similar principle, this time regarding the interaction between
operational rules and coordination principles. Their idea is that a connec-
tive is ‘balanced’ with respect to a coordination principle if one can lay
down the coordination principle for atoms and prove it for complex sen-
tences. To reflect this at the level of derivations we should, as before,
require that applications of coordination principles to complex formulae
should be eliminable. In other words, that for normal derivations in HB1:

(ii) Coordination principles are applied only to atoms.

Clauses (i) and (ii) are enough to ensure the separation property for
normal derivations. They are not, however, enough to secure the stronger
subformula property, as the following derivation shows:

+p −p
⊥

(SR2)
0

+q

+p −p
⊥

(SR1)
0

−q
⊥

(SR2)
0

+r

The derivation satisfies (i) and (ii), but contains signed formula occur-
rences +q and −q which are subformulae of neither the assumptions nor
the conclusion. This is due to the fact that the form of explosion encoded
by Smilean reductio is used twice, consecutively. To avoid this kind of con-
figuration in normal derivations, and thus ensure the subformula property,
we need only require that:

(iii) No conclusion of Smilean reductio is a premise of (Rejec-
tion).

5This is not the whole story. In the presence of, for example, the usual rules for
disjunction, one can introduce a connective and eliminate it a few steps below in the
derivation, rather than immediately after the introduction. Because of the modified
operational rules of HB1, however, this cannot happen in normal derivations, so we
need not worry about it.

nective. Therefore, it should be possible to eliminate all such steps within
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Putting everything together, we have the following definition.

Definition 3.1. (Normal form)
A derivation in HB1 is in normal form if in it: (i) No conclusion of an
I-rule is a major premise of an E-rule. (ii) Coordination principles are
applied only to atoms. (iii) No conclusion of Smilean reductio is a premise
of (Rejection).

Formula occurrences that infringe clauses (i), (ii) and (iii) are called max-
imal operational formulae, maximal coordination formulae and an-
cillary maximal formulae, respectively.

The rest of this section proves normalisation and corollaries for HB1.
The first step is providing appropriate reduction procedures. Since the
rules for disjunction and conjunction are analogous, I will not explicitly
provide reduction steps involving the latter. It may be useful to keep the
overall normalisation strategy in mind when examining the reduction steps.
Reductions for maximal coordination formulae may create maximal oper-
ational formulae of the same complexity. Reduction steps for maximal
operational formulae, on the other hand, may create new ancillary maxi-
mal formulae only. Finally, reduction steps for atomic ancillary maximal
formulae create no new maximal formulae of any kind. Therefore, the nor-
malisation process reduces maximal coordination formulae first, followed
by maximal operational formulae, and then ancillary maximal formulae.

3.1. Operational reductions

Negation:

D1

−A
(+¬ I)

+¬A
(+¬ E)

−A ⇝
D1

−A

D1

+A
(−¬ I)

−¬A
(−¬ E)

+A ⇝

D1

+A



Harmony and Normalisation in Bilateral Logic 387

Implication:

[+A]1

D1

+B
(+ → I)1

+A→ B

D2

+A
(+ → E)

+B
⇝

D2

+A

D1

+B

D1

+A

D2

−B
(− → I)

−A→ B
(− → E)

+A/−B ⇝

D1/2

+A/−B

Disjunction:

[−A]1

D1

+B
(+∨ I)1

+A ∨B
D2

−A
(+∨ E)

+B ⇝

D2

−A
D1

+B

D1

−A
D2

−B
(−∨ I)

−A ∨B
(−∨ E)

−A/−B ⇝

D1/2

−A/−B

3.2. Reducing (rejection) to atomic applications

Negation:

D1

+¬A
D2

−¬A
(Rej)

⊥ ⇝

D1

+¬A
−A

D2

−¬A
+A

(Rej)
⊥
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Implication:

D1

+A→ B

D2

−A→ B
(Rej)

⊥ ⇝
D1

+A → B

D2

−A → B

+A

+B

D2

−A → B

−B
(Rej)

⊥

Disjunction:

D1

+A ∨B
D2

−A ∨B
(Rej)

⊥ ⇝
D1

+A ∨B

D2

−A ∨B

−A

+B

D2

−A ∨B

−B
(Rej)

⊥

3.3. Reducing Smilean reductio to atomic applications

Negation: (the other case is analogous)

[+¬A]1

D
⊥

(SR1)1−¬A ⇝

[−A]1

+¬A
D
⊥

(SR2)1
+A
−¬A

Implication:

[+A→ B]1

D
⊥

(SR1)1−A→ B ⇝

[+A]1 [−A]2

⊥
(SR2)

0

+B
(+ → I)1

+A→ B

D
⊥

(SR2)
2

+A

[+B]3

+A→ B

D
⊥

(SR1)
3

−B
−A→ B
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[−A→ B]1

D
⊥

(SR2)1
+A→ B

⇝

[+A]1 [−B]2

−A→ B

D
⊥

(SR1)
1

−A [+A]3

⊥
(SR2)

2

+B
(+ → I)3

+A→ B

Disjunction:

[+A ∨B]1

D
⊥

(SR1)1−A ∨B ⇝

[−A]1 [+A]2

⊥
(SR2)0

+B
(+∨ I)1

+A ∨B
D
⊥

(SR2)2−A

[+B]3

+A ∨B
D
⊥

(SR1)3−B
−A ∨B

[−A ∨B]1

D
⊥

(SR2)1
+A ∨B ⇝

[−A]2 [−B]1

−A ∨B
D
⊥

(SR1)
1

+B
(−∨ I)2

+A ∨B

3.4. Ancillary reductions

Ancillary reductions eliminate formulae that are consequences of Smilean
reductio and premises of (Rejection). Because of the way the normalisation
process takes place, we need only give them for atomic formulae. In what
follows, then, α ranges over arbitrary atoms, and α denotes the conjugate
of α.6 There are three cases to consider:

6The conjugate of a signed formula +A is −A and vice versa.
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Case 1: One of the premises of (Rejection) is not the conclusion of Smilean
Reductio. Suppose, without loss of generality, that it is the left one:

D1

α

[α]1

D2

⊥
(SR)1

α
(Rejection)

⊥ ⇝

D1

α
D2

⊥

Note that since α is an atom, this eliminates the ancillary maximal formula
in question whilst introducing no further maximal formulae of any kind.

Case 2: Both premises of (Rejection) are the conclusion of Smilean Re-
ductio, and at least one of the applications of Smilean Reductio discharges
no premises of (Rejection). Suppose, without loss of generality, that the
rightmost application is of this type:

D1

α

[α]1

D2

⊥
(SR)1

α
(Rejection)

⊥ ⇝

D1

α
D2

⊥

Note that again this reduces the number of ancillary maximal formulae and
gives rise to no maximal formulae of any other type.

Case 3: Both premises of (Rejection) are conclusions of Smilean reduc-
tio and discharge some premise of (Rejection).

[α]1
D0

α

⊥
D1

⊥
(SR)1

α
D2

α
(Rejection)

⊥
⇝

D2

α

D0

α
(Rejection)

⊥
D1

⊥
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Suppose we apply this reduction to an ancillary maximal formula such
that there are no ancillary maximal formulae above it or above a formula
side connected with it. In the original derivation there may be further oc-
currences of α with discharge label 1 besides the one explicitly represented
above. We also replace them with a copy of D2 ending in α. Those oc-
currences that were not premises of (Rejection) are unproblematic. Those
that were, on the other hand, become new ancillary maximal formulae of
the same complexity. By assumption, though, they are ancillary maximal
formulae of the type covered in Case 1. We eliminate them as part of
the current reduction step, and as a result the number of ancillary maxi-
mal formulae decreases, and we give rise to no maximal formulae of other
kinds.

3.5. Normalisation and corollaries

Theorem 3.2 (Normalisation). If there is a derivation D of φ from Γ then
there is a normal derivation D′ of φ from Γ′ ⊆ Γ.

Proof: To each derivationD we assign a coordination rank (n,m) ∈ N×N,
where n is the highest complexity of a maximal coordination formula, and
m the number of maximal coordination formulae of maximal complexity.
A derivation without maximal coordination formulae has rank (0, 0), and
coordination ranks are ordered lexicographically. We also assign it an
operational rank (j, k) ∈ N × N defined analogously but with respect to
maximal operational formulae, and order operational ranks with their own
lexicographical order. The following is an effective procedure to normalise
derivations:

1. Take a maximal coordination formula of the highest complexity such
that there are no coordination formulae of the highest complexity
above it or above a formula side-connected with it. Apply the appro-
priate reduction from Sections 3.2 and 3.3. The coordination rank
strictly decreases. Thus, after a finite number of steps, our derivation
has coordination rank (0,0).

2. Take a maximal operational formula of the highest complexity such
that there are no maximal operational formulae of the highest com-
plexity above it or above a formula side-connected with it. Apply
the appropriate reduction from Section 3.1. The operational rank
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strictly decreases, and the coordination rank stays (0, 0). Thus, after
a finite number of steps, our derivation has coordination and opera-
tional ranks (0,0).

3. Take an ancillary maximal formula (note that it must be atomic) such
that that there are no ancillary maximal formulae above it or above a
formula side-connected with it. Apply the appropriate reduction from
Section 3.4. The number of ancillary maximal formulae goes down,
and the coordination and operational ranks stay the same. After a
finite number of steps, the derivation is in normal form.

Definition 3.3. (Branch)
A branch π in a derivation D is a sequence φ1, ..., φn of occurrences of
formulae or of ⊥ such that: (i) φ1 is a leaf (an assumption), discharged
or not. (ii) φi+1 stands immediately below φi. (iii) φn is either the
conclusion of D or the first formula occurrence in the sequence that is
the minor premise of (+ → E), (+∨ E) or (−∧E).

Lemma 3.4. Every formula in a derivation belongs to some branch.

Proof: By induction on derivations.

The following theorem characterises the shape of normal derivations
(see also Remark 3.6 for a comparison with Prawitz’s normal form).

Theorem 3.5 (Shape of normal derivations). Let D be a normal deriva-
tion, π = φ1, ..., φn a branch in it. Then there is a minimum formula φi

dividing π into two (possibly empty) parts, the E part and the I-part, such
that:
(i)Each φj in the E-part (i.e. j < i) is the major premise of an E-rule.
(ii) If i ̸= n then φi is a premise of (Rejection) or an I-rule.
(iii) Each φk in the I-part (i.e. i < k) is a premise of an I-rule, except
φi+1, which may be a premise ⊥ of Smilean reductio.

Proof: Let π = φ1, ..., φn be a branch in a normal derivation D. Then in
π there are a) no applications of an E-rule after an I-rule, b) no applications
of Smilean reductio after an I-rule, c) no applications of (Rejection) after
an I-rule and d) no applications of an E-rule after Smilean reductio. I will
prove a) as an example; b)-d) are proved analogously.

No applications of an E-rule after an I-rule: suppose for a contra-
diction that there are, let φk be the first consequence of an E-rule applied
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after an I-rule, consider φk−1. Since the derivation is normal, φk−1 is not
the consequence of an I-rule. It cannot be the consequence of Smilean re-
ductio or (Rejection) either, as then we couldn’t obtain φk from it through
an E-rule. Thus, φk−1 must be the consequence of an E-rule, contradicting
the assumption that φk was first.

The remainder of the theorem is easy to prove: consider the last rule 
applied in π: if it is an E-rule, let φi = φn. If it is Smilean reductio, let 
φi = φn−2. If it is (Rejection), let φi = φ1. Finally, if the last rule is an 
I-rule, let φi be the only formula occurrence in π that is a premise of 
(Rejection) – if there is one –, or else let φi be the first premise of an I-rule.

Remark 3.6. An alternative way of phrasing Theorem 3.5 is to say that a
branch in a normal derivation consists of three (possibly empty) parts: an
E-part, where every formula occurrence is the major premise of an E-rule,
a C-part, where every formula occurrence is atomic and a premise of a
coordination principle, and an I-part, where every formula occurrence is
a premise of an I-rule. Branches in Prawitz’s classical normal derivations
(see [7]) consist of an E-part and an I-part, joined together by a (possibly
empty) part where classical reductio is applied to an atom.

We can now obtain the subformula and separation properties as corol-
laries.

Definition 3.7. (Subformula)
Signed formula ψ is a subformula of signed formula φ if the unsigned part of
ψ is a subformula (in the standard sense) of the unsigned part of φ. Thus,
for example, all of +p, −p, +q, −q are signed subformulae of +p→ q. Note
that ⊥ is not a formula but a punctuation sign.

Definition 3.8 (Order of a branch). A branch π = φ1, ..., φn in a deriva-
tion D is of order 0 if φn is the conclusion of D, and of order k+1 if it ends
on the minor premise of an E-rule the major premise of which belongs to
a branch π′ order k.

Corollary 3.9 (Subformula property). All the formulae that occur in a
normal derivation of φ from Γ are subformulae of some γ ∈ Γ or of φ.

Proof: By induction on the order of branches. Let π = φ1, ..., φn be a
branch of order k and assume the result for branches of order j < k. We
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will think of the E, C and I-parts of a branch as defined in Remark 3.6. The
result is obvious for the I-part: if k = 0 all formulae in it are subformulae of
φn = φ. Similarly, if k > 0 then all formulae in the I-part are subformulae
of φn, which is in its turn a subformula of the major premise ψ of an
elimination rule that belongs to a branch of lower order. By inductive
hypothesis ψ is itself subformula of some γ ∈ Γ or of φ, and therefore so
are all the formulae in the I-part.

It remains to show the result for the E and C-parts. Note that all
remaining formulae are subformulae of φ1, the first formula of the branch.
Now, if φ1 is an undischarged assumption the result follows trivially. If φ1

is a discharged assumption, there are two cases to consider:
Case 1: If φ1 is discharged by Smilean reductio then φ1 must be an

atom, and so the E-part of our branch π is empty. Moreover, the application
of Smilean reductio in question concludes φ1, the conjugate of φ1. Note
that φ1 is a subformula of φ1, and that φ1 must be a subformula of φn, the
last formula of the branch. Thus, φ1 is a subformula of φn. If the branch
π is of order 0 this means that φ1 is a subformula of the conclusion, and if
π is of order > 0 then the result follows by inductive hypothesis.

Case 2: If φ1 is discharged by an I-rule, then it is a subformula of the
consequence φk of that application, and φk is in its turn a subformula of
φn, the last formula in the branch. Once again, if the branch π is of order
0 this means that φ1 is a subformula of the conclusion, and if π is of order
> 0 then the result follows by inductive hypothesis.

Corollary 3.10 (Separation property). In a normal derivation of φ from
Γ only operational rules for connectives in φ and Γ (and perhaps coordi-
nation principles) are used.

Proof: Follows immediately from Corollary 3.9.

4. Harmony and normalisation: HB2

The first two clauses of the definition of normal form for HB2 are identical
to those of HB1. In other words, we require that for all normal derivations
of HB2:

(i) No conclusion of an I-rule is a major premise of an E-rule.
(ii) Coordination principles are applied only to atoms.



Harmony and Normalisation in Bilateral Logic 395

The motivation behind them remains the same: (i) is taken from
Prawitz, and (ii) is its analogue for bilateral systems, suggested by del
Valle-Inclan and Schlöder’s notion of harmony. This is, as before, enough
to ensure that normal derivations satisfy the separation property. Once
again, however, it is not enough to obtain the subformula property, as the
following derivation shows:

+p −p
(ex)

+q
+p −p

(ex)−q
(ex)

+r

In order to secure the subformula property we follow the same strategy
as before: imposing constraints on the way coordination principles interact
with each other. These constraints are given by clause (iii) of Definition
4.1.

Definition 4.1. (Normal form)
A derivation in HB2 is in normal form if in it: (i) No conclusion of an
I-rule is a major premise of an E-rule. (ii) Coordination principles are
applied only to atoms. (iii) (a) No conclusion of (ex) is a premise of (ex),
(b) no application of (ex) has both premises discharged by (bem) and,
(c) no conclusion of (bem) is a premise of (ex).

Formula occurrences that infringe clauses (i) and (ii) are called maxi-
mal operational formulae and maximal coordination formulae, respectively.
Formula occurrences that infringe clause (iii) are called ancillary maximal
formulae.

HB1 and HB2 share the same operational rules, so the reduction steps
for operational maximal formulae are identical. The obvious similarity
between the rules (Rejection) and (ex) means that the reduction steps
to restrict (ex) to atomic premises are analogous to the steps restricting
(Rejection) to atomic premises; I will omit this type of reduction as well,
for reasons of space. The remaining reduction steps are as follows.
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4.1. Reducing (ex) to atomic conclusions

Negation:

D1

+A

D2

−A
(ex)

+¬B ⇝

D1

+A

D2

−A
(ex)

−B
(−¬ I)

+¬B

D1

+A

D2

−A
(ex)

−¬B ⇝

D1

+A

D2

−A
(ex)

+B
(−¬ I)

−¬B

Implication:

D1

+A

D2

−A
(ex)

+B → C
⇝

D1

+A

D2

−A
(ex)

+C
(+ → I)0

+B → C

D1

+A

D2

−A
(ex)

−B → C
⇝

D1

+A

D2

−A
(ex)

+B

D1

+A

D2

−A
(ex)

−C
(− → I)

−B → C
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Disjunction:

D1

+A

D2

−A
(ex)

+B ∨ C ⇝

D1

+A

D2

−A
(ex)

+C
(+∨ I)0

+B ∨ C

D1

+A

D2

−A
(ex)

−B ∨ C ⇝

D1

+A

D2

−A
(ex)

−B

D1

+A

D2

−A
(ex)

−C
(−∨ I)

−B ∨ C

4.2. Reducing assumptions to atoms in (bem)

Negation:

[+¬A]1

D1

φ

[−¬A]1

D2

φ
(bem)1φ ⇝

[−A]1

+¬A
D1

φ

[+A]1

−¬A
D2

φ
(bem)1φ

Implication:

[+A→ B]1

D1

φ

[−A→ B]1

D2

φ
(bem)1φ ⇝

[+B]3

+A→ B

D1

φ

[−B]3 [+A]2

−A→ B

D2

φ

[−A]2 [+A]1
(ex)

+B
(+ → I)1

+A→ B

D1

φ
(bem)2φ

(bem)3φ
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Disjunction:

[+A ∨B]1

D1

φ

[−A ∨B]1

D2

φ
(bem)1φ

⇝

[+B]3

+A ∨B
D1

φ

[−B]3 [−A]2

−A ∨B
D2

φ

[−A]1 [+A]2
(ex)

+B
(+∨ I)1

+A ∨B
D1

φ
(bem)2φ

(bem)3φ

4.3. Reducing conclusions to atoms in (bem)

Negation:

[+A]1

D1

+¬B

[−A]1

D2

+¬B
(bem)1

+¬B ⇝

[+A]1

D1

+¬B
(+¬ E)

−B

[−A]1

D2

+¬B
(+¬ E)

−B
(bem)1−B

(+¬ I)
+¬B

The case where φ = −¬B is analogous.
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Implication:

[+A]1

D1

+B → C

[−A]1

D2

+B → C
(bem)1

+B → C ⇝

[+A]1

D1

+B → C [+B]2

+C

[−A]1

D2

+B → C [+B]2

+C
(bem)1

+C
(+ → I)2

+B → C

[+A]1

D1

−B → C

[−A]1

D2

−B → C
(bem)1−B → C ⇝

[+A]1

D1

−B → C
(− → E)

+B

[−A]1

D2

−B → C
(− → E)

+B
(bem)1

+B

[+A]2

D1

−B → C
(− → E)

−C

[−A]2

D2

−B → C

−C
(bem)2−C

(− → I)
−B → C

Disjunction: Analogous to implication.
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4.4. Ancillary reductions

As before, the αi range over arbitrary atoms, and αi denotes the conjugate
of αi.
Clause (iii)(a):

D1

+p
D2

−p
(ex)α1

D3

α1
(ex)α2 ⇝

D1

+p
D2

−p
(ex)α2

Clause (iii)(b):

[α1]
1 [α1]

n

(ex)α2

D1

α3

[α1]
1

D2

α3
(bem)1α3

D3

α4

[α1]
n

D4

α4
(bem)n α4

⇝

[α1]
1

D2

α3

D3

α4

[α1]
1

D4

α4
(bem)1α4

Note that in this last reduction we have assumed that the left premise of
the application of (ex) is discharged before the right one. This is unimpor-
tant: if it is the other way around, the appropriate reduction is analogous.

Clause (iii)(c):

[+p]1

D1

α1

[−p]1

D2

α1
(bem)1α1

D3

α1
(ex) α2

⇝

[+p]1

D1

α1

D3

α1
(ex)α2

[−p]1

D2

α1

D3

α1
(ex)α2

(bem)1α2

Applications of (ex) like the one above on the left, where at least one of the
premises is a conclusion of (bem), are called peaks. The size of a peak is
the sum of the length of the maximal segments that the premises of (ex)
belong to (if a premise is not part of a maximal segment, we assign it length
0). In the normalisation process we will assign to each derivation a peak
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rank (j, k), where j is the greatest size of a peak in the derivation, k the
number of peaks of greatest size. The reader can check that the reduction
above, when applied to a maximal segment such that there are no longer
maximal segments above it, side connected with it, or above a formula side
connected with it, strictly reduces the peak rank of a derivation.

4.5. Normalisation and corollaries

Definition 4.2 (Segment). A segment σ in a branch π is a sequence of
formula occurrences σ1, ..., σn in π such that: (i) σ1 is not the conclusion
of an application of (bem). (ii) Each σi for i < n is a premise of (bem),
and σi+1 stands immediately below σi. (iii) σn is not a premise of an
application of (bem).

Definition 4.2 entails that all the elements of a segment are occurrences
of the same formula. The length of a segment is the number of formula
occurrences in it. A segment is called maximal if it ends in an application
of (ex). This means that maximal coordination formulae that infringe
clause (iii)(c) of Definition 4.1 are always final formula occurrences in
maximal segments of length ≥ 1, and maximal coordination formulae that
infringe clauses (iii)(a) and (iii)(b) are always maximal segments of length
1. There are no maximal segments of other types.

Lemma 4.3. Every branch can be uniquely divided into consecutive seg-
ments.

Proof: By induction on the length of branches.

Theorem 4.4 (Normalisation). If there is a derivation D of φ from Γ then
there is a normal derivation D′ of φ from Γ′ ⊆ Γ.

Proof: Analogous to the previous proof of normalisation. Derivations are
assigned a coordination and an operational rank, defined as before. We
apply first the coordination reductions (Sections 4.1–4.3) and then the op-
erational reductions (Section 3.1), starting always from maximal formulae
of maximal complexity such that there are no maximal formulae of maxi-
mal complexity above them or above a formula side connected with them.
Once a derivation has no coordination or operational maximal formulae we
assign it a peak rank, as defined at the end of Section 4.4, and apply the
reduction for ancillary formulas of type (iii)(c) as indicated there. Once
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there are no peaks left, the only remaining maximal formulae are those
that infringe clauses (iii)(a) and (iii)(b). They can be eliminated in any
order using the appropriate reduction from Section 4.4.

Theorem 4.5 (Shape of normal derivations). Let D be a derivation in
normal form, π a branch in D, and let σ1, ...σn be the segments in π. Then
there is a segment σi in π, called the minimum segment, which separates
/pi into two (possibly empty) parts, the E-part and the I-part, with the
properties:

1. For each σj in the E-part (i.e. j < i), σj is a major premise of an
E-rule, except possibly σi−1, which may be a premise of (ex).

2. If i ̸= n, then each formula in the segment σi is a premise of (bem)
except the last one, which may be a premise of an I-rule.

3. For each σj in the I-part (i.e. i < j < n), σj is a premise of an
I-rule.

Proof: It is easy to see that, in a branch π = φ1, ..., φn of a normal
derivation, no formula occurrences that are premises of an Introduction rule
precede formula occurrences that are major premises of an Elimination rule,
(bem) or (ex), no formula occurrences that are premises of (bem) precede
formula occurrences that are premises of (ex) or major premises of an E-
rule, and no formula occurrences that are premises of (ex) precede formula
occurrences that are major premises of an E-rule or (ex). Now:

If there is no formula occurrence that is a premise of an I-rule or (bem),
let σi = φn. If there is a formula occurrence that is a premise (bem), let φi

be the first such formula, and let σi be the segment starting at φi. Finally,
if there is no formula occurrence that is a premise (bem), but there is a
formula occurrence that is a premise of an I-rule, let φi be the first such
formula, and let σi = φi.

Remark 4.6. An alternative way of phrasing Theorem 4.5 is to say that a
branch in a normal derivation consists of three (possibly empty) parts: an
E-part, where every formula occurrence is the major premise of an E-rule,
a C-part, where every formula occurrence is a premise of a coordination
principle – and within which (ex) is applied before (bem) – and an I-part,
where every formula occurrence is a premise of an I-rule.
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Corollary 4.7 (Subformula property). All the formulae that occur in a
normal derivation of φ from Γ are subformulae of some γ ∈ Γ or of φ.

Proof: By induction on the order of branches. Let π = σ1, ...σn be a
branch of order p, let σi be its minimum segment, and assume the result
for branches of lower order. Consider first all σj with i ≤ j ≤ n. All
such formulae are subformulae of φn, the formula in the last segment σn of
the branch. If the branch in question is of order 0 the result immediately
follows. If the branch is of order > 0 then φn is the minor premise of an
application of an E-rule, the major premise ψ of which belongs to a branch
of order p− 1. But by induction hypothesis the result holds for ψ, and φn

is a subformula of ψ, so the result follows.
It remains to account for all the σj with j < i. Note that all such

formulae are subformulae of φ1, the first formula of the branch. If φ1 is an
undischarged assumption the result immediately follows. Similarly, if φ1 is
discharged by an application of an I-rule, then it is a subformula of some
formula in an I-part, and the result follows by the above. Finally, suppose
that φ1, is discharged by an application of (bem). Now, φ1 cannot be the
major premise of an elimination rule, since it is an atom. If it is the minor
premise of an E-rule, or a premise of an I-rule or (bem), then there are no σj
with j < i and we are done. The only remaining possibility is that φ1 is a
premise of (ex). Then φ1 is the only formula before the minimum segment
σi (in other words, φ1 is the only formula we still need to account for).
Now, φ1 is a subformula of the other premise φ1 of the application of (ex)
in question, and φ1 cannot be discharged by (bem). Moreover, φ1 belongs
to a branch of the same order as π. If φ1 is undischarged, or discharged by
a I-rule, the result immediately follows. If it is a consequence of an E-rule,
then it is a subformula of the initial formula ψ of its branch. But then ψ
is not atomic, and so can only be undischarged or discharged by an I-rule.
In either case, the result follows.

Corollary 4.8 (Separation property). In a normal derivation of φ from Γ
only operational rules for connectives in φ and Γ (and perhaps coordination
principles) are applied.

Proof: Follows immediately from the previous corollary.
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5. Comparison with other normalisation results

In this section I will briefly compare the present normalisation results with
those obtained by Nils Kürbis [6] and Marcello D’Agostino, Dov Gabbay,
and Sanjay Modgyl [1], so as to outline the similarities and differences
between them.

5.1. HB1 and Kürbis-normal form

Kürbis proves his normalisation result for Rumfitt’s original calculus,7

which makes the comparison with normal form for HB1 straightforward.
The respective definitions of normal form are:

Kürbis-normal form: HB1-normal form:

(a) No conclusion of an I-rule is a
major premise of an E-rule.

(i) No conclusion of an I-rule is a
major premise of an E-rule.

(b) No conclusion of Smilean re-
ductio is a major premise of an
E-rule.

(ii) Coordination principles are
applied only to atoms.

(c) No conclusion of an I-rule is
a premise of an application of
(Rejection) the other premise of
which is also the conclusion of an
I-rule.
(d) No conclusion of Smilean re-
ductio is a premise of (Rejection).

(iii) No conclusion of Smilean re-
ductio is a premise of (Rejection).

(e) There are no maximal seg-
ments.

Clause (a) of Kürbis-normal form is identical to clause (i) of HB1-normal
form, and the same goes for clauses (d) and (iii). The correlate of clauses
(b) and (c) of Kürbis-normal form is clause (ii). Crucially, though, (ii) is
strictly stronger that (b) and (c) combined: all derivations that satisfy (ii)
satisfy (b) and (c), but the converse does not hold. The segments referred
to in clause (e) are defined as usual: sequences of occurrences of the same

7That is, the calculus comprising the operational rules without del Valle-Inclan and
Schlöder’s modifications, plus (Rejection) and Smilean reductio as coordination princi-
ples.
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formula that end in a maximal formula. Because of the modified oper-
ational rules of HB1, maximal segments simply cannot arise in normal
derivations. Thus, clause (e) has no correlate in HB1-normal form. It
follows that HB1-normal form is stronger than Kürbis-normal form, in the
sense that all derivations in HB1-normal form are Kürbis-normal, but
the converse does not hold. Rumfitt’s calculus, for instance, can be Kürbis-
normalised but not HB1-normalised.

5.2. HB2 and C-intelim normal form

Marcello D’Agostino, Dov Gabbay, and Sanjay Modgyl prove their normal-
isation result for a calculus they call C-intelim.8 The crucial difference be-
tween C-intelim andHB2 is that no operational rule of C-intelim discharges
any premises. More precisely, their rules for disjunction are Rumfitt’s
(−∨ I), (−∨ E), (+∨ I) plus the following two:

+A ∨B −A
+B

+A ∨B −B
+A

Their rules for conjunction are Rumfitt’s (+∧ I), (+∧ E), (−∧ I) and:

−A ∧B +A
−B

−A ∧B +B
−A

And their rules for conditionals are Rumfitt’s (− → I), (− → E), (+ → E)
and:

−A
+A→ B

+B
+A→ B

+A→ B −B
−A

The coordination principles in C-intelim are essentially Explosion and
Bilateral Excluded Middle, but there is an additional consideration to keep
in mind. In C-intelim Explosion is reformulated as two distinct rules,
namely:

−A +A

⊥
⊥
φ

with the proviso that ‘⊥’ can only occur in the context of these rules, as a
punctuation sign [1, p. 302]. Clearly, this makes the difference between (ex)

8They present two versions of C-intelim: a bilateral version and a unilateral one,
which they regard as a ‘practically convenient translation of the rules for signed formulae
into an ordinary logical language’ ([1], p. 303-4). Here I will only consider the bilateral
formulation of the calculus.
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and their two-rule combination strictly notational. In order to simplify the
comparison with HB2, then, I will take C-intelim to contain Explosion in
its single-rule presentation (ex). Nothing substantial hinges on this.

We can finally compare both notions of normal form. Normal deriva-
tions in C-intelim have the following shape:

D1

φ
D2

φ
(bem)φ

T1
φ

. . .

. . .

Dn−1

φ
Dn

φ
(bem)φ

Tk
φ

(bem)φ

where in the Di only operational rules are used, except possibly at the
last step, which may be an application of Explosion, and the (possibly
empty) Ti consist exclusively of applications of Bilateral Excludded Middle.
Moreover, in normal derivations the assumptions discharged by (bem) are
always subformulae of undischarged premises of the derivation or of its
conclusion.

It is obvious that normal HB2 derivations need not be of this form.
More importantly, derivations in HB2 cannot, in general, be put in C-
intelim normal form. The reason is that certain operational rules of HB2

discharge premisses, which means that it is sometimes unavoidable to use
them after an application of Explosion, as in the (HB2-normal) derivation
below:

+¬p
−p [+p]1

(ex)
+q

(+ → I)1
+p→ q

Conversely, derivations in C-intelim cannot in general be put in HB2-
normal form. This is due to the fact that several operational rules of
C-intelim do not preserve the coordination principle of Bilateral Excluded
Middle, and hence are not harmonious in del Valle-Inclan and Schlöder’s
sense. The following, for instance, is a C-intelim normal derivation where
(bem) is applied to complex formulae in a way that cannot be eliminated:
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[+p]1

+p ∨ ¬p

[−p]1
+¬p

+p ∨ ¬p
(bem)1

+p ∨ ¬p

In summary: C-intelim normal form and HB2-normal form are neither
stronger nor weaker than each other.

Of course, normal forms for different but related calculi need not coin-
cide on every point, so the fact that Rumfitt’s calculus and C-intelim do
not HB1 and HB2-normalise (respectively) is not particularly surprising.
Still, given the close connection between the present notions of normal form
and bilateral harmony, this can be seen as a symptom of the underlying
disharmony of these calculi. Conversely, the results shown by Kürbis and
D’Agostino, Gabbay and Modgyl show that, despite their disharmony, C-
intelim and Rumfitt’s calculus are relatively well-behaved. This emphasises
the fact that del Valle-Inclan and Schlöder’s notion of bilateral harmony
rules out more than the glaring problems raised by connectives like tonk
and bink.9

6. Concluding remarks

The idea that the operational rules for each connective should be ‘balanced’ 
underlies most approaches to proof-theoretic harmony. This idea has a cor-
relate in normalisation proofs, in the requirement that formula occurrences 
that are the consequence of an introduction rule and the major premise 
of an elimination should be removed. Del Valle-Inclan and Schlöder’s bi-
lateral criterion of harmony suggests a similar requirement for bilateral 
systems, namely that normal proofs should apply coordination principles 
to atomic formulae only. These two requirements are enough for a weak 
notion of normality that remains stable across calculi HB1 and HB2, and 
which guarantees the separation but not the subformula property. In order 
to guarantee the subformula property a third kind of constraint, regulat-
ing how coordination principles are allowed to interact with each other, is 
needed. These constraints vary across HB1 and HB2, as the two calculi 

9Thanks to an anonymous referee for prompting me to say more about this.
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is strictly stronger than Kürbis-normal form in the case of HB1, and nei-
ther stronger nor weaker than C-intelim normal form in the case of HB2.
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