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INTERPOLATION PROPERTY
ON VISSER’S FORMAL PROPOSITIONAL LOGIC

Abstract

In this paper by using a model-theoretic approach, we prove Craig interpolation

property for Formal Propositional Logic, FPL, Basic propositional logic, BPL

and the uniform left-interpolation property for FPL. We also show that there are

countably infinite extensions of FPL with the uniform interpolation property.

Keywords: Basic propositional logic, formal propositional logic, layered bisimu-

lation, interpolation.
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1. Introduction

A Craig interpolant for formulas ϕ(q⃗, p⃗) and ψ(p⃗, r⃗) where ⊢ ϕ → ψ, is a
formula χ(p⃗) such that ⊢ ϕ → χ and ⊢ χ → ψ. The uniform interpola-
tion property is, in a sense, the generalization of the Craig interpolation
property. If instead of two formulas, we restrict the interpolant to one
formula and a subset of its propositional variables (which are to be the
shared variables), we reach a stronger definition: a uniform left-interpolant
for ϕ(q⃗, p⃗) with respect to p⃗ is a formula χ(p⃗) such that for all formulas
ψ(p⃗, r⃗) with ⊢ ψ → ϕ, χ acts as an interpolant for ϕ and ψ. The uniform
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right-interpolant is defined analogously. A logic whose formulas have both
uniform left and right-interpolants is said to satisfy the uniform interpola-
tion property.

It is easy to show that classical propositional logic has the uniform
interpolation property. But showing it for intuitionistic propositional logic
is highly nontrivial. This was shown first by using a proof theoretic method
in [6] and then semantically in [5]. A. Visser in [8] established the result
using bisimulation techniques.

The goal of this paper is to establish new interpolation results for Ba-
sic propositional logic BPL and Formal propositional logic, FPL, using
the bisimulation techinque of [8]. BPL and FPL are propositional logics
which correspond with modal logics K4 and GL by the Gödel transla-
tion, respectively, in the same way that Intuitionistic Propositional Logic
IPL corresponds with modal logic S4. The main difference between IPL
and BPL is that the rule Modus Ponens is weakened in BPL. We show
that FPL satisfies the uniform left-interpolation property. The same ap-
proach with minor differences leads the Craig interpolation property for
Basic propositional logic, BPL. We Also show that there are countably
infinite extensions of FPL with the uniform interpolation property.

The organiztion of the paper is as follows: in the next section we present
an overview of the syntax and semantics of BPL. Basic model theory
for BPL including canonical models and layered bisimulation, which are
a natural generalization of results known for intuitionistic propositional
logic, will be studied in section three. Interpolation properties for formal
propositional logic and some of its extensions will be presented in section
four.

2. Axioms, rules and Kripke models

In this preliminaries section we introduce the most basic concepts and
notations we need related to syntax and semantics of basic propositional
logic, for more details see [7] and [3, 4].

The language for BPL is essentially the same as the language for IPL.
We build formulas in the standard way from propositional variables, or
atoms, using ⊤,⊥,∧,∨,→. Expressions ¬ϕ and ϕ ↔ ψ are usual abbrevi-
ations for ϕ→ ⊥ and (ϕ→ ψ) ∧ (ψ → ϕ), respectively.
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We assume that p, q, r, . . . range over propositional variables, ϕ, ψ, χ, . . .
range over arbitrary formulas, and p⃗, q⃗, r⃗, . . . range over finite sets of propo-
sitional variables. For p⃗ and q⃗, we abbreviate p⃗∪ q⃗ by p⃗, q⃗. PV(ϕ) is the set
of propositional variables in ϕ. Sub(ϕ) is the set of subformulas of ϕ. For
a set of propositional variables P, L(P) denotes the set of those formulas
which only contains propositional variables from P. There are different
axiomatizations for BPL. The natural deduction system for BPL was
first introduced by A. Visser in [7]. We choose axiomatization method
which was introduced in [3]. A sequent is simply an expression of the form
ϕ ⇒ ψ, where ϕ and ψ are formulae. We write ϕ ⇔ ψ as short for ϕ ⇒ ψ
and ψ ⇒ ϕ.

In the rules below, a single horizontal line means that if the sequents
above the line are included, then so are the ones below the line. A double
line means the same, but in both directions.

ϕ⇒ ϕ ϕ⇒ ⊤ ⊥ ⇒ ϕ ϕ ∧ (ψ ∨ θ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ θ)

ϕ⇒ ψ ψ ⇒ θ
ϕ⇒ θ

ϕ⇒ ψ ϕ⇒ θ
ϕ⇒ ψ ∧ θ

ϕ⇒ ψ θ ⇒ ψ
ϕ ∨ θ ⇒ ψ

ϕ ∧ ψ ⇒ θ
ϕ⇒ ψ → θ

(ϕ→ ψ) ∧ (ψ → θ) ⇒ ϕ→ θ
(ϕ→ ψ) ∧ (ϕ→ θ) ⇒ ϕ→ ψ ∧ θ
(ϕ→ ψ) ∧ (θ → ψ) ⇒ ϕ ∨ θ → ψ

Table 1. Sequent calculus of BPL

A sequent theory is a set of sequents that includes the sequent axioms
and is closed under the closure rules, as given in table 1. A sequent theory
Σ is consistent if ⊤ ⇒ ⊥ ̸∈ Σ. A theory Γ is schematic if Γ ⊢ ϕ ⇒ ψ
implies Γ ⊢ τϕ ⇒ τψ for all substitutions τ . A basic intermediate logic
is a consistent schematic sequent theory. The intuitionistic propositional
logic, IPL, is BPL plus the sequent schema ⊤ → ϕ ⇒ ϕ, and the Formal
Propositional logic, FPL, is the extension of BPL by the Löb’s axiom
schema, (⊤ → ϕ) → ϕ⇒ ⊤ → ϕ, or equivalently, by Löb’s rule:

ϕ ∧ (⊤ → ψ) ⇒ ψ
ϕ⇒ ψ

.

The theories BPL, IPL,CPL and FPL are all basic intermediate logics.
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Sequents ⊤ ⇒ ϕ are often identified with formulas ϕ. Given a sequent
theory Σ we define F (Σ) as {ϕ | ⊤ ⇒ ϕ ∈ Σ}. A f ormula theory (or
simply a theory) is a set of formulas of the form F (Σ). The formula theory
is consistent if Σ is consistent or, equivalently, if ⊥ is not an element of
the formula theory. Let Σ ∪ {ϕ ⇒ ψ} be a set of sequents. We say that
the ϕ ⇒ ψ is provable from the Σ in the logic BPL and we denoted it by
Σ ⊢BPL ϕ⇒ ψ, when the sequent ϕ⇒ ψ is provable in the sequent calculus
BPL augmented by ϕi ⇒ ψi for all ϕi ⇒ ψi ∈ Σ. When Σ is empty we
simply write ⊢ ϕ⇒ ψ. Also, we use Σ ⊢ ϕ instead of Σ ⊢ ⊤ ⇒ ϕ.

Proposition 2.1 ([3]). Let Σ be a sequent theory. Then:

1. (Functional Completeness) Σ ∪ {ϕ} ⊢ ψ ⇒ θ if and only if Σ ⊢
ϕ ∧ ψ ⇒ θ.

2. (Formalization) Σ ∪ {ϕ1 ⇒ ψ1, ..., ϕn ⇒ ψn} ⊢ ϕ0 ⇒ ψ0 implies
Σ ⊢ (ϕ1 → ψ1) ∧ ... ∧ (ϕn → ψn) ⇒ ϕ0 → ψ0.

Σ is called a faithful theory if the converse of Proposition 2.1.2, also
holds. IPL and all of its extensions including Classical Propositional Logic,
CPL, and BPL, FPL are examples of faithful theories.

Define the relation ≺ on all theories by Γ ≺ ∆ if and only if for all
ϕ, ψ ∈ L(P) such that both Γ ⊢ ϕ→ ψ and ∆ ⊢ ϕ, we have ∆ ⊢ ψ.

Proposition 2.2. The relation ≺ is transitive, and Γ ≺ ∆ implies Γ ⊆ ∆.

Proof: We first prove the second claim. Suppose Γ ≺ ∆. If ϕ ∈ Γ, then
Γ ⊢ ϕ which implies, by above Formalization theorem, that Γ ⊢ ⊤ → ϕ
and thus ∆ ⊢ ϕ. Hence ϕ ∈ ∆. So Γ ⊆ ∆. For transitivity, suppose that
Γ ≺ ∆ ≺ ∆′ are such that Γ ⊢ ϕ → ψ and ∆′ ⊢ ϕ, for any ϕ, ψ ∈ L(P).
Then Γ ⊆ ∆ ⊢ ϕ→ ψ, so ∆′ ⊢ ψ. Therefore Γ ≺ ∆′.

Moving on to the samantics of BPL, a Kripke frame F is a pair (W,≺)
where W is a non-empty set and ≺ is a transitive binary relation on W .
The reflexive closure of ≺ is denoted by ⪯. Also, for k, k′ ∈ W , k′ ⪰ k
means that k ⪯ k′.

A Kripke model based on Kripke frame F is a triple M = (W,≺, V )
where F = (W,≺) and the function V assigns to each atoms p of the
language of BPL a subset V (p) ⊆ W which is upward closed, that is, if
k ∈ V (p) and k ≺ k′, then k′ ∈ V (p).
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Given a Kripke model M = (W,≺, V ), the notion of a formula ϕ being
true at a point k ∈W , written M, k ⊩ ϕ or k ⊩ ϕ for short, is like in IPL.
We extend ⊩ to all sequents. For any sequent ϕ⇒ ψ, it is defined by

k ⊩ ϕ⇒ ψ if and only if for all k′ ⪰ k, k′ ⊩ ϕ implies k′ ⊩ ψ.

A trivial induction on the complexity of formulas yields that, k ⊩ ϕ and
k ≺ k′ implies k′ ⊩ ϕ. So, k ⊩ ϕ if and only if k ⊩ ⊤ ⇒ ϕ. A sequent
ϕ⇒ ψ is true in a Kripke model M, written M ⊩ ϕ⇒ ψ, if and only if for
all k ∈ W , k ⊩ ϕ ⇒ ψ. We often write M ⊩ ϕ as short for M ⊩ ⊤ ⇒ ϕ.
ϕ ⇒ ψ is valid on a Kripke frame F, F ⊩ ϕ ⇒ ψ, iff ϕ ⇒ ψ is true on
every Kripke model based on F. Let C be a class of Kripke frames, ϕ⇒ ψ
is C-valid, C ⊩ ϕ⇒ ψ, iff ϕ⇒ ψ is valid on every Kripke frame in C.

For a set Γ of sequents, M ⊩ Γ means that M ⊩ ϕ ⇒ ψ, for all
ϕ ⇒ ψ ∈ Γ. For a set of sequents Γ ∪ {ϕ ⇒ ψ}, the notation Γ ⊩ ϕ ⇒ ψ
means that for any Kripke model M, if M ⊩ Γ, then M ⊩ ϕ.

In the sequel we show a Kripke model by its forcing relation. For k ∈W ,
we call M = (W,≺,⊩, k) pointed and it is called rooted, with root k, if
and only if k ⪯ k′, for all k′ ∈ W . Also it is called a tree Kripke model
if and only if ⟨W,≺⟩ is a tree. We denote the class of all models, pointed
models and rooted models by Mod, Pmod and Rmod, respectively. We
denote W by M when clear from the context. We write M(p⃗) for the
result of restricting V to p⃗.

If M = (W,≺,⊩) is a Kripke model and w a world of M, the submodel
of M generated by w is the Kripke model M[w] := M′ = (W [w],≺′,⊩′)
where W [w] = {x ∈W |w ⪯ x}, and ≺′ and ⊩′ are restrictions of ≺ and ⊩
to W [w].

Here we stick to the following characterization ofBPL and FPLmodels
throughout the paper.

Theorem 2.3 ([3]). BPL and FPL are sound and complete for the class
of all irreflexive Kripke models and all conversely well-founded irreflexive
Kripke models, respectively.

The depth of a node k ∈W is defined inductively by

d(k) := sup{d(k′) + 1 | k′ ≺ k}, where sup(∅) = 0,

and the depth of a model M is defined as

d(M) := sup{d(k) | k ∈W}.
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We notice that d(M) = ∞ is possible. We define inductively □nϕ by
□0ϕ := ϕ, □ϕ := ⊤ → ϕ and □n+1ϕ := □□nϕ, for n ∈ ω. The following
extensions of BPL were introduced in [3]

• Fn := BPL+□n⊥, for n ∈ ω,

• FPL⊥ := BPL+ L⊥, where L⊥ := (□⊥ → ⊥) → □⊥.

One can see that BPL proves L⊥ ⇔ ⊤ → L⊥, so FPL⊥ is faithful.
Given a Kripke frame ⟨W,≺⟩, a world e ∈ W is called an end-node if it
is maximal with respect to ⪯. A Kripke frame ⟨K,≺⟩ with end-nodes is
a Kripke frame such that for every w ∈ K there is some end-node e ∈ W
with w ⪯ e.

Proposition 2.4 ([3]).

1. FPL⊥ is sound and complete with respect to the class of all irreflexive
Kripke frames with end-nodes,

2. For every n ≥ 1, the logic Fn is strongly complete with respect to the
class of all irreflexive Kripke models with depth not greater than n.

3. Basic model theory

In this section, first we briefly review the notion of Henkin construction for
basic propositional logic. The results we report on the Henkin model can
be found in [4]. However, for the sake of entirety and because of phrasing
the results in terms of saturated sets of formulas instead of prime sequent
theories and also new relations between saturated sets compare to [4], we
decided to present them in full proofs. After which, we recall the notion
of bisimulation (and in general, layered bisimulation) between two models.
For convenience in our context, this notion has been slightly modified, i.e.,
the zig and zag conditions hold strictly. In the sequel we need to extend
the set of all natural numbers ω with an extra top element ∞. Let ω∞

be ω ∪ {∞} which is equipped with the obvious natural ordering ≤. We
extend addition by, ∞+α = α+∞ = ∞ and ∞− n = ∞. We let n range
over ω, and α range over ω∞.

We start by the following lemma which can be proved by induction on
the complexity of formulas and distributivity axiom of BPL.
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Lemma 3.1. Let ϕ ∈ L(P) be a formula. Then it can be written, modulo
BPL provability, as

∨
i

∧
j ϕij where ϕij is an atom in P, ⊤, ⊥ or an

implication.

We call
∨
i

∧
j ϕij the disjunctive normal form of ϕ.

A set X ⊆ L(P) is called P-adequate if P ⊆ X and X is closed under
subformulas. We say that a consistent set Γ ⊆ X is X-saturated if it is
X-deductively closed and X-prime, i.e.,

• Γ ⊢ ϕ and ϕ ∈ X implies ϕ ∈ Γ,

• Γ ⊢ ϕ ∨ ψ and ϕ ∨ ψ ∈ X implies Γ ⊢ ϕ or Γ ⊢ ψ.

We say that a consistent set Γ is prime exactly when it is L(P)-prime.
Given the P-adequate set X, let HX be the collection of all X-saturated
sets. The Kripe model HX := (HX ,≺,⊩) where for every Γ ∈ HX and
every propositional variable p ∈ P, Γ ⊩ p if and only if p ∈ Γ is called
canonical model over P with respect to X.

Proposition 3.2. Let X be a P-adequate set. For any formula ϕ ∈ X
and any Γ ∈ HX , HX ,Γ ⊢ ϕ if and only if Γ ⊩ ϕ.

Proof: We complete the proof by induction on the complexity of φ. We
consider the interesting case where ϕ = ψ → θ. Let Γ ⊢ ψ → θ and
∆ ∈ HX be such that Γ ≺ ∆ and ∆ ⊩ ψ. By induction hypothesis ∆ ⊢ ψ
and because of Γ ≺ ∆ and Γ ⊢ ψ → θ we have ∆ ⊢ ψ ⇒ θ and hence ∆ ⊢ θ.
First, applying induction hypothesis gives ∆ ⊩ θ. And thus Γ ⊩ ψ → θ.

Conversely, suppose that Γ ⊬ ψ → θ. Put Γψ = {η ∈ X | Γ ⊢ ψ → η}.
First, we notice that Γψ is X-deductively closed. Suppose that Γψ ⊢ α,
for α ∈ X. Then there exist formulas η1, · · · , ηi such that η1, · · · ηi ⊢ α.
Put η = η1 ∧ · · · ∧ ηi. Hence, Γ ⊢ ψ → η and ⊢ η → α which implies
that Γ ⊢ ψ → α. Then α ∈ Γψ. Next, we show that Γ ≺ Γψ. Suppose
that Γ ⊢ α → β and Γψ ⊢ α. Then Γ ⊢ ψ → α which implies, by
transitivity, that Γ ⊢ ψ → β. Therefore, Γψ ⊢ β. Note that, Γψ ⊬ θ. Now,
Assume that Σ = {∆ | ∆ is a X- deductively closed set of formulas with
∆ ⊢ ψ,∆ ⊬ θ and Γ ≺ ∆}. Σ is nonempty, since Γψ ∈ Σ. (Σ,⊆) satisfies
the chain condition for Zorn’s lemma. For, suppose that {∆i}i∈I is a chain
of elements of Σ then, one can see that

⋃
∆i is X deductively closed set,⋃

∆i ⊢ ψ and
⋃
∆i ⊬ θ. We only show that Γ ≺

⋃
∆i. So, suppose that

Γ ⊢ γ → δ and
⋃
∆i ⊢ γ. Then there exists a j such that ∆j ⊢ γ which
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implies that ∆j ⊢ δ, since Γ ≺ ∆j . Hence, Γ ≺
⋃

∆i. Let ∆ be a maximal
element of Σ. ∆ is X-saturated. To see that, we need to show that it is
X-prime. Assume α∨β ∈ X is such that ∆ ⊢ α∨β,∆ ⊬ α and ∆ ⊬ β. But
Γ ≺ ∆ ≺ Γ∆,α := {η | Γ ⊢ δ ∧ α → η, for some δ ∈ ∆} and Γ ≺ ∆ ≺ Γ∆,β ,
then by maximality of ∆ we obtain Γ∆,α ⊢ θ and Γ∆,β ⊢ θ which implies
that Γ ⊢ α ∧ δ1 → θ and Γ ⊢ β ∧ δ2 → θ, for some δ1, δ2 ∈ ∆. Then
Γ ⊢ (α ∧ δ1) ∨ (β ∧ δ2) → θ. But ∆ ⊢ (α ∧ δ1) ∨ (β ∧ δ2), then ∆ ⊢ θ which
is a contradiction. Hence, we have Γ ≺ ∆ and ∆ ⊬ θ. Then, by induction
hypothesis, Γ ≺ ∆ ⊩ ψ, and ∆ ⊮ θ. So Γ ⊮ ψ → θ.

Definition 3.3. LetK be a set of disjoint pointed models for aX-saturated
set ∆. We define Glue(HX [∆],K) as follows:

• Glue(HX [∆],K) := (HX [∆] ∪ (
⋃
iKi) ∪ {m},≺), where m is a new

distinct point, (Ki,≺i,⊩i, ki)’s are mutually disjoint pointed models
in K and ≺ is defined by:

≺ = ≺i↾Ki[ki] ∪ ≺HX
↾HX [∆]

∪ {(m, y) : y ∈
⋃
i

Ki[ki] \ {ki} ∪HX [∆] \ {∆}},

• m ⊩ p exactly when p ∈ ∆.

We would like to notice that in the model Glue(HX [∆],K), m is ir-
reflexive and m ̸≺ ki and m ̸≺ ∆ unless ki ≺i ki and ∆ ≺HX [∆] ∆.

Lemma 3.4. Let K be a class of pointed models for a X-saturated set ∆
and ϕ ∈ X. Then Glue(HX [∆],K),m ⊩ ϕ exactly when ϕ ∈ ∆.

Proof: For atoms the claim is clear. From the construction, conjunction
and disjunction are easy due to X-saturatedness of ∆. For implication
suppose that ϕ = ψ → γ. If ψ → γ ∈ ∆ and m ≺ l, then l must be in
one of the models Ki[ki] \ {ki} or HX [∆] \ {∆}. If l ∈ Ki[ki] \ {ki} then,
since Ki[ki] \ {ki} is a model of ∆ we have l ⊩ ψ ⇒ γ which implies that
m ⊩ ψ → γ. The case l ∈ HX [∆] \ {∆} is obvious.

Conversely, suppose that m ⊩ ψ → γ. Then for any l ∈ HX [∆] \ {∆}
we have l ⊩ ψ ⇒ γ which implies that ∆ ⊩ ψ → γ. But since ψ → γ ∈ X
we have ψ → γ ∈ ∆.
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Theorem 3.5. Let X be a P-adequate and ∆ be X-saturated. Then ∆ is
prime.

Proof: Suppose that ∆ ⊢ ϕ ∨ ψ, for ϕ and ψ ∈ L(P). Since X is P-
adquate, ϕ and ψ have disjunctive normal forms: ϕ =

∨
i

∧
j ϕij and ψ =∨

r

∧
s ψrs, where ϕij , ψrs ∈ X or they are in implication form. We will

show that there exist i or r such that ∆ ⊢
∧
j ϕij or ∆ ⊢

∧
s ψrs. It is clear

that it shows that either ∆ ⊢ ϕ or ∆ ⊢ ψ.
Assume, for any i and r, that ∆ ⊬

∧
j ϕij and ∆ ⊬

∧
s ψrs. Then there

exist (Ki, ki) and (Lr, lr) such that (Ki, ki) ⊩ ∆, (Ki, ki) ⊮
∧
j ϕij and

(Lr, lr) ⊩ ∆, (Lr, lr) ⊮
∧
s ψrs. By Lemma 3.4 we haveGlue(HX [∆], {Ki}∪

{Lr}),m ⊩ ∆. Therefore m ⊩ ϕ ∨ ψ, since ∆ ⊢ ϕ ∨ ψ. Hence, there exist i
or r such that m ⊩

∧
j ϕij or m ⊩

∧
s ψrs. Assume m ⊩

∧
j ϕij , the other

case is similar. Since (Ki, ki) ⊮
∧
j ϕij , there are two cases: If ϕij is an

atom then by Lemma 3.4 since m ⊩ ϕij and P ⊆ X we have ϕij ∈ ∆ and
since (Ki, ki) ⊩ ∆ we would have (Ki, ki) ⊩ ϕij which is a contradiction.
If ϕij = δ → γ, for some δ and γ. In this case, since m ⊩ δ → γ, then for
any l ≻ ki we have l ⊩ δ → γ which implies that (Ki, ki) ⊩ δ → γ which is
impossible.

Remark 3.6. We notice that Henkin models can be constructed similarly
for FPL. Although H is not an FPL-model in this case, what we want
from H in our proof of Lemma 4.8 is for it to be transitive, which it trivially
is.

Definition 3.7. We define the complexity measure i(ϕ) of a formula ϕ
recursively as follows:

1. i(p) = 0, for each propositional variable p;

2. i(⊤) = i(⊥) := 0;

3. i(ϕ ∧ ψ) = i(ϕ ∨ ψ) := max{i(ϕ), i(ψ)};

4. i(ϕ→ ψ) := max{i(ϕ), i(ψ)}+ 1.

We define Bn(P) := {ϕ ∈ L(P) | i(ϕ) ≤ n} and B∞(P) := L(P). By
induction on n we may prove the following fact:

Fact 3.8. Bn(p⃗) is finite modulo BPL-provable equivalence.

By the above fact, we assume that Bn(p⃗) is finite from now on.
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Definition 3.9. Let M = (W,≺,⊩) be any Kripke model. For each X ⊆
L(P), m ∈W and n ∈ ω, we define:

1. ThX(m) = {ϕ ∈ X | m ⊩ ϕ};

2. ThPn (m) = {ϕ ∈ Bn(P) | m ⊩ ϕ};

3. ThX(⟨M,m⟩) := ThX(m) and Th(m) := ThL(P)(m);

4. Yn(m) := Yn,m(p⃗) :=
∧
Thp⃗n(m);

5. Nn(m) := Nn,m(p⃗) :=
∨
{ϕ ∈ Bn(p⃗) | m ⊮ ϕ}.

Fact 3.10. Yn,m(p⃗) is a prime formula.

Proof: We first note, by definition, that Bn(p⃗) is closed under subformu-
las. Next, we show that Yn,m(p⃗) is an Bn(p⃗)-saturated. Suppose that ϕ ∈
Bn(p⃗) and that Yn,m(p⃗) ⊢ ϕ. Then m |= ϕ which implies that ϕ ∈ Yn,m(p⃗).
For Bn(p⃗)-primness suppose that ϕ∨ψ ∈ Bn(p⃗) and Yn,m(p⃗) ⊢ ϕ∨ψ. Then
m |= ϕ ∨ ψ which implies that m |= ϕ or m |= ψ. Hence, ϕ ∈ Yn,m(p⃗) or
ψ ∈ Yn,m(p⃗). Therefore, by Theorem 3.5, Yn,m(p⃗) is prime.

Let M = (W,≺,⊩) and M′ = (W ′,≺′,⊩′), be any two P-models. We
say a relation Z ⊆W×ω∞×W ′ is a layered P-bisimulation (l -bisimulation)
between M and M′ if it satisfies the following three conditions:

1. (w,α,w′) ∈ Z implies w ⊩ p if and only if w′ ⊩ p, for all atome
p ∈ P;

2. (w,α + 1, w′) ∈ Z and w ≺ x implies (w′, α, x′) ∈ Z, for some
x′ ≻′ w′;

3. (w,α+1, w′) ∈ Z and w′ ≺′ x′ implies (x, α, x′) ∈ Z, for some x ≻ w.

We call (2) the zigα+1-property and (3) zagα+1- property. If α = ∞,
we simply call them the zig- and the zag-property. We write wZαw′ for
(w,α,w′) ∈ Z and wZw′ for wZ∞w

′. To clarify the definition in the case
of α = ∞, we rewrite clauses of the above definition, as follows:

1. (w,∞, w′) ∈ Z implies w ⊩ p if and only if w′ ⊩ p, for all atome
p ∈ P;

2. (w,∞, w′) ∈ Z and w ≺ x implies (w′,∞, x′) ∈ Z, for some x′ ≻′ w′;

3. (w,∞, w′) ∈ Z and w′ ≺′ x′ implies (x,∞, x′) ∈ Z, for some x ≻ w.

A binary relation Z between M and M′ is a bisimulation between M and
N exactly when {⟨w,∞, w′⟩ | wZw′} is an l -bisimulation.
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We say l -bisimulation Z is downward closed if for any (w, n,w′) ∈
W × ω ×W ′, (w, n,w′) ∈ Z implies that (w,m,w′) ∈ Z, for all m ≤ n.
Let PVM(w) := {p ∈ P : M, w ⊩ p}, we define wZ≺0w

′ exactly when
PVM(w) ⊆ PVM′(w′); and wZ≺α+1w

′ exactly when PVM(w) ⊆ PVM′(w′)
and for all x′ ≻′ w′ there exists x ≻ w with xZαx′.

We notice that since the set of all l -bisimulations between two mod-
els M and M′ are closed under union, then there is always a maximal
l -bisimulation, ≃M,M′

, which is also downward closed. We will often drop
the superscript of ≃M,M′

. In case of α = ∞, we will drop the sub-
script of ≃M,M′

α (if no confusion is possible). Zα is full if it is both to-
tal and surjective as a relation between M and M′. We say that M and
M′ α-bisimualte (bisimualte), or M ≃α M′ (M ≃ M′,) if there is a full
α- bisimulation (bisimulation) between them. Z : M ≃α M′ means that
Z is a full α-bisimulation witnessing that M ≃α M′. For a set of proposi-
tional variables Q, M ≃α,Q M′ means that M and M′ α-bisimulate with
respect to the variables in Q. Note that for rooted models M and M′ we
have M ≃α M′ if and only if rM ≃α rM′ .

We say that w ∈ W and w′ ∈ W ′ are α-equivalent, written w ≡α w′,
exactly when Thα(w) = Thα(w

′). We notice that for α = ∞, w and w′ are
α-equivalent if Th(w) = Th(w′).

Theorem 3.11. Let M = (W,≺,⊩) and M′ = (W ′,≺′,⊩′) be any Kripke
models, w ∈W,w′ ∈W ′ and α ∈ ω∞. Then wZαw′ implies w ≡α w′.

Proof: The proof is by induction on the complexity of formulas. We only
check the case of implication. So suppose that ϕ = γ → ψ. Suppose
w ⊮ γ → ψ. Then for some x ≻ w, x ⊩ γ and x ⊮ ψ. Notice that
γ, ψ ∈ Bα−1(P). Moreover, since wZαw′, then there is x′ ≻′ w′ such that
xZα−1x

′. Hence, by induction, we get x′ ⊩′ γ and x′ ⊮′ ψ. Therefore, w′ ⊮′

γ → ψ. By a similar argument, we can prove the reverse implication.

Theorem 3.12. Let M = ⟨W,≺,⊩⟩ and M′ = ⟨W ′,≺′,⊩′⟩ be any two
Kripke models. For any w ∈ W,w′ ∈ W ′ and n ∈ ω, the following are
equivalent:

1. ThPn (w) ⊆ ThPn (w
′);

2. There exists a layered P- bisimulation Z between M and M′ such
that wZ≺nw

′;

3. There exists a downward closed layered P- bisimulation Z between M
and M′ such that wZ≺nw

′.
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Proof: (2 ⇒ 1): We prove that for allm ∈ ω, x ∈W and x′ ∈W ′, if there
exists a layered P-bisimulation Z between M and M′ such that xZ≺mx

′,
then ThPm(x) ⊆ ThPm(x′).

Let m = 0, then the set B0(P) is a set of implication-free formulas. By
the assumption PVM(x) ⊆ PVM′(x′), so if ϕ = p is a propositional variable,
then we have our result. The cases for conjunction and disjunction can be
done by induction. Now, Suppose that the statement holds for m > 0,
and that there exists a layered P-bisimulation Z between M and M′ such
that xZ≺m+1x

′. By induction on the complexity of given ϕ ∈ Bm+1(P)
we prove, x ⊩ ϕ implies x′ ⊩′ ϕ. We only check that for ϕ := γ → ψ.
We notice that γ, ψ ∈ Bm(P). Suppose that x′ ⊮′ γ → ψ then for some
y′ ≻′ x′, y′ ⊩′ γ and y′ ⊮′ ψ. Since xZ≺m+1x

′, there is a y ≻ x, such that
yZmy′. Then, by induction and Theorem 3.11, y ⊩ γ and y ⊮ ψ. That
means x ⊮′ γ → ψ which is a contradiction.

(1 ⇒ 3): We prove that for all m ∈ ω, x ∈W and x′ ∈W ′, if ThPm(x) ⊆
ThPm(x′), then there exists a layered P- bisimulation Z between M and M′

with wZ≺mw
′.

Form = 0, put Z = ∅ which is obviously downward closed. Now assume
that the statement holds for m > 0. Suppose ThPm+1(x) ⊆ ThPm+1(x

′).
Define a relation Z on W × ω ×W ′ as:

wZiw′ if and only if ThPi (w) = ThPi (w
′).

Clearly, Zi’s are persistent over atoms. We only show the zig property,
suppose wZiw′ and w ≺ y. We want to show that there is y′ ≻′ w′ such
that yZi−1y

′. Define ϕ(y) := Yi−1(y) → Ni−1(y). We have w ⊮ ϕ(y)
and since ϕ(y) ∈ Bi(P), w′ ⊮ ϕ(y). Therefore, for some y′ ≻′ w′ we have
y′ ⊩ Yi−1(y), but y

′ ⊮ Ni−1(y). Hence yZi−1y
′. It remains to show that

xZ≺m+1x
′. So assume that k′ ≻′ x′, then x′ ⊮ ϕ(k′). Thus by assumption

we have x ⊮ ϕ(k′) which implies that for some k ≻ x, k ⊩ Ym(k′) and k ⊮
Nm(k′). Hence, kZmk′. Obviously, Z is a downward closed l-bisimulation.

(3 ⇒ 2): Obvious.

4. Interpolation

In this section, we prove the lifting theorem which helps us in establishing
the Craig interpolation property. After which, we prove the amalgamation
lemma for FPL which results in its uniform left-interpolation property.
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The proofs are highly influenced by that of similar theorems in [8]. In this
section all models are irreflexive unless explicitly mentioned.

Theorem 4.1 (Lifting). Let M = (W,≺,⊩) be a q⃗, p⃗-model and M′ =
(W ′,≺′,⊩′) be a p⃗, r⃗- model with M(p⃗) ≃α M′(p⃗). Then there exists q⃗, p⃗, r⃗-
model M′′ = (W ′′,≺′′,⊩′′) such that M(q⃗, p⃗) ≃α M′′(q⃗, p⃗) and M′(p⃗, r⃗) ≃α
M′′(p⃗, r⃗).

Proof: Let Z : M(p⃗) ≃α M′(p⃗). Define q⃗, p⃗, r⃗-model M′′ as follows:

• W ′′ := {(w,w′) | (w, β,w′) ∈ Z for some β};

• (w,w′) ≺′′ (v, v′) exactly when w ≺ v and w′ ≺′ v′;

• (w,w′) ⊩′′ s exactly when w ⊩ s or w′ ⊩′ s.

It’s easy to see that for s ∈ q⃗, p⃗ we have (w,w′) ⊩′′ s exactly when w ⊩ s
and for s ∈ p⃗, r⃗ we have (w,w′) ⊩′′ s exactly when w′ ⊩′ s. Next, define
Z ′ by wZ ′

i(w,w
′) if wZiw′ and Z ′′ by w′Z ′′

i (w,w
′) if wZiw′. It’s easy to

see that Z ′ : M(q⃗, p⃗) ≃α M′′(q⃗, p⃗) and Z ′′ : M′(p⃗, r⃗) ≃α M′′(p⃗, r⃗).

Corollary 4.2. Let M be a q⃗, p⃗-model and M′ be a p⃗, r⃗-model with
M(p⃗) ≃n M′(p⃗). Then there exists q⃗, p⃗, r⃗-modelM′′ such that Th(q⃗,p⃗)n (M) =

Th(q⃗,p⃗)n (M′′) and Th(p⃗,r⃗)n (M′) = Th(p⃗,r⃗)n (M′′).

By the lifting lemma we are ready to prove the Craig interpolation
property for BPL. The Craig interpolation property for BPL was proved
in [4]. The proof of the Craig interpolation property for FPL, FPL⊥,
EBPL and Fn, for n ∈ ω are new.

We say a class C of Kripke models has the lifting property if for all
models M and M′ in C, the constructed model M′′ in the lifting lemma is
also in C.

Theorem 4.3 (Craig Interpolation). Let L be a logic over BPL which is
sound and complete with respect to a class C having lifting property. Then
L satisfies the Craig interpolation property.

Proof: Suppose that ϕ ∈ Bm(q⃗, p⃗) and ψ ∈ Bn(p⃗, r⃗) are such that L ⊢
ϕ → ψ. We show that ψ∗

k(p⃗) :=
∨
{χ ∈ Bk(p⃗) | L ⊢ χ → ψ} is their Craig

interpolant, where k := max(m,n).
Clearly L ⊢ ψ∗

k(p⃗) → ψ. If L ⊬ ϕ → ψ∗
k(p⃗), there exists a q⃗, p⃗-pointed

model (M, w) such that w ⊩ ϕ but w ⊮ ψ∗
k(p⃗). Let Y := Yk,w((p⃗)) and
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N := N
(p⃗)
k (w). For contradiction, suppose Y ⊢ N ∨ ψ. Note that by Fact

3.10, Y is prime. So Y ⊢ N or Y ⊢ ψ. Since Y ⊬ N, it follows that Y ⊢ ψ and
hence by definition of ψ∗

k(p⃗) we have Y ⊢ ψ∗
k(p⃗) which is a contradiction,

since w ⊮ ψ∗
k(p⃗). So Y ⊬ N ∨ ψ. Then there exists q⃗, r⃗-pointed model

(M′, w′) such that w′ ⊩ Y but w′ ⊮ N ∨ ψ. Now, by Theorem 3.12, we
have M′(p⃗) ≃k M(p⃗). Then, by Corollary 4.2, there exists p⃗, q⃗, r⃗-model

M′′ such that Th
(q⃗,p⃗)
k (M) = Th

(q⃗,p⃗)
k (M′′) and Th

(p⃗,r⃗)
k (M′) = Th

(p⃗,r⃗)
k (M′′).

In particular, M′′ ⊩ ϕ and M′′ ⊮ ψ which is a contradiction. Therefore,
L ⊢ ϕ→ ψ∗

k(p⃗).

Corollary 4.4. BPL, FPL, and Fn, for n ∈ ω, have the Craig interpo-
lation property.

Proof: For BPL it is trivial. For FPL, note that in the lifting lemma,
when M and M′ are conversely well-founded, so will be the constructed
model M′′. Also, when M and M′ have depth at most n, then M′′ also
has depth at most n.

The following logic is another interesting extension of BPL which be-
haves very similar to IPL [2].

EBPL = BPL+⊤ → ⊥ ⇒ ⊥.

It was proved in [2, Corollary 3.9] that the logic EBPL is sound and
complete for the class of finite models with reflexive leaves. Obviously this
class of models has the lifting property. Therefore we have the following
corollary.

Corollary 4.5. The logic EBPL has the Craig interpolation property.

We say a formulas ϕ is constant if V (ϕ) = ∅. In the following theorem we
show that every faithful extension of basic propositional logic with constant
formulas preserves Craig interpolation property.

Theorem 4.6. Let X be a set of constant fourmulas. If a logic L has the
Craig interpolation property and L + X is faithful, then L + X also has
Craig interpolation property.

Proof: Suppose that L has the Craig interpolation property. Let L+X ⊢
ϕ → ψ. Then by faithfulness we have L + X ⊢ ϕ ⇒ ψ. Then there are
constant formulas θ1, · · · , θn in X such that in L we have θ1, · · · , θn ⊢ ϕ⇒
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∆
ΦX

m
∼2dX (m′)

n

∆

=

FF

ΦX
m′

⪯

EE

∼2dX (m′)+1

n′

⪯

OO

Figure 1. Witnessing triple

ψ. Put θ =
∧
θi, then by Proposition 2.1 we have L ⊢ θ ∧ ϕ ⇒ ψ which

implies that L ⊢ θ ∧ ϕ → ψ. Now by interpolation property of L, there
is a formula η in V (ϕ) ∩ V (ψ) such that L ⊢ θ ∧ ϕ → η and L ⊢ η → ψ.
Hence,by faithfulness, L+X ⊢ ϕ→ η and L+X ⊢ η → ψ.

Corollary 4.7. FPL⊥ has the Craig interpolation property.

The proof of the next lemma is similar to the one used in [8] for IPL.
However, to show that this proof -especially claim 2- does not work forBPL
but does work for FPL, the details have been provided. In the following
lemma, all models are conversely well-founded, i.e., FPL- models.

Lemma 4.8 (Amalgamation). Consider disjoint sets q⃗, p⃗ and r⃗. Let X ⊆
L(q⃗, p⃗) be a finite P-adequate set. Let ⟨M, w0⟩ ∈ Pmod(q⃗, p⃗), ⟨M′, w′

0⟩ ∈
Pmod(p⃗, r⃗). Let:

ν := |{ϕ ∈ X | ϕ is a propositional variable or an implicational formula}|.

Suppose that w0 ≃2ν+1,p⃗ w
′
0. Then there exists a q⃗, p⃗, r⃗-model ⟨M′′, w′′

0 ⟩
such that w′′

0 ≃p⃗,r⃗ w′
0 and ThX(w′′

0 ) = ThX(w0).

Proof: Let Z be a downwards closed witness of w0 ≃2ν+1,p⃗ w
′
0. Define

ΦX : M −→ HX by ΦX(w) := ∆(w) := {ϕ ∈ X | w ⊩ ϕ}. Define further
for w ∈ M: dX(w) = dHX

(∆(w)). Note that dX(w) ≤ ν.
Consider a pair ⟨∆, n⟩ for ∆ in H and n in M′. We say that m′,m, n′

is a witnessing triple for ⟨∆, n⟩ if:

∆ = ∆(m) = ∆(m′), m′ ⪯ m,n′ ⪯′ n, m′Z2dX(m′)+1n
′, mZ2dX(m′)n.
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The requested model M′′ is defined as follows:

• W ′′ = {⟨∆, n⟩ | there is a witnessing triple for⟨∆, n⟩},

• w′′
0 := ⟨∆(w0), w

′
0⟩,

• ⟨∆, n⟩ ≺′′ ⟨Γ, n′⟩ exactly when ∆ ⪯ Γ and n ≺′ n′,

• ⟨∆, n⟩ ⊩ s exactly when ∆ ⊩ s or n ⊩ s.

Note that by assumption w0Z2ν+1w
′
0 and the fact that 2dX(w0) + 1 ≤

2ν + 1 we have w0Z2dX(w0)+1w
′
0. So, w0, w0, w

′
0 is a witnessing triple for

w′′
0 . Let m

′,m, n′ be a witnessing triple for ⟨∆, n⟩. For p ∈ p⃗ ∩X we have
∆ ⊩ p if and only if m ⊩ p if and only if n ⊩ p, and hence ⟨∆, n⟩ ⊩ p if and
only if ∆ ⊩ p if and only if n ⊩ p. Also, note that M′′ is an FPL-model.
The following claims prove the lemma.

Claim 1. w′′
0 ≃p⃗,r⃗ w′

0,

Claim 2. For ϕ ∈ X, ⟨∆, n⟩ ⊩ ϕ exactly when ϕ ∈ ∆.

Proof of Claim 1: For B defined by ⟨∆, n⟩Bn, by a same argument as [8],
we show that it is a bisimulation. Clearly Thp⃗,r⃗(⟨∆, n⟩) = Thp⃗,r⃗(n). We
only check the zag-property of B. Suppose ⟨∆, n⟩Bn ≺ m. We are looking
for a pair ⟨Γ,m⟩ such that ∆ ⪯ Γ. Let k′, k, n′ be a witnessing triple for
⟨∆, n⟩. Since k′ ∼2dX(k′)+1 n

′ ⪯ m, there is a h such that h ≺ k′ and
h ∼2dX(k′) m. Put, Γ := ∆(h). We need a witnessing triple k′∗, k∗, n′∗ for
⟨Γ,m⟩. If Γ = ∆, then put: k′∗ := k′, k∗ := h, n′∗ := n′, see figure 2.

If Γ ̸= ∆, then put: k′∗ := h, k∗ := h, n′∗ := m. We notice that since
k′ ⪯ h, then ∆ = ∆(k′) ≺ Γ which implies that dX(h) < dX(k′). Therefore,
2dX(h) + 1 ≤ 2X(k′), so h ∼2dX(k′)+1 m which implies that h ∼2dX(k′) m,
because Z is downward close. Clearly w′′

0Bw′
0.

Proof of Claim 2: We proceed by induction on the complexity of a formula
ϕ ∈ X. The cases of atoms, conjuntctions and disjunctions are trivial.
Consider ϕ→ ψ ∈ X and the node ⟨∆,m⟩ with witnessing triple k′, k,m′.
Suppose ϕ → ψ /∈ ∆. Since ∆ = Th(k), then k ⊮ ϕ → ψ. So, there is an
h ≻ k with h ⊩ ϕ and h ⊮ ψ. Let h, by conversely well-foundedness of
M, be a maximal in M with h ≻ k, h ⊩ ϕ and h ⊮ ψ. By maximality, we
find h ⊩ ϕ → ψ. Let Γ := ∆(h). Since ϕ → ψ /∈ ∆ and ϕ → ψ ∈ Γ, we
find ∆ ≺ Γ, which implies that dX(k′) ≥ 1. Since kZ2dX(k′)m and k ≺ h,
there is an n ≻ m with hZ2dX(h)−1n. Therefore hZ2dX(h)+1n. So we can
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Γ = ∆
ΦX

k∗ = h
∼2dX (k′)

m

∆
ΦX

k
∼2dX (k′)

n

⪯

OO

∆

=

OO

=

DD

ΦX
k′∗ = k′

⪯

OO

⪯

CC

∼2dX (k′)+1

n′∗ = n′

⪯

OO

take h, h, n to witness ⟨Γ, n⟩. Clearly ⟨∆,m⟩ ≺′′ ⟨Γ, n⟩. By the induction
hypothesis, ⟨Γ, n⟩ ⊩ ϕ while ⟨Γ, n⟩ ⊮ ψ, i.e., ⟨∆, n⟩ ⊮ ϕ→ ψ.

The other half of the argument, i.e., that ϕ → ψ ∈ ∆ implies (∆, n) ⊩
ϕ→ ψ, is easy.

Definition 4.9. Let ϕ(q⃗, p⃗) be a formula.

1. A uniform left-interpolant for ϕ(q⃗, p⃗) with respect to p⃗ is a formula
χ(p⃗) such that for all formulas ψ(p⃗, r⃗) with ⊢ ψ → ϕ, χ acts as an
interpolant for ϕ and ψ.

2. A uniform right-interpolant for ϕ(q⃗, p⃗) with respect to p⃗ is a formula
χ(p⃗) such that for all formulas ψ(p⃗, r⃗) with ⊢ ϕ → ψ, χ acts as an
interpolant for ϕ and ψ.

3. A logic whose formulas have both uniform left and right-interpolants
is said to satisfy the uniform interpolation property.

Although the Amalgamation lemma is held for FPL models, unlike in
intuitionistic logic, we can only prove the uniform left-interpolation prop-
erty.

Theorem 4.10. FPL has the uniform left-interpolation property.

Figure 2.
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Proof: Note that by the Amalgamation lemma, in proof of Craig inter-
polation for FPL we can let X := sub(ϕ), and by defining ν as before, we
find that ϕ∗2v+1 works as Craig interpolant for any given ψ satisfying the
conditions. Therefore, ϕ∗2v+1 is the uniform left-interpolant for ϕ.

In the remainder of this section, we prove the uniform interpolation for
some extensions of FPL. As a matter of fact, we show that countably
infinite of such extensions exist.

A logic L is said to be locally tabular if for any finite set P of proposi-
tional variables, there are only finitely many formulas built from variables
in P up to L-provable equivalence.

Theorem 4.11. If L is a locally tabular logic over BPL and has the Craig
interpolation property, then L has the uniform interpolation property.

Proof: Consider a formula ϕ(q⃗, p⃗). Let Ψ = {ψ(p⃗, r⃗) | L ⊢ ψ → ϕ}.
Consider an effective counting of members of Ψ as ψ1, ψ2, · · · , ψn. By
Craig interpolation, for every i we can find χi(p⃗) such that L ⊢ χi → ϕ
and L ⊢ ψi → χi. Now,

∨
χi works as the uniform left-interpolant of ϕ for

all ψn.
For the uniform right-interpolant, let Ψ = {ψ(p⃗, r⃗) | L ⊢ ϕ → ψ}. We

can, by locally tabularity, find an effective counting of members of Ψ as
ψ1, ψ2, · · · , ψn. By Craig interpolation, for every i we can find χi(p⃗) such
that L ⊢ ϕ → χi and L ⊢ χi → ψi. Therefore

∧
χi works as the uniform

right-interpolant of ϕ for all ψn.

The following theorem was proved algebraically in [1, Theorem 2.12].

Theorem 4.12. For every n ∈ ω, the logic Fn is locally tabular.

Corollary 4.13. The logic Fn, for n ∈ ω, have the uniform interpolation
property.

Proof: Apply Corollary 4.4, Theorem 4.11 and Theorem 4.12.

We close this paper with the following problem.

Problem. Do BPL, FPL, FPL⊥ and EBPL have the uniform interpo-
lation property?
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FIRST-ORDER MODAL SEMANTICS
AND EXISTENCE PREDICATE

Abstract

In the article we study the existence predicate ε in the context of semantics for

first-order modal logic. For a formula φ we define φε—the so called existence

relativization. We point to a gap in the work of Fitting and Mendelsohn [1]

concerning the relationship between the truth of φ and φε in classes of varying-

and constant-domain models. We introduce operations on models which allow

us to fill the gap and provide a more general perspective on the issue. As a

result we obtain a series of theorems describing the logical connection between

the notion of truth of a formula with the existence predicate in constant-domain

models and the notion of truth of a formula without the existence predicate in

varying-domain models.

Keywords: First-order modal logic, constant-domain model, varying-domain mo-

del, existence predicate.

Introduction

Semantic theory for first-order modal logic makes use of two philosophi-
cally important notions of varying- and constant-domain models which may
shape the discussion about the role of existence predicate in modal logic
and the meaning of quantifying over non-existing entities. Models with
constant domains correspond to quantifying over merely-possible objects
in addition to actually existent entities, while models with varying domains
are in consonance with the actualistic interpretation of the quantifier, re-
straining quantification to that what actually exists. Relationship between
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the two approaches is often being studied via incorporating the existence
predicate in the first-order language and examination of the translation of
formulas without such a predicate into formulas containing it.

The question whether existence is a property of individuals or even
whether it is a property at all has baffled philosophers and logicians for
centuries, starting with Immanuel Kant and his Critique of Pure Reason
in which he argued that existence is not a genuine attribute of things.
This idea, defended in its particular form by Frege [2], is built into the
very foundation of modern mathematical logic. It manifests itself in the
use of the existential quantifier instead of the existence predicate. To say
that there exists a root of the equation x2 − 3x = 0 is to say that the
propositional function ‘x2 − 3x = 0’ is satisfied by some number and that
is to say that the proposition ∃x(x2 − 3x = 0) is true.

However, some philosophers, like Alexius Meinong [4], have felt the need
for having the existence predicate in addition to the existential quantifier.
One obvious way of introducing such a predicate in a first-order language
is to define ‘x exists’ as ∃y(x = y). The problem is that in classical first-
order logic individual variables always denote something, and the formula
∃y(x = y) is satisfied in every model. Another possibility is to introduce
the existence predicate as a primitive symbol. Assuming the existence
predicate is a unary predicate ε the question arises: what does and what
does not exist? And this depends on the quantifiers. (For some discussion
of these issues you can see [3].) For if the quantifiers quantify over existent
objects only, the proposition ∀xε(x) is logically true and for any formula φ,
∀x(ε(x)∧φ(x)) and ∀xφ(x) are equivalent, making the existence predicate
redundant. If, on the other hand, the scope of quantification includes
objects which do not exist but are possible, the existence predicate can
do its job and select among all entities those which actually exist. This is
exactly the idea standing behind the constant-domain models. Moreover,
if the existence predicate seems redundant when quantifiers are actualistic,
for then everything exists, but turns out to be useful when quantifiers are
possibilistic, surely there must be some kind of connection between these
two ways of doing logic. And, indeed, there is.
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1. Preliminaries

All crucial definitions and elementary facts can be found in [1]. For readers’
convenience let us remind basic concepts. The language with which we will
deal is the standard first-order language with individual variables as the
only terms with the addition of □ as the modal operator. We will take □,
¬, ∧ and ∃ as primitive.

Two of the most commonly used on the next pages will be notions
of constant- and varying-domain models. We will treat constant-domain
models as a special case of varying-domain models (as they actually are).
So for us ‘model’ and ‘varying-domain model’ will mean pretty much the
same.

A (varying-domain) model M is a four-tuple (U ,R,D, I) such that
U is a non-empty set (its elements we will also call ‘worlds’ or ‘points’),
R ⊆ U × U is a binary relation (called the accessibility relation), D is a
function which maps elements of U to non-empty sets—to each element u
of U it assigns a non-empty set D(u) which we call a domain of u, and by
D(M) we mean the sum of all D(u). I is an interpretation of predicates.

Strictly speaking, I is a mapping such that I(r, u) ⊆ D(M)
τ(r)

, where r
is a predicate and τ(r) is arity of r.

A valuation is a map v : V ar → D(M), where V ar is a set of all in-
dividual variables. For a ∈ D(M) and x ∈ V ar, by v(a/x) we mean a
valuation such that v(a/x)(x) = a and for any variable y distinct from x,
v(a/x)(y) = v(y).

The satisfaction relation ⊩ is defined recursively in the standard way
as follows.

Definition 1.1. Take a model M = (U ,R,D, I), u ∈ U , valuation v, and
predicate r of arity n. For a formula φ we define the expression

(M, u) ⊩ φ[v],

which we read as φ is satisfied at u in model M under valuation v:

(i) (M, u) ⊩ r(x1, . . . , xn)[v] ⇐⇒ ⟨v(x1), . . . , v(xn)⟩ ∈ I(r, u),

(ii) (M, u) ⊩ ¬φ[v] ⇐⇒ (M, u) ̸⊩ φ[v],

(iii) (M, u) ⊩ (φ ∧ ψ)[v] ⇐⇒ (M, u) ⊩ φ[v] and (M, u) ⊩ ψ[v],



320 Patryk Michalczenia

(iv) (M, u) ⊩ □φ[v] ⇐⇒ for any t ∈ U , if uRt, then (M, t) ⊩ φ[v],

(v) (M, u) ⊩ ∃xφ[v] ⇐⇒ there is a ∈ D(u) and (M, u) ⊩ φ[v(a/x)].

A formula φ is satisfied by a class of models K, K ⊩ φ in symbols, when
(M, t) ⊩ φ[v], for any M = (U ,R,D, I) ∈ K, any t ∈ U , and any valua-
tion v. By VD we denote the class of all (varying-domain) models. More-
over, let CD stand for the class of all models M = (U ,R,D, I) such that
D(u) = D(w), for any u,w ∈ U . Elements of CD are called constant-domain
models.

Definition 1.2. Let ε be a unary predicate. Following Fitting and Mendel-
sohn, for any φ we define φε as follows:

(i) For an atomic formula, r(x1, . . . , xn)ε = r(x1, . . . , xn),

(ii) (¬φ)ε = ¬(φ)ε,

(iii) (φ ∧ ψ)ε = (φ)ε ∧ (ψ)ε,

(iv) (□φ)ε = □(φ)ε,

(v) (∃xφ)ε = ∃x(ε(x) ∧ φε).

2. The construction

In [1] (Proposition 4.8.2.) one can find the claim that

VD ⊩ φ⇐⇒ CD ⊩ φε (⋆)

for any sentence φ which does not contain ε. Implication to the left is
proven by authors, while the other direction is left to the reader. However,
we observed that this implication fails. Indeed, let us consider the sentence:

∃x(r(x) ∨ ¬r(x)),

where r is an arbitrary unary predicate (distinct from ε). Then we obtain:

(∃x(r(x) ∨ ¬r(x)))ε = ∃x(ε(x) ∧ (r(x) ∨ ¬r(x))ε)

= ∃x(ε(x) ∧ (r(x) ∨ ¬r(x))).
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Clearly, ∃x(r(x) ∨ ¬r(x)) is valid in all varying-domain models, however
∃x(ε(x) ∧ (r(x) ∨ ¬r(x))) is not valid in those constant-domain models in
which ε is interpreted as empty and this falsifies (⋆)1.

Although the implication VD ⊩ φ =⇒ CD ⊩ φε does not hold, we can
still prove a weaker version. Before we do it, let us introduce a couple
of definitions and facts. If K ⊆ VD, by Kε we denote the class of those
models M = (U ,R,D, I) from K such that I(ε, t) ̸= ∅, for any t ∈ U .

Definition 2.1. Let M = (U ,R,D, I) ∈ CDε and let w be any object such
that w ̸∈ U . We define a model Mw ∈ VD as Mw = (Uw,Rw,Dw, Iw),
where Uw = U ∪ {w}, Rw = R, and

Dw(t) =

{
I(ε, t) if t ̸= w,

D(M) if t = w,
and Iw(r, t) =

{
I(r, t) if t ̸= w,

D(M)τ(r) if t = w.

Fact 2.2. Mw ∈ VDε, for any M ∈ CDε.

Fact 2.3. Let S be any proposition of our meta-language (the very lan-
guage of this paper). For any U , t, w and R as in Definition 2.1, the follow-
ing assertions are equivalent:

(i) For any t ∈ U , such that uRt, S

(ii) For any t ∈ U ∪ {w}, such that uRt, S

Proof: (⇐=) Trivial.
(=⇒) Let t ∈ U ∪ {w}. If t ∈ U , by the assumption, thesis holds. If t = w,
then, by definition of R, uRt fails and therefore the thesis holds.

Now we can prove the following lemma.

Lemma 2.4. For any formula φ not containing ε, model M = (U ,R,D, I)
∈ CDε, w ̸∈ U , t ∈ U , and valuation v,

(M, t) ⊩ φε[v] ⇐⇒ (Mw, t) ⊩ φ[v].

Proof: We will prove it inductively.

1An error of which Prof. Fitting had been aware before we observed it as he said in
personal correspondence, and gratefully offered a suggestion that non-emptyness of the
existence predicate is a requirement—an idea which we develop in this article.
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For an atomic formula r(x1, . . . , xn) we have:

(M, t) ⊩ r(x1, . . . , xn)ε[v] ⇐⇒ (M, t) ⊩ r(x1, . . . , xn)[v] (by 1.2)

⇐⇒ ⟨v(x1), . . . , v(xn)⟩ ∈ I(r, t) (by 1.1)

⇐⇒ ⟨v(x1), . . . , v(xn)⟩ ∈ Iw(r, t) (by 2.1)

⇐⇒ (Mw, t) ⊩ r(x1, . . . , xn)[v] (by 1.1)

Crucial in this step is the fact that interpretations of predicates are the
same in the new model for the ‘old worlds’ and that valuations are the
same, i.e. every valuation into M is a valuation into Mw and vice versa.

For negation we get:

(M, t) ⊩ (¬ψ)ε[v] ⇐⇒ (M, t) ⊩ ¬ψε[v] (by 1.2)

⇐⇒ (M, t) ̸⊩ ψε[v] (by 1.1)

⇐⇒ (Mw, t) ̸⊩ ψ[v] (induction)

⇐⇒ (Mw, t) ⊩ ¬ψ[v] (by 1.1)

For conjunction we get:

(M, t) ⊩ (ψ ∧ χ)ε[v] ⇐⇒ (M, t) ⊩ (ψε ∧ χε)[v] (by 1.2)

⇐⇒ (M, t) ⊩ ψε[v] and (M, t) ⊩ χε[v] (by 1.1)

⇐⇒ (Mw, t) ⊩ ψ[v] and (Mw, t) ⊩ χ[v] (induction)

⇐⇒ (Mw, t) ⊩ (ψ ∧ χ)[v] (by 1.1)

For box we have:

(M, t) ⊩ (□ψ)ε[v] ⇐⇒ (M, t) ⊩ □ψε[v] (by 1.2)

⇐⇒ for any s ∈ U , if tRs, then (M, s) ⊩ ψε[v] (by 1.1)

⇐⇒ for any s ∈ U , if tRws, then (Mw, s) ⊩ ψ[v] (induction)

⇐⇒ for any s ∈ U ∪ {w}, if tRws, then (Mw, s) ⊩ ψ[v] (by 2.3)

⇐⇒ (Mw, s) ⊩ □ψ[v] (by 1.1)
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For the quantifier we have:

(M, t) ⊩ (∃xψ)ε[v] ⇐⇒ (M, t) ⊩ ∃x(ε(x) ∧ ψε)[v] (by 1.2)

⇐⇒ ∃a∈D(t) (M, t) ⊩ (ε(x) ∧ ψε)[v(a/x)] (by 1.1)

⇐⇒ ∃a∈D(t) (M, t) ⊩ ε(x)[v(a/x)] and (M, t) ⊩ ψε[v(a/x)] (by 1.1)

⇐⇒ ∃a∈D(t) (M, t) ⊩ ε(x)[v(a/x)] and (Mw, t) ⊩ ψ[v(a/x)] (induction)

⇐⇒ ∃a∈D(t) a ∈ I(ε, t) and (Mw, t) ⊩ ψ[v(a/x)] (by 1.1)

⇐⇒ ∃a∈D(t) a ∈ Dw(t) and (Mw, t) ⊩ ψ[v(a/x)] (by 2.1)

⇐⇒ ∃a∈Dw(t) (Mw, t) ⊩ ψ[v(a/x)] (M ∈ CD)

⇐⇒ (Mw, t) ⊩ ∃xψ[v] (by 1.1)

Now we can state and prove the said weaker version of (⋆).

Theorem 2.5. For any formula φ not containing ε, VDε ⊩ φ =⇒ CDε ⊩
φε.

Proof: Let M = (U ,R,D, I) ∈ CDε, t ∈ U and v such that (M, t) ̸⊩
φε[v]. Let w be any object such that w ̸∈ U . By Fact 2.2, Mw ∈ VDε, and
therefore by Lemma 2.4 we achieve (Mw, t) ̸⊩ φ[v].

3. Conclusion

Let us recall the construction Fitting and Mendelsohn introduced in [1,
p. 107].

Definition 3.1. Let M = (U ,R,D, I) ∈ VD. Then we define M⋆ =
(U⋆,R⋆,D⋆, I⋆), where U⋆ = U ,R⋆ = R,D⋆(t) = D(M), for any t ∈ U ,
and I⋆(r, t) = I(r, t), for any predicate r distinct from ε, and I⋆(ε, t) =
D(t), for any t ∈ U .

Fact 3.2. M⋆ ∈ CDε, for any M ∈ VD.

Lemma 3.3 ([1, p. 107]). For any formula φ not containing ε,

(M, t) ⊩ φ[v] ⇐⇒ (M⋆, t) ⊩ φε[v].

Finally, this allows them to prove the following theorem.
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Theorem 3.4 ([1, Proposition 4.8.2]). For any formula φ not containing
ε, CD ⊩ φε =⇒ VD ⊩ φ.

The very same construction and the same proof suffice to justify that

Fact 3.5. For any formula φ not containing ε, CDε ⊩ φε =⇒ VD ⊩ φ.

Obviously we have

Fact 3.6. For any formula φ not containing ε, VD ⊩ φ =⇒ VDε ⊩ φ.

As a corollary of the above facts and Theorem 2.5 we obtain:

Corollary 3.7. For any formula φ not containing ε, the following condi-
tions are equivalent:

(i) VD ⊩ φ

(ii) VDε ⊩ φ

(iii) CDε ⊩ φε.

CD ⊩ φε

VD ⊩ φ
  

Theorem 3.4 ×Error

``

VDε ⊩ φ
&&

Fact 3.6

CDε ⊩ φε
xx

Theorem 2.5

Fact 3.5

OO

Figure 1. Summary
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4. Further results

Corollary 3.7 invites us to asking a natural question: how, if at all, can we
‘cut’ classes VD, VDε and CDε to hold the equivalence? In other words:
when K ⊩ φ⇐⇒ K ∩ VDε ⊩ φ⇐⇒ K ∩ CDε ⊩ φε holds?

Obviously if K = ∅, then the equivalence in question is true. But we
can do a little better.

We will say that a class of models K is closed under ⋆-operation (see
Definition 3.1), or simply ⋆-closed, when for any model M, M ∈ K implies
M⋆ ∈ K. We will say that K is closed under adding-new-points-operation,
or add-closed for short, when for any M = (U ,R,D, I) ∈ CDε, if M ∈ K,
then for some w ̸∈ U , Mw ∈ K. Finally, we will say that K is add⋆-closed
if it is both ⋆- and add-closed.

It turns out that operations introduced in Definitions 2.1 and 3.1 pro-
vide sufficient conditions for the examined equivalence to hold. Let us
decompose the equivalence into conditionals so we can prove the following
lemmas.

Lemma 4.1. For any formula φ not containing ε and any K ⊆ VD, if K
is ⋆-closed, then K ∩ CDε ⊩ φε =⇒ K ∩ VDε ⊩ φ.

Proof: Suppose (M, t) ̸⊩ φ[v], for some M ∈ K ∩ VDε. By Lemma 3.3,
(M⋆, t) ̸⊩ φε[v]. By Fact 3.2, M⋆ ∈ CDε and by the assumption that K is
⋆-closed, M⋆ ∈ K ∩ CDε.

It is worth noting that the ⋆-operation does not affect the domain nor
the accessibility relation of a model. Therefore if K is a class of models
defined by the property of frames2 on which those models are based, then
the implication of Lemma 4.1 holds. Such classes of models, defined by
properties of the accessibility relation like reflexivity, transitivity, symmetry
etc, are in special interest of logicians, for they give rise to well-behaved
and largely explored logical systems.

Lemma 4.2. For any formula φ not containing ε and any K ⊆ VD, if K
is add-closed, then K ∩ VDε ⊩ φ =⇒ K ∩ CDε ⊩ φε.

Proof: Suppose (M, t) ̸⊩ φε[v], for some M = (U ,R,D, I) ∈ K ∩ CDε.
By Fact 2.2, Mw ∈ VDε and by Lemma 2.4, (Mw, t) ̸⊩ φ. Moreover,
Mw ∈ K for some w ̸∈ U , since K is add–closed.

2By a frame of a model (U ,R,D, I) we mean a structure (U ,R).
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Lemma 4.3. For any formula φ not containing ε and any K ⊆ VD, if K
is add⋆-closed, then K ∩ CDε ⊩ φε =⇒ K ⊩ φ.

Proof: Suppose (M, t) ̸⊩ φ[v], for some M ∈ K. By Lemma 3.3,
(M⋆, t) ̸⊩ φε[v]. By Fact 3.2, M⋆ ∈ CDε and by the assumption that
K is add⋆-closed, M⋆ ∈ K ∩ CDε.

Let us notice the following trivial facts.

Fact 4.4. For any K ⊆ VD, K ⊩ φ =⇒ K ∩ VDε ⊩ φ.

Fact 4.5. K ∩ VDε = Kε

The above facts and lemmas entail:

Corollary 4.6. For any formula φ not containing ε and any K ⊆ VD, if
K is add⋆–closed, then the following conditions are equivalent:

(i) K ⊩ φ

(ii) Kε ⊩ φ

(iii) K ∩ VDε ⊩ φ

(iv) K ∩ CDε ⊩ φε.

This corollary is a generalization of Corollary 3.7, for if we takeK = VD,
the assumption of Corollary 4.6 becomes true and we get Corollary 3.7.

K ⊩ φ

K ∩ VDε ⊩ φ
((

Fact 4.4

oo
Fact 4.5

// Kε ⊩ φ

K ∩ CDε ⊩ φε
vv

Lemma 4.2

Lemma 4.3

OO

Figure 2. Summary
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Abstract

The categorical dualities presented are: (first) for the category of bi-algebraic

lattices that belong to the variety generated by the smallest non-modular lattice

with complete (0,1)-lattice homomorphisms as morphisms, and (second) for the

category of non-trivial (0,1)-lattices belonging to the same variety with (0,1)-

lattice homomorphisms as morphisms. Although the two categories coincide on

their finite objects, the presented dualities essentially differ mostly but not only

by the fact that the duality for the second category uses topology. Using the

presented dualities and some known in the literature results we prove that the

Q-lattice of any non-trivial variety of (0,1)-lattices is either a 2-element chain or

is uncountable and non-distributive.

Keywords: Categorical duality, bi-algebraic lattice, bounded lattice, quasivariety

lattice.
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1. Definitions and two key lemmas

Obtaining categorical duality results for certain categories of structures has
a long history. The classical examples are the Stone and Priestley dualities
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for bounded distributive lattices and their many extensions for categories
of algebras associated with non-classical logics the algebraic parts of which
contain distributive lattices. In this note, we present two results of this
nature. Each of them goes one step beyond distributivity. The variety of
bounded lattices generated by the smallest non-modular lattice is one of
the two minimal varieties that extended the variety of bounded distributive
latices.

A bi-algebraic lattice is a non-trivial lattice that is algebraic and the
lattice dual (by reversing the lattice order) is also algebraic. A (0,1)-lattice
is a lattice in which 0 and 1 are the smallest and greatest elements in the
lattice and they are included as constants to the signature of the lattice.
Lattices of this type are called bounded lattices.

A Q-lattice is the lattice whose elements are the quasivarieties con-
tained in a quasivariety. The lattice order of a Q-lattice is the inclusion.
A quasivariety is a class of structures that is closed under the operators
S of forming isomorphic substructures, Cartesian products P, and ultra-
products. A variety is a quasivariety that additionally is closed under the
operator of forming homomorphic images.

The lattices N5 and M3 each of which has 5 elements are the smallest
non-modular and modular but non-distributive lattices, respectively. They
are regarded as (0, 1)-lattices. It is known that the variety of bounded
lattices generated by N5 coincides with SP(N5).

For a partially ordered set ⟨X,≤⟩ and subsets Y,Z of X, we write
Y ≪ Z to mean that for every y ∈ Y there exists z ∈ Z such that y ≤ z.

For a lattice L, an element a ∈ L, and a finite subset X of L with a
being below the lattice join in L of the elements of X, it is said that X is
a join cover of a. If a is not below any element of X, it is said that X is a
non-trivial join cover of X. A non-trivial join cover X of a in L is said to
be minimal if, for every non-trivial join cover Y of a in L with Y ≪ X, it
follows that X ⊆ Y .

For a fuller account of concepts used in our note we refer to [9] and [11].
The four equations displayed below are valid in N5 and so they are valid

in every lattice belonging to SP(N5). They contain the key information
for what we need for the functors establishing the presented dualities to be
well defined on the objects of the considered categories. What we need is
stated in Lemmas 1.1 and 1.2.

The lattice equation D2 is a particular case of the family of lattice equa-
tions Dn, n ⩾ 2, which was introduced in [12]. Lattices which satisfy Dn
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are called n-distributive. In the presence of D2 the equation C is equiva-
lent to the equation τ ′21. The equation τ ′21 belongs to the family of lattice
equations τ ′nk constructed in [14].

C: x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1) =
∨
i<2

[
x ∧ yi ∧ (z0 ∨ z1)

]
∨

∨
∨
i<2

[
x ∧ zi ∧ (y0 ∨ y1)

]
∨ ∨

∨
i<2

[
x ∧

(
(y0 ∧ zi) ∨ (y1 ∧ z1−i)

)]
;

D2 : x ∧ (y0 ∨ y1 ∨ y2) =
∨
i⩽2

[
x ∧

∨
j ̸=i

yj
]
;

N0
5 : x ∧ (y0 ∨ y1) =

∨
i<2

[
x ∧

(
(yi ∧ x) ∨ y1−i

)]
;

N1
5 : x ∧

[(
y0 ∧ (z0 ∨ z1)

)
∨ y1

]
=

[
x ∧ y0 ∧ (z0 ∨ z1)

]
∨
[
x ∧ y1

]
∨

∨
∨
i<2

[
x ∧

(
(y0 ∧ zi) ∨ y1

)]
.

Lemma 1.1. For a dually algebraic lattice L, the following conditions are
equivalent.

i) L ∈ SP(N5).

ii) For every join-irreducible element x of L that is not join-prime, there
is a unique minimal non-trivial join cover {a, b} of x such that both a
and b are join-irreducible and join-prime and, moreover, they satisfy
either a < x and {x, b} is an antichain or b < x and {x, a} is an
antichain.

Proof (Sketch): i) implies ii) : The equations C and D2 or, equivalently,
τ ′21 and D2, by Theorems 3.2 and 3.4 of [14], together imply that every join-
irreducible x of L has a unique minimal non-trivial join cover {a, b}. By
minimality of {a, b}, a and b are join-irreducible. The equations N0

5 and N1
5

justify that the unique pair has the remaining properties as stated in ii).
ii) implies i): This implication is an easy consequence of the main result

of [3]. It can also be proved without the result of [3] but with some effort.

In every bi-algebraic lattice, every element is completely join-irreducible
or is the lattice join of all completely join-irreducible elements that are be-
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low. Moreover, completely join-irreducible elements are compact. Lemma
1.2 stated below follows from Lemma 1.1.

Lemma 1.2. For a bi-algebraic lattice L, the following conditions are equiv-
alent.

i) L ∈ SP(N5).

ii) For every completely join-irreducible element x of L that is not join-
prime, there is a unique minimal non-trivial join cover {a, b} of x
such that both a and b are completely join-irreducible and join-prime
and, moreover, they satisfy either a < x and {x, b} is an antichain
or b < x and {x, a} is an antichain.

Lemma 1.2 is the key lemma in the construction of the functor N : B5 →
N5 on the objects of B5 and, consequently, the functor B : N5 → B5 on the
objects of N5 but after having (discovering) the precise definition of the
category N5. Lemma 1.2 says how to define the function f : Y → X2 which
is the most important ingredient in the definition of N5-space (an object
of N5) that is assigned to L (an object of B5).

Lemma 1.1 is the key lemma in the construction of the functor T : L5 →
T5 on the objects of L5 and, consequently, the functor L : T5 → L5 on
the objects of T5 and again after having (discovering) the precise defi-
nition of the category T5. Lemma 1.1 says how to define the function
f : Y (L) → X(L)2 on the spectral N5-space (an object of T5) assigned to
L (an object of L5). In defining f , we use the known facts which say that
any lattice L embeds into the lattice F (L) of filters on L, F (L) is dually
algebraic, and that L and F (L) satisfy the same lattice equations. A de-
tailed description of the correctness of the presented dualities depend on
the proof type context.

2. Categories N5 and B5

Definition 2.1. A structure S = ⟨X,Y,≤, f⟩ is an N5-space, if

(s1) X ∪ Y ̸= ∅ and X ∩ Y = ∅; moreover, if Y ̸= ∅, then X ̸= ∅;

(s2) ≤ is a partial order on X ∪ Y ;

(s3) f : Y → X2 is a function and for all y ∈ Y with f(y) = (a, b), the
following conditions hold:
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(a) a ≤ y and {a, b}, {y, b} are antichains;

(b) if a, b ≤ z for some z ∈ X ∪ Y then y ≤ z;

(c) if z ≤ y for some z ∈ X ∪Y then either z ≤ a or z ≤ b, or z ∈ Y
and {u, v} ≪ {a, b} where f(z) = (u, v).

Definition 2.2. Let S = ⟨X,Y,≤, f⟩ and S′ = ⟨X ′, Y ′,≤′, f ′⟩ be N5-
spaces. A mapping φ : S → S′ is an N5-morphism, if the following condi-
tions hold:

(m1) φ maps X ∪ Y into X ′ ∪ Y ′ ∪ 2X ′, where 2X ′ denotes the collection
of 2-element antichains in ⟨X ′,≤′⟩

(m2) if u, v ∈ X ∪ Y are such that φ(u), φ(v) ∈ X ′ ∪ Y ′ and u ≤ v then
φ(u) ≤ φ(v);

(m3) for all x ∈ X, φ(x) ∈ X ′;

(m4) for all y ∈ Y with f(y) = (a, b), the following holds:

(a) if φ(y) ∈ X ′, then either φ(y) = φ(a) or φ(y) ≤ φ(b);

(b) if φ(y) ∈ Y ′, then f ′(φ(y)
)

=
(
φ(a), φ(b)

)
;

(c) if φ(y) ∈ 2X ′, then φ(y) =
{
φ(a), φ(b)

}
and, for every z ∈ X∪Y

with y ≤ z, one has φ(a), φ(b) ≤′ φ(z) if φ(z) ∈ X ′ ∪ Y ′, and
{φ(a), φ(b)} ≪ φ(z) if φ(z) ∈ 2X ′.

Proposition 2.3. Let φ0 : S0 → S1, φ1 : S1 → S2 be N5-morphisms. The
composition φ0 ◦ φ1 : S0 → S2 of φ0 and φ1 in N5 is as follows, where
z ∈ X0 ∪ Y0.

(c1) If φ0(z) ∈ X1 ∪ Y1, then φ0 ◦ φ1(z) = φ1φ0(z).

(c2) If φ0(z) ∈ 2X1, then

φ0 ◦ φ1(z) =


φ1φ0(u),

φ1φ0(v),

if φ1φ0(v) ≤ φ1φ0(u);

if φ1φ0(u) ≤ φ1φ0(v);

{φ1φ0(u), φ1φ0(v)}, if {φ1φ0(u), φ1φ0(v)} ∈ 2X2,

where f(z) = (u, v) in S0.

The two categories N5 and B5 are as follows. Objects in N5 are N5-
spaces; morphisms are N5-morphisms. Objects in B5 are bi-algebraic lat-
tices belonging to the variety SP(N5); morphisms are complete (0, 1)-
lattice homomorphisms. In this section, we construct two contravariant
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functors B : N5 → B5 and N : B5 → N5 which establish duality between N5

and B5.

Definition 2.4. Let S = ⟨X,Y,≤, f⟩ be an N5-space. A subset I ⊆ X ∪Y
is an ideal of N5-space S if I is a lower cone with respect to ≤ and has the
following property:

if f(y) = (a, b) in S and a, b ∈ I then y ∈ I.

The set of all ideals of S forms a complete (0, 1)-lattice with the lattice
operations given by:∧

i∈I Ai =
⋂

i∈I Ai;∨
i∈I Ai =

⋃
i∈I Ai ∪ {y ∈ Y | y = f(a, b) and a, b ∈

⋃
i∈I X ∩Ai}.

The functor B : N5 → B5 is defined as follows, where S and S′ are N5-
spaces and φ : S → S′ is an N5-morphism:

B(S) is the complete (0, 1)-lattice defined above;

B(φ) : B(S′) → B(S) is defined by B(φ)(Z ′) = φ−1(Z ′).

Proposition 2.5. The following statements hold.

(1) B(S) is a bi-algebraic lattice that belongs to SP(N5).

(2) B(φ) : B(S′) → B(S) is a complete (0, 1)-lattice homomorphism.

Corollary 2.6. B : N5 → B5 is a contravariant functor.

For a lattice L ∈ B5, let

N(L) = ⟨X,Y,≤, f⟩,

where X is the set of all completely join-irreducible elements of L which
are join-prime, Y is the set of all completely join-irreducible elements of L
which are not join-prime, ≤ is the lattice order in L, and f : Y → X2 is a
function that is defined as follows: f(y) = (a, b), where {a, b} is the unique
pair of elements of X which, by Lemma 1.2, exists for y and, by choice,
a < y.
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For L,L′ ∈ B5 and a complete lattice (0, 1)-lattice homomorphism
g : L → L′, consider the map:

βg : L′ → L, βg : a 7→
∧

{b ∈ L′ | g(b) = a}.

We note that g(βg(a)) = a for all a of L′. We also note that if a is
completely join-irreducible in L′, then so is βg(a) but in L.

For a morphism g : L → L′ in B5, we define N(g) : N(L′) → N(L) as
follows:

N(g)(y) =

{
βg(y) if βg(y) ∈ X ∪ Y ;

{βg(a), βg(b)} if βg(y) ∈ 2X and f(y) = (a, b)

N(L) and N(g) above define the second contravariant functor N : B5 → N5

justification of which follows from the proposition below.

Proposition 2.7. The following statements hold.

(1) N(L) ∈ N5.

(2) N(g) : N(L) → N(M) is an N5-morphism.

Corollary 2.8. N : B5 → N5 is a contravariant functor.

Let 1N5 and 1B5 denote the identity functors within the categories N5

and B5, respectively.

Proposition 2.9. The pair NB and 1N5
as well as the pair BN and 1B5

are
isomorphic functors.

Corollaries 2.6, 2.8 and Proposition 2.9 justify the following theorem.

Theorem 2.10. The categories N5 and B5 are dually equivalent.

The following corollary of Theorem 2.10 and the properties of the func-
tors used show an advantage of dualities over algebraic approach if one
wants to establish a technically demanding in proof result.

Corollary 2.11. The following statements hold.

(1) N5-morphisms in N5 which are onto correspond by duality to one-to-
one homomorphisms in B5 and vice versa.

(2) N5-morphisms in N5 which are one-to-one correspond by duality to
onto homomorphisms in B5 and vice versa.
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(3) Disjoint unions of spaces (coproducts in N5) correspond by duality
to Cartesian products in B5 and vice versa.

Let (N5)fin and (B5)fin denote the full subcategories in N5 and B5,
respectively, whose objects are finite. From our construction of functors B
and N and Theorem 2.10, we obtain

Corollary 2.12. The categories (N5)fin and (B5)fin are dually equiva-
lent.

3. Categories T5 and L5

The two categories in this section T5 and L5 are as follows. Objects
in T5 are spectral N5-spaces; morphisms are spectral N5-morphisms; see
Definitions 3.1 and 3.4 provided below. Objects in L5 are bounded lat-
tices belonging to the variety SP(N5); morphisms are (0, 1)-lattice ho-
momorphisms. In this section, we construct two contravariant functors
L : T5 → L5 and T : L5 → T5 which establish duality between T5 and L5.

We will consider pairs (S, T ) such that S = ⟨X,Y,≤, f⟩ is a N5-space
and T is a topology on X ∪ Y .

A subset A of X ∪ Y is said to be N5-compact in (S, T ) if the following
conditions are satisfied:

(i) A ∩X is compact in (X, {X ∩ Z | Z ∈ T });

(ii) for every family {Ai | i ∈ I} of open sets in (X ∪ Y, T ), from A ⊆⋃
i∈I Ai it follows that A ⊆

⋃
i∈J Ai∪{y ∈ Y | f(y) = (a, b) and a, b ∈⋃

i∈J X ∩Ai} for some finite subset J of I.

We say that a subset A of X ∪ Y is f -closed in S if it is an ideal in S;
see Definition 2.4.

On the elements of every topological T0-space with topology T , there
is a partial order ≤T defined as follows: x ≤T y iff every open set of T
containing x contains y.

Definition 3.1. A pair (S, T ) is said to be a spectral N5-space if the
following conditions are fulfilled:

(1) S is a N5-space, T is a T0 topology on X ∪ Y the restriction to X of
which makes X to be a spectral space, and X ∪ Y is N5-compact in
(S, T ).
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(2) ≤ = ≤−1
T .

(3) The collection of all sets that are f -closed in S, open in (X ∪ Y,F),
and N5-compact in (S,F) forms a basis for (X ∪ Y, T ) that is closed
under finite set intersections.

(4) For all sets A and B that are f -closed in S, open in (X ∪ Y,F), and
N5-compact in (S,F), A ∪ B ∪ {y ∈ Y | f(y) = (a, b) and a, b ∈
(A ∪B) ∩X} is open in (X ∪ Y, T );

(5) (S, T ) does not have a proper uN5-extension; see Definition 3.10 pro-
vided below.

Remark 3.2. One can show that the set in the conclusion of (4) in Definition
3.1 is N5-compact in (S, T ) and, obviously, is f -closed in S.

Remark 3.3. The set of all subsets of X ∪ Y that are f -closed in S, open
in (X ∪ Y, T ), and N5-compact in (S, T ) forms a (0, 1)-lattice with lattice
operations defined by:

A ∧B = A ∩B;

A ∨B = A ∪B ∪ {y ∈ Y | f(y) = (a, b) and a, b ∈ X ∩ (A ∪B)}.

Definition 3.4. For spectral N5-spaces (S, T ) and (S′, T ′) and a map
φ : S → S′ that is N5-morphism, we say that φ is a spectral N5-morphism if,
for every N5-compact open set A in (S′, T ′), the set φ−1(A) is N5-compact
open in (S, T ).

The functor L : T5 → L5 is defined as follows, where (S, T ), (S′, T ′) are
objects of T5, and φ : S → S′ is a spectral N5-morphism:

L(S, T ) is the (0, 1)-lattice defined above;

L(φ) : L(S′, T ′) → L(S, T ) is given by L(φ)(A′) = φ−1(A′).

Proposition 3.5. The following statements hold.

(1) L(S, T ) forms a lattice which is a (0, 1)-sublattice of the ideal lattice
of S (= B(S)) and so L(S, T ) belongs to SP(N5).

(2) L(φ) : L(S′, T ′) → L(S, T ) is a (0, 1)-lattice homomorphism.

Remark 3.6. Proof of the above proposition does not use the condition (5)
of Definition 3.1.
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Corollary 3.7. L : T5 → L5 is a contravariant functor.

In order to construct a contravariant functor T : L5 → T5, we now
consider, for a (0, 1)-lattice L ∈ SP(N5), the lattice F (L) of filters on
L with the inverse inclusion as the lattice order. The lattices L and F (L)
satisfy the same lattice equations. Moreover, F (L) is dually algebraic. This
implies that every element of F (L) is join-irreducible (in fact, completely
join-irreducible) or is the lattice join in F (L) of the join-irreducible (in fact,
completely join-irreducible) elements below it. We say that a filter on L is
join-irreducible or join-prime if the filter regarded as an element of F (L)
is join-irreducible or join-prime, respectively.

Let X(L) denote the set of join-prime filters of L and let Y (L) denote
the set of join-irreducible filters of L which are not join-prime. Then S(L) =
X(L) ∪ Y (L) consists of all join-irreducible filters of L. We put S(L) =
⟨X(L), Y (L),⊇, f⟩, where f : Y (L) → X(L)2 is a function which is defined
as follows: f(F ) = (G,H), where {G,H} is the unique pair of elements
of X(L) which, by Lemma 1.1, exists for F and, by choice, F ⊂ G. One
can show that S(L) is an N5-space and, consequently, the ideal lattice of
S(L)(= B(L)) is bi-algebraic and belongs to SP(N5).

We now enhance S(L) by a topology and denote it by T (L). As a
consequence, we obtain the pair (S(L), T (L)).

For x ∈ L, let I(x) = {F ∈ S(L) | x ∈ F} and for M ⊆ L, let
I(M) =

⋃
x∈M I(x).

Definition 3.8. The open sets of T (L) are exactly sets of the form I(M),
where M ⊆ L.

Remark 3.9. Notice that the collection of all sets I(x), x ∈ L, is a multi-
plicative base for T (L). This is so because I(x) ∩ I(y) = I(x ∧ y). Notice
also that I(x) is f -closed in S(L) and that ≤T (L) coincides with ⊆ because
T (L) is T0. Moreover, one can show that the family {I(x) | x ∈ L} is ex-
actly the collection of all sets that are f -closed in S, open in (S(L), T (L)),
and N5-compact in (S(L), T (L)). Also, one can show that X(L) with the
topology T (L) restricted to X(L) is a spectral space. And also, one can
show that (S(L), T (L)) fulfills the condition (5) of Definition 3.1 according
to Definition 3.10 that is now given below.

For N5-spaces S = ⟨X,Y,≤, f⟩ and S′ = ⟨X ′, Y ′,≤′, f ′⟩ with X ∪ Y ⊆
X ′∪Y ′ and 2X ⊆ 2X ′, we say that S is an N5-subspace of S′ if the identity
map from X ∪ Y ∪ 2X to X ′ ∪ Y ′ ∪ 2X ′ is an N5-morphism.
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Definition 3.10. For pairs (S, T ) and (S′, T ′) satisfying the conditions
(1)–(4) of Definition 3.1 with S being an N5-subspace of S′ and (X ∪ Y, T )
a topological subspace of (X ′ ∪ Y ′, T ′), we say that (S′, T ′) is a uN5-
extension of (S, T ) if, for every A that is f -closed in S′, N5-compact in
(S′, T ′), and open in (X ′ ∪ Y ′, T ′), the following holds :

A =
⋃

{B ∈ T ′ | B ∩ (X ∪ Y ) = A}.

Remark 3.11. The notion of uN5-extension originates from the concept of
u-extension considered in a general topological context in [6], see also [7]
and [8].

The functor T : L5 → T5 on objects of L5 is defined by T(L) =
(S(L), T (L)) and T(g) : T(L′) → T(L) on morphisms g : L → L′ of L5

by

T(g)(F ) =

{
g−1(F ), if g−1(F ) ∈ X(L) ∪ Y (L);{
g−1(G), g−1(H)

}
, if g−1(F ) ∈ 2X(L) and f(F ) = (G,H).

Proposition 3.12. The following statements hold.

(1) T(L) is spectral N5-space.

(2) T(g) : T(L′) → T(L) is a spectral N5-morphism.

Corollary 3.13. T : L5 → T5 is a contravariant functor.

For (S, T ) ∈ T5 and L ∈ L5, we define

τ(S,T ) : (S, T ) → T(L(S, T )) by τ(S,T )(x) = {A ∈ L(S, T ) | x ∈ A};

ρL : L → L(T(L)) by ρL(x) = {F ∈ S(L) | x ∈ F}.

Proposition 3.14. The following statements hold.

(1) τ(S,T ) is an N5-isomorphism on the N5-space part of (S, T ) and a home-
omorphism on the topological part of (S, T ). Moreover, for every
morphism φ : (S, T ) → (S′, T ′) in T5, TL(φ) ◦ τ(S,T ) = τ(S′,T ′) ◦ φ.

(2) ρL is a (0, 1)-lattice isomorphism. Moreover, for every morphism
f : L → L′ in L5, LT(f) ◦ ρL = ρL′ ◦ f .

Remark 3.15. We are now ready to explain the role of the condition (5) of
Definition 3.1. In the proof of (1) of Proposition 3.14, it is established first
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that τ(S,T ) is an embedding in the N5-space and topological space sense.
Next, it is established that T(L(S, T )) is a uN5-extension of the image of
(S, T ) by τ(S,T ). This, by the condition (5) of Definition 3.1 implies that
that τ(S,T ) is surjective.

Corollaries 3.7, 3.13 and Proposition 3.14 justify the following theorem.

Theorem 3.16. The categories L5 and T5 are dually equivalent.

Corollary 3.17. The categories (L5)fin and (T5)fin are dually equiva-
lent.

Remark 3.18. Under the assumption that Y = ∅ in all spectral N5-spaces,
we obtain the category of spectral spaces with spectral morphisms which,
as was proved by M. H. Stone in [16], is dually equivalent to the cate-
gory of bounded distributive lattices with (0, 1)-lattice homomorphism as
morphisms.

4. The Q-lattice of a non-trivial variety of bounded
lattices

Let P2 denote the category whose objects are partially ordered sets with
two distinguished constants and morphisms are mappings that preserve
partial orders and the distinguished constants.

Theorem 1.5 of [4] says that the category P2 is universal. An inspection
of the proof of this result presented in [4] shows more. It shows that P2

is finite-to-finite universal. This means that there is a faithful and full
functor from the category of undirected graphs with all compatible maps
as morphisms to the category P2 and has the property that it assigns a finite
object of P2 to every finite graph. This in turn means that in the category
P2 there exists a family of finite objects Ai = ⟨Xi,≤i, ai, bi⟩, i < ω, which
has the property:

(∗) For i, j < ω, there is a morphism of P2 between Ai and Aj iff i = j.
For each i < ω, let yi be an element not belonging to Xi, and let A+

i =
⟨Xi, {yi},≤+

i , fi⟩, where ≤+
i = ≤i ∪{(ai, yi), (yi, yi)} and fi(yi) = (ai, bi).

Each A+
i is a finite N5-space. Corollary 2.11 and the property (∗) imply

the following: For I, J ⊆ ω, SP(F(A+
i ) | i ∈ I) = SP(F(A+

i ) | i ∈ J) iff
I = J . Thus the Q-lattice of the variety of bounded lattices generated by
N5 is uncountable. Without much effort, one can construct a finite N5-
space S such that the quasivariety generated by B(S) is a join-irreducible
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but not join-prime element in the Q-lattice. This means that the Q-lattice
of the variety SP(N5) is not distributive. On the other hand, by Corollary
1.5 of [2], we know that the variety of bounded lattices generated by M3 is
uncountable and non-distributive. The two lattices N5 and M3 are the only
lattices which separate lattices from those which are distributive. As the
Q-lattice of the variety of bounded distributive lattice is a 2-element chain,
the result announced in the abstract is true: The Q-lattice of any nontrivial
variety of bounded lattices is either a 2-element chain or is uncountable and
non-distributive.

5. Concluding remarks

Our first duality is an extension of the well known due to G. Birkhoff duality
for distributive bi-algebraic lattices (assume that Y = ∅ in the definition
of N5-space). Our second duality is an extension of the Stone topological
duality for bounded distributive lattices. The categories of duals of the
Stone and the well-known Priestley [15] duality for bounded distributive
lattices are equivalent (see [5]). Our work confirms (see also [13]) that a
successful attempt of having topological dualities in the categorical (com-
plete) sense for bounded lattices should be focused only on a variety that
is generated by a finite lattice and the outcome will be in the style pro-
posed by M. H. Stone in [16]. The key concept in searching for them will
be the concept of minimal join cover refinement property and the navigat-
ing result will be Theorem 3.4 of [14]. Our original motivation for having
the first duality was the open problem independently raised by G. Birkhoff
and A. I. Maltsev which asks for a description of the Q-lattices (see [11] or
the survey article [1]). Based on our experience, we know that having a
good duality helps in contributing to this open problem. However, we do
not know what is the real lattice status of the Q-lattice of the variety of
bounded lattices generated by N5. For example, does this Q-lattice satisfy
any non-trivial lattice equation?

A result of [10] states that a variety of bounded lattices is universal iff
it contains a non-distributive simple lattice. Moreover, it states that the
variety is finite-to-finite universal iff the simple lattice is finite. As M3 is a
simple lattice that is not distributive, the variety of bounded lattices gen-
erated by M3 is finite-to-finite universal. The variety of bounded lattices
generated by N5 is not universal for N5 is not a simple lattice. Our origi-
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nal motivation of having the second duality was to know an answer to the
following question: Is the variety of bounded lattices generated by N5 finite-
to-finite universal relative to the variety of bounded distributive lattices?
The relative means that (0, 1)-lattice homomorphisms to bounded distribu-
tive lattices are disregarded in the successful construction of a functor from
the category of undirected graphs to the category of bounded lattices gen-
erated by N5. We do not know an answer to this well coined by literature
question.

Acknowledgements. We deeply thank the editors for giving us the op-
portunity to share our work in the form of an extended abstract with the
broad audience of this journal, including algebraists. Our thanks are real
because it is not easy to publish an extended abstract if the results were
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Mayagüez Campus
00681-9018, Mayagüez
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Abstract

This paper proposes a semantic description of the linear step-like temporal multi-

agent logic with the universal modality LT K.slU based on the idea of non-

reflexive non-transitive nature of time. We proved a finite model property and
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that constitute today one of the foundation in the theory of program ver-
ification [10]. The interweaving of such logics with multi-agent systems
makes it possible to model the intellectual reasoning of various nature sites,
including social ones. Examples of such logics are LT K [9], LKInd—as
a version with the induction axiom [20], LT Kr—as a logic of a reflexive
non-transitive temporal relation [16].

In the field of modern approaches to modeling multi-agent systems,
there is a lack of a consistent approach: various methods of interaction be-
tween agents, modal operators and valuations are proposed, new versions
of combining modal systems are chosen. This situation can be partially
explained by the fact that suitable (from the idea of natural modeling of
processes) combined systems, after a deeper study, turn out to be complex
and even lack some useful properties [7]. Of course, this imposes signif-
icant restrictions on the applicability of such systems in real information
projects [8].

Most temporal logics are built on the idea of reflexive transitive time,
what helps make it possible to effectively apply the developed apparatus of
modal logics in their study. However, such systems have a lot of weak points
when modeling complex systems, in which we are usually required prop-
erties of dynamism, indeterminacy, instability of the information transfer
process and taking into account possible errors in the translation process.

In addition, the participants of computational process, described as
individual agents, whose knowledge is determined by multiple relations, are
able to communicate, make decisions under the influence of public opinion
of society or their own independent views, accumulate and expand available
information and, at the same time, ”forget” or ”lose” entire segments over
time. In this regard, logical systems based on non-transitive, multiple
fragmentary relations look promising.

Among other things, the nature of time itself, as a physical process, in
many ways remains a mystery to humanity. The argument in favor of its
non-transitivity, at least from the point of view of the technical tools avail-
able to us for its modeling, is the step-by-step principle of implementing any
computational process—when at any moment we only have today’s knowl-
edge and know what actions will be taken to move to the next moment of
time. From this point of view, it is of interest to study a non-transitive and
non-reflective version of temporal logic LT L, in which, taking into account
the specified properties of relations, the temporal process is a step-like
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sequential procedure. Thereby, it seems rational to model such logics using
methods of relational semantics.

An adequate approach that allows both to enhance the expressive power
of a modal language and to bring some clarity to the process of studying
the fundamental properties of a deductive system is the universal modality
operator. In the case of non-transitive models it allow us to overcome the
limitations associated with the finiteness of the modal degree of formulas
and expresses statements that are valid ”forever” in temporal systems [14].

One of the important properties of any proposition in logic is its unifi-
cation, i.e. the ability to transform a formula into a theorem by the sub-
stitution of variables. In the case of social models, the unification process
actually separates an unconditional true fragment from the general infor-
mation of arbitrary truth values available to the agent. Among the effec-
tive approaches to solving the unification problem, the most important are
the method of projective formulas and projective approximation [12], the
method for describing complete sets of unifiers in terms of n-characteristic
models based on reduced form of formulas [19]. From the standpoint of the
social interpretation for the unification problem, it becomes clear that it is
also useful to define the boundaries of an wittingly non-unifiable fragment:
such an approach was proposed in [18] for extensions of modal logics S4
and (K4 + [□⊥ ≡ ⊥]), and later generalized for a cases of linear transitive
temporal logics of knowledge [1, 5].

It is clear that the most important task is to find maximal unifiers
that allow to build all the others. However, it is also interesting to find
minimal—ground—unifiers obtained by a substitution of constants. Often,
ground unifiers allow us expressing schemes for constructing maximal and
even the most general unifiers [11, 6], although this approach is not always
possible [13].

S. I. Bashmakov previously described one non-reflexive non-transitive
temporal linear logic with universal modality and proved projective unifi-
cation [2]. Later, in [3] he announced the possibility of generalizing this
result for the case of logic enriched with agent’s knowledge relations. In this
work, we realized the semantic construction of a linear step-like temporal
logic of knowledge with a universal modality, proved the finite model prop-
erty and projective unification. For this logic, we introduce the notation
LT K.slU . The term ”step-like” is an interpretation of the non-reflective
non-transitive nature of the temporal relation given to logic.
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As a basic tool for describing and study the logic LT K.slU , we use the
traditional and well-studied relational Kripke semantics of possible worlds,
generalized to the case of temporal multi-agent systems. A key object
here is a LTK.slU -frame, represented by a tuple of clustered elements and
(n+ 3) binary relations specified on them.

2. Semantics for LT K.slU

There are various approaches to describing temporal logic. We will define
the logic under study as a multimodal system with the following semantics.

The alphabet of the language LLT K.slU includes a countable set of
propositional variables Prop = {p1, . . . , pn, . . . }, constants {⊤,⊥}, brack-
ets (, ), basic Boolean operations and the following set of unary modal
operators: {N,□e,□1, . . . ,□n,□U}.

The smallest set containing propositional variables from Prop and closed
under connectives from the language LLT K.slU will be standardly denoted
by For(LLT K.slU ).

LTK.slU -frame is a tuple F := ⟨W,Next, Re, R1, . . . , Rn, Ru⟩, where

• W =
⋃

t∈N Ct is a disjoing union of clusters Ct indexed by natural
numbers: Ct1 ∩ Ct2 = ∅ if t1 ̸= t2;

• Next is a (non-reflexive non-transitive) binary relation ”next natural
number”: ∀a, b ∈W : aNextb⇔ ∃t ∈ N(a ∈ Ct&b ∈ Ct+1);

• Re is a binary relation defining equivalence on each cluster:

∀a, b ∈W (aReb⇐⇒ ∃t ∈ N(a, b ∈ Ct));

• ∀i ∈ [1, n]Ri ⊆
⋃

t∈N(Ct)
2 are an agent’s knowledge relations defined

on clusters;

• Ru =W 2 is a relation of total reachability:

∀a, b ∈W : aRub.

A model on a LTK.slU -frame F is a pair M := ⟨F, V ⟩, where V is
a valuation V : Prop 7→ 2W , where Prop is a countable set of proposi-
tional variables. Then ∀a ∈ Ct ⊂ W, ∀t ∈ N truth conditions of formulas
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Figure 1. LTK.slU -frame

containing modal operators are determined in a standard way through the
corresponding relations:

• ⟨F, a⟩ ⊩V Nφ⇔ ∀b ∈ Ct+1 : ⟨F, b⟩ ⊩V φ;

• ⟨F, a⟩ ⊩V □eφ⇔ ∀b ∈ Ct : ⟨F, b⟩ ⊩V φ;

• ⟨F, a⟩ ⊩V □iφ⇔ ∀b ∈ Ct : aRi b⇒ ⟨F, b⟩ ⊩V φ;

• ⟨F, a⟩ ⊩V □Uφ⇔ ∀b ∈W : ⟨F, b⟩ ⊩V φ.

The operator □U is called a universal modality and actually sets the
truth of a formula on a model; □e is a Common Knowledge-operator on
each cluster; □1, . . . ,□n are operators of knowledge of agents that they
get on each of a frame cluster. We don’t impose any special properties on
the agent’s knowledge, except for the condition that any Ri is a certain
limitation of Re.

We say that a formula φ is true in the model M := ⟨F, V ⟩ (we denote
F ⊩V φ) if V (φ) =W . A formula φ is valid on the frame F (F ⊩ φ) if φ is
true in all its models. Finally, φ is valid on the class of frames K (K ⊩ φ),
if φ is valid on any frame F ∈ K. Recall that a class of frames is called
characteristic for a logic L iff all theorems of a logic are valid on all frames
from this class. Let K be the class of all LTK.slU -frames.

We will call a frame F adequate to a logic L if for any formula φ ∈ L
it is true that F ⊩ φ.

A linear step-like temporal multi-agent logic with universal modality
LT K.slU is a multimodal logic, defined as follows

LT K.slU := {φ ∈ For(LLT K.slU ) |∀F ∈ K : F ⊩ φ}.
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3. Finite model property of LT K.slU

A modal degree d(α) of a formula α in LT K.slU is a number of nested
non-reflexive non-transitive modal operators N in α:

d(p) = 0, p ∈ Prop; d(◦α) = d(α), where ◦ ∈ {¬,□e,□U ,□i};
d(α⊙ β) = max(d(α); d(β)), where ⊙ ∈ {∨,∧}; d(Nα) = d(α) + 1.

A length d(α) of a formula α of the logic LT K.slU is defined as follows:
l(p) = 0 where p ∈ Prop; l(α ◦ β) = l(α) + l(β) + 1, where ◦ ∈ {∧,∨};
l(•α) = l(α) + 1, where • ∈ {N,¬,□e,□U ,□i}.

An important property of logical systems is a finite model property,
which allows us to operate with simpler finite models, instead of their
infinite variants. A logic L is said to have finite model property, if L is
complete with respect to the class of finite frames.

In order to prove that the logic LT K.slU has the finite model property,
we define a p-morphic mapping of an infinite LT K.slU -modelM to a finite-
by-time one, and then, using the technique of filtering clusters, we construct
a model with clusters of finite cardinality on the p-morphic version. This
section proves that such a model will preserve the truth of formulas in our
logic.

3.1. p-morphism for LT K.slU

A map f from a frame F := ⟨W,Next, Re, R1, . . . , Rn, Ru⟩ onto a frame
F ′ := ⟨W ′, R′

e, R
′
1, . . . , R

′
n, R

′
u⟩ is called a p-morphism, if the following

conditions hold ∀a, b ∈W∀R ⊆ {Next, Re, R1, . . . , Rn, Ru}:

1. aRb⇒ f(a)R′f(b);

2. f(a)R′f(b) ⇒ ∃c ∈W [aRc ∧ f(c) = f(b)].

Now we define the finite by the time (by the number of clusters) model
N as follows:

N :=

〈 ⋃
j∈[1,k+1]

Cj ,Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u, V

′

〉
,

where for some LT K.slU -modelM = ⟨W,Next, Re, R1, . . . , Rn, Ru, V ⟩ the
following conditions are satisfied:
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•
⋃

j∈[1,k] Cj ⊂ W are finite number of clusters, Ck+1 is a singleton
cluster;

• R′
e, R

′
1, . . . , R

′
n are given as limitations of corresponding relations

Re, R1, . . . , Rn on clusters
⋃

j∈[1,k] Cj supplemented by the following

conditions ∀R ∈ {Re, R1, . . . , Rn}:

∀a, b ∈W \ {C1, . . . , Ck}ifaRb, then a = b ∈ Ck+1&aR
′b;

• R′
u coincides on clusters C1, . . . , Ck with the relation Ru, and for

elements out of these clusters it is given as follows:

∀a ∈W \ {C1, . . . , Ck}∀b ∈W if aRub, then a ∈ Ck+1&aR
′
ub.

• Next′ is defined as follows: ∀a ∈ {C1, . . . , Ck} if aNextb, then b ∈
{C2, . . . , Ck+1}, and ∀a ∈W \ {C1, . . . , Ck}, ∀b ∈W if aNextb, then
a, b ∈ Ck+1&aNext′b;

• V ′(p) = V (p) ∩
⋃

j∈[1,k] Cj for p ∈ Prop.

To simplify notation, we will denote a finite frame defining such a model

N as Ffin :=
〈⋃

j∈[1,k+1] Cj ,Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u

〉
. For consistency,

we denote an infinite LTK.slU -frame here as Finf .

Figure 2. An infinite frame Finf and a finite frame Ffin

Theorem 3.1. Any Ffin is a p-morphic image of Finf .

Proof: Let f be a mapping of infinite LTK.slU -frame
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Finf = ⟨W,Next, Re, R1, . . . , Rn, Ru⟩

onto a finite

Ffin =

〈 ⋃
j∈[1,k+1]

Cj ,Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u

〉
,

given as follows:

1. ∀x ∈
⋃

j∈[1,k] Cj f(x) = x;

2. ∀x ∈W \
⋃

j∈[1,k] Cj f(x) = y, where y ∈ Ck+1.

Let us prove that the mapping f is a p-morphism. For this, it is nec-
essary to show the correctness of the given mapping, with respect to the
points (1.) and (2.) of the definition.

(1.) ∀a, b ∈W if aNextb, hence by the definition of Next, a ∈ Ci and
b ∈ Ci+1. If b ∈ {C2, . . . , Ck}, then f(a) = a, f(b) = b and f(a)Next′f(b).
If b ∈W \ {C1, . . . , Ck}, then f(a), f(b) ∈ Ck+1 and f(a)Next′f(b).

If aReb and a, b ∈ Ci ⊂ {C1, . . . , Ck} then f(a)R′
ef(b). If Ci ∈ W \

{C1, . . . , Ck}, then f(a) = f(b) = y ∈ Ck+1.
By virtue of Ri ⊆ Re∀i ∈ [1, . . . , n], for relations R′

1, . . . , R
′
n proof is

similar to Re.
By definition, Ru = W 2 and then ∀a, b ∈ {C1, . . . , Ck} f(a)R′

uf(b). If
a ∈ W \ {C1, . . . , Ck} or b ∈ W \ {C1, . . . , Ck}, then f(a) = yR′

uf(b) or
f(a)R′

uy = f(b). Respectively, y ∈ Ck+1.
(2.) ∀a, b ∈W if f(a)Next′f(b), then the following cases are possible:

• if f(a)Next′f(b), then, by definition Next′, f(a) ∈ Ci, f(b) ∈ Ci+1,
where i + 1 ∈ [2, . . . , k]. In this case f(a) = a, and for f(b) two
options are possible:

– when f(b) ∈ {C2, . . . , Ck}, b = c and aNextc;

– when f(b) ∈ Ck+1&f(a) ∈ Ck, as c we take ∀c ∈ Ck+1, then
aNextc.

• if f(a), f(b) ∈ Ck+1, then a ∈ Cj , b ∈ Cj+1(where {Cj , Cj+1} ⊂
W \ {C1, . . . , Ck}) and then as c we take ∀x ∈ Cj+1. In this case
f(c) = f(b) ∈ Ck+1 ⊂ Ffin.
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∀a, b ∈W if f(a)R′
ef(b), then two options are possible:

– if f(a), f(b) ∈ Ci, where i ∈ {1, . . . , k}, then aReb, where a, b ∈
Ci, i ∈ [1, . . . , k]. In this case c ∈ Ci;

– if f(a), f(b) ∈ Ck+1, then aReb and a, b ∈W \ {C1, . . . , Ck}.

In the case of Ri, the proof trivially repeats the reasoning for Re.

∀a, b ∈Wf(a)R′
uf(b), therefore, as c we can take any element of W .

Therefore, any finite frame Ffin is a p-morphic image of Finf .

Now let us prove that any formula refutable on LT K.slU -model M is
refuted also on N .

Theorem 3.2. Let M = ⟨Finf , V ⟩ be an infinite by time LTK.slU -model,
α is an arbitrary formula with the modal degree d(α) = m,m ∈ ω.

Then ∀x ∈
⋃

j∈[1,k−m] Cj ⊂ Finf (m < k) it is true:

⟨M,x⟩ ⊮ α⇔ ⟨N, x⟩ ⊮ α,

where N = ⟨Ffin, V
′⟩ = ⟨

⋃
j∈[1,k+1] Cj ,Next′, R′

e, R
′
u, R

′
1, . . . , R

′
n, V

′⟩.

Proof: Let us prove that it is true for all formulas in LT K.slU . The proof
is by induction on the length of the formula α.

The induction base l(α) = 0 corresponds to the case α = p. Obviously,
in this case the modal degree is also equal to 0 and the statement is true
∀x ∈

⋃
j∈[1,k] Cj .

Suppose the statement of the theorem is true ∀β: l(β) < t, i.e. ⟨M,x⟩ ⊮
β ⇔ ⟨N, x⟩ ⊮ β. Let us prove for l(α) = t.

The cases α ∈ {¬φ,□Uφ,□eφ,□iφ,φ∨ψ,φ∧ψ} satisfy the conditions
of inductive hypothesis due to the fact that the modal degree of the formula
α is not increased by adding operators {¬,□U ,□e,□i} to the subformula
φ of less length, and is potentially increased by adding {∨,∧} only up to
the value of max(d(φ), d(ψ)), where φ and ψ are also shorter in length (by
the definitions of the truth values of such formulas).

!α = Nφ, l(φ) = l(α)−1 and d(α) = d(φ)+1. By inductive hypothesis,
⟨M,x⟩ ⊮ φ ⇔ ⟨N, x⟩ ⊮ φ, where x ∈

⋃
j∈[2,k−(m−1)] Cj . By the definition

of N , it’s true, that ∀x ∈ Ci⟨M,x⟩ ⊩ Nφ ⇔ ∀y ∈ Ci+1 (i.e. xNexty)
⟨M,y⟩ ⊩ φ, hence, ∃x ∈ Ci⟨M,x⟩ ⊮ Nφ ⇔ ∃y ∈ Ci+1 ⟨M,y⟩ ⊮ φ. Then
∀x̂ ∈

⋃
j∈[1,k−m] Cj ⟨M, x̂⟩ ⊮ Nφ⇔ ⟨N, x̂⟩ ⊮ Nφ.
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4. Filtration for LT K.slU

To build a final finite model that is adequate to our logic, we apply the filter-
ing technique to the frame Ffin. LetM = ⟨W,Next, Re, R1, . . . , Rn, Ru, V ⟩
be a model, built on the infinite LTK.slU -frame defined above, Φ ⊆
For(LLT K.slU ) is a set of formulas that is closed wrt sub-formulas. We
define an equivalence relation ≡Φ on clusters from W as follows: ∀t ∈
N, ∀x, y ∈ Ct

x≡Φy ⇐⇒ [∀α ∈ Φ(⟨M,x⟩ ⊩ α⇔ ⟨M,y⟩ ⊩ α)].

In accordance with this definition, below we will use the notation

• V ar(Φ) for a set of all variables of formulas from Φ;

• [x]≡Φ
:= {y ∈W |x≡Φy} for equivalence classes;

• WΦ := {[x]≡Φ |∀x ∈W} for a set of all such classes;

• CjΦ := {[x]≡Φ |∀x ∈ Cj ⊂ Ffin}, j ∈ [1, k+1], for each cluster of such
classes obtained from each cluster of Ffin.

To get only finite clusters, we define a model filtered by a set Φ ⊆
For(LLT K.slU )

NΦ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′Φ, R
′
eΦ , R

′
1Φ , . . . , R

′
nΦ
, R′

uΦ
, V ′

Φ

〉

based on a version of model N with a p-morphic frame Ffin and additional
following filtration of clusters:

1. ∀p ∈ V ar(Φ) [V ′
Φ(p) = {[a]≡Φ |⟨N, a⟩ ⊩ p}];

2. ∀a, b ∈ {
⋃

j∈[1,k+1] Cj}, ∀R′ ∈ [Next′, R′
e, R

′
1, . . . , R

′
n, R

′
u] (aR′b ⇒

[a]≡Φ
R′

Φ[b]≡Φ
);

3. ∀a, b ∈ {
⋃

j∈[1,k+1] CjΦ}

(a) ∀l ∈ {e, 1, . . . , n, u} ([a]≡ΦR
′
lΦ
[b]≡Φ =⇒ [∀□lα ⊆ Φ ⟨N, a⟩ ⊩

□lα⇒ ⟨N, b⟩ ⊩ α]);

(b) [a]≡Φ
Next′Φ[b]≡Φ

=⇒ ([∀Nα ⊆ Φ ⟨N, a⟩ ⊩ Nα⇒ ⟨N, b⟩ ⊩ α]).
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Well-known conditions for building the minimal and maximal filtration
can also be applied in our case:
— the minimal filtration

Nmin
Φ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′min
Φ , R′min

eΦ , R′min
1Φ , . . . , R′min

nΦ
, R′min

uΦ
, V ′

Φ

〉
,

where

• ∀l ∈ {e, 1, . . . , n, u} R′min
lΦ

= {([a]≡Φ
, [b]≡Φ

)|(a, b) ∈ R′
l},

• Next′min = {([a]≡Φ
, [b]≡Φ

)|(a, b) ∈ Next′};
— the maximal filtration

Nmax
Φ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′max
Φ , R′max

eΦ , R′max
1Φ , . . . , R′max

nΦ
, R′max

uΦ
, V ′

Φ

〉
,

where

• ∀l ∈ {e, 1, . . . , n, u} : [a]≡ΦR
′max
lΦ

[b]≡Φ ⇔ [∀□lα ⊆ Φ(⟨N, a⟩ ⊩ □lα⇒
⟨N, b⟩ ⊩ α)],

• [a]≡ΦNext′max
Φ [b]≡Φ ⇔ ([∀Nα ⊆ Φ ⟨N, a⟩ ⊩ Nα⇒ ⟨N, b⟩ ⊩ α]).

Due to the choice of the set Φ, the finiteness of the number of relations
on a frame and all pairwise variants of their intersections, the clusters CtΦ

obtained as a result of the proposed filtration are also will always have finite
cardinality. By virtue of the construction of a filtered model, we assume
the true following

Lemma 4.1. Let N = ⟨
⋃

j∈[1,k+1] Cj ,Next′, R′
e, R

′
u, R

′
1, . . . , R

′
n, V

′⟩ be a p-
morphic model N of a LT K.slU -model M , Φ ⊆ For(LLT K.slU ) is a closed
wrt subformulas set of formulas whose modal degree does not exceed m
(m ∈ ω, k > m),

NΦ =

〈 ⋃
j∈[1,k+1]

CjΦ ,Next′Φ, R
′
eΦ , R

′
1Φ , . . . , R

′
nΦ
, R′

uΦ
, V ′

Φ

〉
be a filtered variant of the model N to the set Φ. Then ∀x ∈

⋃
j∈[1,k−m] Cj,

∀α ∈ Φ:
⟨N, x⟩ ⊮ α⇔ ⟨NΦ, x⟩ ⊮ α.

By virtue of Theorem 2 and Lemma 1, we conclude the finite model
property for LT K.slU .
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5. Unification in LT K.slU

5.1. Definitions of unification theory

A formula φ(p1, . . . , ps) is called unifiable in logic L, if ∃σ : pi 7→ σi for
every pi ∈ V ar(φ), s.t. σ(φ) = φ(σ1, . . . , σs) ∈ L. A substitution σ
is called unifier of φ. A ground unifier is a constant substitution (i.e.
gu : pi 7→ {⊤,⊥},∀pi ∈ V ar(φ)).

The preorder relation is defined on the set of unifiers: an unifier σ of
φ(p1, . . . , ps) is called more general than σ1 in L, if there is a substitution
γ, s.t. for any pi: σ

1(pi) ≡ γ(σ(pi)) ∈ L (σ1 ⪯ σ).
An unifier σ of φ(p1, . . . , ps) is said to be maximal, if for any other σi,

either σi ⪯ σ, or (σi ⪯̸ σ)&(σ ⪯̸ σi). If σ is more general than any other,
it is called a most general (mgu, for short).

A set of unifiers CU for a formula φ is called complete in L, if for any
unifier σ of φ there is σ1 ∈ CU : σ ⪯ σ1.

In general, the existence of infinite sequences of unifiers with respect
to a given preorder is possible. If such chains are admissible, the formula
(and hence all logic) has a nullary unification type. In other cases, when
ascending chains are terminated in a finite number of steps, unification is
infinitary (case of a countable number of maximal unifiers for some for-
mula), finitary (case of a finite number of maximal ones for all formulas)
or unitary (in case of the existence of mgu for all formulas) type.

A formula φ(p1, . . . , ps) is called projective in L, if there is an unifier τ
of φ, s.t. □φ → [pi ≡ τ(pi)] ∈ L for all pi ∈ V ar(φ). An unifier with such
specified properties is called projective.

As was proved by S. Ghilardi [12], the projective unifier defines mgu
of a formula (and, accordingly, CU). Consequently, having established the
projectivity of unification in logic, we will obtain a universal scheme for
constructing an mgu and a unitary type of unification. The importance
of this approach is reinforced by a corollary from a projective unification,
which guarantees almost structural completeness of logic [17].

5.2. Projective unification in LT K.slU

To study the unification properties in LT K.slU we need to redefine the no-
tion of a projective formula because of the non-transitive and non-reflective
nature of the temporal operatorN . Let’s do it through the universal modal-
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ity □U : φ(p1, . . . , ps) is called projective in LT K.slU , if there is an unifier
τ for φ, s.t. □Uφ→ [pi ≡ τ(pi)] ∈ LT K.slU for all pi ∈ V ar(φ).

As the following theorem shows, unifiability of an arbitrary formula
φ(p1, . . . , ps) in LT K.slU can be effectively establish using constant sub-
stitutions: ∀pi ∈ V ar(φ) σ(pi) ∈ {⊤,⊥}.

Theorem 5.1. If a formula φ is unifiable in LT K.slU , then φ has a ground
unifier.

Proof: The proof of this theorem is similar to the proof in [4] for the case
of pretabular extensions of S4. Here we describe a sketch of the proof and
supplement it with some important comments.

Let’s take an arbitrary unifiable in L formula φ(p1, . . . , ps) and
δ1(q1, . . . , qr), . . . , δs(q1, . . . , qr) is its unifier. Then it is true that

δ(φ) := φ(δ1(q1, . . . , qr), . . . , δs(q1, . . . , qr)) ∈ L.

Any substitution of variables q1, . . . , qr to constants ci ∈ {⊤,⊥}(i ∈
[1, r]) preserves truth values of the formula δ(φ), because of δ(φ) ∈ L.
In particular, φ(gu(p1), . . . , gu(ps)) ∈ L, where gu(pi) := δi(c1, . . . , cr) ∈
{⊤,⊥}, is a partial case of δ(φ). Therefore, any substitution of this form
is a ground unifier of φ. To check the existence of such an substitution
for arbitrary formula ψ(p1, . . . , ps), it suffices to consider no more than 2s

substitutions of {⊤,⊥} instead of all pi. If among them there is one s.t.
ψ(gu(p1), . . . , gu(ps)) ≡L ⊤, then ψ is unifiable in L and gu is its ground
unifier. If for all 2s options gu(ψ) /∈ L, then ψ doesn’t have a ground unifier
and therefore any other unifier in L.

We are now ready to prove the main result of this work.

Theorem 5.2. Any formula unifiable in LT K.slU is projective.

Proof: Let φ(p1, . . . , ps) be unifiable in LT K.slU . Then ∀pi ∈ V ar(φ)
we define the following substitution σ(pi):

σ(pi) := (□Uφ ∧ pi) ∨ (¬□Uφ ∧ gu(pi)),

where gu(p1), . . . , gu(ps) is an arbitrary ground unifier for φ(p1, . . . , ps).
Let’s take an arbitrary LTK.slU -model M := ⟨F, V ⟩. If σ is an unifier

for φ, then σ(φ) ∈ LT K.slU and ∀x ∈ F ⟨M,x⟩ ⊩ σ(φ). Let us prove that
σ is indeed an unifier for φ in LT K.slU .
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1. If ∀x ∈ F : ⟨M,x⟩ ⊩ φ, then ⟨M,x⟩ ⊩V □Uφ and, therefore, the
second disjunctive member will be refuted on x. If ⟨M,x⟩ ⊩ pi, then
⟨M,x⟩ ⊩ □Uφ ∧ pi, hence, ⟨M,x⟩ ⊩ σ(pi). If ⟨M,x⟩ ⊩ ¬pi, then ⟨M,x⟩ ⊮
□Uφ∧pi and, therefore, ⟨M,x⟩ ⊩ ¬σ(pi). As a consequence, the truth value
φ(p1, . . . , ps) on an arbitrary element x wrt V coincides with the truth value
φ(σ(p1), . . . , σ(ps)) on the same element with the same valuation V and,
in this case, ⟨M,x⟩ ⊩ σ(φ).

2. If ∃x ∈ F : ⟨M,x⟩ ⊩ ¬φ, then ⟨M,x⟩ ⊮ □Uφ. In this case, the second
disjunctive member can be valid, but the first is refuted on x. Then truth
values of all σ(pi) on x coincide with gu(pi) (i.e. σ(φ) ≡ gu(φ)), and since
⟨M,x⟩ ⊩ gu(φ) (due to the choice of the ground unifier gu(φ) ∈ LT K.slU ),
again ⟨M,x⟩ ⊩ σ(φ). Hence, σ(φ) ∈ LT K.slU for φ unifiable in LT K.slU .

Let us prove that σ(φ) is a projective unifier. By the definition, if σ(pi)
is a projective unifier for φ, we obtain the following: ∀pi ∈ V ar(φ)

□Uφ→ (pi ↔ [(□Uφ ∧ pi) ∨ (¬□Uφ ∧ gu(pi))]) ∈ LT K.slU . (5.1)

Suppose the opposite: let σ not be a projective unifier and hence 5.1 is
refuted at some model. Then it is not difficult to verify that if the premise
of the implication is true, it is impossible to refute the conclusion, and
therefore we get a contradiction.

Consequently, σ is a projective unifier for φ in LT K.slU , so φ is a
projective formula.

From the proved theorems and mentioned results by S. Ghilardi, hold

Corollary 5.3. Let φ be an arbitrary unifiable formula in LT K.slU .
Then

1. σ(pi) := (□Uφ ∧ pi) ∨ (¬□Uφ ∧ gu(pi)) is a projective unifier and,
hence, mgu for φ;

2. The logic LT K.slU has a unitary unification type.
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[18] V. V. Rybakov, An essay on unification and inference rules for modal logics,

Bulletin of the Section of Logic, vol. 28 (1999), pp. 145–157.

[19] V. V. Rybakov, Best unifiers in transitive modal logics, Studia Log-

ica, vol. 99 (2011), pp. 321–336, DOI: https://doi.org/10.1007/s11225-011-

9354-y.

[20] V. F. Yun, Polymodal logic of the class of inductive linear time frames,

Siberian Electronic Mathematical Reports, vol. 12 (2015), pp. 421–

431, DOI: https://doi.org/10.17377/semi.2015.12.035.

https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1093/logcom/7.6.733
https://doi.org/10.1093/logcom/7.6.733
https://doi.org/10.2307/2586506
https://doi.org/10.1093/logcom/2.1.5
https://doi.org/10.1007/978-3-030-43309-3_57
https://doi.org/10.1134/S0037446613060104
https://doi.org/10.1007/s11225-011-9354-y
https://doi.org/10.1007/s11225-011-9354-y
https://doi.org/10.17377/semi.2015.12.035


Unification and Finite Model Property for Linear Step-Like. . . 361

Stepan I. Bashmakov

Siberian Federal University
Department of Algebra and Mathematical Logic
660041, Svobodny #79
Krasnoyarsk, Russia

e-mail: krauder@mail.ru

Tatyana Yu. Zvereva

Siberian Federal University
Department of Algebra and Mathematical Logic
660041, Svobodny #79
Krasnoyarsk, Russia

e-mail: 3336259@gmail.com

mailto:krauder@mail.ru
mailto:3336259@gmail.com




Bulletin of the Section of Logic

Volume 51/3 (2022), pp. 363–382

https://doi.org/10.18778/0138-0680.2022.10

Rajab Ali Borzooei

Elham Babaei

CONSTRUCTING A HOOP USING ROUGH FILTERS

Abstract

When it comes to making decisions in vague problems, Rough is one of the

best tools to help analyzers. So based on rough and hoop concepts, two kinds of

approximations (Lower and Upper) for filters in hoops are defined, and then some

properties of them are investigated by us. We prove that these approximations-

lower and upper- are interior and closure operators, respectively. Also after

defining a hyper operation in hoops, we show that by using this hyper operation,

set of all rough filters is monoid. For more study, we define the implicative

operation on the set of all rough filters and prove that this set with implication

and intersection is made a hoop.

Keywords: Hoop, rough set, rough approximations (lower and upper), rough

filter.
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1. Introduction

Pawlak proposed the theory of rough sets in 1982 as a new method for
modelling and processing uncertain data. There are different fields such as
machine learning, intelligence system, decision making, and etc, in which
rough set theory can help to solve some problems. So it has received al-
gebraic researchers attention too, and leads to apply rough set theory in
different algebraic systems such as BCK-algebra [13], BCC-algebra [14],
MV -algebra [17] and so on.
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Rough set theory includes different concepts some of them which are used
in rough controllers are rough relations and rough functions. From alge-
braic point of view, Iwinski [11] is the first one who algebraically approach
to the rough sets. In [16, 4], application of rough set can be seen in groups
and semigroups. Till today, relation between rough theory and some alge-
bras are studied, BCK-algebras by Jun [13], and MV-algebras by Rasouli
and Davvaz [17]. Bosbach [8] introduced hoop algebra as special groups
of monoids: naturally ordered commutative resituated integral monoids.
In recent decades, many mathematicians have worked on it and developed
structure theory by using the nation of hoop (see [3, 8]). Fuzzy logic and
hoops have strong impact on each other results. One of the famous ex-
amples is the short proof of the completeness theorem for propositional
basic logic introduced by Hájek in [10] which is obtained from the struc-
ture theorem of finite basic hoops. There are a lot of areas that hoops are
being implemented for algebraic structures such as (see [1, 2, 5, 6, 7]). By
considering the impact of rough set theory and since there was no study
on the relation between hoop and rough set theory, we decided to apply
the rough set theory in hoops. Experience of implementing soft set theory
in hoops [6], and the logic used in [15] helped us a lot to have a better
view. For this purpose, we defined the concept of the lower and the up-
per approximations in hoops and then investigated their properties. Also,
it is proved that the lower (upper) approximations is an interior operator
(closure operator). Moreover, we define a hyper operation on hoop and
then we show that by using this operation, the set of all rough filters is a
monoid. For more study, we define the implicative operation on the set of
all rough filters and prove that this set with implication and intersection is
made a hoop.

2. Preliminaries

Some definitions that may be required in the further discussions are re-
viewed in this part.
A hoop [8] is an algebraic structure ℏ = (ℏ,⊙,→, 1) of type (2, 2, 0) such
that, for all κ, ν, δ ∈ ℏ the following conditions hold:

(HP1) (ℏ,⊙, 1) is a commutative monoid,

(HP2) κ → κ = 1,
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(HP3) (κ⊙ ν) → δ = κ → (ν → δ),

(HP4) κ⊙ (κ → ν) = ν ⊙ (ν → κ).

A relation ≤ on hoop ℏ which is defined by κ ≤ ν if and only if κ → ν = 1,
is a partial order relation on ℏ. A hoop ℏ is called bounded if there is an
element 0 ∈ ℏ such that 0 ≤ κ, for all κ ∈ ℏ (see [8]).
Fundamental properties of hoops are provided in the next proposition.

Proposition 2.1 ([8]). Let ℏ be a hoop. Then, for all κ, ν, δ ∈ ℏ the
following properties hold:

(i) (ℏ,≤) is a ∧-semilattice with κ ∧ ν = κ⊙ (κ → ν);

(ii) κ⊙ ν ≤ δ if and only if κ ≤ ν → δ;

(iii) κ⊙ ν ≤ κ, ν;

(iv) κ ≤ ν → κ;

(v) 1 → κ = κ;

(vi) κ → 1 = 1;

(vii) ν ≤ (ν → κ) → κ;

(viii) κ ≤ (κ → ν) → κ;

(ix) κ → ν ≤ (ν → δ) → (κ → δ);

(x) (κ → ν)⊙ (ν → δ) ≤ κ → δ;

(xi) κ ≤ ν implies κ⊙ δ ≤ ν ⊙ δ, δ → κ ≤ δ → ν and ν → δ ≤ κ → δ.

Uninary operation “¬” on a bounded hoop ℏ is defined such that for
any κ ∈ ℏ,¬κ = κ → 0.
Then for any nonempty subset R of a bounded hoop ℏ, consider the sets
¬R := {¬κ ∈ ℏ | κ ∈ R} and DNP (ℏ) := {κ ∈ ℏ | ¬(¬κ) = κ}.

Double negation property (briefly, DNP of a bounded hoop ℏ is when
DNP (ℏ) = ℏ.
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Proposition 2.2 ([8, 9]). Let ℏ be a bounded hoop. Then, for any κ, ν ∈ ℏ,
the following conditions hold:

(i) κ ≤ ¬¬κ and κ⊙ ¬κ = 0

(ii) ¬κ ≤ κ → ν.

(iii) ¬¬¬κ = ¬κ.

(iv) If ℏ has (DNP), then κ → ν = ¬ν → ¬κ.

(v) If ℏ has (DNP), then (κ → ν) → ν = (ν → κ) → κ.

Let ϱ be an equivalence relation on a hoop ℏ and P(ℏ) denote the
power set of ℏ. For all κ ∈ ℏ, let [κ] ϱ denote the equivalence class of κ
with respect to ϱ . Let ϱ ∗ and ϱ ∗ be mappings from P(ℏ) to P(ℏ) defined
by ϱ ∗(F ) = {κ ∈ ℏ | [κ] ϱ ⊆ 𭟋} and ϱ ∗(F ) = {κ ∈ ℏ | [κ] ϱ ∩ 𭟋 ̸= ∅},
respectively.
The pair (ℏ, ϱ ) is called an approximation space based on ϱ . A subset 𭟋
of a hoop ℏ is definable if ϱ ∗(𭟋) = ϱ ∗(𭟋), and rough otherwise. The set
ϱ ∗(𭟋) (resp. ϱ ∗(𭟋)) is called the lower (resp. upper) approximation. (See
[14])

Proposition 2.3 ([14]). Let (ℏ, ϱ ) be a ϱ -approximation space. For any
R,M ∈ P(ℏ), we have

(i) ϱ ∗(R) ⊆ R ⊆ ϱ ∗(R),

(ii) ϱ ∗(R ∩M) = ϱ ∗(R) ∩ ϱ ∗(M),

(iii) ϱ ∗(R) ∪ ϱ ∗(M) ⊆ ϱ ∗(R ∪M),

(iv) ϱ ∗(R ∩M) ⊆ ϱ ∗(R) ∩ ϱ ∗(M),

(v) ϱ ∗(R) ∪ ϱ ∗(M) = ϱ ∗(R ∪M).

(vi) ϱ ∗( ϱ
∗(R)) ⊆ ϱ ∗( ϱ ∗(R)),

(vii) ϱ ∗( ϱ ∗(R)) ⊆ ϱ ∗( ϱ ∗(R)),

(viii) ϱ ∗(R
c) = ( ϱ ∗(R))

c
,

(ix) ϱ ∗(Rc) = ( ϱ ∗(R))
c
,

(x) ϱ ∗(R) = ∅ for R ̸= ℏ,
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(xi) ϱ ∗(R) = R for R ̸= ∅.

(xii) ϱ ∗(R) = R ⇔ ϱ ∗(Rc) = Rc.

Function ∁ : P(S) → P(S) on a set S is a closure operator [12] if the
following conditions are held for all subsets X,Y ⊆ S:

(i) X ⊆ ∁(X),

(ii) if X ⊆ Y , then ∁(X) ⊆ ∁(Y ),

(iii) ∁(∁(X)) = ∁(X).

Function T : P(S) → P(S) on a set S is an interior operator [12] in
which for all subsets X,Y ⊆ S the following conditions are held:

(i) T(X) ⊆ X,

(ii) if X ⊆ Y , then T(X) ⊆ T(Y ),

(iii) T(T(X)) = T(X).

3. Roughness of filters in hoops

In this section, roughness of hoops is introduced and some properties of it
are investigated. Soppose 𭟋 is a filter of a hoop ℏ. We define a relation
“C𭟋” on ℏ for any κ, ν ∈ ℏ as follows:

(κ, ν) ∈ C𭟋 if and only if κ → ν ∈ 𭟋 and ν → κ ∈ 𭟋.

Then C𭟋 is a congruence relation on ℏ. Hence approximation space
(ℏ, C𭟋) is called an 𭟋-approximation space. The equivalence class of κ ∈ ℏ
under C𭟋 is denoted by C𭟋[κ].

Let (ℏ, C𭟋) be an 𭟋-approximation space. For any nonempty subset R
of ℏ, the sets

C𭟋(R) := {κ ∈ ℏ | C𭟋[κ] ⊆ R} and C𭟋(R) := {κ ∈ ℏ | C𭟋[κ] ∩R ̸= ∅},

are called lower and upper rough approximation, respectively, of R with
respect to the filter 𭟋.
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Example 3.1. Let ℏ = {0, η, β, 1} be a poset such that 0 ≤ η, β ≤ 1. Define
the operations → and ⊙ on ℏ as follows,

→ 0 η β 1
0 1 1 1 1
η β 1 β 1
β η η 1 1
1 0 η β 1

⊙ 0 η β 1
0 0 0 0 0
η 0 η 0 η
β 0 0 β β
1 0 η β 1

Then (ℏ,⊙,→, 0, 1) is a bounded hoop. Let 𭟋 = {η, 1}. Then C𭟋[η] =
C𭟋[1] = 𭟋 and C𭟋[β] = C𭟋[0] = {0, β}. Suppose R = {η, β, 1}. Then
C𭟋(R) = {η, 1} and C𭟋(R) = ℏ.

Theorem 3.2. If (ℏ, C𭟋) is an 𭟋-approximation space, then the lower
rough approximation operator C𭟋 is an interior operator and the upper

rough approximation operator C𭟋 is a closure operator.

Proof: Let R be a nonempty subset of ℏ and κ ∈ C𭟋(R). Then C𭟋[κ] ⊆ R.
Since κ ∈ C𭟋[κ], we have κ ∈ R. Hence, C𭟋(R) ⊆ R. If R1 and R2

are two subsets of ℏ such that R1 ⊆ R2 and κ ∈ C𭟋(R1), then C𭟋[κ] ⊆
R1. Thus C𭟋[κ] ⊆ R2, and so κ ∈ C𭟋(R2). Hence, C𭟋(R1) ⊆ C𭟋(R2).
Since C𭟋(R) ⊆ R, we have C𭟋(C𭟋(R)) ⊆ C𭟋(R). Conversely, suppose
κ ∈ C𭟋(R). Then C𭟋[κ] ⊆ R. Let δ ∈ C𭟋[κ]. Then C𭟋[δ] = C𭟋[κ] ⊆ R,
and so δ ∈ C𭟋(R). Thus, C𭟋[κ] ⊆ C𭟋(R). Hence, κ ∈ C𭟋(C𭟋(R)), and so
C𭟋(C𭟋(R)) = C𭟋(R). Therefore, the lower rough approximation operator
C𭟋 is an interior operator.

Let R be a nonempty subset of ℏ and κ ∈ R. Since κ ∈ C𭟋[κ], we
have κ ∈ C𭟋[κ] ∩ R ̸= ∅. Thus κ ∈ C𭟋(R). If R1 and R2 are two subsets
of ℏ such that R1 ⊆ R2 and κ ∈ C𭟋(R1). Then C𭟋[κ] ∩ R1 ̸= ∅. Thus
C𭟋[κ] ∩R2 ̸= ∅, and so κ ∈ C𭟋(R2). Hence, C𭟋(R1) ⊆ C𭟋(R2). Since R ⊆
C𭟋(R), we have C𭟋(R) ⊆ C𭟋(C𭟋(R)). Conversely, suppose κ ∈ C𭟋(C𭟋(R)).
Then C𭟋[κ] ∩ C𭟋(R) ̸= ∅. Let δ ∈ C𭟋[κ] ∩ C𭟋(R). Then C𭟋[δ] = C𭟋[κ]
and C𭟋[δ] ∩ R ̸= ∅, and so C𭟋[κ] ∩ R ̸= ∅. Thus, κ ∈ C𭟋(R). Hence,
C𭟋(C𭟋(R)) = C𭟋(R). Therefore, the upper rough approximation operator
C𭟋 is a closure operator.

Let (ℏ, C𭟋) be an 𭟋-approximation space. A subset R of ℏ is said to be
definable with respect to 𭟋 if C𭟋(R) = C𭟋(R), and rough otherwise.
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It is clear that ∅, ℏ and C𭟋[κ] are definable with respect to 𭟋 in an
𭟋-approximation space (ℏ, C𭟋).

Example 3.3. Let ℏ be a hoop as in Example 3.1 and 𭟋 = {η, 1}. Suppose
R = {0, β}. Then C𭟋(R) = C𭟋(R) = {0, β}. Hence R is definable.

Theorem 3.4. If (ℏ, C𭟋) is an 𭟋-approximation space with 𭟋 = {1}, then
every subset of ℏ is definable with respect to 𭟋.

Proof: Let R be an arbitrary subset of ℏ. Since 𭟋 = {1}, for all κ ∈ ℏ
we have

C𭟋[κ] = {δ ∈ ℏ | κ → δ = 1, δ → κ = 1} = {δ ∈ ℏ | κ = δ} = {κ}.

Thus,

C𭟋(R) = {κ ∈ ℏ | C𭟋[κ] ⊆ R} = {κ ∈ ℏ | {κ} ⊆ R} = R,

C𭟋(R) = {κ ∈ ℏ | C𭟋[κ] ∩R ̸= ∅} = {κ ∈ ℏ | {κ} ∩R ̸= ∅} = R.

Therefore, R is definable with respect to 𭟋.

For any subsets R and P of a hoop ℏ, we define:

R → P = {κ → ν | κ ∈ R and ν ∈ P},
R⊙ P = {κ⊙ ν | κ ∈ R and ν ∈ P}.

Proposition 3.5. If (ℏ, C𭟋) is an 𭟋-approximation space, then C𭟋(R) →
C𭟋(P ) ⊆ C𭟋(R → P ) and C𭟋(R)⊙C𭟋(P ) ⊆ C𭟋(R⊙P ) for any nonempty
subsets R and P of a hoop ℏ.

Proof: If δ ∈ C𭟋(R) → C𭟋(P ), then δ = a → b for some a ∈ C𭟋(R) and
b ∈ C𭟋(P ). It follows that C𭟋[a] ∩R ̸= ∅ and C𭟋[b] ∩ P ̸= ∅. Hence, there
exist κ ∈ R and ν ∈ P such that C𭟋[a] = C𭟋[κ] and C𭟋[b] = C𭟋[ν]. Since

δ = a → b ∈ C𭟋[a] → C𭟋[b] = C𭟋[a → b] = C𭟋[κ → ν],

we get C[δ] = C[κ → ν]. Moreover since κ → ν ∈ R → P and C[δ] = C[κ →
ν], we get C[δ] ∩ (R → P ) ̸= ∅, and so δ ∈ C𭟋(R → P ). Similarly, we can
verify C𭟋(R)⊙ C𭟋(P ) ⊆ C𭟋(R⊙ P ).

Definition 3.6. Let (ℏ, C𭟋) be an 𭟋-approximation space. A subset R of
ℏ is called a lower (resp. upper) rough filter of ℏ if C𭟋(R) (resp., C𭟋(R))
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is a filter of ℏ. If R is both a lower rough filter and an upper rough filter
of ℏ, we say R is a rough filter of ℏ.

Example 3.7. Let ℏ be a hoop as in Example 3.1. Suppose 𭟋 = {β, 1}.
Then 𭟋 is a filter of ℏ. C𭟋[1] = C𭟋[β] = {β, 1} and C𭟋[0] = C𭟋[η] = {0, η}.
If R = {η, β, 1}, then C𭟋[R] = {β, 1} and C𭟋[R] = ℏ. Hence, R is a
rough filter of ℏ. If R = {η, 1} which is a filter of ℏ, then C𭟋[R] = ∅ and

C𭟋[R] = ℏ. Hence R is not a rough filter of ℏ.

Theorem 3.8. If (ℏ, C𭟋) is an 𭟋-approximation space and R is a nonempty
subset of ℏ, then

(i) 𭟋 ⊆ R if and only if 𭟋 ⊆ C𭟋(R).

(ii) R ⊆ 𭟋 if and only if C𭟋(R) = 𭟋.

(iii) If G is a filter of ℏ, then 𭟋 ⊆ C𭟋(G). Also, 𭟋 ⊆ G if and only if
C𭟋(G) = G = C𭟋(G).

(iv) Every filter which is contained in 𭟋 is an upper rough filter of ℏ.

Proof: (i) Assume that 𭟋 ⊆ R and δ ∈ 𭟋. Then C𭟋[δ] = 𭟋 ⊆ R and so
δ ∈ C𭟋(R), that is, 𭟋 ⊆ C𭟋(R). The converse is clear.

(ii) By Proposition 2.3(i), it is clear that if C𭟋(R) = 𭟋, then R ⊆ 𭟋.
Suppose R ⊆ 𭟋 and δ ∈ C𭟋(R). Then C𭟋[δ] ∩R ̸= ∅. Thus κ ∈ C𭟋[δ] ∩ L.
Since L ⊆ 𭟋, we have κ ∈ 𭟋 and C𭟋[δ] = C𭟋[κ] = 𭟋. Thus δ ∈ 𭟋,
which shows that C𭟋(R) ⊆ 𭟋. Now, if δ ∈ 𭟋, then C𭟋[δ] = 𭟋 and so
C𭟋[δ] ∩ R = 𭟋 ∩ R = R ̸= ∅. Hence δ ∈ C𭟋(R) and so F ⊆ C𭟋(R).
Therefore, C𭟋(R) = 𭟋.

(iii) Let G be a filter of ℏ. If ν ∈ 𭟋, then C𭟋[ν] = 𭟋 and 1 ∈ 𭟋 ∩G =
C𭟋[ν] ∩ G and so ν ∈ C𭟋(G). Hence 𭟋 ⊆ C𭟋(G). Assume that 𭟋 ⊆ G.
By Proposition 2.3(i), it is clear that G ⊆ C𭟋(G) and C𭟋(G) ⊆ G. If

δ ∈ C𭟋(G), then C𭟋[δ] ∩ G ̸= ∅. Hence C𭟋[δ] = C𭟋[κ], for some κ ∈ G. It
follows that δ → κ ∈ 𭟋 ⊆ G and κ → δ ∈ 𭟋 ⊆ G. Since G is a filter of ℏ
and κ ∈ G, we have δ ∈ G and so G = C𭟋(G). Let ν ∈ G. If a ∈ C𭟋[ν],
then a → ν, ν → a ∈ 𭟋 ⊆ G. Since G is a filter of ℏ, it follows that a ∈ G,
and so C𭟋[ν] ⊆ G and ν ∈ C𭟋(G). Thus C𭟋(G) = G. Conversely, suppose

C𭟋(G) = G = C𭟋(G) and ν ∈ 𭟋. Since 1 ∈ C𭟋[ν] ∩ G = 𭟋 ∩ G, we have

ν ∈ C𭟋(G) = G. Thus 𭟋 ⊆ G.
(iv) It is clear by (ii).
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The following corollary is obtained from Theorem 3.8.

Corollary 3.9. In an 𭟋-approximation space (ℏ, C𭟋), every filter con-
taining 𭟋 is a rough filter of ℏ and every nonempty subset contained in 𭟋
is an upper rough filter of ℏ.

Proposition 3.10. Let (ℏ, C𭟋) be an 𭟋-approximation space in which ℏ
is bounded. Then the upper rough approximation operator C𭟋 satisfies
¬C𭟋(R) ⊆ C𭟋(¬R) for all nonempty subset R of ℏ.

Proof: Let ν ∈ ¬C𭟋(R). Then ν = ¬δ for some δ ∈ ℏ such that C𭟋[δ] ∩
R ̸= ∅. Hence there exists κ ∈ R such that C𭟋[δ] = C𭟋[κ], which implies
that C𭟋[ν] = C𭟋[¬δ] = C𭟋[¬κ]. Since ¬κ ∈ ¬R, we get C𭟋[ν] ∩ ¬R =
C𭟋[¬κ] ∩ ¬R ̸= ∅. Hence ν ∈ C𭟋(¬R). Therefore, ¬C𭟋(R) ⊆ C𭟋(¬R).

Now by below example we show that the reverse inclusion in Proposition
3.10 is not true, in general.

Example 3.11. Let ℏ = {0, η, β, ζ, 1} be a poset with the following Hasse
diagram. Define the operations ⊙ and → on ℏ as follows,

1

ζ

η β

0

→ 0 η β ζ 1
0 1 1 1 1 1
η β 1 β 1 1
β η η 1 1 1
ζ 0 η β 1 1
1 0 η β ζ 1

⊙ 0 η β ζ 1
0 0 0 0 0 0
η 0 η 0 η η
β 0 0 β β β
ζ 0 η β ζ ζ
1 0 η β ζ 1

Then (ℏ,⊙,→, 0, 1) is a bounded hoop. Suppose 𭟋 = {ζ, 1}. Then
C𭟋[ζ] = C𭟋[1] = {ζ, 1}, C𭟋[η] = {η}, C𭟋[β] = {β} and C𭟋[0] = {0}.
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Thus C𭟋(ℏ) = ℏ and ¬C𭟋(ℏ) = {0, η, β, 1}. Also, ¬ℏ = {0, η, β, 1} and so
C𭟋(¬ℏ) = ℏ. Hence, C𭟋(¬ℏ) ⊈ ¬C𭟋(ℏ).

In the following example we show that lower rough approximation op-
erator C𭟋 does not satisfies in the condition of Proposition 3.10.

Example 3.12. Let ℏ be the hoop as in Example 3.11 and R = {β, 1}.
Then C𭟋(R) = {β} and so ¬C𭟋(R) = {η}. Moreover, ¬R = {0, η} and so
C𭟋(¬R) = {0, η}. Hence, C𭟋(¬R) ⊈ ¬C𭟋(R). Also, if R = {0, η, β}, then
C𭟋(R) = {0, η, β} and so ¬C𭟋(R) = {η, β, 1}. Moreover, ¬R = {η, β, 1}.
Then C𭟋(¬R) = {η, β}. Hence, ¬C𭟋(R) ⊈ C𭟋(¬R). Therefore, lower
rough approximation operator C𭟋 does not satisfies in the condition of
Proposition 3.10.

Proposition 3.13. If (ℏ, C𭟋) is an 𭟋-approximation space and R is a
nonempty subset of ℏ, then

(i) DNP (ℏ) ∩ C𭟋(¬R) ⊆ ¬C𭟋(¬(¬R)).

(ii) DNP (ℏ) ∩ C𭟋(¬(R ∩DNP (ℏ))) ⊆ ¬C𭟋(R).

Proof: (i) If κ ∈ DNP (ℏ) ∩ C𭟋(¬R), then ¬(¬κ) = κ and since κ ∈
C𭟋(¬R), there exists ν ∈ R such that C𭟋[κ] = C𭟋[¬ν].

It follows that C𭟋[¬κ]∩¬(¬R) = C𭟋(¬[¬ν])∩¬(¬R) ̸= ∅, that is, ¬κ ∈
C𭟋(¬(¬R)). Hence κ ∈ ¬C𭟋(¬(¬R)). Therefore, DNP (ℏ) ∩ C𭟋(¬R) ⊆
¬C𭟋(¬(¬R)).

(ii) Let δ ∈ DNP (ℏ) ∩ C𭟋(¬(R ∩ DNP (ℏ))). Then ¬(¬δ) = δ and
C𭟋[δ]∩¬(R∩DNP (ℏ)) ̸= ∅. Thus there exists κ ∈ C𭟋[δ]∩¬(R∩DNP (ℏ)),
it means that, C𭟋[δ] = C𭟋[κ] and there exists ν ∈ R ∩DNP (ℏ) such that
κ = ¬ν and so C𭟋[δ] = C𭟋[¬ν]. Then C𭟋[¬δ]∩R = C𭟋[¬(¬ν)]∩R = C𭟋[ν]∩
R ̸= ∅, that is, δ ∈ ¬C𭟋(R). Therefore, DNP (ℏ)∩ C𭟋(¬(R∩DNP (ℏ))) ⊆
¬C𭟋(R).

Proposition 3.14. If ℏ is a bounded hoop, then the set ℏ⋆ := {κ ∈ ℏ |
¬κ = 0} is a filter of ℏ.

Proof: Since ¬1 = 0, we have 1 ∈ ℏ⋆. Consider κ, ν ∈ ℏ so that κ, κ →
ν ∈ ℏ⋆. Then ¬κ = 0 and ¬(κ → ν) = 0. Considering Proposition 2.2(i)
and ν ≤ ¬¬ν, we get κ → ν ≤ κ → ¬¬ν = ¬ν → ¬κ. Hence

¬ν = ¬¬¬ν = ¬(¬ν → 0) = ¬(¬ν → ¬κ) ≤ ¬(κ → ν) = 0,

and so ¬ν = 0, that is, ν ∈ ℏ⋆. So it is proved that ℏ⋆ is a filter of ℏ.
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Corollary 3.15. If (ℏ, C𭟋) is an 𭟋-approximation space in which ℏ is
bounded, then

𭟋 ⊆ C𭟋(ℏ⋆) ⊆ 𭟋⋆,

where 𭟋⋆ := {δ ∈ ℏ | ¬(¬δ) ∈ 𭟋}.

Proof: By Theorem 3.8(iii) and Proposition 3.14, we know that 𭟋 ⊆
C𭟋(ℏ⋆). Let κ ∈ C𭟋(ℏ⋆). Then C𭟋[κ] ∩ ℏ⋆ ̸= ∅, which implies that there
exists a ∈ C𭟋[κ] such that ¬a = 0. Thus C𭟋[0] = C𭟋[¬a] = C𭟋[¬κ], and so
¬(¬κ) = ¬κ → 0 ∈ 𭟋, i.e., κ ∈ 𭟋⋆.

We provide conditions for a nonempty subset to be definable with re-
spect to a filter of ℏ.

Theorem 3.16. Let (ℏ, C𭟋) be an 𭟋-approximation space. Then a non-
empty subset R of ℏ is definable with respect to 𭟋 if and only if C𭟋(R) = R

or C𭟋(R) = R.

Proof: The necessity is clear. Conversely, suppose C𭟋(R) = R. By

Proposition 2.3(i), it is clear that R ⊆ C𭟋(R). Suppose κ ∈ C𭟋(R). Then
C𭟋[κ] ∩ L ̸= ∅. Thus, there exists ν ∈ C𭟋[κ] ∩ L, such that C𭟋[κ] = C𭟋[ν].
Since ν ∈ R and C𭟋(R) = R, we have ν ∈ C𭟋(R). Then C𭟋[ν] ⊆ R.

Thus, C𭟋[κ] ⊆ R, and so κ ∈ R. Hence, C𭟋(R) ⊆ R and so C𭟋(R) = R.
Therefore, C𭟋(R) = R = C𭟋(R) and R is definable. Now, assume that

C𭟋(R) = R. Obviously, C𭟋(R) ⊆ R. For any κ ∈ R, let δ ∈ C𭟋[κ]. Then

C𭟋[δ] ∩ R = C𭟋[κ] ∩ R ̸= ∅ and so δ ∈ C𭟋(R) = R. Hence C𭟋[κ] ⊆ R, i.e.,
κ ∈ C𭟋(R). Then C𭟋(R) = R = C𭟋(R). Therefore, R is definable with
respect to 𭟋.

Theorem 3.17. Let 𭟋 and G be two filters of a hoop ℏ. For any nonempty
subset 𭟋 of a hoop ℏ, we have

(i) If R ⊆ 𭟋 ∩G, then C𭟋∩G(R) = C𭟋(R) ∩ CG(R).

(ii) If R is definable with respect to 𭟋, then C𭟋∩G(R) = C𭟋(R)∩CG(R).

(iii) If R contains 𭟋 and G, then C𭟋∩G(R) = C𭟋(R) ∩ CG(R).

Proof: (i) Let κ ∈ C𭟋∩G(R). Then C𭟋∩G[κ] ∩ R ̸= ∅. Thus there exists
a ∈ C𭟋∩G[κ] ∩ R. Since a ∈ R and R ⊆ 𭟋 ∩ G, we get a ∈ 𭟋 and
a ∈ G. Moreover, from a ∈ C𭟋∩G[κ], we get a → κ, κ → a ∈ 𭟋 ∩ G.
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Since 𭟋 and G are two filters of ℏ, we have κ ∈ 𭟋 and κ ∈ G. Then
C𭟋[κ] = C𭟋[a], and so C𭟋[κ] ∩ R ̸= ∅. By the similar way, CG[κ] ∩ R ̸= ∅.
Hence, κ ∈ C𭟋(R) ∩ CG(R). Therefore, C𭟋∩G(R) ⊆ C𭟋(R) ∩ CG(R).

Conversely, suppose κ ∈ C𭟋(R) ∩ CG(R). Since κ ∈ C𭟋(R), we have
C𭟋[κ]∩R ̸= ∅. Then there exists a ∈ C𭟋[κ]∩R such that κ → a, a → κ ∈ 𭟋.
By the similar way, there exists b ∈ CG[κ]∩R such that b → κ, κ → b ∈ G.
Since a, b ∈ R, R ⊆ 𭟋 ∩ G and 𭟋 and G are two filters of ℏ, we have
κ ∈ 𭟋 ∩ G and a, b ∈ 𭟋 ∩ G. The C𭟋∩G[κ] = C𭟋∩G[a] = C𭟋∩G[b]. Hence,
C𭟋∩G[κ]∩R ̸= ∅, and so κ ∈ C𭟋∩G(R). Thus, C𭟋(R)∩ CG(R) ⊆ C𭟋∩G(R).
Therefore, C𭟋(R) ∩ CG(R) = C𭟋∩G(R).

(ii) Suppose R is definable with respect to 𭟋. Then C𭟋(R) = R =
C𭟋(R). Thus, C𭟋(R)∩CG(R) = R∩CG(R) = R. Moreover, by defination of

upper approximation, we have R ⊆ C𭟋∩G(R). Now, suppose κ ∈ C𭟋∩G(R).
Then C𭟋∩G[κ]∩R ̸= ∅. Let ν ∈ C𭟋∩G[κ]∩R. Since ν ∈ R and R is definable
with respect to 𭟋, we get C𭟋[ν] ⊆ R. Also, from ν ∈ C𭟋∩G[κ], we obtain,
κ → ν, ν → κ ∈ 𭟋 ∩ G ⊆ 𭟋. Then κ ∈ C𭟋[ν] ⊆ R, and so κ ∈ R.
Hence, C𭟋∩G(R) ⊆ R. Thus, C𭟋∩G(R) = R. Therefore, C𭟋∩G(R) =
C𭟋(R) ∩ CG(R).

(iii) Let R be a filter of a hoop ℏ containing 𭟋 and G and κ ∈ C𭟋∩G(R).
Then C𭟋∩G[κ] ⊆ R, and so κ ∈ R. Thus, for any a ∈ C𭟋[κ], we have
a → κ, κ → a ∈ 𭟋. Since R is a filter of ℏ such that 𭟋 ⊆ R and κ ∈ R,
we get a ∈ R. By the similar way, for any b ∈ CG[κ], we have b ∈ R.
Hence, C𭟋[κ] ⊆ R and CG[κ] ⊆ R. Then κ ∈ C𭟋(R) and κ ∈ CG(R), and
so κ ∈ C𭟋(R) ∩ CG(R). Hence, C𭟋∩G(R) ⊆ C𭟋(R) ∩ CG(R).

Conversely, suppose κ ∈ C𭟋(R) ∩ CG(R). Then κ ∈ C𭟋(R) and κ ∈
CG(R), C𭟋[κ] ⊆ R, CG[κ] ⊆ R and so κ ∈ R. Let ν ∈ C𭟋∩G[κ]. Then by
assumption, ν → κ, κ → ν ∈ 𭟋∩G ⊆ R. Since κ → ν ∈ R, κ ∈ R and R is a
filter of ℏ, we get ν ∈ R, and so C𭟋∩G[κ] ⊆ R. Thus, κ ∈ C𭟋∩G(R). Hence,
C𭟋(R) ∩ CG(R) ⊆ C𭟋∩G(R). Therefore, C𭟋(R) ∩ CG(R) = C𭟋∩G(R).

Lemma 3.18. Let f : ℏ → k be a homomorphism of hoops. Then

(i) ker(f) = {κ ∈ ℏ | f(κ) = 1} is a filter of ℏ.

(ii) If f is an epimorphism such that 𭟋 is a filter of ℏ and Kerf ⊆ 𭟋 ,
then f(𭟋) is a filter of k.

Proof: (i) Since f is a homomorphism of hoops, it is clear that f(1) =
1 ∈ kerf . Suppose κ, ν ∈ ℏ such that κ, κ → ν ∈ kerf . Then f(κ) =
f(κ → ν) = 1. Since f is a homomorphism of hoop, we have f(ν) = 1 →
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f(ν) = f(κ) → f(ν) = f(κ → ν) = 1. Hence, f(ν) = 1, and so ν ∈ kerf .
Therefore, kerf is a filter of ℏ.

(ii) Since f is a hoop homomorphism and 𭟋 is a filter of ℏ, it is clear that
1 = f(1) ∈ f(𭟋). Suppose κ, κ → ν ∈ f(𭟋). Then there are a, b ∈ 𭟋 such
that f(a) = κ and f(b) = κ → ν. Since f is onto and ν ∈ k, there exists
c ∈ ℏ such that f(c) = ν. Thus f(b) = κ → ν = f(a) → f(c) = f(a → c).
Thus b → (a → c) ∈ Kerf ⊆ 𭟋. Since b ∈ 𭟋 and 𭟋 is a filter of ℏ, we have
a → c ∈ 𭟋. From 𭟋 is a filter of ℏ, a ∈ 𭟋 and a → c ∈ 𭟋, we get c ∈ 𭟋.
Hence, ν = f(c) ∈ f(𭟋). Therefore, f(𭟋) is a filter of k.

Theorem 3.19. Let f : ℏ → k be an isomorphism of hoops. Then

(i) f(Cker(f)(R)) = f(R) for any nonempty subset R of ℏ.

(ii) If G is a filter of k, then f−1(CG(f(R)) = Cf−1(G)(R) for any
nonempty subset R of ℏ.

(iii) Assume that f is onto. If 𭟋 is a filter of ℏ which contains ker(f),
then f(C𭟋(R)) = Cf(𭟋)(f(R)) for any nonempty subset R of ℏ.

Proof: (i) Since by Lemma 3.18, kerf is a filter of ℏ, by Proposition 2.3(i),
we have R ⊆ Cker(f)(R), and so it is clear that f(R) ⊆ f(Cker(f)(R)).

Suppose ν ∈ f(Cker(f)(R)). Then there exists κ ∈ Cker(f)(R) such that

f(κ) = ν. Since κ ∈ Cker(f)(R), we have Cker(f)[κ] ∩ R ̸= ∅. Then there
is δ ∈ Cker(f)[κ] ∩ R such that Cker(f)[κ] = Cker(f)[δ] and δ ∈ R. Thus,
κ → δ, δ → κ ∈ ker(f). So, f(κ) → f(δ) = f(δ) → f(κ) = 1. Hence,
f(κ) = f(δ). Since δ ∈ R, we have ν = f(κ) = f(δ) ∈ f(R). Hence,
f(Cker(f)(R)) ⊆ f(R). Therefore, f(Cker(f)(R)) = f(R).

(ii) Let κ ∈ f−1(CG(f(R)). Then f(κ) ∈ CG(f(R)), and so CG[f(κ)] ∩
f(R) ̸= ∅. Thus ν ∈ CG[f(κ)] ∩ f(R). So CG[f(κ)] = CG[ν] and ν ∈
f(R). Thus, there exists δ ∈ R such that f(δ) = ν, and so f(δ) ∈ CG[ν].
Then CG[f(δ)] = CG[f(κ)]. Thus, f(κ → δ) ∈ G and f(δ → κ) ∈ G
and so κ → δ, δ → κ ∈ f−1(G). Hence, Cf−1(G)[κ] = Cf−1(G)[δ], and so

δ ∈ Cf−1(G)[κ] ∩ R. Therefore, κ ∈ Cf−1(G)(R). The proof of converse is
similar.

(iii) Suppose f is onto and 𭟋 is a filter of ℏ which contains ker(f). Then
by Lemma 3.18, f(𭟋) is a filter of k. Let ν ∈ f(C𭟋(R)). Then there exists
κ ∈ C𭟋(R) such that ν = f(κ). Since κ ∈ C𭟋(R), we have C𭟋[κ] ∩ R ̸= ∅.
Then there exists a ∈ C𭟋[κ]∩R such that f(a) ∈ f(R), and C𭟋[κ] = C𭟋[a],
and so κ → a, a → κ ∈ 𭟋. Thus, f(κ) → f(a), f(a) → f(κ) ∈ f(𭟋).
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Hence, from ν = f(κ) we get Cf(𭟋)[ν] = Cf(𭟋)[f(κ)] = Cf(𭟋)[f(a)]. So

f(a) ∈ Cf(𭟋)[ν]∩ f(R) ̸= ∅. Then ν ∈ Cf(𭟋)[f(R)]. Therefore, f(C𭟋(R)) ⊆
Cf(𭟋)(f(R)).

Conversely, let κ ∈ Cf(𭟋)(f(R)). Then Cf(𭟋)[κ] ∩ f(R) ̸= ∅. Since f is
onto, there exists a ∈ ℏ such that f(a) = κ. Suppose ν ∈ Cf(𭟋)[κ] ∩ f(R).
Then there exist b ∈ R such that f(b) = ν. Since ν ∈ Cf(𭟋)[κ], we have
ν → κ, κ → ν ∈ f(𭟋). Thus there are m, n ∈ 𭟋 such that ν → κ = f(m)
and κ → ν = f(n). So f(b) → f(a) = f(m) and f(a) → f(b) = f(n).
Since kerf ⊆ 𭟋 and m ∈ 𭟋, we get (b → a) → m ∈ 𭟋 and m → (b →
a) ∈ 𭟋, and so b → a ∈ 𭟋. By the similar way, a → b ∈ 𭟋. Thus
C𭟋[a] = C𭟋[b]. Morever, from b ∈ C𭟋[b] ∩ R, we get b ∈ C𭟋(R), and
so ν ∈ f(b) ∈ f(C𭟋(R)). Hence, Cf(𭟋)(f(R)) ⊆ f(C𭟋(R)). Therefore,

f(C𭟋(R)) = Cf(𭟋)(f(R)).

We define a hyper operation “⊛” on ℏ as follows:

⊛ : ℏ× ℏ → P(ℏ), (κ, ν) 7→ {δ ∈ ℏ | κ⊙ ν ≤ δ}.

For any κ, ν ∈ ℏ, ⊛(κ, ν) will be denoted by κ ⊛ ν, that is, κ ⊛ ν := {δ ∈
ℏ | κ ⊙ ν ≤ δ}. It is clear that the operation “⊛” is commutative and
associative. For any nonempty subsets 𭟋 and G of a hoop ℏ, we define

𭟋⊛G :=
⋃

κ∈𭟋, ν∈G

κ⊛ ν. (3.1)

Example 3.20. Let H be the hoop as in Example 3.11. Suppose F = {ζ, 1}.
Then by routine calculation, it is clear that κ ⊛ 0 = β ⊛ η = ℏ for any
κ ∈ ℏ, η ⊛ η = η ⊛ 1 = η ⊛ ζ = {η, ζ, 1}, β ⊛ β = ζ ⊛ β = β ⊛ 1 =
{β, ζ, 1}, ζ ⊛ ζ = ζ ⊛ 1 = {ζ, 1}.
Now, if we consider K = {η, 1} and G = {ζ}, which are two nonempty
subsets of ℏ, then K ⊛G :=

⋃
κ∈K, ν∈G

κ⊛ ν = {η, ζ, 1}.

Theorem 3.21. If 𭟋 and G are two filters of ℏ, then 𭟋⊛G is the smallest
filter of ℏ which contains 𭟋 and G.

Proof: Let 𭟋 and G be two filters of a hoop ℏ. Then 1 ∈ 𭟋 and 1 ∈ G,
and so 1 ⊛ 1 = {κ ∈ ℏ | 1 = 1 ⊙ 1 ≤ κ} = {1}. Thus 1 ∈ 𭟋 ⊛ G. Now,
suppose κ, ν ∈ ℏ such that κ, κ → ν ∈ 𭟋⊛G. Since 𭟋⊛G :=

⋃
a∈𭟋, b∈G

a⊛b,

there exist a, c ∈ 𭟋 and b, d ∈ G such that κ ∈ a⊛b and κ → ν ∈ c⊛d. Thus
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κ ∈ a⊛ b = {δ ∈ ℏ | a⊙ b ≤ δ} and κ → ν ∈ c⊛ d = {w ∈ ℏ | c⊙ d ≤ w}.
So, a⊙ b ≤ κ and c⊙d ≤ κ → ν. By Proposition 2.1(vii) and (xi), we have

(a⊙ c)⊙ (b⊙ d) ≤ a⊙ b⊙ c⊙ d ≤ κ⊙ c⊙ d ≤ κ⊙ (κ → ν) ≤ ν.

Then (a⊙ c)⊙ (b⊙ d) ≤ ν. Since 𭟋 and G are two filters of ℏ, a, c ∈ 𭟋 and
b, d ∈ G, we have a⊙c ∈ 𭟋 and b⊙d ∈ G. Hence ν ∈ (a⊙c)⊛(b⊙d) ⊆ 𭟋⊛G,
and so 𭟋 ⊛ G is a filter of ℏ. Suppose J is a filter of ℏ which contains
𭟋 and G. If κ ∈ 𭟋 ⊛ G, then there are a ∈ 𭟋 and b ∈ G such that
κ ∈ a ⊛ b = {δ ∈ ℏ | a ⊙ b ≤ δ}. Since J is a filter of ℏ and 𭟋, G ⊆ J , we
get a, b ∈ J and so a⊙ b ∈ J . Thus, κ ∈ J . Hence, 𭟋⊛G ⊆ J . Therefore,
𭟋⊛G is the smallest filter of ℏ which contains 𭟋 and G.

Proposition 3.22. Let 𭟋 be a filter of a hoop ℏ. Then for all R,P ∈
P(ℏ) \ {∅}, we have:

C𭟋(R)⊛ C𭟋(P ) ⊆ C𭟋(R⊛ P ) ⊆ C𭟋(R)⊛ C𭟋(P ).

Proof: Let κ ∈ C𭟋(R)⊛C𭟋(P ) =
⋃

a∈C𭟋(R), b∈C𭟋(P )

a⊛ b. Then there exist

a ∈ C𭟋(R) and b ∈ C𭟋(P ) such that κ ∈ a ⊛ b. It means a ⊙ b ≤ x. On
the other hand, C𭟋[a] ⊆ L, and C𭟋[b] ⊆ M , so a ∈ L, and b ∈ M . Then
a⊛b ⊆ L⊛M =

⋃
κ∈R, ν∈P

κ⊛ν. Now, since a⊙b ≤ x and a⊛b ∈ R⊛P , we

get κ ∈ R⊛ P . We have C𭟋[x] ∩ (R⊛ P ) ̸= ∅. Therefore κ ∈ C𭟋(R⊛ P ).
For the second part, let κ ∈ C𭟋(R⊛ P ). Then C𭟋[κ] ∩ (R⊛ P ) ̸= ∅. Thus
there exists ν ∈ C𭟋[κ]∩(R⊛P ). Since ν ∈ C𭟋[κ], we have C𭟋[κ] = C𭟋[ν] and
from ν ∈ R⊛P , we get that there are a ∈ R and b ∈ P such that ν ∈ a⊛b.
Moreover, since a ∈ C𭟋[a] and a ∈ R, we obtain that a ∈ C𭟋[a] ∩R, and so
a ∈ C𭟋(R). By the similar way, b ∈ C𭟋[b] ∩ P , and so b ∈ C𭟋(P ). Hence
a⊛b ⊆ C𭟋(R)⊛C𭟋(P ), and so ν ∈ C𭟋(R)⊛C𭟋(P ). Thus C𭟋[κ]∩(R⊛P ) ⊆
C𭟋(R)⊛ C𭟋(P ). Therefore, C𭟋(R⊛ P ) ⊆ C𭟋(R)⊛ C𭟋(P ).

We provide conditions for the equality in Proposition 3.22 to be true.

Theorem 3.23. Let 𭟋 be a filter of a hoop ℏ and R,P are two nonempty
subsets of ℏ.

(i) If R,P ⊆ 𭟋, then C𭟋(R⊛ P ) = C𭟋(R)⊛ C𭟋(P ).

(ii) If R and P are definable with respect to 𭟋, then C𭟋(R) ⊛ C𭟋(P ) =
C𭟋(R⊛ P )
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Proof: (i) According to the Theorem 3.8(ii), if R,P ⊆ 𭟋, then C𭟋(R) =
C𭟋(P ) = 𭟋. Since R⊛P =

⋃
κ∈R,ν∈P

{δ ∈ ℏ | κ⊙ ν ≤ δ}, R,P ⊆ 𭟋 and 𭟋 is

a filter of ℏ, we obtain κ⊙ ν ∈ 𭟋, and so δ ∈ 𭟋. Hence R ⊛ P ⊆ 𭟋 which
means C𭟋(R⊛ P ) = 𭟋. Therefore C𭟋(R⊛ P ) = C𭟋(R)⊛ C𭟋(P ).

(ii) According to Proposition 3.22, we have C𭟋(R)⊛ C𭟋(P ) ⊆ C𭟋(R⊛
P ) ⊆ C𭟋(R)⊛ C𭟋(P ). Since R and P are definable with respect to 𭟋, we
get R ⊛ P ⊆ C𭟋(R ⊛ P ) ⊆ R ⊛ P . It implies that C𭟋(R ⊛ P ) = R ⊛ P .
Since C𭟋(R ⊛ P ) = R ⊛ P , by Theorem 3.16 we get C𭟋(R ⊛ P ) = R ⊛ P .
Therefore, C𭟋(R⊛ P ) = R⊛ P = C𭟋(R⊛ P ).

Lemma 3.24. Let ℏ be a linearly ordered hoop and 𭟋 be a filter of ℏ. If
a ≤ b and C𭟋[a] ̸= C𭟋[b], then for any u ∈ C𭟋[a] and for any v ∈ C𭟋[b]
we have u ≤ v.

Proof: Let a ≤ b and C𭟋[a] ̸= C𭟋[b]. Suppose that u ≰ v. Since ℏ is a
linearly ordered hoop, we get v ≤ u. So v → u = 1. On the other hand, we
have u ∈ C𭟋[a] and so u → a, a → u ∈ 𭟋. By Proposition 2.1(ix), we have
v → u ≤ (u → a) → (v → a). It implies that v → a ∈ 𭟋. Since v ∈ C𭟋[b]
we have v → b, b → v ∈ 𭟋. Also, since a ≤ b, by Proposition 2.1(xi) we
have b → v ≤ a → v. So a → v ∈ 𭟋. Then v ∈ C𭟋[a] and v ∈ C𭟋[b],
thus v ∈ C𭟋[a] ∩ C𭟋[b]. Hence, C𭟋[a] = C𭟋[b], which is a contradiction.
Therefore, v ≤ u.

Theorem 3.25. Let ℏ be a linearly ordered hoop, (ℏ,𭟋) be an approxima-
tion space and R be a filter of ℏ. Then R is an upper rough filter of ℏ.

Proof: If a ≤ b and a ∈ C𭟋(R), then C𭟋[a] ∩ R ̸= ∅. So there is an
element u ∈ R such that C𭟋[a] = C𭟋[u]. If C𭟋[a] = C𭟋[b], then clearly
b ∈ C𭟋(R). If C𭟋[a] ̸= C𭟋[b], then by Lemma 3.24, we obtain u ≤ b. Since
u ∈ R and R is a filter of ℏ, we get b ∈ R. Thus, C𭟋[b] ∩ R ̸= ∅, and so
b ∈ C𭟋(R).
Let a, b ∈ C𭟋(R). Then C𭟋[a] ∩ R ̸= ∅ and C𭟋[b] ∩ R ̸= ∅. Hence there
exist u ∈ C𭟋[a] ∩R and v ∈ C𭟋[b] ∩R. Since C𭟋[u] = C𭟋[a] and C𭟋[v] =
C𭟋[b], u, v ∈ R, and R is a filter of ℏ, we have u⊙ v ∈ R and C𭟋[u⊙ v] =
C𭟋[a⊙ b]. So u⊙ v ∈ C𭟋[a⊙ b]∩R ̸= ∅. Hence a⊙ b ∈ C𭟋(R). Therefore,
C𭟋(R) is a filter of ℏ.

Theorem 3.26. Let 𭟋 and G be two nonempty subsets of a linearly ordered
hoop ℏ and G be a filter of ℏ. Then C𭟋(R⊛ P ) = C𭟋(R)⊛ C𭟋(P ).
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Proof: Let n ∈ C𭟋(R)⊛C𭟋(P ). Then there are u ∈ C𭟋(R) and v ∈ C𭟋(P )
such that n ∈ u⊛v and so u⊙v ≤ n. Since C𭟋[u]∩L ̸= ∅ and C𭟋[v]∩M ̸= ∅,
we get that there are a ∈ L and b ∈ M such that C𭟋[a] = C𭟋[u] and
C𭟋[b] = C𭟋[v]. Hence C𭟋[a⊙ b] = C𭟋[u]⊙ C𭟋[v], and so, a⊙ b ∈ L⊙M .
If C𭟋[n] ̸= C𭟋[u⊙ v], then by Lemma 3.24, since a⊙ b ∈ C𭟋[u⊙ v], we get
a⊙b ≤ n. Then n ∈ L⊛M . Hence C𭟋[n]∩(L⊛M) ̸= ∅. On the other hand,
if C𭟋[n] = C𭟋[u⊙v], then by hypothesis we get C𭟋[n]∩(L⊛M) ̸= ∅. Thus
n ∈ C𭟋(R⊛ P ). Therefore, C𭟋(R)⊛ C𭟋(P ) ⊆ C𭟋(R⊛ P ). By Proposition
3.22, the proof of converse is clear.

Theorem 3.27. The algebraic structure (F(ℏ),⊛) is a semilattice, where
F(ℏ) is the set of all filters of a hoop ℏ.

Proof: By Theorem 3.21, it is clear that (F(ℏ),⊛) is well-defined. Also,
according to definition of operation ⊛, we get (F(ℏ),⊛) is associative and
commutative. It is enough to prove that the operation ⊛ is idempotent.
For this, let 𭟋 ∈ F(ℏ) and δ ∈ 𭟋⊛𭟋. Then there exist κ, ν ∈ 𭟋 such that
κ ⊙ ν ≤ δ. Since 𭟋 is a filter of ℏ, and κ, ν ∈ 𭟋, we have κ ⊙ ν ∈ 𭟋 and
so δ ∈ 𭟋. Hence 𭟋⊛𭟋 ⊆ 𭟋. Conversely, since 𭟋 ∈ F(ℏ), we have 1 ∈ 𭟋.
Then for any κ ∈ 𭟋, 1⊙κ ≤ κ and so κ ∈ 𭟋⊛𭟋. Thus 𭟋 ⊆ 𭟋⊛𭟋. Hence
𭟋 = 𭟋⊛𭟋. Therefore, (F(ℏ),⊛) is a semilattice.

Corollary 3.28. The algebraic structure (F(ℏ),⊛, {1}) is a commutative
monoid.

Let 𭟋 be a filter of a hoop ℏ. Then each filter of ℏ which contains 𭟋 is
rough filter according to Theorem 3.8(iii). The set of all rought filters of
hoop ℏ which contain 𭟋 is denoted by RF(ℏ).
Let K and G be two filters of ℏ. We define the implication relation on F(ℏ)
as follows:

K → G = {κ ∈ ℏ | K ∩ ⟨κ⟩ ⊆ G}. (3.2)

Theorem 3.29. The set RF(ℏ) is closed under the operation ” → ”.

Proof: Let K and G be two filters of RF(ℏ). Then, 𭟋 ⊆ G,K. Let
κ ∈ 𭟋. Since 𭟋 ⊆ K, we get ⟨κ⟩ ⊆ 𭟋 ⊆ K and so K ∩ ⟨κ⟩ ⊆ K ∩ 𭟋 ⊆
𭟋 ⊆ G. Thus, K ∩ ⟨κ⟩ ⊆ G, for any κ ∈ 𭟋. Hence 𭟋 ⊆ K → G. Hence,
K → G ∈ RF(ℏ).
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Theorem 3.30. The algebraic structure (RF(ℏ),∩,→, ℏ) is a hoop.

Proof: According to definition of ∩, we get (RF(ℏ),∩, ℏ) is associative
and commutative. So (RF(ℏ),∩, ℏ) is a commutative monoid. It is enough
to prove that the other properties hold. Since G → G = {κ ∈ ℏ | G∩⟨κ⟩ ⊆
G}, it is clear that G → G = ℏ. Let κ ∈ (G ∩ K) → J . It means
⟨κ⟩ ∩ (G ∩K) ⊆ J = (⟨κ⟩ ∩G) ∩K ⊆ J . Then ⟨κ⟩ ∩G ⊆ K → J . Hence,
κ ∈ G → (K → J). The proof of other side is similar. Moreover, since
G ∩ (G → K) = G ∩ {κ ∈ ℏ | G ∩ ⟨κ⟩ ⊆ K} = {κ ∈ G | ⟨κ⟩ ⊆ K}, we have
G∩(G → K) = G∩K. By the similar way, we have K∩(K → G) = K∩G.
Hence G ∩ (G → K) = K ∩ (K → G). Therefore, (RF(ℏ),∩,→, ℏ) is a
hoop.

4. Conclusions and future works

In this paper, by considering the notion of a hoop, the notion of the lower
and the upper approximations are introduced and some properties of them
are given. Moreover, it is proved that the lower and the upper approxima-
tions are an interior operator and a closure operator, respectively. Also,
a hyper operation on hoop is defined and then it is shown that the set
of all rough filters is a monoid by using this operation. For more study,
the implicative operation on the set of all rough filters is introduced and
proved that this set with implication and intersection is made a hoop. For
the future work, we want to use the notion of soft and rough hoop and
introduce soft rough and rough soft on hoops.
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AN (α, β)-HESITANT FUZZY SET APPROACH TO
IDEAL THEORY IN SEMIGROUPS

Abstract

The aim of this manuscript is to introduce the (α, β)-hesitant fuzzy set and apply

it to semigroups. In this paper, as a generalization of the concept of hesitant fuzzy

sets to semigroup theory, the concept of (α, β)-hesitant fuzzy subsemigroups of

semigroups is introduced, and related properties are discussed. Furthermore, we

define and study (α, β)-hesitant fuzzy ideals on semigroups. In particular, we in-

vestigate the structure of (α, β)-hesitant fuzzy ideal generated by a hesitant fuzzy

ideal in a semigroup. In addition, we also introduce the concepts of (α, β)-hesitant

fuzzy semiprime sets of semigroups, and characterize regular semigroups in terms

of (α, β)-hesitant fuzzy left ideals and (α, β)-hesitant fuzzy right ideals. Finally,

several characterizations of regular and intra-regular semigroups by the properties

of (α, β)-hesitant ideals are given.

Keywords: α-hesitant (α-hesitant) fuzzy set, (α, β)-hesitant fuzzy subsemigroup,

(α, β)-hesitant fuzzy ideal, (α, β)-hesitant fuzzy semiprime set, regular semi-

group.
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1. Introduction

An (α, β)-hesitant fuzzy set on a semigroup is a generalization of the con-
cept of fuzzy subsets, interval-valued fuzzy sets and hesitant fuzzy sets
in semigroups. A hesitant fuzzy set theory is an excellent tool to handle
the uncertainty in case of insufficient data. Many authors studied differ-
ent aspects of hesitant fuzzy sets (see [1, 5, 14, 19, 20]). Also, hesitant
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fuzzy set theory is used in decision making problem etc. (see [12, 16]),
and is applied to BCK/BCI-algebras and UP-algebras (see [10, 11, 13]).
The notion of interval-valued fuzzy sets has been applied to theory of semi-
groups [4]. They considered characterizations of left [right] simple, left
[right] duo and a semilattice of left [right] simple semigroups. In 2012,
Khan, Jun and Abbas [8] characterized regular (resp.intra-regular, simple
and semisimple) ordered semigroups by their (∈,∈ ∨q)-fuzzy interior ide-
als (resp. (∈,∈ ∨q)-fuzzy ideals). Also they proved that the an ordered
semigroup S is simple if and only if it is (∈,∈ ∨q)-fuzzy simple. In 2013,
Yaqoob [18] characterized regular LA-semigroups by the properties of in-
terval valued intuitionistic fuzzy left ideals [right ideal, generalized bi-ideal
and bi-ideal]. In 2014, Jun, Ahn and Muhiuddin [6] applied the notion of
hesitant fuzzy soft sets to BCK/BCI-algebras. They introduced the notions
of hesitant fuzzy soft subalgebras and (closed) hesitant fuzzy soft ideals
and investigated several properties. In 2015, Jun, Lee, and Song [7] intro-
duced the notion of hesitant fuzzy (generalized) bi-ideals on a semigroup,
which is a generalization of interval valued fuzzy (generalized) bi-ideals. In
2016, Khan et al. [9] applied the notion of interval-valued fuzzy subsets to
ordered semigroups, and proved that the intersection of non-empty class
of interval-valued fuzzy interior ideals of an ordered semigroup is also an
interval-valued fuzzy interior ideal. In 2017, Tang, Davvaz and Xie [15] de-
fined and studied the completely prime, weakly completely prime and com-
pletely semiprime fuzzy quasi-Γ-hyperideals of ordered Γ-semihypergroups,
and characterized bi-regular ordered Γ-semihypergroups by the proper-
ties of completely semiprime fuzzy quasi-Γ-hyperideals. In 2018, Abbasi
et al. [2] gave the concept of hesitant fuzzy ideals and 3-prime hesitant
fuzzy ideals in po-semigroup, which is a generalization of fuzzy ideals and
3-prime fuzzy ideals in po-semigroups. In 2019, Arulmozhi, Chinnadurai
and Swaminathan [3] introduced the notion of interval valued

(
η̄, δ̄
)
-bipolar

fuzzy ideal, bi-ideal,interior ideal, (∈,∈ ∨q)-bipolar fuzzy ideal of ordered
Γ-semigroups and established some properties of bipolar fuzzy ideals in
terms of (∈̄, ∈̄ ∨ q)-bipolar fuzzy ideals. In 2020, Yairayong [17] applied
the theory of hesitant fuzzy sets to completely regular semigroups and
introduced the notion of hesitant fuzzy semiprime sets and hesitant fuzzy
idempotent sets on semigroups, which is a generalization of fuzzy semiprime
and fuzzy idempotent sets. He also proved that the every hesitant fuzzy
two-sided ideal on a semigroup S is a hesitant fuzzy interior ideal if and
only if S is a semisimple semigroup.
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The aim of this manuscript is to introduce the (α, β)-hesitant fuzzy set
and apply it to semigroups. The rest contents of this paper are arranged as
follows. In Section 2, we present the fundamental concepts and properties
of α-hesitant (α-hesitant) fuzzy sets, (α, β)-hesitant fuzzy subsemigroups
and (α, β)-hesitant fuzzy ideals, which form the basis of our subsequent
discussion. In this regard, we prove that that every hesitant fuzzy set on a
semigroup S is (α, β)-hesitant fuzzy left (right, two-sided) ideal if and only
if β(S⊙H) ⊆ αH(β(H⊙S) ⊆ αH, β ((S ⊙H) ∪ (H⊙ S)) ⊆ αH). We prove
that the non empty subset of a semigroup S is a subsemigroup (left ideal,
right ideal, two-sided ideal) of S if and only if the hesitant fuzzy set on S
is the (α, β)-hesitant fuzzy subsemigroup ((α, β)-hesitant fuzzy left ideal,
(α, β)-hesitant fuzzy right ideal, (α, β)-hesitant fuzzy two-sided ideal) on
S. In Section 3, we define the notions of (α, β)-hesitant fuzzy semiprime
sets and equivalent definitions of them. Some related properties of them are
obtained. In this paper, we give characterizations of semigroups in terms of
(α, β)-hesitant fuzzy ideals, and characterize regular semigroups in terms
of (α, β)-hesitant fuzzy left ideals and (α, β)-hesitant fuzzy right ideals.
Finally, several characterizations of regular and intra-regular semigroups
by the properties of (α, β)-hesitant ideals are given.

2. α-hesitant (α-hesitant) fuzzy sets

In this section, we present the fundamental concepts and properties of
α-hesitant (α-hesitant) fuzzy sets, (α, β)-hesitant fuzzy subsemigroups and
(α, β)-hesitant fuzzy ideals, which form the basis of our subsequent dis-
cussion. In this regard, we prove that that every hesitant fuzzy set on a
semigroup S is (α, β)-hesitant fuzzy left (right, two-sided) ideal if and only
if β(S⊙H) ⊆ αH(β(H⊙S) ⊆ αH, β ((S ⊙H) ∪ (H⊙ S)) ⊆ αH). We prove
that the non empty subset of a semigroup S is a subsemigroup (left ideal,
right ideal, two-sided ideal) of S if and only if the hesitant fuzzy set on S
is the (α, β)-hesitant fuzzy subsemigroup ((α, β)-hesitant fuzzy left ideal,
(α, β)-hesitant fuzzy right ideal, (α, β)-hesitant fuzzy two-sided ideal) on
S. These notions will be helpful in later sections.

Let H : S → P([0, 1]) be a hesitant fuzzy set on a semigroup S and let α
be any element of P([0, 1]). Then the α-hesitant fuzzy set (α-hesitant
fuzzy set) on S is defined as αHx = Hx∪α (αHx = Hx ∩ α) for all x ∈ S.
Next, we define the hesitant fuzzy set over a semigroup S. If Hx = [0, 1]
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for all x ∈ S, then it is easy to see that H is a hesitant fuzzy set on a
semigroup S. We denote such type of hesitant fuzzy set H by S.

The proof of them is straightforward, so we omit it.

Lemma 2.1. Let S be a hesitant fuzzy set on a semigroup S and let α be
any element of P([0, 1]). The following statements are true.

1. αS = S.

2. αS = α.

Next, we denote byH(S) the set of all hesitant fuzzy sets on a semigroup
S. Let H and F be any elements of H(S). Then, H is said to be a subset
of F , denoted by H ⪯ F if Hx ⊆ Fx for all x ∈ S.

Now we are giving some basic properties of hesitant fuzzy subsemi-
groups on a semigroup S, which will be very helpful in later section.

Theorem 2.2. Let H be a hesitant fuzzy subsemigroup on a semigroup S.
Then, the following statements are true:

1. If α is an element of P([0, 1]), then αH is a hesitant fuzzy subsemi-
group on S.

2. If α is an element of P([0, 1]), then αH is a hesitant fuzzy subsemi-
group on S.

Proof: 1. Let x and y be any elements of S and let α ∈ P([0, 1]). Then,
it is clear that

αHxy = Hxy ∪ α
⊇ (Hx ∩Hy) ∪ α
= (Hx ∪ α) ∩ (Hy ∪ α)
= αHy

x.

This completes the proof.
2. Let x and y be any elements of S and let α ∈ P([0, 1]). Since H is a

hesitant fuzzy subsemigroup on S, we obtain

αHxy = Hxy ∩ α
⊇ (Hx ∩Hy) ∩ α
= (Hx ∩ α) ∩ (Hy ∩ α)
= αHy

x.

From here, we obtain that αH is a hesitant fuzzy subsemigroup on S.
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For a non empty family of a hesitant fuzzy sets {Hi : i ∈ I}, on a semi-

group S. The symbols
⋃
i∈I

Hi and
⋂
i∈I

Hi will mean the following hesitant

fuzzy sets:

(⋃
i∈I

Hi

)
x

=
⋃
i∈I

(Hi)x

and (⋂
i∈I

Hi

)
x

=
⋂
i∈I

(Hi)x.

If I is a finite set, say I = {1, 2, 3, . . . , n}, then clearly
⋃
i∈I

Hi = H1 ∪H2 ∪

. . . ∪Hn and
⋂
i∈I

Hi = H1 ∩H2 ∩ . . . ∩Hn (see [7]).

Theorem 2.3. Let H and G be two hesitant fuzzy sets of a semigroup S.
Then, the following statements are true:

1. If α is an element of P([0, 1]), then α (H ∩ G) = αH ∩ αG.

2. If α is an element of P([0, 1]), then α (H ∩ G) = αH ∩ αG.

3. If α is an element of P([0, 1]), then α (H ∪ G) = αH ∪ αG.

4. If α is an element of P([0, 1]), then α (H ∪ G) = αH ∪ αG.

Proof: 1. Let x be any element of S. For every α ∈ P([0, 1]) we have

α (H ∩ G)x = (H ∩H)x ∪ α
= (Hx ∩ Gx) ∪ α
= (Hx ∪ α) ∩ (Gx ∪ α)
= αHx ∩ αGx

= (αH ∩ αG)x ,

which implies that α (H ∩ G) = αH ∩ αG for all α ∈ P([0, 1]).
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2. Let x be any element of S. Then, for every α ∈ P([0, 1]), we have

α (H ∩ G)x = (H ∩H)x ∩ α
= (Hx ∩ Gx) ∩ α
= (Hx ∩ α) ∩ (Gx ∩ α)
= αHx ∩ αGx

= (αH ∩ αG)x .

This completes the proof.
3–4. It can be proved similarly to 1.

Now we introduce the notion of (α, β)-hesitant fuzzy subsemigroups on
a semigroup.

Definition 2.4. Let H be a hesitant fuzzy set on a semigroup S and let
α, β be any element of P([0, 1]). Then H is said to be an (α, β)-hesitant
fuzzy subsemigroup on S if αHxy ⊇ βHy

x for any x, y ∈ S.

Thus every hesitant fuzzy subsemigroup on a semigroup S is an (α, β)-
hesitant fuzzy subsemigroup with α = ∅ and β = [0, 1]. Thus every hesitant
fuzzy subsemigroups on S is an (α, β)-hesitant fuzzy subsemigroup on S.
However, the converse is not necessarily true as shown in the following
example.

Example 2.5. Consider the semigroup S = {a, b, c, d} with the following
multiplication “ · ” table below:

· a b c d
a a a a a
b a a a a
c a a a b
d a a b c

We define the hesitant fuzzy set H : S → P([0, 1]) on S as follows:

Hx =

 [0.7, 0.8) ∪ (0.8, 0.9] ; x ∈ {a, b}
(0.2, 0.8) ; x ∈ {c}
{0, 0.1, 0.2, 0.3} ; otherwise.

Then, as is easily seen, H is an ([0, 3] , {0, 0.1, 0.2})-hesitant fuzzy sub-
semigroup on S, but not a hesitant fuzzy subsemigroup on S. Since



An (α, β)-Hesitant Fuzzy Set Approach to Ideal Theory. . . 389

Hd
c = Hd ∩ Hc = {0, 0.1, 0.2, 0.3} ∩ (0.2, 0.8) = {0.3}, while Hd·c = Hb =

[0.7, 0.8) ∪ (0.8, 0.9].

Now we have the following result:

Theorem 2.6. If H and G are any (α, β)-hesitant fuzzy subsemigroups on
a semigroup S, then H ∩ G is an (α, β)-hesitant fuzzy subsemigroup on S.

Proof: Let x and y be any elements of S. Since H and G are both (α, β)-
hesitant fuzzy subsemigroups on S, we have

α (H ∩ G)xy = (Hxy ∩ Gxy) ∪ α

= (Hxy ∪ α) ∩ (Gxy ∪ α)
= αHxy ∩ αGxy

⊇ βHy
x ∩ βGy

x

= (Hx ∩Hy ∩ β) ∩ (Gx ∩ Gy ∩ β)
= (Hx ∩ Gx) ∩ (Hy ∩ Gy) ∩ β

=
(
(H ∩ G)x ∩ (H ∩ G)y

)
∩ β

= β (H ∩ G)yx .

Therefore, H ∩ G is an (α, β)-fuzzy subsemigroup on S.

The following corollary follows from Theorem 2.6 and the definition of
(α, β)-hesitant fuzzy subsemigroup on a semigroup S

Corollary 2.7. If Hi is an (α, β)-hesitant fuzzy subsemigroup on a semi-

group S for all i ∈ I, then
⋂
i∈I

Hi is an (α, β)-hesitant fuzzy subsemigroup

on S.

Let F and G be two hesitant fuzzy sets on a semigroup, the hesitant
fuzzy product (see [7]) of F and G is defined to be a hesitant fuzzy set
F ⊙ G on S which is given by

(F ⊙ G)x =


⋃

x=yz

Fy ∩ Gz; ∃y, z ∈ S, such that x = yz

∅; otherwise.

As is well known, the operation “⊙” is associative.
Next, we proved that every hesitant fuzzy set on a semigroup S is

(α, β)-hesitant fuzzy subsemigroup if and only if β(H⊙H) ⊆ αH.



390 Pairote Yiarayong

Theorem 2.8. For a hesitant fuzzy set H on a semigroup S, the following
two statements are equivalent:

1. H is an (α, β)-hesitant fuzzy subsemigroup on S.

2. β(H⊙H) ⊆ αH.

Proof: First assume that H is an (α, β)-hesitant fuzzy subsemigroup on
S. Let x be any element of S such that it is not expressible as product of two
elements in S. Observe that β(H⊙H)x = (H⊙H)x∩β = ∅∩β = ∅ ⊆ αHx.
Otherwise, there exist elements y and z of S such that x = yz. Thus, by
hypothesis we have

β(H⊙H)x = (H⊙H)x ∩ β

=

( ⋃
x=ab

Ha ∩Hb

)
∩ β

=
⋃

x=ab

(Ha ∩Hb ∩ β)

⊆
⋃

x=ab

(Hab ∪ α)

= Hx ∪ α
= αHx.

Therefore β(H⊙H) ⊆ αH.
Conversely, assume that H is a hesitant fuzzy set on S such that β(H⊙

H) ⊆ αH. Let x, y and z be any elements of S. Now, choose x = yz. Thus,
we obtain

αHyz = αHx

⊇ β(H⊙H)x
= (H⊙H)x ∩ β

=

( ⋃
x=ab

Ha ∩Hb

)
∩ β

⊇ (Hy ∩Hz) ∩ β
= βHz

y.

Therefore, the proof is completed.

Now, we can introduce the (α, β)-hesitant fuzzy ideals on a semigroup,
in the following manner:
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Definition 2.9. Let H be a hesitant fuzzy set on a semigroup S. Then H
is said to be an (α, β)-hesitant fuzzy left ideal ((α, β)-hesitant right
ideal) on S if αHxy ⊇ βHy (

αHxy ⊇ βHx) for any x, y ∈ S. A hesitant
fuzzy set H is an (α, β)-hesitant fuzzy ideal (or (α, β)-hesitant fuzzy
two-sided ideal) on S if and only if it is both (α, β)-hesitant fuzzy left
and right ideal onS.

Remark 2.10. Let H be a hesitant fuzzy set on a semigroup S. Then, the
following statements are true:

1. If H is an (α, β)-hesitant fuzzy left (right) ideal on S, then H is an
(α, β)-hesitant fuzzy subsemigroup on S.

2. A hesitant fuzzy left ideal (right ideal, ideal) on S is an (α, β)-fuzzy
left ideal (right ideal, ideal) with α = ∅ and β = [0, 1]. Thus every
hesitant fuzzy left ideal (right ideal, ideal) on S is an (α, β)-fuzzy left
ideal (right ideal, ideal) on S.

However, the converse is not necessarily true as shown in the following
example.

Example 2.11.

1. Consider the semigroup S = {a, b, c, d} with the following multiplica-
tion “ · ” table below:

· a b c d
a a a a a
b a b c a
c a a a a
d a d a a

Now, we define a hesitant fuzzy set H : S → P ([0, 1]) by

Hx =

{
[0, 0.85) ; x ∈ {a, b}
{0, 0.22, 0.42, 0.52} ; otherwise.

Let α = (0.52, 0.62] and β = {0.12, 0.22, 0.32, 0.52}. Then, as is easily
seen, H is an (α, β)-hesitant fuzzy subsemigroup on S, but H is not
an (α, β)-hesitant fuzzy left (right) ideal on S. Because
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(0.52,0.62]Hd·b = Hd ∪ (0.52, 0.62]
= {0, 0.22, 0.42, 0.52} ∪ (0.5, 0.6]
= {0, 0.22, 0.42} ∪ [0.52, 0.62]
̸⊇ {0.12, 0.22, 0.32, 0.52}
= [0, 0.8) ∩ {0.12, 0.22, 0.32, 0.52}
= Hb ∩ {0.12, 0.22, 0.32, 0.52}
= {0.12,0.22,0.32,0.52}Hb.

2. Suppose that S is the semigroup of Example 2.11 (1). Now, we define
a hesitant fuzzy set F : S → P [0, 1] by

Fx =

{
{0, 0.52, 0.62} ; x ∈ {a, b}
[0, 0.52) ; otherwise.

Let α = [0, 0.72) and β = (0.52, 0.62). Then, as is easily seen, F is an
(α, β)-hesitant fuzzy ideal on S, but F is not a hesitant fuzzy ideal
on S. Because Fd·b = Fd = [0, 0.5) ̸⊇ {0, 0.5, 0.6} = Fb.

By Theorem 2.2 and Definition 2.9, we immediately obtain the following
theorem:

Theorem 2.12. Let H be a hesitant fuzzy left (right, two-sided) ideal on a
semigroup S. Then the following properties hold.

1. If α is an element of P([0, 1]), then αH is a hesitant fuzzy left (right,
two-sided) ideal on S.

2. If α is an element of P([0, 1]), then αH is a hesitant fuzzy left (right,
two-sided) ideal on S.

Next, we proved that every hesitant fuzzy set on a semigroup S is
(α, β)-hesitant fuzzy left (right, two-sided) ideal if and only if β(S ⊙H) ⊆
αH(β(H⊙ S) ⊆ αH, β ((S ⊙H) ∪ (H⊙ S)) ⊆ αH).

Theorem 2.13. For a hesitant fuzzy set H on a semigroup S, the following
statements are equivalent:

1. H is an (α, β)-hesitant fuzzy left (right, two-sided) ideal on S.

2. β(S ⊙H) ⊆ αH(β(H⊙ S) ⊆ αH, β ((S ⊙H) ∪ (H⊙ S)) ⊆ αH).

Proof: First assume that H is an (α, β)-hesitant fuzzy left ideal on S.
Let x be any element of S such that it is not expressible as product of two
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elements in S, we can write β(S ⊙H)x = (S ⊙H)x ∩β = ∅∩β = ∅ ⊆ αHx.
Otherwise, there exist elements y and z of S such that x = yz. Since H is
an (α, β)-hesitant fuzzy left ideal on S, it follows that

β(S ⊙H)x = (S ⊙H)x ∩ β

=

( ⋃
x=ab

Sa ∩Hb

)
∩ β

=
⋃

x=ab

([0, 1] ∩Hb ∩ β)

=
⋃

x=ab

(Hb ∩ β)

⊆
⋃

x=ab

(Hab ∪ α)

= Hx ∪ α
= αHx.

Therefore β(S ⊙H) ⊆ αH.
Conversely, assume that H is a hesitant fuzzy set on S such that β(S ⊙

H) ⊆ αH. Let y and z be any elements of S. Choose x ∈ S such that
x = yz. Since

αHyz = αHx

⊇ β(S ⊙H)x
= (S ⊙H)x ∩ β

=

( ⋃
x=ab

Sa ∩Hb

)
∩ β

⊇ (Sy ∩Hz) ∩ β
= ([0, 1] ∩Hz) ∩ β
= βHz,

we obtain H is an (α, β)-hesitant fuzzy left ideal on S.

In the following we show that if H and G are two (α, β)-hesitant fuzzy
left (right, two-sided) ideals on a semigroup, then H ∩ G and H ∪ G are
(α, β)-hesitant fuzzy left (right, two-sided) ideals on S.

Theorem 2.14. Let H and G be two (α, β)-hesitant fuzzy left (right, two-
sided) ideals on a semigroup S. Then the following statements hold:

1. H ∩ G is an (α, β)-hesitant fuzzy left (right, two-sided) ideal on S.

2. H ∪ G is an (α, β)-hesitant fuzzy left (right, two-sided) ideal on S.
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Proof: 1. The proof follows from Theorem 2.6.
2. By Theorem 2.13, we have

β (S ⊙ (H ∪ G)) = β ((S ⊙H) ∪ (S ⊙ G))
= β (S ⊙H) ∪ β (S ⊙ G)
⊆ αH ∪ αG
= α (H ∩ G) .

Therefore, we obtain H ∪ G is an (α, β)-fuzzy left ideal on S.

The following two corollaries are exactly obtained from Theorem 2.14.

Theorem 2.15. Let Hi be an (α, β)-hesitant fuzzy left (right, two-sided)
ideal on a semigroup S for all i ∈ I. Then the following statements hold:

1.
⋂
i∈I

Hi is an (α, β)-hesitant fuzzy left (right, two-sided) ideal on S.

2.
⋃
i∈I

Hi is an (α, β)-hesitant fuzzy left (right, two-sided) ideal on S.

Now, we define a γ-cut (or γ-level set) of the hesitant fuzzy set H on a
semigroup S and then we present some results in this connection.

Let H be a hesitant fuzzy set on a semigroup S. For each γ ∈ P([0, 1]),
the set

U (H : γ) = {x ∈ S : Hx ⊇ γ}

is said to be a γ-cut (or γ-level set) of H.
In the following, we characterize an (α, β)-hesitant fuzzy subsemigroup

((α, β)-hesitant fuzzy left ideal, (α, β)-hesitant fuzzy right ideal, (α, β)-
hesitant fuzzy two-sided ideal) on semigroups in terms γ-level subsemi-
groups (left ideal, right ideal, two-sided ideal).

Theorem 2.16. Let H be a hesitant fuzzy set on a semigroup S. Then the
following statements hold:

1. For each γ ∈ P([0, 1]) such that γ ⊆ α ∪ β, the non empty set
U (αH : γ) is a subsemigroup of S if and only if H is an (α, β)-
hesitant fuzzy subsemigroup on S.

2. For each γ ∈ P([0, 1]) such that γ ⊆ α ∪ β, the non empty set
U (αH : γ) is a left ideal of S if and only if H is an (α, β)-hesitant
fuzzy left ideal on S.
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3. For each γ ∈ P([0, 1]) such that γ ⊆ α ∪ β, the non empty set
U (αH : γ) is a right ideal of S if and only if H is an (α, β)-hesitant
fuzzy right ideal on S.

4. For each γ ∈ P([0, 1]) such that γ ⊆ α ∪ β, the non empty set
U (αH : γ) is an ideal of S if and only if H is an (α, β)-hesitant
fuzzy ideal on S.

Proof: 1. First assume that the non empty set U (αH : γ) is a subsemi-
group of S. Let x and y be any elements of S. Choose γ ∈ P([0, 1]) such
that γ = αHy

x. Then we have αHx ⊇ γ and αHy ⊇ γ, which implies that
x, y ∈ U (αH : γ). Thus xy ∈ U (αH : γ), since U (αH : γ) is a subsemi-
group of S. This implies that αHxy ⊇ γ = αHy

x ⊇ Hy
x ∩ β = βHy

x and so H
is an (α, β)-hesitant fuzzy subsemigroup on S.

Conversely, assume that H is an (α, β)-hesitant fuzzy subsemigroup
on S. Let x and y be any elements of S such that x, y ∈ U (αH : γ) for all
γ ∈ P([0, 1]). We obtain that αHx ⊇ γ and αHy ⊇ γ. By hypothesis,

αHxy = αHxy ∪ α
⊇ (βHy

x) ∪ α
= (Hx ∩Hy ∩ β) ∪ α
= (Hx ∪ α) ∩ (Hy ∪ α) ∩ (β ∪ α)
= αHx ∩ αHy ∩ (β ∪ α)
⊇ γ ∩ γ ∩ (β ∪ α)
= γ.

Therefore xy ∈ U (αH : γ) and the theorem is proved.
2–4. The proof is similar to 1.

Let A be a subset of a semigroup S and let δ, ζ ∈ P([0, 1]) such that
δ ̸= ζ. Recall that the (δ, ζ)-characteristic function Cδ

ζA
for a subset A of

S is defined by (
Cδ
ζA

)
x
=

{
δ; x ∈ A
ζ; otherwise.

Observe that if A = S, then it is easy to see that C[0,1]
ζ S

= S.

Lemma 2.17. Let Cδ
ζA

and Cδ
ζB

be two (δ, ζ)-characteristic functions on a
semigroup S. Then the following statements hold:

1. Cδ
ζA

∩ Cδ
ζB

= Cδ
ζA∩B

.

2. Cδ
ζA

⊙ Cδ
ζB

= Cδ
ζAB

.
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Proof: It is straightforward.

Now, the result follows from fundamental theorem of (δ, ζ)-characteristic
function.

Theorem 2.18. Let A be a subset of a semigroup S and let δ, ζ ∈ P([0, 1])
such that δ ⊃ ζ. Then the following statements hold:

1. If A is a subsemigroup of S, then αCδ
ζA

is an (α, β)-hesitant fuzzy
subsemigroup on S.

2. If A is a left ideal of S, then αCδ
ζA

is an (α, β)-hesitant fuzzy left ideal
on S.

3. If A is a right ideal of S, then αCδ
ζA

is an (α, β)-hesitant fuzzy right
ideal on S.

4. If A is an ideal of S, then αCδ
ζA

is an (α, β)-hesitant fuzzy ideal on S.

Proof: 1. Let x and y be any elements of S. We consider the following
cases:

1. x, y ∈ A.

2. x /∈ A or y /∈ A.

Case 1: Assume that x, y ∈ A. Thus
(
Cδ
ζA

)
x
= δ and

(
Cδ
ζA

)
y
= δ.

Since A is a subsemigroup of S, we obtain xy ∈ A, which implies that

α
(
αCδ

ζA

)
xy

=
(
Cδ
ζA

)
xy

∪ α = δ ∪ α =

((
Cδ
ζA

)
x
∩
(
Cδ
ζA

)
y

)
∪ α ⊇((

Cδ
ζA

)
x
∩
(
Cδ
ζA

)
y

)
∩ β = β

(
Cδ
ζA

)y
x
.

Case 2: Assume that x /∈ A or y /∈ A. Then we have
(
Cδ
ζA

)
x
= ζ or(

Cδ
ζA

)
y
= ζ, which implies that

α
(
αCδ

ζA

)
xy

=
(
Cδ
ζA

)
xy

∪ α

⊇ ζ ∪ α

=
(
αCδ

ζA

)
x
∩
(
αCδ

ζA

)
y

⊇
((

αCδ
ζA

)
x
∩
(
αCδ

ζA

)
y

)
∩ β

= β

(
αCδ

ζA

)y
x
.
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Therefore, αCδ
ζA

is an (α, β)-hesitant fuzzy subsemigroup on S.
2–4. The proof is similar to 1.

The following theorem shows that a non empty subset of a semigroup S
is a subsemigroup (left ideal, right ideal, two-sided ideal) of S if and only
if the hesitant fuzzy set on S is the (α, β)-hesitant fuzzy subsemigroup
((α, β)-hesitant fuzzy left ideal, (α, β)-hesitant fuzzy right ideal, (α, β)-
hesitant fuzzy two-sided ideal) on S.

Theorem 2.19. Let A be a subset of a semigroup S and let δ, ζ ∈ P([0, 1])
such that δ ⊃ ζ. Then the following properties hold.

1. For each ζ ∪α ̸⊇ δ ∪α ⊆ α∪ β, A is a subsemigroup of S if and only
if αCδ

ζA
is an (α, β)-hesitant fuzzy subsemigroup on S.

2. For each ζ ∪ α ̸⊇ δ ∪ α ⊆ α ∪ β, A is a left ideal of S if and only if
αCδ

ζA
is an (α, β)-hesitant fuzzy left ideal on S.

3. For each ζ ∪ α ̸⊇ δ ∪ α ⊆ α ∪ β, A is a right ideal of S if and only if
αCδ

ζA
is an (α, β)-hesitant fuzzy right ideal on S.

4. For each ζ ∪α ̸⊇ δ∪α ⊆ α∪β, A is an ideal of S if and only if αCδ
ζA

is an (α, β)-hesitant fuzzy ideal on S.

Proof: 1. By Theorem 2.18, the necessity is clear. Now let us show
the sufficiency. We suppose now that αCδ

ζA
is an (α, β)-hesitant fuzzy

subsemigroup on S. Let x be any element of S such that x ∈ A. Observe

that α
(
Cδ
ζA

)
x
=
(
Cδ
ζA

)
x
∪α = δ∪α implies that x ∈ U

(
αCδ

ζA
: δ ∪ α

)
. On

the other hand, let x be any element of S such that x ∈ U
(
αCδ

ζA
: δ ∪ α

)
.

Thus we have α
(
Cδ
ζA

)
x
⊇ δ ∪ α implies that x ∈ A, since ζ ∪ α ̸⊇ δ ∪ α.

Therefore A = U
(
αCδ

ζA
: δ ∪ α

)
and hence it follows from Theorem 2.16(1)

that A is a subsemigroup of S.
2–4. The proof is similar to 1.

The next result covers some basic properties, which will be useful in the
sequel.
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Theorem 2.20. lf H is an (α, β)-hesitant fuzzy right (left) ideal on a semi-
group S, then H ∪ (S ⊙H) is an (α, β)-hesitant fuzzy ideal on S.

Proof: Then, by Theorem 2.13, we have

β (S ⊙ (H ∪ (S ⊙H))) = β ((S ⊙H) ∪ (S ⊙ (S ⊙H)))
= β (S ⊙H) ∪ (β (S ⊙ S)⊙ βH)
= β (S ⊙H) ∪ (β (S ⊙ S)⊙ βH)
⊆ α (S ⊙H) ∪ (αS ⊙ αH)
= α (S ⊙H) ∪ α (S ⊙H)
⊆ αH ∪ α (S ⊙H)
= α (H ∪ (S ⊙H)) ,

since S is an (α, β)-hesitant fuzzy left ideal on S. Thus, we obtain, H ∪
(S ⊙H) is an (α, β)-hesitant fuzzy left ideal on S. Also, we have

β ((H ∪ (S ⊙H))⊙ S) = β ((H⊙ S) ∪ ((S ⊙H)⊙ S))
= β (H⊙ S) ∪ β ((S ⊙H)⊙ S)
⊆ αH ∪ (βS ⊙ β (H⊙ S))
⊆ αH ∪ (αS ⊙ αH)
= α (H ∪ (S ⊙H)) ,

since H is an (α, β)-hesitant fuzzy right ideal on S. Therefore H∪ (S ⊙H)
is an (α, β)-hesitant fuzzy right ideal on S and the proof is completed.

3. Characterizing regular semigroups

In this section we define the concept of (α, β)-hesitant fuzzy idempotent
sets on semigroups and then by using this idea we characterize the regular
semigroups in terms of hesitant fuzzy left ideals, hesitant fuzzy right ideals
and hesitant fuzzy ideals.

Recall that an element x is said to be regular if there exists an element
s in a semigroup S such that x = xsx. A semigroup S is said to be regular
if every element of S is regular.

First, we define the operation “≃α
β” on a semigroup S. Let α and β be

any elements of P([0, 1]). We consider two hesitant fuzzy sets H and G on a
semigroup S. Then we have, H ≃α

β G if and only if βH ⊆ αG and βG ⊆ αH.
A hesitant fuzzy set H on a semigroup S is said to be (α, β)-idempotent
if H ≃α

β H⊙H.



An (α, β)-Hesitant Fuzzy Set Approach to Ideal Theory. . . 399

Theorem 3.1. Every (α, β)-hesitant fuzzy right (left) ideal on a regular
semigroup is (α, β)-idempotent.

Proof: Let H be an (α, β)-hesitant fuzzy right ideal on a regular semi-
group S. Then by Theorem 2.13, we obtain that β (H⊙H) ⊆ β (H⊙ S) ⊆
αH. On the other hand, let x be any element of S. Then, since S is regular,
there exists an element s in S such that x = xsx. Therefore

α (H⊙H)x = (H⊙H)x ∪ α

=

( ⋃
x=ab

Ha ∩Hb

)
∪ α

⊇ (Hxs ∩Hx) ∪ α
= (Hxs ∪ α) ∩ (Hx ∪ α)
⊇ αHxs ∩ βHx

⊇ βHx ∩ βHx

= βHx

i.e., α (H⊙H) ⊇ βH and the proof is now complete.

By Theorem 3.1, we immediately obtain the following corollary:

Corollary 3.2. Every (α, β)-hesitant fuzzy ideal on a regular semigroup
is (α, β)-idempotent.

In the following theorem we give a characterization of a semigroup that
is regular in terms of (α, β)-hesitant fuzzy right ideals and (α, β)-hesitant
fuzzy left ideals.

Theorem 3.3. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪ α ̸⊇
δ ∩ β. For a semigroup S, the following statements are equivalent:

1. S is regular.

2. For every (α, β)-hesitant fuzzy right ideal H and every (α, β)-hesitant
fuzzy left ideal F on S, H ∩ F ≃α

β H⊙F .

Proof: First assume that S is a regular semigroup. Let H be any (α, β)-
hesitant fuzzy right ideal and F any (α, β)-hesitant fuzzy left ideal on
S. Then by Theorem 2.13, we obtain that β (H⊙F) ⊆ β (H⊙ S) ⊆ αH
and β (H⊙F) ⊆ β (S ⊙ F) ⊆ αF . Consequently we have β (H⊙F) ⊆
αH ∩ αF = α (H ∩ F). On the other hand, let x be any element of S.
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Then, since S is regular, there exists an element s in S such that x = xsx.
Observe that

α (H⊙F)x = (H⊙F)x ∪ α

=

( ⋃
x=ab

Ha ∩ Fb

)
∪ α

⊇ (Hxs ∩ Fx) ∪ α

= (Hxs ∪ α) ∩ (Fx ∪ α)

⊇ βHx ∩ (Fx ∩ β)

= βHx ∩ βFx

= β (H ∩ F)x

implies that α (H⊙F) ⊇ β (H ∩ F). Therefore H ∩ F ≃α
β H ⊙ F and so

(1) implies (2).
Conversely, assume that (2) holds. Let R and L be any right ideal and

any left ideal of S, respectively. In order to see that R∩L ⊆ RL holds, let
x be any element of R∩L. Then by Theorem 2.18, the (δ, ζ)-characteristic
functions αCδ

ζR
and αCδ

ζL
of R and L is an (α, β)-hesitant fuzzy right ideal

and an (α, β)-hesitant fuzzy left ideal on S, respectively. Then it follows
from Lemma 2.17, it follows that(

αCδ
ζRL

)
x

=
(
Cδ
ζRL

)
x
∪ α

=
(
Cδ
ζR

⊙ Cδ
ζL

)
x
∪ α

= α
(
Cδ
ζR

⊙ Cδ
ζL

)
x

⊇ β

(
Cδ
ζR

∩ Cδ
ζL

)
x

= β

(
Cδ
ζR∩L

)
x

=
(
Cδ
ζR∩L

)
x
∩ β

= δ ∩ β.
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Hence x ∈ RL and so R ∩ L ⊆ RL. Since the inclusion in the other
direction always holds, we obtain that R ∩ L = RL. Therefore S is a
regular semigroup and so (2) implies (1).

Recall that a semigroup S is said to be right (left) zero if xy = y(xy =
x) for all x, y ∈ S. Now, we can give the main result.

Theorem 3.4. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪ α ̸⊇
δ ∩ β. For a regular semigroup S, the following statements are equivalent:

1. The set E(S) of all (α, β)-idempotents of S forms a left (right) zero
subsemigroup of S.

2. For every (α, β)-hesitant fuzzy left (right) ideal H on S,Hx ≃α
β Hy

for all x, y ∈ E(S).

Proof: First assume that (1) holds. Let H be an (α, β)-hesitant fuzzy
left ideal on S and let x, y ∈ E(S). Since E(S) is a left zero subsemigroup
of S, we have xy = x and yx = y. Observe that αHx = αHxy ⊇ βHy and
αHy = αHyx ⊇ βHx, implies that Hx ≃α

β Hy and hence (1) implies (2).
Conversely, assume that (2) holds. Let x be any element of S. Since

S is regular, there exists an element s ∈ S such that x = xsx. Now
(xsxs)(xsxs) = (xsx)s(xsx)s = xsxs ∈ E(S), implies that E(S) is non
empty. Thus it follows from Theorem 2.18(2) that the (δ, ζ)-characteristic
function αCδ

ζ Sy
of the principal left ideal Sy of S is an (α, β)-hesitant fuzzy

left ideal on S. Clearly,
(
αCδ

ζ Sy

)
x
⊇
(
βCδ

ζ Sy

)
y
= δ ∩β, which implies that

x ∈ Sy. Therefore, there exist s ∈ S such that x = sy = s(yy) = (sy)y =
xy. Hence E(S) is a left zero subsemigroup of S and so (2) implies (1).

By Theorem 3.4, we immediately obtain the following corollary:

Corollary 3.5. Let ζ and δ be any elements of P ([0, 1]) such that ζ∪α ̸⊇
δ ∩ β. For a regular semigroup S, the following statements are equivalent:

1. The set E(S) of all (α, β)-idempotents of S forms an zero subsemi-
group of S.

2. For every (α, β)-hesitant fuzzy ideal H on S,Hx ≃α
β Hy for all x, y ∈

E(S).

Recall that a semigroup S is said to be left (right) regular if for each
element x of S, there exists an element s ∈ S such that x = sx2(x = x2s).
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From the above discussion, we can immediately obtain the following
theorems.

Theorem 3.6. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪ α ̸⊇
δ ∩ β. For a semigroup S, the following conditions are equivalent.

1. S is left regular.

2. For every (α, β)-hesitant fuzzy left ideal H on S,Hx ≃α
β Hx2 for all

x ∈ S.

Proof: First assume that (1) holds. Let H be any (α, β)-hesitant fuzzy
left ideal on S and let x any element of S. Then, since S is left regular,
there exists an element s in S such that x = sx2. Hence we have, αHx =
αHsx2 ⊇ βHx2 and αHx2 ⊇ βHx. Therefore Hx ≃α

β Hx2 and so (1) implies
(2).

Conversely, assume that (2) holds. Let x be any element of S. Then it
follows from Theorem 2.18(2) that the (δ, ζ)-characteristic function αCδ

ζ Sx2

of the principal left ideal x2 ∪Sx2 of S is an (α, β)-hesitant fuzzy left ideal

on S. Since x2 ∈ x2 ∪ Sx2, we have
(
αCδ

ζ x2∪Sx2

)
x
⊇
(
βCδ

ζ x2∪Sx2

)
x2

=(
Cδ
ζ x2∪Sx2

)
x2

∩ β = δ ∩ β. This implies that x ∈ x2 ∪ Sx2. Hence S is left

regular and so (2) implies (1).

From Theorem 3.6 we can easily obtain the following corollary.

Corollary 3.7. Let ζ and δ be any elements of P ([0, 1]) such that ζ∪α ̸⊇
δ ∩ β. For a semigroup S, the following conditions are equivalent.

1. S is right regular.

2. For every (α, β)-hesitant fuzzy right ideal H on S,Hx ≃α
β Hx2 for all

x ∈ S.

Recall that a subset A of a semigroup S is said to be semiprime if
for all x ∈ S, x2 ∈ A implies x ∈ A. Now, we give the definition of (α, β)-
hesitant fuzzy semiprime set on a semigroup S, which is a generalization
of the notion of hesitant fuzzy semiprime sets.

A hesitant fuzzy set H on a semigroup S is said to be (α, β)-hesitant
fuzzy semiprime if αHx ⊇ βHx2 for all x ∈ S.
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Theorem 3.8. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪ α ̸⊇
δ ∩ β. If P is a non empty subset of a semigroup S, then the following
conditions are equivalent:

1. P is semiprime.

2. The (δ, ζ)-characteristic function αCδ
ζ P

of P is an (α, β)-hesitant
fuzzy semiprime.

Proof: First assume that P is a semiprime set of S. Let x be any element
of S. We consider the following cases:

1. x2 ∈ P .

2. x /∈ P or y /∈ P .

Case 1: Assume that x2 ∈ P . Since P is semiprime, we have x ∈ P .
Then, we obtain

(
αCδ

ζ P

)
x
= δ ∪ α and

(
βCδ

ζ P

)
x2 = δ ∩ β.

Case 2: Assume that x2 ̸∈ P . It is easy to see that
(
βCδ

ζ P

)
x2 = ζ ∩ β.

In any case, we have
(
βCδ

ζ P

)
x2

⊆
(
αCδ

ζ P

)
x
for all x ∈ S. Therefore, αCδ

ζ P

is an (α, β)-hesitant fuzzy semiprime set on S and hence (1) implies (2).
Conversely, assume that (2) holds. Let x be any element of S such

that x2 ∈ P . Since αCδ
ζ P

is an (α, β)-hesitant fuzzy semiprime set on S,

it follows that
(
αCδ

ζ P

)
x
⊇
(
βCδ

ζ P

)
x2 =

(
Cδ
ζ P

)
x2 ∩ β = δ ∩ β. Observe that(

αCδ
ζ P

)
x
= δ ∪ α, implies that x ∈ P . Therefore, P is a semiprime set of

S and hence (2) implies (1).

In order to characterize the (α, β)-hesitant fuzzy semiprime set gener-
ated by a hesitant fuzzy semiprime set in a semigroup, we need the following
theorem.

Theorem 3.9. If H is an (α, β)-hesitant fuzzy subsemigroup on a semi-
group S, then the following conditions are equivalent:

1. H is an (α, β)-hesitant fuzzy semiprime set on S.

2. For every x ∈ S,Hx ≃α
β Hx2 .

Proof: It is clear that (2) implies (1). Assume thatH is an (α, β)-hesitant
fuzzy semiprime set on S. Let x be any element of S. Otherwise, we have
αHx ⊇ βHx2 and αHx2 ⊇ βHx

x = βHx. Therefore Hx ≃α
β Hx2 and hence

(1) implies (2).

Recall that a semigroup S is said to be intra-regular if for each element
x of S, there exist elements r and s in S such that x = rx2s. Now we shall
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characterize the intra-regular semigroups in terms of (α, β)-hesitant fuzzy
ideals.

Theorem 3.10. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪α ̸⊇
δ ∩ β. If S is a semigroup S, then the following conditions are equivalent:

1. S is intra-regular.

2. For every (α, β)-hesitant fuzzy ideal on S is (α, β)-hesitant fuzzy
semiprime.

3. For every (α, β)-hesitant fuzzy ideal H on S,Hx ≃α
β Hx2 for all x ∈ S.

Proof: First assume that S is an intra-regular semigroup. Let H be any
(α, β)-hesitant fuzzy ideal on S. Next, let x be any element of S. Then,
since S is intra-regular, there exist elements r and s in S such that x = rx2s,
which implies that

αHx = αHrx2s ∪ α
= αHrx2s ∪ α
⊇ βHrx2 ∪ α
= (Hrx2 ∩ β) ∪ α
= (Hrx2 ∪ α) ∩ (β ∪ α)
= αHrx2 ∩ (β ∪ α)
⊇ βHx2 ∩ (β ∪ α)
= Hx2 ∩ β ∩ (β ∪ α)
= Hx2 ∩ β
= βHx2 .

Thus, we obtain αHx2 ⊇ βHx, since H is an (α, β)-hesitant fuzzy ideal.
Therefore Hx ≃α

β Hx2 and so (1) implies (3).
Assume that (2) holds. Let x be any element of S. Then it follows from

Theorem 2.18(2) that the (δ, ζ)-characteristic function αCδ
ζ x2∪Sx2∪x2S∪Sx2S

of the principal ideal x2∪Sx2∪x2S∪Sx2S of S is an (α, β)-hesitant fuzzy

ideal on S. Therefore,
(
αCδ

ζ x2∪Sx2∪x2S∪Sx2S

)
x
⊇ (βCδ

ζ x2∪Sx2∪x2S∪Sx2S
)x2 =

(Cδ
ζ x2∪Sx2∪x2S∪Sx2S

)x2∩β = δ∩β, since x2 ∈ x2∪Sx2∪x2S∪Sx2S. Clearly,

x ∈ x2∪Sx2∪x2S∪Sx2S. Therefore it is easily seen that S is intra-regular
and so (2) implies (1). It is clear that (2) and (3) are equivalent.

Now we characterize the intra-regular semigroup in terms of (α, β)-
hesitant fuzzy left ideals and (α, β)-hesitant fuzzy right ideals.
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Theorem 3.11. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪α ̸⊇
δ ∩ β. If S is a semigroup S, then the following conditions are equivalent:

1. S is intra-regular.

2. β (H ∩ F) ⊆ α (H⊙F) for every (α, β)-hesitant fuzzy left ideal H
and every (α, β)-hesitant fuzzy right ideal F on S.

Proof: First assume that S is intra-regular. Let H and F be any (α, β)-
hesitant fuzzy left ideal and any (α, β)-hesitant fuzzy right ideal on S,
respectively. Next, let x be any element of S. Then, since S is intra-
regular, there exist elements r and s in S such that x = rx2s. Hence we
have,

α (H⊙F)x = (H⊙F)x ∪ α

=

( ⋃
x=ab

Ha ∩ Fb

)
∪ α

⊇ (Hrx ∩ Fxs) ∪ α
= (Hrx ∪ α) ∩ (Fxs ∪ α)
= αHrx ∩ αFxs

⊇ βHx ∩ βFx

= β (H ∩ F)x ,

which implies that β (H ∩ F) ⊆ α (H⊙F). Therefore (1) implies (2).
Conversely, assume that (2) holds. Let L and R be any left ideal and

any right ideal of S, respectively. Next, let x be any element of S such that
x ∈ L∩R. Then x ∈ L and x ∈ R. By Theorem 2.18 αCδ

ζL
and αCδ

ζR
is an

(α, β)-hesitant fuzzy left ideal and an (α, β)-hesitant fuzzy right ideal on
S, respectively. Then, by Lemma 2.17, we obtain that(

αCδ
ζLR

)
x

=
(
Cδ
ζLR

)
x
∪ α

=
(
Cδ
ζL

⊙ Cδ
ζR

)
x
∪ α

= α
(
Cδ
ζL

⊙ Cδ
ζR

)
x

⊇ β

(
Cδ
ζL

∩ Cδ
ζR

)
x

= β

(
Cδ
ζL∩R

)
x

⊇
(
Cδ
ζL∩R

)
x
∩ β

= δ ∩ β,
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which means that x ∈ LR. Therefore we obtain that L ∩ R ⊆ LR and
hence S is intra-regular. Thus (2) implies (1).

In the following theorem we give a characterization of a semigroup that
is both regular and intra-regular in terms of (α, β)-hesitant fuzzy right
ideals and (α, β)-hesitant fuzzy left ideals.

Theorem 3.12. Let ζ and δ be any elements of P ([0, 1]) such that ζ ∪α ̸⊇
δ ∩ β. If S is a semigroup S, then the following conditions are equivalent:

1. S is regular and intra-regular.

2. β (H ∩ F) ⊆ α ((H⊙F) ∩ (F ⊙H)) for every (α, β)-hesitant fuzzy
right ideal H and every (α, β)-hesitant fuzzy left ideal F on S.

Proof: First assume that (1) holds. Let H and F be any (α, β)-hesitant
fuzzy right ideal and any (α, β)-hesitant fuzzy left ideal on S, respectively.
Then it follows from Theorems 3.3, 3.11 that β (H ∩ F) ⊆ α (H⊙F) and

β (H ∩ F) = β (F ∩H) ⊆ α (F ⊙H). Therefore β(H ∩ F) ⊆ α((H⊙F) ∩
(F ⊙H)) and so (1) implies (2).

Conversely, assume that (2) holds. Let H and F be any (α, β)-hesitant
fuzzy right ideal and any (α, β)-hesitant fuzzy left ideal on S, respectively.
We obtain

β (F ∩H) = β (H ∩ F)

⊆
(
Cδ
ζL

⊙ Cδ
ζR

)
x
∪ α

= α ((H⊙F) ∩ (F ⊙H))
⊆ α (F ⊙H) .

Thus it follows from Theorem 3.11 that S is an intra-regular semigroup.
Now, we show that S is a regular semigroup. By the assumption, β (H ∩ F)
⊆ α((H⊙F) ∩ (F ⊙H)) ⊆ α (H⊙F). On the other hand, β (H⊙F) ⊆
β (S ⊙ F) ⊆ αF and β (H⊙F) ⊆ β (H⊙ S) ⊆ αH, which means that

β (H⊙F) ⊆ αH ∩ αF = α (H ∩ F). Hence it follows from Theorem 3.3
that S is regular. Therefore (2) implies (1).

4. Conclusion

In study the structure of semigroups, we notice that the (α, β)-hesitant
fuzzy sets with special properties always play an important role. The (α, β)-
hesitant fuzzy ideals on a semigroup are key tools to describe the algebraic
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subsystems of a semigroup S. By using the point wise (left, right) ideas and
methods, in this paper we defined and studied (α, β)-hesitant fuzzy (left,
right) ideals on semigroups. In particular, we introduced the concepts
of α-hesitant (α-hesitant) fuzzy sets, (α, β)-hesitant fuzzy subsemigroups
and (α, β)-hesitant fuzzy ideals of semigroups, and characterized regular
semigroups in terms of (α, β)-hesitant fuzzy ideals. Furthermore, we prove
that the non empty subset of a semigroup S is a subsemigroup (left ideal,
right ideal, two-sided ideal) of S if and only if the hesitant fuzzy set on S
is the (α, β)-hesitant fuzzy subsemigroup ((α, β)-hesitant fuzzy left ideal,
(α, β)-hesitant fuzzy right ideal, (α, β)-hesitant fuzzy two-sided ideal) on
S. As an application of the results of this paper, the corresponding results
of fuzzy sets. We hope that this work would offer foundation for further
study of the theory on semigroups.
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COMPLETE REPRESENTATIONS AND NEAT
EMBEDDINGS

Abstract

Let 2 < n < ω. Then CAn denotes the class of cylindric algebras of dimension

n, RCAn denotes the class of representable CAns, CRCAn denotes the class of

completely representable CAns, and NrnCAω(⊆ CAn) denotes the class of n-neat

reducts of CAωs. The elementary closure of the class CRCAns (Kn) and the non-

elementary class At(NrnCAω) are characterized using two-player zero-sum games,

where At is the operator of forming atom structures. It is shown that Kn is not

finitely axiomatizable and that it coincides with the class of atomic algebras in the

elementary closure of ScNrnCAω where Sc is the operation of forming complete

subalgebras. For any class L such that AtNrnCAω ⊆ L ⊆ AtKn, it is proved that

SPCmL = RCAn, where Cm is the dual operator to At; that of forming complex

algebras. It is also shown that any class K between CRCAn ∩ SdNrnCAω and

ScNrnCAn+3 is not first order definable, where Sd is the operation of forming

dense subalgebras, and that for any 2 < n < m, any l ≥ n + 3 any any class K

such that At(NrnCAm ∩ CRCAn) ⊆ K ⊆ AtScNrnCAl, K is not not first order

definable either.
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of representable CAαs and NrαCAβ(⊆ CAα) denotes the class of α-neat
reducts of CAβs.

Definition 0.1. Assume that α < β are ordinals and that B ∈ CAβ . Then
the α-neat reduct of B, in symbols NrαB, is the algebra obtained from B,
by discarding cylindrifiers and diagonal elements whose indices are in β \α,
and restricting the universe to the set

NrαB = {x ∈ B : {i ∈ β : cix ̸= x} ⊆ α} .

It is straightforward to check that NrαB ∈ CAα. Let α < β be ordinals.
If A ∈ CAα and A ⊆ NrαB, with B ∈ CAβ , then we say that A neatly
embeds in B, and that B is a β-dilation of A, or simply a dilation of A
if β is clear from context. For K ⊆ CAβ , we write NrαK for the class
{NrαB : B ∈ K}. Following [3], Csn denotes the class of cylindric set
algebras of dimension n, and Gsn denotes the class of generalized cylindric
set algebra of dimension n; C ∈ Gsn, if C has top element V a disjoint union
of cartesian squares, that is V =

⋃
i∈I

nUi, I is a non-empty indexing set,
Ui ̸= ∅ and Ui ∩ Uj = ∅ for all i ̸= j. The operations of C are defined like
in cylindric set algebras of dimension n relativized to V .

Definition 0.2. An algebra A ∈ CAn is completely representable ⇐⇒
there exists C ∈ Gsn, and an isomorphism f : A → C such that for all
X ⊆ A, f(

∑
X) =

⋃
x∈X f(x), whenever

∑
X exists in A. If

∑
X exists

in A, we denote this supremum by
∑A

X. In this case, we say that A is
completely representable via f .

It is known that A is completely representable via f : A → C, where
C ∈ Gsn has top element V say ⇐⇒ A is atomic and f is atomic in the
sense that f(

∑
AtA) =

⋃
x∈AtA f(x) = V [5] where AtA denotes the set

of atoms of A. We denote the class of completely representable CAns by
CRCAn.

For an atomic Boolean algebra with operators A say, we may write
AtA to denote its atom structures, i.e. the set of atoms expanded with the
accessiblity relations corresponding to the non- Boolean operations- which
is a first order structure. In modal logic terminology, this atom structure
is nothing more than a Kripke frame. It will be clear from context what
we mean by AtA (either the atom structure of A or the set of atoms of A).
No confusion is likely to ensue. We write A ⊆d B if A is dense subalgebra
of B. Recall that A ⊆d B if A is a subalgebra of B, in symbols A ⊆ B,
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and for all non-zero b ∈ B, there exists a non-zero a ∈ A such that a ≤ b.
Let Sd denote the class of forming dense subalgebas; that is to say, for a
class K of Boolean algebras with operators SdK = {A : (∃B ∈ K)(A ⊆d

B)}. Given two Boolean algebras with operators A,B having the same
signature, we write A ⊆c B if A is a complete subalgebra of B in the
sense that for all X ⊆ A, if

∑A
X = 1 then

∑B
X = 1.1 We write Sc

for the operation of forming subalgebras, that is to say for a class K of
Boolean algebras with operators, ScK = {A : (∃B ∈ K)(A ⊆c B)}. It is
known that the class CRCAn coincides with the class of atomic algebras
in ScNrnCAω as long as the number of atoms is countable [14, Theorem
5.3.6]. However, unlike ordinary reprsentations, this charactrization using
complete neat embeddings does not generalize to the uncountable case.
This will be proved below in Theorem 1.16, where an atomic A ∈ NrnCAω

having uncountably many atoms but A has no complete representation, is
constructed.

Define the class LCAn as follows: A ∈ LCAn ⇐⇒ A is atomic and ∃ has
a winning strategy in Gk(AtA) for all k < ω, where Gk is the k rounded
game defined on atomic networks in [7, Definition 3.3.2] truncated to k
rounds. Then this class is elementary, because a winning strategy for ∃ in
Gk can be coded by a first order sentence; call it ρk. Hirsch and Hodkinson
study the class of atom structures of this class denoted by LCASn on [7,
p. 73] that they call atom structures satisfying the ‘Lyndon conditions’ [7].
In our context, working now on the algebra level, the Lyndon conditions
that Hirsch and Hodkinson use can be lifted to the algebra level as first
order formulas that are just the ρks.

Layout: Fix 2 < n < ω. In the following Section 1, the class ElCRCAn

is characterized using neat embeddings. It is shown that ElCRCAn coin-
cides with the elementary class LCAn defined by the Lyndon conditions and
that LCAn = ElCRCAn = ElScNrn(CAω ∩At) = (ElScNrnCAω) ∩At, cf.
Theorem 1.4. In particular, NrnCAω ⊆ LCAn. We show that LCAn is not
finitely axiomatizable, and we prove that RCAn is generated by At(LCAn)
in the following strong sense RCAn = SCmAt(LCAn) and by At(NrnCAω) in
the weaker sense RCAn = SPCmAt(NrnCAω), cf. Theorem 1.17. We also
show that for any 2 < n < l < m, there exists an atomic A ∈ NrnCAl∩RCAn

such that its Dedekind–MacNeille completion2, namely, the complex alge-

1This is different from that A ⊆ B and A is complete.
2Sometimes referred to as minimal or Monk completion.
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bra of its atom structure, in symbols CmAtA, is outside RCAn, cf. Theorem
1.12. In Section 2 we continue study atom-canonicity for varieties of cylin-
dric algebras and introduce a new notion of ‘degrees of representability’ cf.
Theorems 2.2, which enables one to measure in a precise sense the degree
of representability of a given A ∈ RCAn; some algebras are more repre-
sentable than others: Given an atomic algebra A ∈ RCAn and n < m ≤ ω,
then A is representable up to m if CmAtA ∈ SNrnCAm. In the final Sec-
tion 4, using certain atomic games, we characterize the non-elementary
class At(NrnCAω) and it is shown, using such games, that any class K
such that CRCAn ∩ SdNrnCAω ⊆ K ⊆ ScNrnCAn+3, K is not elementary,
cf. Theorem 3.1.

1. Complete representations and the Lyndon
conditions

Fix a finite ordinal n > 2. For a class K, ElK denotes its elementary
closure. By the Keisler-Shelah Ultrapower Theorem, ElK = UpUrK where
Up(Ur) denotes the operation of forming ultraproducts (ultraroots). For
a Boolean algebra A and a ∈ A, RlaA is the Boolean with universe {x ∈
A : x ≤ a} and Boolean operations those of A relativized to the universe.
For a Boolean algebra A, we write A+ to denote its canonical extension.

Definition 1.1. [3, Definition 3.1.2] Let α be an ordinal. A weak space
of dimension α is a set V of the form {s ∈ αU : |{i ∈ α : si ̸= pi}| < ω}
where U is a non-empty set and p ∈ αU . We denote V by αU (p). Following
[3], Wsα denotes the class of weak set algebra of dimension α. The top
elements of Wsαs are weak spaces of dimension α and the operations are
defined like in cylindric set algebras of dimension α relativized to the top
element.

Observe that when α < ω, Wsα = Csα. To define certain deterministic
games to be used in the sequel, we recall the notions of atomic networks,
and atomic games [6, 7]. Let i < n. For n-ary sequences x̄ and ȳ ⇐⇒
ȳ(j) = x̄(j) for all j ̸= i.

Definition 1.2. Fix finite n > 2 and assume that A ∈ CAn is atomic.
(1) An n-dimensional atomic network on A is a map N : n∆ → AtA,

where ∆ is a non-empty set of nodes, denoted by nodes(N), satisfying the
following consistency conditions for all i < j < n:
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• If x̄ ∈ nnodes(N) then N(x̄) ≤ dij ⇐⇒ xi = xj ,

• If x̄, ȳ ∈ nnodes(N), i < n and x̄ ≡i ȳ, then N(x̄) ≤ ciN(ȳ).

For n-dimensional atomic networks M and N , we write M ≡i N ⇐⇒
M(ȳ) = N(ȳ) for all ȳ ∈ n(n ∼ {i}).

(2) Assume that m, k ≤ ω. The atomic game Gm
k (AtA), or simply Gm

k ,
is the game played on atomic networks of A using m nodes and having k
rounds [7, Definition 3.3.2], where ∀ is offered only one move, namely, a
cylindrifier move: At round zero ∀ picks an atom a ∈ A. Then ∃ has to
respond with a network N and a tuple ȳ such that N(ȳ) = a. Suppose that
we are at round t > 0. Then ∀ picks the played network Nt (nodes(Nt) ⊆
m), i < n, a ∈ AtA, x ∈ nnodes(Nt), such that Nt(x̄) ≤ cia. For her
response, ∃ has to deliver a networkM such that nodes(M) ⊆ m, M ≡i N ,
and there is ȳ ∈ nnodes(M) that satisfies ȳ ≡i x̄ and M(ȳ) = a. We write
Gk(AtA), or simply Gk, for G

m
k (AtA) if m ≥ ω.

(3) The ω-rounded game Gm(AtA) or simply Gm is like the game
Gm

ω (AtA) except that ∀ has the bonus to reuse the m nodes in play.3

Lemma 1.3. Let 2 < n < m < ω and assume that A ∈ CAn is atomic. If
A ∈ ScNrnCAm, then ∃ has a winning strategy in Gm(AtA).

Proof: [15, Lemma 4.3].

For a class K of BAOs, recall that K ∩ At denotes the class of atomic
algebras in K. Let Fsn = {A ∈ Csn : A = ℘(nU) some non-empty set U}.

Theorem 1.4. For 2 < n < ω the following hold:

1. CRCAn ⊆ ScNrn(CAω ∩At) ∩At ⊆ ScNrnCAω ∩At,

2. If A∈CRCAn, then ∃ has a winning strategy in Gω(AtA) and Gω(AtA),

3The games Gm and Gm are based on a private Ehrenfeucht–Fräıssé deterministic
games on two relational structures A and B between two players ∃ lloise and ∀ belard.
Each player chooses a pebble from a particular pebble pair outside the board of the game
and places it on one of the structures, A say. The other responds with the other pebble
in this pair putting it on the other structure B. The aim of ∃ is to show that A and B are
alike while the ‘spoiler’ ∀ wants to show that they are different—the ‘likeness’ here may
be measured by existence of isomorphisms between A and B, or partial isomorphisms or
elementary equivalence, ... etc. In Gm once ∀ has chosen a pebble in his private game
Ehrenfeucht–Fräıssé game, he cannot use it again. However, in Gm the pebbles chosen
by ∀ always remain outside the board of the play, so that ∀ has the option to re-use
them in every round of the game. This of course makes it harder for ∃ to win.
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3. All reverse inclusions and implications in the previous two items hold,
if algebras considered have countably many atoms,

4. Non of the classes in the first item is elementary,

5. CRCAn = ScPFsn,

6. NrnCAω∩At ⊈ CRCAn, NrnCAω∩At ⊊ ScNrnCAω∩At and CRCAn ⊊
ScNrnCAω ∩At.

7. Neither of the classes CRCAn and SdNrnCAω are contained in each
other. In particular, SdNrnCAω ⊊ ScNrnCAω.

Proof: 1. Let A ∈ CRCAn. Assume that M is the base of a complete
representation of A, whose unit is a generalized cartesian space, that is,
1M =

⋃
nUi, where

nUi ∩ nUj = ∅ for distinct i and j, in some index set
I, that is, we have an isomorphism t : B → C, where C ∈ Gsn has unit 1M,
and t preserves arbitrary meets carrying them to set-theoretic intersections.
For i ∈ I, let Ei =

nUi and pick an arbitrary fi ∈ ωUi and let Wi be the

ω-dimensional weak space {f ∈ ωU
(fi)
i : |{k ∈ ω : f(k) ̸= fi(k)}| < ω}.

Identifying set algebras with their domain let Ci = ℘(Wi). Then Ci ∈ Wsω
and is atomic; indeed the atoms are the singletons sets {f} for f ∈ Wi.
Note, for f, g ∈ Wi ad i < ω if f ↾ ω ∼ {i} = g ↾ ω ∼ {i}, then {f} ≤
Ci{g}.

Let x ∈ NrnCi, that is cix = x for all n ≤ i < ω. Now if f ∈ x and
g ∈ Wi satisfy g(k) = f(k) for all k < n, then g ∈ x because |{n ≤ i < ω :
f(i) ̸= g(i)}| < ω. Hence NrnCi is atomic; its atoms are {{g ∈Wi : {g(i) =
d : i < n}, d ∈ Ui}. Define hi : A → NrnCi by hi(a) = {f ∈ Wi : ∃a′ ∈
AtA, a′ ≤ a; (f(i) : i < n) ∈ t(a′)}. Let D = PiCi. Let πi : D → Ci be
the ith projection map. Now clearly D is atomic, because it is a product
of atomic algebras, and its atoms are (πi(β) : β ∈ At(Ci)). Now A embeds
into NrnD via J : a 7→ (πi(a) : i ∈ I). If x ∈ NrnD, then for each i, we
have πi(x) ∈ NrnCi, and if x is non-zero, then πi(x) ̸= 0. By atomicity
of Ci, there is an n-ary tuple y, such that {g ∈ Wi : g(k) = yk} ⊆ πi(x).
It follows that there is an atom of b ∈ A, such that y ∈ t(b). Hence
{g ∈ Ui : g(i) = yi} ⊆ πi(< x ·J(b) >, so x ·J(b) ̸= 0, and so the embedding
is atomic, hence complete. We have shown that A ∈ ScNrnCAω ∩At, and
since A is atomic because A ∈ CRCAn we are done with the first inclusion.
The second inclusion is straightforward since CAω ∩At ⊆ CAω.
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2. [7, Theorem 3.3.3]. Follows too from the first item taken together
with lemma 1.3.

3. Follows by observing that the class CRCAn coincides with the class
ScNrnCAω on atomic algebras having countably many atoms, cf. [14, The-
orem 5.3.6], taken together with [7, Theorem 3.3.3]. Strictly speaking, in
[14] it is shown that the two classes CRCAn and ScNrnCAω coincide on
countable atomic algebras. One can show that they coincide on the larger
class of atomic agebras having countably many atoms by observing that
if A is an atomic algebra having countably many atoms, then TmAtA is
countable and TmAtA ∈ CRCAn ⇐⇒ A ∈ CRCAn.

4. To show that non of the classes in the first item is elementary, let
D be an atomic RCAn with countably many atoms that is not completely
representable, but is elementary equivalent to some B ∈ CRCAn. Such
algebras exist; see e.g. [5]. Another such algebra is the algebra CZ,N used
in theorem 3.1 below. Then D is not in any of the aforementiond classes
because it has countably many atoms, and by the first item B is in all three
classes, proving the required.

5. The inclusion ⊆ is straightforward. Conversely, assume that A ⊆c

Pi∈I℘(
nUi). Then B = Pi∈I℘(

nUi) ∼= ℘(V ), where V is the disjoint union
of the nUi, is clearly completely representable. Then since A ⊆c B, and so
A is completely representable, too.

6. First ⊈ follows from the construction in [12], cf. corollary 1.16 for
more details. Second ⊊ follows from item (3) of Theorem 2.2. Last ⊊
follows from the first two parts in this item together with the inclusions in
the first item.

7. That SdNrnCAω∩At ⊈ CRCAn follows from the first part of item (6)
of theorem 1.4, cf. also corollary 1.16. To show that, conversely CRCAn ⊈
SdNrnCAω ∩At, we slighty modify the construction in [14, Lemma 5.1.3,
Theorem 5.1.4] lifted to any finite n > 2. The algebras A andB constructed
in op. cit. satisfy that A ∈ NrnCAω, B /∈ NrnCAn+1 and A ≡ B. As
they stand, A and B are not atomic, but it can be fixed that they are
atomic, giving the same result, by interpreting the uncountably many n-
ary relations in the signature of M defined in [14, Lemma 5.1.3] for n = 3,
which is the base of A and B to be disjoint in M, not just distinct. In fact
the construction is presented in this way in [11]. Let us explain why. We
work with 2 < n < ω instead of only n = 3. The proof presented in op.
cit. lifts verbatim to any such n. Let u ∈ nn. Write 1u for χM

u (denoted
by 1u (for n = 3) in [14, Theorem 5.1.4].) We denote by Au the Boolean
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algebra Rl1uA = {x ∈ A : x ≤ 1u} and similarly for B, writing Bu short
hand for the Boolean algebra Rl1uB = {x ∈ B : x ≤ 1u}. Using that M
has quantifier elimination we get, using the same argument in op. cit. that
A ∈ NrnCAω. The property that B /∈ NrnCAn+1 is also still maintained.
To see why consider the substitution operator ns(0, 1) (using one spare
dimension) as defined in the proof of [14, Theorem 5.1.4].

Assume for contradiction that B = NrnC, with C ∈ CAn+1. Let u =
(1, 0, 2, . . . , n − 1). Then Au = Bu and so |Bu| > ω. The term ns(0, 1)
acts like a substitution operator corresponding to the transposition [0, 1];

it ‘swaps’ the first two coordinates. Now one can show that ns(0, 1)
C
Bu ⊆

B[0,1]◦u = BId, so |ns(0, 1)CBu| is countable because BId was forced by
construction to be countable. But ns(0, 1) is a Boolean automorpism with

inverse ns(1, 0), so that |BId| = |ns(0, 1)CBu| > ω, contradiction. One
proves that A ≡ B exactly like in [14]. Take the cardinality κ spec-
ifying the signature of M to be 22

ω

and assume for contradiction that
B ∈ SdNrnCAω ∩At. Then B ⊆d NrnD, for some D ∈ CAω and NrnD is
atomic. For brevity, let C = NrnD. Then BId ⊆d RlIdC; the last algebra
is the Boolean algebra with universe {x ∈ C : x ≤ Id}. Since C is atomic,
then RlIdC is also atomic.

Using the same reasoning as above, we get that |RlIdC| > 2ω (since C ∈
NrnCAω). By the choice of κ, we get that |AtRlIdC| > ω. ByB ⊆d C, we get
that BId ⊆d RlIdC, and that AtRlIdC ⊆ AtBId, so |AtBId| ≥ |AtRlIdC| >
ω. But by the construction of B, we have |BId| = |AtBId| = ω, which is
a contradiction and we are done. The algebra B so constructed is atomic
and is outside SdNrnCAω. Furthermore, B ∈ CRCAn because B ∈ Gsn
and

⋃
AtB =

⋃
u∈nn

⋃
AtBu =

⋃
u∈nn 1u = 1B. Thus the identity may

establishes a complete representation of B.

Here we review and elaborate on the construction in [2] as our first
instance of a so-called blow up and blur construction in the sense of [16].
This subtle construction may be applied to any two classes L ⊆ K of
completely additive Boolean algebras with opertors (BAOs). One takes an
atomic A /∈ K (usually but not always finite), blows it up, by splitting4

one or more of its atoms each to infinitely many subatoms, obtaining an

4The idea of splitting one or more atoms in an algebra to get a (bigger) superalgebra
tailored to a certain purpose seems to originate with Henkin [3, p. 378, footnote 1] to
be reinvented by Hajnal Andréka as a nutcracker for proving non-finite axiomatizability
results for varieties of RCAn.
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(infinite) countable atomic Bb(A) ∈ L, such that A is blurred in Bb(A)
meaning that A does not embed in Bb(A), but A embeds in the Dedekind–
MacNeille completion of Bb(A), namely, CmAtBb(A). Then any class M
say, between L and K that is closed under forming subalgebras will not be
atom-canonical, for Bb(A) ∈ L(⊆ M), but CmAtBb(A) /∈ K(⊇ M) because
A /∈ M and SM = M. We say, in this case, that L is not atom-canonical
with respect to K. This method is applied to K = SRaCAl, l ≥ 5 and
L = RRA in [6, SS 17.7] and to K = RRA and L = RRA ∩ RaCAk for
all k ≥ 3 in [2]; the construction in [2] will be generalized below, and will
applied below to K = SNrnCAn(n+1)/2 and L = RCAn, where Ra denotes
the operator of forming relation algebra reducts (applied to classes) of CAs,
respectively, cf. [3, Definition 5.2.7].

Definition 1.5. Let R be an atomic relation algebra. An n-dimensional
basic matrix, or simply a matrix on R, is a map f : 2n → AtR satsfy-
ing the following two consistency conditions f(x, x) ≤ Id and f(x, y) ≤
f(x, z); f(z, y) for all x, y, z < n. For any f, g basic matrices and x, y < m
we write f ≡xy g if for all w, z ∈ m \ {x, y} we have f(w, z) = g(w, z). We
may write f ≡x g instead of f ≡xx g.

Definition 1.6. An n-dimensional cylindric basis for an atomic relaton
algebra R is a set CAlM of n-dimensional matrices on R with the following
properties:

• If a, b, c ∈ AtR and a ≤ b; c, then there is an f ∈ CAlM with f(0, 1) =
a, f(0, 2) = b and f(2, 1) = c

• For all f, g ∈ CAlM and x, y < n, with f ≡xy g, there is h ∈ CAlM
such that f ≡x h ≡y g.

For the next lemma, we refer the reader to [6, Definition 12.11] for the
definition of of hyperbasis for relation algebras as well as to [6, Chapter 13,
Definitions 13.4, 13.6] for the notions of n-flat and n-square representations
for relation algebras (n > 2) For a relation algebra R, recall that R+

denotes its canonical extension.

Lemma 1.7. Let R be a relation algebra and 3 < n < ω. Then the following
hold:

1. R+ has an n-dimensional infinite basis ⇐⇒ R has an infinite
n-square representation.
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2. R+ has an n-dimensional infinite hyperbasis ⇐⇒ R has an infinite
n-flat representation.

Proof: [6, Theorem 13.46, the equivalence (1) ⇐⇒ (5) for basis, and
the equivalence (7) ⇐⇒ (11) for hyperbasis].

One can construct a CAn in a natural way from an n-dimensional cylin-
dric basis which can be viewed as an atom structure of a CAn (like in [6,
Definition 12.17] addressing hyperbasis). For an atomic relation algebra
R and l > 3, we denote by Matn(AtR) the set of all n-dimensional basic
matrices on R. Matn(AtR) is not always an n-dimensional cylindric basis,
but sometimes it is, as will be the case described next. On the other hand,
Mat3(AtR) is always a 3-dimensional cylindric basis; a result of Maddux’s,
so that CmMat3(AtR) ∈ CA3. The following definition to be used in the
sequel is taken from [2]:

Definition 1.8. [2, Definition 3.1] Let R be a relation algebra, with non-
identity atoms I and 2 < n < ω. Assume that J ⊆ ℘(I) and E ⊆ 3ω.

1. We say that (J,E) is an n-blur for R, if J is a complex n-blur defined
as follows:

(a) Each element of J is non-empty,

(b)
⋃
J = I,

(c) (∀P ∈ I)(∀W ∈ J)(I ⊆ P ;W ),

(d) (∀V1, . . . Vn,W2, . . .Wn∈J)(∃T ∈J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ),
that is there is for v ∈ Vi, w ∈Wi and t ∈ T , we have v;w ≤ t,

(e) (∀P2, . . . Pn, Q2, . . . Qn ∈ I)(∀W ∈ J)W ∩ P2;Qn ∩ . . . Pn;Qn

̸= ∅.

and the tenary relation E is an index blur defined as in item (ii) of
[2, Definition 3.1].

2. We say that (J,E) is a strong n-blur, if it (J,E) is an n-blur, such
that the complex n-blur satisfies:

(∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

Definition 1.9. An atomic algebra A ∈ CAn is strongly representable if
CmAtA ∈ RCAn.
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Lemma 1.10. Let A ∈ CAn be completely representable. Then A is strongly
representable.

Proof: Since A is completely representable, then it is atomic. Let f :
A → B be a complete representation of A via f , with B ∈ Gsn. Then
one extends f to f̂ from CmAtA to B by defining f̂(a) =

∑CmAtA
x∈AtA,x≤a f(x).

The last suprema is well defined because CmAtA is complete. It is easy to
check that f̂ is an isomorphism and so CmAtA is isomorphic to B, hence,
by definition, CmAtA is representable.

Definition 1.11. A completely additive variety V of BAOs is atom-cano-
nical if whenever A ∈ V, then its Dedekind–MacNeille completion, which
is the complex algebra of its atom structure, namely, CmAtA, is also in V,

Monk prove that CAn is atom-canonical; this follows from the fact that
CAn can be axiomatized by positive in the wider sense equations, which
are are an instance of Sahlqvist equations. However, the variety RCAn is
not atom-canonical; a result of Hodkinson’s [10]. We reprove the last result
differently based on the construction in [2].

Theorem 1.12. For any 2 < n < l < ω, there is an atomic algebra B ∈
NrnCAl ∩ RCAn, but CmAtB /∈ RCAn. In particular, B is not completely
representable a fortiori B is not strongly representable, and RCAn is not
atom-canonical.

Proof: Let 2 < n < m ≤ ω. First we prove the conditionally the non-
atom canonicity of SNrnCAm depending on the existence of a certain finite
relation algebra R with strong m blur- satisfying a condition that we high-
light as we go along. We use the flexible blow up and blur construction used
in [2]. The idea is to use R in place of the finite Maddux algebras denoted
by Ek(2, 3) on [2, p. 83]. Here k(< ω) is the number of non-identity atoms
and then take it from there to reach the conditions, we move backwards
if you like. The required algebra witnessing non-atom canonicity will be
obtained by blowing up and blurring R in place of the relation algebra
Ek(2, 3) [2].

Our exposition addresses an (abstract) finite relation algebra R having
an l-blur in the sense of definition [2, Definition 3.1], with 3 ≤ l ≤ k < ω
and k depending on l. Occasionally we use the concrete Maddux algebra
Ek(2, 3) to make certain concepts more tangible. We use the notation in
[2]. Let 2 < n ≤ l < ω. One starts with a finite relation algebra R that has
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only representations, if any, on finite sets (bases), having an l-blur (J,E) as
in [2, Definition 3.1] recalled in definition 1.8. After blowing up and bluring
R, by splitting each of its atoms into infinitely many, one gets an infinite
atomic representable relation algebra Bb(R, J, E) [2, p. 73], whose atom
structure At is weakly but not strongly representable. The atom structure
At is not strongly representable, because R is not blurred in CmAt. The
finite relation algebra R embeds into CmAt, so that a representation of
CmAt, necessarily on an infinite base, induces one of R on the same base,
which is impossible. The representability of Bb(R, J, E) depend on the
properties of the l-blur, which blurs R in Bb(R, J, E). The set of blurs
here, namely, J is finite. In the case of Ek(2, 3) used in [2], the set of blurs
is the set of all subsets of non-identity atoms having the same size l < ω,
where k = f(l) ≥ l for some recursive function f from ω → ω, so that k
depends recursively on l.

One (but not the only) way to define the index blur E ⊆ 3ω is as follows
[13, Theorem 3.1.1]: E(i, j, k) ⇐⇒ (∃p, q, r)({p, q, r} = {i, j, k} and r −
q = q − p. This is a concrete instance of an index blur as defined in [2,
Definition 3.1(iii)] (recalled in definition 1.8 above), but defined uniformly,
it does not depends on the blurs. The underlying set of At, the atom
structure of Bb(R, J, E) is the following set consisting of triplets: At =
{(i, P,W ) : i ∈ ω, P ∈ AtR ∼ {Id},W ∈ J} ∪ {Id}. When R = Ek(2, 3)
(some finite k > 0), composition is defined by singling out the following
(together with their Peircian transforms), as the consistent triples: (a, b, c)
is consistent ⇐⇒ one of a, b, c is Id and the other two are equal, or if
a = (i, P, S), b = (j,Q, Z), c = (k,R,W )

S ∩ Z ∩W ≠ ∅ =⇒ E(i, j, k)&|{P,Q,R}| ̸= 1.

(We are avoiding mononchromatic triangles). That is if for W ∈ J , EW =
{(i, P,W ) : i ∈ ω, P ∈W}, then

(i, P, S); (j,Q, Z) =
⋃

{EW : S ∩ Z ∩W = ∅}⋃
{(k,R,W ) : E(i, j, k), |{P,Q,R}| ̸= 1}.

More generally, for the R as postulated in the hypothesis, composi-
tion in At is defined as follow. First the index blur E can be taken
to be like above. Now the triple ((i, P, S), (j,Q, Z), (k,R,W )) in which
no two entries are equal, is consistent if either S,Z,W are safe, briefly

safe(S, Z, W ), witness item (4) in definition 1.8 (which vacuously hold
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oif S ∩ Z ∩ W = ∅), or E(i, j, k) and P ; Q ≤ R in R. This general-
izes the above definition of composition, because in Ek(2, 3), the triple
of non-identity atoms (P, Q, R) is consistent ⇐⇒ they do not have the
same colour ⇐⇒ |{P, Q, R}| ̸  = 1. Having specified its atom structure, its
timely to specfiy the relation algebra Bb(R, J, E) ⊆ CmAt. The relation
algebra Bb(R, J, E) is TmAt (the term algebra). Its universe is the set
{X ⊆ H ∪ {Id} : X ∩ EW ∈ Cof(EW ), for all W ∈ J}, where Cof(EW ) 
denotes the set of co-finite subsets of EW , that is subsets of EW whose 
complement is infinite, with EW as defined above. The relation algebra 
operations lifted from At the usual way. The algebra Bb(R, J, E) is proved
to be representable [2].

For brevity, denote Bb(R, J, E) by CAlR, and its domain by R. For
a ∈ At, and W ∈ J, set Ua = {X ∈ R : a ∈ X} and UW = {X ∈ R : |X ∩
EW | ≥ ω}. Then the principal ultrafilters of CAlR are exactly Ua, a ∈ H
and UW are non-principal ultrafilters for W ∈ J when EW is infinite. Let
J ′ = {W ∈ J : |EW | ≥ ω}, and let Uf = {Ua : a ∈ F}∪{UW :W ∈ J ′}. Uf
is the set of ultrafilters of CAlR which is used as colours to represent CAlR,
cf. [2, pp. 75–77]. The representation is built from coloured graphs whose
edges are labelled by elements in Uf in a fairly standard step-by-step con-
struction. The step-by-step construction builds in the way coloured graphs,
which are basically networks whose edges are labelled by ultrafilters, with
non-principal ultrafilters allowed. So such coloured graphs are networks
that are not atomic because not only principal ultrafilters are allowed as
labels. Furthermore, we cannot restrict our attension to only atomic net-
works because we do not want Bb(R, J, E) to be strongly representable,
least completely representable. The ‘limit’ of a sequence of atomic net-
works constructed in a step-by-step manner, or obtained via winning strat-
egystrategy for ∃ in an ω-rounded atomic game, will necessarily produce
a complete representation of Bb(R, J, E). But the required representation
will be extracted from a complete representation of the canonical exten-
sion of Bb(R, J, E). Nothing wrong with that. A relation algebra CAlR is
representable ⇐⇒ its canonical extension is representable. A complete
representation of the canonical extension of CAlR induces a representation
of CAlR, because CAlR embeds into its a canonical extension, but the con-
verse is not necessarily true. So here we are proving more than the mere
representablity ofBb(R, J, E), because we are constructing a complete rep-
resentation of its canonical extension, namely, the algebra CmUf , whereUf
is the atom structure having domain Uf, with Uf as defined above.
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Now we show why the Dedekind–MacNeille completion CmAt is not
representable. For P ∈ I, let HP = {(i, P,W ) : i ∈ ω,W ∈ J, P ∈W}. Let
P1 = {HP : P ∈ I} and P2 = {EW : W ∈ J}. These are two partitions of
At. The partition P2 was used to represent, Bb(R, J, E), in the sense that
the tenary relation corresponding to composition was defined on At, in a
such a way so that the singletons generate the partition (EW : W ∈ J)
up to “finite deviations.” The partition P1 will now be used to show that
Cm(Bb(R, J, E)) = Cm(At) is not representable. This follows by observ-
ing that omposition restricted to P1 satisfies: HP ;HQ =

⋃
{HZ : Z;P ≤

Q in R} which means that R embeds into the complex algebra CmAt pro-
hibiting its representability, because R allows only representations having
a finite base.

The construction lifts to higher dimensions expressed in CAns, 2 <
n < ω. Because (J,E) is an l-blur, then by [2, Theorem 3.2 9(iii)],
Atca = Matl(AtBb(R, J, E)), the set of l by l basic matrices on At is an
l-dimensional cylindric basis, giving an algebra Bl = Bbl(R, J, E) ∈ RCAl.
Again Atca is not strongly representable, for had it been then a repre-
sentation of CmAtca, induces a representation of R on an infinite base,
because RaCmAtca ⊇ CmAt ⊇ R, and the representability of CmAtca in-
duces one of RaCmAtca, necessarily having an infinite base. For 2 < n ≤
l < ω, denote by Cl the non-representable Dedekind–MacNeille completion
of the algebra Bbl(R, J, E) ∈ RCAl, that is Cl = CmAt(Bbl(R, J, E)) =
CmMatl(At). If the l-blur happens to be strong, in the sense of defi-
nition 1.8 and n ≤ m ≤ l, then we get by [2, item (3), p. 80], that
Bbm(R, J, E) ∼= NrmBbl(R, J, E). This is proved by defining an embed-
ding h : RdmCl → Cm via x 7→ {M ↾ m : M ∈ x} and showing that
h ↾ NrmCl is an isomorphism onto Cm [2, p. 80]. Surjectiveness uses the
condition (J5)l formulated in the second item of definition 1.8 of strong
l-blurness. Without this condition, that is if the l-blur (J,E) is not strong,
then still Cm and Cl can be defined because by definition (J,E) is an t-
blur for all m ≤ t ≤ l, so Matt(At) is a cylindric basis and for t < l Ct

embeds into NrmCl using the same above map, but this embedding might
not be surjective. So for every l, now replacing R by the Maddux algebra
Ef(l)(2, 3), the algebra Al = NrnBbl(Ef(l)(2, 3)), J, E)– with f(l) depending
recursively on l, having strong l-blur due to the properties of the Maddux
algebra Ef(l)(2, 3), is as required. In other words, and more concisely, we
have Al ∈ RCAn ∩ NrnCAl, but CmAtAl /∈ RCAn.
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The following Theorem summarizes the proof of the previous Theorem,
generalizes the construction in [2] and says some more new facts. We use
the notation Bb(R, J, E) with atom structure At obtained by blowing up
and blurring R with underlying set is denoted by At on [2, p. 73] and is
recalled in the previous proof. The algebra Bbl(R, J, E)(∈ CAl) is defined
in [2, top of p. 78] and also in the immediately previous proof.

A CAn atom structure At is weakly representable if there is an atomic
A ∈ RCAn such that At = AtA; recall that it is strongly representable if
CmAt ∈ RCAn. These two notions are distinct as proved in Theorem 1.12.

Theorem 1.13. Let 2 < n ≤ l < m ≤ ω.

1. Let R be a finite relation algebra with an l-blur (J,E) where J is the
l-complex blur and E is the index blur.

(a) Let At be the relation algebra atom structure obtained by blow-
ing up and blurring R as specified above. Then the set of l by l-
dimensional matrices Atca = Matl(At) is an l-dimensional cylindric
basis, that is a weakly representable atom structure [2, Theorem 3.2].
The algebra Bbl(R, J, E) with atom structure Atra is in RCAl. Fur-
thermore, R embeds into CmAt which embeds into RaCm(Atca).

(b) If (J,E) is a strong m-blur for R, then (J,E) is a strong l-blur
for R. Furthermore, Bbl(R, J, E) ∼= NrlBbm(R, J, E) and for any
l ≤ j ≤ m, Bb(R, J, E) having atom structure At, is isomorphic to
Ra(Bbj(R, J, E)).

2. For every n < l, there is an R having a strong l-blur (J,E) but no
infinite representations (representations on an infinite base). Hence
the atom structures defined in (a) of the previous item (denoted by
At and Atca) for this specific R are not strongly representable.

3. Let m < ω. If R is a finite relation algebra having a strong l-blur,
and no m-dimensional hyperbasis, then l < m.

4. If n = l < m < ω and R is a finite relation algebra with an n blur
(J,E) (not necessarily strong) and no infinite m-dimensional hyper-
basis, then the algebras CmAt(Bb(R, J, E)) and CmAt(Bbl(R, J, E))
are outside SRaCAm and SNrnCAm, respectively, and the latter two
varieties are not atom-canonical.
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Proof: [2, Lemmata 3.2, 4.2, 4.3]. We start by an outline of (a) of item
1. Let R be as in the hypothesis. Let 3 < n ≤ l. We blow up and blur
R. R is blown up by splitting all of the atoms each to infinitely many
defining an (infinite atoms) structure At. R is blurred by using a finite set
of blurs (or colours) J . The term algebra denoted in [2] by Bb(R, J, E))
over At, is representable using the finite number of blurs. Such blurs are
basically non-principal ultrafilters; they are used as colours together with
the principal ultrafilters (the atoms) to represent Bb(R, J, E). This repre-
sentation is implemented in step-by-step manner, and in fact this step by
step construction adopted in [2] completely represents the canonical exten-
sion of Bb(R, J, E). Because (J,E) is a complex set of l-blurs, this atom
structure has an l-dimensional cylindric basis, namely, Atca = Matl(At).
The resulting l-dimensional cylindric term algebra TmMatl(At), and an al-
gebra C having atom structure Atca (denoted in [2] by Bbl(R, J, E)) such
that TmMatl(At) ⊆ C ⊆ CmMatl(At) is shown to be representable.
We prove (b) of item (1): Assume that the m-blur (J,E) is strong, then
by definition (J,E) is a strong j blur for all n ≤ j ≤ m. Furthermore, by
[2, item (3), p. 80], Bb(R, J, E) = Ra(Bbj(R, J, E)) and Bbj(R, J, E) ∼=
NrjBbm(R, J, E).

2. Like in [2, Lemma 5.1], one takes l ≥ 2n − 1, k ≥ (2n − 1)l, k ∈ ω.
The Maddux integral relation algebra Ek(2, 3) where k is the number of
non-identity atoms is the requiredR. In this algebra a triple (a, b, c) of non-
identity atoms is consistent ⇐⇒ |{a, b, c}| ̸= 1, i.e only monochromatic
triangles are forbidden.

3. Let (J,E) be the strong l-blur of R. Assume for contradiction that
m ≤ l. Then we get by [2, item (3), p. 80], that A = Bbn(R, J, E) ∼=
NrnBbl(R, J, E). But the cylindric l-dimensional algebra Bbl(R, J, E) is
atomic, having atom structure MatlAt(split(R, J, E)), so A has an atomic
l-dilation. So A = NrnD where D ∈ CAl is atomic. But R ⊆c RaNrnD ⊆c

RaD. By [6, Theorem 13.45 (6) ⇐⇒ (9)], R has a complete l-flat repre-
sentation, thus it has a complete m-flat representation, because m < l and
l ∈ ω. This is a contradiction.

4. Let B = Bbn(R, J, E). Then, since (J,E) is an n blur, B ∈
RCAn. But C = CmAtB /∈ SNrnCAm, because R /∈ SRaCAm, R em-
beds into Bb(R, J, E) which, in turn, embeds into RaCmAtB. Similarly,
Bb(R, J, E) ∈ RRA and Cm(AtBb(R, J, E)) /∈ SRaCAm. Hence the al-
ledged varieties are not atom-canonical.
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Theorem 1.14. Let 2 < n < ω. Then LCAn is an elementary class that is
not finitely axiomatizable.

Proof: For each 2 < n ≤ l < ω, let Rl be the finite Maddux algebra
Ef(l)(2, 3), as defined on [2, p. 83, S5, in the proof of Theorem 5.1] with
l-blur (Jl, El) as defined in [2, Definition 3.1] and f(l) ≥ l as specified in
[2, Lemma 5.1] (denoted by k therein). Let CAlRl = Bb(Rl, Jl, El) ∈ RRA
where CAlRl is the relation algebra having atom structure denoted At in [2,
p. 73] when the blown up and blurred algebra denotedRl happens to be the
finite Maddux algebra Ef(l)(2, 3) and let Al = NrnBbl(Rl, Jl, El) ∈ RCAn

as defined in [2, top of p. 80] (with Rl = Ef(l)(2, 3)). Then (AtCAlRl :
l ∈ ω ∼ n), and (AtAl : l ∈ ω ∼ n) are sequences of weakly representable
atom structures that are not strongly representable with a completely rep-
resentable ultraproduct.

We have shown that the three classes in the first item of the theorem
1.4 are not elementary and in the last item of op. cit. that at least two
are distinct. Now we show that their elementary closure coincide with the
class LCAn.

Theorem 1.15. Let 2 < n < ω. Then:

ElCRCAn = El[ScNrn(CAω ∩At) ∩At]

= ElScNrnCAω ∩At

= El(ScNrnCAω ∩At)

= LCAn.

Proof: We show, as claimed, that all the given classes coincide with LCAn.
Assume that A ∈ LCAn. Take a countable elementary subalgebra C of A.
Since LCAn is elementary, then C ∈ LCAn, so for k < ω, ∃ has a winning
strategyρk, in Gk(AtC). Let D be a non-principal ultrapower of C. Then
∃ has a winning strategyσ in Gω(AtD) [7, Theorem 3.3.4]. Essentially
she uses ρk in the k’th component of the ultraproduct so that at each
round of Gω(AtD), ∃ is still winning in co-finitely many components, this
suffices to show she has still not lost. Now one can use an elementary
chain argument to construct countable elementary subalgebras C = A0 ⪯
A1 ⪯ . . . ⪯ . . .D in the following way. One defines Ai+1 to be a countable
elementary subalgebra of D containing Ai and all elements of D that σ
selects in a play of Gω(AtD) in which ∀ only chooses elements from Ai.
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Now let B =
⋃

i<ω Ai. This is a countable elementary subalgebra of D,
hence necessarily atomic, and ∃ has a winning strategy in Gω(AtB), so B
is completely representable.

Thus A ≡ C ≡ B, hence A ∈ ElCRCAn. We have shown that LCAn ⊆
ElCRCAn. If A ∈ ScNrnCAω ∩ At, then by lemma 1.3, ∃ has a winning
strategy in Gω(AtA), hence in Gω(AtA), a fortiori, in Gk(AtA) for all
k < ω, so A ∈ LCAn. Since LCAn is elementary, we get that
El(ScNrnCAω ∩ At) ⊆ LCAn. But CRCAn ⊆ ScNrnCAω ∩ At, hence
LCAn = ElCRCAn ⊆ El(ScNrnCAω ∩ At) ⊆ LCAn. Now ScNrnCAω ∩ At
⊆ ElScNrnCAω∩At, and the latter class is elementary (if K is elementary,
then K ∩ At is elementary), so El(ScNrnCAω ∩ At) ⊆
ElScNrnCAω ∩At.

Conversely, if C is in ElScNrnCAω ∩At. then C is atomic and C ≡ D,
for some D ∈ ScNrnCAω since ScNrnCAω is closed under ultraproducts.
Hence D is atomic because atomicity is a first order property, so D ∈
ScNrnCAω ∩At, thus C ∈ El(ScNrnCAω ∩At).

We have shown that ElScNrnCAω ∩ At = El(ScNrnCAω ∩ At) =
LCAn = ElCRCAn. Finally, by lemma 1.3, ScNrn(CAω ∩At)∩At ⊆ LCAn,
from which it follows that ElSc[Nrn(CAω ∩ At) ∩ At] ⊆ LCAn, since
LCAn is elementary. The other inclusion follows from that, by item (1)
of theorem 1.4, CRCAn ⊆ ScNrn(CAω ∩ At) ∩ At, so LCAn = ElCRCAn

⊆ El[ScNrn(CAω ∩At)∩At]. We have shown that all classes coincide with
LCAn, which is the elementary closure of CRCAn, and we are done.

Corollary 1.16. For each 2 < n < ω, there is an atomic algebra B ∈
NrnCAω ∩ ElCRCAn, that is not completely representable. In particular,
CRCAn is not elementary [5]. Furthermore, each An is constructed uni-
formly from one relation algebra.

Proof: In [12], a relation atomic algebra R having uncountably many
atoms is constructed such that R has an ω-dimensional cylindric basis
CAlH (the latter is defined in opcit) and R is not completely representable.
It is shown in [12] that if one takes C = CA(CAlH), then C ∈ CAω, C is
atomless, and A = RaC. Now fix 2 < n < ω. Then the required CAn isB =
NrnC; An is atomic and has uncountably many atoms. Furthermore, B has
no complete representation for a complete representation of B induces one
of A. Since B ∈ NrnCAω ∩ At, then by theorem 1.15, B ∈ LCAn =
ElCRCAn.
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For the reader’s convenience, we give the details of the above proof. We
use the following uncountable version of Ramsey’s theorem due to Erdos
and Rado: If r ≥ 2 is finite, k an infinite cardinal, then expr(k)

+ →
(k+)r+1

k , where exp0(k) = k and inductively expr+1(k) = 2expr(k). The
above partition symbol describes the following statement. If f is a coloring
of the r + 1 element subsets of a set of cardinality expr(k)

+ in k many
colors, then there is a homogeneous set of cardinality k+ (a set, all whose
r+1 element subsets get the same f -value). We will construct the requred
C ∈ CAω from a relation algebra (to be denoted in a while by A) having an
‘ω-dimensional cylindric basis.’

To define the relation algebra, we specify its atoms and forbidden triples.
Let κ be the given cardinal in the hypothesis of the Theorem. The atoms
are Id, gi0 : i < 2κ and rj : 1 ≤ j < κ, all symmetric. The forbidden triples
of atoms are all permutations of (Id, x, y) for x ̸= y, (rj , rj , rj) for 1 ≤ j < κ

and (gi0, g
i′

0 , g
i∗

0 ) for i, i′, i∗ < 2κ. Write g0 for {gi0 : i < 2κ} and r+ for
{rj : 1 ≤ j < κ}. Call this atom structure α.

Consider the term algebra A defined to be the subalgebra of the com-
plex algebra of this atom structure generated by the atoms. We claim
that A, as a relation algebra, has no complete representation, hence any
algebra sharing this atom structure is not completely representable, too.
Indeed, it is easy to show that if A and B are atomic relation algebras
sharing the same atom structure, so that AtA = AtB, then A is completely
representable ⇐⇒ B is completely representable.

Assume for contradiction that A has a complete representation with
base M. Let x, y be points in the representation with M |= r1(x, y). For
each i < 2κ, there is a point zi ∈ M such that M |= gi0(x, zi) ∧ r1(zi, y).
Let Z = {zi : i < 2κ}. Within Z, each edge is labelled by one of the κ
atoms in r+. The Erdos-Rado theorem forces the existence of three points
z1, z2, z3 ∈ Z such that M |= rj(z

1, z2) ∧ rj(z
2, z3) ∧ rj(z

3, z1), for some
single j < κ. This contradicts the definition of composition in A (since we
avoided monochromatic triangles).

Let S be the set of all atomic A-networks N with nodes ω such that
{ri : 1 ≤ i < κ : ri is the label of an edge in N} is finite. Then it is
straightforward to show S is an amalgamation class, that is for allM,N ∈ S
if M ≡ij N then there is L ∈ S with M ≡i L ≡j N , witness [6, Definition
12.8] for notation. We have S is symmetric, that is, if N ∈ S and θ : ω → ω
is a finitary function, in the sense that {i ∈ ω : θ(i) ̸= i} is finite, then Nθ
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is in S. It follows that the complex algebra CA(S) ∈ QEAω. Now let X be
the set of finite A-networks N with nodes ⊆ κ such that:

1. each edge of N is either (a) an atom of A or (b) a cofinite subset of
r+ = {rj : 1 ≤ j < κ} or (c) a cofinite subset of g0 = {gi0 : i < 2κ}
and

2. N is ‘triangle-closed’, i.e. for all l,m, n ∈ nodes(N) we have N(l, n) ≤
N(l,m);N(m,n). That means if an edge (l,m) is labelled by Id then
N(l, n) = N(m,n) and if N(l,m), N(m,n) ≤ g0 then N(l, n) · g0 = 0
and if N(l,m) = N(m,n) = rj (some 1 ≤ j < ω) then N(l, n) · rj = 0.

For N ∈ X let N̂ ∈ CA(S) be defined by

{L ∈ S : L(m,n) ≤ N(m,n) for m,n ∈ nodes(N)}.

For i ∈ ω, let N ↾−i be the subgraph of N obtained by deleting the node

i. Then if N ∈ X, i < ω then ĉiN = N̂ ↾−i. The inclusion ĉiN ⊆ (N̂ ↾−i)

is clear. Conversely, let L ∈ ̂(N ↾−i). We seek M ≡i L with M ∈ N̂ . This

will prove that L ∈ ĉiN , as required. Since L ∈ S the set T = {ri /∈ L}
is infinite. Let T be the disjoint union of two infinite sets Y ∪ Y ′, say. To
define the ω-network M we must define the labels of all edges involving
the node i (other labels are given by M ≡i L). We define these labels by
enumerating the edges and labeling them one at a time. So let j ̸= i < κ.
Suppose j ∈ nodes(N). We must choose M(i, j) ≤ N(i, j). If N(i, j) is
an atom then of course M(i, j) = N(i, j). Since N is finite, this defines
only finitely many labels of M . If N(i, j) is a cofinite subset of g0 then
we let M(i, j) be an arbitrary atom in N(i, j). And if N(i, j) is a cofinite
subset of r+ then let M(i, j) be an element of N(i, j) ∩ Y which has not
been used as the label of any edge of M which has already been chosen
(possible, since at each stage only finitely many have been chosen so far).
If j /∈ nodes(N) then we can let M(i, j) = rk ∈ Y some 1 ≤ k < κ such
that no edge of M has already been labelled by rk. It is not hard to check
that each triangle of M is consistent (we have avoided all monochromatic

triangles) and clearly M ∈ N̂ and M ≡i L. The labeling avoided all but

finitely many elements of Y ′, so M ∈ S. So ̂(N ↾−i) ⊆ ĉiN .

Now let X̂ = {N̂ : N ∈ X} ⊆ CA(S). Then we claim that the sub-

algebra of CA(S) generated by X̂ is simply obtained from X̂ by closing
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under finite unions. Clearly all these finite unions are generated by X̂. We
must show that the set of finite unions of X̂ is closed under all cylin-
dric operations. Closure under unions is given. For N̂ ∈ X we have

−N̂ =
⋃

m,n∈nodes(N) N̂mn where Nmn is a network with nodes {m,n} and

labeling Nmn(m,n) = −N(m,n). Nmn may not belong to X but it is

equivalent to a union of at most finitely many members of X̂. The diago-
nal dij ∈ CA(S) is equal to N̂ where N is a network with nodes {i, j} and
labeling N(i, j) = Id. Closure under cylindrification is given.

Let C be the subalgebra of CA(S) generated by X̂. Then A = RaC. To
see why, each element of A is a union of a finite number of atoms, possibly a
co-finite subset of g0 and possibly a co-finite subset of r+. Clearly A ⊆ RaC.

Conversely, each element z ∈ RaC is a finite union
⋃

N∈F N̂ , for some finite
subset F ofX, satisfying ciz = z, for i > 1. Let i0, . . . , ik be an enumeration
of all the nodes, other than 0 and 1, that occur as nodes of networks in F .

Then, ci0 . . . cikz =
⋃

N∈F ci0 . . . cikN̂ =
⋃

N∈F
̂(N ↾{0,1}) ∈ A. So RaC ⊆

A. Thus A is the relation algebra reduct of C ∈ CAω, but A has no complete
representation. Let n > 2. Let B = NrnC. Then B ∈ NrnCAω, is atomic,
but has no complete representation for plainly a complete representation
of B induces one of A.

By Theorem 1.15 B is in ElCRCAn = LCAn. It remains to show that
the ω-dilation C is atomless. For any N ∈ X, we can add an extra node
extending N to M such that ∅ ⊊M ′ ⊊ N ′, so that N ′ cannot be an atom
in C.

In the next theorem the inclusions in the third item are valid since by
Lemma 1.3, NrnCAω ∩At ⊆ LCAn and the last class is elementary.5

Theorem 1.17. Let 2 < n < ω. Then the following hold:

1. SCmLCASn = RCAn,

2. SPCmAt(NrnCAω) = RCAn,

3. For any class L such that At(NrnCAω) ⊆ L ⊆ LCASn, SPCmL =
RCAn.

5The last incusion was implicitly prove in Theorem 1.3. To be more explicit, assume
that A ∈ NrnCAω is atomic. Then by lemma 1.3, ∃ has a winning strategy in Gω ,
since there are infinitely many nodes, reusing them is superfluous, so ∃ has a winning
strategyactually in (the harder to win game), Gω(AtA), and so ∃ has a winning strategy
in all k rounded game Gk(AtA), so by definition A ∈ LCAn.
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In particular, SPCm(ElAt(NrnCAω)) = RCAn.

Proof: 1. If A ∈ RCAn, then A+ is completely representable [5], so
AtA+ ∈ LCASn. By A ⊆ A+ = CmAtA+, and CmAtA+ ∈ CmLCASn,
we are done.

2. This follows from that Fsn ⊆ CmAtNrnCAω. Indeed, suppose that
A ∈ Fsn, then A ∈ NrnCAω, hence AtA ∈ AtNrnCAω and A = CmAtA ∈
CmAtNrnCAω. Thus RCAn = SPFsn ⊆ SPCmAtNrnCAω ⊆ SPCmLCASn ⊆
RCAn.

3. Follows immediately from the previous item.

2. Atom-canonicity and degrees of representability

In this section, unless otherwise indicated, n is a finite ordinal > 2. We
study closure properties of the classes NrnCAm (m > n) and CRCAn. We
also introduce several new classes defined via the complex algebra operator
Cm and the neat reduct operator Nr and study their properties. The most
general exposition of CA rainbow constructions is given in [7, Section 6.2,
Definition 3.6.9] in the context of constructing atom structures from classes
of models. Our models are just coloured graphs [5]. Let G, R be two
relational structures. Let 2 < n < ω. Then the colours used are:

• greens: gi (1 ≤ i ≤ n− 2), gi0, i ∈ G,

• whites : wi : i ≤ n− 2,

• reds: rij (i < j ∈ n,

• shades of yellow : yS : S a finite subset of ω or S = ω.

A coloured graph is a graph such that each of its edges is labelled by the
colours in the above first three items, greens, whites or reds, and some
n−1 hyperedges are also labelled by the shades of yellow. Certain coloured
graphs will deserve special attention.

Definition 2.1. Let i ∈ G, and let M be a coloured graph consisting of n
nodes x0, . . . , xn−2, z. We call M an i-cone if M(x0, z) = gi0 and for every
1 ≤ j ≤ n − 2, M(xj , z) = gj , and no other edge of M is coloured green.
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(x0, . . . , xn−2) is called the base of the cone, z the apex of the cone and i
the tint of the cone.

The rainbow algebra depending on G and R from the class K consisting
of all coloured graphs M such that:

1. M is a complete graph and M contains no triangles (called forbidden
triples) of the following types:

(g, g
′
, g∗), (gi, gi,wi) any 1 ≤ i ≤ n− 2, (2.1)

(gj0, g
k
0 ,w0) any j, k ∈ G, (2.2)

(rij , rj′k′ , ri∗k∗) unless |{(j, k), (j′, k′), (j∗, k∗)}| = 3 (2.3)

and no other triple of atoms is forbidden.

2. If a0, . . . , an−2 ∈ M are distinct, and no edge (ai, aj) i < j < n is
coloured green, then the sequence (a0, . . . , an−2) is coloured a unique
shade of yellow. No other (n−1) tuples are coloured shades of yellow.
Finally, if D = {d0, . . . , dn−2, δ} ⊆ M and M ↾ D is an i cone with
apex δ, inducing the order d0, . . . , dn−2 on its base, and the tuple
(d0, . . . , dn−2) is coloured by a unique shade yS then i ∈ S.

Let G and R be relational structures as above. Take the set J consisting
of all surjective maps a : n → ∆, where ∆ ∈ K and define an equivalence
relation ∼ on this set relating two such maps iff they essentially define the
same graph [5]; the nodes are possibly different but the graph structure
is the same. Let At be the atom structure with underlying set J ∼. We
denote the equivalence class of a by [a]. Then define, for i < j < n,
the accessibility relations corresponding to ijth-diagonal element, and ith-
cylindrifier, as follows:

(1) [a] ∈ Eij iff a(i) = a(j),
(2) [a]Ti[b] iff a ↾ n∖ {i} = b ↾ n∖ {i},
This, as easily checked, defines a CAn atom structure. The complex

CAn over this atom structure will be denoted by AG,R. The dimension of
AG,R, always finite and > 2, will be clear from context. For rainbow atom
structures, there is a one to one correspondence between atomic networks
and coloured graphs [5, Lemma 30], so for 2 < n < m ≤ ω, we use the
graph versions of the games Gm

k , k ≤ ω, and Gm played on rainbow atom
structures of dimension m [5, pp. 841–842]. The the atomic k rounded
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game game Gm
k where the number of nodes are limited to n to games on

coloured graphs [5, lemma 30]. The game Gm lifts to a game on coloured
graphs, that is like the graph games Gm

ω [5], where the number of nodes of
graphs played during the ω rounded game does not exceed m, but ∀ has
the option to re-use nodes. The typical winning strategy for ∀ in the graph
version of both atomic games is bombarding ∃ with cones having a common
base and green tints until she runs out of (suitable) reds, that is to say, reds
whose indicies do not match [5, 4.3]. So roughly if |G| is larger that |R|
substantially, then ∀ can win; otherwise ∃ wins for if there is a winning
strategy for ∀ it must be implemented as just described. The (complex)
rainbow algebra based on G and R is denoted by AG,R. The dimension n
will always be clear from context.

Theorem 2.2. Let 2 < n < ω.

1. There exists A ∈ RCAn such that CmAtA /∈ SNrnCAt(n), where t(n) =
n(n + 1)/2. Therefore any completely additive variety V such that
RCAn ⊆ V ⊆ SNrnCAt(n) is not atom-canonical.

2. There exists A ∈ NrnCAl ∩ RCAn such that CmAtA /∈ RCAn,

3. There exists B ∈ Csn, B /∈ ElNrnCAn+1, but AtB ∈ NrnCAω and
CmAtB ∈ NrnCAω

Proof: 1. The proof of the first item is given in full detail in [16, Theo-
rem 1]; here we give the main ingredients of the proof as another instance
of a blow up and blur construction. Take the finite rainbow cylindric al-
gebra R(Γ) as defined in [7, Definition 3.6.9], where Γ (the reds) is taken
to be the complete irreflexive graph m, and the greens are {gi : 1 ≤ i <
n − 1} ∪ {gi0 : 1 ≤ i ≤ n(n − 1)/2} so that G is the complete irreflexive
graph n(n− 1)/2.

Call this finite rainbow n-dimensional cylindric algebra, based on G =
n(n − 1)/2 and R = n, CAn(n−1)/2+1,n and denote its finite atom struc-
ture by Atf . One then replaces each red colour used in constructing
CAn(n−1)/2,n by infinitely many with superscripts from ω, getting a weakly
representable atom structure At, that is, the term algebra TmAt is repre-
sentable.

The resulting atom structure (with ω-many reds), call it At, is the
rainbow atom structure that is like the atom structure of the (atomic set)
algebra denoted by A in [10, Definition 4.1] except that we have n(n−1)/2

greens and not infinitely many as is the case in [10]. Everything else is the
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same. In particular, the rainbow signature [7, Definition 3.6.9] now consists
of gi : 1 ≤ i < n − 1, gi0 : 1 ≤ i ≤ n + 1, wi : i < n − 1, rtkl : k < l < n,
t ∈ ω, binary relations, and n− 1 ary relations yS , S ⊆ n(n− 1)/2.

There is a shade of red ρ; the latter is a binary relation that is outside the
rainbow signature. But ρ is used as a label for coloured graphs built during
a ‘rainbow game’, and in fact, ∃ can win the rainbow ω-rounded game
and she builds an n-homogeneous (coloured graph) model M as indicated
in the above outline by using ρ when she is forced a red [10, Proposition
2.6, Lemma 2.7]. Then, it can be shown exactly as in [10], that TmAt is
representable as a set algebra with unit nM.

We next embed CAn(n−1)/2,n into the complex algebra CmAt, the De-
dekind–MacNeille completion of TmAt. Let CRGf denote the class of
coloured graphs on Atf and CRG be the class of coloured graph on At.
We can assume that CRGf ⊆ CRG. Write Ma for the atom that is the
(equivalence class of the) surjection a : n → M , M ∈ CRG. Here we
identify a with [a]; no harm will ensue.

We define the (equivalence) relation ∼ on At by Mb ∼ Na, (M,N ∈
CRG) ⇐⇒ they are everywhere identical except possibly at red edges:

Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω.

We say that Ma is a copy of Nb if Ma ∼ Nb. Now we define a map
Θ : CAn+1,n = CmAtf to CmAt, by specifing first its values on Atf , via

Ma 7→
∑

j M
(j)
a ; where M

(j)
a is a copy of Ma; each atom maps to the

suprema of its copies. (If Ma has no red edges, then by
∑

j M
(j)
a , we

understand Ma). This map is extended to CAn+1,n the obvious way. The
map Θ is well defined, because CmAt is complete. It is not hard to show
that the map Θ is an injective homomorphim.

One next proves that ∀ has a winning strategy for ∃ in
Gt(n)At(CAn(n−1)/2,n), where t(n) = n(n + 1)/2 + 1 using the usual rain-
bow strategy by bombarding ∃ with cones having the same base and dis-
tinct green tints. He needs t(n) nodes to implement his winning strat-
egy. In fact, he needs t(n) nodes to force a win in the weaker game

G
t(n)
ω (AtAn(n−1)/2,n) without the need to resue the nodes in play. To see

why, first it is straightforward to show that ∀ has winning strategy first
in the Ehrenfeucht–Fräıssé forth private game played between ∃ and ∀ on

the complete irreflexive graphs n + 1(≤ n(n − 1)/2 + 1) and n rounds
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EFn+1
 (n + 1, n) since n + 1 is ‘longer’ than n. ∀ lifts his winning strategy

on Atf = At(CAn(n−1)/2,n) see [5, p. 841] forcing a win using t(n) nodes. 
One uses the n(n − 1)/2 + 2 green relations in the usual way to force a red
clique C, say with n(n − 1)/2 + 2. Pick any point x ∈ C. Then there are
> n(n − 1)/2 points y in C \ {x}. There are only n(n − 1)/2 red relations.
So there must be distinct y, z ∈ C \ {x} such that (x, y) and (x, z) both
have the same red label (it will be some rijm for i < j < n). But (y, z) is 
also red, and this contradicts the consistency condition of reds. In more
detail, ∀ bombards ∃ with cones having common base and distinct green
tints until ∃ is forced to play an inconsistent red triangle (where indicies
of reds do not match). He needs n − 1 nodes as the base of cones, plus
|P | + 2 more nodes, where P = {(i, j) : i < j < n} forming a red clique,
triangle with two edges satisfying the same rpm for p ∈ P . Calculating, we 
get t(n) = n − 1 + n(n − 1)/2 + 2 = n(n + 1)/2 + 1. We proved that ∀
lifts his winning strategy from the last private game to the graph game on
Atf = At(CAn(n−1)/2,n forcing a win using t(n) nodes.

2. This follows from the proof of Theorem 1.12; we give a more stream-
lined proof. Like before, we use the construction in [2]. Let R be a re-
lation algebra, with non-identity atoms I and 2 < n < ω. Assume that
J ⊆ ℘(I) and E ⊆ 3ω. (J,E) is an n-blur for R, if J is a complex n-
blur and the tenary relation E is an index blur defined as in item (ii) of
[2, Definition 3.1]. Recall that (J,E) is a strong n-blur, if it (J,E) is an
n-blur, such that the complex n-blur satisfies: (∀V1, . . . Vn,W2, . . .Wn ∈
J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ) (with notation as in [2]). Now let
l ≥ 2n − 1, k ≥ (2n − 1)l, k ∈ ω. One takes the finite integral relation
algebra Rl = Ek(2, 3) where k is the number of non-identity atoms in Rl.
Then Rl has a strong l-blur, (J,E) and it can only be represented on a
finite basis [2]. Then Bbn(Rl, J, E) = NrnBll(Rl, J, E) has no complete
representation, so CmAtBbn(Rl, J, E) is not representable.

3. Let V = nQ and let A ∈ Csn has universe ℘(V ). Then clearly
A ∈ NrnCAω. To see why, let W = ωQ and let D ∈ Csω have universe
℘(W ). Then the map θ : A → ℘(D) defined via a 7→ {s ∈W : (s ↾ α) ∈ a},
is an injective homomorphism from A into RdnD that is onto NrnD. Let
y denote the following n-ary relation: y = {s ∈ V : s0 + 1 =

∑
i>0 si}. Let

ys be the singleton containing s, i.e. ys = {s} and B = SgA{y, ys : s ∈ y}.
It is shown in [17] that {s} ∈ B, for all s ∈ V .

¨ ´from the last private Ehrenfeucht–Fraısse forth game to the graph game
n+1
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Now B and A having same top element V , share the same atom struc-
ture, namely, the singletons, so B ⊆d A and CmAtB = A. Furthermore,
plainly A,B ∈ CRCAn; the identity maps establishes a complete represen-
tation for both, since

⋃
s∈V {s} = V . Since B ⊆d A, then B ⊆c A, so

B ∈ ScNrnCAω ∩ At because A ∈ NrnCAω is atomic. As proved in [17],
B /∈ ElNrnCAn+1(⊇ NrnCAω ∩At)).

Recall that Sc denotes the operation of forming complete sublgebras
and Sd denotes the opeartion of forming dense subalgebras. We let I
denote the operation of forming isomorphic images. For any class of BAO,
IK ⊆ SdK ⊆ ScK. (It is not hard to show that for Boolean algebras the
inclusion are proper).

Definition 2.3. Let 2 < n ≤ l ≤ m ≤ ω. Let O ∈ {S,Sd,Sc, I}.
1. An algebra A ∈ CAn has the O neat embedding property up to m

if A ∈ ONrnCAm. If m = ω and O = S, we say simply that A
has the neat embedding property. (Observe that the last condition is
equivalent to that A ∈ RCAn).

2. An atomic algebra A ∈ CAn has the complex O neat embedding prop-
erty up to m, if CmAtA ∈ ONrnCAm. The word ‘complex’ here refers
to the involvement of the complex algebra in the definition.

3. An atomic algebra A ∈ RCAn is strongly representable up to l and m
if A ∈ NrnCAl and CmAtA ∈ SNrnCAm. If l = n and m = ω, we say
that A is strongly representable.

4. Let L ⊆ K be subclasses of CAn. We say that L is not atom-canonical
relative K if there exists an atomic algebra A ∈ L such that CmAtA /∈
K. Observe that if L is not atom-canonical relative to itself, then L
is not atom-canonical.

Example 2.4.

1. The algebra A constructed in the third item of theorem 2.2 has the
neat embedding property, but not the complex S neat embedding
propery up to m for any m ≥ n(n + 1)/2. In particular, A is not
strongly representable and A lacks a complete representation. Fur-
thermore, the algebra A witnesses that RCAn is not atom-canonical
relative to SNrnCAn+k for any k ≥ n(n+ 1)/2.
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2. For every 2 < n < l < ω, the algebra B = Bbn(Ek(2, 3), J, E) used
in the second item of Theorem 2.2 based on Theorem 1.12, where k
depends on l and (J,E) is the strong l-blur of the Maddux algebra
Ek(2, 3) as specified in op. cit., is in NrnCAl ∩ RCAn, but is not
strongly representable up to l and ω. In particular, B, like A in
the first item, is also not strongly representable and lacks a complete
representation. The algebra B witnesses that RCAn ∩ NrnCAl is not
atom-canonical relative to RCAn.

3. The algebra B used in the last item of theorem 2.2 has the complex
I neat embedding property up to m for any m ≥ n but does not
have the I neat embedding property up to n+1, a fortiori up to any
m ≥ n+ 1, cf. the second item of the forthcoming theorem 2.5.

Let 2 < n ≤ l ≤ m ≤ ω. Let O ∈ {S,Sd,Sc, I}. Denote the
class of CAns having the complex O neat embedding property up to m
by CNPCAO

n,m, and let RCAO
n,m := CNPCAO

n,m ∩ RCAn. Denote the class

of strongly representable CAns up to l and m by RCAl,m
n . Call an algebra

A ∈ CAn strongly representable if A is atomic and AtA is strongly repre-
sentable; that is CmAtA ∈ RCAn. Observe that RCAn,m

n = RCAS
n,m and

that when m = ω both classes coincide with the class of strongly rep-
resentable CAns. For a class K of BAOs, K ∩ Count denotes the class of
countable algebras in K, and recall that K∩At denotes the class of atomic
algebras in K.

Theorem 2.5. Let 2 < n ≤ l < m ≤ ω and O ∈ {S,Sc,Sd, I}. Then the
following hold:

1. RCAO
n,m ⊆ RCAO

n,l and RCAI
n,l ⊆ RCASd

n,l ⊆ RCASc

n,l ⊆ RCAS
n,l. The

last inclusion is proper for l ≥ n(n+ 1)/2,

2. For O ∈ {S,Sc,Sd}, CNPCAO
n,l ⊆ ONrnCAl (that is the complex

O neat embedding property is stronger than the O neat embedding
property), and for O = S, the inclusion is proper for l ≥ n+ 3. But
for O = I, CNPCAI

n,l ⊈ NrnCAl (so the complex I neat embedding
property does not imply the I neat embedding property),

3. If A is finite, then A ∈ CNPCAO
n,l ⇐⇒ A ∈ ONrnCAl and A ∈

RCAO
n,l ⇐⇒ A ∈ RCAn ∩ ONrnCAl. Furthermore, for any positive

k, CNPCAO
n,n+k+1 ⊊ CNPCAO

n,n+k, and finally CNPCAO
n,ω ⊊ RCAn,
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4. (∃A ∈ RCAn∩At ∼ CNPCAS
n,l) =⇒ SNrnCAk is not atom-canonical

for all k ≥ l. In particular, SNrnCAk is not atom-canonical for all
k ≥ n+ 3,

5. If SNrnCAl is atom-canonical, then RCAS
n,l is first order definable.

There exists a finite k > n + 1, such that RCAS
n,k is not first order

definable.

6. Let 2 < n < l ≤ ω. Then RCAl,ω
n ∩ Count ̸= ∅ ⇐⇒ l < ω.

Proof: 1. The inclusions follow from the definition and the strictness of
the last inclusion in this item is witnessed by the algebra C = CZ,N used in
Theorem 3.1, since C satisfies C = CmAtC ∈ RCAn but C /∈ ScNrnCAl for
l ≥ n+ 3.

2. Let O ∈ {S,Sc,Sd}. If CmAtA ∈ ONrnCAl, then A ⊆d CmAtA, so
A ∈ SdONrnCAl ⊆ ONrnCAl. This proves the first part. The strictness of
the last inclusion follows from the first part of Theorem 2.2 since the atomic
countable algebra A constructed in op. cit. is in RCAn, but CmAtA /∈
SNrnCAl for any l ≥ n(n+ 1)/2.

For the last non-inclusion in item (2), we use the set algebras A and B
in item (3) of Theorem 2.2. Now B ⊆d A, A ∈ Csn, and clearly CmAtB =
A(∈ NrnCAω). As proved in [17], B /∈ ElNrnCAn+1, so B /∈ NrnCAn+1(⊇
NrnCAl). But CmAtB ∈ NrnCAω, hence B ∈ RCAI

n,l. We have shown

that B ∈ RCAI
n,l ∼ NrnCAl, and we are through with the last required in

item (2). Here we basically use that NrnCAm is not closed under Sd, a
fortiori under Sc, while, conversely, CRCAn is closed under Sc since Sc is
an idempotent operator (ScSc = Sc), a fortiori CRCAn is closed under Sd.

3. Follows by definition observing that if A is finite then A = CmAtA.
The strictness of the first inclusion follows from the construction in [9]
where it shown that for any positive k, there is a finite algebra A in
NrnCAn+k ∼ SNrnCAn+k+1 (witness the appendix for a simplified ver-
sion of the construction in [9]). The inclusion CNPCAO

n,ω ⊆ RCAn holds

because if B ∈ CNPCAO
n,ω, then B ⊆ CmAtB ∈ ONrnCAω ⊆ RCAn. The

A used in the last item of theorem 2.2 witnesses the strictness of the last
inclusion proving the last required in this item.

4. Follows from the definition and the construction used in item (3) of
theorem 2.2.

5. Follows from that SNrnCAl is canonical. So if it is atom-canonical
too, then At(SNrnCAl) = {F : CmF ∈ SNrnCAl}, the former class is ele-
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mentary [6, Theorem 2.84], and the last class is elementray ⇐⇒ RCAS
n,l

is elementary. Non-elementarity follows from [7, Corollary 3.7.2] where
it is proved that RCAS

n,ω is not elementary, together with the fact that⋂
n<k<ω SNrnCAk = RCAn. In more detail, let Ai be the sequence of

strongly representable CAns with CmAtAi = Ai and A = Πi/UAi is not
strongly representable. Hence CmAtA /∈ SNrnCAω =

⋂
i∈ω SNrnCAn+i, so

CmAtA /∈ SNrnKl for all l > k, for some k ∈ ω, k > n. But for each
such l, Ai ∈ SNrnCAl(⊇ RCAn), so Ai is a sequence of algebras such that
CmAtAi = Ai ∈ SNrnCAl, but Cm(At(Πi/UAi)) = CmAtA /∈ SNrnCAl, for
all l ≥ k. That k has to be strictly greater than n + 1, follows because
SNrnCAn+1 is atom-canonical.

6. ⇐=: Let l < ω. Then the required follows from theorem 1.12, and
item (2) in Theorem 2.2 that there exists a countable A ∈ NrnCAl ∩ RCAn

such that CmAtA /∈ RCAn. Now we prove =⇒ : Assume for contradiction
that there is an A ∈ RCAω,ω

n ∩Count. Then by definition A ∈ NrnCAω, so by
[14, Theorem 5.3.6], we have A ∈ CRCAn. But this complete representation,
induces a(n ordinary) representation of CmAtA which is a contradiction.
Indeed by Lemma 1.10, if f : A → B is a complete representation of
A via f then one extends f to f̂ from CmAtA to B by defining f̂(a) =∑CmAtA

x∈AtA,x≤a f(x).

3. Non-elementary classes

Still Sd stands for the operation of forming dense subalgebras and for K a
class of BAOs, ScK = {B : (∃A ∈ K)(

∑A
X = 1 =⇒

∑B
X = 1}.

Theorem 3.1. Let 2 < n < ω. Any class between SdNrnCAω∩CRCAn and
ScNrnCAn+3 is not first order definable. Furthermore any class between
At(NrnCAω ∩ CRCAn) and At(ScNrnCAn+3) is not first order definable.

Proof: The proof is long and is divided into four parts:

(a) We define an ω-rounded (atomic) game H(α) played on so-called
atomic λ-neat hypernetworks-λ a ‘label’.

(b) If α is a countable atom structure, and ∃ has a winning strategy
in H(α), then any algebra F having atom structure α is completely
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representable, Cmα ∈ NrnCAω and α ∈ AtNrαCAω. In fact, there will
exist a complete D ∈ CAω such that Cmα ∼= NrnD and α ∼= AtNrnD,

(c) Then the game H will be applied to the atom structure of a rainbow-
like CAn denoted below by CZ,N. From a winning strategyof ∃ in
Hk(AtCZ,N) (where Hk is H truncated to k rounds) for all k ≤ ω–so
that Hω = H– it will follow that CZ,N ≡ Tmα for some completely
representable atom structure α ∈ At(NrnCAω), for which Cmα ∈
NrnCAω. On the other hand, we prove that ∀ has a winning strategy
in Gn+3(AtCZ,N), so by lemma 1.3 CZ,N /∈ ScNrnCAn+3.

(d) The term algebra Tmα will be used to show that any class between
SdNrnCAω ∩ CRCAn and ScNrnCAn+3 is not elementary.

(a) Defining the game Hk(k ≤ ω) which is H restricted to k rounds
This new game Hk is stronger than Gk. In Hk not only the moves are more
(which they are), but now the board of the play is different.

Fix k ≤ ω. The new game Hk is played on so-called λ-neat hypernet-
works, λ a ‘hyperlabel’ and it has k rounds. These are similar to m(< n)-
dimensional hypernetworks as defined in item(3) of definition 1.2; they are
roughly networks endowed with labelled hyperedges, whose length gets ar-
bitrarily long, but is still finite. Unlike m-dimensional hypernetworks here
the lengths of hyperedges are not uniformly bounded. So a hypernetwork
of an atomic A ∈ CAn has two parts (Na, Nh) where Na is network whose
n-hyperdges are labelled by atoms of A and Nh :<ω nodes(N) → Λ, where
hyperedges get their hyperlabels from a non-empty set (of hyperlabels) Λ.

There is a compatibility condition between Na and Nh which is a CA
analogue of condition (3) in [6, Definition 12.1] formulated for hypernet-
works of relation algebras. This condition for hypernetworks as defined in
[4], is given in [4, Definition 28]. The form for CAs needed is entirely analo-
gous to the condition in item (3) of definition 1.2. In any such hypernetwork
N = (Na, Nh), there are so-called short hyperedges and long hyperedges in
Nh. The hypernetworks whose short hyperedges are constantly labelled by
a hyperlabel λ ∈ Λ are called λ-neat hypernetworks. The game H offers
∀ three moves delivered by ∀ during the play. There is a cylindrifier move
analagous to the cylindrifier move in G adapted the obvious way to λ-neat
hypernetworks and two more amalgamation moves.

First amalgamation move: ∀ can play a transformation move by picking
a previously played λ-neat hypernetwork N and a partial, finite surjection
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θ : ω → nodes(N), this move is denoted (N, θ). ∃’s response is mandatory.
She must respond with Nθ.

Second amalgmation move: ∀ can play an amalgamation move by
picking previously played λ-neat hypernetworks M,N such that
M ↾nodes(M)∩nodes(N)= N ↾nodes(M)∩nodes(N), and nodes(M) ∩ nodes(N)
̸= ∅. This move is denoted (M,N). To make a legal response, ∃ must
play a λ-neat hypernetwork L extending M and N , where nodes(L) =
nodes(M) ∪ nodes(N).

(b) Forming the required ω-dilation D Fix some a ∈ α. The game
Hω is designed so that using ∃ s winning strategy in the game Hω(α) one
can define a nested sequence M0 ⊆M1, . . . of λ-neat hypernetworks where
M0 is ∃’s response to the initial ∀-move a, such that: IfMr is in the sequence
and Mr(x̄) ≤ cia for an atom a and some i < n, then there is s ≥ r and
d ∈ nodes(Ms) such that Ms(ȳ) = a, ȳi = d and ȳ ≡i x̄. In addition, if Mr

is in the sequence and θ is any partial isomorphism of Mr, then there is
s ≥ r and a partial isomorphism θ+ ofMs extending θ such that rng(θ+) ⊇
nodes(Mr) (This can be done using ∃’s responses to amalgamation moves).
Now let Ma be the limit of this sequence, that is Ma =

⋃
Mi, the labelling

of n−1 tuples of nodes by atoms, and hyperedges by hyperlabels done in the
obvious way using the fact that the Mis are nested. Let L be the signature
with one n-ary relation for each b ∈ α, and one k-ary predicate symbol for
each k-ary hyperlabel λ. Now we work in L∞,ω. For fixed fa ∈ ωnodes(Ma),
let Ua = {f ∈ ωnodes(Ma) : {i < ω : g(i) ̸= fa(i)} is finite}. We make Ua

into the base of an L relativized structure CAlMa like in [4, Theorem 29]
except that we allow a clause for infinitary disjunctions. In more detail, for
b ∈ α, l0, . . . , ln−1, i0 . . . , ik−1 < ω, k-ary hyperlabels λ, and all L-formulas
ϕ, ϕi, ψ, and f ∈ Ua:

CAlMa, f |= b(xl0 . . . , xln−1
) ⇐⇒ CAlMa(f(l0), . . . , f(ln−1)) = b,

CAlMa, f |= λ(xi0 , . . . , xik−1
) ⇐⇒ CAlMa(f(i0), . . . , f(ik−1)) = λ,

CAlMa, f |= ¬ϕ ⇐⇒ CAlMa, f ̸|= ϕ,

CAlMa, f |= (
∨
i∈I

ϕi) ⇐⇒ (∃i ∈ I)(CAlMa, f |= ϕi),

CAlMa, f |= ∃xiϕ ⇐⇒ CAlMa, f [i/m] |= ϕ,

some m ∈ nodes(CAlMa).
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For any such L-formula ϕ, write ϕCAlMa for {f ∈ Ua : CAlMa, f |= ϕ}.
Let Da = {ϕCAlMa : ϕ is an L-formula} and Da be the weak set algebra
with universe Da. Let D = Pa∈αDa. Then D is a generalized complete
weak set algebra [3, Definition 3.1.2 (iv)]. Now we show that α ∼= AtNrnD
and Cmα ∼= NrnD. Let x ∈ D. Then x = (xa : a ∈ α), where xa ∈ Da.
For b ∈ α let πb : D → Db be the projection map defined by πb(xa :
a ∈ α) = xb. Conversely, let ιa : Da → D be the embedding defined
by ιa(y) = (xb : b ∈ α), where xa = y and xb = 0 for b ̸= a. Suppose
x ∈ NrnD\{0}. Since x ̸= 0, then it has a non-zero component πa(x) ∈ Da,
for some a ∈ α. Assume that ∅ ̸= ϕ(xi0 , . . . , xik−1

)Da = πa(x), for some
L-formula ϕ(xi0 , . . . , xik−1

). We have ϕ(xi0 , . . . , xik−1
)Da ∈ NrnDa. Pick

f ∈ ϕ(xi0 , . . . , xik−1
)Da and assume that CAlMa, f |= b(x0, . . . xn−1) for

some b ∈ α. We show that b(x0, x1, . . . , xn−1)
Da ⊆ ϕ(xi0 , . . . , xik−1

)Da .
Take any g ∈ b(x0, x1 . . . , xn−1)

Da , so that CAlMa, g |= b(x0, . . . xn−1).
The map {(f(i), g(i)) : i < n} is a partial isomorphism of CAlMa. Here
that short hyperedges are constantly labelled by λ is used. This map
extends to a finite partial isomorphism θ of Ma whose domain includes
f(i0), . . . , f(ik−1). Let g

′ ∈ CAlMa be defined by

g′(i) =

{
θ(i) if i ∈ dom(θ)
g(i) otherwise

We have CAlMa, g
′ |= ϕ(xi0 , . . . , xik−1

). But g′(0) = θ(0) = g(0) and
similarly g′(n − 1) = g(n − 1), so g is identical to g′ over n and it differs
from g′ on only a finite set. Since ϕ(xi0 , . . . , xik−1

)Da ∈ NrnDa, we get
that CAlMa, g |= ϕ(xi0 , . . . , xik), so g ∈ ϕ(xi0 , . . . , xik−1

)Da (this can be
proved by induction on quantifier depth of formulas). This proves that

b(x0, x1 . . . xn−1)
Da ⊆ ϕ(xi0 , . . . , xik)

Da = πa(x),

and so

ιa(b(x0, x1, . . . xn−1)
Da) ≤ ιa(ϕ(xi0 , . . . , xik−1

)Da) ≤ x ∈ Da \ {0}.

Now every non-zero element x of NrnDa is above a non-zero element of
the following form ιa(b(x0, x1, . . . , xn−1)

Da) (some a, b ∈ α) and these are
the atoms of NrnDa. The map defined via b 7→ (b(x0, x1, . . . , xn−1)

Da :
a ∈ α) is an isomorphism of atom structures, so that α ∈ AtNrnCAω.

Let X ⊆ NrnD. Then by completeness of D, we get that d =
∑D

X
exists. Assume that i /∈ n, then cid = ci

∑
X =

∑
x∈X cix =

∑
X = d,



444 Tarek Sayed Ahmed

because the cis are completely additive and cix = x, for all i /∈ n, since
x ∈ NrnD. We conclude that d ∈ NrnD, hence d is an upper bound of
X in NrnD. Since d =

∑D
x∈X X there can be no b ∈ NrnD (⊆ D) with

b < d such that b is an upper bound of X for else it will be an upper bound
of X in D. Thus

∑NrnD
x∈X X = d We have shown that NrnD is complete.

Making the legitimate identification NrnD ⊆d Cmα by density, we get that
NrnD = Cmα (since NrnD is complete), hence Cmα ∈ NrnCAω.

Finally, to show that any atomic algebra having atom structure α is
completely representable one can reason in one of the two following ways:

One: The game H is stronger than G and a winning strategyof ∃ in
G(α) implies that the atom structure α is completely representable, hence
any atomic algebra having the atom structure α will be completely repre-
sentable.

Two: The complex algebra Cmα has countably many atoms and is in
NrnCAω, so by the third item of theorem 1.4 it is completely representable.
Thus, any atomic algebra F sharing the atom structure α is also completely
representable.

(c) Applying H to a rainbow-like atom structure; excluding first
order definability of classes between SdNrnCAω ∩ CRCAn and
ScNrnCAn+3 We apply the new game H to the rainbow algebra CZ,N
based on the ordered structures Z and N. The reds R are the set {rij : i <
j < ω(= N)} and the green colours used constitute the set {gi : 1 ≤ i <
n − 1} ∪ {gi0 : i ∈ Z}. In complete coloured graphs the forbidden triples
are like the usual rainbow constructions based on Z and N, but we add a
forbidden triple in coloured graphs. The triple (gi0, g

j
0, rkl) is forbidden if

{(i, k), (j, l)} is not an order preserving partial function from Z → N. In
[15], it is shown that CZ,N ≡ B for some countableB ∈ ScNrnCAω∩CRCAn.
This is proved by showing that ∃ has a winning strategy in Gk(AtCZ,N) for
all k ∈ ω, hence using ultrapowers followed by an elementary chain argu-
ment (like the argument used in the proof of theorem 1.15), we get that
CZ,N ≡ B, and ∃ has a winning strategy in Gω(AtB), hence by [7, Theorem
3.3.3] B ∈ CRCAn ⊆ Sc(NrnCAω ∩At); the last inclusion follows from the
first item of theorem 1.4. With some significantly more effort one can prove
more: It can be shown that that ∃ can win the game Hk(AtCZ,N) which is
the gameH truncated to k rounds (on the same CZ,N based on Z andN) for
all k < ω. Recall that H is stronger than G hence Hk is stronger than Gk.
Using ultrapowers followed by an elementary chain argument, it follows ∃
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has a winning strategy in H(α) for a countable atom structure α, such that
CZ,N ≡ Tmα. We show that ∀ has a winning strategy in the graph version
of the game Gn+3(AtCZ,N) played on coloured graphs [5]. The rough idea
here, is that, as is the case with winning strategy’s of ∀ in rainbow construc-
tions, ∀ bombards ∃ with cones having distinct green tints demanding a red
label from ∃ to appexes of succesive cones. The number of nodes are lim-
ited but ∀ has the option to re-use them, so this process will not end after
finitely many rounds. The added order preserving condition relating two
greens and a red, forces ∃ to choose red labels, one of whose indices form a
decreasing sequence in N. In ω many rounds ∀ forces a win, so by the first
item of lemma 1.3, CZ,N /∈ ScNrnCAn+3. More rigorously, ∀ plays as fol-
lows: In the initial round ∀ plays a graphM with nodes 0, 1, . . . , n−1 such
that M(i, j) = w0 for i < j < n− 1 and M(i, n− 1) = gi (i = 1, . . . , n− 2),
M(0, n − 1) = g00 and M(0, 1, . . . , n − 2) = yZ. This is a 0 cone. In the
following move ∀ chooses the base of the cone (0, . . . , n− 2) and demands
a node n with M2(i, n) = gi (i = 1, . . . , n − 2), and M2(0, n) = g−1

0 . ∃
must choose a label for the edge (n + 1, n) of M2. It must be a red atom
rmk, m, k ∈ N. Since −1 < 0, then by the ‘order preserving’ condition
we have m < k. In the next move ∀ plays the face (0, . . . , n − 2) and
demands a node n + 1, with M3(i, n) = gi (i = 1, . . . , n − 2), such that
M3(0, n + 2) = g−2

0 . Then M3(n + 1, n) and M3(n + 1, n − 1) both being
red, the indices must match. M3(n+1, n) = rlk andM3(n+1, r−1) = rkm
with l < m ∈ N. In the next round ∀ plays (0, 1, . . . n− 2) and re-uses the
node 2 such that M4(0, 2) = g−3

0 . This time we have M4(n, n − 1) = rjl
for some j < l < m ∈ N. Continuing in this manner leads to a decreasing
sequence in N. We have proved the required.

(d): Putting (a), (b), (c) together We get that CZ,N ≡ Tmα, where
α is a countable atom structure, such that α ∈ At(NrnCAω), any atomic
F ∈ CAn having atom structure α is completely representable, and
Cmα ∈ NrnCAω. So Tmα ⊆d Cmα ∈ NrnCAω, Tmα ∈ CRCAn and CZ,N /∈
ScNrnCAn+3. Let K be any class between SdNrnCAω ∩ CRCAn and
ScNrnCAn+3. Then CZ,N /∈ ScNrnCAn+3 ⊇ K. But CZ,N ≡ Tmα,
and Tmα ⊆d Cmα ∈ NrnCAω, and Tmα ∈ CRCAn, so Tmα ∈
SdNrnCAω ∩CRCAn ⊆ K. We have shown that Tmα ≡ CZ,N, Tmα ∈ K but
CZ,N /∈ K, and we are done.6

6Let m > n. It is easy to show that if D ∈ CAn and AtD ∈ ScNrnCAm, then
D ∈ ScNrnCAm. Since α ∈ At(NrnCAω), by the (contrapositive of the) above obser-
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We have also proved that any K between AtNrnCAω ∩ CRCAn

and AtScNrnCAn+3 is not elementary, because α ≡ AtCZ,N, α ∈
At(NrnCAω ∩ CRCAn) but AtCZ,N /∈ At(ScNrnCAn+3) lest CZ,N ∈
ScNrnCAn+3.

7

Remark 3.2. In forming the required ω-dilation D we made use of the
‘stronger part’ of the game H, involving the amalgamation moves on λ-neat
hypernetworks, where λ is the constant hyperlabel kept on short hypernet-
works to build the ω-dilation D which is a generalized weak set algebra of
dimension ω, that is a set algebra, whose top element is a disjoint union
of weak spaces of dimension ω; any such weak space is a set of sequences
that agree co-finitely with sequences in ωU (some non-empty set U). This
ω-dilation D can be (and was) described in a model theoretic framework.
Using ∃’s winning strategy in H, one builds an ω-dilation Da of Tmα for
every a ∈ α, based on a structure Ma in some signature specified above.
Strictly speaking, Ma is a weak model [13, Definition 3.2.1], where assign-
ments are required to agree co-finitely with a fixed sequence in ωMa. Thus
Da is a weak set algebra of dimension n with base Ma This weak model Ma

was taken in a signature L consisting of one n-ary relation for each b ∈ α
and a k-ary relation symbol for each hyperedge of length k labelled by λ.

For a ∈ α, the weak model Ma is the limit of the play Hω; in the sense
that Ma is the union of the λ-neat hypernetworks on α played during the
game Hω, with starting point the initial atom a that ∀ chose in the first
move. Labels for the edges and hyperedges in Ma were defined the obvious
way, inherited from the λ-neat hypernetworks played during the game;
these are nested so this labelling is well defined, giving an interpretation of
only the atomic formulas of L in Ma.

However, there is some freedom here in ‘completing’ the interpretation.
One can use any extension L, not necessarily a proper one, of Lω,ω as a
vehicle for constructing Da. The algebra Da constructed above was a weak

vation, AtCZ,N /∈ At(ScNrnCAn+3), and α ≡ AtCZ,N because an atom structure of an
atomic algebra is interpretable in the algebra, then we have already proved the required.
However, if AtD ∈ At(NrnCAm) for some D ∈ CAm and some m > n does not imply
that D ∈ NrnCAm, even if the Dedekind–MacNeille completion of D is in NrnCAm, cf.
the last item of Theorem 2.2.

7There is subtle distinction between NrnCAm and the larger ScNrnCAm for 1 < n <
m ≤ ω that we should point out and that is the following: While if AtA ∈ AtNrnKm

this does not imply that A ∈ NrnCAm; but on the contrary if AtA ∈ ScNrnCAm, then
A ∈ ScNrnCAm.
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set algebra of dimension ω consisting of L-formulas taken in the signature
L. The base of Da is Ma, and the set-theoretic operations of Da are
read off the semantics of the connectives avialable in L. In all cases, as
long as L contains Lω,ω as a fragment, we get that Tmα ⊆ NrnD, where
D = Pa∈αDa. There are three possibilites measuring ‘how close’ Tmα is
to NrnD. We go from the closest to the less close. Either (a) Tmα = NrnD
or (b) Tmα ⊆d NrnD or (c) Tmα ⊆c NrnD. It is reasonable to expect that
the stronger (the logic) L is, the ‘more control’ α has over the hitherto
obtained ω-dilation D; the closer Tmα is to the neat n-reduct of D based
on L-formulas.

Suppose we take L = Lω,ω. Then using the fact that in the λ-neat
hypernetworks played during the game H short hyperedges are constantly
labelled by λ, one shows that α ∼= AtNrnD; the isomorphism defined via
b 7→ (bDa(x0, . . . xn−1) : a ∈ α). But using L = L∞,ω in the same signature,
the resulting algebra D which is isomorphic to a generalized ω-dimensionl
weak set algebra in the sense of [3, Definition 3.1.2 (iv)] (with top element
the disjoint union of top elements of the Da) based on the (now) L∞,ω weak
models Ma taken in the same signature L, a ∈ α, will be complete. This is
so, because the Das are complete;

∑Da

i∈I ϕ
Da
i = (

∨
i∈I ϕi)

Da . Here ϕDa is
the set of all sequences s agreeing co-finitely with a fixed sequence in ωMa

such that Ma, s |= ϕ. So both D = Pa∈αDa and its n–neat reduct NrnD
will be complete. Accordingly, one makes the identification NrnD ⊆d Cmα.
By density, we get that NrnD = Cmα (since NrnD is complete), hence
Cmα ∈ NrnCAω and so we get (b) (and (c)) since Tmα ⊆d Cmα. Also
the property that α ∼= AtNrnD is plainly maintained when we passed from
Lω,ω to L∞,ω.

For a class K of algebras, we denote by K ∩ Count the class of
countable algebras in K. Observe that the game Hω ‘captures’ the class
At(NrnCAω) ∩ Count in the sense that if α is a countable atom structure
and ∃ has a winning strategy in Hω(α), then α ∈ At(NrnCAω). Con-
versely, it can be proved that if α ∈ At(NrnCAω ∩ Count), then ∃ has
winning strategy in a game with the same moves as H but played on
networks not λ-neat hypernetworks. However, Hω does not characterize
the class NrnCAω ∩ At ∩ Count for it can be shown that ∃ has a win-
ning strategy in Hω(AtB) where B is the atomic algebra used in item
(3) of Theorem 2.2, but B /∈ NrnCAn+1(⊇ NrnCAω); though (recall that)
AtB ∈ At(NrnCAω) and CmAtB ∈ NrnCAω. On the other hand, the usual
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ω-rounded atomic game G characterizes both the class CRCAn ∩ Count
and the class At(CRCAn ∩Count) (the class of countable completely repre-
sentable atom structures), and [7, Theorem 3.3.3].

Corollary 3.3. For any 2 < n < m, any class K such that

At(NrnCAm ∩ CRCAn) ⊆ K ⊆ AtScNrnCAn+3,

K is not elementary

Proof: . Let β be he atom structure of CZ,N. Then β ≡ α where α is an
atom structure such that Cmα ∈ NrnCAω and α ∈ At(NrnCAω∩CRCAn). So
if K is as in the hypothesis, then α ∈ K, β ≡ α, but β /∈ AtScNrnCAn+3 ⊇
K.

Corollary 3.4. Let 2 < n < ω and k ≥ 3. Then the following classes,
together with the intersection of any two of them, the last four taken at
the same k, are not elementary: CRCAn [5], NrnCAn+k [14, Theorem 5.4.1],
SdNrnCAn+k, ScNrnCAn+k.

4. Appendix

Theorem 4.1. Let 2 < m < n < ω. For any k ≥ 0, the variety
SNrmCAm+k+1 is not finitely axiomatizable over the variety SNrmCAm+k

and RCAm is not finitely axiomatizable over SNrmCAm+l for any 0 < l < ω.

Proof: Fix 2 < m < n < ω. Let C(m,n, r) be the algebra CA(H)
where H = Hn+1

m (A(n, r), ω)), is the CAm atom structure consisting of
all n + 1-wide m-dimensional wide ω hypernetworks [6, Definition 12.21]
on A(n, r) as defined in [6, Definition 15.2]. Furthermore, for any r ∈ ω
and 3 ≤ m ≤ n < ω, C(m,n, r) ∈ NrmCAn, C(m,n, r) /∈ SNrmCAn+1 and
Πr/UC(m,n, r) ∈ RCAm by [6, Corollaries 15.7, 5.10, Exercise 2, p. 484,
Remark 15.13]

Theorem 4.2. For 3 ≤ m ≤ n and r < ω there exists finite algebras
D(m,n, r) ∈ CAm.

1. D(m,n, r) ∈ NrmCAn,

2. D(m,n, r) ̸∈ SNrmCAn+1,

3. Πr/UD(m,n, r) is elementarily equivalent to a C ∈ NrmCAn+1.
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We define the algebras D(m,n, r) for 3 ≤ m ≤ n < ω and r and then
give a sketch of (II) given in detail in [9, pp. 211–215]. We start with.

Definition 4.3. Define a function κ : ω×ω → ω by κ(x, 0) = 0 (all x < ω)
and κ(x, y + 1) = 1 + x× κ(x, y)) (all x, y < ω). For n, r < ω let

ψ(n, r) = κ((n− 1)r, (n− 1)r) + 1.

This is to ensure that ψ(n, r) is sufficiently big compared to n, r for the
proof of non-embeddability to work. The second parameter r < ω may be
considered as a finite linear order of length r. For any n < ω and any linear
order r, let

B(n, r) = {Id} ∪ {ak(i, j) : i < n− 1; j ∈ r, k < ψ(n, r)}

where Id, ak(i, j) are distinct objects indexed by k, i, j. (So here every atom
a(i, j) is split into ψ(n, r) subatoms). The forbidden triples) are:

{(Id, b, c) : b ̸= c ∈ B(n, r)}
∪

{(ak(i, j), ak′
(i, j), ak

∗
(i, j′)) : k, k′, k∗ < ψ(n, r), i < n− 1, j′ ≤ j ∈ r}.

Let 3 ≤ m ≤ n < ω. The set of m-basic matrices on R is is a QEAm

atom structureMatm(AtR). D(m,n, r) is defined to be the complex algebra
of the m-dimensional atom structure Matm(AtR), that is, D(m,n, r) =
CmMatm(AtR). Unlike the algebras C(m,n, r) used to prove theorem 4.1,
the algebras D(m,n, r) are now finite. It is not hard to see that 3 ≤
m, 2 ≤ n and r < ω the algebra D(m,n, r) satisfies all of the axioms
defining CAm except, perhaps, the commutativity of cylindrifiers which
it satisfies because Matm(AtR) is a (symmetric) cylindric basis, so that
overlapping matrices amalgamate. Furthermore, if 3 ≤ m ≤ m′, then
D(m,n, r) ∼= NrmD(m′, n, r) via X 7→ {f ∈ Matm′(AtR) : f ↾m×m∈ X}.

We give a sketch of proof of 4.2(II), which is the heart and soul of
the proof. Assume hoping for a contradiction that D(m,n, r) ⊆ NrmC
for some C ∈ CAn+1, some finite m,n, r. Then for 1 ≤ t ≤ n + 1, it
can be shown inductively that there must be a ‘large set’ St of distinct
elements of C, satisfying certain inductive assumptions, which we outline
next. Here largness depends on t and weakens as t increases; for example
Sn has only two elements. For each s ∈ St and i, j < n + 2 there is an
element α(s, i, j) ∈ B(n, r) obtained from s by cylindrifying all dimensions
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in (n + 1) \ {i, j}, then using substitutions to replace i, j by 0, 1. It can
be shown that the triple (α(s, i, j), α(s, j, k), α(s, i, k)) is consistent (not
forbidden). The induction hypothesis says chiefly that cns is constant, for
s ∈ St, and for l < n there are fixed i < n − 1, j < r such that for
all s ∈ St, α(s, l, n) ≤ a(i, j). This defines, like in the proof of theorem
15.8 in [7, p. 471] , two functions I : n → (n − 1), J : n → r such
that α(s, l, n) ≤ a(I(l), J(l)) for all s ∈ St. The rank rk(I, J) of (I, J)
(as defined in [7, Definition 15.9]) is the sum (over i < n − 1) of the
maximum j with I(l) = i, J(l) = j (some l < n) or −1 if there is no such
j. From St one constructs a set St+1 with index functions (I ′, J ′), still
relatively large (large in terms of the number of times we need to repeat
the induction step) where the same induction hypotheses hold but where
rk(I ′, J ′) > rk(I, J). By repeating this enough times (more than nr times)
we obtain a non-empty set T with index functions of rank strictly greater
than (n−1)×(r−1), an impossibility. We sketch the induction step. Since I
cannot be injective there must be distinct l1, l2 < n such that I(l1) = I(l2)
and J(l1) ≤ J(l2). We may use l1 as a ”spare dimension” (changing the
index functions on l will not reduce the rank). Since cns is constant, we may
fix s0 ∈ St−1 and choose a new element s′ below cls0 · snl cls, with certain
properties. Let St+1 = {s′ : s ∈ St \ {s0}}. Re-establishing many of the
induction hypotheses for St+1 is not too hard. Also, it can be shown that
J ′(l) ≥ J(l) for all l < n. Since (α(s, i, j), α(s, j, k), α(s, i, k)) is consistent
and by the definition of the forbiden triples either rng(I ′) properly extends
rng(I) or there is l < n such that J ′(l) > J(l), hence rk(I ′, J ′) > rk(I, J).
The idea of constructing St+1 from St is given pictorially on [8, Figure 2,
p. 8] in the context of CAs. The essence of the ideas used in [8, 9] is
the same. Suppose we are at stage t. Then every x ∈ St gives a set of
colours (atoms) denoted in [8] by x(i, t) (i < t). One gets St+1 from St by
first ‘glueing together’ any two elements x, z of St, using t + 1 as a spare
dimension, first moving the tth co-ordinate of x to t+1 forming stt+1x. By
fixing z and varying x one gets a huge number of different elements. Their
(t, t+1)th colours cannot be controlled yet; they may not be the same. To
get over this hurdle, one uses the pigeon-hole principal to pick the still large
set St+1 in which the (t, t+ 1)th colour is fixed to be the same. ‘Largness’
enables one to do so.

We summarize next the essence of the idea used in the solution of
[3, Problem 2.12]:
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edges to the intermediate elements that are all connected to a bottom el-
ement. The number of elements (in this figure) is the number of colours
plus one. So one gets the same control as rainbow algebras provided by (the
second independent parameter) G. The key idea here is that the proof of
Ramsey in this context does not require an uncontrollable Ramsey number
of ‘spare dimensions’, which were the versions used by Monk and Mad-
dux before proving non finite axiomatizability but only one more than the
number of colours used.

For the above non-representable Monk-style algebras denoted by A(n, r),
3 ≤ m < n < ω and r ∈ ω, it is easy to see that ∃ cannot win the usual
infinite atomic game. But this time one can use ‘a hyperbasis game’ de-
noted by Gm,n+1

r in [6] with r denoting the number of rounds, to pin
point the leask k > n for which A(n, r) ‘stops to be representable’ get-
ting the sharper result we want. The game Gm,n+1

r is stronger than Gω,
involving additional amalgamation moves played on n+ 1-dimensional m-
wide hypernetworks. One can show that ∀ has a winning strategy in
Gm,n+1

r (AtA(n, r)), using exactly n + 1 nodes (for any r < ω), getting
the same control we get from rainbows using the parameter G, and in fact
the best possible. This is the approach adopted in [7]. Here A(n, r) has an
n-dimensional cylindric basis, but no n+1-dimensional hypebasis. Worthy
of note, is that the last condition is strictly stronger than ‘not having an
n+1-dimensional cylindric basis’. Relation algebras having n-dimensional
cylindric basis but no n + 1-dimensional cylindric basis were constructed
by Maddux. We refer to [8] for more. In the proof of theorem 4.1, one
uses that Πr/UC(m,n, r) ∈ RCAm. As stated in the last item of theorem
4.2, we do not guarantee that the ultraproduct on r of the D(m,n, r)s
(2 < m < n < ω) is representable. A standard Lös argument shows that
Πr/UC(m,n, r) ∼= C(m,n,Πr/Ur) and Πr/Ur contains an infinite ascending
sequence. Here one extends the definition of ψ by letting ψ(n, r) = ω, for
any infinite linear order r. The infinite algebra D(m,n, J) ∈ ElNrnCAn+1

when J is the infinite linear order as above. Since Πr/Ur is such, then we
get Πr/UD(m,n, r) ∈ ElNrmCAn+1(⊆ SNrmCAn+1), cf. [9, pp. 216–217].
This suffices to show that for any positive k, the variety SNrmCAm+k+1 is
not finitely axiomatizable over the variety SNrmCAm+k.

In Figure 2 in [8] there is a top element that is connected by coloured
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