
VOLUME 51, NUMBER 4

ŁÓDŹ, DECEMBER 2022

UNIVERSITY OF  LÓDŹ
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n-FOLD FILTERS OF EQ-ALGEBRAS

Abstract

In this paper, we apply the notion of n-fold filters to the EQ-algebras and intro-

duce the concepts of n-fold pseudo implicative, n-fold implicative, n-fold obsti-

nate, n-fold fantastic prefilters and filters on an EQ-algebra E . Then we inves-

tigate some properties and relations among them. We prove that the quotient

algebra E/F modulo an 1-fold pseudo implicative filter of an EQ-algebra E is a

good EQ-algebra and the quotient algebra E/F modulo an 1-fold fantastic filter

of a good EQ-algebra E is an IEQ-algebra.

Keywords: EQ-algebra, n-fold pseudo implicative (implicative, obstinate, fantas-

tic) prefilter, n-fold pseudo implicative (implicative, fantastic) EQ-algebra.
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1. Introduction

Recently, a new class of algebras called EQ-algebras has been introduced
by Novák in [9]. These algebras are intended to become algebras of truth
values for a higher-order fuzzy logic (a fuzzy type theory, FTT). An EQ-
algebra has three basic binary operations (meet, multiplication and a fuzzy
equality) and a top element. The implication is defined from the fuzzy
equality ”∼” by the formula a → b =(a∧b) ∼ a. Its implication and multi-
plication are no more closely tied by the adjunction and so, this algebra gen-
eralizes residuated lattice. From the point of view of potential application,
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it seems interesting that unlike Hájek [5], we can have non-commutativity
without the necessity to introduce, two kinds of implication. Novák and
De Baets in [10] introduced several kinds of EQ-algebras. El-Zekey in [4],
proved that the class of EQ-algebras is a variety. El-Zekey in [4] introduced
prelinear good EQ-algebras and proved that a prelinear good EQ-algebra
is a distributive lattice. Novák and De Baets in [10] defined the concept
of prefilter on EQ-algebras which is the same as filter of other algebraic
structures such as residuated lattices, MTL-algebras, and etc. But the bi-
nary relation introduced by prefilter is not a congruence relation. To learn
more about EQ-algebras, the reader can consult [1, 2, 7, 11, 13, 14]. Filter
theory plays an important role in studying logical algebras. From a logical
point of view, various filters have a natural interpretation as various sets
of provable formulas. In this paper, we introduce n-fold implicative pre-
filter, n-fold pseudo implicative prefilter, n-fold fantastic prefilter, n-fold
obstinate prefilter in EQ-algebra. We prove that the quotient algebra E/F
modulo an 1-fold pseudo implicative filter of an EQ-algebra E is a good
EQ-algebra and the quotient algebra E/F modulo an 1-fold fantastic filter
of good EQ-algebra E is an involutive EQ-algebra. This paper is organized
as follows: In Section 2, the basic definitions, special types of EQ-algebras
and their properties are reviewed. In Section 3, n-fold prefilters and n-
fold pseudo implicative prefilters of EQ-algebras and EQn-algebras are
defined and investigated some results about them. We prove that the quo-
tient algebra modulo 1-fold pseudo implicative filter is a good EQ-algebra.
In Section 4, n-fold implicative prefilter of EQ-algebra, n-fold implicative
EQ-algebra are studied. We show that in good EQ-algebra E with least
element 0, a prefilter F is an n-fold implicative prefilter of E if and only
if E/F is an n-fold implicative EQ-algebra. In Section 5, n-fold obstinate
prefilters, and maximal prefilters of EQ-algebras are investigated. We show
that filter {1} is an n-fold obstinate filter of residuated EQ-algebra E if and
only if every filter of E is an n-fold obstinate filter of E and in a residuated
EQ-algebra E , a filter F is an n-fold obstinate filter of E if and only if
every filter of quotient algebra E/F is an n-fold obstinate filter of E/F .
Finally in Section 6, n-fold fantastic prefilters of EQ-algebras and n-fold
fantastic EQ-algebras are introduced and studied the relation among the
n-fold fantastic prefilters and n-fold fantastic algebras. Then we prove that
in any good EQ-algebra, if F is an 1-fold fantastic filter of E , then E/F is
an involutive EQ-algebra, and we show that in any residuated EQ-algebra
with least element, F is an n-fold implicative filter of E if and only if F
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is an n-fold pseudo implicative filter and n-fold fantastic filter of E . So
we conclude that in any residuated EQ-algebra, E is an n-fold implicative
EQ-algebra if and only if E is both n-fold pseudo implicative EQ-algebra
and n-fold fantastic EQ-algebra.

2. Preliminaries

In this section, we recollect some definitions and results which will be used
in the next sections.

Definition 2.1. [4] An EQ-algebra is an algebraic structure E = (E,∧,⊗,
∼, 1) of type (2, 2, 2, 0) such that, for all x, y, z, t ∈ E the following
conditions hold:

(E1) ⟨E,∧, 1⟩ is a commutative idempotent monoid (i.e. ∧-semilattice with
top element 1);

(E2) ⟨E,⊗, 1⟩ is a commutative monoid and ⊗ is isotone w.r.t. ≤, where
x ≤ y is defined as x ∧ y = x;

(E3) x ∼ x = 1; (reflexivity axiom)

(E4) ((x ∧ y) ∼ z)⊗ (t ∼ x) ≤ z ∼ (t ∧ y); (substitution axiom)

(E5) (x ∼ y)⊗ (z ∼ t) ≤ (x ∼ z) ∼ (y ∼ t); (congruence axiom)

(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x; (monotonicity axiom)

(E7) x⊗ y ≤ x ∼ y. (boundedness axiom)

Proposition 2.2. [10] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Define
x → y := (x ∧ y) ∼ x and x̄ := x ∼ 1. Then, for all x, y, z, t ∈ E the
following properties hold:

(i) x⊗ y ≤ x, y and x⊗ y ≤ x ∧ y;

(ii) x ≤ y → x;

(iii) x → y ≤ (z → x) → (z → y) and x → y ≤ (y → z) → (x → z);

(iv) if x ≤ y, then x ∼ y = y → x, z → x ≤ z → y and y → z ≤ x → z;

(v) x → y ≤ (x ∧ z) → (y ∧ z).
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Definition 2.3. [10] Let E be an EQ-algebra. Then E is called:

(i) separated if x ∼ y = 1, then x = y, for all x, y ∈ E, (in other words
x ∼ y = 1 if and only if x = y);

(ii) good if x ∼ 1 = x = 1 ∼ x, for all x ∈ E;

(iii) residuated if x ≤ y → z if and only if x⊗ y ≤ z, for all x, y, z ∈ E;

(iv) involutive (IEQ-algebra) if E contains 0 and ¬¬x = x, for all x ∈ E,
where ¬x = x ∼ 0;

(v) lattice ordered if the poset induced by the underlying semilattice of E
is a lattice;

(vi) a lattice EQ-algebra (ℓEQ-algebra) if E is a lattice ordered and for
all x, y, x, t ∈ E the following substitution axiom holds, ((x ∨ y) ∼
z)⊗ (t ∼ x) ≤ (z ∼ (t ∨ y)).

Proposition 2.4. [10] Each IEQ-algebra is a good, separated and ℓEQ-
algebra.

Proposition 2.5. [4] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, for
all x, y ∈ E the following statements are equivalent:

(i) E is good;

(ii) x⊗ (x ∼ y) ≤ y;

(iii) x⊗ (x → y) ≤ y;

(iv) 1 → x = x.

Proposition 2.6. [4] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, for
all x, y, z ∈ E the following statements are equivalent:

(i) E is residuated;

(ii) E is good and x → y ≤ (x⊗ z) → (y ⊗ z);

(iii) E is good and x ≤ y → (x⊗ y);

(iv) E is separated and (x⊗ y) → z = x → (y → z).
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Proposition 2.7. [4] Let E = (E,∧,⊗,∼, 1) be a good EQ-algebra. Then,
for all x, y, z ∈ E the following properties hold:

(i) E is residuated if and only if x⊗ y ≤ z implies x ≤ y → z;

(ii) x ≤ (x ∼ y) ∼ y and x ≤ (x → y) → y;

(iii) E is separated;

(iv) x → (y → z) = y → (x → z);

(v) x → (y → z) ≤ (x⊗ y) → z.

Definition 2.8. [10] Let E be an EQ-algebra. A nonempty subset F ⊆ E
is called a prefilter of E , if for all x, y ∈ E,

(F1) 1 ∈ F ;

(F2) If x, x → y ∈ F , then y ∈ F .

A prefilter F is said to be a filter, if

(F3) x → y ∈ F implies (x⊗ z) → (y ⊗ z) ∈ F , for all x, y, z ∈ E.
A proper prefilter F is called a prime prefilter of E if x → y ∈ F or
y → x ∈ F , for all x, y ∈ E.

Definition 2.9. [12] A prefilter F of an EQ-algebra E is called maximal
if and only if it is proper and no prefilter of E strictly contains F that is,
for each prefilter G of E , if F ⊊ G, then G = E.

Lemma 2.10. [3] Let F be a prefilter of an EQ-algebra E. Then, for all
x, y, z ∈ E the following statements hold:

(i) If x ∈ F and x ≤ y, then y ∈ F ;

(ii) If x, x ∼ y ∈ F , then y ∈ F ;

(iii) If x, y ∈ F , then x ∧ y ∈ F ;

Moreover, if F is a filter of E, we have:

(iv) If x, y ∈ F , then x⊗ y ∈ F ;

(v) If x → y ∈ F and y → z ∈ F , then x → z ∈ F .

Remark 2.11. By Proposition 2.6 and Lemma 2.10, if E is a residuated
EQ-algebra, then every prefilter of E is a filter of E .
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Definition 2.12. [8] Let E be an EQ-algebra and X be a nonempty subset
of E. Then the smallest prefilter of E which contains X, i.e.⋂
{F | F is a prefilter of E such that, X ⊆ F} is said to be a prefilter of E

generated by X and is denoted by ⟨X⟩. If a ∈ E and X = {a}, then we
denote by ⟨a⟩ the prefilter generated by {a} (⟨a⟩ is called principal). For
prefilter F and a ∈ E, we denote by F (a) = ⟨F ∪ {a}⟩.
It is clear that a ∈ F implies F (a) = F . We can prove

F (a) = {z ∈ E | a → z ∈ F}

and
⟨X⟩ = {a ∈ E | x1 → (x2 → (x3 → ...(xn → a)...)) = 1, for some xi ∈
X and n ∈ N}.

Definition 2.13. [6] Let F be a prefilter of an EQ-algebra E . Then F is
called

(i) an implicative prefilter of E , if for all x, y, z ∈ E,

(F4) z → ((x → y) → x) ∈ F and z ∈ F imply x ∈ F .

(ii) a positive implicative prefilter of E , if for all x, y, z ∈ E,

(F5) x → (y → z) ∈ F and x → y ∈ F imply x → z ∈ F .

(iii) a fantastic prefilter of E , if for all x, y ∈ E,

(F6) y → x ∈ F implies ((x → y) → y) → x ∈ F .

(iv) an obstinate prefilter of E ,

(F7) x, y /∈ F imply x → y ∈ F and y → x ∈ F .

Proposition 2.14 ([12]). Let E be a residuated EQ-algebra and F be a
fantastic prefilter of E . Then F is an implicative prefilter of E if and only
if F is a positive implicative prefilter of E .

Proposition 2.15 ([12]). Let E be a residuated EQ-algebra and F be a
positive implicative prefilter of E . Then F is an implicative prefilter of E
if and only if F is a fantastic prefilter of E .
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Proposition 2.16 ([12]). Let E be a good EQ-algebra and F be a nonempty
subset of E . Then F is an implicative prefilter if and only if F is both a
positive implicative prefilter and a fantastic prefilter of E .

Let F be a filter of an EQ-algebra E . Then we define a binary relation
≡F on E as follows:

x ≡F y if and only if x ∼ y ∈ F.

Then ≡F is a congruence relation on E. Denote E/F := {[x]F | x ∈ E}
and [x]F = {y ∈ E | x ≡F y} and define operations ∧F , ⊗F , ∼F and
relation ≤F on E/F as follows:

[x]F ∧F [y]F = [x∧y]F , [x]F ⊗F [y]F = [x⊗y]F , [x]F ∼F [y]F = [x ∼ y]F ,

[x]F ≤F [y]F if and only if x → y ∈ F if and only if [x]F →F [y]F = [1]F .

We write [x] instead of [x]F , for short.

Theorem 2.17 ([4]). Let F be a filter of an ℓEQ-algebra E. Then the
quotient algebra E/F = (E/F,∧F ,⊗F ,∼F , F ) is a separated ℓEQ-algebra
and the mapping f : x → [x]F is an epimorphism.

3. n-fold pseudo implicative prefilters of EQ-algebras

In this section, we introduce the notions of n-fold prefilters and n-fold
pseudo implicative prefilters on EQ-algebras and prove some related re-
sults. Also, we prove that the quotient algebra modulo by 1-fold pseudo
implicative filter is a good EQ-algebra.

In what follows, let n denotes a positive integer and for any x ∈ E, xn

denotes x⊗ x⊗ ...⊗ x, in which x occurs n times and x0 = 1.

Definition 3.1. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold prefilter of E , if for all x, y ∈ E,

(i) 1 ∈ F ;

(ii) If xn, xn → y ∈ F , then y ∈ F .

An n-fold prefilter F is said to be an n-fold filter of E , if F satisfies (F3).

Obviously, each prefilter is an n-fold prefilter. But the converse is not
true.
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Example 3.2. Let E = {0, a, b, c, 1} be a chain such that 0 ≤ a ≤ b ≤ c ≤ 1.
Define the operations ∧,⊗ and ∼ on E as follows:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 0 c
1 0 a b c 1

∼ 0 a b c 1
0 1 a 0 0 0
a a 1 a a a
b 0 a 1 b b
c 0 a b 1 c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a a 1 1 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

x ∧ y = min{x, y}.

Then E = (E,∧,⊗,∼, 1) is an EQ-algebra. Let F = {1, c}. Then F is an
n-fold filter of E , for all n ∈ N.
Let F = {1, a}. Then F is a 2-fold prefilter of E . Since a ∈ F and
a → b = 1 ∈ F but b /∈ F , F is not a prefilter of E . Similarly F = {1, b} is
a 2-fold prefilter but not a prefilter of E .

Definition 3.3. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold pseudo implicative prefilter of E , if for all x, y, z ∈ E,

(i) 1 ∈ F ;

(ii) xn → (y → z) ∈ F and xn → y ∈ F imply xn → z ∈ F .

Example 3.4. Let E = {0, a, b, 1} be a chain such that 0 ≤ a ≤ b ≤ 1.
Define the operations ∧,⊗ and ∼ on E as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b 1
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

x ∧ y = min{x, y}.
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Then E = (E,∧,⊗,∼, 1) is an EQ-algebra. Let F = {1, b}. Then F is an
n-fold filter and n-fold pseudo implicative filter of E , for all n ≥ 2.
If F = {1, a}, then F is an n-fold pseudo implicative prefilter of E , for all
n ≥ 2. Clearly, F is not a filter of E , since a2 = a ∈ F and a2 → b = a →
b = 1 ∈ F but b /∈ F . In addition, we can see that F is not an n-fold filter
of E .

Obviously each pseudo implicative prefilter of E is an n-fold pseudo
implicative prefilter of E , but the converse is not true.

Example 3.5. Let E be an EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold pseudo implicative filter of E . Since a → (a →
0) = 1 ∈ F and a → a = 1 ∈ F but a → 0 = a /∈ F , we get F is not a
pseudo implicative filter of E .

Proposition 3.6. Let E be a good EQ-algebra. Then every n-fold pseudo
implicative prefilter of E is an n-fold prefilter of E .

Proof: Let x, y ∈ E such that xn, xn → y ∈ F . Then by goodness,
1n → xn, 1n → (xn → y) ∈ F . Hence 1n → y = y ∈ F .

Example 3.7. Let E be the EQ-algebra as in Example 3.4. Since b ∼
1 = 1 ̸= b, we have E is not good. Suppose F = {1, a}. Then F is an
n-fold pseudo implicative filter of E , for all n ≥ 2. Since an = a ∈ F and
an → b = 1 ∈ F but b /∈ F , we have F is not an n-fold filter of E , for all
n ≥ 2.

Corollary 3.8. Let E be a good EQ-algebra. Then every n-fold pseudo
implicative prefilter of E is a prefilter of E .

Proof: Let F be an n-fold pseudo implicative prefilter of E , x ∈ F and
x → y ∈ F . Then 1n → (x → y) ∈ F and 1n → x ∈ F and so 1n → y =
y ∈ F . Therefore, F is a prefilter of E .

Proposition 3.9. Let E be a good EQ-algebra. Then {1} is an n-fold
prefilter of E , for all n ∈ N.

Proof: Let xn ∈ {1} and xn → y ∈ {1}, then 1 → y = y ∈ {1} and so {1}
is an n-fold prefilter of E , for all n ∈ N. Now, let x → y ∈ {1}. Then x ≤ y
and so x ⊗ z ≤ y ⊗ z, for all z ∈ E. Hence (x ⊗ z) → (y ⊗ z) = 1 ∈ {1}.
Therefore, {1} is an n-fold filter of E .
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Example 3.10. Let E be the EQ-algebra as in Example 3.4. Since b ∼
1 = 1 ̸= b, we get E is not a good EQ-algebra. Since 1n = 1 ∈ {1} and
1n → b = 1 ∈ {1} but b /∈ {1}, we get {1} is not an n-fold filter of E , for
all n ∈ N

In the following theorem, we provide some conditions equivalent to the
concept of n-fold pseudo implicative filter.

Theorem 3.11. Let E be a residuated EQ-algebra, F be a filter of E and
n ∈ N. Then, for all x, y, z ∈ E the following conditions are equivalent:

(i) F is an n-fold pseudo implicative filter of E;

(ii) xn → x2n ∈ F ;

(iii) xn+1 → y ∈ F implies xn → y ∈ F ;

(iv) xn → (y → z) ∈ F implies (xn → y) → (xn → z) ∈ F .

Proof: (i) =⇒ (ii): By Proposition 2.6(iv), we have xn → (xn → x2n) =
x2n → x2n = 1 ∈ F . Since xn → xn = 1 ∈ F by (i), we have xn → x2n ∈ F .
(ii) =⇒ (i): Let xn → (y → z) ∈ F and xn → y ∈ F . Then by Propositions
2.6 and 2.5(iii),

(xn → (y → z))⊗ (xn → y)⊗ x2n = (xn → (y → z))⊗ xn ⊗ (xn → y)⊗ xn

≤ (y → z)⊗ y ≤ z.

Thus by Proposition 2.7(i), (xn → (y → z))⊗ (xn → y) ≤ x2n → z and so
x2n → z ∈ F . Since by assumption, F is a filter of E , we get x2n → z ∈ F .
Also, by Proposition 2.2(iii), xn → x2n ≤ (x2n → z) → (xn → z). Hence
by (ii), (x2n → z) → (xn → z) ∈ F , and so xn → z ∈ F . Therefore, F is
an n-fold pseudo implicative filter of E .
(ii) =⇒ (iii): Let xn+1 → y ∈ F . Then by Proposition 2.6(iv), we have
xn+1 → y = xn → (x → y) ∈ F . Since xn ≤ x, we have xn → x = 1 ∈ F .
Hence by (i) or equivalently (ii), xn → y ∈ F .
(iii) =⇒ (ii): By Proposition 2.6(iv),

xn+1 → (xn−1 → x2n) = x2n → x2n = 1 ∈ F.

Thus by (iii), xn → (xn−1 → x2n) ∈ F . Also, we have

xn+1 → (xn−2 → x2n) = x2n−1 → x2n = xn → (xn−1 → x2n) ∈ F.
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Hence by (iii), xn → (xn−2 → x2n) ∈ F . By repeating this method n
times we get

xn → (x0 → x2n) = xn → (1 → x2n) = xn → x2n ∈ F.

(ii) =⇒ (iv): Let xn → (y → z) ∈ F . Then by Propositions 2.2(iii), (iv)
and 2.7(iv),

xn → (y → z) ≤ xn → ((xn → y) → (xn → z))

= xn → (xn → ((xn → y) → z))

= x2n → ((xn → y) → z) ∈ F.

Also, we have x2n → ((xn → y) → z)) ≤ (xn → x2n) → (xn → ((xn →
y) → z)). Thus

(xn → x2n) → (xn → ((xn → y) → z)) ∈ F.

By (ii), since xn → x2n ∈ F , we have

xn → ((xn → y) → z)) = (xn → y) → (xn → z) ∈ F.

(iv) =⇒ (ii): Since xn → (xn → x2n) = x2n → x2n = 1 ∈ F by (iv), we
get (xn → xn) → (xn → x2n) ∈ F and so by goodness, xn → x2n ∈ F .

Proposition 3.12. Let E be an EQ-algebra and F be a prefilter of E . If
F is an 1-fold pseudo implicative prefilter of E , then for all x, y ∈ E and
n ∈ N the following properties hold:

(i) ((xn ∧ (xn → y)) → y) ∈ F ;

(ii) ((xn ⊗ (xn → y)) → y) ∈ F .

Proof: (i): Let F be an 1-fold pseudo implicative prefilter of E . Since
(xn ∧ (xn → y)) ≤ xn → y, xn, we get ((xn ∧ (xn → y)) → (xn → y) =
1 ∈ F and (xn ∧ (xn → y)) → xn = 1 ∈ F . Hence, by assumption
(xn ∧ (xn → y)) → y ∈ F .
(ii): By (i), (xn ∧ (xn → y) → y) ∈ F . Then by Proposition 2.2(i),
xn⊗ (xn → y) ≤ xn∧ (xn → y) and so (xn∧ (xn → y)) → y ≤ (xn⊗ (xn →
y)) → y. Hence, (xn ⊗ (xn → y)) → y ∈ F .

Corollary 3.13. Let E be an EQ-algebra and F be a prefilter of E . If F
is an 1-fold pseudo implicative prefilter of E , then (1 → x) → x ∈ F , for
all x ∈ E.
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Proof: By Proposition 3.12(i), since 1, x ∈ E, we have (1n∧ (1n → x)) →
x = (1 → x) → x ∈ F .

Theorem 3.14. Let E be an EQ-algebra and F be a prefilter of E. If F is
an 1-fold pseudo implicative filter of E, then E/F is a good EQ-algebra.

Proof: By Theorem 2.17, E/F is a separated EQ-algebra. Then by Corol-
lary 3.13, for any x ∈ E, (1 → x) → x ∈ F and so [1 → x] ≤ [x].
Thus [x] ∼ [1] ≤ [x] and by Proposition 2.2(ii), [x] ≤ [1] ∼ [x], that is
[1] ∼ [x] = [x], for all [x] ∈ E/F . Therefore, E/F is a good EQ-algebra.

Theorem 3.15. Let E be a residuated EQ-algebra and F be a filter of E.
Then the following statements are equivalent:

(i) F is an n-fold pseudo implicative filter of E;
(ii) xm → (x → y) ∈ F implies xm → y ∈ F , for all x, y ∈ F and m ≥ n.

Proof: (i) =⇒ (ii): Let F be an n-fold pseudo implicative filter of E and
xm → (x → y) ∈ F , for x, y ∈ E. Since xm ≤ x, we have xm → x = 1 ∈ F
and so by (i), xm → y ∈ F .
(ii) =⇒ (i): Let xn → (y → z) ∈ F and xn → y ∈ F . Then by Proposition
2.2(iii), we have

xn → (y → z) ≤ ((y → z) → (xn → z)) → (xn → (xn → z)),

and xn → y ≤ (y → z) → (xn → z). Thus ((y → z) → (xn → z)) →
(xn → (xn → z)) ∈ F and (y → z) → (xn → z) ∈ F and so xn → (xn →
z) = x2n−1 → (x → z) ∈ F . By (ii), we have x2n−1 → z ∈ F . Since
x2n−1 → z = x2n−2 → (x → z) ∈ F , by (ii), we obtain x2n−2 → z ∈ F .
By repeating this method, we have xn → z ∈ F . Therefore, F is an n-fold
pseudo implicative filter of E .
Proposition 3.16. Let E be a residuated EQ-algebra and F be a filter of
E . If F is an n-fold pseudo implicative filter of E , then F is an n + 1-fold
pseudo implicative filter of E .
Proof: Let F be an n-fold pseudo implicative filter of E and x, y ∈ E
such that xn+2 → y ∈ F . Then by Proposition 2.6(iv), xn+2 → y =
(xn+1 ⊗ x) → y = xn+1 → (x → y) ∈ F . Thus by Theorem 3.15(ii),
xn+1 → y ∈ F and so F is an n+ 1-fold pseudo implicative filter of E .

By the following example we show that the converse of Proposition 3.16,
is not true.
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Example 3.17. Let E be the EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold pseudo implicative prefilter of E . Since a → (a →
0) = 1 ∈ F and a → a = 1 ∈ F but a → 0 = a /∈ F , we get F is not a
1-fold pseudo implicative prefilter of E .

Proposition 3.18. Let F and G be two filters of residuated EQ-algebra
E such that F ⊆ G. If F is an n-fold pseudo implicative filter of E , then G
is an n-fold pseudo implicative filter of E .

Proof: Let F be an n-fold pseudo implicative filter of E . Then by Theo-
rem 3.11(ii), xn → x2n ∈ F , for all x ∈ E and so xn → x2n ∈ G. Therefore,
G is an n-fold pseudo implicative filter of E .

We now define a sequence of subvarieties of the variety of EQ-algebras.

Definition 3.19. Let E be an EQ-algebra. Then E is called an EQn-
algebra, if for all x, y ∈ E, xn → y = xn+1 → y.

Example 3.20. Let E be the EQ-algebra as in Example 3.2. Then E is an
EQn-algebra, for all n ≥ 2.

Proposition 3.21. In any residuated EQn-algebra, n-fold filters and
n-fold pseudo implicative filters coincide.

Proof: By Proposition 3.6, each n-fold pseudo implicative filter of E is
an n-fold filter of E . Let F be an n-fold filter of E and xn+1 → y ∈ F .
Then by assumption, xn → y ∈ F and so by Theorem 3.11, F is an n-fold
pseudo implicative filter of E .

Proposition 3.22. Let E be a residuated EQ-algebra. Then E is an EQn-
algebra if and only if {1} is an n-fold pseudo implicative filter of E .

Proof: Let E be an EQn-algebra and xn+1 → y ∈ {1}. Then by Definition
3.19, xn → y ∈ {1} and so {1} is an n-fold pseudo implicative filter of E .

Conversely, let {1} be an n-fold pseudo implicative filter of E . Since

1 = x2n → xn+1 = (xn ⊗ xn) → xn+1 = xn → (xn → xn+1) ∈ {1}

and xn → xn = 1 ∈ {1}, then xn → xn+1 ∈ {1} and so xn ≤ xn+1. On the
other hands xn+1 = xn ⊗ x ≤ xn. Hence xn = xn+1. Therefore, E is an
EQn-algebra.
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Theorem 3.23. Let E be a residuated EQ-algebra. Then the following
conditions are equivalent:

(i) E is an EQn-algebra;

(ii) {1} is an n-fold pseudo implicative filter of E;

(iii) Each filter of E is an n-fold pseudo implicative filter of E;

(iv) x2n = xn, for all x ∈ E

Proof: (i) =⇒ (ii): By Proposition 3.22, the proof is clear.
(ii) =⇒ (iii): By Proposition 3.18, the proof is clear.
(iii) =⇒ (i): Since F = {1} is a filter of E , by (iii) and Proposition 3.22,
we have (i).
(i) =⇒ (iv): By (i) or equivalently (ii) and the proof of Proposition 3.22,
xn = xn+1. Thus

xn+2 = xn+1 ⊗ x = xn ⊗ x = xn+1 = xn.

By repeating this method, we have x2n = xn.
(iv) =⇒ (i): Let x2n = xn. Then xn → x2n = 1 and so xn → x2n ∈ {1}.
Hence by Theorem 3.11(ii), {1} is an n-fold pseudo implicative filter of E
and by Proposition 3.22, we have (i).

Theorem 3.24. Let E be a residuated EQ-algebra and F be a filter of E.
Then F is an n-fold pseudo implicative filter of E if and only if E/F is an
EQn-algebra.

Proof: By Theorem 3.11(ii), F is an n-fold pseudo implicative filter of E
if and only if xn → x2n ∈ F , for all x ∈ E if and only if [x]n → [x]2n =
[xn → x2n] = [1] if and only if by Theorem 3.23, {[1]} is an n-fold pseudo
implicative filter of E/F if and only if E/F is an EQn-algebra.

4. n-fold implicative prefilters in EQ-algebras

In this section, we introduce the concept of an n-fold implicative prefilters
in EQ-algebras and investigate some properties of them. We define an
n-fold implicative EQ-algebra and show that in good EQ-algebra E with
least element 0 a prefilter F is an n-fold implicative prefilter of E if and
only if E/F is an n-fold implicative EQ-algebra.
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Definition 4.1. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold implicative prefilter of E , if for all x, y, z ∈ E,

(i) 1 ∈ F ;

(ii) z → ((xn → y) → x) ∈ F and z ∈ F imply x ∈ F .

Obviously each implicative prefilter is an n-fold implicative prefilter (for
n = 1). But the converse is not true.

Example 4.2.

(i) Let E be the EQ-algebra as in Example 3.2. Suppose F = {1, c}.
Then F is a 2-fold implicative prefilter of E . Since 1 → ((a → 0) →
a) = 1 ∈ F and 1 ∈ F but a /∈ F , we get F is not an implicative
prefilter of E .

(ii) According to Example 3.4, if F = {1, a, b}, then F is an n-fold im-
plicative filter of E , for all n ∈ N and F = {1, a} is not an n-fold
implicative filter of E , because 1 → ((b → 0) → b) = 1 ∈ F and 1 ∈ F
but b /∈ F .

Proposition 4.3. Let E be an EQ-algebra and F be an n-fold implicative
prefilter of E . Then F is an n-fold prefilter of E , for all n ∈ N.

Proof: Let xn ∈ F and xn → y ∈ F . Since y ≤ 1 → y, we have xn → y ≤
xn → (1 → y) and so xn → (1 → y) ∈ F . Thus xn → ((yn → 1) → y) ∈ F .
Since F is an n-fold implicative prefilter of E and xn ∈ F , we have y ∈ F .
Hence F is an n-fold prefilter of E , for all n ∈ N.

In the next example, we show that the converse of Proposition 4.3 is
not true.

Example 4.4. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, b}. Then F is a 2-fold filter of E . Since 1 → ((a2 → 0) → a) = 1 ∈ F
and 1 ∈ F but a /∈ F , we get F is not a 2-fold implicative filter of E .

Theorem 4.5. Let E be a good EQ-algebra with least element 0 and F be
a prefilter of E. Then, for all x, y ∈ E and n ∈ N the following statements
are equivalent:

(i) F is an n-fold implicative prefilter;

(ii) (xn → 0) → x ∈ F implies x ∈ F ;

(iii) (xn → y) → x ∈ F implies x ∈ F .
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Proof: (i) =⇒ (iii): Let F be an n-fold implicative prefilter of E and
(xn → y) → x ∈ F . Then by goodness we have 1 → ((xn → y) → x) =
(xn → y) → x ∈ F . Since 1 ∈ F , by (i), we get x ∈ F .
(iii) =⇒ (ii): The proof is clear.
(ii) =⇒ (i): Let x → ((yn → z) → y) ∈ F and x ∈ F . Since F is a
prefilter of E , we get (yn → z) → y ∈ F . Moreover, from 0 ≤ z, we
obtain yn → 0 ≤ yn → z and (yn → z) → y ≤ (yn → 0) → y. Hence
(yn → 0) → y ∈ F . Thus by (ii), y ∈ F . Therefore, F is an n-fold
implicative prefilter of E .

Proposition 4.6. Let E be a good EQ-algebra with least element 0. If F
is an n-fold implicative prefilter of E , then F is an n + 1-fold implicative
prefilter of E .

Proof: Let F be an n-fold implicative prefilter of E such that (xn+1 →
0) → x ∈ F . Then by Proposition 2.2(iv), from xn+1 ≤ xn we have
xn → 0 ≤ xn+1 → 0 and so (xn+1 → 0) → x ≤ (xn → 0) → x. Since F is
prefilter, we have (xn → 0) → x ∈ F and by assumption x ∈ F . Therefore,
F is an n+ 1-fold implicative prefilter of E .

The next example shows that the converse of Proposition 4.6, is not
true.

Example 4.7. Let E be the EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold implicative prefilter of E . Since (a → 0) → a =
1 ∈ F but a /∈ F , we get F is not a 1-implicative prefilter of E .

Theorem 4.8. Let E be a residuated EQ-algebra. Then each n-fold im-
plicative filter of E is an n-fold pseudo implicative filter of E.

Proof: Let F be an n-fold implicative filter of E and xn+1 → y ∈ F .
Then by Propositions 2.2(iii) and 2.7(iv), we have

(xn+1 → y)n → (xn → y)

= (xn+1 → y)n−1 → ((xn+1 → y) → (xn → y))

= (xn+1 → y)n−1 → ((xn+1 → y) → (xn−1 → (x → y))

= (xn+1 → y)n−1 → ((xn−1 → ((xn+1 → y) → (x → y)))

= (xn+1 → y)n−1 → (xn−1 → ((x → (xn → y)) → (x → y)))

≥ (xn+1 → y)n−1 → (xn−1 → ((xn → y) → y))
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= (xn+1 → y)n−1 → ((xn → y) → (xn−1 → y))

= (xn → y) → ((xn+1 → y)n−1 → (xn−1 → y)).

Since xn+1 → y ≤ xn+1 → y = x → (xn → y), we have x⊗ (xn+1 → y) ≤
xn → y. Then

(xn → y)⊗ (xn+1 → y)n−1 ⊗ xn−1 ≤ (xn → y)2 ⊗ (xn+1 → y)n−2 ⊗ xn−2,

Hence
((xn → y)2 ⊗ (xn+1 → y)n−2 ⊗ xn−2) → y ≤ ((xn → y) ⊗ (xn+1 →
y)n−1 ⊗ xn−1) → y and so
(xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y)) ≤ (xn → y) → ((xn+1 →
y)n−1 → (xn−1 → y)), By (4.1), we have

(xn+1 → y)n → (xn → y) ≥ (xn → y) → ((xn+1 → y)n−1 → (xn−1 → y)).

Then

(xn+1 → y)n → (xn → y)

≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y)).

Hence, by repeating this method n-times we get:

(xn+1 → y)n → (xn → y) ≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y))

...

≥ (xn → y)n → ((xn+1 → y)0 → (x0 → y))

= (xn → y)n → (1 → (1 → y))

= (xn → y)n → y.

Thus
(xn+1 → y)n → (((xn → y)n → y) → (xn → y)) = 1.

Since F is an n-fold filter of E and xn+1 → y ∈ F , we get ((xn → y)n →
y) → (xn → y) ∈ F . Hence, by Theorem 4.5(iii), xn → y ∈ F . Therefore,
by Theorem 3.11, F is an n-fold pseudo implicative filter of E .

The following example shows that the converse of Theorem 4.8 is not
true.
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Example 4.9. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, a}. Then F is a 2-fold pseudo implicative prefilter of E . Since (b2 →
0) → b = 1 ∈ F but b /∈ F , we have F is not a 2-fold implicative prefilter
of E .

Definition 4.10. Let E be an EQ-algebra. Then E is called an n-fold
implicative EQ-algebra, if for all x, y ∈ E, (xn → y) → x = x.

Example 4.11.

(i) Let E be the EQ-algebra as in Example 3.2. Then E is an n-fold
implicative EQ-algebra, for all n ≥ 2.

(ii) Let E be the EQ-algebra as in Example 3.4. Since (an → 0) → a =
1 ̸= a, we have E is not an n-fold implicative algebra of E , for all
n ∈ N.

Proposition 4.12. Every n-fold implicative EQ-algebra is an n + 1-fold
implicative EQ-algebra.

Proof: Let E be an n-fold implicative EQ-algebra. Then (xn → y) →
x = x, for all x, y ∈ E. Since xn+1 = xn ⊗ x ≤ xn, by Proposition 2.2(iv),
we have xn → y ≤ xn+1 → y and so (xn+1 → y) → x ≤ (xn → y) → x = x.
By Proposition 2.2(ii), x ≤ (xn+1 → y) → x. Hence (xn+1 → y) → x = x
and so E is an n+ 1-fold implicative EQ-algebra.

The next example shows that the converse of Proposition 4.12, is not
true.

Example 4.13. Let E be the EQ-algebra as in Example 3.2. Then E is a
2-fold implicative EQ-algebra. Since (a → 0) → a = 1 ̸= a, we get E is not
a 1-fold implicative EQ-algebra.

Lemma 4.14. In a good n-fold implicative EQ-algebra concepts of n-fold
implicative prefilter and n-fold prefilter are coincide.

Proof: Let F be an n-fold implicative prefilter of E . Then by Proposition
4.3, F is an n-fold prefilter of E .

Conversely, let F be an n-fold prefilter of E and (xn → y) → x ∈ F .
Then by Definition 4.10, x ∈ F . Hence, F is an n-fold implicative prefilter
of E .
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Proposition 4.15. Let E be a good EQ-algebra with least element 0.
Then the following statements are equivalent:

(i) E is an n-fold implicative EQ-algebra.

(ii) Every n-fold prefilter of E is an n-fold implicative prefilter of E .

(iii) {1} is an n-fold implicative prefilter of E .

Proof: (i) =⇒ (ii): By Lemma 4.14, the proof is clear.
(ii) =⇒ (iii): By Proposition 3.9, the proof is clear.
(iii) =⇒ (i): Let {1} be an n-fold implicative prefilter of E , x ∈ E and
t = ((xn → 0) → x) → x. Then by Propositions 2.2(iii) and 2.7(iv), we
have:

(tn → 0) → t = (tn → 0) → (((xn → 0) → x) → x)

= ((xn → 0) → x) → ((tn → 0) → x)

≥ (tn → 0) → (xn → 0)

≥ xn → tn.

By Proposition 2.2(ii), x ≤ (xn → 0) → x = t and so xn ≤ tn. Hence
(tn → 0) → t = 1 ∈ {1}. Then by (iii), t = ((xn → 0) → x) → x ∈ {1}
and so (xn → 0) → x ≤ x. By Proposition 2.2(ii), x ≤ (xn → 0) → x.
Thus (xn → 0) → x = x, for all x ∈ E. Therefore, E is an n-fold implicative
EQ-algebra.

Theorem 4.16. Let E be a good EQ-algebra with least element 0 and F be
a prefilter of E. Then F is an n-fold implicative prefilter of E if and only
if E/F is an n-fold implicative EQ-algebra.

Proof: Let F be an n-fold implicative prefilter of E and x ∈ E such that
([x]n → [0]) → [x] = [1]. Then (xn → 0) → x ∈ F . Thus by Theorem
4.5, x ∈ F , and so [x] = [1]. Hence, {[1]} is an n-fold implicative prefilter
of E/F . Therefore, by Proposition 4.15, E/F is an n-fold implicative EQ-
algebra.

Conversely, let E/F be an n-fold implicative EQ-algebra and x ∈ E
such that (xn → 0) → x ∈ F . Then [x] = ([x]n → [0]) → [x] = [(xn →
0) → x] = [1] and so [x] = [1], that is x ∈ F . Therefore, F is an n-fold
implicative prefilter of E .
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Corollary 4.17. Let F and G be prefilters of good EQ-algebra E with
least element 0 such that F ⊆ G and F be an n-fold implicative prefilter
of E . Then G is an n-fold implicative prefilter of E .

Proof: Let x ∈ E such that (xn → 0) → x ∈ G. Since F is an n-
fold implicative prefilter of E , by Theorem 4.16 we have E/F is an n-fold
implicative EQ-algebra. Then [(xn → 0) → x] = ([x]n → [0]) → [x] = [x]
and so ((xn → 0) → x) → x ∈ F ⊆ G. Hence, by assumption, x ∈ G.
Therefore, G is an n-fold implicative prefilter of E .

5. n-fold obstinate prefilters in EQ-algebras

In this section, we introduce the concept of n-fold obstinate prefilters in
EQ-algebras and investigate some properties. We also show that, a filter
{1} is an n-fold obstinate filter of residuated EQ-algebra E if and only if
every filter of E is an n-fold obstinate filter of E and in each residuated
EQ-algebra E , a filter F is an n-fold obstinate filter of E if and only if
every filter of quotient algebra E/F is an n-fold obstinate filter of E .

Definition 5.1. Let F be a prefilter of EQ-algebra E . Then F is called
an n-fold obstinate prefilter of E , if x, y /∈ F implies xn → y ∈ F and
yn → x ∈ F .

Example 5.2.

(i) Let E be the EQ-algebra as in Example 3.2. Suppose F = {1, c}.
Then F is an n-fold obstinate filter of E , for all n ≥ 2.

(ii) Let E be the EQ-algebra as in Example 3.4. Suppose F = {1, b}.
Then F is a filter and n-fold filter of E , for all n ∈ N. Since a, 0 /∈ F
and an → 0 = a → 0 = 0 /∈ F , we get F is not an n-fold obstinate
filter of E , for all n ≥ 2.

Proposition 5.3. Let E be an EQ-algebra. Then every n-fold obstinate
prefilter is an n+ 1-fold obstinate prefilter of E .

Proof: Let F be an n-fold obstinate prefilter of E and x, y /∈ F . Then
xn → y, yn → x ∈ F . Since xn+1 ≤ xn by Proposition 2.2(ii), xn → y ≤
xn+1 → y. Thus xn+1 → y ∈ F and similarly yn+1 → x ∈ F . Therefore,
F is an n+ 1-fold prefilter of E .
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The next example shows that the converse of Proposition 5.3, is not
true.

Example 5.4. Let E be the EQ-algebra as in Example 3.2. Suppose F =
{1, c}. Then F is a 2-fold obstinate filter of E . Since 0, a /∈ F , we have
a → 0 = a /∈ F . Thus F is not a 1-fold obstinate filter of E .

Theorem 5.5. Let E be an EQ-algebra with least element 0 and F be a
prefilter of E. Then F is an n-fold obstinate prefilter if and only if x ∈ F
or (¬(xn))m ∈ F , for all x ∈ E and some m ∈ N.

Proof: Let F be an n-fold obstinate prefilter of E such that x /∈ F . Since
F is a filter of E , we have 0 /∈ F . Then ¬(xn) = xn → 0 ∈ F and
0n → x ∈ F . Hence, for m = 1 we have, (¬(xn))m ∈ F .

Conversely, let x, y /∈ F . Then (¬(xn))m ∈ F and (¬(yn))k ∈ F ,
for some m, k ∈ N. Thus by Proposition 2.2(i), (¬(xn))m ≤ ¬(xn) and
(¬(yn))k ≤ ¬(yn) and so ¬(xn),¬(yn) ∈ F . By Proposition 2.2(iv), xn →
0 ≤ xn → y and yn → 0 ≤ yn → x. Hence, xn → y, yn → x ∈ F .
Therefore, F is an n-fold obstinate prefilter of E .

Theorem 5.6. Let E be a residuated EQ-algebra with least element 0 and
F be a filter of E. Then the following statements are equivalent:

(i) F is a maximal filter of E;

(ii) For any x /∈ F , there exists n ∈ N such that ¬(xn) ∈ F .

Proof: (i) ⇒ (ii): Let F be a maximal filter of E and x /∈ F . Then
< F ∪ {x} >= E and so 0 ∈< F ∪ {x} >. Thus x → 0 ∈ F . Hence,
¬x ∈ F .
(ii) ⇒ (i): Let G be a proper filter of E such that F ⊊ G. Then there exists
x ∈ G such that x /∈ F . Thus, there exists n ∈ N such that ¬(xn) ∈ F or
x → (x → (...(x → 0)...)) ∈ F ⊊ G. Since G is a filter of E , we get 0 ∈ G.
Hence G = E, which is a contradiction. Therefore, F is a maximal filter
of E .

Corollary 5.7. Let E be a residuated EQ-algebra with least element 0.
Then every proper n-fold obstinate filter of E is a maximal filter of E , for
all n ∈ N.

Proof: Let F be an n-fold obstinate filter of E and G be a filter of E such
that F ⊆ G ⊆ E. If F ̸= G, then there exists x ∈ G such that x /∈ F . Since
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0, x /∈ F , by assumption xn → 0 ∈ F and so ¬(xn) ∈ G. Hence 0 ∈ G and
so G = E. Therefore, F is a maximal filter of E .

Proposition 5.8. Let E be an EQ-algebra and F be an n-fold obstinate
prefilter of E . Then F is an n-fold implicative prefilter of E .

Proof: Let F be an n-fold obstinate prefilter of E but not an n-fold im-
plicative prefilter of E . Then there exist x, y ∈ E such that (xn → y) →
x ∈ F but x /∈ F . Let y ∈ F . Since y ≤ xn → y, we have xn → y ∈ F
and so x ∈ F , which is a contradiction. If y /∈ F , then by assumption
xn → y ∈ F and so x ∈ F , which is a contradiction. Therefore, F is an
n-fold implicative prefilter of E .

The following example shows that the converse of Proposition 5.8, is
not true.

Example 5.9. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, a, b}. Then F is an n-fold implicative filter of E , for all n ≥ 2. Since
0, a /∈ F and an → 0 = 0 /∈ F , we get F is not an n-fold obstinate filter
of E .

Theorem 5.10. Let E be a residuated EQ-algebra and F be an n-fold ob-
stinate filter of E. Then F is an n-fold pseudo implicative filter of E.

Proof: By Theorem 4.8 and Proposition 5.8, the proof is clear.

The following example shows that the converse of Theorem 5.10, is not
true.

Example 5.11. Let E be the EQ-algebra as in Example 3.4. Suppose F =
{1, a}. Then F is an n-fold pseudo implicative filter of E . Since 0, b /∈ F
and bn → 0 = 0 /∈ F , we have F is not an n-fold obstinate filter of E , for
all n ≥ 2.

Proposition 5.12. Filter {1} is an n-fold obstinate filter of residuated
EQ-algebra E if and only if every filter of E is an n-fold obstinate filter
of E .

Proof: Let F be a filter of E and x, y /∈ F . Then x, y /∈ {1} and so
xn → y ∈ {1} ⊆ F and yn → x ∈ {1} ⊆ F . Hence, F is an n-fold obstinate
filter of E . The proof of the converse is clear.
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Theorem 5.13. Let E be a residuated EQ-algebra and F be a filter of E.
Then F is an n-fold obstinate filter of E if and only if every filter of quotient
algebra E/F is an n-fold obstinate filter of E/F .

Proof: Let F be an n-fold obstinate filter of E and x ∈ E such that [x] ̸=
[1]. Then x /∈ F and so there exists m ∈ N such that (¬(xn))m ∈ F and
so [(¬(xn))m] ∈ {[1]}. Hence by Theorem 5.5, {[1]} is an n-fold obstinate
filter of E/F . Therefore, by Proposition 5.12, each filter of the quotient
algebra E/F is an n-fold obstinate filter.

Conversely, let every filter of the quotient algebra E/F be an n-fold
obstinate filter of E/F and x ∈ E such that x /∈ F . Then [x] ̸= [1].
Since {[1]} is a filter of E/F , by assumption, {[1]} is an n-fold obstinate
filter of E , and so there exists m ∈ N such that [(¬(xn))m] ∈ {[1]}. Thus
(¬(xn))m ∈ F . Hence, by Theorem 5.5, F is an n-fold obstinate filter
of E .

6. n-fold fantastic prefilters in EQ-algebras

In this section, we introduce the concept of n-fold fantastic prefilters in
EQ-algebras and investigate some properties about them. Then we prove
that in any good EQ-algebra, if F is an 1-fold fantastic filter of E , then E/F
is an IEQ-algebra, and we show that in any residuated EQ-algebra with
least element 0, F is an n-fold implicative filter of E if and only if F is an n-
fold pseudo implicative filter and n-fold fantastic filter of E . So we conclude
that in any residuated EQ-algebra, E is an n-fold implicative EQ-algebra
if and only if E is both EQn-algebra and n-fold fantastic EQ-algebra.

Definition 6.1. Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called an n-fold fantastic prefilter of E , if for all x, y ∈ E,

(i) 1 ∈ F ;

(ii) z → (y → x) ∈ F and z ∈ F , imply ((xn → y) → y) → x ∈ F .

An n-fold fantastic prefilter F is said to be an n-fold fantastic filter if F
satisfies in (F3).

Example 6.2. (i) Let E be the EQ-algebra as in Example 3.2. Suppose
F = {1, c}. Then F is an n-fold fantastic filter of E , for all n ≥ 2.
(ii) Let E be the EQ-algebra as in Example 3.4. Suppose F = {1, b}. Since
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1 → (0 → a) = 1 ∈ F and 1 ∈ F but ((an → 0) → 0) → a = a /∈ F , we get
F is not an n-fold fantastic prefilter of E , for all n ∈ N.
Theorem 6.3. Let F be a prefilter of good EQ-algebra E. Then F is an
n-fold fantastic prefilter of E if and only if y → x ∈ F implies ((xn → y) →
y) → x ∈ F , for all x, y ∈ E.

Proof: Let F be an n-fold fantastic prefilter of E and y → x ∈ F . Then
1 → (y → x) = y → x ∈ F and 1 ∈ F . Hence ((xn → y) → y) → x ∈ F ,
for all x, y ∈ E.

Conversely, let z → (y → x) ∈ F and z ∈ F . Since F is a prefilter of E ,
we get y → x ∈ F and so ((xn → y) → y) → x ∈ F . Then F is an n-fold
fantastic prefilter of E .
Proposition 6.4. Each n-fold fantastic prefilter of good EQ-algebra E is
an n-fold prefilter of E .
Proof: Let xn, xn → y ∈ F . Then xn → y = xn → (1 → y) ∈ F . Since
F is an n-fold fantastic prefilter of E , we get ((yn → 1) → 1) → y = y ∈
F .

The next example shows that the converse of Proposition 6.4 is not true
and condition of goodness is necessary.

Example 6.5. Let E be the EQ-algebra as in Example 3.4.

(i) Suppose F = {1, b}. Then F is a 2-fold filter of E . Since 1 → (0 →
a) = 1 ∈ F and 1 ∈ F but ((an → 0) → 0) → a = a /∈ F , we get F is not a
2-fold fantastic filter of E .
(ii) Since b ∼ 1 ̸= b, we get E is not a good EQ-algebra. Let F = {1, a}.
Then F is an n-fold fantastic filter of E , for all n ∈ N. Since an = a ∈ F
and an → b = 1 ∈ F but b /∈ F , we have F is not an n-fold filter of E , for
all n ∈ N.
Proposition 6.6. Let F and G be two prefilters of good EQ-algebra E
such that F ⊆ G. If F is an n-fold fantastic prefilter of E , then so is G.

Proof: Let y → x ∈ G and k := (y → x) → x. Then

y → k = y → ((y → x) → x) = (y → x) → (y → x) = 1 ∈ F.

Since F is an n-fold fantastic prefilter of E , we have

(y → x) → (((kn → y) → y) → x) = ((kn → y) → y) → ((y → x) → x)

= ((kn → y) → y) → k ∈ F ⊆ G.
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Since G is a filter of E and y → x ∈ G, we get ((kn → y) → y) → x ∈ G.
Moreover, from x ≤ k = (y → x) → x, we get kn → y ≤ xn → y and so

((kn → y) → y) → x ≤ ((xn → y) → y) → x.

Hence ((xn → y) → y) → x ∈ G. Therefore, G is an n-fold fantastic
prefilter of E .

Definition 6.7. Let E be an EQ-algebra. Then E is called an n-fold
fantastic EQ-algebra, if for all x, y ∈ E, ((xn → y) → y) → x = y → x.

Example 6.8. (i) Let E be the EQ-algebra as in Example 3.2. Then E is
an n-fold fantastic EQ-algebra, for all n ≥ 2.
(ii) Let E be the EQ-algebra as in Example 3.4. Since ((an → 0) → 0) →
a = a ̸= 0 → a = 1, we have E is not an n-fold fantastic EQ-algebra.

Proposition 6.9. Let E be an n-fold fantastic EQ-algebra and F be a
prefilter of E . Then F is an n-fold fantastic prefilter of E
Proof: The proof is clear.

Theorem 6.10. Let E be a residuated EQ-algebra E. Then, for all x, y, z ∈
E the following conditions are equivalent:

(i) E is an n-fold fantastic EQ-algebra;

(ii) (xn → y) → y ≤ (y → x) → x;

(iii) If xn → z ≤ y → z and z ≤ x, then y ≤ x;

(iv) If xn → z ≤ y → z and z ≤ x, y, then y ≤ x;

(v) If y ≤ x, then (xn → y) → y ≤ x.

Proof: (i) =⇒ (ii): Let E be an n-fold fantastic EQ-algebra. Then

((xn → y) → y) → ((y → x) → x) = (y → x) → (((xn → y) → y) → x)

= (y → x) → (y → x)

= 1.

Hence by Proposition 2.6, (xn → y) → y ≤ (y → x) → x.
(ii) =⇒ (i): Let (xn → y) → y ≤ (y → x) → x, for all x, y ∈ E. Then

(y → x) → (((xn → y) → y) → x) = ((xn → y) → y) → ((y → x) → x)

= 1.



480 Batoul Ganji Saffar, Mona Aaly Kologani, Rajab Ali Borzooei

Thus y → x ≤ ((xn → y) → y) → x. Also,

(((xn → y) → y) → x) → (y → x) ≥ y → ((xn → y) → y)

= (xn → y) → (y → y)

= (xn → y) → 1

= 1.

Then (((xn → y) → y) → x) → (y → x) = 1 and so (((xn → y) → y) →
x) ≤ y → x. Hence ((xn → y) → y) → x = y → x. Therefore, E is an
n-fold fantastic EQ-algebra.
(ii) =⇒ (iii): Let xn → z ≤ y → z and z ≤ x. Then by (ii), we have

1 = (xn → z) → (y → z) = y → ((xn → z) → z) ≤ y → ((z → x) → x)

= y → (1 → x)

= y → x.

Thus y → x = 1 and so y ≤ x.
(iii) =⇒ (iv): The proof is clear.
(iv) =⇒ (v): Let y ≤ x. Since y ≤ (xn → y) → y and

(xn → y) → (((xn → y) → y) → y) = ((xn → y) → y)) → ((xn → y) → y)

= 1,

we have xn → y ≤ (((xn → y)) → y) → y and so by (iv), (xn → y) → y ≤
x.
(v) =⇒ (ii): Since x ≤ (y → x) → x, by induction we have ((y → x) →
x)n → y ≤ xn → y and (xn → y) → y ≤ (((y → x) → x)n → y) → y. By
Proposition 2.7(ii), we have y ≤ (y → x) → x and by (v) we get

(xn → y) → y ≤ (((y → x) → x)n → y) → y ≤ (y → x) → x.

Proposition 6.11. Let E be a residuated EQ-algebra. Then E is an n-fold
fantastic EQ-algebra if and only if {1} is an n-fold fantastic filter of E .

Proof: Let E be an n-fold fantastic EQ-algebra and y → x = 1. Then
((xn → y) → y) → x = 1. Hence {1} is an n-fold fantastic filter of E .

Conversely, let {1} be an n-fold fantastic filter of E and k = (y → x) →
x. Then
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y → k = y → ((y → x) → x) = (y → x) → (y → x) = 1 ∈ {1},

and so ((kn → y) → y) → k = 1 that is (kn → y) → y ≤ k. Since
x ≤ k, we get kn → y ≤ xn → y and (xn → y) → y ≤ (kn → y) → y.
Thus 1 = ((kn → y) → y) → k ≤ ((xn → y)) → y) → k. Hence
((xn → y) → y) → k = 1. So ((xn → y) → y) → ((y → x) → x) = 1. Thus
(xn → y) → y ≤ (y → x) → x. Therefore, by Theorem 6.10, E is an n-fold
fantastic EQ-algebra.

Lemma 6.12. Each filter of residuated EQ-algebra E is an n-fold fantastic
filter of E if and only if {1} is an n-fold fantastic filter of E.

Proof: Let F be a filter of E and {1} be an n-fold fantastic filter of
E . Then by Proposition 6.11, E is an n-fold fantastic EQ-algebra and so
by Proposition 6.9, F is an n-fold fantastic filter of E . The proof of the
converse is clear.

Theorem 6.13. Let E be a residuated EQ-algebra and F be a filter of E.
Then F is an n-fold fantastic filter of E if and only if every filter of E/F
is an n-fold fantastic filter of E/F .

Proof: Let F be an n-fold fantastic filter of E and [x] → [y] = [1]. Then
x → y ∈ F and so ((yn → x) → x) → y ∈ F . Hence

(([y]n → [x]) → [x]) → [y] = [((yn → x) → x) → y] = [1].

Thus {[1]} is an n-fold fantastic filter of E/F . By Lemma 6.12, every filter
of E/F is an n-fold fantastic filter of E/F .

Conversely, let every filter of E/F be an n-fold fantastic filter of E/F
and let y → x ∈ F . Then [y] → [x] = [y → x] = [1]. Since {[1]} is an n-fold
fantastic filter of E/F , we have

[((xn → y) → y) → x] = (([x]n → [y]) → [y]) → [x] = [1].

Hence ((xn → y) → y) → x ∈ F and so F is an n-fold fantastic filter
of E .

Theorem 6.14. Let E be a good EQ-algebra with least element 0 and F
be a filter of E. If F is an 1-fold fantastic filter of E, then E/F is an
IEQ-algebra.

Proof: By Theorem 2.17, E is a good EQ-algebra. Since 0 → x = 1 ∈ F ,
we have
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((x → 0) → 0) → x = ¬(¬x) → x ∈ F

and so [¬(¬x)] ≤ [x]. By Proposition 2.7(ii), [x] ≤ [¬(¬x)]. Hence
[¬(¬x)] = [x] and so E/F is an IEQ-algebra.

By Theorem 4.8, we see that in residuated EQ-algebra such as E , ev-
ery n-fold implicative filter is an n-fold pseudo implicative filter, but the
converse is not true. Now, we show that under certain conditions an n-fold
pseudo implicative filter of E is an n-fold implicative filter of E .

Theorem 6.15. Let E be a residuated EQ-algebra and F be a filter of E.
If F is an n-fold implicative filter of E, then F is an n-fold fantastic filter
of E, for all n ∈ N.

Proof: Let F be an n-fold implicative filter of E and y → x ∈ F . Since
x ≤ ((xn → y) → y) → x, we have xn ≤ (((xn → y) → y) → x)n and
(((xn → y) → y) → x)n → y ≤ xn → y. Also, we have

y → x ≤ ((xn → y) → y) → ((xn → y) → x)

= (xn → y) → (((xn → y) → y) → x)

≤ ((((xn → y) → y) → x)n → y) → (((xn → y) → y) → x).

Thus

((((xn → y) → y) → x)n → y) → (((xn → y) → y) → x) ∈ F

and so by Theorem 4.5(iii), ((xn → y) → y) → x ∈ F . Therefore, F is an
n-fold fantastic filter of E .

Theorem 6.16. Let F be a filter of residuated EQ-algebra E with least
element 0. Then F is an n-fold implicative filter of E if and only if F is
an n-fold pseudo implicative filter and n-fold fantastic filter of E.

Proof: Let F be an n-fold pseudo implicative filter and n-fold fantastic
filter of E and (xn → 0) → x ∈ F . Since xn → x2n ≤ (x2n → 0) → (xn →
0), by Theorem 3.11, we have xn → x2n ∈ F and so (x2n → 0) → (xn →
0) ∈ F . Also, F is an n-fold fantastic filter of E and (xn → 0) → x ∈ F .
Thus

((xn → (xn → 0)) → (xn → 0)) → x = ((x2n → 0) → (xn → 0)) → x ∈ F.
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On the other hand, since (x2n → 0) → (xn → 0) ∈ F and F is a filter of
E , we get x ∈ F . Hence, F is an n-fold implicative filter of E .
By Theorems 6.15 and 4.8, the proof of the converse is clear.

Theorem 6.17. Let E be a residuated EQ-algebra. Then E is an n-fold
implicative EQ-algebra if and only if E is both n-fold pseudo implicative
EQ-algebra and n-fold fantastic EQ-algebra.

Proof: Let E be an n-fold implicative EQ-algebra. Then by Proposition
4.15, {1} is an n-fold implicative filter of E . Thus by Proposition 3.9, The-
orems 6.15 and 4.8, {1} is an n-fold fantastic filter and pseudo implicative
filter of E and so by Propositions 6.11 and 3.22, E is both n-fold positive
implicative EQ-algebra and n-fold fantastic EQ-algebra.

Conversely, let E be both n-fold pseudo implicative EQ-algebra and
n-fold fantastic EQ-algebra and u = xn → y. Then

u = xn → y = x2n → y = xn → (xn → y) = xn → u.

By Theorem 6.10(ii), we have

((xn → y) → x) → x = (u → x) → x ≥ (xn → u) → u = u → u = 1.

Hence (xn → y) → x ≤ x. By Proposition 2.2(ii), x ≤ (xn → y) → x.
Thus (xn → y) → x = x. Therefore, E is an n-fold implicative EQ-
algebra.

7. Conclusion

In this paper, the notions of n-fold implicative prefilter, n-fold pseudo im-
plicative prefilter, n-fold fantastic prefilter, n-fold obstinate prefilter are
introduced and some related results are investigated. At first, equivalent
definition of them are studied and the relation between them are investi-
gated. Then by introducing the notions of n-fold (pseudo) implicative EQ-
algebra and n-fold fantastic EQ-algebra, some related results are studied.
In addition, by using the concept of 1-fold pseudo implicative filter of an
EQ-algebra E , it is shown that E/F is a good EQ-algebra and by using the
concept of 1-fold fantastic filter of a good EQ-algebra E , it is shown that
E/F is an IEQ-algebra.
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Abstract

G3 is Gödelian 3-valued logic, G3≤ L is its paraconsistent counterpart and G31
 L is

a strong extension of G3≤ L . The aim of this paper is to endow each one of the

logics just mentioned with a 2 set-up binary Routley semantics.
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1. Introduction

The aim of this paper is to define a 2 set-up binary Routley semantics (2bR-

semantics) for each one of the logics G3, G3≤ L and G31
 L. G3 is Gödelian

3-valued logic (cf. [3]), G3≤ L is the paraconsistent counterpart to G3 and

G31
 L is a strong extension of G3≤ L . The logics G3≤ L and G31

 L were intro-
duced in [6]. Proof-theoretically, they were defined as Hilbert-type systems.
Semantically, “two-valued” Belnap-Dunn semantics was the tool to inter-
pret them. Nevertheless, they were endowed with a general Routley-Meyer
semantics in [4] and with a binary Routley one in [7]. Recently, Avron
(cf. [1]) has provided Gentzen-type calculi equivalent to the Hilbert-type

formulations for G3≤ L and G31
 L defined in [6].

2 set-up Routley-Meyer semantics (2RM-semantics) is introduced in [2],
where the logics BN4, RM3 and  Lukasiewicz’s 3-valued logic  L3 are in-
terpreted with said semantics. Additionally, the logic E4 is also given a

Presented by: Norihiro Kamide
Received: August 30, 2021
Published online: October 14, 2022

© Copyright by Author(s),  Lódź 2022
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2RM-semantics in [5]. 2RM-semantics is a particular class of the general
Routley-Meyer semantics (cf. [10, Chapter 4]) adequate for interpreting
some finite many-valued logics. 2RM-models are based upon structures of
the type (K,R, ∗), where K is a 2 set-up set, ∗ is the Routley operator and
R is the ternary relation on K characteristic of the general Routley-Meyer
semantics.

On the other hand, 2 set-up binary Routley semantics (2bR-semantics)
is going to be introduced for the first time in the present paper, to the
best of our knowledge. As it is the case with general Routley-Meyer se-
mantics and 2RM-semantics, 2bR-semantics is a particular class of general
binary Routley semantics, introduced in [7]. 2bR-semantics is adequate for
interpreting some finite many-valued logics. 2bR-models are based upon
structures of the type (K,R, ∗), where K and ∗ are defined similarly as in
2RM-semantics, but R is a binary relation on K, instead of a ternary one.

It is our opinion that a semantic interpretation S of a given logic L
alternative to the standard one, especially if it is a simple one, as it is
the case with 2bR-semantics, sheds new light not only on the alternatively
interpreted logic L, but also on the connection between L and the class
of logics SL interpreted with S, as well as on the elements of the class SL
itself. In this regard, we hope that the 2bR-semantics for G3, G3≤ L and G31

 L

introduced in the present paper will be useful in the sense just explained,
but also in illustrating how the much discussed Routley-Meyer semantics
(cf., e.g., [8] and the references therein) behave in the simple setting of a
two-element model.

The structure of the paper is as follows. In Section 2, the definition
of the logics G3≤ L , G31

 L and G3 is recalled. In Section 3, G3≤ L is given a

2bR-semantics (a 2bRG3≤ L -semantics) and the (strong) soundness theorem

w.r.t. 2bRG3≤ L -semantics is proved. In Section 4, it is shown that G3≤ L
is (strongly) complete w.r.t. 2bRG3≤ L -semantics by using a proof based
upon a canonical model construction. In Section 5, (resp., Section 6), we
give a 2bRG31

 L-semantics (resp., a 2bRG3-semantics) for G31
 L (resp., G3).

Then, the results in Section 3 and Section 4 are essentially used to prove
(strong) soundness and completeness theorems for G31

 L and G3 w.r.t. their
respective 2bR-semantics.



A 2 Set-Up Binary Routley Semantics for Gödelian. . . 489

2. The logics G3≤
 L , G31

 L and G3

In this section, the logics G3≤ L , G31
 L and G3 are defined. Firstly, some

preliminary notions are noted. Then, we define the matrices MG3 L and
MG3.

Definition 2.1 (Some preliminary notions). The propositional language
consists of a denumerable set of propositional variables p0, p1, ..., pn, ..., and
some or all of the following connectives: → (conditional), ∧ (conjunction),
∨ (disjunction) and ¬ (negation). The biconditional (↔) and the set of
formulas (wffs) are defined in the customary way. A, B, etc, are metalin-
guisitic variables. Logics are formulated as Hilbert-type axiomatic systems,
the notions of “theorem” and “proof from a set of premises” being the
usual ones, while the following notions are understood in a fairly standard
sense (cf., e.g., [9]): extension and expansion of a given logic; logical ma-
trix M and M-interpretation, M-consequence and M-validity and finally,
M-determined logic.

Definition 2.2 (The matrices MG3 L and MG3). The matrix MG3 L is the
structure (V, D, F) where (1) V is {0, 1

2 , 1} with 0 < 1
2 < 1; (2) D = {1};

(3) F = {f→, f∧, f∨, f¬} where f∧ and f∨ are defined as the glb (or lattice
meet) and the lub (or lattice joint), respectively, and f¬ is an involution
with f¬(1) = 0, f¬(0) = 1, f¬( 1

2 ) = ( 1
2 ), while f→ is defined according to

the following truth-table (tables for ∧,∨ and ¬ are also displayed):

→ 0 1
2 1

0 1 1 1
1
2 0 1 1

1 0 1
2 1

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

¬
0 1
1
2

1
2

1 0

Then, MG3 is defined exactly as MG3 L, except that f¬ is now inter-
preted according to the following truth-table:

¬
0 1
1
2 0

1 0
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Well then, the logic G3≤ L (resp., G31
 L) is determined by the degree of

truth-preserving (resp., truth-preserving) consequence relation defined on
the matrix MG3 L. On the other hand, Gödelian 3-valued logic G3 is deter-
mined by the truth-preserving consequence relation defined on the matrix
MG3 (cf. [6] and references therein).

The logics G3≤ L and G31
 L are expansions of positive intuitionistic logic

H+, while G3 is an extension of intuitionistic logic H. They are defined as
follows (cf. [6], [7] and references therein).

Definition 2.3 (The logic G3≤ L ). The logic G3≤ L can be axiomatized as
follows:

A1. A → (B → A)

A2. [A → (B → C)] → [(A → B) → (A → C)]

A3. (A ∧B) → A; (A ∧B) → B

A4. A → [B → (A ∧B)]

A5. A → (A ∨B); B → (A ∨B)

A6. (A → C) → [(B → C) → [(A ∨B) → C)]]

A7. A → ¬¬A

A8. ¬¬A → A

A9. (A ∨ ¬B) ∨ (A → B)

A10. ¬A → [A ∨ (A → B)]

A11. (A ∧ ¬A) → (B ∨ ¬B)

Rules

Modus Ponens (MP): If A → B and A, then B.
Contraposition (Con): If A → B is a theorem, then ¬B → ¬A is also

a theorem.

Remark 2.4 (Rules of inference and rules of proof). A rule r of a logic L is
a ‘rule of inference’ if it can be applied to any premises formulated in the
language of L; and r is a ‘rule of proof’ if it is applied only to theorems
of L. Notice that Con is formulated as a rule of proof in G3≤ L (cf. [6,
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Remark 6.23], [8, §1.5] on this important question in logics with weak rules
of inference).

Definition 2.5 (The logic G31
 L). The logic G31

 L is defined exactly as G3≤ L
except that now Con is understood as a rule of inference: If A → B, then
¬B → ¬A.

Definition 2.6 (The logic G3). The logic G3 is axiomatized by adding

A12. (A → B) → (¬B → ¬A)

A13. ¬A → (A → B)

to A1–A7 and A9 of G3≤ L . The sole rule of inference is MP (cf. [7, §A2]).

The section is ended by noting some theorems and rules of the logics
just defined.

Remark 2.7 (Some theorems and rules of G3≤ L , G31
 L and G3). The following

are provable in the three logics defined above (cf. [6, 7] and references
therein):

T1. A → A

T2. [(A → B) ∧A] → B

T3. (¬A ∧ ¬B) → ¬(A ∨B)

T4. ¬B → [¬A ∨ ¬(A → B)]

T5. ¬(A → B) → ¬B

T6. [¬(A → B) ∧ ¬A] → A

T7. [¬(A → B) ∧ (¬A ∧B)] → C

Efq. If ¬A is a theorem, then A → B is also a theorem.

In addition, the rule Ecq (“E contradictione quodlibet” —“Any proposition
is derivable from a contradiction”), if A ∧ ¬A, then B, is provable in G31

 L,

whereas A10 and A11 of G3≤ L and Ecq are, of course, provable in G3. (Efq
abbreviates “E falso quodlibet”: “Any proposition follows from a false
proposition”).
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3. A 2 set-up binary Routley semantics for G3≤
 L

In this section, G3≤ L is given a 2 set-up binary Routley semantics (2bRG3≤ L -
semantics, for short). Firstly, we define the concept of a model and related
notions.

Definition 3.1 (2bRG3≤ L -models). Let ∗ be an involutive unary operation
defined on the set K. That is, for any x ∈ K, x = x∗∗, and let K be the
two-element set {0, 0∗}. A 2 set-up binary Routley G3≤ L -model (2bRG3≤ L -
model, for short) is a structure (K,R, ∗,⊨) where (I) R is a reflexive binary
relation on K such that R00∗ or R0∗0, and (II) ⊨ is a valuation relation
from K to the set of all wffs such that the following conditions (clauses)
are satisfied for every propositional variable p, wffs A,B and a ∈ K:

(i) (Rab & a ⊨ p) ⇒ b ⊨ p

(ii) a ⊨ A ∧B iff a ⊨ A and a ⊨ B

(iii) a ⊨ A ∨B iff a ⊨ A or a ⊨ B

(iv) a ⊨ A → B iff for all b ∈ K, (Rab and b ⊨ A) ⇒ b ⊨ B

(v) a ⊨ ¬A iff a∗ ⊭ A

Definition 3.2 (2bRG3≤ L -consequence, 2bRG3≤ L -validity). For any non-
empty set of wffs Γ and wff A, Γ ⊨M A (A is a consequence of Γ in the

2bRG3≤ L -model M) iff for all a ∈ K in M, a ⊨M A whenever a ⊨M Γ (a ⊨M Γ

iff a ⊨M B for all B ∈ Γ). Then, Γ ⊨
2bRG3

≤
 L
A (A is a 2bRG3≤ L -consequence

of Γ) iff Γ ⊨M A for each 2bRG3≤ L -model M. In particular, if Γ = ∅, ⊨M A
(A is true in M) iff a ⊨M A for all a ∈ K in M. And ⊨

2bRG3
≤
 L

A (A is

2bRG3≤ L -valid) iff ⊨M A in every 2bRG3≤ L -model.

We prove some facts about 2bRG3≤ L -models.

Proposition 3.3 (0∗ ⊨ ¬A iff 0 ⊭ A). For any 2bRG3≤ L -model M and wff
A, 0∗ ⊨M ¬A iff 0 ⊭M A.

Proof: Immediate by clause (v) in Definition 3.1 and the involutiveness of
∗: 0∗ ⊨M ¬A iff (clause (v)) 0∗∗ ⊭M A iff (involutiveness of ∗) 0 ⊭M A.
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Lemma 3.4 (Hereditary Condition). For any 2bRG3≤ L -model M, a, b ∈ K
in M and wff A, (Rab & a ⊨M A) ⇒ b ⊨M A.

Proof: Induction on the structure of A. If A is B∧C or B∨C, the proof
is immediate. Then, let us prove the cases where A is B → C and ¬B. If
a = b, the proof is trivial. So, we assume a ̸= b (clauses (iv) and (v) in
Definition 3.1 are applied without mentioning them).

(I) A is B → C. (Ia) a = 0 and b = 0∗. Suppose then (1) R00∗ and (2)
0 ⊨M B → C. We have to prove 0∗ ⊨M B → C. There are two possibilities
to consider: R0∗0∗ and R0∗0. Suppose the first one, that is (3) R0∗0∗.
Assume also (4) 0∗ ⊨M B. By 1, 2 and 4, we get (5) 0∗ ⊨M C, as required.
Suppose now the second alternative, that is, (6) R0∗0. Assume also (7)
0 ⊨M B. By reflexivity of R, we have (8) R00, whence by 2 and 7, we
get (9) 0 ⊨M C, as it was to be proved. (Ib) a = 0∗ and b = 0. Suppose
(1) R0∗0 and (2) 0∗ ⊨M B → C. We have to prove 0 ⊨M B → C. There
are two possibilities to consider: R00 and R00∗. Then, the proof proceeds
similarly as in case Ia.

(II) A is ¬B. (IIa) a = 0 and b = 0∗. Suppose then (1) R00∗ and (2)
0 ⊨M ¬B (i.e., 0∗ ⊭M B). By the induction hypothesis, 1 and 2, we have
(3) 0 ⊭ B, i.e., 0∗ ⊨ ¬B, by Proposition 3.3, as required. (IIb) a = 0∗ and
b = 0. The proof is similar to that of IIa.

Lemma 3.5 (Entailment Lemma). For any wffs A, B, ⊨
2bRG3

≤
 L
A → B iff

(a ⊨M A ⇒ a ⊨M B, for all a ∈ K in all 2bRG3≤ L -models M).

Proof: (⇒) Let M be a 2bRG3≤ L -model. Suppose (1) ⊨
2bRG3

≤
 L

A → B

and (2) 0 ⊨M A (resp., 0∗ ⊨M A). By reflexivity of R, we have (3) R00 and
R0∗0∗. By 1, 2 and 3, we get (4) 0 ⊨M B (resp. 0∗ ⊨M B) as desired. (⇐)
Suppose (1) a ⊨M A ⇒ a ⊨M B, for all a ∈ K in M. Furthermore, suppose
(2) R0b (resp., R0∗b) and b ⊨M A for a given b ∈ K. Then (3) b ⊨M B
trivially follows from 1, as it was required.

Now, we can prove soundness of G3≤ L w.r.t. 2bRG3≤ L -semantics.

Theorem 3.6 (Soundness of G3≤ L ). For any set of wffs Γ and wff A, if
Γ ⊢

G3
≤
 L
A, then Γ ⊨

2bRG3
≤
 L
A.

Proof: If A ∈ Γ, the proof is trivial; and if A has been obtained by
applying MP, the proof is immediate by leaning upon the reflexivity of R.
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Then, suppose that A has been obtained by an application of Con. In
this case, A is of the form (1) ¬B → ¬C and, by hypothesis, we have
(2) ⊨

2bRG3
≤
 L

C → B. We need to prove ⊨
2bRG3

≤
 L

¬B → ¬C. We use

the Entailment Lemma. So, suppose for any arbitrary 2bRG3≤ L -model M,
(3) 0 ⊨M ¬B (resp., 0∗ ⊨M ¬B). By clause (v) (resp., Proposition 3.3), we
have (4) 0∗ ⊭M B (resp., 0 ⊭M B), whence by the Entailment Lemma and
2, we get (5) 0∗ ⊭M C (resp., 0 ⊭M C) and (6) 0 ⊨M ¬C (resp., 0∗ ⊨M ¬C)
by applying again clause (v) (resp. Proposition 3.3).

Concerning the axioms, we focus on the characteristic MG3 L -axioms,
that is, A9, A10 and A11. The proof of the validity of A1-A6 as well
as that of the double negation axioms A7 and A8 is left to the reader
(notice that A7 and A8 are immediate by involutiveness of ∗).

A9, (A ∨ ¬B) ∨ (A → B), is 2bRG3≤ L -valid. Suppose that M is a

2bRG3≤ L -model falsifying A9. Then, for some wffs A,B, either (I) 0 ⊭M

(A ∨ ¬B) ∨ (A → B) or (II) 0∗ ⊭M (A ∨ ¬B) ∨ (A → B). Case I: We have
(1) 0 ⊭ A, (2) 0 ⊭ ¬B (i.e., 0∗ ⊨ B) and (3) 0 ⊭ A → B. There are two
possibilities to consider: (4) R00, 0 ⊨ A and 0 ⊭ B; and (5) R00∗, 0∗ ⊨ A
and 0∗ ⊭ B. But 4 contradicts 1, while 5 contradicts 2. Case (II) We have
(1) 0∗ ⊭ A, (2) 0∗ ⊭ ¬B (i.e., 0 ⊨ B) and (3) 0∗ ⊭ A → B. There are
two possibilities to consider: (4) R0∗0∗, 0∗ ⊨ A and 0∗ ⊭ B; and (5) R0∗0,
0 ⊨ A and 0 ⊭ B. But 4 contradicts 1 whereas 5 contradicts 2.

A10, ¬A → [A ∨ (A → B)], is 2bRG3≤ L -valid. Suppose that M is a

2bRG3≤ L -model falsifying A10. By the Entailment Lemma, for some wffs
A,B, either (I) 0 ⊨M ¬A and 0 ⊭M A ∨ (A → B) or (II) 0∗ ⊨M ¬A and
0∗ ⊭M A ∨ (A → B) . Case I: We have (1) 0∗ ⊭ A, (2) 0 ⊭ A and (3)
0 ⊭ A → B. Now, either (4) R00, 0 ⊨ A and 0 ⊭ B or (5) R00∗, 0∗ ⊨ A
and 0∗ ⊭ B. But 4 contradicts 2, and 5 contradicts 1. Case II is treated
similarly.

A11, (A ∧ ¬A) → (B ∨ ¬B), is 2bRG3≤ L -valid. The proof is similar to
that of A10.

4. Completeness of G3≤
 L

Completeness of G3≤ L is proved by using a canonical model construction.

We begin by defining the notion of a G3≤ L -theory and the classes of G3≤ L -
theories of interest in the present paper.
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Definition 4.1 (G3≤ L -theories. Classes of G3≤ L -theories). A G3≤ L -theory

(theory, for short) is a set of formulas containing all G3≤ L -theorems and
closed under Modus Ponens (MP). Let t be a theory. We set: (1) t is prime
iff whenever A ∨ B ∈ t, then A ∈ t or B ∈ t; (2) t is trivial iff it contains
all wffs; (3) t is a-consistent (‘consistent in an absolute sense’) iff t is not
trivial; (4) t is w-inconsistent (‘inconsistent in a weak sense’) iff ¬A ∈ t, A

being a G3≤ L -theorem; then t is w-consistent (‘consistent in a weak sense’)
iff t is not w-inconsistent; (5) t is inconsistent iff A ∧ ¬A ∈ t for some wff
A; then t is consistent if it is not inconsistent (cf. [8] and references therein
on the notion of w-consistency).

Lemma 4.2 (Extension to prime theories). Let t be a theory and A a wff
such that A /∈ t. Then, there is a prime theory u such that t ⊆ u and
A /∈ u.

Proof: We extend t to a maximal theory u such that A /∈ u. If u is not
prime, then there are wffs B,C such that B ∨C ∈ u but B /∈ u and C /∈ u.
Then, we define the sets [u,B] = {D | B → D ∈ u}, [u,C] = {D | C →
D ∈ u}. By using A2, it is shown that (1) [u,B] and [u,C] are closed
under MP; by using A1, (2) that they include u. Finally, by T1, (3) that
B ∈ [u,B] and C ∈ [u,C]. Next, by the hypothesis and (1), it follows that
neither [u,B] nor [u,C] is included in u, whence we have A ∈ [u,B] and
A ∈ [u,C] due to the maximality of u. But then, we have (4) A ∈ u by A6
and the fact that B ∨ C ∈ u, contradicting our hypothesis. Consequently,
u is prime.

In what follows, it is shown how canonical 2bRG3≤ L -models are built,
Also, we prove some general facts about them.

Let Γ be a set of wffs and A a wff such that Γ ⊬
G3

≤
 L

A. Then, A is

not included in the set of consequences derivable from Γ (in symbols, A /∈
CnΓ[G3≤ L ]). By the Extension Lemma, there is a prime theory T such that

CnΓ[G3≤ L ] ⊆ T and A /∈ T . (Notice that T is a-consistent.) Then, the

canonical 2bRG3≤ L -model built upon T is defined as follows.

Definition 4.3 (Canonical 2bRG3≤ L -models). The canonical 2bRG3≤ L -mo-
del built upon T , as this theory has been defined above, is the structure

(KC , RC , ∗C ,⊨C), where (1) KC = {T , T ∗C} and for any wffs A,B and



496 Gemma Robles, José M. Méndez

a, b ∈ KC , we have: (2) RCab iff (A → B ∈ a & A ∈ b) ⇒ B ∈ b; (3)

a∗
C

= {A | ¬A /∈ a} and (4) a ⊨C A iff A ∈ a.

We prove some significant and useful facts about canonical 2bRG3≤ L -

models. By T , we refer to the G3≤ L -theory upon which each canonical

2bRG3≤ L -model is built (the superscript C above R and ∗ is dropped when
there is no risk of confusion).

Proposition 4.4 (T is a w-consistent G3≤ L -theory). The G3≤ L -theory T is

a w-consistent G3≤ L -theory.

Proof: Suppose ¬A ∈ T , A being a G3≤ L -theorem. By the rule Efq,

¬A → B is a G3≤ L -theorem where B is an arbitrary wff. Then, B ∈ T ,
contradicting the a-consistency of T .

Proposition 4.5 (T ∗C

is a prime G3≤ L -theory). The ∗C-image of T , T ∗C

,

is a prime G3≤ L -theory.

Proof: (I) T ∗ is closed under MP: Suppose (1) A → B ∈ T ∗ (i.e., ¬(A →
B) /∈ T ) and (2) A ∈ T ∗ (i.e., ¬A /∈ T ) but (3) B /∈ T ∗ (i.e., ¬B ∈ T ).

By using the G3≤ L -theorem ¬B → [¬A ∨ ¬(A → B)] (T4), we have (4)
¬A ∈ T or ¬(A → B) ∈ T . But 1 and 2 contradict 4. (II) T ∗ contains

all G3≤ L -theorems: Let A be a G3≤ L -theorem such that A /∈ T ∗. Then,
¬A ∈ T , contradicting the w-consistency of T . (III) T ∗ is prime: Suppose
(5) A ∨ B ∈ T ∗ (i.e., ¬(A ∨ B) /∈ T ) but (6) A /∈ T ∗ (i.e., ¬A ∈ T ) and

(7) B /∈ T ∗ (i.e., ¬B ∈ T ). By the G3≤ L -theorem (¬A ∧ ¬B) → ¬(A ∨ B)
(T3), we have (8) ¬(A ∨B) ∈ T , contradicting 5.

Next, an alternative reading of the canonical accessibility relation is
provided together with the proof that RC is a reflexive relation such that

RCT T ∗C

or RCT ∗CT . Then, it is shown that ∗C is an involutive operation
in canonical 2bRG3≤ L -models. Also, that clauses (i), (ii), (iii) and (v) hold

in canonical 2bRG3≤ L -models.

Proposition 4.6 (RCab iff a ⊆ b). For any a, b ∈ KC , RCab iff a ⊆ b.

Proof: (⇒) Suppose (1) RCab and (2) A ∈ a, and let (3) B ∈ b. By A1
and 2, we have (4) B → A ∈ a, whence (5) A ∈ b follows by 1, 3 and 4.
(⇐) Suppose (1) a ⊆ b. (2) A → B ∈ a and (3) A ∈ b. By 1 and 2, we have
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(4) A → B ∈ b. By T2, [(A → B) ∧A] → B, 3 and 4, (5) B ∈ b follows, as
it was to be proved.

Proposition 4.7 (RCT T ∗C

or RCT ∗CT ). The canonical relation RC is

a reflexive relation such that RCT T ∗C

or RCT ∗CT .

Proof: By Proposition 4.6, it is immediate that RC is reflexive. On the
other hand, suppose that there are A,B such that (1) A ∈ T , (2) B ∈ T ∗

(i.e., ¬B /∈ T ), (3) A /∈ T ∗ (i.e., ¬A ∈ T ) and (4) B /∈ T . By (A ∧ ¬A) →
(B ∨ ¬B) (A11), we have (5) B ∨ ¬B ∈ T . But 2 and 4 contradict 5.

Proposition 4.8 (∗C is an involutive operation on KC). The canonical
operation ∗C is an involutive operation on KC .

Proof: Let a ∈ KC . Given that a is a G3≤ L -theory, A ∈ a iff ¬¬A ∈ a
follows by A7 and A8 Then, we have A ∈ a iff A ∈ a∗∗ by Definition 4.3(3).

Proposition 4.9 (Clauses (i), (ii), (iii) and (v) hold canonically). Condi-
tions (i), (ii), (iii) and (v) in Definition 3.1 hold when canonically inter-
preted according to Definition 4.3.

Proof: Condition (i) is trivial by Proposition 4.6 and condition (v) by
Definition 4.3(4). Then, condition (iii) (resp., condition (ii)) is immediate
by A5, A6 and primeness of both T and T ∗ (resp., A3 and A4).

Concerning clause (iv), we have:

Proposition 4.10 (Clause (iv) holds in the canonical 2bRG3≤ L -model).

Condition (iv) in Definition 3.1 holds in the canonical 2bRG3≤ L -model.

Proof: (⇒). Let a ∈ KC and suppose a ⊨C A → B (i.e., A → B ∈ a),
RCab (i.e., a ⊆ b) and b ⊨C A (i.e., A ∈ b). Then, b ⊨C B (i.e., B ∈ b) is
immediate by MP.

(⇐) We use Proposition 4.7. (I) T ⊆ T ∗. (Ia) Assume A → B /∈
T (i.e., ¬(A → B) ∈ T ∗). Given RT T and RT T ∗, it suffices to show
[A ∈ T & B /∈ T ] or [A ∈ T ∗ & B /∈ T ∗]. For reductio, suppose (1)
[A /∈ T & A /∈ T ∗] or (2) [A /∈ T & B ∈ T ∗] or (3) [B ∈ T & A /∈ T ∗]
or (4) [B ∈ T & B ∈ T ∗]. But 1, 2, 3 and 4 are impossible by ¬A →
[A ∨ (A → B)] (A10), (A ∨ ¬B) ∨ (A → B) (A9), A → (B → A) (A1) and
A1, respectively. (Ib) Assume A → B /∈ T ∗ (i.e., ¬(A → B) ∈ T ). Given
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RT ∗T ∗, it suffices to show A ∈ T ∗ and B /∈ T ∗. Suppose, for reductio, (1)
A /∈ T ∗ (i.e., ¬A ∈ T ) or (2) B ∈ T ∗ (i.e, ¬B /∈ T ). By I and 1, (3) A /∈ T
follows. But 1 and 2 are impossible by [¬(A → B) ∧ ¬A] → A (T6) and
¬(A → B) → ¬B (T5), respectively.

(II) T ∗ ⊆ T . (IIa) Assume A → B /∈ T . Given RT T , it suffices to
show A ∈ T and B /∈ T . By II and IIa, we have (1) A → B /∈ T ∗ (i.e.,
¬(A → B) ∈ T ). Suppose now, for reductio, (2) A /∈ T or (3) B ∈ T . If
3 obtains, then A → B ∈ T is immediate by A1, contradicting IIa. Let
then 2 be the case. By II, we have (4) A /∈ T ∗ (i.e., ¬A ∈ T ). Next,
[¬(A → B) ∧ ¬A] → A (T6) is used. By T6, 1 and 4, (5) A ∈ T follows,
contradicting 2. (IIb) A → B /∈ T ∗ (i.e., ¬(A → B) ∈ T ). Given RT ∗T ∗

and RT ∗T , it suffices to show [A ∈ T ∗ & B /∈ T ∗] or [A ∈ T & B /∈ T ].
Then, the proof is similar to that of Ia by using now [¬(A → B)∧¬A] → A
(T6), [¬(A → B) ∧ (¬A ∧B)] → C (T7) and ¬(A → B) → ¬B (T5).

We remark that the use of A9 (resp., T7) requires the primeness (resp.,
the a-consistency) of T .

Remark 4.11 (On the canonical clause (iv)). Suppose that R is required to

be only reflexive: it is not demanded of 2bRG3≤ L -models that one of R00∗

and R0∗0 be present. Then, the proof of the canonical validity of clause (iv)
would require the theoremhood of disjunctive Peirce’s law, A ∨ (A → B).

Once Proposition 4.10 proved, it immediately follows that the canonical
2bRG3≤ L -model is indeed a 2bRG3≤ L -model.

Lemma 4.12 (The canonical model is indeed a model). The canonical

2bRG3≤ L -model is indeed a 2bRG3≤ L -model.

Proof: (1) By Proposition 4.7, RC is a reflexive relation such that RT T ∗

or RT ∗T . (2) By Proposition 4.8, ∗C is an involutive operation on KC .
(3) Finally, by Propositions 4.9 and 4.10, ⊨C fulfils conditions (i)–(v) in
Definition 3.1.

Now, we prove completeness.

Theorem 4.13 (Completeness of G3≤ L ). For any set of wffs Γ and wff A,
if Γ ⊨

2bRG3
≤
 L
A, then Γ ⊢

G3
≤
 L
A.

Proof: Suppose Γ ⊬
G3

≤
 L
A. By the Extension Lemma (Lemma 4.2), there

is a prime theory T such that Γ ⊆ T and A /∈ T . Then, the canon-
ical 2bRG3≤ L -model is defined upon T as shown in Definition 4.3. By
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Lemma 4.12, the canonical 2bRG3≤ L -model is a 2bRG3≤ L -model. Then,
Γ ⊭C A, since T ⊨C Γ but T ⊭C A. Consequently, Γ ⊭

2bRG3
≤
 L

A by

Definition 3.2.

5. A 2 set-up binary Routley semantics for G31
 L

In this section, G31
 L is given a 2 set-up binary Routley semantics (2bRG31

 L-
semantics, for short) and G31

 L is proved strongly sound and complete w.r.t.
said semantics (we lean upon the results in Sections 3 and 4).

Definition 5.1 (2bRG31
 L-models). A 2-set-up binary G31

 L-model (2bRG31
 L-

model, for short) is a structure (K,R, ∗,⊨) where K, ∗ and ⊨ are defined

exactly as in 2bRG3≤ L -models and R is a reflexive relation such that R00∗,

instead of being a reflexive relation such that R00∗ or R0∗0, as in 2bRG3≤ L -
models.

Definition 5.2 (2bRG31
 L-consequence, 2bRG31

 L-validity). The notions of
2bRG31

 L-consequence and 2bRG31
 L-validity are defined similarly as the cor-

responding notions for G3≤ L , except that in each model M they are restricted
now to the element 0 in K. Thus, for example, Γ ⊨M A iff 0 ⊨M A, whenever
0 ⊨ Γ (0 ⊨ Γ iff 0 ⊨ B for all B ∈ Γ).

Then, we note that Proposition 3.3 and Lemmas 3.4 and 3.5 still hold
for G31

 L and are proved in a similar way as in G3≤ L .
Concerning soundness, the essential point is to prove that Contraposi-

tion (Con) holds as a rule of inference.

Proposition 5.3 (Con preserves 2bRG31
 L-validity). Con (if A → B, then

¬B → ¬A) preserves 2bRG31
 L-validity.

Proof: Let M be a 2bRG31
 L-model and A,B wffs such that (1) 0 ⊨ A → B

but (2) 0 ⊭ ¬B → ¬A. There are two possibilities to consider: (3) R00,
0 ⊨ ¬B (i.e., 0∗ ⊭ B), 0 ⊭ ¬A (i.e., 0∗ ⊨ A) and (4) R00∗, 0∗ ⊨ ¬B (i.e.,
0 ⊭ B) and 0∗ ⊭ ¬A (i.e., 0 ⊨ A). If 3 obtains, we get (5) 0∗ ⊨ B by 1, since
R00∗ holds in M. But 3 and 5 contradict each other. If, on the other hand,
4 is the case. we have (6) 0 ⊨ B by using again 1, since R00 holds in M.
But, as in the previous case, a contradiction arises (6 contradicts 4).

Remark 5.4 (Con cannot be validated w.r.t. K). We note that if 2bRG31
 L-

consequence is defined w.r.t. K instead of w.r.t. only 0 in K, Con as a rule
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of inference does not preserve 2bRG31
 L-validity. Consider a 2bRG31

 L-model
M where R0∗0 does not follow and, for distinct propositional variables p, q,
we have 0 ⊨M p (i.e., 0∗ ⊭M ¬p), 0 ⊭M q (i.e., 0∗ ⊨M ¬q), 0∗ ⊨M p and
0∗ ⊨M q. Clearly, 0∗ ⊨M p → q but 0∗ ⊭M ¬q → ¬p as R0∗0∗ holds by
reflexivity of R. Also, notice that by the Entailment Lemma, this 2bRG31

 L-
model shows that the contraposition axiom, (A → B) → (¬B → ¬A), is
not 2bRG31

 L-valid.

Now, the proof that MP preserves 2bRG31
 L-validity and that A1-A11

are 2bRG31
 L-valid is similar as in 2bRG3≤ L -models. In fact, it is simpler. If

A is an implicative axiom, only the case R00∗, not both R00∗ and R0∗0, as
in 2bRG3≤ L -models, has to be considered. And if A is A9, only truth w.r.t.
0, not w.r.t. both 0 and 0∗, has to be examined. Finally, that MP preserves
2bRG31

 L-validity is immediate by reflexivity of R, as in 2bRG3≤ L -models.

As regards completeness, the main difference w.r.t. G3≤ L is that G31
 L-

theories need now to be closed under Con. Consequently, the Extension
Lemma (Lemma 4.2) does not hold, as it stands, in the case of G31

 L. Nev-
ertheless, the disjunctive derivability strategy (as it is carried on in e.g., [9]
following [2] or [10]) is applicable since disjunctive Con (i.e., if C∨(A → B),
then C ∨ (¬B → ¬A)) is an admissible rule in G31

 L since it is admissible in
G3 L, that is, the logic containing all and only all MG3 L-valid wffs (cf. [4,
§4.3 and also Remark 6.20]). Consequently, we have an adequate Extension
Lemma at our disposal (cf., e.g., [9]), and then the completeness proof can

proceed similarly as in G3≤ L . However, three points have to be stressed.
(1) The G31

 L-theory T upon which the canonical G31
 L-model is defined is a

consistent G31
 L-theory. This is immediate since the a-consistency of T en-

tails its consistency due to its closure under the rule Ecq (cf. Remark 2.7).
(2) The property R00∗ holds when interpreted canonically. For suppose for

reductio that there is a wff A such that A ∈ T but A /∈ T ∗C

. Then, ¬A ∈ T
contradicting the consistency of T . (3) (I) in Proposition 4.10 suffices for
the proof of the canonical validity of the conditional clause, condition (iv)
in Definition 3.1.

Based upon the argumentation developed so far in the present section,
we think that we are entitled to state the following theorem.

Theorem 5.5 (Soundness and completeness of G31
 L). For any set of wffs

Γ and wff A, Γ ⊨2bRG31
 L
A iff Γ ⊢G31

 L
A.
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6. A 2 set-up binary Routley semantics for G3

This section on Gödelian 3-valued logic G3 mirrors the preceding section
about the logic G31

 L. That is, G3 is endowed with a 2 set-up binary Routley
semantics (2bRG3-semantics, for short) w.r.t. which G3 is shown strongly
sound and complete.

Definition 6.1 (2bRG3-models). A 2-set-up binary G3-model (2bRG3-
model, for short) is a structure (K,R, ∗,⊨) where K,R and ⊨ are defined
exactly as in 2bRG31

 L-models but ∗ is a quasi-involutive unary operation
on the set K, instead of a involutive one as in Definitions 3.1 and 5.1. That
is, we now have: for any x ∈ K, x∗ = x∗∗.

Definition 6.2 (2bRG3-consequence, 2bRG3-validity). The notions of
2bRG3-consequence and 2bRG3-validity are defined w.r.t. the set K (not

only w.r.t. 0 in K) similarly as in 2bRG3≤ L -models (and unlike in 2bRG31
 L-

models).

Regarding Proposition 3.3 and Lemmas 3.4 and 3.5, we note the follow-
ing facts.

Lemma 3.5 (Entailment Lemma) and conjunction, disjunction and con-
ditional cases in Lemma 3.4 (Hereditary Condition) are proved similarly as

in the case of G3≤ L , while the negation case in the latter lemma is proved
as follows.

Proposition 6.3 (The negation case in Lemma 3.4). The negation case
in Lemma 3.4 holds for G3.

Proof: (II) A is ¬B. (IIa) a = 0 and b = 0∗. Suppose (1) R00∗ and
(2) 0 ⊨M ¬B (i.e., 0∗ ⊭M B). By quasi-involutiveness of ∗, we get (3)
0∗∗ ⊭M B, whence (4) 0∗ ⊨M ¬B follows by clause (v) in Definition 3.1.
(IIb) a = 0∗ and b = 0. Suppose (1) R0∗0 and (2) 0∗ ⊨M ¬B. By clause
(v) in Definition 3.1, we have (3) 0∗∗ ⊭ B, whence by involutiveness of ∗
(4) 0∗ ⊭M B follows. Finally, (5) 0 ⊨M ¬B is obtained by applying again
clause (v) in Definition 3.1.

Contrary to what the strategy was in the case of G3≤ L , the negation
case in Lemma 3.4 has not been proved leaning upon Proposition 3.3, since
this proposition only holds from left to right.



502 Gemma Robles, José M. Méndez

Proposition 6.4 (0∗ ⊨ ¬A ⇒ 0 ⊭ A). For any 2bRG3-model M and wff
A, if 0∗ ⊨M ¬A, then 0 ⊭M A.

Proof: Suppose (1) 0∗ ⊨M ¬A. By clause (v) (Definition 3.1), (2) 0∗∗ ⊭M

A, whence by quasi-involutiveness of ∗, we get (3) 0∗ ⊭M A, and finally, (4)
0 ⊭M A by Lemma 3.4, R00∗ and 3.

As regards soundness, the 2bRG3-validity of the contraposition and
Efq axioms ((A → B) → (¬B → ¬A) (A12) and ¬A → (A → B) (A13),

respectively) is the point of interest, by comparison to G3≤ L and G31
 L, since

the rest of the proof proceeds much as the corresponding proofs for the two
logics just mentioned. So, let us prove the 2bRG3-validity of A13 as a way
of an example.

Proposition 6.5 (Efq is 2bRG3-valid). The Efq axiom ¬A → (A → B)
(A13) is 2bRG3-valid.

Proof: A13, ¬A → (A → B), is 2bRG3-valid. Suppose that M is a
2bRG3-model falsifying A13. By the Entailment Lemma, for some wffs
A,B, either (I) 0 ⊨M ¬A and 0 ⊭M A → B or (II) 0∗ ⊨M ¬A and 0∗ ⊭M

A → B. Case I: We have (1) 0∗ ⊭M A and either (2) R00, 0 ⊨M A and
0 ⊭M B or (3) R00∗, 0∗ ⊨M A and 0∗ ⊭M B. But 3 contradicts 1, whereas
(4) 0∗ ⊨M A follows from R00∗ and 2, contradicting again 1. Case II:
we have (1) 0∗ ⊨M ¬A (i.e., 0∗∗ ⊭ A) and either (2) R0∗0∗, 0∗ ⊨M A
and 0∗ ⊭M B or (3) R0∗0, 0 ⊨M A and 0 ⊭M B. If 2 obtains, by quasi-
involutiveness of ∗ and 1, we get (4) 0∗ ⊭M A, a contradiction. If (3) is the
case, by Proposition 6.4, we have (5) 0∗ ⊭M ¬A contradicting 1.

Turning to completeness, the proof can be carried on similarly as that
for G3≤ L , given that the sole rule of inference is MP and consequently the
disjunctive derivability strategy used in the completeness proof for G31

 L is
not needed here. The only worth-remarking differences w.r.t. the com-
pleteness proof for G3≤ L are the following ones: (1) as it was the case with
G31

 L, (a) the theory T basing the canonical 2bRG3-model is a consistent
2bRG3-theory. (b) The property R00∗ is proved to hold when canonically
interpreted by using the consistency of T . (2) ∗C is now a quasi-involutive

operation on KC (not an involutive one as in the canonical 2bRG3≤ L - and
2bRG31

 L-models). The fact is proved by using the consistency of T and
the G3-theorem ¬A ∨ ¬¬A. (3) As it happened with G31

 L, (I) in Proposi-
tion 4.10 suffices in order to prove the canonical validity of clause (iv).
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The end of section mirrors that of the precedent one.

Theorem 6.6 (Soundness and completeness of G3). For any set of wffs Γ
and wff A, Γ ⊨2bRG3 A iff Γ ⊢G3 A.

7. Concluding remarks

In the present paper, a 2 set-up binary Routley semantics (2bR-semantics)
is provided for each one of the logics G3, its paraconsistent counterpart,
G3≤ L , and an extension of the latter, G31

 L. The logics G3≤ L and G31
 L were in-

troduced in [6], where they were given Hilbert-type axiomatic formulations,
once having been interpreted with a ‘two-valued’ Belnap-Dunn semantics.
Recently, Gentzen-type calculi equivalent to the Hilbert-type formulations
have been defined in [1].

The different 2bR-semantics defined above have been characterized by
having one of the two ensuing features listed in 1, 2 and 3 below.

1. Binary relation R. Property (a) R00∗ and property (b) R00∗ or R0∗0,
in addition to reflexivity (i.e,, R00 and R0∗0∗).

2. Unary relation ∗. (a) Involutiveness. (b) Quasi-involutiveness.

3. Definition of validity. (a) W.r.t. the set K of the two points. (b) Only
w.r.t. 0 in K.

But there are other possibilities that may be interesting to examine.
For example, inclusion of the property R0∗0. Of course, if R is such that
both R00∗ and R0∗0 hold, the resulting 2bR-semantics verifies all classical
tautologies. But what about R0∗0 and involutiveness? Or what about
R0∗0 and quasi-involutiveness? And which is the notion of validity the
2bR-semantics is going to be defined with? Are there interesting systems
characterized by the sketched 2bR-semantics?
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[3] K. Gödel, Zum Intuitionistischen Aussagenkalkül, Anzeiger Der

Akademie Der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.

[4] G. Robles, A Routley-Meyer semantics for Gödel 3-valued logic and its para-
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Abstract

We consider an example of four valued semantics partially inspired by quantum

computations and negation-like operations occurred therein. In particular we

consider a representation of so called square root of negation within this four

valued semantics as an operation which acts like a cycling negation. We define

two variants of logical matrices performing different orders over the set of truth

values. Purely formal logical result of our study consists in axiomatizing the logics

of defined matrices as the systems of binary consequence relation and proving

correctness and completeness theorems for these deductive systems.
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ment.

1. Introduction

The study of properties of negation-like connectives constitutes nowadays
is a well established area of interdisciplinary research activity, including
purely logical investigations (consult collective monographs [13, 26]). Nega-
tion often expresses the characteristic features of logical systems acting
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thereby as a mean for distinguishing and systematizing them (see, for in-
stance, [16] for the treatment of different types of paraconsistent logics
in accordance with the properties of negations introduced there). In the lit-
erature one can find examples of hierarchic structures over the sets of nega-
tions, aimed to reflect their logical properties. Probably the best known
is the “kite of negations” proposed by M. Dunn in [8] and refined in the
subsequent articles.

In this paper, we are not intent on providing a complete picture of some
big family of negation-like operations, instead we concentrate on a particu-
lar type of negation which may be characterized as a cyclic operation over
certain set of truth values. Specifically we are interested in its behaviour
in the context of four-valued semantics, the breeding ground of many well
known non-classical logics.

Occasionally our research was brought to life with an interest to the
problematics of quantum computation and its possible representations with-
in the semantic framework of non-classical logic. In particular the reflec-
tions on one of the most unusual quantum gates, the square root of nega-
tion, induced a unary operation on the four-element set of truth values.
On the syntactic level, we defined two logical systems considerably dif-
fering from each other with respect to the set of deductive postulates but
sharing “classicality” of double negation. This particular feature is inherent
in some other non-classical logics [14, 15, 18, 28, 29].

2. Cyclic negation in the generalized truth values
setting

Our interest to studies of cyclic negation stems from the different sources.
This kind of negation is primarily known in the field of Post algebras and
their logics (see [20, 21]). Another origin can be found in the context of
four valued semantics and corresponding logics. According to [17], the first
appearance of a cyclic negation in four valued framework can be found
in [22], while [17] itself deals with the property of functional completeness
for the expansions of Belnap-Dunn logic. In particular Belnap-Dunn logic
equipped with cyclic negation in [22] is proved to be functionally complete.
In [28], two versions of cycling negation appeared under the names left and
right turns as the specific operations over the set of two-component gen-
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eralized truth values2, but they had not been studied there at any extent.
Four-valued systems with some relatives of cyclic negation (different from
ours) are investigated in [15, 18, 19]. One of the features of the negation-like
operations studied there consists in their ability to simulate the properties
of classical (and is some cases intuitionistic) negation via composition. It
is worth noting that [14] addresses the problem of simulating conventional
negations via other unary operations touching upon a cyclic negation.

2.1. The Basics of generalized truth values

The truth values that we concern with throughout this paper can be un-
derstood as a kind of generalized truth values. Although we start with the
idea of how these truth values arise from the representation of quantum
computational logic gates in the framework of four-valued semantics, later
we show that the values can be generated in a regular way via elementary
set-theoretical operations. Let us discuss this the process of introducing
generalized truth values in more details.

Generalized truth values are the result of power-setting (or sometimes
taking Cartesian product) of an initial set of truth-values. For example,
if we start with the set 2 of classical values {t, f}, then the first stage of
its generalization is the set P(2) = 4 = {{t, f}, {t}, {f},∅}. Ordered
by “definiteness-of-truth relation”, the set 4 forms a well known lattice
FOUR2 of Belnap’s truth values (assuming that T = {t}, B = {t, f},
F = {f} and N = ∅). This structure can also be considered as bilattice
when the second, informational order, is taken into account (see Figure 1).

To proceed further, one needs to generalize a valuation function as
well, to be a map from the set of propositional variables to the set 4.
If we in a natural way extend valuation to arbitrary formula and define
an appropriate consequence relation, we arrive at certain semantic logic.
Interestingly, a logic whose consequence relation is defined via the logical
ordering is exactly the useful 4-valued relevant logic constructed by [9] and
[1, 2].

Generalization procedure has no limits. From 2, it leads through 4 to
P(4)=16 and the trilattice SIXT EEN 3 with three independent orderings.
This algebraic structure is a special case of multilattice proposed and dis-
cussed in [23]. Moreover, two of these three ordering relations generate

2For the detailed account of this kind of compound truth values see [29].
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{F}

Figure 1. Bilattice FOUR2 in Belnap’s and generalized truth-values
setting.

useful 16-valued logics of the first-degree entailment [24]. If one takes the
set 3 of strong Kleene’s three-valued logic, it gives rise to a valuational sys-
tem corresponding to the lattice EIGHT 3 with three orderings [27]. And
again this valuational structure generates the first-degree relevant logic.

Some constructions of the generalized truth valued might deviate from
the paradigm pictured above. For example the values used in [29] are
generated from the set {t, 1} of two different types of truth, while false (of
a certain type) is rendered as just the absence of truth (of the same type).

2.2. Four-valuedness and cyclic negation from quantum
computations

Although this paper does not concern with quantum computations or their
logic at all, some concepts from the field of quantum computational logic
have inspired the four-valued semantics underlying the logics discussed be-
low and, specifically, the choice of the unary operation acting over there.
This section clarifies the origins of the family of truth values used below.

One of the ideas that motivated this paper, namely, to merge gener-
alized truth values approach and quantum computation in a joint logical
framework, was prompted by seminal writings of prominent logicians of
past and present, and after all is connected with the search of answers to
the question, what (modern) logic is.

The first one was proposed by G. Frege and J.  Lukasiewicz many years
ago and now enjoys a new lease on life within the project of general-
ized truth values. The core idea may be expressed in  Lukasiewicz’s words
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– logic is the science of objects of a special kind, namely a science of logi-
cal values. Though seems strange, this understanding of logic is coherent
with standard conception of logic, because the search for criteria of correct
reasoning and argument immediately leads one to truth-(or, designated
value-) preserving interpretation of logical inference.

Another conception of logic is due to J. van Benthem, who in [25] devel-
ops a program of Logical Dynamics, which presupposes the interpretation
of logic as a theory of information-driven agency, being thus the study of
explicit informational processes (inference, observation, communication).
The latter interpretation may be seen as the other side of the same coin
– in words of J. van Benthem, “inference is just one way of producing in-
formation, at best on a par, even for logic itself, with others” [3, p. 183], so
it is little wonder that “inference and information update are intertwined”
[3, p. 189].

One step away from here and just a moment to go, there is an idea
to consider quantum logic as logic of quantum computation, where the
latter offers a new possibility opened up by quantum gates to deal with
information processing procedures being generalizations of reasoning and
argument. An additional interest is connected with logical formalization
of so called genuine quantum gates “that transform classical registers into
quregisters that are superpositions: the square root of the negation and
the square root of the identity” [5, p. 298]. According to [6] “logicians are
now entitled to propose a new logical operation

√
NOT. Why? Because a

faithful physical model for it exists in nature”.
Let us remind some key concepts of quantum computational logic (for

more details see, for example, [4]). The unit of representation of quantum
information is a qubit (from English “quantum bit”), a|0⟩+ b|1⟩, where |0⟩

and |1⟩ are vectors

(
1
0

)
and

(
0
1

)
, respectively, written in so called Dirac

notation, while a and b are complex numbers, the amplitudes, expressing
the probabilities.

Quantum computational logic offers a broad family of operators, quan-
tum logic gates3, which in some cases can be rendered as the counterparts
of classical logic gates and thus give rise to a family of propositional con-

3Well known examples are cnot, toffoli, fredkin, swap gates which perform
reversible computation using some qubits as control registers for governing the actions
on target bit. For example, cnot negates its target bit if and only if the control bit is
recognized as 1.
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nectives in formal languages of quantum logical systems. But quantum
computations provide also examples of non-classical gates. The square root
of negation is of the special interest for us. For a qubit |φ⟩ = a|0⟩ + b|1⟩,√
NOT(|φ⟩) = 1

2 [(1 + i)a + (1 − i)b]|0⟩ + 1
2 [(1 − i)a + (1 + i)b]|1⟩, where i is

an imaginary unit. While NOT gate transforms |1⟩ into |0⟩ and vice versa,√
NOT does only half of the work.

The key observation here is that the square root of the negation is
a kind of “connective with memory”. In particular, when applied twice
to Truth, it returns Falsity and vice versa. At the same time, the first
application to True or False gives intermediate value. Thus, to understand
where to go after the first application of the square root of the negation, one
should somehow remember the point of departure. The complex nature of
generalized truth values allows to yield this peculiarity by preserving the
component of the initial value. For example, starting with T, the first
application of the square root of the negation “adds” uncertainty thus
producing TU; the second application transforms it to F; the third again
adds U to F resulting in FU; and finally after the fourth application we
arrive at T. So we can see that our representation of the square root
of negation within four-valued framework is nothing more then a cyclic
negation.

Thus we have new set of truth values, {T,TU,FU,F}, and an open
choice of order relation and subset of the designated values. Below we
consider two natural variants of partial order over this set with the same
two-element subset of designated values, {T,TU}. The choice of this sub-
set seems reasonable for several reasons. It contains Truth itself (T) and
the the other value (TU), having something that we would call a trace of
truth. Moreover, this subset is one of the two prime filters in lattice 4Q
described below.

In this paper, we consider two propositional logics, CNL2
4 and CNLL2

4,
determined by four-valued matrices (with two-valued matrix filters) con-
structed over the set of generalized truth values inspired by quantum com-
putations as explained above. Though these logics have much in common,
they differ essentially with respect to the properties of negations and their
interrelation with conjunction and disjunction.
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2.3. Four-valued matrices

For both logics, CNL2
4 and CNLL2

4, we subsume the same propositional
language Lcnl of the signature {∧,∨,¬} over denumerable set of variables
Var with the set of complex formulas For constructed according to the
standard inductive definition.

On the basis of the set U = {T,TU,FU,F} we define two distinct

matrices, MCNL2
4 and MCNLL2

4 , over this set with the same subset of
designated values D = {T,TU} and the same definition of unary operation
O = {∼,∧,∨} differing with respect to meet and join in the lattice reducts
of these matrices.

Tableau definitions for the binary operations ∧ and ∨ can be easily
imported from the order relations over the set of truth values represented
via Hasse diagrams, depicted in Figure 2. Evidently these ordered sets of
truth values constitute two simple lattices, 4Q (left diagram) and 4LQ.

Definition 2.1. MCNL2
4 matrix is a structure ⟨U , {fc}c∈O,D⟩, where the

operations f∧ and f∨ are defined as meet and join in 4Q, f∼ is defined via
the following table:

x f∼(x)

T TU
TU F
F FU
FU T

Definition 2.2. MCNLL2
4 matrix is a structure ⟨U , {gc}c∈O,D⟩, where

the operations g∧ and g∨ are defined as meet and join in 4LQ, g∼ is defined
via the same table as f∼.

A valuation v is a mapping Var 7→ U . An extension of v to the set For
depends on a matrix assumed. For example, in case of MCNL2

4 we define
extension v2 of v via following expressions for all A,B ∈ For: v2(A∧B) =
f∧(v2(A), v2(B)), v2(A ∨ B) = f∨(v2(A), v2(B)), v2(¬A) = f∼(v2(A)). In
the same manner we define an extension v3 of a valuation over CNLL2

4

matrix, using operations g∼, g∧ and g∨.
The semantic consequence relation is defined via preservation of a des-

ignated truth value and again relies on a matrix assumed:

Definition 2.3. For all A,B ∈ For,
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TU FU

F

T

TU

F

FU

Figure 2. Lattices 4Q and 4LQ.

(1) A ⊨CNL2
4
B ⇐⇒ v(A) ∈ D ⇒ v(B) ∈ D, for each CNL2

4-valuation
v,

(2) A ⊨CNLL2
4
B ⇐⇒ v(A) ∈ D ⇒ v(B) ∈ D, for each CNLL2

4-
valuation v.

It is instructive to examine set U from the generalized truth values
perspective. A common way to construct a set of generalized truth values
is to get powerset over some semantic basis. So, let us choose the basic set
{T,U}, consisting of Truth and Uncertainty values, obtaining thereby the
set of generalized truth values {{T,U}, {T}, {U},∅}. It is natural to think
of {T} as just T, while {T,U} as our TU. Then U is just “uncertainty
without being true”. Recall that the absence of truth can be understood
as just being false. This suggests that U can be thought as FU; likewise
∅ is just F.

3. Binary consequence systems for CNL2
4 and CNLL2

4

To formalize semantically defined consequence relation we will use a specific
variant of a logical calculus, “a binary consequence system”4, which is
typical of all FDE-related logics. The term “binary” means that a sequent5

4See [10, Chapter 6] for a discussion of terminology concerning to different presen-
tations of logical systems. In particular our approach is called “binary implicational
system” there.

5We use the term ‘sequent’ in a broad sense, not reffering here to the apparatus of
Gentzen calculi.
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is an expression of a form A ⊢ B which contains exactly one formula in the
antecedent or consequent position. We take some schemata of sequents
regarded as the axiomatic schemata. A sequent is an axiom if it is a
particular instance of a schema. To make the presentation succinct we
abbreviate ∼∼ as ∼2, ∼∼∼ as ∼3 and so on.

Definition 3.1. A sequent A ⊢ B is called CNL2
4-valid (CNLL2

4-valid)
⇐⇒

A ⊨CNL2
4
B (A ⊨CNLL2

4
B).

Definition 3.2. A CNL2
4-proof (a CNLL2

4-proof) as a list of sequents
each of them is whether an axiom of CNL2

4(an axiom of CNLL2
4) or

derived from the previous items of the list using some rule of inference.
A CNL2

4-proof (CNLL2
4-proof) for a sequent A ⊢ B is a CNL2

4-proof
(CNLL2

4-proof) the last item of which coincides with A ⊢ B. A sequent
A ⊢ B is called CNL2

4-provable (CNLL2
4-provable) if there is a CNL2

4-
proof (CNLL2

4-proof) for A ⊢ B.

To indicate that a sequent A ⊢ B is CNL2
4-provable (CNLL2

4-provable)
we also adopt the expression A ⊢CNL2

4
B (A ⊢CNLL2

4
B).

CNL2
4 & CNLL2

4 common axiomatic schemata and rules of in-
ference:

(a1) A ∧B ⊢ A,

(a2) A ∧B ⊢ B,

(a3) B ⊢ A ∨B,

(a4) A ⊢ A ∨B,

(a5) ∼A ∧ ∼B ⊢ ∼(A ∧B),

(a6) ∼(A ∨B) ⊢ ∼A ∨ ∼B,

(a7) A ∧ ∼2A ⊢ B,

(a8) A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)

(a9) A ⊢ ∼4A,

(a10) ∼4A ⊢ A.

(r1) A ⊢ B, B ⊢ C / A ⊢ C,

(r2) A ⊢ B, A ⊢ C / A ⊢ B ∧ C,

(r3) A ⊢ C, B ⊢ C / A ∨B ⊢ C,

(r4) A ⊢ B / ∼2B ⊢ ∼2A.
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CNL2
4 additional axiomatic schemata:

(b1) ∼(A ∧B) ⊢ ∼A ∧ ∼B, (b2) ∼A ∨ ∼B ⊢ ∼(A ∨B).

CNLL2
4 additional axiomatic schemata:

(c1) ∼A ∧ ∼B ⊢ ∼(A ∨B),

(c2) ∼(A ∧B) ⊢ ∼A ∨ ∼B,

(c3) ∼A ∧ ∼2A ⊢ ∼(A ∧B)

(c4) A ∧ ∼A ⊢ ∼(A ∨B),

(c5) ∼(A ∨B) ⊢ ∼A ∨B,

(c6) ∼(A ∨B) ⊢ ∼(B ∨A),

(c7) ∼(A ∧B) ⊢ ∼(B ∧A),

(c8) (∼(A ∨B) ∧ ∼(A ∧B)) ⊢ ∼A ∧ ∼B.

Proposition 3.3. The following sequents are provable in CNL2
4:

(1) ∼A ∧ ∼B ⊢ ∼(A ∨B),

(2) ∼(A ∧B) ⊢ ∼A ∨ ∼B.

Proposition 3.4. The following sequents are provable in both CNL2
4 and

CNLL2
4.

(Id) A ⊢ A

(De1) ∼2A ∧ ∼2B ⊣⊢ ∼2(A ∨B),

(De2) ∼2A ∨ ∼2B ⊣⊢ ∼2(A ∧B),

(T) B ⊢ A ∨ ∼2A.

Proof: Let us show the proof for (T) only:

1. A ∧ ∼2A ⊢ ∼2B (a7)

2. ∼4B ⊢ ∼2(A ∧ ∼2A) 1, (r4)

3. ∼2(A ∧ ∼2A) ⊢ ∼2A ∨ ∼4A (De2)

4. ∼2A ∨ ∼4A ⊢ A ∨ ∼2A (Id), (a3), (a4), (a10), (r1), (r3)

5. B ⊢ ∼4B (a9)

6. B ⊢ A ∨ ∼2A 2, 3, 4, 5, (r1)
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4. Systems of cyclic negation and classical logic

Systems CNL2
4 and CNLL2

4 have much in common with classical logic. In-
deed, if we were intended to represent classical logic as a binary consequence
system, we would take (a1)–(a4), (a8)–(a10) and (r1)–(r4), adding para-
doxical postulates like (a7) (then, of course, a pair ∼∼ should be treated
as classical ¬). Is is well known that an alternative formulation of classical
system is obtained by replacing contraposition rule with a full collection
of De Morgan laws (but then both A ∧ ¬A ⊢Cl B and A ⊢Cl B ∨ ¬B
are needed, where ⊢Cl stands for classical binary consequence relation) as
axiomatic schemas. For further references we will denote this system as Cl.

As mentioned above, double ∼ have all these features of classical nega-
tion. Thus a kind of intrinsic classicality present in both our systems.
More precisely we can represent this fact via translation function Φ from
the language of classical logic Lcl (over the signature {∧,∨,¬}, with the
set of formulas denoted as Forcl) to the language of the present systems
(with the proviso that both languages share the same denumerable set of
propositional variables Var = {p1, p2, . . .}):

Φ(p) = p, p ∈ Var,

Φ(A ◦B) = Φ(A) ◦ Φ(B), ◦ ∈ {∧,∨},
Φ(¬A) = ∼∼Φ(A), A,B ∈ Forcl.

We would like to show, that Φ is not only a translation, but an embed-
ding function as well6. We prove this statement via semantic argument.
Let us consider an expression A ⊨Cl B as an assertion about classical conse-
quence relation according to a standard definition of a classical consequence
relation.

Given a valuation v : Var 7→ U we define a corresponding classical
valuation v∗:

v∗(p) =

{
t, if v(p) ∈ D,

f otherwise,

6In the context of the current research a translation function Φ from the language of
a binary consequence system S1 to the language of a binary consequence system S2 is
an embedding when it holds that A |=S1

B ⇐⇒ Φ(A) |=S2
Φ(B). The are some other

terms for similar kind of translations in the literature, see eg. [11, 7, 12].
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and CNLL2
4-valuations correspondingly (in the sequel we tacitly assume

that a valuation v1, v2 or v3 is an extended one when applied to formulas).
It is not difficult to verify that the following lemma holds (in what follows
‘t.c.’ stands for ‘truth conditions’, ‘IH’ for ‘induction hypothesis’).

Lemma 4.1. For any formula A ∈ Forcl, any valuation v2 (valuation v3)
there is a valuation v1 such that v1(A) = t ⇐⇒ v2(Φ(A)) ∈ D, (v1(A) =
t ⇐⇒ v3(Φ(A)) ∈ D).

Proof: Simple reasoning by complexity of a formula A. Let us consider
some cases, focusing on a valuation v2 only.

Case A = ¬B.

v1(¬B) = t
t.c.¬⇐⇒ v1(B) ≠ t

IH⇐⇒ v2(Φ(B)) /∈ D lem. 5.7⇐⇒ v2(∼∼Φ(B)) ∈
D.

Case A = B ∧ C.

v1(B ∧ C) = t
t.c.∧⇐⇒ v1(B) = t and v1(C) = t

IH⇐⇒ v2(Φ(B)) ∈ D and

v2(Φ(C)) ∈ D lem. 5.7⇐⇒ v2(Φ(B ∧ C)) ∈ D.

We also need the converse of the previous lemma. Given that v1(p) = t
for some p ∈ Var we can choose a valuation v2 (a valuation v3) such that
v2(p) ∈ D (v3(p) ∈ D). Then it is easy to get the following lemma.

Lemma 4.2. For any formula A ∈ Forcl, a classical valuation v1, there
exists a valuation v2 (resp. a valuation v3) such that

v1(A) = t ⇐⇒ v2(Φ(A)) ∈ D (resp. v3(Φ(A)) ∈ D).

Lemma 4.3. For all formulas A,B ∈ Forcl

(1) A ⊨Cl B ⇐⇒ Φ(A) ⊨CNL2
4

Φ(B)

(2) A ⊨Cl B ⇐⇒ Φ(A) ⊨CNLL2
4

Φ(B).

Proof: We consider CNL2
4 part. Let A |=Cl B, but Φ(A) ̸|=CNL2

4
Φ(B).

Then there is a valuation v2 such that v2(Φ(A)) ∈ D, v2(Φ(B)) /∈ D.
Applying lemma 4.1 we find a classical valuation v1 such that v1(A) = t,
v1(B) ̸= t. The other direction is also clear.

Corollary 4.4. Φ is an embedding of Cl into CNL2
4 (CNLL2

4).

What about the converse? Can we non-trivially translate our systems
of cyclic negation to classical logic? To address this question let us define

where p ∈ Var. Now let v1, v2 and v3 be extensions of classical-, CNL2
4-
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the following function Ψ, where i is a positive integer, A and B are formulas
of the language Lcnl:

Ψ(pi) = p2i−1,

Ψ(∼pi) = p2i,

Ψ(∼∼A) = ¬Ψ(A),

Ψ(A ◦B) = Ψ(A) ◦ Ψ(B), ◦ ∈ {∧,∨},
Ψ(∼(A ◦B)) = Ψ(∼A) ◦ Ψ(∼B), ◦ ∈ {∧,∨}.

Similarly to the construction of a classical valuation v∗ that has been
used before, here we define (where i is a positive integer, v : Var 7→ U )

v∗(pi) =


t, if i is odd and v(p i+1

2
) ∈ D,

t, if i is even and v(p i
2
) ∈ {T,FU},

f otherwise.

We proceed with the following

Lemma 4.5. For every CNL2
4-valuation v2 and a formula A ∈ For there

exists a classical valuation v1 such that

v1(Ψ(A)) = t ⇐⇒ v2(A) ∈ D.

Proof: Let us consider firstly the case when Ψ(A) is a propositional vari-
able, say pk. If k is odd index, then the statement follows from definition of
v∗. If k is even, then suppose that v1(pk) = v∗(pk) = t. Since preimage of
pk is ∼p k

2
and v2(p k

2
) = v(p k

2
) ∈ {T,FU}, v2(∼pk) ∈ D. Other direction

is evident.
Next let us consider some cases. Simple sub-cases are omitted.

Case A = ∼∼B.

v1(Ψ(∼∼B)) = t
df.Ψ⇐⇒ v1(¬(Ψ(B))) = t

t.c.¬⇐⇒ v1(Ψ(B)) ̸= t
IH⇐⇒

v2(B) /∈ D t.c.∼⇐⇒ v2(∼∼B) ∈ D.

Case A = ∼(B ∧ C).

v1(Ψ(∼(B∧C))) = t
df.Ψ⇐⇒ v1(Ψ(∼B)∧Ψ(∼C))) = t

t.c.∧⇐⇒ v1(Ψ(∼B)) =

t and v1(Ψ(∼C)) = t
IH⇐⇒ v2(∼B) ∈ D and v2(∼C) ∈ D t.c.∼⇐⇒ v2(B) ∈

{T,FU} and v2(C) ∈ {T,FU} t.c.∧⇐⇒ v2(B∧C) ∈ {T,FU} t.c.∼⇐⇒ v2(∼(B∧
C)) ∈ D.
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Case A = ∼(B ∨ C).

v1(Ψ(∼(B∨C))) = t
df.Ψ⇐⇒ v1(Ψ(∼B)∨Ψ(∼C))) = t

t.c.∨⇐⇒ v1(Ψ(∼B)) =

t or v1(Ψ(∼C)) = t
IH⇐⇒ v2(∼B) ∈ D or v2(∼C) ∈ D t.c.∼⇐⇒ v2(B) ∈

{T,FU} or v2(C) ∈ {T,FU} t.c.∨⇐⇒ v2(B ∨C) ∈ {T,FU} t.c.∼⇐⇒ v1(∼(B ∨
C)) ∈ D.

On the other hand, given a classical valuation v∗ we can get a CNL2
4-

valuation choosing an arbitrary mapping v such that v(p i+1
2

) ∈ D when

v∗(pi) = t and v(p i+1
2

) /∈ D when v∗(Ψ(pi)) = f for a an odd integer

i, while v(p i
2
) ∈ {T,FU} when v∗(pi) = t and v(p i

2
) /∈ {T,FU} when

v∗(pi) = f for an even integer i. Thus we obtain an analogue of the
previous lemma.

Lemma 4.6. For every classical valuation v1 and a formula A ∈ For there
exists a CNL2

4-valuation v2 such that

v1(Ψ(A)) = t ⇐⇒ v2(A) ∈ D.

Proof: Similar to the proof of the lemma 4.5

Lemma 4.7. A |=CNL2
4
B ⇐⇒ Ψ(A) |=Cl Ψ(B).

Proof: First assume that Ψ(A) |=Cl Ψ(B), but A ̸|=CNL2
4
B. Then there

exists some extended CNL2
4-valuation v2 such that v2(A) ∈ D and v2(B) /∈

D. According to lemma 4.5 there exists an extended classical valuation v1
such that v1(Ψ(A)) = t, but v1(Ψ(B)) = f .

For the other direction suppose that A |=CNL2
4
B, but Ψ(A) ̸|=Cl Ψ(B).

Then there exists a classical valuation v such that v(Ψ(A)) = t, v(Ψ(B)) =
f . Using lemma 4.6 we conclude that A ̸|=CNL2

4
B.

Corollary 4.8. Ψ is an embedding of CNL2
4 into Cl.

To obtain the same result for CNLL2
4 we need some modification of Ψ.

But this time things appear to be far more complicated and, as it seems,
there is no simple and elegant translation clauses for the negated ∧ and ∨.
Nevertheless, technically, it is still possible to define a required function.
Let us denote by Ψ′ a translation which differs from Ψ in what concerns
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the images of formulas of the form ∼(B∧C) and ∼(B∨C) and agrees with
it in other respects. Namely we put

Ψ′(∼(B ∧ C)) = (¬Ψ′(B) ∧ Ψ′(∼B)) ∨ (¬Ψ′(C) ∧ Ψ′(∼C))∨
∨ (Ψ′(∼B) ∧ Ψ′(∼C)),

Ψ′(∼(B ∨ C)) = (Ψ′(B) ∧ Ψ′(∼B)) ∨ (Ψ′(C) ∧ Ψ′(∼C))∨
∨ (Ψ′(∼B) ∧ Ψ′(∼C)).

For this translation we can prove analogues of lemmas 4.5 and 4.6. Let us
denote as ‘tr’ the right parts of the above equations when they are clear
from the context.

Lemma 4.9. For every extended CNLL2
4-valuation v3 and a formula A ∈

For there exists a classical valuation v1 such that

v1(Ψ′(A)) = t ⇐⇒ v3(A) ∈ D.

Proof: Let us check some crucial cases.

Case A = ∼(B ∧ C).

First we have v1(Ψ′(∼(B ∧ C))) = t
df.Ψ′

⇒ v1(tr) = t. Thus any dis-
junct of tr may be evaluated as t under v1. Let us inspect all three sub-

cases. We start with v1(¬Ψ′(B) ∧ Ψ′(∼B)) = t
t.c.∧,¬⇒ v1(Ψ′(B)) = f and

v1(Ψ′(∼B)) = t
IH⇒ v3(B) /∈ D and v3(∼B) ∈ D t.c.∼⇒ v3(B) = FU

t.c.∧⇒
v3(B ∧ C) = FU

t.c.∼⇒ v3(∼(B ∧ C)) = T ∈ D. The second disjunctive
sub-case is similar.

Next consider the following implications: v1(Ψ′(∼B)∧Ψ′(∼C)) = t
t.c.∧⇒

v1(Ψ′(∼B)) = t and v1(Ψ′(∼C)) = t
IH⇒ v3(∼B) ∈ D and v3(∼C) ∈ D t.c.∼⇒

v3(B) ∈ {T,FU} and v3(C) ∈ {T,FU} t.c.∧⇒ v3(B ∧ C) ∈ {T,FU} t.c.∼⇒
v3(∼(B ∧ C)) ∈ D.

For the other direction v3(∼(B∧C)) ∈ D t.c.∼⇒ v3(B∧C) ∈ {T,FU} t.c.∧⇒
(a) v3(B) = v3(C) = T or (b) v3(B) = FU or (c) v3(C) = FU.

Sub-case (a): v3(∼B)=TU ∈ D and v3(∼C)=TU ∈ D IH⇒ v1(Ψ′(∼B))

= t and v1(Ψ′(∼C)) = t
t.c.∧⇒ v1(Ψ′(∼B)∧Ψ′(∼C)) = t

t.c.∨⇒ v1(tr) = t
df.Ψ′

⇒
v1(Ψ′(∼(B ∧ C))) = t.
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Sub-case (b): v3(B) = FU /∈ D t.c.∼⇒ v3(∼B) = T ∈ D IH⇒ v1(Ψ′(B)) ̸= t

and v1(Ψ′(∼B)) = t
t.c.∧⇒ v1(¬Ψ′(B) ∧ Ψ′(∼B)) = t

t.c.∨⇒ v1(tr) = t
df.Ψ′

⇒
v1(Ψ′(∼(B ∧ C))) = t. Sub-case (c) is similar.

Case A = ∼(B ∨ C).

v1(Ψ′(∼(B ∨ C))) = t
df.Ψ′

⇒ v1(tr) = t. Again, any disjunct of tr may
have the value t under v1. Consider the following sequence of implications:

v1(Ψ′(B) ∧ Ψ′(∼B)) = t
t.c.∧⇒ v1(Ψ′(B)) = t and v1(Ψ′(∼B)) = t

IH⇒
v3(B) ∈ D and v3(∼B) ∈ D t.c.∼⇒ v3(B) = T

t.c.∨⇒ v3(B ∨ C) = T
t.c.∼⇒

v3(∼(B∨C)) = TU ∈ D. The second disjunctive sub-case is similar, while
the third one can be easily seen from the analogues sub-case for ∼(B ∧C).

For the other direction v3(∼(B∨C)) ∈ D t.c.∼⇒ v3(B∨C) ∈ {T,FU} t.c.∨⇒
(a) v3(B) = v3(C) = FU or (b) v3(B) = T or (c) v3(C) = T.

Sub-case (a): v3(∼B) = T ∈ D and v3(∼C) = T ∈ D IH⇒ v1(Ψ′(∼B)) =

t and v1(Ψ′(∼C)) = t
t.c.∧⇒ v1(Ψ′(∼B) ∧ Ψ′(∼C)) = t

t.c.∨⇒ v1(tr) = t
df.Ψ′

⇒
v1(Ψ′(∼(B ∨ C))) = t.

Sub-case (b): v3(B) = T ∈ D t.c.∼⇒ v3(∼B) = TU ∈ D IH⇒ v1(Ψ′(B)) =

t and v1(Ψ′(∼B)) = t
t.c.∧⇒ v1(Ψ′(B) ∧ Ψ′(∼B)) = t

t.c.∨⇒ v1(tr) = t
df.Ψ′

⇒
v1(Ψ′(∼(B ∨ C))) = t. Sub-case (c) is similar.

Thus the following two lemmas are readily following.

Lemma 4.10. For every classical valuation v1 and a formula A ∈ For there
exists a CNLL2

4-valuation v3 such that

v1(Ψ′(A)) = t ⇐⇒ v3(A) ∈ D.

Lemma 4.11. A |=CNLL2
4
B ⇐⇒ Ψ′(A) |=Cl Ψ′(B).

Proof: Similar to the proof of lemma 4.7.

Corollary 4.12. Ψ′ is an embedding of CNLL2
4 into Cl.

5. Soundness and completeness of CNL2
4 and CNLL2

4

5.1. Soundness

Lemma 5.1 (Local Soundness for CNL2
4). All axiomatic schemata of CNL2

4

represent CNL2
4-valid sequents and the rules of inference preserve CNL2

4-

validity.
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Proof: We need to check each item from the list of axiomatic schemata
and inference rules. Let us show a couple of cases. Here, again, a valuation
applied to formulas is just an extended valuation function.

Suppose that axiomatic schemata (a7) is invalid, i. e. there a CNL2
4-

valuation v that v(A ∧ ∼2A) ∈ {T,TU} and v(B) ̸∈ {T,TU} that is
v(B) ∈ {F,FU}. It can be seen that this situation is impossible since
A ∧ ∼2A cannot take its value from the set {T,TU} at all.

Suppose that the rule (r4) does not preserve validity. This means that
there is a valuation v that A ⊨CNL2

4
B, but ∼2B ̸⊨CNL2

4
∼2A. From the

latter it follows that t v(∼2B) ∈ {T,TU} and v(∼2A) ̸∈ {T,TU} which
means that v(∼2A) ∈ {F,FU}. It is easy to observe that definition of
∼ implies v(A) ∈ {T,TU} and v(B) ∈ {F,FU}, but this contradicts to
A ⊨CNL2

4
B. Therefore, (r4) preserves validity.

The other cases are similar.

Theorem 5.2 (Soundness for CNL2
4). For any formulas A and B of the

language Lcnl, the following holds:

A ⊢ B is CNL2
4-provable ⇒ A ⊨CNL2

4
B.

Proof: By induction on the length of the proof, using Lemma 5.1.

Lemma 5.3 (Local Soundness for CNLL2
4). All axiomatic schemata of

CNLL2
4 represent CNLL2

4-valid sequents and the rules of inference pre-
serve CNLL2

4-validity.

Proof: Analogously to Lemma 5.1, we show only an example with one ax-
iomatic schemata, because the sets of inference rules of CNL2

4 and CNLL2
4

are identical.
Suppose that axiomatic schemata (c8) is invalid, that is there is a valu-

ation v such that v(∼(A ∨B) ∧∼(A ∧B)) ∈ {T,TU} and v(∼A ∧∼B) ̸∈
{T,TU}. The latter means that v(∼A ∧ ∼B) ∈ {F,FU}.

(a) Let v(∼(A ∨ B) ∧ ∼(A ∧ B)) = T. According to the definition of
conjunction this means that v(∼(A∨B)) = T and v(∼(A∧B)) = T.
This means that v(A ∨ B) = FU and v(A ∧ B) = FU. The first
equation determines v(A) = FU and v(B) = FU.

Let v(∼A∧∼B) = F. This is possible when v(∼A) = F or v(∼B) =
F. That is v(A) = TU or v(B) = TU. Each of these cases incom-
patible with the previous observation.



524 Oleg Grigoriev, Dmitry Zaitsev

Let v(∼A∧∼B) = FU. It takes place when v(∼A) = FU or v(∼B) =
FU which implies v(A) = F or v(B) = F, impossible again.

(b) Let v(∼(A ∨ B) ∧ ∼(A ∧ B)) = TU. According to the definition of
conjunction three cases are to consider, but two of them are identical.
Suppose, v(∼(A∨B)) = T and v(∼(A∧B)) = TU. By truth condi-
tions of ∼, v(A∧B) = T. This means that v(A) = T and v(B) = T.
Inspecting already considered cases when v(∼A ∧ ∼B) ∈ {F,FU}
we arrive at impossible valuations. The argument is analogous, when
v(∼(A ∨B)) = TU and v(∼(A ∧B)) = TU.

Theorem 5.4 (Soundness for CNLL2
4). For any formulas A and B of the

language Lcnl, the following holds:

A ⊢ B is CNLL2
4-provable ⇒ A ⊨CNLL2

4
B.

Proof: By induction on the length of the proof, using Lemma 5.3.

5.2. Completeness

The idea of the completeness theorem proof is based on a technique elabo-
rated by J. M. Dunn for the system of FDE (see [9]). This method essen-
tially relies on the notion of a prime theory which is given in the following
definition.

Definition 5.5. A CNL2
4-(CNLL2

4)-theory is the set of formulas α such
that for all formulas A and B of the language Lcnl,

(1) A ∧B ∈ α whenever A ∈ α and B ∈ α,

(2) B ∈ α whenever A ∈ α and A ⊢ B is CNL2
4-(CNLL2

4)-provable.

A CNL2
4-(CNLL2

4)-theory is prime if A ∨B ∈ α implies A ∈ α or B ∈ α.
We call a CNL2

4-(CNLL2
4)-theory α c-normal when for each formula A it

holds that A ∈ α if and only if ∼2A /∈ α.

As a first step toward completeness theorems for CNL2
4 and CNLL2

4

we prove the Extension Lemma. Note that we use this lemma uniformly for
both completeness theorems. So we prove it for the case of CNL2

4, while
proof for another system is the same.
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Lemma 5.6 (Extension Lemma). For all formulas A and B of the language
Lcnl, if A ⊢ B is not CNL2

4-provable, then there is a c-normal prime theory
α such that A ∈ α, B ̸∈ α.

Proof: Suppose that for some formulas A and B, A ⊢ B is not CNL2
4-

provable. Let us define α0 = {C | A ⊢CNL2
4
C}. α0 is a theory as it is

closed under ⊢CNL2
4

and ∧ (using the rule (r2)). Next we construct the
sequence of theories taking some enumeration of the set For (A1, A2, . . .)
and define

αn+1 =

{
αn, if αn ∪ {An+1} ⊢CNL2

4
B,

αn ∪ {An+1}, if αn ∪ {An+1} ̸⊢CNL2
4
B.

Let α be the union of all αn’s. First we show that α is a prime theory
such that A ∈ α and B ̸∈ α. A ∈ α by construction. Assume B ∈ α, hence
B was added to αi on i-th stage of construction of the sequence, which is
impossible. For the primeness suppose that α is not prime, i. e. C ∨D ∈ α,
but C ̸∈ α and D ̸∈ α. This means that both extensions α ∪ {C} and
α ∪ {D} contain B. Then there is a conjunctions of formulas form α, say
E, such that E ∧C ⊢CNL2

4
B and E ∧D ⊢CNL2

4
B. From this, using (r3),

we derive (E ∧C)∨ (E ∧D) ⊢CNL2
4
B. Then, using (a8) and (r1), we have

E ∧ (C ∨D) ⊢CNL2
4
B, so B ∈ α.

Finally, α is also c-normal. Indeed, if for some k, Ak ∈ α and ∼2Ak ∈ α,
then there is an αi which contains Ak ∧ ∼2Ak as well as B, due to axiom
schema A ∧ ∼2A ⊢ B, contrary to the assumption. On the other hand,
primeness of α and derivable schema B ⊢CNL2

4
A∨∼2A guarantee that for

each Ak, one of two formulas, Ak and ∼2Ak, belongs to α.

5.3. Completeness for CNL2
4

Recall that A denotes the set {TU,F}. We can express our truth-values
in terms of A and D sets via the following expressions:

v(A) = T ⇐⇒ v(A) ∈ D and v(A) /∈ A,

v(A) = TU ⇐⇒ v(A) ∈ D and v(A) ∈ A,

v(A) = F ⇐⇒ v(A) /∈ D and v(A) ∈ A,

v(A) = FU ⇐⇒ v(A) /∈ D and v(A) /∈ A.
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It is not difficult to verify the next lemma, having in mind the interpre-
tations of propositional connectives.

Lemma 5.7. Let A,B ∈ For, and v be a CNL2
4-valuation. Then, the

following statements hold:

(1) v(∼A) ∈ D ⇐⇒ v(A) /∈ A,

(2) v(∼A) ∈ A ⇐⇒ v(A) ∈ D,

(3) v(A ∧B) ∈ D ⇐⇒ v(A) ∈ D and v(B) ∈ D,

(4) v(A ∧B) ∈ A ⇐⇒ v(A) ∈ A or v(B) ∈ A,

(5) v(A ∨B) ∈ D ⇐⇒ v(A) ∈ D or v(B) ∈ D,

(6) v(A ∨B) ∈ A ⇐⇒ v(A) ∈ A and v(B) ∈ A.

Now we turn to the definition of a CNL2
4-canonical valuation.

Definition 5.8. For each c-normal prime theory α and propositional vari-
able p we define a CNL2

4-canonical valuation vc as a mapping Var 7→ 4Q
satisfying the following expressions:

(1) vc(p) ∈ D ⇐⇒ p ∈ α;

(2) vc(p) ∈ A ⇐⇒ ∼3p ∈ α;

We define a unique extension of vc to the set of all formulas in the
usual way and denote this extension by vc as well. We prove that extended
valuation behaves as expected with respect to the c-normal prime theories.

Lemma 5.9 (Canonical Valuation Lemma for CNL2
4). For each c-normal

prime theory α, formula A and extended canonical CNL2
4-valuation vc the

following statements hold:

(1) vc(A) ∈ D ⇐⇒ A ∈ α,

(2) vc(A) ∈ A ⇐⇒ ∼3A ∈ α.

Proof: By induction on the structure of a formula A. The base case
when A is a propositional variable follows from the definition 5.8. Let us
explore the cases for the complex formulas. The induction hypothesis (‘IH’
in the sequel) claims that lemma is true for their proper subformulas. We
also use the two basic properties of theories, namely, their closure under
conjunction and the relation ⊢CNL2

4
throughout the proof.
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Case A = ∼B.

vc(∼B) ∈ D lem.5.7⇐⇒ vc(B) /∈ A IH⇐⇒ ∼3B /∈ α
c-norm.⇐⇒ ∼B ∈ α.

vc(∼B) ∈ A lem.5.7⇐⇒ vc(B) ∈ D IH⇐⇒ B ∈ α
(a9),(a10)⇐⇒ ∼4B ∈ α.

Case A = B ∧ C.

vc(B ∧ C) ∈ D lem.5.7⇐⇒ vc(B) ∈ D and vc(C) ∈ D IH⇐⇒ B ∈ α and C ∈
α

df.α,(a1),(a2)⇐⇒ B ∧ C ∈ α.
vc(B∧C) ∈ A lem.5.7⇐⇒ vc(B) ∈ A or vc(C) ∈ A IH⇐⇒ ∼3B ∈ α or ∼3C ∈

α
c-norm.⇐⇒ ∼B /∈ α or ∼C /∈ α

(a1),(a2),(a5),(b1)⇐⇒ ∼(B ∧ C) /∈ α
c-norm.⇐⇒

∼3(B ∧ C) ∈ α.

Case A = B ∨ C.

vc(B ∨ C) ∈ D lem.5.7⇐⇒ vc(B) ∈ D or vc(C) ∈ D IH⇐⇒ B ∈ α or C ∈
α

(a3),(a4),prim.⇐⇒ B ∨ C ∈ α.
vc(B ∨ C) ∈ A lem.5.7⇐⇒ vc(B) ∈ A and vc(C) ∈ A IH⇐⇒ ∼3B ∈ α

and ∼3C ∈ α
c-norm.⇐⇒ ∼B /∈ α and ∼C /∈ α

(a3),(a4),(a6),(b2),prim.⇐⇒ ∼(B ∨C) /∈
α

c-norm.⇐⇒ ∼3(B ∨ C) ∈ α.

Theorem 5.10 (Completeness for CNL2
4). For any formulas A and B of

the language Lcnl, the following holds:

A ⊨CNL2
4
B ⇒ A ⊢ B is CNL2

4-provable.

Proof: Suppose A ⊢ B is not CNL2
4-provable. Then, by Lemma 5.6,

there is prime theory α such that A ∈ α and B ̸∈ α. Then, by Lemma 5.9,
we know that vc(A) ∈ D but vc(B) /∈ D, so A ̸⊨CNL2

4
B.

5.4. Comleteness for CNLL2
4

Let B denote the set {T,FU}. The next lemma is rather straightforward
consequence of the semantic definitions for the propositional connectives.

Lemma 5.11. For any A,B ∈ For, a CNLL2
4-valuation v the following

statements hold:

(1) v(∼A) ∈ D ⇐⇒ v(A) ∈ B,
(2) v(∼A) ∈ B ⇐⇒ v(A) /∈ D,

(3) v(A ∧B) ∈ D ⇐⇒ v(A) ∈ D and v(B) ∈ D,
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(4) v(A ∧ B) ∈ B ⇐⇒ v(A), v(B) ∈ D ∩ B or v(A) ∈ B \ D or v(B) ∈
B \ D,

(5) v(A ∨B) ∈ D ⇐⇒ v(A) ∈ D or v(B) ∈ D,

(6) v(A ∨ B) ∈ B ⇐⇒ v(A), v(B) ∈ B \ D or v(A) ∈ D ∩ B or v(B) ∈
D ∩ B.

Definition 5.12. For each c-normal prime theory α and propositional
variable p we define a CNLL2

4-canonical valuation vc as a mapping Var 7→
4LQ satisfying the following expressions:

(1) vc(p) ∈ D ⇐⇒ p ∈ α;

(2) vc(p) ∈ B ⇐⇒ ∼p ∈ α;

Again, we need to extend a canonical valuation to the whole set For

and prove the canonical valuation lemma.

Lemma 5.13 (Canonical Valuation Lemma for CNLL2
4). For each c-normal

prime theory α, formula A and extended canonical CNLL2
4-valuation vc

the following statements hold:

(1) vc(A) ∈ D ⇐⇒ A ∈ α,

(2) vc(A) ∈ B ⇐⇒ ∼A ∈ α.

Proof: By induction on the structure of a formula. Propositional vari-
ables case immediately follows from the definition of vc.

Case A = ∼B.

vc(∼B) ∈ D lem. 5.11⇐⇒ vc(B) ∈ B IH⇐⇒ ∼B ∈ α.

vc(∼B) ∈ B lem. 5.11⇐⇒ vc(B) /∈ D IH⇐⇒ B /∈ α
c-norm.⇐⇒ ∼2B ∈ α.

Case A = B ∧ C.

vc(B ∧ C) ∈ D lem. 5.11⇐⇒ vc(B) ∈ D and vc(C) ∈ D IH⇐⇒ B ∈ α and

C ∈ α
df.α,(a1),(a2)⇐⇒ B ∧ C ∈ α.

(⇒) Let vc(B ∧ C) ∈ B. By Lemma 5.11 we have to explore three
sub-cases. (i) From [vc(B) ∈ B and vc(C) ∈ B] and IH we get ∼B ∈ α
and ∼C ∈ α, thus by the ∧-closure of α and the axiom scheme (a5),
∼(B ∧ C) ∈ α. (ii) If [vc(B) /∈ D and vc(B) ∈ B] then IH gives B /∈ α
and ∼B ∈ α. By c-normality of α, ∼2B ∈ α. Thus, by the axiom schema
(c3), ∼(B ∧ C) ∈ α. (iii) If [v(C) /∈ D and v(C) ∈ B] we similarly get
∼C ∧ ∼2C ∈ α, so ∼(C ∧B) ∈ α and, finally, by (c7), ∼(B ∧ C) ∈ α.
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(⇐) Suppose ∼(B ∧ C) ∈ α, then, by (c2), ∼B ∨ ∼C ∈ α, so, by
primeness of α, ∼B ∈ α or ∼C ∈ α. Let us consider the case ∼B ∈ α.
According to IH, vc(B) ∈ B, but this is not enough to assert vc(B∧C) ∈ B.
So, we should examine the position of B relative to the theory α. Suppose
B ∈ α. By the ∧-closure of α, B ∧ ∼B ∈ α. Using the axiom schema (c4)
we get ∼(B ∨ C) ∈ α which, along with (c8), and ∧-closure of α again,
implies ∼B∧∼C ∈ α, hence ∼C ∈ α. By IH, vc(C) ∈ B, so vc(B∧C) ∈ B.
Next assume B /∈ α. Applying IH we then have vc(B) /∈ D. This means
that vc(B) = FU, so vc(B ∧ C) ∈ B. Similarly for ∼C ∈ α.

Case A = B ∨ C.

vc(B ∨ C) ∈ D lem. 5.11⇐⇒ vc(B) ∈ D or vc(C) ∈ D IH⇐⇒ B ∈ α or

C ∈ α
(a3),(a4),prim.⇐⇒ B ∨ C ∈ α.

(⇒) Assume vc(B ∨ C) ∈ B. Then, according to Lemma 5.11, we have
two disjunctive subcases. First assume [vc(B) ∈ B and vc(C) ∈ B]. It is
enough to get ∼B ∈ α and ∼C ∈ α by IH and then ∼(B ∨ C) ∈ α using
(c1). The proof for second subcase is accomplished by the same reasoning.

(⇐) Suppose ∼(B ∨C) ∈ α. By the axiom (a6) and primeness of α we
then obtain ∼B ∈ α or ∼C ∈ α. Let us consider the first of the disjunctive
sub-cases. From IH it follows that vc(B) ∈ B. But to get the required
assertion vc(B ∨ C) ∈ B we need more information. Applying (c6) and
then (c5) to ∼(B ∨ C) ∈ α we get ∼C ∨ B ∈ α. Primeness of α and IH
give vc(C) ∈ B or vc(B) ∈ D. In both of these cases, taking into account
vc(B) ∈ B, we end with vc(B ∨ C) ∈ B. Analogues reasoning provides the
proof in case when ∼C ∈ α.

Theorem 5.14 (Completeness for CNLL2
4). For any formulas A and B

of the language Lcnl,

A ⊨CNLL2
4
B ⇒ A ⊢ B is CNLL2

4-provable.

Proof: The same as in the previous theorem for CNL2
4.

6. Conclusion

Although we have studied probably the most natural logics of paired cyclic
negations, the whole picture is still waiting to be explored. Even the frame-
work of the four-valued semantics gives some possible directions for the
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further investigations. Specifically, one can choose other sets of the desig-
nated truth values or combine the different collections of designated and
anti-designated truth values. On the other hand, alternative definitions
of the consequence relation are also possible. To obtain the more abstract
results, paired cyclic negations could be put into more general lattice struc-
tures, even not necessary finitely based. Having in mind ability to simulate
the other negation-like operations, the potential relationships between log-
ical systems appear to be of the main interest.
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1. Introduction

According to [6], there are only finitely many polynomial clones on a finite
algebra which generates a congruence permutable Fregean variety. As we
will show in the paper, if a three-element algebra A generates a congru-
ence permutable Fregean variety, then the universe of A with the natural
order is a chain. Moreover, also the lattice of congruences on A is a three-
element chain. It is known that congruence permutable Fregean varieties
are congruence modular, so we can consider in this case the commutator
operation. By [6, Corollary 2.8], due to the behavior of the commutator
operation on a three-element algebra, we can distinguish four polynomi-
ally nonequivalent algebras, that generate congruence permutable Fregean
varieties.
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Two of them are well known: the three-element equivalential algebra
and the three-element Brouwerian semilattice. The equivalential algebras
are solvable, so they are of type 2 ([6, p. 606]) in the sense of Tame Con-
gruence Theory of Hobby and McKenzie [4]. However, the Brouwerian
semilattices are congruence distributive and so they are of type 3. Equiv-
alential algebras and Brouwerian semilattices have already been carefully
studied, both when it comes to the construction of the n-generated free
algebras, as well as the cardinality of these algebras for small n and for
some subvarieties, see [8, 19, 14, 15] for the equivalential algebras and [9]
for the Brouwerian semilattices.

In the other two cases we are dealing with a mixed type. In the first
case, we have type 3 at the top of congruence lattice and type 2 at its
bottom, see Figure 1. An example of algebra, which meets these conditions
is the three-element equivalential algebra with conjunction on the regular
elements. The variety generated by this algebra was investigated in [11],
where its properties, the representation theorem, the construction of the
free algebra and the free spectrum were given.

The aim of this paper is to study the variety generated by the three-
element algebra, in which the commutator operation behaves in the op-
posite way: type 2 is at the top of congruence lattice and type 3 at its
bottom. Such structure is the subreduct of the three-element Heyting alge-
bra, with the equivalence operation and the second binary operation which
is conjunction on the dense elements.

Both the dense elements as well as the regular elements play an impor-
tant role in the study of the relation between classical and intuitionistic
logic. They appear indirectly in the Glivenko theorem according to which
a formula φ is a tautology of classical propositional calculus iff its dou-
ble negation (i.e. the regularization of φ) is a tautology of intuitionistic
propositional calculus. An algebraic version of this theorem refers directly
to dense elements: we divide a Heyting algebra by the filter of all dense
elements obtaining a Boolean algebra [12, p. 132].

2. Preliminary

Let A be an algebra. We say that µ ∈ ConA is completely meet-
irreducible if µ ̸= A2 and for any family {µi : i ∈ I} ⊆ ConA such
that µ =

⋂
i∈I µi, we have µ = µi for some i ∈ I. If µ is completely meet-
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irreducible, then there exists the unique cover of µ in ConA, denoted by µ+.
We will denote by Cm(A) the set of all completely meet-irreducible con-
gruences on A. Similarly, we can define a completely join-irreducible
congruence ν and the unique subcover of ν in ConA, denoted by ν−. Let
Θ(a, b) denote the congruence generated by (a, b).

Now, we will recall the most important facts related to the concept of
the commutator. At the beginning we need the following definition:

Definition 2.1 ([10, p. 252]). Let α, β, η be congruences of an algebra
A. We say that α centralizes β modulo η, written: C(α, β; η), iff for all
n ≥ 1, and for every: t ∈ Clon+1A, (a, b) ∈ α and (c1, d1), . . . , (cn, dn) ∈ β
we have:

t(a, c1, . . . , cn) ≡η t(a, d1, . . . , dn) iff t(b, c1, . . . , cn) ≡η t(b, d1, . . . , dn).

Definition 2.2 ([10, p. 252]). For congruences α and β of A ∈ V, where
V is a congruence modular variety, we define their commutator, denoted
[α, β], to be the smallest congruence η of A for which α centralizes β modulo
η, i. e., η =

∧
{ϕ : C(α, β;ϕ)}.

Definition 2.3 ([2, p. 35, 47]). Let A ∈ V, where V is a congruence
modular variety, α, β ∈ ConA and α ≤ β. Then:

1. β is called Abelian over α if [β, β] ≤ α,

2. β is called Abelian if [β, β] = 0A,

3. A is called Abelian if [1A, 1A] = 0A.

We say that an algebra A satisfies the condition (C1) if α ∧ [β, β] =
[α ∧ β, β] for all α, β ∈ ConA.

Remark 2.4 ([5, p. 49]). In congruence modular varieties the condition
(C1) gives [α, β] = (α∧ [β, β])∨ (β ∧ [α, α]), for α, β ∈ ConA, so the com-
mutator operation on congruences of A is uniquely determined by the di-
agonal, i. e., by elements of the form [α, α].

If A ∈ V and V is a congruence modular variety, we can define the
following notion:

Definition 2.5 ([10, p. 252]). The centralizer of β modulo α, denoted
(α : β), is the largest congruence γ of A such that γ centralizes β modulo
α, i. e., γ =

∨
{ϕ : C(ϕ, β;α)}.
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Now, we give basic information about Fregean varieties.

Definition 2.6 ([6, p. 597]). An algebra A with a distinguished constant
term 1 is called Fregean if A is:

1. 1-regular, i. e., 1/α = 1/β implies α = β for all α, β ∈ ConA,

2. congruence orderable, i. e., ΘA(1, a) = ΘA(1, b) implies a = b for
all a, b ∈ A.

A variety V is said to be Fregean if all its algebras are Fregean. Natural
examples of Fregean varieties are: equivalential algebras, Boolean algebras,
Heyting algebras, Brouwerian semillatices or Hilbert algebras. Fregean
varieties are closely related with the Fregean logics, see [1].

Congruence orderability allows us to introduce a natural partial order
on the universe of A in the following way: a ≤ b iff ΘA(1, b) ⊆ ΘA(1, a).
Clearly, 1 is the greatest element in this order. From 1-regularity it follows
that the Fregean varieties are congruence modular, see [3].

Next, we recall an important theorem, which characterizes subdirectly
irreducible algebras in Fregean varieties.

Proposition 2.7 ([16, Proposition 3.1], [6, Lemma 2.1]). Let A be an
algebra from a Fregean variety V. Then A is subdireclty irreducible iff
there is the largest non-unit element ∗ in A. Moreover, the monolith µ of
A has the form 1/µ = {∗, 1} and all other cosets with respects to µ are
one-element.

The Fregean varieties meet the condition (C1). Moreover, they satisfy
the stronger condition (SC1):

Definition 2.8 ([6, p. 602]). If µ is the monolith of a subdirectly irre-
ducible algebra A from a Fregean variety then the centralizer (0 : µ) does
not exceed µ.

Definition 2.9. An equivalential algebra is an algebra (A,↔, 1) of type
(2, 0) that is a subreduct of a Heyting algebra with the binary operation
↔ given by x↔ y := (x→ y) ∧ (y → x).

In this paper, we adopt the convention of associating to the left and
ignoring (or replacing with “·”) the symbol of equivalence operation. In 1975
J. K. Kabziński and A. Wroński proved that the class E of all equivalential
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algebras is equationally definable by identities: xxy = y, xyzz = (xz)(yz),
(xy)(xzz)(xzz) = xy, and so it forms a variety [8].

We know from [6, p. 598] that E is congruence permutable. Moreover,
the following theorem is true:

Theorem 2.10 ([6, Theorem 3.8]). Let V be a congruence permutable
Fregean variety. Then there exists a binary term ↔ such that for every
A ∈ V:

1. (A,↔, 1) is an equivalential algebra;

2. ↔ is a principal congruence term of A, i. e., (a, b) ∈ α iff (1, a↔ b) ∈
α for every α ∈ ConA.

If V is a congruence permutable Fregean variety and A ∈ V, then we
will denote an equivalential reduct of A by Ae.

3. The clones of polynomials of a three-element
algebra, which generates a congruence permutable
Fregean variety

It is known that there exist only two polynomially nonequivalent alge-
bras defined on a two-element set and generating a congruence permutable
Fregean variety [6, p. 640]. We examine an analogous situation, but for a
three-element set. The first question concerns the number of such polyno-
mially nonequivalent algebras. By Theorem 2.10, for every algebra A from
a congruence permutable Fregean variety there is a binary term ↔ such
as Ae is an equivalential algebra. In order to answer our question we first
need to consider a three-element algebra A with a universe {1, a, b}, with
the equivalence operation ↔ and a constant term 1, which is the greatest
element in A in the natural order.

Proposition 3.1. Let A generate a congruence permutable Fregean vari-
ety with a constant term 1 and let |A| = 3. Then:

1. A with the natural order is a chain,

2. (ConA,∨,∧) with the order ⊆ is a three-element chain

Proof: (1) Let A = {1, a, b}. Without loss of generality we can assume
that a ↔ b = a, since otherwise (i.e. a ↔ b = b) the situation would
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be analogous. From Theorem 2.10 we have Θ(1, a ↔ b) = Θ(a, b). Thus:
Θ(1, a) = Θ(1, a↔ b) = Θ(a, b). As Θ(1, b) ⊆ Θ(1, a), so from a congruence
orderability it follows that a ≤ b and consequently a < b < 1.

(2) Similarly, from a congruence orderability and inequalities a < b < 1
we get: 0A = Θ(1, 1) ⊊ Θ(1, b) ⊊ Θ(1, a) = 1A. Thus: 0A < Θ(1, b) < 1A.
This completes the proof because in ConA there are only principal con-
gruences.

Since {1, a, b} with the natural order forms a chain, thus we adopt
the convention that the smallest element in a three-element chain will be
denoted by 0, and the middle element by ∗. We conclude from Proposition
2.7 that an algebra A, which fulfills the assumptions of Proposition 3.1,
is a subdirectly irreducible with the monolith Θ(1, ∗). Note also, that if
a three-element algebra A comes from a congruence permutable Fregean
variety, then Θ(x, y) = Θe(x, y), for x, y ∈ A.

By [6, Corollary 2.8], the clone of polynomials of a finite algebra from
a congruence permutable Fregean variety is uniquely determined by its
congruence lattice expanded by the commutator operation, i. e., by the
structure Concom(A) := (ConA;∧,∨, [·, ·]). Thus, the number of clones of
polynomials of A depends on the behaviour of the commutator operation
on a three-element lattice of congruences. There are four such possibilities,
shown in the figure below.

1A
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0A

1A

µA

0A

1A

µA

0A

1A
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0A

2

2

3
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The number 2 used in the figure means that a congruence α above
this number is Abelian over α−, where α− denotes the unique subcover
of α, i. e., [α, α] = α−. On the other hand, the number 3 means that
a congruence α above this number fullfils: [α, α] = α. Note that it follows
from the condition (SC1) that the equality [1A, 1A] = 0A is not possible,
because it would lead to a contradiction, i. e., (0A : µA) = 1A.

An algebra, in which the commutator behaves as in the first case is
the three-element equivalential algebra, whereas an algebra, in which the
commutator behaves as in the fourth case is the three-element Brouwerian
semilattice. An example corresponding to the second case is a three-element
equivalential algebra with conjunction on the regular elements, described
in [11]. In this article we will give an example of an algebra, in which the
commutator behaves as in the third case.

4. Equivalential algebras with conjunction on
the dense elements

In Heyting algebras we can consider both the dense elements and the reg-
ular elements. An element x is called: regular if (x→ 0) → 0 = x, dense
if (x → 0) → 0 = 1. The Glivenko theorem mentioned earlier, explains
their role in studying of the reducts of the intuitionistic logics. To defined
them in Heyting algebras we use the constant 0. In equivalential algebras
we can define the regular and dense elements without using this constant.
In this situation we say that an element x ∈ A is regular if xyy = x for all
y ∈ A, and it is dense if there is a finite subset {y1, y2, . . . , yn} ⊆ A such
that xy1y1y2y2 . . . ynyn = 1. If the equivalential algebra A is the reduct of
the Heyting algebra, then both definitions coincide.

In Heyting algebras we can define an operation of the conjuction on
the dense elements. Let us consider a subreduct of the Heyting algebra
with the constant 1 and with two binary operation. The first is the equiva-
lence operation, providing the congruence permutability, while the second
operation is the conjuction on the dense elements. We will also limit our
considerations to the three-element subreduct of the Heyting algebra. From
Proposition 3.1 we know that the universe of this algebra with the natural
order forms a chain. Finally, we get the following definition.

Definition 4.1. An equivalential algebra with conjunction on the
dense elements is an algebra D := ({0, ∗, 1}, ·, d, 1) of type (2, 2, 0), which
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is the reduct of the three-element Heyting algebra H = ({0, ∗, 1},∧,∨,→
, 0, 1) with an order: 0 < ∗ < 1, the constant 1, the equivalence operation ·
such that x · y := (x→ y)∧ (y → x), and an additional binary operation d
such that d(x, y) := x00x ∧ y00y.

Note that Ae is an equivalential algebra and d is a binary commutative
operation presented in the table below (on the right):

· 1 ∗ 0
1 1 ∗ 0
∗ ∗ 1 0
0 0 0 1

d 1 ∗ 0
1 1 ∗ 1
∗ ∗ ∗ ∗
0 1 ∗ 1

We denote by V(D) the variety generated by D. It is easy to see, that
D is a subdirectly irreducible Fregean algebra with the monolith denoted
by µD. Moreover, ConD = {0D, µD, 1D}, where 0D < µD < 1D.

Remark 4.2. D has two nontrivial subalgebras:

2 := ({1, 0}, ·, d, 1), where d ≡ 1,

2∧ := ({1, ∗}, ·, d, 1), where d(x, y) := x ∧ y.

Thus, the algebra 2 is a Boolean group and is abelian, while the algebra
2∧ is a Boolean algebra without zero [18] and is not abelian. Note that
D/µD

∼= 2, and, consequently, A ∈ HS(D) iff A ∼= 2 or A ∼= 2∧ or A ∼= D
for non-trivial A ∈ V(D).

Now, applying [6, Theorem 2.10] we get immediately:

Proposition 4.3. V(D) is a Fregean variety.

Next, we look at the commutator operation in ConD.

Proposition 4.4.

1. [µD, µD] = µD,

2. [1D, 1D] = µD,

3. (0D : µD) = 0D,

4. (µD : 1D) = 1D.
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Proof: (1) From the definition of the commutator we get:

1 = d(1, 1) ≡[µD,µD] d(1, ∗) = ∗ iff

∗ = d(∗, 1) ≡[µD,µD] d(∗, ∗) = ∗,

so (1, ∗) ∈ [µD, µD], thus [µD, µD] = µD.
(2) Since D/µD

∼= 2, we get immediately from the general property of
the commutator operation [2]:

µD/µD = [1D/µD, 1D/µD] = ([1D, 1D] ∨ µD)/µD.

Thus [1D, 1D] ∨ µD = µD, and consequently [1D, 1D] ⊆ µD. From the
equality [µD, µD] = µD we get [1D, 1D] ⊆ µD ⊆ [µD, µD], and therefore
[1D, 1D] = µD.

(3), (4) From Definition 2.3 and (1) and (2) we get that 1D is Abelian
over µD, and µD is not Abelian in D. Thus, from [5, Lemma 21] we obtain
the assertion.

From the above proposition we get the following result:

Corollary 4.5. The algebra D is polynomially equivalent neither to the
three-element equivalential algebra nor to the three-element Brouwerian
semillatice.

Proposition 4.6. There are only three (up to isomorphism) nontrivial
subdirectly irreducible algebras in V(D): D,2,2∧.

Proof: From Remark 4.2 we know that up to isomorphism the only non-
trivial subdirectly irreducible algebras in HS(D) are: D,2,2∧. Among
them only 2 has an abelian monolith. Suppose that B := {B, ·, dB , 1} is
subdirectly irreducible in V(D). It follows from [2, Theorem 10.12] that
there exists a subdirectly irreducible algebra A ∈ HS(D) such that either
B ∼= A or B and A have abelian monoliths and B/(0B : µB) ∼= A/(0A :
µA). Thus B ∈ {D,2,2∧} (up to isomorphism) or B has an abelian mono-
lith and B/(0B : µB) ∼= 2/(02 : µ2). Assume that the second possibility
holds. From (SC1) we get (0B : µB) = µB. Thus B/µB

∼= 2/(02 : µ2).
Since 2/(02 : µ2) = 2/µ2 is a trivial algebra, it follows from Proposition 2.7
that B with the natural order is the two-element chain, and so B = {1, 0}.
Using identities dB(x, 1) ≈ dB(x, x) ≈ dB(1, x) and dB(1, 1) ≈ 1, true in
V(D), we get dB(1, 0) = dB(0, 1) = dB(0, 0). Suppose that dB(1, 0) = 0,



544 Sławomir Przybyło, Katarzyna Słomczyńska

then dB(x, y) = x∧y, contrary to the fact that B has an abelian monolith.
Thus dB(1, 0) = 1, and so dB ≡ 1. In consequence B ∼= 2, which completes
the proof.

Remark 4.7. It follows from Proposition 4.6 that all subdirectly irreducible
algebras in V(D) belong to S(D). Thus V(D) = SP (D). In consequence,
a quasivariety generated by D turns out to be a variety.

5. Frames for the algebras from V(D)

Let A ∈ V(D). Recall, that we denote by Cm(A) the set of all completely
meet-irreducible congruences on A. In this section we describe an addi-
tional structure (frame) on Cm(A). This structure is similar to the frames
in the equivalential algebras with conjunction on the regular elements de-
scribed in [11].

It follows from Proposition 4.6 that µ ∈ Cm(A) iff A/µ ∼= k, for k ∈
{D,2,2∧}. We use the following notation:

L := {µ ∈ Cm(A) : A/µ ∼= 2},

L := {µ ∈ Cm(A) : A/µ ∼= D},

P := {µ ∈ Cm(A) : A/µ ∼= 2∧},

L := L ∪ L.

Proposition 5.1. Let A ∈ V(D) and µ ∈ Cm(A). If A/µ ∼= D, then
A/µ+ ∼= 2.

Proof: Let f : A/µ → 2 be the function given by f(1/µ) = f(∗/µ) = 1
and f(0/µ) = 0. Therefore f is a surjective homomorphism and ker f =
µ+/µ. Thus (A/µ)/(µ+/µ) ∼= 2, and consequently A/µ+ ∼= 2.

Corollary 5.2. Let A ∈ V(D) and µ ∈ Cm(A). Then µ ∈ P ∪ L iff
µ ≺ 1A (i. e., µ+ = 1A) and µ ∈ L iff µ+ ∈ L.

In consequence, the length of the longest chain in Cm(A) equals two.
Let A ∈ V(R) and φ,ψ ∈ Cm(A). We introduce a relation on Cm(A)

as follows (see [5, p. 51]):

φ ∼ ψ iff the intervals I[φ,φ+] and I[ψ,ψ+] are projective.

It is easy to see, that the relation ∼ is an equivalence relation on Cm(A).
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From [17, Lemma 4.2, Corollary 3.7] it follows that the definition of the
relation ∼ is equivalent to the following definition: φ ∼ ψ iff φ+ = ψ+ and
φ • ψ ∈ Cm(A), where φ • ψ = (φ÷ ψ)′ ∩ φ+.

Definition 5.3. Let A ∈ V(D). The structure Cm(A) := (Cm(A),≤,∼)
is called a frame of A, where ≤ is the inclusion relation.

First, we show that the relation ∼ on P ∪ L is an identity.

Proposition 5.4. Let A ∈ V(D) and µ ∈ P ∪ L. Then |µ/∼| = 1.

Proof: Let µ ∈ P . Then µ+ = 1A. Since A/µ is not Abelian, so from
[2, Proposition 3.7] we get that 1A is not Abelian over µ. Thus µ+ is not
Abelian over µ. Let now µ ∈ L. Then A/µ ∼= D. Since µD is not Abelian,
thus µ+/µ, the monolith of A/µ, is also not Abelian. In both cases, from
[5, Lemma 21] we have µ/∼ = {µ}.

Theorem 5.5. Let A ∈ V(D) and µ ∈ L. Then:
1) µ/∼ = {ν ∈ L : ν+ = 1A} = L,
2) (µ/∼ ∪ {1A}, •) forms a Boolean group, where µ1 • µ2 := (µ1 ÷ µ2)

′ for
µ1, µ2 ∈ µ/∼.

Proof: (1) From [5, Lemma 21] we know that µ/∼ ⊆ {ν ∈ L : ν+ = 1A}.
We need to prove the reverse inclusion. Let φ ∈ {ν ∈ L : ν+ = 1A} and φ ̸=
µ. First we show that µ•φ is a congruence on A. Since Cm(A) ⊆ Cm(Ae),
see [7, Lemma 4.1], we have µ, φ ∈ Cm(Ae). Thus, from [14, Proposition 3]
we get that µ•φ ∈ ConAe. Next, we show that the relation µ•φ is compat-
ible with the operation d. Let (a, b), (e, f) ∈ µ•φ. Since the operation d ≡ 1
on A/µ∪A/φ, we get d(a, e) ·d(b, f) ∈ 1/µ and d(a, e) ·d(b, f) ∈ 1/φ. Thus
d(a, e)·d(b, f) ∈ 1/µ∧φ, and, consequently, (d(a, e), d(b, f)) ∈ µ∧φ ⊆ µ•φ.
Therefore µ •φ is a congruence. Since µ+ = φ+, from [17, Corollay 3.7] we
get µ ∼ φ. Thus φ ∈ µ/∼, and so {ν ∈ L : ν+ = 1A} ⊆ µ/∼.

The assertion (2) follows from [17, Theorem 3.6].

Summarizing, the equivalence classes of the relation ∼ on Cm(A) take
the following form:

1. L ∈ Cm(A)/∼,

2. µ/∼ = {µ} for all µ ∈ L ∪ P .
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6. Representation theorem

A maximal proper subalgebra of the Boolean group is called a hyper-
plane. We use this word, because a Boolean group can be interpreted as
a vector space over the field Z2. We will write Z ↑:= {ν ∈ Cm(A) : ν ≥
µ for some µ ∈ Z} and Z ↓:= {ν ∈ Cm(A) : ν ≤ µ for some µ ∈ Z} for
Z ⊆ Cm(A). Let A ∈ V(D). To get the representation theorem, we need
to define a family of subsets on the set Cm(A) called the hereditary sets.
This idea came from Słomczyńska, see [14]. The general definition [17,
Definition 4.5] works for every algebra A from a Fregean variety. It is easy
to see that in our case this definition takes the following form:

Definition 6.1. Let A ∈ V(D) and Z ⊆ Cm(A). A set Z is hereditary
if:

1. Z = Z ↑,

2. L ⊆ Z or ((L ∩ Z) ∪ {1A}, •) is a hyperplane in (L ∪ {1A}, •).
We denote by H(A) the set of all hereditary subsets of Cm(A).

We define a map M as follows:

M : A ∋ a→M(a) := {µ ∈ Cm(A) : a ∈ 1/µ},

for all A ∈ V(D).
Now, we formulate the representation theorem.

Theorem 6.2. Let A ∈ V(D) and let A be finite. Then the map
M : A ∋ a → M(a) := {µ ∈ Cm(A) : a ∈ 1/µ} is the isomorphism
between A and (H(A),↔, d,1), where

Z ↔ Y := ((Z ÷ Y ) ↓)′

d(Z, Y ) := [Z ∪ ((Z ↓)′ ∩ L)] ∩ [Y ∪ ((Y ↓)′ ∩ L)],

1 := Cm(A),

for Z, Y ∈ H(A).

Proof: From [17, Proposition 4.8] we deduce thatM(a) is a hereditary set,
so the map M is well defined. Next, we conclude from [17, Theorem 4.14]
that M is a bijection which preserves the equivalence operation. Clearly,
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if Z = Cm(A), then Z =M(1). Thus, it suffices to show that M preserves
d.

Of course, we have L ⊆ d(Z, Y ) for all Z, Y ∈ H(A), and so d(Z, Y ) is
a hereditary set. Moreover, Z ∩ Y ⊆ d(Z, Y ). We show that

M(d(a, b)) = [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)],

for all a, b ∈ A. We recall that if µ ∈ L, then d(a, b)/µ = 1/µ, and if µ ∈ P ,
then d(a, b)/µ = a/µ ∧ b/µ. We show inclusion both ways.

„⊆” Let µ ∈M(d(a, b)). We need consider three cases:

1) µ ∈ L. Then the inclusion is obvious.

2) µ ∈ P . Then

µ ∈M(d(a, b)) ⇒ d(a, b) ∈ 1/µ⇒ d(a, b)/µ = 1/µ⇒

a/µ = 1/µ and b/µ = 1/µ⇒ a ∈ 1/µ and b ∈ 1/µ⇒

µ ∈M(a) and µ ∈M(b) ⇒ µ ∈M(a) ∩M(b).

3) µ ∈ L. In this situation we get µ ∈ M(d(a, b)) ⇒ d(a, b)/µ = 1/µ ⇒
a/µ ̸= ∗/µ and b/µ ̸= ∗/µ. The following cases are possible:

a) a/µ = b/µ = 1/µ. Then µ ∈M(a) ∩M(b).

b) a/µ = b/µ = 0/µ. Therefore

a/µ+ = b/µ+ = 0/µ+ ⇒ a, b /∈ 1/µ+ ⇒ µ+ /∈M(a) and µ+ /∈M(b) ⇒

µ /∈M(a) ↓ and µ /∈M(b) ↓ ⇒ µ ∈ (M(a) ↓)′ and µ ∈ (M(b) ↓)′.

Hence µ ∈ [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)].
c) a/µ = 1/µ, b/µ = 0/µ (or vice versa). Then a ∈ 1/µ, so µ ∈ M(a).
Since b /∈ 1/µ+, so µ /∈M(b) ↓, and consequently µ ∈ (M(b) ↓)′. Thus

µ ∈ [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)].

„⊇” Let µ ∈ [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)]. Once
again we need consider three cases:

1) µ ∈ L. Then d(a, b)/µ = 1/µ⇒ d(a, b) ∈ 1/µ⇒ µ ∈M(d(a, b)).

2) µ ∈ P . In this case:
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µ ∈M(a) ∩M(b) ⇒ µ ∈M(a) and µ ∈M(b) ⇒ a/µ = 1/µ

and b/µ = 1/µ⇒ d(a, b)/µ = 1/µ⇒ d(a, b) ∈ 1/µ⇒ µ ∈M(d(a, b)).

3) µ ∈ L. Let us consider the following cases:

a) µ ∈M(a) and µ ∈M(b). Then

a, b ∈ 1/µ⇒ a/µ = b/µ = 1/µ⇒ d(a, b)/µ = 1/µ⇒

d(a, b) ∈ 1/µ⇒ µ ∈M(d(a, b)).

b) µ ∈M(a) and µ ∈ (M(b) ↓)′ (or analogously: µ ∈ (M(a) ↓)′ and µ ∈
M(b)). Therefore a/µ = 1/µ and b/µ = 0/µ. Then d(a, b)/µ = 1/µ, so
d(a, b) ∈ 1/µ, and consequently µ ∈M(d(a, b)).

c) µ ∈ (M(a) ↓)′ and µ ∈ (M(b) ↓)′. Then a/µ = b/µ = 0/µ, so we get
as above d(a, b)/µ = 1/µ. Thus d(a, b) ∈ 1/µ, and hence µ ∈ M(d(a, b)).
Finally, we conclude that M preserves d, and so M is the isomorphism as
claimed.

Example 6.3. Let A = {∗, 1}3 ∪ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (∗, 0, 0), (0, ∗, 0),
(0, 0, 0)}. Thus A is closed under equivalence operation · and (A, ·) is the
smallest equivalential algebra, which is not a reduct of a Heyting algebra,
see [13, Example 3]. Moreover, d(x, y) ∈ {1, ∗}3 for all x, y ∈ D3. Therefore
A = (A, ·, d) ∈ S(D3).

Let us consider three subsetes of A: F1 := {∗, 1}3 ∪ {(1, 0, 0), (∗, 0, 0)},
F2 := {∗, 1}3 ∪ {(0, 1, 0), (0, ∗, 0)} and F3 := {∗, 1}3 ∪ {(0, 0, 1), (0, 0, ∗)}.
Then the relations µi for i ∈ {1, 2, 3}, defined by: a ≡µi

b iff ab ∈ Fi for
all a, b ∈ A, are congruences of A. Moreover, an easy computation shows
that 1/µi = Fi for all i ∈ {1, 2, 3} (where 1 = (1, 1, 1)) and a/µi = A \ Fi

for all a ∈ A \Fi. Choosing a = (a1, a2, a3) ∈ {0, 1}3 for every i ∈ {1, 2, 3},
we get: d(1/µi, a/µi) = (d(1, a1), d(1, a2), d(1, a3))/µi = 1/µi. Therefore
A/µi

∼= 2.
Next, let us consider 5-element subsets Gi ⊆ Fi, for i ∈ {1, 2, 3}: G1 :=

{(1, x, y) : x, y ∈ {1, ∗}} ∪ {(1, 0, 0)}, G2 := {(x, 1, y) : x, y ∈ {1, ∗}} ∪
{(0, 1, 0)}, G3 := {(x, y, 1) : x, y ∈ {1, ∗}} ∪ {(0, 0, 1)}. Relations νi, which
are designated by these subsetes (a ≡νi b iff ab ∈ Gi), are congruences of A.
Moreover, 1/νi = Gi and c/νi = Fi \ Gi, a/νi = a/µi for all c ∈ Fi \ Gi,
a ∈ A \ Fi. Thus A/νi ∼= D.
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Finally, we get that Cm(A) has the form as shown in Figure 2. It is
easy to check that, according to Theorem 6.2, this frame corresponds to the
14-element algebra A. We can also deduce that A is directly irreducible.

µ1

ν1

µ2

ν2

µ3

ν3

Figure 2.

In general situation, we show that every finite algebra from V(D) can
be naturally decomposed as the direct product of two algebras. Recall that
L = {µ ∈ Cm(A) : A/µ ∼= 2 or A/µ ∼= D} and P = {µ ∈ Cm(A) : A/µ ∼=
2∧}.

Proposition 6.4. Let A ∈ V(D) be finite. Then:

A ∼= A/⋂L ×A/⋂P .

Proof: As A is finite, so 1A =
∨n

i=1 αi, where αi (i ∈ {1, . . . , n}) are
join-irreducible congruences. Clearly,

⋂
L∧

⋂
P = Cm(A) = 0A. We need

to prove that αi ⊆
⋂
L ∨

⋂
P for all i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}.

Assume that αi ⊈
⋂
L. We show that αi ⊆

⋂
P . Suppose, contrary to

our claim, that there exists µ ∈ P such that αi ⊈ µ. Then αi ∨ µ = 1A

and αi ∧µ < αi. Thus the intervals I[αi ∧µ, α] and I[µ,1A] are projective,
and, consequently, αi∧µ = α−

i . On the other hand, there exists ν ∈ L such
that αi ⊈ ν and αi ⊆ ν+. Therefore, the intervals I[α−

i , α] and I[ν, ν+] are
projective. Thus, we get ν ∼ µ, a contradiction.
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7. Free algebras in V(D) – a sketch of construction

Now, we can construct the finitely generated free algebras in V(D). We
will denote by FD(n) the free n-generated algebra in V(D) in which X =
{x1, x2, . . . , xn} is the n-element set of free generators. Observe that if µ ∈
Cm(FD(n)), then we can identify µ with a map f which sends free genera-
tors in k, where k ∈ {D,2,2∧}, in such a way that f−1({∗}) ̸= ∅. This map
can be uniquely extended to a surjective homomorphism f : FD(n) −→ k.
It follows that ker f ∈ Cm(FD(n)). So, the construction of the frame
Cm(FD(n)) is similar to the construction of the frame of the equivalential
algebras with conjunction on the regular elements, described in [11].

This construction proceeds as follows:

1. Each µ ∈ Cm(FD(n)) is labelled by the set indices {i : xi ∈ X ∩
(1/µ)} ⊆ {1, . . . , n}.

2. L has 2n−1 elements labelled by all proper subsets of {1, . . . , n} and
these elements form only one equivalence class.

3. P has 2n−1 elements also labelled by all proper subsets of {1, . . . , n},
but in this case each element forms a one-element equivalence class.

4. If µ ∈ L is labelled by S ⊊ {1, . . . , n}, then below µ (i. e., in L) there
are elements labelled by all proper subsets of S.

5. Each µ ∈ L forms a one-element equivalence class.

In the figures below:

a. Each dot denotes an element of the frame.

b. Straight lines denote a partial ordering directed upwards.

c. The equivalence class with more than one element is marked with an
ellipse.

d. Each dot that does not lie in an ellipse denotes a one-element equiv-
alence class.

7.1. The frame of FD(2) – the free algebra in V(D) with two
free generators

The set Cm(FD(2)) has 8 elements (Figure 3): 5 on the left-hand side (all
elements at the top form one equivalence class and the elements at the
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{1} ∅ {2}

∅ ∅

{1} ∅ {2}

Figure 3. Cm(FD(2))

bottom form one-element equivalence classes) and 3 on the right-hand side
(each in a separate equivalence class). So, there are 9 hereditary sets on
the left-hand side and 8 hereditary sets on the right-hand side. Finally,
|FD(2)| = 9 · 8 = 72.

7.2. The frame of FD(3) – the free algebra in V(D) with three
free generators

The set Cm(FD(3)) has 26 elements (Figure 4): 7 on the left-hand side at
the top, 12 on the left-hand side at the bottom, and 7 on the right-hand side.
On the left-hand side there are 4536 hereditary sets, and on the right-hand
side there are 128 hereditary sets. Finally, |FD(3)| = 4536 · 128 = 580608.

{1,2} {1,3} {2,3} {1} {2} {3} ∅

{1} ∅ {2} {1} ∅ {3} {2} ∅ {3} ∅ ∅ ∅

{1,2}{1,3}{2,3} {1} {2} {3} ∅

Figure 4. Cm(FD(3))

Using Theorem 6.2 and the construction above one can also find the
formula for the free spectrum. We plan to publish these result in the next
article, which will be a continuation of this paper.
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Abstract

The variety DHMSH of dually hemimorphic semi-Heyting algebras was intro-

duced in 2011 by the second author as an expansion of semi-Heyting algebras by

a dual hemimorphism. In this paper, we focus on the variety DHMSH from a

logical point of view. The paper presents an extensive investigation of the logic

corresponding to the variety of dually hemimorphic semi-Heyting algebras and

of its axiomatic extensions, along with an equally extensive universal algebraic

study of their corresponding algebraic semantics. Firstly, we present a Hilbert-

style axiomatization of a new logic called “Dually hemimorphic semi-Heyting

logic” (DHMSH, for short), as an expansion of semi-intuitionistic logic SI (also

called SH) introduced by the first author by adding a weak negation (to be in-

terpreted as a dual hemimorphism). We then prove that it is implicative in the

sense of Rasiowa and that it is complete with respect to the variety DHMSH.

It is deduced that the logic DHMSH is algebraizable in the sense of Blok and

Pigozzi, with the variety DHMSH as its equivalent algebraic semantics and that

the lattice of axiomatic extensions of DHMSH is dually isomorphic to the lattice

of subvarieties of DHMSH. A new axiomatization for Moisil’s logic is also ob-

tained. Secondly, we characterize the axiomatic extensions of DHMSH in which

the “Deduction Theorem” holds. Thirdly, we present several new logics, extend-

ing the logic DHMSH, corresponding to several important subvarieties of the

variety DHMSH. These include logics corresponding to the varieties generated by

two-element, three-element and some four-element dually quasi-De Morgan semi-

Heyting algebras, as well as a new axiomatization for the 3-valued  Lukasiewicz
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logic. Surprisingly, many of these logics turn out to be connexive logics, only a

few of which are presented in this paper. Fourthly, we present axiomatizations

for two infinite sequences of logics namely, De Morgan Gödel logics and dually

pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided

for logics corresponding to many subvarieties of regular dually quasi-De Mor-

gan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of

level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the

paper with some open problems. Most of the logics considered in this paper are

discriminator logics in the sense that they correspond to discriminator varieties.

Some of them, just like the classical logic, are even primal in the sense that their

corresponding varieties are generated by primal algebras.
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1. Introduction

Semi-Heyting algebras were introduced by the second author1, during
1983–84, as a result of his research that went into [24] (still a preprint
at the time). Some of the early results were announced in [25]. The first
results on these algebras with their proofs, however, were published much
later in 2008 (see [28]).

An algebra L = ⟨L,∨,∧,→, 0, 1⟩ is a semi-Heyting algebra if the fol-
lowing conditions hold:

(SH1) ⟨L,∨,∧, 0, 1⟩ is a bounded lattice (with 0 and 1, respectively, as
the smallest and largest elements),

(SH2) x ∧ (x→ y) ≈ x ∧ y,

(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],

(SH4) x→ x ≈ 1.

A semi-Heyting algebra is a Heyting algebra if it satisfies the identity:

(H) (x ∧ y) → x ≈ 1.

We will denote the variety of semi-Heyting algebras by SH and that
of Heyting algebras by H. Semi-Heyting algebras share some important
properties with Heyting algebras; for instance, semi-Heyting algebras are
distributive and pseudocomplemented, with the pseudocomplement x∗ :=
x → 0; the congruences on them are determined by filters and the variety
of semi-Heyting algebras is arithmetical. For further results on SH, see
[1, 2, 3, 10, 11, 28]. (For algebras closely related to semi-Heyting algebras,
see [15, 13].)

It is well known that the variety of Heyting algebras is the equivalent
algebraic semantics (in the sense of Blok and Pigozzi) of the intuitionistic
propositional logic. In 2011, the first author of this paper defined, in [8],
a new logic called “semi-intuitionistic logic” (SI, for short, also called
SH) and showed, essentially, that the variety of semi-Heyting algebras is

1Parts of this paper were presented by the second author in invited talks at 8th Inter-
national Conference on Non-Classical Logics: Theory and Applications,  Lódź (2016), at
Maltsev Meeting, Novosibirsk (2017), and at Asubl (Algebra and Substructural Logics-
Take 6) workshop, Cagliari (2018).
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an algebraic semantics for this logic and that the intuitionistic logic is an
axiomatic extension of it. The axioms of this logic, however, were expressed
in a language that was not the same as that of semi-Heyting algebras. In
[14], a much simpler, but equivalent, set of axioms for SI (or SH), was
presented in the same language as that of semi-Heyting algebras. The logic
SI as presented in [14] will play a fundamental role in this paper.

In 1942, Moisil [21] (see also [20]) defined a logic called “Logique modale”
(LM), an expansion of intuitionistic propositional calculus by a De Morgan
negation. He also introduced Heyting algebras endowed with an involution,
in [20], as the algebraic models of the logic LM. These algebras were fur-
ther investigated by Monteiro [22] under the name of symmetric Heyting
algebras. In particular, he presented a proof of an algebraic complete-
ness theorem for Moisil’s calculus by showing that LM is complete for the
variety of symmetric Heyting algebras.

Independently of the previous work, motivated purely by (universal) al-
gebraic considerations, the second author defined and studied De Morgan
Heyting algebras, in [26], by expanding Heyting algebras by a De Morgan
operation. Earlier in 1985, he had also introduced (see [24]) the variety of
Heyting algebras with a dual pseudocomplementation. Also, in 1987, the
concepts of hemimorphism (without name), semi-De Morgan algebra and
(lower) quasi-De Morgan algebra were introduced in [27], unifying (and
generalizing) the notions of De Morgan operation and pseudocomplemen-
tation.

In 2011, motivated by the similarities of the results and proofs in [24]
and [26], he introduced in [29] a more general variety of algebras called “du-
ally hemimorphic semi-Heyting algebras”– an expansion of semi-Heyting
algebras by a dual hemimorphism, as a common generalization of De Mor-
gan Heyting algebras and dually psedocomplemented Heyting algebras.

Definition 1.1 ([29]). An algebra A = ⟨A,∨,∧,→,′ , 0, 1⟩ is a dually he-
mimorphic semi-Heyting algebra (or, semi-Heyting algebra with a dual
hemimorphism) if A satisfies the following conditions:

(D1): ⟨A,∨,∧,→, 0, 1⟩ is a semi-Heyting algebra,

(D2): 0′ ≈ 1,

(D3): 1′ ≈ 0,

(D4): (x ∧ y)′ ≈ x′ ∨ y′ (∧-De Morgan law).
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The unary operation ′ satisfying (D2)–(D4) is called a dual hemimor-
phism. The variety of dually hemimorphic semi-Heyting algebras will be
denoted by DHMSH.

It is useful to note here that if a ≤ b in a DHMSH-algebra, then a′ ≥ b′.

Several important subvarieties of the variety DHMSH, by adding the
duals of those given in [27], were introduced in [29], some of which will be
recalled in Section 5.

The following problem presents itself naturally.

PROBLEM A: Find a propositional logic in the language ⟨∨,∧,→,
∼,⊥,⊤⟩ with the following properties:

(1) It has the variety DHMSH of dually hemimorphic semi-Heyting al-
gebras as its equivalent algebraic semantics, and

(2) It has Moisil’s logic as one of its (axiomatic) extensions (up to equiv-
alence).

The subvariety DQDSH of DHMSH, consisting of dually quasi-De Mor-
gan semi-Heyting algebras (see item 10 of LIST 1 in Section 5 for defini-
tion), has been intensively investigated in [24, 26, 29, 30, 31, 32, 33, 34, 35,
36]. In Section 8 of [29] (see also [31] and [32]) the following problem was
raised:

PROBLEM B: Find Hilbert-type axiomatization for logics correspond-
ing to two-valued, three-valued and four-valued dually quasi-De Morgan
semi-Heyting algebras, viewed as logical matrices with {1} as the distin-
guished subset.

In this paper, we focus on the logical aspects of the variety DHMSH
of dually hemimorphic semi-Heyting algebras and many of its subvarieties.
The paper presents an extensive investigation of the logic corresponding
to the variety of dually hemimorphic semi-Heyting algebras and of its
axiomatic extensions, along with an equally extensive universal algebraic
study of their corresponding algebraic semantics.

Firstly, we give a solution to PROBLEM A. More specifically, we
present a Hilbert-style presentation of a new logic called “Dually hemi-
morphic semi-Heyting logic” (DHMSH, for short), as an expansion of
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semi-intuitionistic logic presented in [14]. We then prove that it is implica-
tive in the sense of Rasiowa and that it is complete with respect to the
variety DHMSH of dually hemimorphic semi-Heyting algebras. Using the
well-known results of Abstract Algebraic Logic we deduce that the logic
DHMSH is algebraizable in the sense of Blok and Pigozzi, with the va-
riety DHMSH as its equivalent algebraic semantics. It then follows that
the lattice of axiomatic extensions of DHMSH is dually isomorphic to
the lattice of subvarieties of DHMSH. As applications of these results, we
present several new logics, extending the logic DHMSH, corresponding to
some interesting subvarieties (studied in [29]) of the variety of hemimor-
phic semi-Heyting and Heyting algebras. A new axiomatization for Moisil’s
logic is also obtained. Secondly, we characterize the axiomatic extensions
of DHMSH in which the “Deduction Theorem” holds. This characteriza-
tion is further sharpened for the axiomatic extensions of the logic DQDSH.
Thirdly, we introduce many morl new logics, extending the logic DQDSH,
corresponding to important subvarieties of the variety DQDSH, including
some logics corresponding to the varieties generated by two-element, three-
element and some four-element dually quasi-De Morgan semi-Heyting al-
gebras, as well as a new axiomatization for the 3-valued  Lukasiewicz logic.
Many of these logics, to our surprise, turn out to be connexive logics, a
few of which are presented in this paper. Fourthly, we present axiom-
atizations for two infinite sequences of logics, namely De Morgan-Gödel
logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatiza-
tions are also provided for logics corresponding to many subvarieties of
regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1, of
Regular De Morgan Semi-Heyting Algebras of level 1 and of JI-distributive
semi-Heyting algebras of level 1, studied in [29, 30, 31, 32, 33] (see also
[34, 35, 36]). Many of the logics considered in this paper are discriminator
logics in the sense that they correspond to discriminator varieties. Some
of them, just like the classical logic, are even primal in the sense that their
corresponding varieties are generated by primal algebras.

The paper is organized as follows: Section 2 contains definitions, no-
tation and some preliminary results that are needed later in the paper.
It includes the axiomatization for semi-intuitionistic logic as presented in
[14] which is crucial for the rest of the paper. In Section 3, we present
a Hilbert-style axiomatization for the new logic called “Dually hemimor-
phic semi-Heyting logic” (DHMSH, for short) by expanding the language
of semi-intuitionistic logic SI of [14] by a (weak) negation called dually
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hemimorphic negation and by adding new axioms and a new inference rule
to the semi-intitionistic logic SI. We then prove that the logic DHMSH
is an implicative logic with respect to the defined connective →H , where
x →H y := x → (x ∧ y). In Section 4, we prove the completeness theorem
for the logic DHMSH: The logic DHMSH is complete with respect to
the variety DHMSH of dually hemimorphic semi-Heyting algebras. In Sec-
tion 5, we deduce from Abstract Algebraic Logic that the logic DHMSH
is algebraizable, in the sense of Blok and Pigozzi, with the variety DHMSH
as its equivalent algebraic semantics, from which it follows that the lattice
of axiomatic extensions of DHMSH is dually isomorphic to the lattice of
subvarieties of DHMSH. These results enable us to present axiomatizations
of several extensions of DHMSH by translating the (equational) axioms
of various (known) subvarieties of DHMSH from [29, 30, 31, 32, 33] (see
sections 5 and 8-12) into (propositional) axioms of the corresponding ex-
tensions. We also show that Moisil’s “logique modale” LM is equivalent
to the logic DMH corresponding to the variety DMH of De Morgan Heyt-
ing algebras. In Section 6, we characterize the (axiomatic) extensions of
DHMSH in which the “Deduction Theorem” holds. This characterization
is further refined for the axiomatic extensions of the logic DQDSH.

Sections 7–12 deal with applications of the results of Section 5 together
with the algebraic results proved in [29, 30, 31, 32, 33, 34]. More specifically,
in Section 7, we present axiomatizations for some extensions of the logic
DQDSH whose equivalent algebraic semantics are subvarieties of DQDSH
generated by finitely many finite algebras, including two 2-valued logics
and twenty 3-valued logics and three 4-valued logics. Then we revisit the
3-valued  Lukasiewicz logic and give an alternative axiomatization for it.
In fact, we show that the logic corresponding to the 3-element De Morgan
Heyting algebra is equivalent to the 3-valued  Lukasiewicz logic. There-
after, we give axiomatizations for extensions of DQDSH corresponding
to the subvarieties of the variety DQDBSH generated by dually quasi-
De Morgan Boolean semi-Heyting algebras, completing the solution to
PROBLEM B mentioned earlier. We also give some extensions of the
logic DHMSH which fail to possess the disjunction property. Section 8
describes some connections to Connexive Logic by showing that some of
these 2-valued, 3-valued and 4-valued logics are, in fact, connexive log-
ics. Section 9 gives axiomatizations for De Morgan Gödel logic and dually
pseudocomplemented Gödel logic corresponding to the varieties generated
by the De Morgan Heyting chains and the dually pseudocomplemented
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Heyting chains, respectively. It also provides axiomatizations for the logics
corresponding to their subvarieties. In Section 10, we present axiomati-
zations for new logics corresponding to several subvarieties of the variety
RDQDStSH1 of regular dually quasi-De Morgan Stone semi-Heyting alge-
bras of level 1. Section 11 presents axiomatizations for logics corresponding
to a number of subvarieties of RDMSH1 of regular De Morgan Stone semi-
Heyting algebras of level 1, while Section 12 presents axiomatizations for
logics corresponding to many subvarieties of JI-distributive linear semi-
Heyting algebras of level 1. Section 13 concludes the paper with several
open problems for future research.

2. Preliminaries

A language L is a set of finitary operations (or connectives), each with a
fixed arity n ≥ 0. In this paper, we identify ⊥ and ⊤ with 0 and 1 re-
spectively and thus consider the languages ⟨∨,∧,→,∼,⊥,⊤⟩ and ⟨∨,∧,→
,′ , 0, 1⟩ as the same; however, we frequently use the former in the context
of logics and the latter in the context of algebras. For a countably infinite
set Var of propositional variables, the formulas of the language L are in-
ductively defined as usual. A logic (or, a deductive system) in the language
L is a pair L = ⟨L,⊢L⟩, where ⊢L is a substitution-invariant consequence
relation on FmL. We will present logics by means of their “Hilbert style”
axioms and inference rules.

The set of formulas FmL can be turned into an algebra in the usual
way. Throughout the paper, Γ and ∆ denote sets of formulas and lower
case Greek letters denote formulas. The homomorphisms from the formula
algebra FmL into an L-algebra (i.e, an algebra of type L) A are called
interpretations (or valuations) in A. The set of all such interpretations is
denoted by Hom(FmL,A). If h ∈ Hom(FmL,A) then the interpretation
of a formula α under h is its image hα ∈ A, while hΓ denotes the set
{hϕ | ϕ ∈ Γ}.

As mentioned earlier, Moisil presented in [21] (see also [20, 22]), a propo-
sitional logic called, “Logique modale”. We will refer to it as “LM”.

Moisil also introduced the variety of Heyting algebras endowed with an
involution, in [20], as the algebraic semantics for the logic LM. Monteiro
[22] investigated these algebras under the new name of symmetric Heyting
algebras. Among other things, he presented a proof of an algebraic com-
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pleteness theorem for Moisil’s calculus LM by showing that the logic LM
is complete with respect to the variety of symmetric Heyting algebras.

In the next section we will generalize Moisil’s logic to a new logic called
“dually hemimorphic semi-Heyting logic”. As a first step to achieve this
goal, we need to present a generalization of intutionistic logic called “Semi-
intutionistic logic” which was first introduced by the first author in [8]
in the language ⟨∨,∧,→,∼⟩. We will actually present below the more
streamlined version of semi-Intuitionistic logic SI in the usual language
⟨∨,∧,→,⊥,⊤⟩, as first presented in [14] with the intuitionistic logic as an
axiomatic extension. To facilitate this presentation, it will be convenient
to use α→H β as an abbreviation for α→ (α∧β) so that the axioms given
are easier to read. Moreover, the operation →H plays a crucial role in this
section and in the sections that follow. See Lemma 2.4 and Lemma 2.5 for
more information about →H .

Definition 2.1 ([14]). The semi-intuitionistic logic SI (also called SH) is
defined in the language
{∨,∧,→,⊥,⊤} and it has the following axioms and the inference rule:

AXIOMS:

(S1): α→H (α ∨ β),

(S2): β →H (α ∨ β),

(S3): (α→H γ) →H [(β →H γ) →H ((α ∨ β) →H γ)],

(S4): (α ∧ β) →H α,

(S5): (γ →H α) →H [(γ →H β) →H (γ →H (α ∧ β))],

(S6): ⊤,

(S7): ⊥ →H α,

(S8): ((α ∧ β) →H γ) →H (α→H (β →H γ)),

(S9): (α→H (β →H γ)) →H ((α ∧ β) →H γ),

(S10): (α→H β) →H ((β →H α) →H ((α→ γ) →H (β → γ))),

(S11): (α→H β) →H ((β →H α) →H ((γ → β) →H (γ → α))).
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RULE OF INFERENCE:

(SMP): From ϕ and ϕ→H γ, deduce γ (semi-Modus Ponens).

The following theorem and the lemma, proved in [14], are useful in later
sections.

Theorem 2.2 ([14], Completeness Theorem). For all Γ ∪ {α} ⊆ Fm

Γ ⊢SI α if and only if Γ |=SH α.

Lemma 2.3 ([14]). The following statements hold in the logic SI:
1. If Γ ⊢SI ψ then Γ ⊢SI α→H ψ,

2. ⊢SI α→H α,

3. ⊢SI (α ∧ β) →H β,

4. If ⊢SI α →H β then ⊢SI (α ∧ γ) →H (β ∧ γ) and ⊢SI (γ ∧ α) →H

(γ ∧ β),

5. ⊢SI (α→H β) →H [(β →H γ) →H (α→H γ)],

6. If Γ ⊢SI α and Γ ⊢SI β then Γ ⊢SI α ∧ β.

2.1. Some observations about semi-Heyting algebras,
in general, and → and →H , in particular

A key feature of semi-Heyting algebras is the following:

Every semi-Heyting algebra ⟨A,∨,∧,→, 0, 1⟩ gives rise, in a
natural way, to a Heyting algebra ⟨A,∨,∧,→H , 0, 1⟩, where
x→H y := x→ (x ∧ y), for x, y ∈ A (see [3]).

Lemma 2.4 ([3]). Let A = ⟨A,∨,∧,→, 0, 1⟩ be a semi-Heyting algebra and
let a, b, c ∈ A. Then,

1. a ∧ b ≤ c if and only if a ≤ b→ (b ∧ c),

2. (a→ b) ∧ (b→ a) = 1 if and only if (a→H b) ∧ (b→H a) = 1,

3. a = b if and only if (a→H b) ∧ (b→H a) = 1,

4. a→ b ≤ a→H b.

5. The algebra A := ⟨A,∨,∧,→H , 0, 1⟩ is a Heyting algebra.
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Thus, it follows from the preceding lemma that on the universe of every
semi-Heyting algebra, there is a Heyting algebra with →H as its implication
operation, and a→ b ≤ a→H b, for a, b ∈ A.

The order in a semi-Heyting algebra is determined by →H as the fol-
lowing lemma shows.

Lemma 2.5 ([8, Corollary 3.9]). Let A = ⟨A,∨,∧,→, 0, 1⟩ be a semi-
Heyting algebra and a, b ∈ A. Then, a→H b = 1 if and only if a ≤ b.

It is worth pointing out that the inference rule SMP implies the tradi-
tional Modus Ponens (MP) for the connective → as proved in [14, Lemma
4.3].

On the other hand, it is shown, by an example, in [14] (see pages
313–314) that Modus Ponens MP does not imply SMP.

Further relevance of the use of →H in the axioms of SH can be seen as
follows: Suppose we replace the axiom (S4) by the axiom

(S4’) (α ∧ β) → α.

and keep the rest of the axioms to form a new list, say, (LIST 2) of axioms.
Then consider the following algebra:

∼: 0 1 2 3
1 0 0 0

→: 0 1 2 3
0 1 1 1 1
1 0 1 1 0
2 0 0 1 1
3 0 1 0 1

∧: 0 1 2 3
0 0 0 0 0
1 0 1 3 3
2 0 2 1 1
3 0 3 2 2

∨: 0 1 2 3
0 0 1 1 1
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1

This algebra satisfies ϕ ≈ 1 for all ϕ in the LIST 2 but its lattice reduct
is not distributive, since 2 ∧ (0 ∨ 1) ̸= (1 ∧ 2) ∨ (0 ∧ 2).
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3. The logic DHMSH: Axioms, Rules, and Rasiowa’s
Implicativeness

In this section we present a new propositional logic called “dually hemi-
morphic semi-Heyting logic” denoted by DHMSH and prove, as a first step 
toward a completeness theorem, that the logic DHMSH is implicative in 
the sense of Rasiowa with respect to the implication →H .

Definition 3.1. The dually hemimorphic semi-Heyting logic, DHMSH,
is defined in the language ⟨∨,∧,→,∼,⊥,⊤⟩ and it has the following axioms
and rules of inference:

AXIOMS:
(S1), (S2), . . . , (S11) of the logic SI, together with the following three
additional axioms:

(S12) ⊤ →H∼ ⊥,

(S13) ∼ ⊤ →H ⊥,

(S14) ∼ (α ∧ β) →H (∼ α ∨ ∼ β).

RULES OF INFERENCE:

(SMP) From ϕ and ϕ→H γ, deduce γ, (semi-Modus Ponens)

(SCP) From ϕ→H γ, deduce ∼ γ →H ∼ ϕ. (semi-Contraposition)

Since the axioms and the inference rule of the logic SI are included in
the logic DHMSH, the following result is immediate.

Theorem 3.2. Let Γ ∪ {α} ⊆ Fm. If Γ ⊢SI α then Γ ⊢DHMSH α.

The following lemma is needed later.

Lemma 3.3. Let Γ ∪ {α, β, γ, ψ} ⊆ Fm. The following statements hold in
the logic DHMSH:

1. If Γ ⊢DHMSH ψ, then Γ ⊢DHMSH α→H ψ,

2. ⊢DHMSH α→H α,

3. ⊢DHMSH (α ∧ β) →H β,

4. Γ ⊢DHMSH (α→H β) →H [(β →H γ) →H (α→H γ)],
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5. Γ ⊢DHMSH α ∧ β if and only if Γ ⊢DHMSH α and Γ ⊢DHMSH β,

6. If Γ ⊢DHMSH α →H β, then Γ ⊢DHMSH (α ∧ γ) →H (β ∧ γ) and
Γ ⊢DHMSH (γ ∧ α) →H (γ ∧ β).

Proof: Items (1), (2), (3) and (4) follow from Theorem 3.2 and items (1),
(2), (3) and (5) of Lemma 2.3, respectively. We have, by Theorem 3.2 and
Lemma 2.3 (6), that if Γ ⊢DMSH α and Γ ⊢DHMSH β then Γ ⊢DHMSH
α ∧ β. The other half of the item (5) follows easily from axiom (S4), item
(3) and (SMP). Finally, Item (6) follows from Lemma 2.3 (4).

Lemma 3.4. Let Γ ∪ {α, β, γ} ⊆ Fm.

1. If Γ ⊢DHMSH α →H β and Γ ⊢DHMSH β →H γ then Γ ⊢DHMSH
α→H γ.

2. Γ, β →H α ⊢DHMSH ∼ α→H ∼ β.

3. If Γ ⊢DHMSH α→H β, then
Γ ⊢DHMSH (α∨γ) →H (β∨γ) and Γ ⊢DHMSH (γ∨α) →H (γ∨β).

4. Γ ⊢DHMSH (∼ α ∨ ∼ β) →H ∼ (α ∧ β).

Proof:

1. This follows from 3.3 (4), using (SMP).

2. This is immediate from (SCP).

3. (a) Γ ⊢DHMSH α→H β by hypothesis,

(b) Γ ⊢DHMSH β →H (β ∨ γ) by (S1),

(c) Γ ⊢DHMSH α→H (β ∨ γ) by (1) in (3a) and (3b),

(d) Γ ⊢DHMSH γ →H (β ∨ γ) by (S2),

(e) Γ ⊢DHMSH (α→H (β∨γ)) →H [(γ →H (β∨γ)) →H ((α∨γ) →H

(β ∨ γ))] by (S3),

(f) Γ ⊢DHMSH (γ →H (β ∨ γ)) →H ((α ∨ γ) →H (β ∨ γ)) by (SMP)
in (3c) and (3e),

(g) Γ ⊢DHMSH (α ∨ γ) →H (β ∨ γ) by (SMP) in (3d) and (3f),

(h) Γ ⊢DHMSH γ →H (γ ∨ β) by (S1),

(i) Γ ⊢DHMSH β →H (γ ∨ β) by (S2),
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(j) Γ ⊢DHMSH α→H (γ ∨ β) by (1) and (SMP) in (3a) and (3i),

(k) Γ ⊢DHMSH (γ →H (γ∨β)) →H [(α→H (γ∨β)) →H ((γ∨α) →H

(γ ∨ β))] by (S3),

(l) Γ ⊢DHMSH (α→H (γ ∨ β)) →H ((γ ∨α) →H (γ ∨ β)) by (SMP)
in (3h) and (3k),

(m) Γ ⊢DHMSH (γ ∨ α) →H (γ ∨ β) by (SMP) in (3j) and (3l).

4. (a) Γ ⊢DHMSH (α ∧ β) →H α by axiom (S4),

(b) Γ ⊢DHMSH ∼ α→H ∼ (α ∧ β) by (SCP),

(c) Γ ⊢DHMSH (α ∧ β) →H β by (3.3) and (3),

(d) Γ ⊢DHMSH ∼ β →H ∼ (α ∧ β) by (SCP),

(e) Γ ⊢DHMSH (∼ α →H ∼ (α ∧ β)) →H [(∼ β →H ∼ (α ∧ β)) →H

(( ∼ α∨ ∼ β) →H ∼ (α ∧ β))] by axiom (S3),

(f) Γ ⊢DHMSH ( ∼ β →H ∼ (α ∧ β)) →H (( ∼ α∨ ∼ β) →H ∼
(α ∧ β)) by (SMP) in (4b), (4e),

(g) Γ ⊢DHMSH (∼ α∨ ∼ β) →H ∼ (α ∧ β) by (SMP) in (4d) and
(4f).

proving the lemma.

3.1. DHMSH as an implicative logic in the sense of Rasiowa

In 1974, Rasiowa ([23, page 179]) introduced an important class of logics
called “standard systems of implicative extensional propositional calculus”
and associated a class of algebras with each of them, by a generalization
of the classical Lindenbaum-Tarski process. We will refer to these logics as
“implicative logics in the sense of Rasiowa” (“implicative logics”, for short).
These logics have played a pivotal role in the development of Abstract
Algebraic Logic. We now recall the definition of implicative logics. We
follow Font [16].

Definition 3.5 ([23, 16]). Let L be a logic in a language L that includes
a binary connective →, either primitive or defined by a term in exactly two
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variables. Then L is called an implicative logic with respect to the binary
connective →, if the following conditions are satisfied:

(IL1) ⊢L α→ α,

(IL2) α→ β, β → γ ⊢L α→ γ,

(IL3) For each symbol f ∈ L of arity n ≥ 1,{
α1 → β1, . . . , αn → βn,
β1 → α1, . . . , βn → αn

}
⊢L f(α1, . . . , αn) → f(β1, . . . , βn),

(IL4) α, α→ β ⊢L β,

(IL5) α ⊢L β → α.

The following lemma was proved in [14, Lemma 4.6].

Lemma 3.6 ([14, Lemma 4.6]). The logic SI is implicative with respect to
the connective →H .

The following theorem follows from Theorem 3.2, Lemma 3.4 (2) and
Lemma 3.6.

Theorem 3.7. The logic DHMSH is implicative with respect to the con-
nective →H .

4. Completeness of DHMSH

Let L denote the language ⟨∨,∧,→,∼,⊥,⊤⟩. Identities in L are ordered
pairs ⟨α, β⟩ of L-formulas that will be written in the form α ≈ β. An
interpretation h in A satisfies an identity α ≈ β if hα = hβ. We denote
this satisfaction relation by the notation: A |=h α ≈ β. An algebra A
satisfies the equation α ≈ β if all the interpretations in A satisfy it; in
symbols,

A |= α ≈ β if and only if A |=h α ≈ β, for all h ∈ Hom(FmL,A).

A class K of algebras satisfies the identity α ≈ β when all the algebras in
K satisfy it; i.e.

K |= α ≈ β if and only if A |= α ≈ β, for all A ∈ K.
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If x̄ is a sequence of variables and h is an interpretation in A, then we
write ā for h(x̄). For a class K of L-algebras, we define the relation |=K that
holds between a set ∆ of identities and a single identity α ≈ β as follows:

∆ |=K α ≈ β

if and only if

for every A ∈ K and every interpretation ā of the variables of
∆ ∪ {α ≈ β} in A, we have,

if ϕA(ā) = ψA(ā), for every ϕ ≈ ψ ∈ ∆, then αA(ā) = βA(ā).

In this case, we say that α ≈ β is a K-consequence of ∆. The relation
|=K is called the semantic equational consequence relation determined by K.

Our goal in this section is to prove that the logic DHMSH is com-
plete with respect to the variety DHMSH. For this we need the following
definition from [23].

Definition 4.1 ([23, Definition 6, page 181], [16, Definition 2.5]). Let L
be an implicative logic in the language L with an implication connective
→. An algebra A in the language L that has an element 1 is called an
L-algebra if A satisfies the following properties:

(LALG1) For all Γ ∪ {ϕ} ⊆ Fm and all h ∈ Hom(FmL,A), if Γ ⊢L ϕ and
hΓ ⊆ {1} then hϕ = 1,

(LALG2) For all a, b ∈ A, if a→ b = 1 and b→ a = 1 then a = b.

The class of L-algebras is denoted by Alg∗L.

We also need the following result from [14].

Theorem 4.2 ([14, Corollary 4.8]). Alg∗SI = SH.

Since DHMSH is an implicative logic with respect to the binary con-
nective →H by Theorem 3.7, we obtain the following result, in view of [23,
Theorem 7.1, p. 222].

Theorem 4.3. The logic DHMSH is complete with respect to the class
Alg∗DHMSH. In other words,

for all Γ ∪ {ϕ} ⊆ Fm, Γ ⊢DHMSH ϕ if and only if Γ |=Alg∗(DHMSH) ϕ.
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As a last step to complete the proof of algebraic completeness of the
logic DHMSH, we need to prove that Alg∗DHMSH = DHMSH.

Lemma 4.4. DHMSH = Alg∗DHMSH.

Proof: First, we wish to prove that DHMSH ⊆ Alg∗DHMSH. Let A ∈
DHMSH, Γ ∪ {ϕ} ⊆ Fm and h ∈ Hom(FmL,A) such that Γ ⊢DHMSH ϕ
and hΓ ⊆ {1}. We need to verify that hϕ = 1.

We will proceed by induction on the length of the proof of Γ ⊢DHMSH ϕ.

• Assume that ϕ is an axiom.

If ϕ is one of the axioms (S1) to (S11) then ⊢SI ϕ. Hence, by theorem
2.2, |=DHMSH ϕ and so, h(ϕ) = ⊤.

If ϕ is the axiom (S12) then, using (D2), we have h(ϕ) = h(⊤ →H ∼
⊥) = 1 →H 0′ = 1.

If ϕ is the axiom (S13) then, using (D3), we get that h(ϕ) = h(∼
⊤ →H ⊥) = 0 →H 0 = 1.

If ϕ is the axiom (S14) then, using (D4), we obtain that
h(ϕ) = h(∼ (α ∧ β) →H ( ∼ α∨ ∼ β)) = (h(α) ∧ h(β))′ →H (h(α)′ ∨
h(β)′) = (h(α) ∧ h(β))′ →H (h(α) ∧ h(β))′ = 1.

• If ϕ ∈ Γ then h(ϕ) = ⊤ by hypothesis

• Assume now that Γ ⊢L ϕ is obtained from an application of (SMP).
Then there exist a formula ψ such that Γ ⊢L ψ and Γ ⊢L ψ →H ϕ.
By induction, h(ψ) = 1 and h(ψ →H ϕ) = 1. Then 1 = h(ψ) →H

h(ϕ) = 1 →H h(ϕ) = h(ϕ).

• Assume that Γ ⊢L ϕ is the result of an application of the rule (SCP).
Then for α, β ∈ Fm, ϕ =∼ β →H∼ α and Γ ⊢L α →H β. By
induction, 1 = h(α →H β) = h(α) →H h(β) and, consequently
h(α) ≤ h(β). Then, using condition (D4), h(β)′ ≤ h(α)′. Hence
h(β)′ →H h(α)′ = 1. Therefore, h(ϕ) = h(∼ β →H ∼ α) =
h(β)′ →H h(α)′ = 1.

Hence, the induction is complete and so, we concludes that A satisfies
(LALG1). It is easy to see that the condition (LALG2) also holds, implying
A ∈ Alg∗DHMSH.
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Next, we prove the other inclusion. Let A = ⟨A,∨,∧,→,′ , 0, 1⟩ ∈
Alg∗DHMSH. Notice that ⟨A,∨,∧,→, 0, 1⟩ ∈ Alg∗SI. By Theorem 4.2,
⟨A,∨,∧,→, 0, 1⟩ ∈ SH. Now, it only remains to show that A satisfies the
conditions (D2) to (D4).

In view of axiom (S12) and (LALG1), we have that A |= 1 →H 0′ ≈ 1.
Using (LALG1) and Lemma 3.3 (1), we get A |= 0′ →H 1 ≈ 1. Then by
(LALG2), A |= 1 ≈ 0′.

In view of axioms (S7) and (S13), together with (LALG1), we have that
A |= 0 →H 1′ ≈ 1 and A |= 1′ →H 0 ≈ 1. Then by (LALG2), A |= 1′ ≈ 0.

By Lemma 3.4 (4) and the condition (LALG1), A satisfies the identity
(x′ ∨ y′) →H (x ∧ y)′ ≈ 1. Also, In view of axiom (S14), and (LALG1), A
satisfies the identity (x ∧ y)′ →H (x′ ∨ y′) ≈ 1.

Applying (LALG2), the algebra satisfies (D4). Consequently A ∈
DHMSH.

We are now ready to present the completeness theorem for the logic
DHMSH.

Theorem 4.5. The logic DHMSH is complete with respect to the variety
DHMSH.

Proof: From Lemma 4.4 we have Alg∗DHMSH = DHMSH. The con-
clusion follows from Theorem 4.3.

5. Equivalent algebraic semantics and axiomatic
extensions of the logic DHMSH

Our goal in this section is to improve Theorem 4.5 by proving that the
logic DHMSH is algebraizable and DHMSH is an equivalent algebraic
semantics of the logic DHMSH.

Here we first recall some relevant notions and results from Abstract
Algebraic Logic (see [6, Section 2.1], [17], or [16]).

Definition 5.1 ([6, Definition 2.2], [16, Definition 3.4]). Let ⟨L,⊢L⟩ be a
logic (i.e., deductive system) and K a class of L-algebras. K is called an
“algebraic semantics” for ⟨L,⊢L⟩ if ⊢L can be interpreted in |=K in the
following sense:
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There exists a finite set δi(p) ≈ ϵi(p), for i < n, of identities with a
single variable p such that, for all Γ ∪ ϕ ⊆ Fm and each j < n,

(A) Γ ⊢L ϕ

if and only if

{δi[ψ/p] ≈ ϵi[ψ/p] : i < n, ψ ∈ Γ} |=K δj [ϕ/p] ≈ ϵj [ϕ/p],

where δ[ψ/p] denotes the formula obtained by the substitution of ψ at every
occurrences of p in δ. The identities δi ≈ ϵi, for i < n, are called “defining
identities” for ⟨L,⊢L⟩ and K.

In what follows, we will use “Γ =||=K ∆” as an abbreviation for “Γ |=K ∆
and ∆ |=K Γ.” Also, δ(∆(ϕ, ψ)) denotes the formula obtained by the
substitution of the formula ∆(ϕ, ψ) at every occurrence of p in δ(p).

Definition 5.2 ([6, Definition 2.8], [16, Definition 3.11]). Let ⟨L,⊢L⟩ be
a logic and K an algebraic semantics for ⟨L,⊢L⟩ with defining identities
δi = ϵi, for i < n.

K is said to be “equivalent to” ⟨L,⊢L⟩ if there exists a finite set ∆j(p, q),
for j < m, of formulas with two variables p, q such that

for every identity ϕ ≈ ψ, for i < n, and for j < m,

(E) ϕ ≈ ψ =||=K {δi(∆j(ϕ, ψ)) ≈ ϵi(∆j(ϕ, ψ)) : i < n, j < m}.

The set ∆j(p, q), j < m, of formulas with two variables, satisfying (E) is
called a set of “equivalence formulas” for ⟨L,⊢L⟩ and K. A logic L is said to
be “algebraizable” if and only if it has an equivalent algebraic semantics K.

The following theorem, proved in [6], is crucial in what follows.

Theorem 5.3 ([6], [16, Proposition 3.15]). Every implicative logic L is
algebraizable with respect to the class Alg∗L and the algebraizability is wit-
nessed by the defining identity p ≈ p → p and the equivalence formulas
∆ = {p→ q, q → p}.

As an immediate consequence of Theorem 5.3, Theorem 3.7 and Theo-
rem 4.5, we obtain the following crucial result.

Corollary 5.4. The logic DHMSH is algebraizable, and the variety
DHMSH is the equivalent algebraic semantics for DHMSH with the defin-
ing identity p ≈ p→H p (equivalently, p ≈ 1) and the equivalence formulas
∆ = {p→H q, q →H p}.
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Also, we just mention, in passing, the following fact which follows from
Theorem 5.3, Lemma 3.6 and Theorem 4.2 about the semi-intuitionistic
logic SH.

Corollary 5.5. The logic SI is algebraizable, and the variety SH is the
equivalent algebraic semantics for SI with the defining identity p ≈ p→H p
and the equivalence formulas ∆ = {p→H q, q →H p}.

5.1. Axiomatic extensions of DHMSH

A logic L′ is an axiomatic extension of L if L′ is obtained by adjoining new
axioms but keeping the rules of inference the same as in L.

In the sequel, we sometimes use the term “extension” for “axiomatic
extension”. Let Ext(L) denote the lattice of axiomatic extensions of the
logic L and LV(K) denote the lattice of subvarieties of the variety K of
algebras.

The following theorem, due to Blok and Pigozzi, is one of the hallmark
accomplishments of Abstract Algebraic Logic.

Theorem 5.6 ([16, Theorem 3.40]). Let L be an algebraizable logic with
the variety K as its equivalent algebraic semantics. Then Ext(L) is dually
isomorphic to LV(K).

The following theorem is a consequence of Theorem 5.6, Theorem 4.5
and Corollary 5.4.

Theorem 5.7 (Isomorphism Theorem for DHMSH). Ext(DHMSH) is
dually isomorphic to LV(DHMSH).

In a similar fashion, the following result is a consequence of Theorem
5.6, Theorem 2.2 and Corollary 5.5.

Theorem 5.8 (Isomorphism Theorem for SH). Ext(SH) is dually iso-
morphic to LV(SH).

The following theorem is an immediate consequence of Theorem 5.7 and
plays an important role in the rest of the paper. Let Mod(E) := {A ∈
DHMSH : A |= δ ≈ 1, for every δ ∈ E}.
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Theorem 5.9. Let E be an axiomatic extension of the logic DHMSH.
Then:

(a) E is algebraizable with the same equivalence formulas and defining
equations as those of the logic DHMSH.

(b) Mod(E) is the equivalent algebraic semantics for E.

Note that Theorem 5.8 justifies the use of the phrase “the logic corre-
sponding to the subvariety V” of DHMSH.

We now give Hilbert-style axiomatizations for several important exten-
sions of the logic DHMSH. To facilitate the presentation of the extensions
of the logic DHMSH, we first list several important subvarieties of the
variety DHMSH of dually hemimorphic semi-Heyting algebras that were
introduced (or implicit) in [29].

In the later sections of the paper, we give various applications of the
results proved above and the algebraic results proved in [29, 30, 31, 32, 33,
34] (see also [35, 36]).

LIST 1: SOME IMPORTANT SUBVARIETIES OF THE VARI-
ETY DHMSH

1. DHMH: Dually hemimorphic Heyting algebras are DHMSH-algebras
satisfying the identity:

(H): (x ∧ y) → x ≈ 1.

2. OCKSH: Ockham semi-Heyting algebras are DHMSH-algebras satis-
fying the identity:

(E1): (x ∨ y)′ ≈ x′ ∧ y′.

3. OCKH: Ockham Heyting algebras are OCKSH-algebras satisfying the
identity (H).

4. DmsSH: Dually ms semi-Heyting algebras are OCKSH-algebras sat-
isfying the identity:

(E2): x′′ ≤ x.

5. DmsH: Dually ms Heyting algebras are DmsSH-algebras satisfying
the identity (H).
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6. DMSH: De Morgan semi-Heyting algebras are OCKSH-algebras (or
DHMSH-algebras) satisfying the identity

(E3): x′′ ≈ x.

7. DMH: De Morgan Heyting algebras are DMSH-algebras satisfying
the identity (H).

8. DSDSH: Dually semi-De Morgan semi-Heyting algebras ([27]) are
DHMSH-algebras satisfying the identities:

(E4): (x ∨ y)′′ ≈ x′′ ∨ y′′,
(E5): x′′′ ≈ x′.

9. DSDH: Dually semi-De Morgan Heyting algebras are DSDSH-algebras
satisfying the identity (H).

10. DQDSH: Dually quasi-De Morgan semi-Heyting algebras ([27]) are
DSDSH-algebras satisfying the identity (E2).

11. DQDH: Dually quasi-De Morgan Heyting algebras are DQDSH-alge-
bras satisfying the identity (H).

12. DPCSH: Dually pseudocomplemented semi-Heyting algebras are
DQDSH-algebras satisfying the identity:

(E6): x ∨ x′ ≈ 1.

13. DPCH: Dually pseudocomplemented Heyting algebras are DPCSH-
algebras satisfying the identity (H).

14. BDQDSH: Blended dually quasi-De Morgan semi-Heyting algebras
are DQDSH-algebras satisfying the identity:

(E7): (x ∨ x∗)′ ≈ x′ ∧ x∗′. (Blended ∨-De Morgan law)

15. BDQDH: Blended dually quasi-De Morgan Heyting algebras are
BDQDSH-algebras satisfying the identity (H).

16. SBDQDSH: Strongly blended dually quasi-De Morgan semi-Heyting
algebras are DQDSH-algebras satisfying the identity:

(E8): (x ∨ y∗)′ ≈ x′ ∧ y∗′. (Strongly blended ∨-De Morgan law)
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17. SBDQDH: Strongly blended dually quasi-De Morgan Heyting algebras
are SBDQDSH-algebras satisfying the identity (H).

18. DQDBSH: Dually quasi-De Morgan Boolean semi-Heyting algebras
are DQDSH-algebras satisfying the identity:

(E9): x ∨ x∗ ≈ 1.

19. DQDBH: dually quasi-De Morgan Boolean Heyting algebras are
DQDBSH-algebras satisfying the identity (H).

20. DQStSH: Dually quasi-Stone semi-Heyting algebras are DHMSH-
algebras satisfying the identities: (E2),

(E10): (x ∨ y′)′ ≈ x′ ∧ y′′, (weak ∨-De Morgan law)

(E11): x′ ∧ x′′ ≈ 0. (Dual Stone identity)

21. DQStH: Dually quasi-Stone Heyting algebras are DQStSH-algebras
satisfying the identity (H).

22. BDQStSH: Blended dually quasi-Stone semi-Heyting algebras are
DQStSH-algebras satisfying the identity (E7).

23. BDQStH: Blended dually quasi-Stone Heyting algebras are BDQStSH-
algebras satisfying the identity (H).

24. SBDQStSH: Strongly blended dually quasi-Stone semi-Heyting alge-
bras are DQStSH-algebras satisfying the identity (E8).

25. SBDQStH: Strongly blended dually quasi-Stone Heyting algebras are
SBDQStSH-algebras satisfying the identity (H).

26. DStSH: Dually Stone semi-Heyting algebras are DPCSH-algebras sat-
isfying the identity (E11).

27. DStH: Dually Stone Heyting algebras are DStSH-algebras satisfying
the identity (H).

28. DSCSH: Dually semi-complemented semi-Heyting algebras are
DHMSH-algebras satisfying the identity (E6).

29. DSCH: Dually semi-complemented Heyting algebras are DSCSH-
algebras satisfying the identity (H).
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30. DDPCSH: Dually demi-pseudocomplemented semi-Heyting algebras
are DSDSH-algebras satisfying the identity:

(E12): x′ ∨ x′′ ≈ 1.

31. DDPCH: Dually demi-pseudocomplemented Heyting algebras are
DDPCSH-algebras satisfying the identity (H) (see [27]).

32. DAPCSH: Dually almost pseudocomplemented semi-Heyting algebras
are
DDPCSH-algebras in which ′ satisfies the identity dual to (E9)
(see [27]).

33. DAPCH: Dually almost pseudocomplemented Heyting algebras are
DAPCSH-algebras in which ′ satisfies the identity (H).

Next, we present Hilbert-type axiomatizations for the (new) logics that
are extensions of DHMSH and that correspond to the subvarieties of
DHMSH mentioned in LIST 1. For the relationships of these logics
to the varieties in LIST 1, the reader is referred to Theorem 5.10 below.

LIST 2: SOME IMPORTANT EXTENSIONS OF DHMSH

1. DHMH: The dually hemimorphic Heyting logic is the extension of
DHMSH given by

(A1): (α ∧ β) → α.

2. OCKSH: The Ockham semi-Heyting logic is the extension of DHMSH
given by

(A2): ∼ (α ∨ β) →H (∼ α∧ ∼ β),

(A3): (∼ α∧ ∼ β) →H ∼ (α ∨ β).

3. OCKH: The Ockham Heyting logic is the extension of OCKSH given
by (A1).

4. DmsSH: The dually ms semi-Heyting logic is the extension of OCKSH
given by

(A4): ∼∼ α→H α.
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5. DmsH: The dually ms Heyting logic is the extension of DmsSH
given by (A1).

6. DMSH: The De Morgan semi-Heyting logic is the extension of
OCKSH given by (A4) and

(A5): α→H ∼∼ α.

7. DMH: The De Morgan Heyting logic is the extension of DMSH
given by (A1).

8. DSDSH: The dually semi-De Morgan semi-Heyting logic is the ex-
tension of DHMSH given by

(A6): ∼∼ (α ∨ β) →H (∼∼ α ∨ ∼∼ β),

(A7): (∼∼ α ∨ ∼∼ β) →H ∼∼ (α ∨ β),

(A8): ∼∼∼ α→H ∼ α,

(A9): ∼ α→H ∼∼∼ α.

9. DSDH: The dually semi-De Morgan Heyting logic is the extension
of DSDSH given by (A1).

10. DQDSH: The dually quasi-De Morgan semi-Heyting logic is the ex-
tension of DSDSH given by (A4).

11. DQDH: The dually quasi-De Morgan Heyting logic is the extension
of DQDSH given by (A1).

12. DPCSH: The dually pseudocomplemented semi-Heyting logic is the
extension of DQDSH given by

(A10): α ∨ ∼ α.

13. DPCH: The dually pseudocomplemented Heyting logic is the exten-
sion of DPCSH given by (A1).

14. BDQDSH: The blended dually quasi-De Morgan semi-Heyting logic
is the extension of DQDSH given by

(A11): ∼ (α ∨ (α→ ⊥)) →H (∼ α ∧ ∼ (α→ ⊥)),

(A12): (∼ α ∧ ∼ (α→ ⊥)) →H ∼ (α ∨ (α→ ⊥)).
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15. BDQDH: The blended dually quasi-De Morgan Heyting logic is the
extension of BDQDSH given by (A1).

16. SBDQDSH: The strongly blended quasi-De Morgan semi-Heyting
logic is the extension of DQDSH given by

(A13): ∼ (α ∨ (β → ⊥)) →H (∼ α ∧ ∼ (β → ⊥)),

(A14): (∼ α ∧ ∼ (β → ⊥)) →H ∼ (α ∨ (β → ⊥)).

17. SBDQDH: The strongly blended dually quasi-De Morgan Heyting
logic is the extension of SBDQDSH given by (A1).

18. DQDBSH: The dually quasi-De Morgan Boolean semi-Heyting logic
is the extension of DQDSH given by

(A15): α ∨ (α→ ⊥).

19. DQDBH : The dually quasi-De Morgan Boolean Heyting logic is the
extension of DQDBSH given by (A1).

20. DQStSH: The dually quasi-Stone semi-Heyting logic is the extension
of DHMSH given by (A4) and the following axioms:

(A16): ∼ (α ∨ ∼ β) →H (∼ α ∧ ∼∼ β),

(A17): (∼ α ∧ ∼∼ β) →H ∼ (α ∨ ∼ β),

(A18): (∼ α ∧ ∼∼ α) →H ⊥.

21. DQStH: The dually quasi-Stone Heyting logic is the extension of
DQStSH given by (A1).

22. BDQStSH: The blended dually quasi-Stone semi-Heyting logic is
the extension of DQDSH given by (A11), (A12).

23. BDQStH: The blended dually quasi-Stone Heyting logic is the ex-
tension of BDQStSH given by (A1).

24. SBDQStSH: The strongly blended dually quasi-Stone semi-Heyting
logic is the extension of DQDSH given by (A13), (A14).

25. SBDQStH: The strongly blended dually quasi-Stone Heyting logic
is the extension of SBDQStSH given by (A1).
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26. DStSH: The dually Stone semi-Heyting logic is the extension of
DPCSH given by (A18).

27. DStH: The dually Stone Heyting logic is the extension of DStSH
given by (A1).

28. DSCSH: The dually semi-complemented semi-Heyting logic is the
extension of DHMSH given by (A10).

29. DSCH: The dually semi-complemented Heyting logic is the extension
of DSCSH given by (A1).

30. DDPCSH: The dually demi-pseudocomplemented semi-Heyting logic
is the extension of DSDSH given by

(A19): ∼ α ∨ ∼∼ α.

31. DDPCH: The dually demi-pseudocomplemented Heyting logic is the
extension of DDPCSH given by (A1).

32. DAPCSH: The dually almost pseudocomplemented semi-Heyting logic
is the extension of DDPCSH given by

(A20): ∼∼ α→H α.

33. DAPCH: The dually almost pseudocomplemented Heyting logic is
the extension of DAPCSH given by (A1).

The following theorem which is immediate from Theorem 5.9 describes
the correspondence between the logics in LIST 2 and the varieties in
LIST 1.

Theorem 5.10. Let Vi be the variety of algebras mentioned in the i-th
item of LIST 1 and Vi be the logic appearing in the i-th item of LIST 2.
Then, the logic Vi corresponds to the variety Vi in the sense that Vi is its
equivalent algebraic semantics for Vi.

In Figure 1, we present a (partial) poset describing the mutual relations
among the varieties, whose names end with “SH”, mentioned in PART 1
above. The dual of this poset will show the relations among the logics,
whose names end with “SH”, presented in PART 2, T being the trivial
variety. Note that the links do not necessarily represent covers.
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T

V(2e) V(2̄e)

V(2e, 2̄e)

DStSH DQDBSH

DPCSH DMSH

SBDQDSH

SBDQStSH DAPCSH BDQDSH DmsSH

BDQStSH DDPCSH DQDSH

DQStSH DSDSH OCKSH

DSCSH

DHMSH

Figure 1. Partial poset of subvarieties of DHMSH
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Corollary 5.11. The (Moisil’s) logic LM is equivalent to the logic DMH.

Proof: We know from Moisil’s result (see Monteiro [22]) that LM corre-
sponds to DMH. Also, observe from Theorem 5.10 that the logic DMH
correspond to DMH as well.

We just note that there is an 8-element algebra (with heyting reduct)
to show that DPCSH ̸⊂ SBDQDSH.
Although there has been some investigation of the structre of the lattice
of subvarieties of certain subvarietie of the variety DPCSH, the following
problem is still open.

PROBLEM 1: Describe the structure of the lattice of subvarieties of
the variety BDQDSH.

Similar questions cane be raised about other varieties in the poset of
Figure 1, as well.

We now recall some universal algebraic notions (see, for example, [7])
useful in the sequel.

Definition 5.12. Let A be an algebra. An n-ary function f : An → A
is representable by a term if there is a term p such that f(a1, . . . , an) =
pA(a1, . . . , an), for a1, . . . , an ∈ A. A finite algebra A is primal if every
n-ary function on A, for every n ≥ 1, is representable by a term.
The discriminatior function on a set A is the function t : A3 → A defined by

t(a, b, c) :=

{
a, if a ̸= b

c, if a = b.

A ternary term t(x, y, z) representing the discriminator on A is called a
discriminator term for the algebra A. If a class K of algebras has a common
discriminator term t(x, y, z), then V(K) is called a discriminator variety. A
finite algebra A with a discriminator term is called quasiprimal. An algebra
A is semiprimal if

(1) A is quasiprimal,

(2) distinct nontrivial subalgebras of A are not isomorphic,

(3) no subalgebra of A has a proper automorphism.



A Logic for Dually Hemimorphic Semi-Heyting Algebras. . . 585

Definition 5.13. Let L be an algebraizable logic. We say that L is a
discriminator logic if its equivalent algebraic semantics is a discriminator
variety. Furthermore, L is a primal logic if its equivalent algebraic seman-
tics is a variety generated by a primal algebra. L is a quasiprimal logic if
its equivalent algebraic semantics is a variety generated by a quasiprimal
algebra. L is a semiprimal logic if its equivalent algebraic semantics is a
variety generated by a semiprimal algebra.

The classical logic is the first well-known example of a primal logic (as
the Boolean algebra 2 is a primal algebra).

Remark 5.14. Since RDQDStSH1 satisfies (B) (see Section 10), it follows
from Corollary 8.2 of [29] that the variety RDQDStSH1 is a discriminator
variety. Thus RDQDStSH1 is a discriminator logic. Many of the logics
considered in the rest of this paper are discriminator logics. We will point
them out as they appear.

We conclude this section by noting that the lattice of extensions of the
logic DMH is an interval of the lattice of extensions of DMSH, which, in
turn, is an interval in the lattice of extensions of DHMSH.

6. Deduction theorem in the extensions of the logic
DHMSH

In this section we first show that the “usual” form of the Deduction The-
orem” fails in the logic DHMSH, and then characterize those extensions
of DHMSH where it does hold.

A logic L is said to have the Deduction Property for the connective →
if the following statement holds:

Γ, α ⊢L β if and only if Γ ⊢L α→ β,

for all Γ ∪ {α, β} ⊆ Fm.
In the logic SI the Deduction Property for the conective →H is known

to hold [8, Theorem 3.18]. But, this property fails in the logic DHMSH,
as shown in the following remark.

Remark 6.1. First, we note, by Lemma 3.4 (2), that

ϕ→H ψ ⊢DHMSH ∼ ψ →H ∼ ϕ. (6.1)
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Consider the algebra Ldm
1 defined in the second paragraph after Figure 3 in

Section 7. Observe that Ldm
1 ̸|=DHMSH (x→H y) →H (y′ →H x′) ≈ 1 (by

taking x = 1 and y = a). Hence, DHMSH ̸|= (x→H y) →H (y′ →H x′) ≈ 1
and therefore, by Theorem 4.5,

̸⊢DHMSH (ϕ→H ψ) →H (∼ ψ →H ∼ ϕ).

Thus, the Deduction Property fails in DHMSH, in view of (6.1).

We now wish to characterize the extensions of DHMSH in which the
Deduction Property holds. For this, we need a preliminary lemma.

Lemma 6.2. Let E be an extension of the logic DHMSH such that

⊢E (α→H β) →H (∼ β →H ∼ α).

Then E satisfies the Deduction Property for the connective →H .

Proof: Assume that Γ ∪ {ϕ} ⊢E ψ. We shall prove Γ ⊢E ϕ →H ψ by
induction on the proof for ψ. By hypothesis,

⊢E (α→H β) →H (∼ β →H ∼ α). (6.2)

If ψ is an axiom of E or a formula in Γ, then Γ ⊢E ψ. By Lemma 3.3, part
(1) we have Γ ⊢E ϕ→H ψ.

Let us assume that Γ∪{ϕ} ⊢E ψ is the result of applying the rule (SMP).
Then we may assume that there is some formula α such that Γ∪ {ϕ} ⊢E α
and Γ ∪ {ϕ} ⊢E α→H ψ. So, by inductive hypothesis, we have,

1. Γ ⊢E ϕ→H α,

2. Γ ⊢E ϕ→H (α→H ψ),

3. Γ ⊢E ϕ→H ϕ by Lemma 3.3, part (2),

4. Γ ⊢E ϕ→H (ϕ ∧ α) by (S5) and SMP applied to 1 and 3,

5. Γ ⊢E (ϕ ∧ α) →H ψ by (S9) and SMP applied to 2,

6. Γ ⊢E ϕ→H ψ by Lemma 3.3 (4) and SMP applied to 4 and 5.

Assume that Γ ∪ {ϕ} ⊢E ψ is the result of applying the rule (SCP). Hence
ψ = ∼ β →H∼ α and Γ ∪ {ϕ} ⊢E α→H β. By induction we have that
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1. Γ ⊢E ϕ→H (α→H β),

2. Γ ⊢E (α→H β) →H (∼ β →H ∼ α) by (6.2),

3. Γ ⊢E ϕ→H (∼ β →H ∼ α) by 3.3 (4) and SMP applied to 1 and 2.

For the other implication, we assume that Γ ⊢E ϕ →H ψ. Then Γ ∪
{ϕ} ⊢E ϕ→H ψ. Since Γ∪ {ϕ} ⊢E ϕ, we have Γ∪ {ϕ} ⊢E ψ by (SMP).

Theorem 6.3. The Deduction Property holds in an extension E of the
logic DHMSH for the connective →H if and only if E ⊢ (α →H β) →H

(∼ β →H∼ α).

Proof: Let us assume that the Deduction Property holds in E for the
conective →H . Note that α →H β ⊢E α →H β and α →H β ⊢E ∼ β →H

∼ α by (SCP). Hence ⊢E (α →H β) →H (∼ β →H ∼ α) by Deduction
Property, or equivalently, E ⊢DHMSH (α→H β) →H (∼ β →H∼ α).

For the converse, let us assume that E ⊢ (α →H β) →H (∼ β →H

∼ α). By Lemma 6.2, the Deduction Property holds in E for the conec-
tive →H .

Recall that semi-Heyting algebras are pseudocomplemented with x∗ :=
x→ 0 as the pseudocomplement of x. A semi-Heyting algebra L is a Stone
semi-Heyting algebra if L satisfies the Stone identity: x∗ ∨ x∗∗ ≈ 1. Let
StSH denote the variety of Stone semi-Heyting algebras. Recall also that if
A is a semi-Heyting algebra, then ⟨A,∨,∧,→H 0, 1⟩ is a Heyting algebra.

Lemma 6.4. Let A ∈ DHMSH such that A |=(x→H y)→H (y′→H x
′)≈1.

Then

1. A |= x ∧ x′ ≈ 0,

2. A |= x∗ ≈ x′,

3. A |= x∗ ∨ x∗∗ ≈ 1.

Proof: Let a ∈ A.

1. Since a →H (a′ →H 0) = (1 →H a) →H (a′ →H 0) = (1 →H a) →H

(a′ →H 1′) = 1 in view of hypothesis, we have that a ∧ (a′ →H 0) =
a ∧ (a→H (a′ →H 0)) = a ∧ 1 = a. Hence

a ∧ (a′ →H 0) = a. (6.3)
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Then, a ∧ a′ (6.3)
= a ∧ (a′ →H 0) ∧ a′ = a ∧ (a′ → 0) ∧ a′ = a ∧ a′ ∧ 0

= 0, proving (1).

2. Observe that a∗ →H a′ = a∗ →H (1 →H a′) = (a→H 0) →H (1 →H

a′) = (a→H 0) →H (0′ →H a′) = 1 by hypothesis. Hence

A |= x∗ ≤ x′. (6.4)

Next, a′∧a∗ = a′∧ (a→ 0) = a′∧ ((a′∧a) → (a′∧0))
(1)
= a′∧ (0 → 0)

= a′. Hence A |= x′ ≤ x∗. Now, using (6.4) we conclude that a′ = a∗.

3. a∗ ∨ a∗∗ (2)
= a′ ∨ a′′ (ED4)

= (a ∧ a′)′ (1)
= 0′ = 1,

proving the lemma.

Lemma 6.5. Let A ∈ DHMSH. Then the following conditions are equiva-
lent in the algebra A.

1. (x→H y) →H (y′ →H x′) ≈ 1,

2. x∗ ≈ x′.

Proof: Let a, b ∈ A. Observe that (1) implies (2) from Lemma 6.4. For
the converse, suppose A satisfies the identity (2). Then, using (SH3) and
the fact that →H is a Heyting implication, we have that (a →H b) →H

(b′ →H a′) = (a →H b) →H (b∗ →H a∗) = (b∗ ∧ (a →H b)) →H a∗ =
(b∗ ∧ (((b∗ ∧ a) →H (b∗ ∧ b)) →H a∗ = (b∗ ∧ ((b∗ ∧ a) →H 0)) →H a∗ =
(b∗ ∧ (a→H 0)) →H a∗ = (b∗ ∧ a∗) →H a∗ = 1, proving (1).

Lemma 6.6. Let A be a Stone semi-Heyting algebra. Let Ae be the expan-
sion of A to the language ⟨∨,∧,→,′ , 0, 1⟩, where we define ′ by: x′ := x∗.
Then

1. Ae ∈ DHMSH and satisfies the identity: x′ ≈ x∗,

2. Ae |= (x ∨ y)′′ ≈ x′′ ∨ y′′.

Proof: The lemma clearly follows from the well-known facts that A |=
(x ∨ y)∗ ≈ x∗ ∧ y∗ and A |= (x ∧ y)∗ ≈ x∗ ∨ y∗.

We will refer to the algebra Ae as an “essentially a Stone semi-Heyting
algebra”.
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For V a subvariety of StSH, we let

Ve := {Ae : L ∈ V}.

It is clear that Ve is a subvariety of DHMSH.
We are now ready to present our main result of this section that de-

scribes precisely those extensions of the logic DHMSH that have the De-
duction Property. The following theorem is immediate from Theorem 6.3,
Lemma 6.5 and Lemma 6.6.

Theorem 6.7. The Deduction Property holds in an extension E of the logic
DHMSH for the connective →H if and only if the corresponding variety
E is of the form Ve, where V ⊆ StSH. .

6.1. Deduction theorem in the extensions of the logic DQDSH

Recall that the variety DQDSH of dually quasi-De Morgan semi-Heyting
algebras and the corresponding extension DQDSH of DHMSH were de-
fined in Section 5.

In this section we show that Theorem 6.7 can be significantly improved
for the extensions of the logic DQDSH. In fact, we shall give an explicit
description of the extensions of the logic DQDSH in which the Deduction
Property holds.

For this purpose we need the following 2-element semi-Heyting algebras
(with 0 < 1), 2 and 2̄ which are, up to isomorphism, the only two 2-element
algebras in SH.

2:
→: 0 1

0 1 1
1 0 1

2̄:
→: 0 1

0 1 0
1 0 1

Figure 2.

The algebras 2e and 2̄e denote the expansions of the semi-Heyting al-
gebras 2 and 2̄ by the unary operation ′ defined as follows: 0′ = 1 and
1′ = 0. It is clear that 2e and 2̄e are, up to isomorphism, the only two
2-element algebras in DQDSH (in fact, in DMSH).
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Lemma 6.8. Let V be a subvariety of DQDSH such that V |= (x→H y) →
(y′ →H x′) ≈ 1. Then, V ⊆ V(2e, 2̄e), where V(2e, 2̄e) denotes the variety
generated by {2e, 2̄e}.

Proof: The hypothesis and Lemma 6.5 (2) imply that V |= x′ ≈ x∗.
Hence V ⊆ V(2e, 2̄e) by [29, Theorem 5.11].

The following theorem describes precisely those extensions of DQDSH
in which the Deduction Property holds. Let T denote the trivial variety.

Theorem 6.9. The Deduction Property holds in a logic E ∈ Ext(DQDSH)
for →H if and only if the corresponding variety is one of the following: T,
V(2e), V(2̄e), V(2e, 2̄e).

Proof: The theorem is immediate in view of Theorem 5.9, Theorem 6.3,
and Lemma 6.8.

Since DMSH ⊆ DQDSH and DPCSH ⊆ DQDSH (see [29]), the following
corollaries are immediate.

Corollary 6.10. The Deduction Property holds in a logic E ∈
Ext(DMSH) for →H if and only if the corresponding variety is an ele-
ment of {T, V(2e), V(2̄e), V(2e, 2̄e).

Corollary 6.11. The Deduction Property holds in a logic E ∈
Ext(DPCSH) for →H if and only if the corresponding variety is either
T or V(2e) or V(2̄e) or V(2e, 2̄e).

7. Logics in Ext(DQDSH) corresponding to
subvarieties of DQDSH generated by finitely many
finite algebras

In this section, as applications of Theorem 5.9 and the algebraic results
from [29], we will present several axiomatic extensions of the logic DQDSH
corresponding to subvarieties of DQDSH generated by finitely many finite
algebras, thus providing a solution to PROBLEM B.

7.1. 2-valued axiomatic extensions of DQDSH

It was shown in Theorem 6.9 that the Deduction Property holds in an
axiomatic extension of the logic DQDSH if and only if the corresponding
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variety is a subvariety of V(2e, 2̄e). So, it is only natural to ask for the
axiomatizations of the extensions of the logic DQDSH corresponding to
the subvarieties of V(2e, 2̄e).

The variety V(2e, 2̄e) and its only non-trivial proper subvarieties V(2e)
and V(2̄e) were axiomatized in [29, Theorem 5.11]. V(2e, 2̄e) is defined
by the identity: x ≤ x′∗ (equivalently, x ≈ x′∗), relative to the variety
DQDSH. The varieties V(2e) and V(2̄e) are defined, respectively, by the
identities: 0 → 1 ≈ 1 and 0 → 1 ≈ 0, relative to V(2e, 2̄e). In view of
these observations, we obtain from Theorem 5.9, the following corollaries
defining their corresponding logics.

Let L(2e, 2̄e) (or L(V(2e, 2̄e)) be the extension of the logic DQDSH
corresponding to the variety V(2e, 2̄e). Let α ⇔H β denote the formula:
(α→H β) ∧ (β →H α).

It follows from [29] that L(2e, 2̄e) is a discriminator logic.

Corollary 7.1. The logic L(2e, 2̄e) is defined, as an extension of the logic
DQDSH, by the axiom:

(∼ ϕ→ ⊥) ⇔H ϕ.

Let L(2e) (or L(V(2e))) and L(2̄e) (or L(V(2̄e))) denote, respectively,
the extensions of the logic L(2e, 2̄e) corresponding to the varieties V(2e)
and V(2̄e).

Corollary 7.2. The logic L(2e) is defined, as an extension of the logic
L(2e, 2̄e), by the axiom:

⊥ → ⊤.

(We note that L(2e) is yet another axiomatization of the classical
logic.).

Corollary 7.3. The logic L(2̄e) is defined, as an extension of the logic
L(2e, 2̄e), by the axiom:

(⊥ → ⊤) →H ⊥.

Remark 7.4. Some features of the logics L(2̄e) and L(2e):

• The logic L(2̄e) is “anti-classical” or “contra-classical” in the sense
that the classically provable formula ⊥ → ⊤ fails in it.
(It is somewhat perplexing to us that the intuitionists accept the
principle that says, “False→ True = True”.)
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• The logics L(2̄e) and L(2e) are two of the coatoms in the lattice of
extensions of the logic DMSH and hence that of DQDSH (and of
DHMSH).

• The implication → in L(2̄e) is commutative.

• The logics L(2̄e) and L(2e) are not only disriminator logics, but, in
fact, are primal logics, since 2e and (2̄e) are primal algebras.

• The logics L(2̄e) and L(2e) do not have the Disjunction Property
(i.e., if α ∨ β is provable, then α is provable or β is provable.)

More features of the logic L(2̄e) will be given in Remark 8.1 of Section 8.

Remark 7.5. The Deduction Theorem holds only in the three non-trivial
logics, namely L(2e), L(2̄e) and L(2e, 2̄e) in the lattice of extensions of
the logic DQDSH, in view of Theorem 6.9.

7.2. 3-valued extensions of the logic DQDSH

It was shown in [28] that there are, up to isomorphism, ten 3-element semi-
Heyting algebras whose → operations are defined in Figure 3 below, where
0 < a < 1.

Since 0′ = 1 and 1′ = 0, it is easy to see that there are exactly two
expansions on each of the above 10 semi-Heyting algebras by a unary op-
eration ′ so that the expansions are DQDSH-algebras. Ten of these that
correspond to a′ = a are clearly in DMSH. The other ten, that correspond
to a′ = 1 are in DPCSH.

To put it more precisely, let Ldm
i , i = 1, 2, . . . , 10, denote the expansion

of Li by adding the unary operation ′ such that 0′ = 1, 1′ = 0, and a′ = a.
Similarly, let Ldp

i , i = 1, 2, . . . , 10, denote the expansion of Li by adding
the unary operation ′ such that 0′ = 1, 1′ = 0, and a′ = 1. Then, clearly,
Ldm
i ∈ DMSH and Ldp

i ∈ DPCSH.
Let Cdm := {Ldm

i : i = 1, 2, . . . , 10}, Cdp := {Ldm
i : i = 1, 2, . . . , 10}

and let C20 := Cdm ∪ Cdp. Thus there are exactly 20 three-element
DQDSH-algebras, whose lattice reducts are chains. Let DQDSHC3 :=
V(C20), the subvariety of DQDSH generated by all the 20 3-element
DQDSH-chains. Also, let DMSHC3 := V(Cdm) and let DPCSHC3 :=
V(Cdp).

We shall now present axiomatizations for the logics corresponding to
DQDSHC3, DMSHC3, and DPCSHC3.
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L1:

0

a

1
→ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

L2:

0

a

1
→ 0 a 1
0 1 a 1
a 0 1 1
1 0 a 1

L3:

0

a

1
→ 0 a 1
0 1 1 1
a 0 1 a
1 0 a 1

L4:

0

a

1
→ 0 a 1
0 1 a 1
a 0 1 a
1 0 a 1

L5:

0

a

1
→ 0 a 1
0 1 a a
a 0 1 1
1 0 a 1

L6:

0

a

1
→ 0 a 1
0 1 1 a
a 0 1 1
1 0 a 1

L7:

0

a

1
→ 0 a 1
0 1 a a
a 0 1 a
1 0 a 1

L8:

0

a

1
→ 0 a 1
0 1 1 a
a 0 1 a
1 0 a 1

L9:

0

a

1
→ 0 a 1
0 1 0 0
a 0 1 1
1 0 a 1

L10:

0

a

1
→ 0 a 1
0 1 0 0
a 0 1 a
1 0 a 1

Figure 3.
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The following theorem is immediate from [29, Lemma 10.2, Theorem
10.3, Corollary 10.4 and Theorem 11.1]. Let x+ := x′∗′. In the rest of the
paper, “equational base” is abbreviated to “base”.

Theorem 7.6 ([29]). A base for DQDSHC3, relative to DQDSH, is given
by:

(i) x∗∗ ≈ x∗′,

(ii) x ∧ x+ ≤ y ∨ y∗. (Regularity)

The following theorem follows from Theorem 5.9 and Theorem 7.6.

Theorem 7.7. The logic DQDSHC3 corresponding to the variety
DQDSHC3 is defined, as an extension of DQDSH, by the following axioms:

• [(ϕ→ ⊥) → ⊥] ⇔H ∼ (ϕ→ ⊥),

• [ϕ ∧ ∼ (∼ ϕ→ ⊥)] →H [ψ ∨ (ψ → ⊥)].

Since the logic DQDSHC3 is finitely axiomatized and the corresponding
variety DQDSHC3 = V(C20) is finitely generated, the following corollary
is immediate.

Corollary 7.8. The logic DQDSHC3 is decidable.

Note also that the logic DQDSHC3 is a discriminator logic.

7.3. Logics DMSHC3 and DPCSHC3

We know from Section 7.2 that Ldm
i ∈ DMSH and Ldp

i ∈ DPCSH,
i = 1, 2, . . . , 10, and also that DMSHC3 = V(Cdm) and DPCSHC3 =
V(Cdp).

The following theorem is immediate from Theorem 7.6.

Theorem 7.9.

(a) A base for DMSHC3, relative to DQDSHC3, is given by:

x′′ ≈ x.

(b) A base for DPCSHC3, relative to DQDSHC3, is given by:

x ∨ x′ ≈ 1.
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Let DMSHC3 and DPCSHC3 denote the extensions of the logic
DQDSHC3 corresponding to the varieties DMSHC3 and DPCSHC3, re-
spectively. The following theorem is immediate from Theorem 5.9 and
Theorem 7.9.

Theorem 7.10.

1. DMSHC3 is defined, as an extension of DQDSHC3 by the following
axiom:

ϕ→H ∼∼ ϕ.

2. DPCSHC3 is defined, relative to the logic DQDSHC3 by the following
axiom:

ϕ ∨ ∼ ϕ.

It is clear that the logics DMSHC3 and DPCSHC3 are decidable. In
view of the above Theorem it is also clear that the logic DPCSHC3 does
not have the Disjunction Property.

7.4. 3-valued extensions of DMSHC3 and of DPCSHC3

We are ready to look at the problem of axiomatization for the logics as-
sociated with the 20 3-element chains in C20. We need to recall another
(algebraic) result from [29] that gives a base for each of 3-chains in Cdm

and Cdp. To this end, we need the following identities from [29]:

(C1) x ∨ (x→ y) ≈ (x→ y)∗ → x,

(C2) x ∨ [y → (x ∨ y)] ≈ (0 → x) ∨ (x→ y),

(C3) x ∨ (y → x) ≈ [(x→ y) → y] → x,

(C4) x ∨ (x→ y) ≈ x→ [x ∨ (y → 1)],

(C5) (x→ y) → (0 → y) ≈ x ∨ [(x ∧ y) → 1],

(C6) x∗ ∨ (x→ y) ≈ (x ∨ y) → y,

(C7) x ∨ (0 → x) ∨ (y → 1) ≈ x ∨ [(x→ 1) → (x→ y)],

(C8) x ∨ y ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],
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(C9) x ∨ [(0 → y) → y] ≈ x ∨ [(x→ 1) → y],

(C10) x ∨ [x→ (y ∧ (0 → y))] ≈ x→ [(x→ y) → y],

(C11) (0 → 1)∗ = 0,

(C12) x ∨ y ∨ [y → (y → x)] ≈ x→ [x ∨ (0 → y)],

(C13) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(C14) 0 → 1 ≈ 0 (FTF identity),

(C15) x→ y ≈ y → x (commutative identity).

In Theorem 7.11 below, we abbreviate “is a base, relative to DMSHC3

[DPCSHC3]” to just “is a base”.
The reader should keep in mind that the following theorem is really a

simultaneous presentation of two separate theorems (in order to keep the
size of the paper within limits). One of the two theorems is regarding
DMSHC3-algebras and the other is about DPCSHC3-algebras. As an il-
lustration, item (i), when decoded, yields the following two (independent)
statements:

(idm): {(C1)} is a base, relative to DMSHC3, for the variety V(Ldm
1 ),

and

(idp): {(C1)} is a base, relative to DPCHC3, for the variety V(Ldp
1 ).

A similar remark applies to each of the other items of Theorem 7.11 as
well.

Theorem 7.11 is immediate from [29, Theorem 11.2].

Theorem 7.11.

(i) {(C1)} is a base for the variety V(Ldm
1 ) [V(Ldp

1 )],

(ii) {(C2), (C3)} is a base for the variety V(Ldm
2 ) [V(Ldp

2 )],

(iii) {(C2), (C4)} is a base for the variety V(Ldm
3 ) [V(Ldp

3 )],

(iv) {(C4), (C5)} is a base for the variety V(Ldm
4 ) [V(Ldp

4 )],
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(v) {(C7)} is a base for the variety V(Ldm
5 ) [V(Ldp

5 )],

(vi) {(C8)} is a base for the variety V(Ldm
6 ) [V(Ldp

6 )],

(vii) {(C9), (C10)} is a base for the variety V(Ldm
7 ) [V(Ldp

7 )],

(viii) {(C11), (C12)} is a base for the variety V(Ldm
8 ) [V(Ldp

8 )],

(ix) {(C6), (C13), (C14)} is a base for the variety V(Ldm
9 ) [V(Ldp

9 )],

(x) {(C15)} is a base for the variety V(Ldm
10 ) [V(Ldp

10 )].

We are now ready to present the axiomatizations for the logics associ-
ated with the 20 3-element chains in C20.

Let L(Ldm
i ) (or L(V(Ldm

i ))) denote the extension of the logic DMSHC3

corresponding to the variety V(Ldm
i ), for i = 1, 2, · · · , 10. Also, let L(Ldp

i )

(or L(V(Ldp
i ))) denote the extension of the logic DPCSHC3 corresponding

to the variety V(Ldp
i ), for i = 1, 2, · · · , 10.

In what follows, “defined, as an extension of the logic DMSHC3

[DPCSHC3], by” is abbreviated to “defined by”. The following theorem
will follow from Theorem 5.9, Theorem 7.9, Theorem 7.10, and Theo-
rem 7.11.

Theorem 7.12 below is, like Theorem 7.11, a simultaneous presentation
of two separate theorems (in order to keep the size of the paper within
limits). One of the two theorems is regarding the extensions of DMSHC3-
algebras and the other is about the extensions of DPCSHC3-algebras.

Theorem 7.12.

(a) L(Ldm
1 ) [L(Ldp

1 )] is defined by the following axiom:

[ϕ ∨ (ϕ→ ψ)] ⇔H [((ϕ→ ψ) → ⊥) → ϕ].

(b) L(Ldm
2 ) [L(Ldp

2 )] is defined by the following axioms:

(i) [ϕ ∨ {ψ → (ϕ ∨ ψ)}] ⇔H [(⊥ → ϕ) ∨ (ϕ→ ψ)],

(ii) [ϕ ∨ (ψ → ϕ)] ⇔H [{(ϕ→ ψ) → ψ} → ϕ].

(c) L(Ldm
3 ) [L(Ldp

3 )] is defined by the following axioms:

(i) [ϕ ∨ {ψ → (ϕ ∨ ψ)}] ⇔H [(⊥ → ϕ) ∨ (ϕ→ ψ)],

(ii) [ϕ ∨ (ϕ→ ψ)] ⇔H [ϕ→ {ϕ ∨ (ψ → ⊤)}].
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(d) L(Ldm
4 ) [L(Ldp

4 )] is defined by the following axioms:

(i) [ϕ ∨ (ϕ→ ψ)] ⇔H [ϕ→ {ϕ ∨ (ψ → ⊤)}],

(ii) [(ϕ→ ψ) → (⊥ → ψ)] ⇔H [ϕ ∨ {(ϕ ∧ ψ) → ⊤}].

(e) L(Ldm
5 ) [L(Ldp

5 )] is defined by the following axiom:

[ϕ ∨ (⊥ → ϕ) ∨ (ψ → ⊤)] ⇔H [ϕ ∨ {(ϕ→ ⊤) → (ϕ → ψ)}].

(f) L(Ldm
6 ) [L(Ldp

6 )] is defined by the following axiom:

[ϕ ∨ ψ ∨ (ϕ→ ψ)] ⇔H [ϕ ∨ {(ϕ→ ψ) → ⊤}].

(g) L(Ldm
7 ) [L(Ldp

7 )] is defined by the following axioms:

(i) [ϕ ∨ {(⊥ → ψ) → ψ}] ⇔H [ϕ ∨ {(ϕ→ ⊤) → ψ}],

(ii) [(ϕ ∨ {ϕ→ (ψ ∧ (⊥ → ψ))}] ⇔H [ϕ→ {(ϕ→ ψ) → ψ}].

(h) L(Ldm
8 ) [L(Ldp

8 )] is defined by the following axioms:

(i) ((⊥ → ⊤) → ⊥) →H ⊥,

(ii) [(ϕ ∨ ψ ∨ {ψ → (ψ → ϕ)}] ⇔H [ϕ→ {ϕ ∨ (⊥ → ψ)}].

(i) L(Ldm
9 ) [L(Ldp

9 )] is defined by the following axioms:

(i) [ϕ∗ ∨ (ϕ→ ψ)] ⇔H [(ϕ ∨ ψ) → ψ],

(ii) [ϕ ∨ (ϕ→ ψ)] ⇔H [ϕ ∨ {(ϕ→ ψ) → ⊤}],

(iii) (⊥ → ⊤) →H ⊥.

(j) L(Ldm
10 ) [L(Ldp

10)] is defined by the following axioms:

(ϕ→ ψ) →H (ψ → ϕ).

Remark 7.13. Some features of these logics:

• The logics L(Ldp
i ), i ∈ {2, 3, . . . , 10} and the logics L(Ldm

i ), i ∈
{2, 3, . . . , 10} are, just like the logic L(2̄e), “anti-classical” in the
sense that the classically provable formula ⊥ → ⊤ fails in these log-
ics.

• Each of the logics L(Ldp
i ), i ∈ {5, 6, 7, 8} and L(Ldp

i ), i ∈ {5, 6, 7, 8},
just like L(2e) and L(2̄e), is a coatom in the lattice of extensions of
the logic DQDSH.
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• Each of the logics L(Ldp
i ), i ∈ {1, 2, 3, 4} and L(Ldm

i ), i ∈ {1, 2, 3, 4}
is covered by the coatom L(2e), the classical propositional logic, while

each of the logics L(Ldp
i ), i ∈ {9, 10} and L(Ldm

i ), i ∈ {9, 10} is
covered by the coatom L(2̄e).

• In the logics L(Ldp
i ), i ∈ {9, 10} and L(Ldm

i ), i ∈ {9, 10}, Moreover,

in the logics L(Ldp
10 ) and L(Ldm

10 ), the connective → is commutative.

• The logics L(Ldm
i ) and L(Ldp

i ), i = 1, 2, · · · , 10, do not have the
(DP) as the formula α∗ ∨ α∗∗ is provable in these logics.

• The logics L(Ldp
i ), i ∈ {1, 2, 3, · · · , 10} and the logics L(Ldm

i ), i ∈
{1, 2, 3, · · · , 10} are quasiprimal.

• Each of the logics L(Ldp
i ), i ∈ {5, 6, 7, 8} and L(Ldp

i ), i ∈ {5, 6, 7, 8},
just like L(2e) and L(2̄e), is primal.

Further features of some of these logics will be given in Remark 8.1.
We note that all the logics mentioned in this subsection are decidable

as their corresponding varieties are easily seen to have the finite model
property.

7.5. 3-valued  Lukasiewicz Logic revisited

It is worthwhile to point out that the logic L(Ldm
1 ), defined earlier, has

an interesting relationship with the well-known 3-valued  Lukasiewicz logic.
Let us recall the definition of 3-valued  Lukasiewicz algebras.

An algebra A = ⟨A,∨,∧,′ , d1, d2, 0, 1⟩ is a 3-valued  Lukasiewicz alge-
bras if

1. ⟨A,∨,∧,′ , 0, 1⟩ is a De Morgan algebra,

2. di(x ∨ y) = di(x) ∨ di(y), for i = 1, 2,

3. di(x) ∨ (di(x))′ = 1, for i = 1, 2,

4. di(dj(x)) = dj(x), for i = 1, 2,

5. di(x
′) = (d3−i(x))′, for i = 1, 2,

6. d1(x) ≤ d2(x),

7. If d1(x) = d1(y) and d2(x) = d2(y) then x = y.
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Let L = ⟨{0, a, 1},∨,∧,′ .d1, d2, 0, 1⟩ be the algebra such that
⟨{0, a, 1},∨,∧,′ , 0, 1⟩ is a 3-element Kleene algebra with 0 < a < 1, and d1
and d2 are unary operations defined as follows: d1(0) = d1(a) = 0, d1(1) =
1, and d2(0) = 0, and d2(1) = d2(a) = 1. Then it is routine to verify that
L is a 3-valued  Lukasiewicz algebra. It is well-known that V(L) is precisely
the variety of all 3-valued  Lukasiewicz algebras.

Theorem 7.14. The logic L(Ldm
1 ) is equivalent to the 3-valued  Lukasiewicz

logic.

Proof: It suffices to prove that the variety V(Ldm
1 ) is term-equivalent to

the variety V( L). Without loss of generality, we can assume that Ldm
1 and

 L have the same universe, say L = {0, a, 1} with 0 < a < 1. Given Ldm
1 ,

define the unary operations d1 and d2 on L by: d1(x) = x′∗ and d2 =
x∗′. Then it is straightforward to verify that ⟨L;∨,∧,′ , d1, d2, 0, 1⟩ =  L.
To prove the converse, let us first define the unary function ∗ on L by:
x∗ := d1((d2(x))′). It is routine to verify that ∗ is the pseudocomplement
operation on L. Using ∗ we can now define the Katriňák’s implication →
by:

x→ y := (x∗ ∨ y∗∗) ∧ [(x ∨ x∗)′∗′ ∨ x∗ ∨ y ∨ y∗].

Then, → is the Heyting implication (see [26]). Hence, it follows that

⟨L;∨,∧,→,′ , 0, 1⟩ = Ldm
1 . The theorem is now proved.

7.6. 4-valued extensions of DQDSH with Boolean semi-Heyting
reducts

Recall that the variety DQDSH was defined in Section 5. An algebra L is a
dually quasi-De Morgan Boolean semi-Heyting algebra (DQDBSH-algebra,
for short) if its term-reduct ⟨L,∨,∧,∗ , 0, 1⟩ is a Boolean semi-Heyting al-
gebra, that is, L |= x ∨ x∗ ≈ 1. The variety of such algebras is denoted by
DQDBSH.

Let DQDBSH denote the logic corresponding to the variety DQDBSH.
The following theorem is now immediate, in view of Theorem 5.9.

Theorem 7.15. The logic DQDBSH is defined, relative to DQDSH by
the following axiom:

(B) ϕ ∨ (ϕ→ ⊥).
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D1:

→ 0 1 a b
0 1 0 b a
1 0 1 a b
a b a 1 0
b a b 0 1

D2:

→ 0 1 a b
0 1 1 1 1
1 0 1 a b
a b 1 1 b
b a 1 a 1

D3:

→ 0 1 a b
0 1 a 1 a
1 0 1 a b
a b a 1 0
b a 1 a 1

Figure 4.

We note that DQDBSH is a discriminator logic. In view of the above
Theorem it is also clear that the logic DQDBSH does not have the Dis-
junction Property.

The concrete description of the lattice of subvarieties of DQDBSH was
given in [29]. We now wish to present the axiomatizations for corresponding
extensions of the logic DQDBSH. Toward this end, the following three
algebras will be needed.

Figure 4 defines the → operation on the three 4-element algebras D1,
D2 and D3, each of whose lattice reduct is the 4-element Boolean lattice
having the universe {0, a, b, 1}, with b as the complement of a, and ′ is
defined as follows: a′ = a, b′ = b, 0′ = 1 and 1′ = 0.

The algebras D1, D2, and D3 are the only simple (=subdirectly irre-
ducible) algebras in DQDBSH.

The following theorem, which follows immediately from [29, Corollary
9.4], reveals the structure of DQDBSH.

Theorem 7.16. DQDBSH = V(D1,D2,D3) = DMBSH.

The above theorem leads us to the following decidability result, in view
of Theorem 5.9.

Corollary 7.17. The logic DQDBSH is decidable.

We will now turn our attention to the axiomatization of logics cor-
responding to the varieties generated by these algebras. The following
theorem is taken from [29, Theorem 9.5].
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Theorem 7.18.

(1) A base for the variety V(D1), modulo DQDBSH, is given by

0 → 1 ≈ 0.

(2) A base for V(D2), modulo DQDBSH, is given by

0 → 1 ≈ 1.

(3) A base for the variety V(D3), modulo DQDBSH, is given by

(0 → 1)′ ≈ 0 → 1.

The following corollary will now follow as an application of Theorem
5.9, Theorem 7.16 and Theorem 7.18.

Let L(Di) (or L(V(Di))) denote the extension of the logic DMBSH
corresponding to the variety V(Di) for i = 1, 2, 3.

In the rest of this section, “defined, relative to the logic DMBSH, by”
is abbreviated to “defined by”.

Corollary 7.19.

(1) The logic L(D1) is defined by the axiom:

(⊥ → ⊤) →H ⊥.

(2) The logic L(D2) is defined by the axiom:

⊥ → ⊤.

(3) The logic L(D3) is defined by the axiom:

∼ (⊥ → ⊤) ⇔H (⊥ → ⊤).

It is clear that the logics L(Di), i ∈ {1, 2, 3}, are decidable.

Remark 7.20. Some features of the logics L(Di), i ∈ {1, 2, 3}:

(a) The logics L(Di), i ∈ {1, 3}, are anti-classical since the formula ⊥ →
⊤ is not provable in each of them.
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(b) The logics L(D1) and L(D2), are covered, respectively, by the coa-
toms L(2̄e) and L(2e) in the lattice of extensions of the logic DQDSH.

(c) In the logic L(D1), the connective → is commutative.

(d) The logics L(D1) and L(D2) are quasiprimal, in the sense that their
corresponding varieties are generated by quasiprimal algebras D1 and
D2 respectively.

(e) The logic L(D3), just like L(2e) and L(2̄e), is a coatom in the lattice
of extensions of the logic DMSH and hence, of DHMSH.

(f) The logic L(D3) is primal.

Here is another feature of these algebras, since they have Boolean
reducts (i.e., they satisfy the identity: x ∨ x∗ ≈ 1).

Theorem 7.21. The logics L(2e), L(2̄e), L(2, 2̄e), L(V(D1,D2,D3)),
L(D1), L(D2), L(D3) do not have the disjunction property.

Further features of some of these and other logics will be given in Re-
marks 8.1 and 8.2.

8. Connection to connexive logics

The fact that the identity 0 → 1 ≈ 0 holds in some semi-Heyting algebras
led us to consider, in 2020, the possibility that there might be connexive
logics arising from semi-Heyting algebras. We noticed in May 2020 that
that indeed was the case.

Let L be a language containing the connective symbols: → for impli-
cation and ¬ for negation. A logic L in L is a connexive logic (see [38],
for example) if the following Aristotle’s Theses and Boethius’ Theses are
theorems in L:

Aristotle’s Theses:

(AT) ¬(¬α→ α),

(AT’) ¬(α→ ¬α).
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Boethius’ Theses:

(BT) (α→ β) → ¬(α→ ¬β),

(BT’) (α→ ¬β) → ¬(α→ β).

For more details on the motivation, the origin and the history of con-
nexive logics, see [38] and [18]. Many of the extensions of the logics
SH and DHMSH, to our surprise, turn out to be connexive logics with
¬α := α → ⊥. We present a few of these below. (More will be said in the
paper [12] which is in preparation.)

Recall that 2̄, L9, and L10, are in SH and that their corresponging logics
L(2̄), L(L9) and L(L10) are extensions of the semi-intuitionistic logic SI.

Remark 8.1.

(a) The logics L(2̄) and L(L9), which are extensions of the semi-intuitionistic
logic SI, are connexive logics since the corresponding varieties V(2̄)
and V(L9) satisfy the following identities:

(i) (x∗ → x)∗ ≈ 1,

(ii) (x→ x∗)∗ ≈ 1,

(iii) (x→ y) → (x→ y∗)∗ ≈ 1,

(iv) (x→ y∗) → (x→ y)∗ ≈ 1.

(b) (AT) and (AT’) are theorems in the logic L(L10), since the corre-
sponding variety V(L10) satisfies the identities (i) and (ii), while (BT)
and (BT’) are not theorems in the logics L(L10).

(c) Since it is easily seen that V(2) and V(2̄) are term-equivalent, it
follows that the classical logic L(2) is equivalent to L(2̄). Hence the
classical logic L(2) can be viewed as a connexive logic.

Remark 8.2.

(a) The logics L(2̄e), L(Ldp
9 ), L(Ldm

9 ) and D1, which are extensions of
the logic DHMSH, are connexive logics since it is easily verified that
their corresponding varieties V(2̄e), V(Ldp

9 ), V(Ldm
9 ), and V(D1)

satisfy the identities (i)–(iv).
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(b) (AT) and (AT’) are theorems in the logics L(Ldp
10 ) and L(Ldm

10 ), since

the corresponding varieties V(Ldp
10 ) and V(Ldp

10 ) satisfy the identities
(i) and (ii), while (BT) and (BT’) are not theorems in the logics

L(Ldp
10 ) and L(Ldm

10 ).

(c) Since it is easy to see that V(Ldm
1 ) and V(Ldm

9 ) are term-equivalent,
it follows that the logic L(Ldm

1 ) is equivalent to L(Ldm
9 ). Hence the

logic L(Ldm
1 )can be viewed as a connexive logic. Furthermore, since

the logic L(Ldm
1 ) is equivalent to the 3-valued  Lukasiewicz logic, it

follows that the 3-valued  Lukasiewicz logic is a connexive logic.

(d) Since it is easily observed that V(D1) and V(D2) are term-equivalent,
it follows that the logic L(D1) is equivalent to L(D2). Hence the logic
L(D2) can be viewed as a connexive logic.

Jarmużek and Malinowski [18] have recently introduced the notion of a
“quasi-connexive” logic. A logic is quasi-connexive iff it is not connexive,
but at least one of (AT), (AT’), (BT) and (BT’) is a theorem in the logic.

Thus, in view of the above remark, the logics L(Ldp
10 ) and L(Ldm

10 ), as well
as the extension L(L10) of SH, can be viewed as quasi-connexive logics.

We now mention a few facts about the relationships among the Aristo-
tle’s Theses and Boethius’ Theses in the logics SH and DHMSH whose
proofs will appear in the forthcoming paper [12].

Theorem 8.3. In the logic SH, and hence in DHMSH,

(a) (AT) and (AT’) are equivalent.

(b) (AT), (AT’) and (BT’) are provable from (BT).

(c) (AT), (AT’) are provable from (BT’), but (BT) is not.

(d) If A ∈ SH satisfies (BT), then A |= x→ y∗ ≈ y → x∗.

Theorem 8.4. Let A ∈ RDPCH and define a new operation ⇒ on A by:
x⇒ y := (x→ y) ∧ (x∗ → y∗). Then (x⇒ y) ⇒ (x⇒ y∗)∗ = 1.

As an application of Theorem 8.4 and recent results of [4], the following
corollary is deduced in [12].

Corollary 8.5. There are 2ℵ0 axiomatic extensions of the logic RDPCH.

Remark 8.6. We propose that any logic in which the (classically provable)
formula ⊥ → ⊤ is not provable be included in the family of connexive
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logics since such a logic would be not only anti-classical but also anti-
intuitionistic logic. Accordingly, the logics L(2̄e), L(Li

dp), i = 5, . . . , 10,
L(Li

dm), i = 5, . . . , 10, V(D1) and V(D3) can be considered as connexive
logics.

9. Two infinite chains of extensions of the logic
DQDH

Recall that the logic DQDH corresponds to the variety of dually quasi-De
Morgan Heyting algebras. In this section, we present two infinite chains of
logics that are extensions of the logic DQDH.

9.1. De Morgan-Gödel logic and its extensions

Recall that the variety DMH of De Morgan Heyting algebras is the sub-
variety of DQDH defined by the axiom: x′′ ≈ x. A De Morgan Heyting
algebra whose lattice reduct is a chain is called a De Morgan Heyting chain.
Let DMHC denote the subvariety of DMSH generated by the De Morgan
Heyting chains. It is proved in [29, Theorem 12.5] that the lattice of sub-
varieties of the variety DMHC is an ω + 1-chain. Let DMG (or DMHC)
denote the extension of the logic DMH, corresponding to DMHC. We will
refer to the logic DMG as “De Morgan-Gödel logic.” Then it follows that
the lattice of extensions of DMG is a chain dual to ω + 1.

In this subsection, we present axiomatizations for the logics correspond-
ing to the subvarieties of DMHC. For this purpose, we need the following
algebraic result which was proved in [29, Theorem 12.3].

Theorem 9.1. [29] A base for DMHC, relative to DMSH, is given by:

(1) x∗′ ≈ x∗∗,

(2) (x→ y) ∨ (y → x) ≈ 1.

Hence we have the following axiomatization for the logic DMG, relative
to the logic DMSH.
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Corollary 9.2. The logic DMG, relative to the logic DMSH is defined
by:

(i) ∼ (α→ ⊥) ⇔H ((α→ ⊥) → ⊥),

(ii) (α→ β) ∨ (β → α).

In view of the axiom (ii) it is clear that the logic DMG does not have
the Disjunction Property.

Let DMHCn denote the subvariety of DMHC generated by the n-
element DMH-chain, where n ∈ N with n ≥ 2. Let DMGn denote the
extension of the logic DMG corresponding to the subvariety DMHCn of
DMHC generated by the n-element DMH-chain, where n ∈ ω with n ≥ 2.

Next we will present an axiomatization for the logic DMGn for n ∈ N
with n ≥ 2.

Theorem 9.3 ([29]). Let n ∈ ω such that n ≥ 2. Then DMHCn is defined,
mod DMHC, by the following axiom:

(

i=n∨
i=1

xi) ∨ [

i=n−1∨
i=1

(xi → xi+1)] ≈ 1.

Hence we have the following axiomatization of the logic DMGn.

Corollary 9.4. Let n ∈ ω such that n ≥ 2. Then the logic DMGn,
relative to the logic DMG, is defined by

(

i=n∨
i=1

αi) ∨ [

i=n−1∨
i=1

(αi → αi+1)].

In view of the above corollary, it is clear that the logic DMGn, n ≥ 2,
does not have the Disjunction Property.

9.2. Dually pseudocomplemented Gödel logic and its axiomatic
extensions

A DPCSH-algebra L = ⟨L,∧,∨,→,′ , 0, 1⟩, whose lattice reduct is a chain, is
called a DPCSH-chain. Let DPCHC denote the subvariety of DPCH gener-
ated by the DPCH-chains. Observe that DPCHC = DStHC. It was implicit
in [29, Section 13] that the lattice of subvarieties of the variety DPCHC
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is an ω + 1-chain and was explicitly proved in [33, Theorem 4.7]. We let
DPCG (or DPCHC) denote the extension of the logic DPCH corresponding
to DPCHC. The logic DPCG will be referred to as “dually pseudocomple-
mented Gödel logic”. It follows from the just mentioned algebraic result
that the extensions of DPCG form a chain dual to ω + 1.

In this subsection, we present axiomatizations for the logics correspond-
ing to the subvarieties of DPCHC. For this purpose, we need the following
algebraic result which was proved in [29, Theorem 13.2]. Let x+ := x′∗′.

Theorem 9.5. The following identities form a base, mod DQDSH, for
DPCHC:

(i) x+ ≈ x′,

(ii) (x→ y) ∨ (y → x) ≈ 1.

Corollary 9.6. The logic DPCG is defined, as an extension of the logic
DQDSH by

(i) α+ ⇔H ∼ α, where α+ := ∼ (∼ α→ ⊥).

(ii) (α→ β) ∨ (β → α).

In view of the axiom (ii) it is clear that the logic DPCG does not have
the Disjunction Property.

Let n ∈ ω such that n ≥ 2 and let DPCHCn denote the variety generated
by the n-element DPCH-chain. Let DPCGn denote the extension of the
logic DPCG corresponding to the subvariety DPCHCn of DPCHC generated
by the n-element DPCH-chain, where n ∈ ω with n ≥ 2

The following theorem, which follows from [29, Theorem 13.3], gives a
base for each subvariety DPCHCn of DPCHC.

Theorem 9.7. Let n ∈ ω such that n ≥ 2. Then, {(An)} is an equational
base, mod DPCG, for DPCGn, where (An) is the following axiom:

j=n∨
j=1

xj ∨
j=n−1∨
j=1

(xj → xj+1) ≈ 1.
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Corollary 9.8. Let n ∈ ω such that n ≥ 2. Then the logic DPCGn is
defined as an extension of the logic DPCG by (Λn), where (Λn) is the fol-
lowing formula:

j=n∨
j=1

αj ∨
j=n−1∨
j=1

(αj → αj+1).

In view of the above corollary, it is clear that the logic DPCGn, n ≥ 2,
does not have the Disjunction Property.

10. Logics corresponding to subvarieties of regular
dually quasi-De Morgan Stone semi-Heyting
algebras

In the rest of the paper we will give axiomatizations for more new logics that
are extensions of DQDSH, as applications of Theorem 5.9 and the algebraic
results from [30, 31, 32, 33, 34]). Recall from Section 7.2 that C20 =
Cdm ∪ Cdp, where Cdm := {Ldm

i : i = 1, 2, . . . , 10}, Cdp := {Ldm
i : i =

1, 2, . . . , 10} and that the algebras Ldm
i , Ldp

i were defined in Section 8.2 and
the three 4-element algebras D1, D2 and D3 were defined in Section 7.6.
Recall also that DQDSHC3 = V(C20) which is the subvariety of DQDSHC
generated by all the 20 3-element DQDSH-chains.

The notion of regularity has played an important role in [4, 5, 9, 19, 24,
26, 29, 30, 31, 32, 33, 34, 35, 36, 37].

An algebra A ∈ DQDSH is called regular ([29, 30, 31]) if A satisfies:

(R) x ∧ x+ ≤ y ∨ y∗,

where x+ := x′∗′.

The subvariety of DQDSH of regular algebras is denoted by RDQDSH.
(We caution the reader that the term “regular” was used in [29] to mean
something else.)

Observe from Theorem 7.6 that DQDSHC3 ⊂ RDQDSH.
The concept of level has played an important role in finding discrimi-

nator subvarieties of DQDSH (see [29, Corollary 8.2]). Here we only need
to define DQDSH-algebras of level 1.
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An algebra A ∈ DQDSH is of level 1 if A satisfies:

x ∧ x′∗ ≈ x ∧ x′∗ ∧ x′∗′∗.

For the varieties of level 1 considered in the rest of the paper, the above
definition of “level 1” is equivalent to the following:

x ∧ x′∗ ≈ (x ∧ x′∗)′∗.

Let DQDSH1 denote the variety of DQDSH-algebras of level 1. Let
DQDStSH denote the subvariety of DQDSH that satisfies the Stone iden-
tity:

(St) x∗ ∨ x∗∗ ≈ 1.

DQDStSH1 denotes the subvariety of DQDStSH of level 1, while
RDQDStSH1 denotes the subvariety of DQDStSH1 defined by (R).

In this section we present axiomatizations for new logics corresponding
to several subvarieties of the variety RDQDStSH1 of regular dually quasi-
De Morgan Stone semi-Heyting algebras of level 1.

In what follows, V (or L(V)) denotes the logic corresponding
to the subvariety V of DQDSH-algebras.

(Thus, for example, the logic DQDStSH1 corresponds to the variety
DQDStSH1.)

The following corollary is immediate from the above definitions and
Theorem 5.9.

Corollary 10.1.

(a) The logic DQDStSH1 is defined, as an extension of the logic DQDSH,
by the following axioms:

(1) [∼ {(α ∧ (∼ α)∗}]∗ ⇔H α ∧ (∼ α)∗,

(2) α∗ ∨ α∗∗.

(b) The logic RDQDStSH1 is defined, as an extension of the logic
DQDStSH1 by the following axiom:

(α ∧ α+) →H (β ∨ β∗).

The following result is taken from [31, Theorem 3.1].
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Theorem 10.2. RDQDStSH1 = V(C20 ∪ {D1,D2,D3}). In particular,

RDQDStH1 = V({Ldm
1 ,Ldp

1 ,D2}).

The following corollary is immediate from Theorem 10.2 and Theorem
5.9, as the variety RDQDStSH1 is finitely axiomatized and is generated by
a finite set of finite algebras.

Corollary 10.3. The logics RDQDStSH1 and RDQDStH1 are decid-
able.

In view of the above corollary, it would be of interest to know if the logic
DQDStSH1 is decidable; in particular, if the logic DQDStH1 is decidable.
This naturally leads us to the following open problem.

PROBLEM 2: Is the variety DQDStH1 generated by its finite members?

More generally, we can ask the following:

PROBLEM 3: Is the variety DQDStSH1 generated by its finite mem-
bers?

Remark 10.4. It was shown in [29] that the variety RDQDStSH1 is a dis-
criminator variety. Thus RDQDStSH1 is a discriminator logic.

Recall that RDMSH1 is the variety of regular De Morgan semi-Heyting
algebras of level 1 and RDMSH1 denotes its corresponding logic. Let
RDMStSH1 and RDMStH1 denote, respectively, the varieties of regular
De Morgan Stone semi-Heyting algebras and regular De Morgan Stone
semi-Heyting algebras of level 1. Similarly, the varieties RDPCStSH1 and
RDPCStH1 denote, respectively, the varieties of regular dually pseudocom-
plemented Stone semi-Heyting algebras and regular dually pseudocomple-
mented Stone Heyting algebras. Note that all these varieties are subvari-
eties of RDQDStSH1.

Recall DMSHC3 = V(Cdm) and DPCSHC3 = V(Cdp).
The following corollary is immediate from Theorem 10.2, where “is

defined by” means “is defined, as an extension of RDQDStSH1, by”.



612 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

Corollary 10.5.

(a) The logic RDMStSH1 is defined by

α →H α′′.

(b) The logic RDPCStSH1 is defined by

α ∨ α′.

(c) The logic RDMStH1 is defined by

(α ∧ β) → α.

(d) The logic RDPCStH1 is defined by

(α ∧ β) → α.

The following theorem was recently proved in [34].

Theorem 10.6 ([34, Corollary 3.4]). DMSH1 = DMStSH1. In particular,
RDMSH1 = RDMStSH1.

The following theorem is immediate from Theorem 10.6 and [31, Corol-
lary 3.4].

Theorem 10.7.

(a) RDMSH1 = RDMStSH1 = V(Cdm) ∨ V({D1,D2,D3}),

(b) RDMH1 = RDMStH1 = V({Ldm
1 ,D2}) = V(Ldm

1 ) ∨ V(D2),

(c) RDPCStSH1 = V(Cdp),

(d) RDPCStH1 = V(Ldp
1 ).

It is clear from Theorem 10.7 that the logics RDMSH1 and RDMStSH1

are equivalent and so are RDMH1 and RDMStH1.
The following corollary is immediate from Theorem 10.7.

Corollary 10.8. The logics RDMSH1 and RDPCStSH1 are decidable.
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Let RDQDcmStSH1 be the subvariety of RDQDStSH1 defined by the
commutative law:

x→ y ≈ y → x.

Corollary 10.9. The logic RDQDcmStH1 is defined, as an extension of
RDQDStSH1, by

(α→ β) →H (β → α).

The following theorem is an immediate consequence of Theorem 10.2
and Theorem 10.7.

Theorem 10.10 ([31, Corollary 3.5]).

(a) RDQDcmStSH1 =V(Ldm
10 ) ∨ V(Ldp

10) ∨ V(D1),

(b) RDMcmSH1 = RDMcmStSH1 = V({Ldm
10 ,D1}),

(c) RDPCcmStSH1 = V((Ldp
10),

(d) RDMcmSH1 ∩ RDPCcmStSH1 = V(2̄e).

It follows from the preceding theorem that the logics RDQDcmStSH1,
RDMcmSH1 and RDPCcmStSH1 are decidable.

In the rest of this section, unless otherwise stated, the phrase “defined,
modulo RDQDStSH1, by” is abbreviated to the phrase “defined by” in the
context of varieties. Similarly, the phrase “defined, as an extension of
the logic RDQDStSH1, by” is also abbreviated to the phrase “defined by”
in the case of logics.

The theorems that appear in the rest of this section were proved in
[31]. Each of the corollaries appearing below follows from the theorem
immediately preceding it and Theorem 5.9.

Theorem 10.11. The variety V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,D2}) is defined by
the identity:

(x→ y) → (0 → y) ≈ (x→ y) → 1.

Corollary 10.12. The logic L(V(Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,D2)) is defined by

[(α→ β) → (⊥ → β)] ⇔H [(α→ β) → ⊤].

The variety generated by D1 was axiomatized earlier in Section 7. Here
are two more bases for it.
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Theorem 10.13. V(D1) is defined by

x→ (y → z) ≈ z → (x→ y).

It is also defined by

(x→ y) → (u→ w) ≈ (x→ u) → (y → w). (Medial Law)

Corollary 10.14. The logic L(V(D1)) is defined by

α→ (β → γ) ⇔H γ → (α→ β).

It is also defined by

(α→ β) → (γ → δ) ⇔H ((α→ γ) → (β → δ)). (Medial Law)

Theorem 10.15. The variety V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,D2}) is defined by:

y ≤ x→ y.

It is also defined by:

[(x→ y) → y] → (x→ y) ≈ x→ y.

It is also defined by

x→ (y → z) ≈ (x→ y) → (x→ z). (Left distributive law)

Corollary 10.16. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,D2}) is defined
by

β ∧ (α→ β) ⇔H β.

It is also defined by:

[(α→ β) → β] → (α→ β) ⇔H (α→ β).

It is also defined by

α→ (β → γ) ⇔H [(α→ β) → (α→ γ).

Theorem 10.17. The variety V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,D2}) is defined by:

[x→ (y → x)] → x ≈ x.

Corollary 10.18. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,D2})) is defined by

[{α→ (β → α)} → α] ⇔H α.
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Theorem 10.19. V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 }) is defined by:

(1) [x→ (y → x)] → x ≈ x,

(2) x ∨ x′ ≈ 1.

Corollary 10.20. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 })) is defined by

(1) [{α→ (β → α)} → α] ⇔H α,

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property. Recall that x+ := x′∗′.

Theorem 10.21. The variety generated by the set {Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,

Ldm
3 ,Ldp

3 ,Ldm
4 ,Ldp

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D2,D3} is defined by the iden-
tity:

(0 → 1)+ → (0 → 1)′ ≈ 0 → 1.

Corollary 10.22. Let L0 = L((V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
3 ,Ldp

3 ,Ldm
4 ,

Ldp
4 ,Ldm

5 ,Ldm
6 , Ldm

7 ,Ldm
8 ,D2,D3})). Then L0 is defined by

[(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤).

Theorem 10.23. The variety V({Ldp
1 ,Ldp

2 ,Ldp
3 ,Ldp

4 }) is defined by the
identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ 0 → 1,

(2) x ∨ x′ ≈ 1.

Corollary 10.24. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
3 ,Ldp

4 })) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.25. The variety V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,D2,D3}) is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ 0 → 1,

(2) x′′ ≈ x.



616 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

Corollary 10.26. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,D2,D3})) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α→H ∼∼ α.

Theorem 10.27. The variety V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D3}) is defined by
the identity:

(0 → 1)+ → (0 → 1) ≈ (0 → 1)′.

Corollary 10.28. The logic L(V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D3})) is defined
by

[(⊥ → ⊤)+ → (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤).

V(D3) was axiomatized in Section 7. Here is another base for it.

Theorem 10.29. V(D3) is defined by the identities:

(1) (0 → 1)+ → (0 → 1) ≈ (0 → 1)′,

(2) x ∨ x∗ ≈ 1.

Corollary 10.30. The logic L(V({D3})) is defined by

(1) (⊥ → ⊤)+ → (⊥ → ⊤) ⇔H ∼ (⊥ → ⊤),

(2) α ∨ α∗.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.31. The variety generated by the algebras Ldm
1 ,Ldm

2 ,
Ldm
3 ,Ldm

4 , D2,D3 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ 0 → 1,

(2) (0 → 1)+ → (0 → 1)∗′∗ ≈ 0 → 1,

(3) x′′ ≈ x.

Corollary 10.32. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2,D3})) is de-
fined by

(1) (⊥ → ⊤)+ → ∼ (⊥ → ⊤) ⇔H (⊥ → ⊤),

(2) [(⊥ → ⊤)+ → (∼ (⊥ → ⊤)∗)∗] ⇔H (⊥ → ⊤),

(3) α→H ∼∼ α.
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Theorem 10.33. The variety generated by the algebras Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,Ldp

9 ,Ldm
9 ,Ldp

10 ,L
dm
10 , D1,D3 is defined by the

identity:

(0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′.

Corollary 10.34. The logic corresponding to the variety generated by
{Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,Ldm

9 ,Ldp
9 ,Ldm

10 ,L
dp
10 ,D1,D3}

is defined by

[(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤).

Theorem 10.35. The variety generated by the algebras Ldp
5 ,Ldp

6 ,Ldp
7 ,Ldp

8 ,

Ldp
9 ,Ldp

10 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) x ∨ x′ ≈ 1.

Corollary 10.36. The logic L(V({Ldp
5 ,Ldp

6 ,Ldp
7 ,Ldp

8 ,Ldp
9 ,Ldp

10})) is de-
fined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.37. The variety generated by the algebras Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,Ldm

9 ,Ldm
10 , D1,D3 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) x′′ ≈ x.

Corollary 10.38. The logic L(V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,
D3})) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) α→H ∼∼ α.

Theorem 10.39. The variety generated by the algebras D1,D3 is defined
by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) x ∨ x∗ ≈ 1.
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Corollary 10.40. The logic L(V({D1,D3})) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) α ∨ α∗.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.41. The variety generated by the algebras Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,D3 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1).

It is also defined by

(0 → 1)′ ≈ 0 → 1.

Corollary 10.42. The logic L(V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D3})) is defined
by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤).

It is also defined by

∼ (⊥ → ⊤) ⇔H (⊥ → ⊤).

Theorem 10.43. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
2 ,

Ldp
2 , Ldm

3 , Ldp
3 , Ldm

4 , Ldp
4 , Ldp

5 , Ldp
6 , Ldp

7 , Ldp
8 , Ldm

9 , Ldp
9 , Ldm

10 , Ldp
10 ,

D1, D2 is defined by the identity:

(0 → 1)′ → (0 → 1) ≈ 0 → 1.

Corollary 10.44. The logic corresponding to the variety generated by
the algebras Ldm

1 , Ldp
1 , Ldm

2 , Ldp
2 , Ldm

3 , Ldp
3 , Ldm

4 , Ldp
4 , Ldp

5 , Ldp
6 , Ldp

7 ,

Ldp
8 , Ldm

9 ,Ldp
9 ,Ldm

10 ,L
dp
10 ,D1,D2 is defined by

[∼ (⊥ → ⊤) → (⊥ → ⊤)] ⇔H (⊥ → ⊤).

Theorem 10.45. The variety generated by the algebras Ldm
1 ,Ldm

2 ,Ldm
3 ,

Ldm
4 ,Ldm

9 ,Ldm
10 , D1,D2 is defined by the identities:

(1) (0 → 1)′ → (0 → 1) ≈ 0 → 1,

(2) x′′ ≈ x.
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Corollary 10.46. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
9 ,Ldm

10 ,D1,
D2})) is defined by

(1) [∼ (⊥ → ⊤) → (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α→H ∼∼ α.

Theorem 10.47. The variety generated by the algebras D1,D2 is defined
by the identities:

(1) (0 → 1)′ → (0 → 1) ≈ 0 → 1,

(2) x ∨ x∗ ≈ 1.

Corollary 10.48. The logic L(V({D1,D2})) is defined by

(1) [∼ (⊥ → ⊤) → (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α ∨ α∗.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.49. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
3 ,

Ldp
3 ,Ldm

6 ,Ldp
6 ,Ldm

8 ,Ldp
8 ,D1,D2,D3 is defined by the identity:

x ∨ [y → (x ∨ y)] ≈ (0 → x) ∨ x ∨ y.

Corollary 10.50. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,Ldm
6 ,Ldp

6 ,Ldm
8 ,

Ldp
8 ,D1,D2,D3})) is defined by

[α ∨ {β → (α ∨ β)}] ⇔H [(⊥ → α) ∨ α ∨ β].

Theorem 10.51. The variety generated by the algebras Ldm
2 ,Ldp

2 ,Ldm
5 ,

Ldp
5 ,D2 is defined by the identity:

x ∨ (y → x) ≈ [(x→ y) → y] → x.

Corollary 10.52. The logic L(V({Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,D2})) is defined
by

[α ∨ (β → α)] ⇔H [{(α→ β) → β} → α].

Theorem 10.53. The variety generated by the algebras Ldm
3 ,Ldp

3 ,Ldm
4 ,

Ldp
4 ,D1,D2,D3 is defined by the identity:

x ∨ (x→ y) ≈ x→ [x ∨ (y → 1)].
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Corollary 10.54. The logic L(V({Ldm
3 ,Ldp

3 ,Ldm
4 ,Ldp

4 ,D1,D2,D3})) is
defined by

[α ∨ (α→ β)] ⇔H [α→ {α ∨ (β → ⊤)}].

Theorem 10.55. The variety generated by the algebras Ldm
5 ,Ldp

6 ,Ldm
7 ,

Ldp
8 ,D3 is defined by the identity:

(0 → 1)∗ → (0 → 1) ≈ (0 → 1)′.

Corollary 10.56. The logic L(V({Ldm
5 ,Ldp

6 ,Ldm
7 ,Ldp

8 ,D3})) is defined
by

[(⊥ → ⊤)∗ → (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤).

Theorem 10.57. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
2 ,

Ldp
2 ,Ldm

3 ,Ldp
3 , Ldm

4 ,Ldp
4 ,D2 is defined by the identity:

0 → 1 ≈ 1 (FTT identity).

Corollary 10.58. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
3 ,Ldp

3 ,Ldm
4 ,

Ldp
4 ,D2})) is defined by

⊥ → ⊤ (FTT).

Theorem 10.59. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
3 ,

Ldp
3 ,Ldm

6 ,Ldp
6 , Ldm

8 ,Ldp
8 ,D1,D2,D3 is defined by the identity:

x ∨ (y → x) ≈ (x ∨ y) → x.

Corollary 10.60. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,Ldm
6 ,Ldp

6 ,Ldm
8 ,

Ldp
8 ,D1,D2,D3}) is defined by

[α ∨ (β → α)] ⇔H [(α ∨ β) → α].

Theorem 10.61. The variety generated by the algebras Ldp
1 ,Ldp

3 ,Ldp
6 , Ldp

8

is defined by the identities:

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) x ∨ x′ ≈ 1.

Corollary 10.62. The logic L(V({Ldp
1 ,Ldp

3 ,Ldp
6 ,Ldp

8 })) is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) α ∨ ∼ α.
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In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.63. The variety generated by the algebras Ldm
1 ,Ldm

3 ,Ldm
6 ,

Ldm
8 ,D1,D2,D3 is defined by the identities:

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) x′′ ≈ x.

Corollary 10.64. The logic L(V({Ldm
1 ,Ldm

3 ,Ldm
6 ,Ldm

8 ,D1,D2,D2}))
is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) α→H ∼∼ α.

Theorem 10.65. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
2 ,

Ldp
2 ,Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,Ldm

9 ,Ldp
9 ,D1,D2,D3 is defined by the identity:

x∗ ∨ (x→ y) ≈ (x ∨ y) → y.

Corollary 10.66. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,Ldm

9 ,Ldp
9 ,D1,D2,D2})) is defined by

[α∗ ∨ (α→ β)] ⇔H [(α ∨ β) → β].

Theorem 10.67. V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 ,Ldp
9 }) is defined by the identity:

(1) x∗ ∨ (x→ y) ≈ (x ∨ y) → y,

(2) x ∨ x′ ≈ 1.

Corollary 10.68. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 ,Ldp
9 })) is defined

by

(1) [α∗ ∨ (α→ β)] ⇔H [(α ∨ β) → β],

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.69. The variety generated by the algebras Ldm
1 ,Ldm

2 ,Ldm
5 ,

Ldm
6 ,Ldm

9 , D1,D2,D3 is defined by the identity:

(1) x∗ ∨ (x→ y) ≈ (x ∨ y) → y,

(2) x′′ ≈ x.
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Corollary 10.70. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,Ldm
9 ,D1,D2,

D3})) is defined by

(1) [α∗ ∨ (α→ β)] ⇔H [(α ∨ β) → β],

(2) α→H ∼∼ α.

Theorem 10.71. The variety generated by the algebras Ldm
5 ,Ldp

5 ,D2 is
defined by the identity:

x ∨ (0 → x) ∨ (y → 1) ≈ x ∨ [(x→ 1) → (x→ y)].

Corollary 10.72. The logic L(V({Ldm
5 ,Ldp

5 ,D2})) is defined by

[α ∨ (⊥ → α) ∨ (β → ⊤)] ⇔H α ∨ [(α→ ⊤) → (α→ β)].

Theorem 10.73. The variety generated by the algebras Ldm
6 ,Ldp

6 ,D2 de-
fined by the identity:

x ∨ y ∨ (x→ y) ≈ x ∨ [(x→ y) → 1].

Corollary 10.74. The logic L(V({Ldm
6 ,Ldp

6 ,D2})) is defined by

α ∨ β ∨ (α→ β) ⇔H α ∨ [(α→ β) → ⊤].

Theorem 10.75. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
7 ,

Ldp
7 ,D2 is defined by the identity:

x ∨ [(0 → y) → y] ≈ x ∨ [(x→ 1) → y].

Corollary 10.76. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
7 ,Ldp

7 ,D2})) is defined
by

[α ∨ {(⊥ → β) → β}] ⇔H [α ∨ [(α→ ⊤) → β].

Theorem 10.77. The variety generated by the algebras Ldm
7 ,Ldp

7 ,Ldm
8 ,

Ldp
8 ,D1,D2,D3 is defined by the identity:

x ∨ [x→ (y ∧ (0 → y))] ≈ x→ [(x→ y) → y].

Corollary 10.78. The logic L(V({Ldm
7 ,Ldp

7 ,Ldm
8 ,Ldp

8 ,D1,D2,D3})) is
defined by

[α ∨ [α→ {β ∧ (⊥ → β)}]] ⇔H [α→ [(α→ β) → β].



A Logic for Dually Hemimorphic Semi-Heyting Algebras. . . 623

Theorem 10.79. The variety generated by the algebras Ldm
8 ,Ldp

8 ,D1,D2,
D3 is defined by the identity:

x ∨ y ∨ [y → (y → x)] ≈ x→ [x ∨ (0 → y)].

It is also defined by the identity:

x ∨ [y → {0 → (y → x)}] ≈ x ∨ y ∨ (y → x).

Corollary 10.80. The logic L(V({Ldm
8 ,Ldp

8 ,D1,D2,D3})) is defined by

[α ∨ β ∨ {β → (β → α)}] ⇔H [α→ {α ∨ (0 → β)}].

It is also defined by:

[α ∨ {β → (0 → (β → α))}] ⇔H [α ∨ β ∨ (β → α)].

Theorem 10.81. The variety generated by the algebras Ldm
7 ,Ldp

7 ,Ldm
8 ,

Ldp
8 ,Ldm

9 ,Ldp
9 , Ldm

10 ,L
dp
10 ,D1,D2,D3 is defined by the identity:

x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1].

Corollary 10.82. The logic L(V({Ldm
7 ,Ldp

7 ,Ldm
8 ,Ldp

8 ,Ldm
9 ,Ldp

9 ,Ldm
10 ,

Ldp
10 ,D1,D2,D3})) is defined by

[α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}].

Theorem 10.83. The variety generated by the algebras 2e,Ldp
7 ,Ldp

8 ,Ldp
9 ,

Ldp
10 is defined by the identities:

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x ∨ x′ ≈ 1.

Corollary 10.84. The logic L(V({2e,Ldp
7 ,Ldp

8 ,Ldp
9 ,Ldp

10}) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.85. The variety generated by the algebras Ldm
7 ,Ldm

8 ,Ldm
9 ,

Ldm
10 ,D1,D2,D3 is defined by the identities:

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x′′ ≈ x.
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Corollary 10.86. The logic L(V({Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,D2,D3}))
is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) α→H ∼∼ α.

Theorem 10.87. The variety generated by the algebras Ldm
9 ,Ldp

9 ,Ldm
10 ,

Ldp
10 ,D1 is defined by the identity:

0 → 1 ≈ 0 . (FTF identity)

Corollary 10.88. The logic L(V({Ldm
9 ,Ldp

9 ,Ldm
10 ,L

dp
10 ,D1})) is defined

by

(⊥ → ⊤) ⇔H ⊥. (FTF)

Theorem 10.89. The variety generated by the algebras Ldm
10 ,L

dp
10 ,D1 is

defined by the identity:

x→ y ≈ y → x. (commutative identity)

Corollary 10.90. The logic L(V({Ldm
10 ,L

dp
10 ,D1})) is defined by

(α→ β) ⇔H (β → α). (commutativity)

Theorem 10.91. The variety V(C20) is defined
by

x∗ ≤ x′.

Corollary 10.92. The logic L(V(C20)) is defined by

α∗ →H ∼ α.

Theorem 10.93. The variety V(D2) is defined by

(x→ y)∗ ≈ x ∧ y∗.

Corollary 10.94. The logic L(V(D2) is defined by

(α→ β)∗ ⇔H α ∧ β∗.
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Theorem 10.95. The variety generated by the algebras in {Ldp
i : i =

1, . . . , 8} ∪ {Ldm
i : i = 1, . . . , 8} ∪ {D2} is defined by the identity:

(x→ y)∗ ≈ (x ∧ y∗)∗∗.

It is also defined by

(0 → 1)∗ ≈ 0.

Corollary 10.96. The logic L(V({Ldp
i : i = 1, . . . , 8} ∪ {Ldm

i : i =
1, . . . , 8} ∪ {D2}) is defined by

(α→ β)∗ →H (α ∧ β∗)∗∗.

It is also defined by

(⊥ → ⊤)∗ ⇔H ⊥.

Theorem 10.97. The variety generated by the algebras Ldp
i , i = 1, . . . , 8,

is defined by the identities:

(1) (x→ y)∗ ≈ (x ∧ y∗)∗∗,

(2) x ∨ x′ ≈ 1.

Corollary 10.98. The logic L(V({Ldp
i : i = 1, . . . ,8})) is defined by

(1) (α→ β)∗ ⇔H (α ∧ β∗)∗∗,

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.99. The variety generated by the algebras Ldm
i , i = 1, . . . , 8,

and D2 is defined by the identities:

(1) (x→ y)∗ ≈ (x ∧ y∗)∗∗,

(2) x′′ ≈ x.

Corollary 10.100. The logic L(V({Ldm
i : i = 1, . . . ,8} ∪ {D2})), is

defined by

(1) (α→ β)∗ ⇔H (α ∧ β∗)∗∗,

(2) α→H ∼∼ α.
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Theorem 10.101. The variety generated by Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,

Ldm
6 ,Ldp

6 ,D2 is defined by the identity:

x ∨ y ≤ (x→ y) → y.

Corollary 10.102. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,D2})) is defined by

(α ∨ β) →H [(α→ β) → β].

Theorem 10.103. The variety generated by Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 is defined
by the identity:

(1) x ∨ y ≤ (x→ y) → y,

(2) x ∨ x′ ≈ 1.

Corollary 10.104. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 })) is defined by

(1) (α ∨ β) →H [(α→ β) → β],

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.105. The variety generated by Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,D2 is
defined by the identity:

(1) x ∨ y ≤ (x→ y) → y,

(2) x′′ ≈ x.

Corollary 10.106. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldp

6 ,D2})) is de-
fined by

(1) (α ∨ β) →H [(α→ β) → β],

(2) α→H ∼∼ α.

The variety V({D1,D2,D3}) was axiomatized in Theorem 7.16. Here
are two more bases for it.
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Theorem 10.107. The variety V({D1,D2,D3}) is defined by the identity:

x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z) (Strong JID).

It is also defined by the identity:

x′∗′∗ ≈ x.

Corollary 10.108. The logic L(V({D1,D2,D3})) is defined by

(α ∨ (β → γ)) ⇔H [(α ∨ β) → (α ∨ γ)].

It is also defined by the identity:

(∼ ((∼ α)∗))∗ ⇔H α.

Theorem 10.109. The variety generated by Ldm
2 ,Ldp

2 ,D2 is defined by the
identity:

(x→ y) → x ≈ x.

Corollary 10.110. The logic L(V({Ldm
2 ,Ldp

2 ,D2})) is defined by

((α→ β) → α) ⇔H α.

V(D2) was axiomatized in Theorem 7.18. Here are some more bases for
it.

Theorem 10.111. V(D2) is defined by the identity:

x ∨ y ≈ (x→ y) → y.

It is also defined by the identities:

(1) x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z),

(2) (x→ y) → x ≈ x.

It is also defined by the identity:

x ∨ (x→ y) ≈ x ∨ ((x ∨ y) → 1).

Corollary 10.112. The logic L(V(D2)) is axiomatized by

(α ∨ β) ⇔H ((α→ β) → β).
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This logic has an interesting property in that ∨ is definable in terms of →.
It is also axiomatized by

(1) (α ∨ (β → γ)) ⇔H [(α ∨ β) → (α ∨ γ)],

(2) ((α→ β) → α) ⇔H α.

It is also axiomatized by

(α ∨ (α→ β)) ⇔H [α ∨ {(α ∨ β) → ⊤}].

Theorem 10.113. The variety generated by Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
9 ,

Ldp
9 ,D1,D2,D3 is defined by the identity:

x→ (y → z) ≈ y → (x→ z).

Corollary 10.114. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
9 ,Ldp

9 ,D1,
D2,D3})) is defined by

[α→ (β → γ)] ⇔H [β → (α→ γ)].

Theorem 10.115. The variety generated by Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,

Ldp
5 ,D2 is defined by the identity:

(x→ y) → z ≤ ((y → x) → z) → z.

Corollary 10.116. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,
D2})) is defined by

[(α→ β) → γ] →H [((β → α) → γ) → γ].

We note that a new extension of each of the logic defined in this section
is obtained by adding the axiom α′′ ⇔H α, as an extension of the logic
DMSH. Similarly, the addition of the axiom: α∨α′ yields new extensions
to the logics, over the logic DPCSH, defined in the preceding corollaries.

We conclude this section by remarking that all the logics described in
this section are discriminator logics and also are decidable.

11. Logics corresponding to subvarieties of regular
De Morgan semi-Heyting algebras of level 1

In this section, we present axiomatizations for logics corresponding to
several subvarieties of the variety RDMSH1 of regular De Morgan semi-
Heyting algebras of level 1. The algebraic results mentioned (or referred
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to) in this section were proved in [32]. Recall that DMSH1 denotes the
logic corresponding to the variety DMSH1. The following corollary is im-
mediate from Theorem 5.9 and definitions.

In what follows, V (or L(V)) denotes the logic corresponding to the
variety V.

Recall that the variety DMSH1 was defined in Section 10.

Corollary 11.1.

(a) The logic DMSH1 is defined, relative to DMSH, by

α ∧ (∼ α)∗ ⇔H [∼ (α ∧ (∼ α)∗)]∗.

(b) The logic RDMSH1 is defined, relative to DMSH1, by

(α ∧ α+) →H (β ∨ β∗).

(c) The logic RDMH1 is defined, relative to RDMSH1, by

(α ∧ β) → α.

(d) The logic RDMcmSH1 is defined, relative to RDMSH1, by

(α→ β) →H (β → α).

It follows from Theorem 10.6 that the logic RDMH1 is decidable. How-
ever, the following problems are open.

PROBLEM 4: Is the logic RmsH1 decidable?

PROBLEM 5: Is the logic RmsSH1 decidable?

Let L ∈ DHMSH. We say L is pseudocommutative if L satisfies the
identity:

(PCM) x∗ → y∗ ≈ y∗ → x∗.

RDMpcmSH denotes the variety of regular De Morgan pseudocommutative
semi-Heyting algebras.

The following corollary is immediate from Theorem 5.9 and the above
definition.
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Corollary 11.2. The logic L(RDMpcmSH1) is defined by

(α∗ → β∗) ⇔H (β∗ → α∗).

Theorem 11.3 ([32]). RDMpcmSH1 = V(Ldm
9 ,Ldm

10 ,D1).

Corollary 11.4. The logic L(RDMpcmSH1) is decidable.

In the rest of this section, unless otherwise stated, the phrase “defined,
modulo RDMSH1, by” is abbreviated to the phrase “defined by” in the
context of varieties. Similarly, the phrase “defined, as an extension of
the logic RDMSH1, by” is also abbreviated to the phrase “defined by”
in the case of logics.

The theorems that appear in the rest of this section were proved in [32].
Each of the corollaries given below follows from the theorem immediately
preceding it and Theorem 5.9.

Here is another axiomatization for RDMpcmSH.

Theorem 11.5. The variety RDMpcmSH is defined by

(x→ y)∗ ≈ (y → x)∗.

Corollary 11.6. The logic L(RDMpcmSH) is defined by

(α→ β)∗ ⇔H (β → α)∗.

Theorem 11.7. The variety V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2,D3) is defined
by

(0 → 1)+ → [∼ {(0 → 1)∗}]∗ ≈ 0 → 1.

Corollary 11.8. The logic L(V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2,D3)) is de-
fined by

((⊥ → ⊤)+ → [∼ {(⊥ → ⊤)∗}]∗) ⇔H (α→ ⊤).

The variety V(D1,D2,D3)(= DQDBSH) was axiomatized earlier.
Here are some more bases for V(D1,D2,D3).

Theorem 11.9. Each of the following identities is a base for the variety
V(D1,D2,D3):

(1) x→ y ≈ y∗ → x∗, (Law of contraposition)

(2) [{x ∨ (x→ y∗)} → (x→ y∗)] ∨ (x ∨ y∗) = 1.
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Corollary 11.10.

(1) The logic L(V(D1,D2,D3)) is defined by

(α→ β) ⇔H (β∗ → α∗).

(2) The logic L(V(D1,D2,D3)) is also defined by

[{α ∨ (α→ β∗)} → (α→ β∗)] ∨ (α ∨ β∗).

Theorem 11.11. The variety V(Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,Ldm
9 ,D1,D2,

D3) is defined by

x→ y∗ ≈ y → x∗.

Corollary 11.12. The logic L(V(Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,Ldm
9 ,D1,D2,

D3)) is defined by

(α→ β∗) ⇔H (β → α∗).

Theorem 11.13. The variety V(Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,D2,D3) is de-
fined by

x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1].

Corollary 11.14. The logic L(V(Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,D2,D3)) is
defined by

[α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

Theorem 11.15. The variety V(Ldm
7 ,Ldm

8 ,D2) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) (0 → 1)∗∗ ≈ 1.

Corollary 11.16. The logic L(V(Ldm
7 ,Ldm

8 ,D2)) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) (⊥ → ⊤)∗∗.

Theorem 11.17. The variety V(2e,Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x∗′ ≈ x∗∗ (⋆-regular).

We caution the reader that in [29], (2) was referred to as “regular”.
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Corollary 11.18. The logic L(V(2e,Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 )) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → 1}],

(2) ∼ (α∗) ⇔H α∗∗.

Theorem 11.19. The variety V(2e,Ldm
9 ,Ldm

10 ) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x∗′ ≈ x∗∗,

(3) (0 → 1) ∨ (0 → 1)∗ ≈ 1.

Corollary 11.20. The logic L(V(2e,Ldm
9 ,Ldm

10 )) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) ∼ (α∗) ⇔H α∗∗,

(3) (⊥ → ⊤) ∨ (⊥ → ⊤)∗.

Theorem 11.21. The variety V(Ldm
9 ,Ldm

10 ) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x∗′ ≈ x∗∗,

(3) (0 → 1)∗ ≈ 1.

Corollary 11.22. The logic L(V(Ldm
9 ,Ldm

10 )) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → 1}],

(2) ∼ (α∗) ⇔H α∗∗,

(3) (⊥ → ⊤)∗.

Theorem 11.23. The variety V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ) is defined by

(1) x∗′ ≈ x∗∗,

(2) (0 → 1)∗∗ ≈ 1.

Corollary 11.24. The logic L(V((Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ) is defined by

(1) ∼ (α∗) ⇔H α∗∗.

(2) (⊥ → ⊤)∗∗.
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Theorem 11.25. The variety V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2) is defined by

(1) (0 → 1) ∨ (0 → 1)∗ ≈ 1,

(2) (0 → 1)∗∗ ≈ 1.

Corollary 11.26. The logic L(V((Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2)) is defined
by

(1) (⊥ → ⊤) ∨ (⊥ → ⊤)∗,

(2) (⊥ → ⊤)∗∗.

Theorem 11.27. The variety V(Ldm
1 ,Ldm

3 ,D1,D2,D3) is defined by

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) (0 → 1) ∨ (0 → 1)∗ ≈ 1.

Corollary 11.28. The logic L(V((Ldm
1 ,Ldm

3 ,D1,D2,D3)) is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) (⊥ → ⊤) ∨ (⊥ → ⊤)∗.

Theorem 11.29. The variety V(Ldm
1 ,Ldm

3 ,D2) is defined by

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) (0 → 1) ∨ (0 → 1)∗ ≈ 1,

(3) (0 → 1)∗∗ ≈ 1.

Corollary 11.30. The logic L(V((Ldm
1 ,Ldm

3 ,D2)) is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) (⊥ → ⊤) ∨ (⊥ → ⊤)∗,

(3) (⊥ → ⊤)∗∗.

Theorem 11.31. The variety V(Ldm
1 ,Ldm

2 ,Ldm
8 ,D1,D2,D3) is defined

by

y ∨ (y → (x ∨ y)) ≈ (0 → x) ∨ (x→ y).

Corollary 11.32. The logic L(V((Ldm
1 ,Ldm

2 ,Ldm
8 ,D1,D2,D3)) is de-

fined by

[β ∨ (β → (α ∨ β))] ⇔H [(⊥ → α) ∨ (α→ β)].
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Theorem 11.33. The variety V(Ldm
8 ,D1,D2,D3) is defined by

x ∨ [y → (0 → (y → x))] ≈ x ∨ y ∨ (y → x).

Corollary 11.34. The logic L(V(Ldm
8 ,D1,D2,D3)) is defined by

[α ∨ {β → (⊥ → (β → α))}] ⇔H [α ∨ β ∨ (β → α)].

Theorem 11.35. The variety V(Cdm) is defined by

x ∧ x′ ≤ y ∨ y′. (Kleene identity)

Corollary 11.36. The logic L(V(Cdm)) is defined by

(α ∧ ∼ α) →H (β ∨ ∼ β. (Kleene identity)

Theorem 11.37. The variety V(Ldm
10 ) is defined by

(1) x ∧ x′ ≤ y ∨ y′, (Kleene identity)

(2) x→ y ≈ y → x.

Corollary 11.38. The logic L(V(L
dm
10 )) is defined by

(1) (α ∧ ∼ α) →H (β ∨ ∼ β), (Kleene identity)

(2) α→ β ⇔H β → α.

V(D2) was axiomatized in Section 7. Here are some more bases for it,
but relative to RDMH1.

Theorem 11.39. Each of the following identities is a base for V(D2), mod
RDMH1:

(1) [y → {0 → (y → x)}] ≈ y ∨ (y → x).

(2) x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z).

(3) [{x ∨ (x→ y∗)} → (x→ y∗)] ∨ x ∨ y∗ ≈ 1.

Corollary 11.40. Each of the following axioms defines the logic L(V(D2),
relative to RDMH1:

(1) [β → {⊥ → (β → α)}] ⇔H [β ∨ (β → α)],

(2) [α ∨ (β → γ)] ⇔H [(α ∨ β) → (α ∨ γ)],

(3) [{α ∨ (α→ β∗)} → (α→ β∗)] ∨ α ∨ β∗.
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V(D1) was axiomatized in Section 8. Here are more bases for it. Let
RDMcmSH1 denote the subvariety of RDMSH1 defined by: x → y ≈ y →
x.

Theorem 11.41. Each of the following identities is an equational base for
V(D1), mod RDMcmSH1:

(1) y ∨ (y → (x ∨ y)) ≈ (0 → x) ∨ (x→ y),

(2) x ∨ [y → (y → x)∗] ≈ x ∨ y ∨ (y → x),

(3) [{x ∨ (x→ y∗)} → (x→ y∗)] ∨ x ∨ y∗ ≈ 1,

(4) x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z).

Corollary 11.42. Each of the following axioms defines the logic L(V(D1)),
relative to RDMcmSH1:

(1) [β ∨ (β → (α ∨ β))] ⇔H [(⊥ → α) ∨ (α→ β)],

(2) [α ∨ {β → (β → α)∗}] ⇔H [α ∨ β ∨ (β → α)],

(3) [{α ∨ (α→ β∗)} → (α→ β∗)] ∨ α ∨ β∗,

(4) [α ∨ (β → γ)] ⇔H [(α ∨ β) → (α ∨ γ)].

We conclude this section with the remark that all logics introduced
in this section are discriminator logics as their corresponding varieties are
discriminator varieties.

12. Extensions of the logic J IDSH1

Algebras closely related to DStSH-algebras, called “JI-distributive semi-
Heyting algebras”, were introduced in [33].

An algebra A in DQDSH is JI-distributive if A satisfies:

(JID) x′ ∨ (y → z) ≈ (x′ ∨ y) → (x′ ∨ z).

((restricted) Join over Implication Distributivity).

We note that the identity (JID) is obtained by slightly weakening the
identity (Strong JID) that has appeared earlier in Theorem 10.107. Let
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JIDSH denote the variety of JI-distributive DQDSH-algebras and let JIDSH1

(or JID1, for short) denote the subvariety of JIDSH of level 1.
In what follows, V (or L(V)) denotes the logic corresponding to the

subvariety V.
In this section we present axiomatizations of the logics corresponding

to the subvarieties of JIDSH1 which we denote simply by JID1.

Corollary 12.1. The logic J ID1 corresponding to JID1 is defined, as an
extension of DQDSH, by

(a) (∼ α ∨ (β → γ)) ⇔H ((∼ α ∨ β) → (∼ α ∨ γ)),

(b) α ∧ (∼ α)∗ ⇔H [∼ (α ∧ (∼ α)∗)]∗.

Let DSt [DStH] denote the variety of dually Stone semi-Heyting [Heyt-
ing] algebras. The following theorem was proved in [33, Corollary 5.10].

Theorem 12.2. JID1 = DSt ∨ V(D1,D2,D3).

The preceding Theorem leads us naturally to raise the following open
problems.

PROBLEM 6: Is the logic DStH decidable?

We conjecture that the answer to PROBLEM 5 is in the positive.
More generally, we can ask the following:

PROBLEM 7: Is the logic DStSH is decidable?

We let JIDL1 denote the subvariety of JID1 defined by

(L) (x→ y) ∨ (y → x) ≈ 1.

The results in the rest of this section depend on the corresponding
algebraic results of [33]. The relevant results, however, are stated here for
the convenience of the reader. The following corollary is immediate from
the above definitions in view of Theorem 5.9.

Corollary 12.3. The logic J IDL1 corresponding to JIDL1 is defined,
modulo J ID1, by

(α→ β) ∨ (β → α).
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Let DStL denote the subvariety of DSt defined by the identity (L) and
DStHC denote the subvariety of DStH generated by its chains.

Theorem 12.4. [33]. JIDL1 = DStHC ∨ V(D2).

For n ∈ N, let Cdp
n denote the n-element DStH-chain (= DPCH-chain)

denotes the variety generated by Cdp
n . (Note that Cdp

3 = Ldp
1 .)

Since the variety of Boolean algebras is the smallest non-trivial sub-
variety of JIDL1, we denote by LV

+(JIDL1) the latttice of non-trivial
subvarieties of JIDL1.

The following theorem was proved in [33, Corollary 7.1].

Theorem 12.5.

(1) LV
+(JIDL1) ∼= [(ω + 1) × 2], where × represents the direct product.

(2) JIDL1 and DStHC are the only two elements of infinite height in the
lattice LV

+(JIDL1).

(3) V ∈ LV
+(JIDL1) is of finite height if and only if V is either V(D2)

or V(Cdp
n ), for some n ∈ N \ {1}, or V(Cdp

m ) ∨ V(D2), for some
m ∈ N \ {1}.

The following corollary is immediate from the preceding theorem and
Theorem 5.9.

Corollary 12.6. The logic J IDL1 has the finite model property and
hence it is decidable.

Bases for all subvarieties of JIDL1 were given in [33]. The theorems
presented below are taken from [33] and each of the corollaries given below
follows from the theorem that precedes it and Theorem 5.9.

In the rest of this section, the phrase “defined, modulo JIDL1, by” is ab-
breviated to “defined by”, in the context of varieties. Similarly, the phrase
“defined, as an extension of the logic J IDL1, by” is also abbreviated to
the phrase “defined by” in the case of logics.

The theorems that appear below were proved in [33]. Each of the corol-
laries given below follows from the theorem immediately preceding it and
Theorem 5.9.

Theorem 12.7. The variety DStHC is defined by

x ∨ x′ ≈ 1.
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Corollary 12.8. The logic DStHC is defined by

α ∨ ∼ α.

The variety V(D2) was axiomatized earlier. Here is another one.

Theorem 12.9. The variety V(D2) is defined by

x′′ ≈ x.

Corollary 12.10. The logic L(V(D2)) is defined by

α⇔H ∼∼ α.

Let n ∈ N such that n ≥ 2.

Theorem 12.11. The variety V(Cdp
n ) ∨ V(D2) is defined by

(En) x1 ∨ x2 ∨ · · · ∨ xn ∨ (x1 → x2) ∨ (x2 → x3) ∨ · · · ∨ (xn−1 → xn) = 1.

Corollary 12.12. The logic L(V(Cn
dp) ∨ V(D2)) is defined by

(En) α1 ∨ α2 ∨ · · · ∨ αn ∨ (α1 → α2) ∨ (α2 → α3) ∨ · · · ∨ (αn−1 → αn).

Theorem 12.13. The variety V(Cdp
n ) is defined by

(1) x ∨ x′ ≈ 1,

(2) x1 ∨ x2 ∨ · · · ∨ xn ∨ (x1 → x2) ∨ (x2 → x3) ∨ · · · ∨ (xn−1 → xn) = 1.

Corollary 12.14. The logic L(V(Cdp
n )) is defined by

(a) α ∨ ∼ α,

(Cn) α1 ∨ α2 ∨ · · · ∨ αn ∨ (α1 → α2) ∨ (α2 → α3) ∨ · · · ∨ (αn−1 → αn).

Here are two more axiomatizations for the logic L(V(Cdp
3 ) ∨ V(D2)).

Theorem 12.15. The variety V(Cdp
3 ) ∨ V(D2) is defined by

x ∧ x+ ≤ y ∨ y∗. (Regularity)

It is also defined by

x ∧ x′ ≤ y ∨ y∗.
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Corollary 12.16. The logic L(V(Cdp
3 ) ∨ V(D2)) is defined by

(α ∧ α+) →H (β ∨ β∗).

It is also defined by

(α ∧ ∼ α) →H (β ∨ β∗).

Recall that Ldp
1 = Cdp

3 . The logic L(V(Ldp
1 )) is axiomatized in Corol-

lary 7.11. Here is yet another axiomatization for it.

Theorem 12.17. The variety V(Ldp
1 ) is defined by

(1) x ∧ x+ ≤ y ∨ y∗ (Regularity),

(2) x∗′ = x∗∗.

Corollary 12.18. The logic L(V(Ldp
1 )) is defined by

(1) (α ∧ α+) →H (β ∨ β∗),

(2) ∼ α∗ →H α∗∗.

We note that the extensions of J IDL1 are all decidable.
We conclude this section with a partial poset of subvarieties of DQDSH

discussed in the last sections (Figure 5). Its dual will give the partial poset
of the axiomatic extensions of the logic DQDSH. Note that the links in
the poset do not, in general, represent the covers.

13. Concluding remarks and open problems

It is, perhaps, worthwhile to mention here that we know from [29] that
every simple algebra in RDQDStH1 is quasiprimal. Of all the 25 simple
algebras in RDQDStSH1 (Section 7), 2e, 2̄e, and Li, i = 5, 6, 7, 8, and
D3 are primal algebras and the rest, except D1 and D2, are semiprimal
algebras.

We will now collect here all the open problems that were mentioned in
the earlier sections.

PROBLEM 1: Describe the structure of the lattice of subvarieties of the
variety BDQDSH.

PROBLEM 2: Is the variety DQDStH1 generated by its finite members?

PROBLEM 3: Is the variety DQDStSH1 generated by its finite members?
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V(2, 2̄)

RDPCStSH1=
V(Cdp

10 ) =
RDStStSH1

RDMSH1 =
RDMStSH1 =

V(Cdm
10 ∪{D1,D2,D3})

RDStSH1=
RDStSH=
RDPCSH

DMSH1 =
DMStSH1

RDQDStSH1 DStSH1 =
DStSH

DMStSH RDMSH RDQDSH1 JIDSH1

DMSH RDQDSH DPCSH JIDSH

DQDSH

Figure 5. Partial poset of subvarieties of DQDSH

PROBLEM 4: Is the logic RmsH1 decidable?

PROBLEM 5: Is the logic RmsSH1 decidable?

PROBLEM 6: Is the logic DStH decidable?

PROBLEM 7: Is the logic DStSH decidable?

We will add a few more problems of interest:

PROBLEM 8: Is RDQDStH = BRDQDStH ?
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PROBLEM 9: Is RDQDSH = BRDQDSH?

PROBLEM 10: Determine the subvarieties of DQDStSH1 that have Amal-
gamation Property.

PROBLEM 11: Is DPCSH = SBDPCSH?

We conclude the paper by mentioning a few open-ended problems for
future research.

Investigate the extensions of the logic DHMSH in relation to, among
others, the following:

(a) Decidability,

(b) Various interpolation properties,

(c) Beth’s Definability property (or equivalently, “the epimorphisms are
surjective” property for the corresponding variety),

(d) Disjunction property,

(e) Finite model property,

(f) Finite embeddability,

(g) Structural completeness.
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[22] A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae

Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://eudml.org/

doc/115416, special Issue in honor of António Monteiro.

[23] H. Rasiowa, An algebraic approach to non-classical logics, Studies in

Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publish-

ing Co., Amsterdam (1974).

[24] H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation,

Pacific Journal of Mathematics, vol. 117(2) (1985), pp. 405–415, DOI:

https://doi.org/10.2140/pjm.1985.117.405.

[25] H. P. Sankappanavar, Semi-Heyting algebras, Amererican Mathematical

Society Abstracts, (1985), p. 13.

[26] H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism,

Zeitschrift für Mathematische Logik und Grundlagen der Mathe-

https://doi.org/10.1007/s11225-014-9568-x
https://doi.org/10.1007/s11225-014-9568-x
https://doi.org/10.1007/s11083-016-9416-x
https://doi.org/10.1023/a:1024621922509
https://doi.org/10.1023/a:1024621922509
https://doi.org/10.12775/llp.2019.003
https://doi.org/10.1007/bf02945123
https://books.google.com.ar/books?id=pjjQAAAAMAAJ
https://books.google.com.ar/books?id=pjjQAAAAMAAJ
https://doi.org/10.2307/2267855
https://eudml.org/doc/115416
https://eudml.org/doc/115416
https://doi.org/10.2140/pjm.1985.117.405


644 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

matik, vol. 33(6) (1987), pp. 565–573, DOI: https://doi.org/10.1002/malq.

19870330610.

[27] H. P. Sankappanavar, Semi-De Morgan algebras, The Journal of Sym-

bolic Logic, vol. 52(3) (1987), pp. 712–724, DOI: https://doi.org/10.2307/

2274359.

[28] H. P. Sankappanavar, Semi-Heyting algebras: An abstraction from Heyting

algebras, Actas del Congreso “Dr. Antonio A. R. Monteiro”, [in:] Proceed-

ings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish),

Univ. Nac. del Sur, Bah́ıa Blanca (2008), pp. 33–66.

[29] H. P. Sankappanavar, Expansions of semi-Heyting algebras I: Discriminator

varieties, Studia Logica, vol. 98(1–2) (2011), pp. 27–81, DOI: https://doi.

org/10.1007/s11225-011-9322-6.

[30] H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting alge-

bras I. Regularity, Categories and General Algebraic Structures with

Applications, vol. 2(1) (2014), pp. 47–64, URL: https://cgasa.sbu.ac.ir/

article 6483.html.

[31] H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting alge-

bras II. Regularity, Categories and General Algebraic Structures with

Applications, vol. 2(1) (2014), pp. 65–82, URL: https://cgasa.sbu.ac.ir/

article 6799.html.

[32] H. P. Sankappanavar, A note on regular De Morgan Stone semi-Heyting

algebras, Demonstracio Mathematica, vol. 49(3) (2016), pp. 252–265,

DOI: https://doi.org/10.1515/dema-2016-0021.

[33] H. P. Sankappanavar, JI-distributive dually quasi-De Morgan semi-Heyting

and Heyting algebras, Scientiae Mathematicae Japonicae, vol. 82(3)

(2019), pp. 245–271, DOI: https://doi.org/10.32219/isms.82.3 245.

[34] H. P. Sankappanavar, De Morgan semi-Heyting and Heyting algebras, [in:]

K. P. Shum, E. Zelmanov, P. Kolesnikov, S. M. Anita Wong (eds.), New

Trends in Algebras and Combinatorics. Proceeding of the 3rd In-

ternational Congress in Algebra and Combinatorics ICAC2017,

Hong Kong, China, 25–28 August 2017 (2020), pp. 447–457, DOI:

https://doi.org/10.1142/9789811215476 0024.

[35] H. P. Sankappanavar, A few historical glimpses into the interplay between

algebra and logic and investigations into Gautama algebras, [in:] S. Sarukkai,

M. K. Chakraborty (eds.), Handbook of Logical Thought in India,

https://doi.org/10.1002/malq.19870330610
https://doi.org/10.1002/malq.19870330610
https://doi.org/10.2307/2274359
https://doi.org/10.2307/2274359
https://doi.org/10.1007/s11225-011-9322-6
https://doi.org/10.1007/s11225-011-9322-6
https://cgasa.sbu.ac.ir/article_6483.html
https://cgasa.sbu.ac.ir/article_6483.html
https://cgasa.sbu.ac.ir/article_6799.html
https://cgasa.sbu.ac.ir/article_6799.html
https://doi.org/10.1515/dema-2016-0021
https://doi.org/10.32219/isms.82.3_245
https://doi.org/10.1142/9789811215476_0024


A Logic for Dually Hemimorphic Semi-Heyting Algebras. . . 645

Springer, New Delhi (2022), pp. 1–75, DOI: https://doi.org/10.1007/978-

81-322-2577-5 54.

[36] H. P. Sankappanavar, Gautama and Almost Gautama algebras and their

associated logics (2022), preprint.

[37] J. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis,

vol. 2(1) (1972), pp. 218–223, DOI: https://doi.org/10.1007/bf02945029.

[38] H. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford En-

cyclopedia of Philosophy, Summer 2022 ed., Metaphysics Research Lab,

Stanford University (2022).

Juan M. Cornejo

Universidad Nacional del Sur
Departamento de Matemática
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