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Theofanis Aravanis

AN EPISTEMOLOGICAL STUDY 
OF THEORY CHANGE

Abstract

Belief Revision is a well-established field of research that deals with how agents

rationally change their minds in the face of new information. The milestone of

Belief Revision is a general and versatile formal framework introduced by Al-

chourrón, Gärdenfors and Makinson, known as the AGM paradigm, which has

been, to this date, the dominant model within the field. A main shortcoming

of the AGM paradigm, as originally proposed, is its lack of any guidelines for

relevant change. To remedy this weakness, Parikh proposed a relevance-sensitive

axiom, which applies on splittable theories; i.e., theories that can be divided into

syntax-disjoint compartments. The aim of this article is to provide an epistemo-

logical interpretation of the dynamics (revision) of splittable theories, from the

perspective of Kuhn’s influential work on the evolution of scientific knowledge,

through the consideration of principal belief-change scenarios. The whole study

establishes a conceptual bridge between rational belief revision and traditional

philosophy of science, which sheds light on the application of formal epistemo-

logical tools on the dynamics of knowledge.

Keywords: Belief revision, epistemology, Parikh, relevance, Kuhn, scientific

knowledge.
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1. Introduction

A well-established research field that lies at the intersection of Formal
Philosophy and Computer Science, and deals with how agents rationally
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2 Theofanis Aravanis

change their minds in the face of new information, is that of Belief Revi-
sion [14, 24, 13].1 Roughly speaking, the process of belief revision can be
outlined as follows [14, 24]:

• A rational agent receives new information (epistemic input).

• In the principal case where the new information contradicts her initial
beliefs, the agent needs to withdraw some of the old beliefs before she
can (consistently) accommodate the new information.

• The agent is, also, obliged to accept the consequences that might re-
sult from the interaction of the new information with the (remaining)
old beliefs.

What makes the problem non-trivial is that several different ways for
performing the revision-process may be possible. Suppose, for example,
that the beliefs of a rational agent are composed of the following three
propositions:

i) All African lions are brown.

ii) The animal Bob encounters is a lion.

iii) The animal Bob encounters comes from Africa.

Along with the above three propositions, the agent is obliged to believe
their following immediate consequence:

iv) The animal Bob encounters is brown.

Suppose, now, that the animal Bob encounters turns out to be white.
In order for the agent to maintain a consistent corpus of beliefs after adding
the fact about lion’s whiteness, she needs to revise her initial beliefs. That
is to say, some of her original beliefs must be withdrawn. Clearly, she does
not want to give up all her beliefs, since this would be an unnecessary loss
of valuable information. It is not hard to verify that, in the case described
above, there are at least three different ways for performing revision. In
general, this can be done in a number of ways. More importantly, the prob-
lem of belief revision is that logical considerations alone are not sufficient

1To distinguish the research area from the process, we shall use the capitalized term
Belief Revision for the former, and the lower-case term belief revision for the latter.
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for choosing which beliefs have to be given up; this has to be decided by
means of extra-logical structures.

The benchmark of Belief Revision is a general and versatile formal
framework introduced by Alchourrón, Gärdenfors and Makinson, known
as the AGM paradigm (after the initials of its originators), which has been,
to this date, the dominant model within the field [1]. The AGM paradigm
captures both axiomatically and constructively the process of rational be-
lief revision. Axiomatically, by means of rationality postulates that any
rational revision function ought to satisfy, and constructively, by means of
extra-logical structures based on preference orderings.

A main shortcoming of the AGM paradigm, as originally introduced, is
its insufficiency to capture the notion of relevance. To remedy this weak-
ness, Parikh proposed a postulate that supplements the approach of Al-
chourrón, Gärdenfors and Makinson; the postulate essentially captures a
form of syntactical relevance, and is typically referred to as axiom (P) [23].
Roughly speaking, axiom (P) states that the revision of a splittable theory
K—i.e., a theory that can be divided into syntax-disjoint compartments
referring to mutually irrelevant subject matters—by an epistemic input
which (syntactically) relates only to some compartment of K, should not
affect any other compartment of K. A central concept that Parikh used
for developing his axiom is that of theory-splitting [23].

In the present article, we discuss the revision of splittable theories,
through the prism of the influential 1970 book “The Structure of Scien-
tific Revolutions” by Thomas Kuhn, which studies the evolution of scien-
tific knowledge [21]. The task is accomplished by considering a Kuhnian
reading of principal belief-change scenarios involving Parikh’s concept of
theory-splitting; essentially, we argue that these scenarios can be regarded
as a reflection of notable phases of scientific development. Our aim is the
establishment of a conceptual bridge between rational belief revision and
traditional philosophy of science, which will shed light on the application
of formal epistemological tools on the dynamics of (any corpus of) knowl-
edge.2

The remainder of this article is structured as follows. The next section
provides a brief overview of Kuhn’s work on philosophy of science. There-
after, Section 3 sets the formal background for our discussion, followed by

2For an excellent book that discusses a variety of perspectives concerning belief
revision in the context of scientific enquiry, the interested reader is referred to [22].
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Section 4 which presents the AGM paradigm. Section 5 introduces Parikh’s
notion of relevance, as well as some fundamental definitions based on this
notion. Section 6 discusses the revision of splittable theories from an epis-
temological perspective, and Section 7 reports a collection of representative
examples from the history of science that justify the conducted study. A
brief concluding section closes the article.

2. Kuhnian epistemology in a nutshell

According to Kuhn, the phases of scientific progress can be summarized as
follows [21]:

• Pre-paradigm period.

• Normal science.

• Crisis.

• Scientific revolution.

• New normal science.

• New crisis.

Prior to the formation of a shared paradigm or research consensus (pre-
paradigm period), would-be scientists are devoted to the accumulation of
random facts and unverified observations. This non-organized activity ac-
quires coherence once the scientific community adopts a unique shared
paradigm. A paradigm is a distinct set of concepts or thought patterns
(including theories and research methodologies), that constitute legitimate
contributions to a field. The paradigm is adopted jointly by the members
of a scientific community, it establishes the (nature of the) entities of the
world (i.e., an ontological acceptance), as well as a common language.

Everyone working within a settled paradigm (e.g., Classical Mechanics)
is doing normal science. In the context of normal science—which Kuhn
describes as a puzzle-solving process—scientists are slowly accumulating
details in accord with an established broad theory, making the paradigm
more coherent and concrete. During this process, the scientific community
does not question or challenge the underlying (philosophical and metaphys-
ical) assumptions of the theory.
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During the period of normal science, the observable new information
(epistemic input) is formulated within the language of a particular theory,
and its validity depends on the validity of the corresponding theoretical or
conceptual context. In this sense, theories precede observations. Theories
can be formulated—and this is usually the case—prior to the observations
that contribute to their justification. Generally, the meaning of a concept
is (at least partially) “sculptured” from the role it plays in a theory.

For the normal scientist, anomalies represent challenges to be puzzled
out and solved within the settled paradigm. At the point where such
anomalies cannot be handled within the paradigm, a crisis emerges. In
case an anomaly (or series of anomalies) persists long enough, and for
enough members of the scientific community, the paradigm will itself grad-
ually come under challenge, and perhaps be subjected to a paradigm shift,
a process often also described as a scientific revolution. After the scientific
revolution, a new paradigm is established by the majority of the commu-
nity, which takes the place of the old problematic one, and a period of
new normal science begins.3 It is noteworthy that, according to Kuhn,
the language and theories of successive paradigms are incommensurable, in
the sense that, in principle, they cannot be translated into one another, or
rationally evaluated against one another, by means of a formal framework.
Kuhn argues that incommensurability constitutes a universal property of
scientific revolutions.

Having presented the core principles of Kuhn’s work on the evolution
of scientific knowledge, we turn to a more analytical tone.

3. Formal background

Throughout this article, we shall be working with a propositional language
L, built over a finite, non-empty set P of propositional variables (atoms),
using the standard Boolean connectives ∧ (conjunction), ∨ (disjunction),
→ (implication), ↔ (equivalence), ¬ (negation), and governed by classical
propositional logic.4 This abstraction is made, mainly, due to the fact that
the majority of belief-revision studies, including Parikh’s exposition in [23],

3Two representative cases of paradigm shifts are the transition from a Ptolemaic Cos-
mology to a Copernican one, as well as the acceptance of plate-tectonics theory (replacing
the idea of continental drift) as an explanation for large-scale geological transformations.

4Notice that no zero-ary connectives are considered.
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are conducted assuming classical propositional logic, a fact which, in turn,
provides easier presentation. Another argument in favour of this conve-
nient formalism, is that, in the context of Answer Set Programming (ASP)
[11], which constitutes a contemporary formal framework used for mod-
elling the dynamics of a plethora of real-world scientific domains, although
a particular scenario is modelled in the syntax of first-order logic, the sys-
tem ultimately solves a finite propositional representation of it (produced
through a sophisticated process called grounding). We note, lastly, that,
even if the essence of our approach easily extends to richer formalisms,
a formal account of this issue would be an interesting avenue for future
investigation.

A sentence of L is contingent iff it is neither a tautology nor a contra-
diction. For a set of sentences Γ of L, Cn(Γ) denotes the set of all logical
consequences of Γ, i.e.,

Cn(Γ) =
{
ϕ ∈ L : Γ |= ϕ

}
,

where |= stands for the classical consequence relation. We shall
write Cn(ϕ1, . . . , ϕn) for sentences ϕ1, . . . , ϕn, as an abbreviation of
Cn
(
{ϕ1, . . . , ϕn}

)
.

An agent’s belief corpus shall be modelled by a theory, also referred to
as a belief set. A theory K is any deductively closed set of sentences of L;
i.e.,

K = Cn(K).

The set of all theories is denoted by K. A theory K is complete iff, for all
sentences ϕ ∈ L, either ϕ ∈ K or ¬ϕ ∈ K. For a theory K and a sentence
ϕ of L, the expansion of K by ϕ, denoted by K+ϕ, is the deductive closure
of the set K ∪ {ϕ}, i.e.,

K + ϕ = Cn
(
K ∪ {ϕ}

)
.

A literal is a propositional variable or its negation. A possible world
(or, simply, world) r is any consistent set of literals, such that, for any
propositional variable p ∈ P, either p ∈ r or ¬p ∈ r. The set of all possible
worlds is denoted by M. For a sentence (or set of sentences) ϕ of L, [ϕ] is
the set of worlds at which ϕ is true. For a set of worlds V ⊆M, we denote
by th(V ) the set of all sentences satisfied by all worlds in V ; if V = ∅,
then vacuously th(V ) = L. It is not hard to verify that th(V ) is a (unique)
theory.
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4. The AGM paradigm

Within the AGM paradigm [1], the process of belief revision is modelled
as a (binary) function ∗, which maps a theory K and a sentence ϕ to a
revised (new) theory K ∗ϕ. Rational revision functions, the so-called AGM
revision functions, respect the AGM postulates for revision, listed below.5

(K ∗ 1) K ∗ ϕ is a theory of L.

(K ∗ 2) ϕ ∈ K ∗ ϕ.

(K ∗ 3) K ∗ ϕ ⊆ K + ϕ.

(K ∗ 4) If ¬ϕ /∈ K, then K + ϕ ⊆ K ∗ ϕ.

(K ∗ 5) K ∗ ϕ is inconsistent iff ϕ is inconsistent.

(K ∗ 6) If Cn(ϕ) = Cn(ψ), then K ∗ ϕ = K ∗ ψ.

(K ∗ 7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ.

(K ∗ 8) If ¬ψ /∈ K ∗ ϕ, then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ).

The AGM postulates for revision do not suffice to uniquely specify the
revised belief set K ∗ϕ, given K and ϕ alone; they simply intend to circum-
scribe the territory of all different rational ways of revising belief sets. For
a unique specification of K ∗ϕ, appropriate extra-logical tools are required,
the so-called constructive models for belief revision, the first of which has
already been proposed in the seminal work of Alchourrón, Gärdenfors and
Makinson [1]. Herein, our focus is on a popular constructive model intro-
duced by Katsuno and Mendelzon, which is based on a special kind of total
preorders over possible worlds, called faithful preorders [18].

Before discussing the faithful-preorders model, we first recall that a
preorder over a set V is any reflexive, transitive binary relation on V . A
preorder � is called total iff, for all r, r′ ∈ V , r � r′ or r′ � r. As usual, the
strict part of � shall be denoted by ≺; namely, r ≺ r′ iff r � r′ and r′ � r.
Also, min(V,�) denotes the set of all �-minimal elements of V ; i.e.,

5A detailed discussion on the postulates (K ∗ 1)–(K ∗ 8) can be found in [14, Sec-
tion 3.3] or [24, Section 8.3.1]. It is, also, noteworthy that several concrete “off-the-shelf”
revision operators that satisfy (K ∗ 1)–(K ∗ 8) have been proposed in the literature; see,
indicatively, [12, 26, 7, 4].
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min(V,�) =
{
r ∈ V : for all r′ ∈ V , if r′ � r, then r � r′

}
.

Definition 4.1 (Faithful Preorder, [18]). A total preorder �K over M is
faithful to a theory K iff the �K-minimal worlds of M are those satisfying
K; i.e., min(M,�K) = [K].

Intuitively, a faithful preorder �K encodes the comparative plausibility
of all possible worlds of M, with respect to theory K, so that the more
plausible a world is, the lower it appears in the ordering �K .

Definition 4.2 (Faithful Assignment, [18]). A faithful assignment is a
function that maps each theory K of L to a total preorder �K over M,
which is faithful to K.

Katsuno and Mendelzon proceed, then, to the following representation
theorem.

Theorem 4.3 ([18]). A revision operator ∗ satisfies postulates (K ∗ 1)–
(K ∗ 8) iff there exists a faithful assignment that maps each theory K of L
to a total preorder �K over M, such that, for any sentence ϕ ∈ L:

(F∗) K ∗ ϕ = th
(
min([ϕ],�K)

)
.

Essentially, condition (F∗) specifies the revised theory K ∗ ϕ as the
theory corresponding to the most plausible (with respect to K) ϕ-worlds.
For ease of presentation, we shall consider, in the course of this work, only
the principal case of consistent belief sets and contingent epistemic input.

Gärdenfors and Makinson have introduced another well-known model
for constructing AGM revision functions, equivalent to the model of
Katsuno and Mendelzon, which is based on the notion of epistemic en-
trenchment [16]. A central aspect of Gärdenfors and Makinson’s model is
a particular type of total preorder over all beliefs of a theory K, called
epistemic-entrenchment preorder, which encodes the relative epistemic val-
ues of all the sentences in K. An investigation by Peppas and Williams of
the interconnections between the two aforementioned constructive models
revealed that an epistemic-entrenchment preorder, associated with a theory
K, suffices to fully specify a faithful preorder �K [25, Theorem 6.3]. On
that premises, and given that the definition of an epistemic-entrenchment
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preorder does not require the relative epistemic values of sentences not
belonging to K, the following remark is true.

Remark 4.4. Let K be a theory of L, and let �K be a total preorder
faithful to K. A rational agent does not need to explicitly provide the
relative epistemic values of sentences not belonging to K (non-beliefs), in
order for �K to be specified.

Before closing this section, we point out an interesting feature of AGM
revision functions. In particular, Theorem 4.5, subsequently, shows that
there exist AGM revision functions such that, if we “feed” them with the
appropriate input, their output is always confined to a particular “island”
of belief sets.

Theorem 4.5. There exist an AGM revision function ∗ and a proper subset
Θ of K, such that, for any theory K ∈ Θ and any ϕ ∈ L, K ∗ ϕ ∈ Θ.

Proof: Let Θ be the set of all complete theories of L. Clearly, Θ ⊂ K. Let
∗ be an AGM revision function such that it assigns (via condition (F∗)) to
each theory K ∈ Θ the following K-faithful preorder �K over M:

w ≺K r1 ≺K r2 ≺K . . . ,

where w is a world ofM such that [K] = {w}, and r1, r2, . . . is any sequence
of all worlds in M− {w}.6 By the construction of �K , it follows that, for
any sentence ϕ ∈ L, the set min([ϕ],�K) is always a singleton; that is, the
revised belief set K ∗ϕ is always satisfied by exactly one world.7 Therefore,
for any theory K ∈ Θ and any ϕ ∈ L, K ∗ ϕ ∈ Θ.

The above result does not only show that there are AGM revision func-
tions that could result in a form of “islanding”; it, also, shows that such
functions could “trap” a rational agent into an “omniscience island”, in the
sense that, if the agent has an opinion about everything (thus, her belief
corpus coincides with a complete theory), she will still have an opinion
about everything, after any sequence of revisions.8

6For any complete theory K, the set [K] is a singleton.
7The AGM revision function ∗ implements at theory K a type of revision called

maxichoice revision [1, 14].
8If K is a theory that represents the agent’s beliefs, any possible world in [K] is

perceived by the agent to be the “actual” world. Hence, the more the agent learns, the
fewer possible worlds are compatible with her knowledge. On that premise, a complete
theory expresses the beliefs of an omniscient agent.
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5. Parikh’s notion of relevance

Convincing concrete examples have pointed out that the AGM postulates
for revision are insufficient to capture the notion of relevance. For instance,
the severe full-meet revision satisfies the AGM postulates for revision and,
at the same time, it discards all prior beliefs of a belief set K retaining
only the epistemic input ϕ, in the principal case where ϕ contradicts K
[1]. On that unsatisfactory premise, Parikh proposed a supplementary
axiom, named (P) and presented below, that encodes a form of syntactical
relevance [23].9

(P) If K = Cn(x, y), where x, y are sentences of disjoint sublanguages
Lx,Ly, respectively, and Lϕ ⊆ Lx, then K∗ϕ =

(
CnLx(x)�ϕ

)
+y,

where � is a local revision operator defined over the sublanguage
Lx.

Some remarks on the notation in (P) are in order. For a sentence x of L,
Lx denotes the (unique) minimal (sub)language of L within which x can be
expressed; in the limiting case where x is not contingent, Lx is defined to
be the empty set. We note that this definition can be extended to a belief
set K, since, given that P is finite, there exists a sentence ξ ∈ L such that
K = Cn(ξ); hence, we define LK = Lξ. Moreover, CnLx

(x) denotes the
deductive closure of x in the sublanguage Lx, i.e., CnLx(x) = Cn(x)∩Lx.

Peppas et al. further investigated Parikh’s original proposal and con-
cluded that there are, in fact, two distinct interpretations of axiom (P);
namely, the weak and the strong version of (P) [27]. For presenting these
two versions of (P), consider first the next two conditions (P1) and (P2)
which do not refer to a local revision operator—in (P1), Lx denotes the
(sub)language built from the propositional variables that do not appear in
Lx, using the standard Boolean connectives (if there are no propositional
variables that do not appear in Lx, then Lx is empty).

9It is noteworthy that the problem of relevance in the realm of belief change was
first highlighted by Gärdenfors in [15]. Although several interpretations of relevance
were discussed in that work, the key criterion considered was the following: “If a belief
set K is revised by a sentence ϕ, then all sentences in K that are irrelevant to the
validity of ϕ should be retained in the revised state of belief ”.
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(P1) If K = Cn(x, y), Lx ∩Ly = ∅, and Lϕ ⊆ Lx, then (K ∗ϕ)∩Lx =
K ∩ Lx.

(P2) If K = Cn(x, y), Lx ∩Ly = ∅, and Lϕ ⊆ Lx, then (K ∗ϕ)∩Lx =(
Cn(x) ∗ ϕ

)
∩ Lx.

Condition (P1) corresponds to the weak version of axiom (P). It essen-
tially states that, if a theory K can be expressed in disjoint sublanguages Lx
and Lx, then the revision of K by an epistemic input that can be formulated
within Lx should not affect the Lx-part of K. Appending (P2) to (P1), we
get the strong version of axiom (P), according to which the modification of
the Lx-part of K is not affected by the Lx-part of it. Therefore, in a sense,
strong (P) makes the local revision operator � context-independent.10

In the remainder of this section, we introduce the necessary terminology
for our subsequent discussion. To this aim, for a subset Q of the set P of
propositional variables, LQ shall denote the sublanguage of L defined over
Q, using the standard Boolean connectives (if Q is empty, then LQ is
empty).

Definition 5.1 (Splittable/Confined Theory). Let K be a theory of L. We
shall say that K is splittable iff, for some sentences x, y ∈ L, K = Cn(x, y)
and Lx ∩ Ly = ∅. In the special case where y is a tautology and Lx ⊂ L,
we shall say that theory K is confined (to the sublanguage Lx of L) as well.

Essentially, a theory K that is confined to a sublanguage L′ of L splits
between L′ and L′, with the L′ part being trivial. In this case, K knows
nothing about L′.11

Definition 5.2 (Theory-Splitting, [23]). Let K be a theory of L, and
let Q =

{
Q1, Q2, . . . , Qn

}
be a partition of P; i.e.,

⋃
Q = P, Qi 6= ∅,

and Qi ∩ Qj = ∅, for all 1 6 i 6= j 6 n. The set Q is a K-splitting
iff there exist sentences ϕ1 ∈ LQ1 , ϕ2 ∈ LQ2 , . . . , ϕn ∈ LQn , such that
K = Cn

(
ϕ1, ϕ2, . . . , ϕn

)
.

10The characterization of both conditions (P1) and (P2) in the realm of all popular
constructive models for belief revision can be found in [3, 6]. For a comprehensive study
of important constructive aspects of (P2), the interested reader is referred to [8].

11It is assumed that tautologies bear no knowledge.
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Parikh showed that, for every theory K, there exists a unique finest 
K-splitting—i.e., one which refines every other K-splitting—hereafter 
denoted by FK [23].12

Example 5.3 (Theory-Splitting). Suppose that P =
{
a, b, c, d, e

}
, and let

K be a splittable theory of L such that K = Cn
(
a, b, c → d

)
. Then, the

finest K-splitting is FK =
{
{a}, {b}, {c, d}, {e}

}
. Observe that theory K

has no information about propositional variable e, as it is confined to the
sublanguage L{a,b,c,d}.

Definition 5.4 (Theory-Units, [5, 3, 6]). Let K be a theory of L which
does not contain only tautologies, and let

{
F1, F2, . . . , Fn

}
be the finest

K-splitting. By the definition of a K-splitting, there exist contingent
sentences χ1, χ2, . . . , χm of L, such that m 6 n, χ1 ∈ LFi1 , χ2 ∈
LFi2 , . . . , χm ∈ LFim , and K = Cn

(
χ1, χ2, . . . , χm

)
. The sentences

χ1, χ2, . . . , χm are the units of K, and the set UK =
{
χ1, χ2, . . . , χm

}
is the unit set of K.13

It turns out that each unit of a theory K is unique, modulo logi-
cal equivalence. Intuitively, the units of a splittable theory K are its
“building blocks” which divide K into the refined compartments (theo-
ries) Cn(χ1), Cn(χ2), . . . , Cn(χm). Hence, there is a unique way to think
of theory K as being composed of non-trivial (since units are contingent
sentences) disjoint compartments, referring to mutually irrelevant subject
matters.

Remark 5.5. Each unit of a theory K corresponds to a unique element of
the finest K-splitting FK . The converse is true only in case LK = L (i.e.,
when theory K is not confined to a sublanguage of L); in the case of a
confined theory K (where m < n), not every element of FK corresponds
to a unit of K.

Example 5.6 (Theory-Units, Cont’d Example 5.3). The unit set of theory
K = Cn

(
a, b, c → d

)
is UK = {a, b, c → d}. As Remark 5.5 points out,

each unit of K corresponds to a unique element of the finest K-splitting

12Kourousias and Makinson in [20] extended this result to a language built over
infinitely many propositional variables. We recall, moreover, that a partition Q′ refines
another partition Q iff, for every Q′i ∈ Q′, there exists a Qj ∈ Q, such that Q′i ⊆ Qj .

13The definition of units in [5, 3, 6] is slightly different; herein, a minor modification
is made for ease of presentation.
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FK =
{
{a}, {b}, {c, d}, {e}

}
. Yet, since K is confined to the sublanguage

L{a,b,c,d}, not every element of FK corresponds to a unit of K.

Lastly, the interesting notion of compartmental coupling is introduced,
which, to the best of our knowledge, has not been formalized elsewhere
before.

Definition 5.7 (Compartmental Coupling). Let ∗ be an AGM revision
function, and let K be a splittable theory of L. We shall say that the
∗-revision of K by a sentence ϕ ∈ L couples compartments of K iff an
element of the finest K ∗ ϕ-splitting FK∗ϕ contains two distinct proposi-
tional variables a, b ∈ P, which belong to distinct elements F , F ′ of the
finest K-splitting FK (i.e., a ∈ F and b ∈ F ′), and at least one of F , F ′

corresponds to a unit of K.

Roughly speaking, the revision of a theory K by an epistemic input ϕ
couples compartments of K whenever (parts of) two disjoint (refined) com-
partments of K—at least one of which is non-trivial—have been joined into
a single (refined) compartment in the revised state of belief.14 Evidently,
the coupling of compartments of a theory leads to a change in the structure
of that theory.

The next concrete examples illustrate (further) features of the above
definitions.

Example 5.8 (Revision With Compartmental Coupling, Cont’d 5.6).
Consider a sentence ϕ = ¬a ∨ ¬b, which contradicts theory K =
Cn
(
a, b, c → d

)
, and an AGM revision function ∗ that respects the

strong version of axiom (P), such that K ∗ ϕ = Cn
(
¬a ∨ ¬b, c→ d

)
. As

FK∗ϕ =
{
{a, b}, {c, d}, {e}

}
, the ∗-revision of theory K by ϕ couples com-

partments of K; this is because the element {a, b} of FK∗ϕ contains the
propositional variables a and b, which belong to distinct elements F , F ′

of FK , and each one of F , F ′ corresponds to a unit of K (recall that
UK = {a, b, c → d}). Notice, lastly, that, as ∗ respects Parikh’s princi-
ple and theory K is splittable, the part of K formed by the propositional
variables c, d and e remains unaffected during the revision-process.

14Notice that compartmental coupling is defined in terms of finest splittings of theo-
ries; therefore, the compartments involved are, as a matter of fact, refined compartments.
Furthermore, since, according to Definition 5.7, at least one of F, F ′ ∈ FK corresponds
to a unit (i.e., contingent sentence) of the initial theory K, it follows that at least one
of the coupled (refined) compartments of K is non-trivial.
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It is evident from the above example that the revision of a splittable the-
ory by an epistemic input does not necessarily couple every compartment
of the theory.

Example 5.9 (Revision With Compartmental Coupling). Let P ={
a, b, c, d, e, f

}
, K = Cn

(
a↔ b, c↔ d, e ∨ f

)
, H = Cn

(
a↔ b, e

)
and ϕ =

(b∨c)∧(¬e)∧(¬f)—notice that ϕ contradicts both K and H. Consider an
AGM revision function ∗ such that K ∗ϕ = Cn

(
a, b∨c, d,¬e,¬f

)
and H ∗ϕ

= Cn
(
b ∨ c,¬e,¬f

)
. Hence, we have that FK =

{
{a, b}, {c, d}, {e, f}

}
and FK∗ϕ =

{
{a}, {b, c}, {d}, {e}, {f}

}
, as well as that FH ={

{a, b}, {c}, {d}, {e}, {f}
}

and FH∗ϕ =
{
{a}, {b, c}, {d}, {e}, {f}

}
. Thus,

the ∗-revision of K by ϕ couples compartments of K, since the element
{b, c} of FK∗ϕ contains the propositional variables b and c, which belong
to distinct elements F , F ′ of FK , and each one of F , F ′ corresponds to a
unit of K. Furthermore, the ∗-revision of H by ϕ couples compartments
of H, since the element {b, c} of FH∗ϕ contains the propositional variables
b and c, which belong to distinct elements F ′′, F ′′′ of FH , respectively, and
F ′′ (but not F ′′′) corresponds to a unit of H—recall that, for compart-
mental coupling, Definition 5.7 requires that at least one of F ′′, F ′′′ should
correspond to a unit of H.

Example 5.10 (Revision Without Compartmental Coupling). Let P ={
a, b, c, d

}
and let K = Cn(a, b). Then, the finest K-splitting is

FK =
{
{a}, {b}, {c}, {d}

}
, and the unit set of K is UK = {a, b}. Con-

sider, now, a sentence ϕ = (¬a) ∧ (¬b) ∧ (c ∨ d), which contradicts K,
and an AGM revision function ∗ such that K ∗ ϕ = Cn

(
¬a,¬b, c ∨ d

)
;

hence, FK∗ϕ =
{
{a}, {b}, {c, d}

}
. Notice that the ∗-revision of K by ϕ

does not couple compartments of K, since, although the element {c, d} of
FK∗ϕ contains the propositional variables c and d, which belong to distinct
elements F , F ′ of FK , yet, none of F , F ′ corresponds to a unit of K (as
the L{c,d}-part of K is trivial).

Coupling of compartments can take place even when the epistemic in-
put is consistent with the initial theory; in that case, revision reduces to
expansion, due to postulates (K ∗ 3)–(K ∗ 4). Such a scenario is presented
in the subsequent example.

Example 5.11 (Expansion With Compartmental Coupling). Let P ={
a, b, c, d

}
, K = Cn

(
a ∨ b, c ∨ d

)
and ϕ = b ∨ c — notice that ϕ is
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consistent with K. Consider an AGM revision function ∗ such that
K ∗ ϕ = Cn

(
a ∨ b, b ∨ c, c ∨ d

)
. Then, FK =

{
{a, b}, {c, d}

}
and

FK∗ϕ =
{
{a, b, c, d}

}
. Thus, the ∗-revision (specifically, ∗-expansion) of

K by ϕ couples compartments of K.

Having introduced the basic concepts of Belief Revision, we turn, in the
following sections, to the main contribution of the present article.

6. Evolution of splittable theories from an
epistemological perspective

Against the background that has been established so far, this section is
devoted to an interpretation of rational belief revision of splittable theories
from a Kuhnian perspective. In particular, we suggest an epistemological
reading of a number of principal belief-change scenarios. Our aim is not an
exhaustive investigation of all possible scenarios, but rather an initiation
of a discussion between Kuhn and the central figures of Belief Revision.

To this end, let K be a splittable theory of L such that
K = Cn

(
χ1, χ2, . . . , χm

)
, where sentences χ1, χ2, . . . , χm (with m > 2) are

the units of K, and let FK =
{
F1, F2, . . . , Fn

}
be the finest K-splitting.15

Theory K shall represent the knowledge of a scientific community seen as
a single rational agent. Since K can be expressed in disjoint sublanguages,
we may assume that it consists of unrelated refined compartments, refer-
ring to different subject matters. Furthermore, let ∗ be an AGM revision
function that the scientific community utilizes as a tool for revision, and
assume that ∗ satisfies the strong version of axiom (P); i.e., conditions (P1)
and (P2).

Given an epistemic input ϕ, we first distinguish the two cases according
to which

Lϕ ∩ LK = ∅ or Lϕ ∩ LK 6= ∅.

In the former case, which is abstractly depicted in Figure 1, theory K
is necessarily confined to a sublanguage of L, and the epistemic input ϕ is

15We assume that the splittable theory K has at least two units (i.e., m > 2), so to
avoid the trivial case of a theory that refers to a single subject matter. Recall moreover
that, by definition, m 6 n.
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Lχi
Lχj

L
LK

Lϕ

Figure 1. Pre-Paradigm: K = Cn(χi, χj) and Lϕ ∩ LK = ∅.
Each block corresponds to an element of the finest K-splitting.

clearly consistent with K (since we have assumed that ϕ is self-consistent).
Hence, according to the AGM postulates for revision (K∗1)–(K∗8), theory
K is (set-theoretically) expanded by ϕ; that is,

K ∗ ϕ = K + ϕ.

In this case, a pre-paradigm event takes place, in the context of which
new scientific knowledge (that does not contradict initial knowledge) is
accumulated, resulting in the formation of new concrete (sub)theories, and,
thus, in the establishment of new paradigms.

In the latter case, we further distinguish the two sub-cases according to
which Lϕ is restricted to some sublanguage Lχi (with 1 6 i 6 m) or not.
The former case may be regarded as a period of normal science, whereas,
the latter as a paradigm shift. Both these scenarios are formally described
in the next two subsections.

6.1. Normal science: Lϕ ⊆ Lχi
⊆ LK and Lϕ ∩ LK 6= ∅

During normal science, every new piece of information ϕ is such that its
minimal language Lϕ is a subset of a single sublanguage Lχi ; i.e., Lϕ ⊆
Lχi
⊆ LK (and, of course, Lϕ ∩ LK 6= ∅). That is to say, the epistemic

input ϕ is related to a single (refined) compartment Cn(χi) of K, which
in turn refers to a specific subject matter — this is abstractly depicted in
Figure 2.

In this case, epistemic inputs, which contradict theory Cn(χi), corre-
spond to anomalies, that is, challenges to be puzzled out and solved within
Cn(χi), causing incremental changes. A real-world example of revising
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Lχi
Lχj

L
LK

Lϕ

Figure 2. Normal Science: K = Cn(χi, χj), Lϕ ⊆ Lχi ⊆ LK
and Lϕ ∩ LK 6= ∅.

Each block corresponds to an element of the finest K-splitting.

a scientific theory by new information, which contradicts previous knowl-
edge, concerns an issue of Cosmology, namely, the expansion of the uni-
verse. Specifically, Einstein’s static universe, which is a relativistic model
of the universe proposed by Albert Einstein in 1917, was refuted after the
observations of Edwin Hubble in 1929, suggesting an expanding universe.

On the other hand, new information consistent with theory Cn(χi)
expands the present knowledge contained in Cn(χi), without causing loss
of existing information. Such an expansion is constituted by the recent
(2015) discovery of gravitational waves, which were predicted in 1916 by
Einstein.

In any scenario, under the current hypotheses, conditions (P2) and (F∗)
entail, for the Lχi

-part of the revised theory K ∗ ϕ, that:

(
K ∗ ϕ

)
∩ Lχi

=
(
Cn(χi) ∗ ϕ

)
∩ Lχi

= th
(
min

(
[ϕ],�Cn(χi)

))
∩ Lχi

.

Observe that, in order to produce the Lχi
-part of K ∗ϕ, the agent—which

can be viewed as the scientific community as a whole—needs only the pre-
order �Cn(χi), and not the preorder �K . This, in view of Remark 4.4
of Section 4, allows her to omit comparing the epistemic value of propo-
sitions referring to irrelevant subject matters—as the construction of �K
demands—, a requirement that would clearly constitute an epistemological
“thorn”. For instance, how can a rational agent compare the epistemic
value of propositions expressed in the language Lχi , referring to the struc-
ture of water, with propositions expressed in the language Lχj (with i 6= j),
referring to monetary economics, in order to build a faithful preorder �K?
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As for the Lχi-part of the revised theory K ∗ ϕ, of course, it is equal
to K ∩ Lχi , according to condition (P1). Hence, only the ϕ-relevant com-
partment of theory K is affected by its ∗-revision by ϕ. Clearly then, the
following remark is true.

Remark 6.1. In normal science, the finest K ∗ϕ-splitting could be identical
to the finest K-splitting. Furthermore, since we have assumed that the
unit set of K contains at least two units (cf. Footnote 15), it follows that
the unit set of K ∗ ϕ is, during a period of normal science, non-singleton.

We close this subsection with a formal concrete example—which is a
variation of Example 5.9 of Section 5—illustrating a normal-science sce-
nario.

Example 6.2 (Normal Science). Suppose that P =
{
a, b, c, d, e, f

}
and

K = Cn
(
a↔ b, c↔ d, e ∨ f

)
; thus, UK =

{
a↔ b, c↔ d, e ∨ f

}
. Let

ϕ = (¬a ∧ b) ∨ (a ∧ ¬b) and ψ = a ∧ b — notice that ϕ con-
tradicts K, whereas, ψ is consistent with K. Assume that
∗ is an AGM revision function that respects the strong version

of axiom (P), such that K ∗ ϕ = Cn
(

(¬a ∧ b) ∨ (a ∧ ¬b), c↔ d, e ∨ f
)

and K ∗ ψ = Cn
(
a, b, c↔ d, e ∨ f

)
. Hence, we have that FK ={

{a, b}, {c, d}, {e, f}
}

, FK∗ϕ =
{
{a, b}, {c, d}, {e, f}

}
and FK∗ψ ={

{a}, {b}, {c, d}, {e, f}
}

.

In the above example, each one of the epistemic inputs ϕ and ψ is solely
related to the (refined) compartment Cn(a ↔ b) of the splittable theory
K, since Lϕ ⊆ La↔b and Lψ ⊆ La↔b. Observe that the ∗-revision of K by
ϕ results in a revised theory K ∗ϕ whose finest splitting is identical to the
finest K-splitting (cf. Remark 6.1); this is not the case for the ∗-revision of
K by ψ, which leads to a revised theory K ∗ψ with a different finest split-
ting. Lastly, as the AGM revision function ∗ respects Parikh’s principle,
the La↔b-part of K remains unaffected during the revision-process.

6.2. Paradigm shift: Lϕ * Lχi
, Lϕ ∩ LK 6= ∅ and

compartmental coupling

In case Lϕ ∩ LK 6= ∅, the minimal language Lϕ of the epistemic input ϕ
is not restricted to a sublanguage Lχi (i.e., Lϕ * Lχi , for all i such that
1 6 i 6 m), and, moreover, the revision of K by ϕ couples compartments
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of K, over which Lϕ spans, a paradigm shift takes place in the form of
a scientific revolution. Note that the coupling of some compartments of
theory K is demanded so as to avoid characterizing as a paradigm shift
a situation in which Lϕ spans over multiple (refined) compartments of K,
and, yet, the finest K ∗ ϕ-splitting is identical to the finest K-splitting;
i.e., FK∗ϕ = FK .16 In other words, given that Lϕ spans over multiple
(refined) compartments of K, coupling ensures that some of these (or even
all) compartments of K—at least one of which is non-trivial—have been
joined in the revised state of belief. This, in turn, implies the following
observation.

Remark 6.3. Contrary to the case of normal science (cf. Remark 6.1), in
the context of a paradigm shift, it is always true that FK∗ϕ 6= FK , and the
revision in that context changes the structure (of non-trivial compartments)
of the initial theory K. Furthermore, a paradigm shift may very well lead
to revised theories with singleton unit sets (cf. Example 5.11 of Section 5).

Against this background, the new information ϕ corresponds to a chal-
lenging anomaly which, in turn, results in a crisis of normal science; this
crisis, eventually, leads to a paradigm shift. Formal instances illustrating
the current scenario, which is abstractly depicted in Figure 3, are those
encoded in Examples 5.8, 5.9 and 5.11 of Section 5.17 It should come as no
surprise that an expansion, such as that encoded in Example 5.11, could
give rise to a paradigm shift, since an expansion of a splittable theory
by new knowledge may lead, due to compartmental coupling, to a dra-
matic change in the structure (of non-trivial compartments) of the theory
(although no information is lost during the expansion). It is, also, note-
worthy that Example 5.10 of Section 5 does not correspond to a situation
of a paradigm shift, since, although the minimal language of the epistemic
input in that example spans over multiple (refined) compartments of the
initial theory, compartmental coupling (as defined in Definition 5.7) does
not take place during revision.

16Such a scenario is the following: Let P = {a, b}, K = Cn(a, b), ϕ = ¬a ∧ ¬b, and
consider an AGM revision function ∗ such that K ∗ ϕ = Cn(¬a,¬b). Clearly then, Lϕ
spans over the (refined) compartments Cn(a) and Cn(b) of K, and, at the same time,
FK∗ϕ = FK =

{
{a}, {b}

}
.

17Historical examples for this scenario are reported in the next section. Recall, more-
over, that Example 5.10 of Section 5 refers to a revision-instance in which no coupling
of compartments of the initial theory takes place.
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Lχi
Lχj

L
LK

Lϕ

Figure 3. Paradigm Shift: K = Cn(χi, χj), Lϕ * Lχi , Lϕ ∩ LK 6= ∅
and compartmental coupling.

Each block corresponds to an element of the finest K-splitting.

6.3. Observations

An interesting discussion on the relation between Kuhnian epistemology
and (not necessarily relevance-sensitive) belief change has been conducted
by Gärdenfors in [14]. In that work, Gärdenfors argues that a paradigm
shift, typically, involves a radical change in the epistemic values of the
formulae of a scientific theory, and, conversely, a substantial change in the
epistemic values of the formulae of a scientific theory is a strong indication
of a scientific revolution [14, p. 88]. This change in the epistemic values of
formulae is reflected in a change in the faithful preorders that the scientific
community assigns to theories, and, as a consequence, in a change of the
AGM revision function that the scientific community utilizes for revision.18

Such alterations of the revision policy could serve as a means for avoiding
“islandings” like that described in Theorem 4.5 (Section 4).

Herein, we supplement the aforementioned view of Gärdenfors by claim-
ing that, in a propositional framework, a scientific revolution could result
in a change in the set of propositional variables from which the object lan-
guage L is generated, and, vice versa, a change in the set of propositional
variables, typically, indicates a scientific revolution. Lastly, a scientific rev-
olution could change the meaning (semantics) of a propositional variable

18As a matter of fact, a quantification of the difference between faithful preorders is,
also, feasible, with the aid of well-accepted concepts such as the Kemeny distance; given
any two total preorders over M, their Kemeny distance is defined as the cardinality of
their symmetric difference [19].
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(for instance, the word “mass” takes a totally different meaning in the
Newtonian than in the Einsteinian framework), a fact which is, in turn,
related to the symbol grounding problem [17].

We close this section by noting that a formal modelling of the evolution
(transition) of scientific theories by means of the AGM paradigm suggests
that, contrary to Kuhn’s claim (see at the end of Section 2), competing
scientific paradigms may be (at least to a certain degree) comparable in a
commensurable way, a fact which in turn allows for a rational evaluation
among them.19 Consider, for example, a scientific community whose knowl-
edge is represented by theory K1. Assume that, after a paradigm shift, the
knowledge of the scientific community is reflected in a new theory K2,
whereas, after another paradigm shift, the knowledge of the community is
reflected in another new theory K3. Against this background, the AGM
paradigm provides the formal guidelines in order for an AGM revision func-
tion ∗ to be specified, such that, for two sentences ϕ1, ϕ2 ∈ L (representing
new pieces of information), K2 = K1 ∗ ϕ1 and K3 = K2 ∗ ϕ2.20 Since
such an AGM revision function ∗ can be defined, the scientific theories of
each pair of K1, K2, K3 can be compared through ∗, in the sense that
one could, for example, generate theory K2 from the ∗-revision of K1 by
ϕ1; as earlier stated, this capability allows for a rational evaluation among
scientific theories.

7. Historical examples of paradigm shifts

Syntheses of initially unrelated scientific theories, after a paradigm shift
brought about because a new piece of evidence involved concepts from these
theories, have happened in the history of science not just once. Indicative
such examples are presented subsequently.

• The theory of magnetism—the formulation of which began with
Gilbert’s careful study of magnetic phenomena in the late 16th
century—was initially unrelated to the theory of electricity—
formulated, mainly, by Franklin and Coulomb in the late 1700s. The

19Although the peculiar nature of the symbol grounding problem involved in a scien-
tific revolution may lead to major difficulties in the comparison.

20This is a form of “reverse” belief revision.
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first connection between electric and magnetic phenomena was dis-
covered by Hans Christian Ørsted in 1820, when he found that elec-
tric currents produce magnetic forces, namely, a piece of information
that involves concepts of magnetism and electricity. Ørsted’s discov-
ery was responsible for the formulation of the combined theory of
Electromagnetism.

• In the beginning, there was Biology, a discipline that studies life and
living organisms, far from Chemistry that studies non-living mat-
ter. A dominant principle once biologists believed is imprinted in the
following vitalistic view: “Living organisms are fundamentally differ-
ent from non-living entities because they contain some non-physical
element or are governed by different principles than are inanimate
things” [10]. Series of strong evidence, however, falsified many vital-
istic theories, suggesting that the processes of life are based, in fact,
on chemical compounds. That is to say, a paradigm shift associated
with Biology led to a new discipline that combines a mixture of both
Biology and Chemistry, nowadays called Biochemistry.

• Classical Mechanics depicted a universe in which objects move in
perfectly-determined (non-random) ways. In this context, Probabil-
ity Theory may be considered, at least to a large extent, irrelevant.
Ground-breaking experimental discoveries initiated a paradigm shift
that led to a new theory of Physics, named Quantum Mechanics, in
which the role of pure randomness in physical processes is fundamen-
tal.

• Areas of Mathematics such as topology and algebraic geometry, lying
at the heart of pure Mathematics and appearing very distant from the
Physics frontier, have been dramatically reshaped (in the sense that
new discoveries have been emerged) after paradigm shifts associated
with fundamental hypotheses of Physics that involved a combination
of the aforementioned mathematical principles. This process has led
to many hybrid theories, such as the Topological Quantum Field The-
ory, which now form a core of modern research in both Mathematics
and Physics [9].
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• Connections between two, initially unrelated, theories have not only
emerged in the realm of natural sciences. Indicative is the case of
Neurobiology and Psychoanalysis, which, at the beginning of the
20th century, seemed completely incompatible. The book by Anser-
met and Magistretti, [2], is devoted to the presentation of recent
experimental findings—concerning several mechanisms of the brain—
that involved a mixture of concepts of both Neurobiology and Psy-
choanalysis. These observations initiated, in turn, a paradigm shift
that revealed a close relation of these two disciplines.

It should be evident that the above points do not refer to arbitrary cases
of paradigm shifts, but to cases in which two initially unrelated bodies of
knowledge (i.e., compartments of a broader scientific theory) coupled after
a new piece of evidence involved concepts of both these bodies. Hence, the
presented historical examples respect the hypotheses of the paradigm-shift
analysis of Subsection 6.2, and, thus, they come to justify its substance.

8. Conclusion

In this article, the evolution (revision) of splittable theories from an epis-
temological perspective was investigated. In particular, we have suggested
an epistemological reading of principal belief-change scenarios, involving
splittable belief corpora, from the perspective of Kuhn’s influential work
on the evolution of scientific knowledge. Representative examples from
the history of science have supported the conducted study, providing his-
torical content to the mathematical contours of the introduced concepts.
Our analysis aims at the formation of a conceptual bridge between rational
belief revision and traditional philosophy of science, which will shed light
on the application of formal epistemological tools in the dynamics of (any
corpus of) knowledge.

Despite the brevity of the account in the matter of the epistemology of
rational belief change, we hope that the ideas conveyed in this article will
become the springboard to future research; for instance, other interesting
belief-change scenarios could be explored, against the background of Kuhn’s
principles, or the presented ones could be further refined.
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Abstract

Six interesting variants of the logics BN4 and E4—which can be considered as the

4-valued logics of the relevant conditional and (relevant) entailment, respectively—

were previously developed in the literature. All these systems are related to the

family of relevant logics and contain Routley and Meyer’s basic logic B, which

is well-known to be specifically associated with the ternary relational semantics.

The aim of this paper is to develop reduced general Routley-Meyer semantics for

them. Strong soundness and completeness theorems are proved for each one of

the logics.
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1. Introduction

Brady defined in 1982 the system BN4 (cf. [3]), a logic built upon the ma-
trix MBN4. This matrix is the result of a modification of the function f→
for the conditional in Smiley’s matrix MSm4, which is in its turn a simplifi-
cation of a matrix which has played an important role in the development of
relevant logics (cf. [11, pp. 176, ff.]), i.e., Anderson and Belnap’s 8-element
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matrix M0 (cf. [1]). Smiley’s matrix MSm4 is also the matrix charac-
teristic of Anderson and Belnap’s First Degree Entailment Logic (FDE;
cf. [1, pp. 161–162]). The logic FDE is a well-known core non-classical sys-
tem among many-valued and relevant logics (about its importance, cf. [8]
and references therein) and is equivalent to Belnap and Dunn’s logic B4 [2].
It is worth to mention here that, according to Slaney [12, p. 289], BN4 has
the truth-functional implication most naturally associated the logic FDE.
As a matter of fact, the logic BN4 finds an appealing place in the intersec-
tion between 4-valued logics and members in the family of relevant logics.
For instance, Meyer et al. maintain that “BN4 is the correct logic for the
4-valued situation where the extra values are to be interpreted in the both
and neither senses” [7, p. 253]. Accordingly, BN4 can also be seen as an
interesting 4-valued extension of Routley and Meyer’s basic logic B (cf. [11,
chapter 4])—a central system in the family of relevant logics whose signif-
icance is briefly explained below—since the logic BN4 was first developed
by taking as the starting point the axiomatization of B, as Brady himself
stated. As a matter of fact, even though it is tempting to read BN4 as the
B(oth) and N(either) 4-valued logic, the label was chosen by Brady because
“the system contains the basic system B of Routley et al. 1982, Chapter
4, and has a characteristic 4-valued matrix set, one of the values being ’n’,
representing neither truth nor falsity”(cf. [3, p. 32, note 1]).

Routley and Meyer’s relational semantics (R-M semantics) was intro-
duced by the named authors in the early seventies of the past century to
model relevant logics, but it was soon noticed to be a highly malleable
instrument able of modelling other families of logics. The minimal (non-
positive) logic characterized by Routley-Meyer semantics is Sylvan and
Plumwood’s logic BM [13], which is in fact the result of dropping the dou-
ble negation axioms (A→ ¬¬A, ¬¬A→ A) from the system B. The basic
logic B is also especially significant among relevant logics because is used
as a starting system to define a wealth of extensions interpretable with the
R-M semantics (cf. [11, chapter 4]).

Robles and Méndez developed the logic E4 [10], another interesting
4-valued logic which was built upon a modification of the conditional func-
tion of MBN4 (cf. Definition 2.1) and is also a proper extension of Routley
and Meyer’s logic B. Robles and Méndez suggested that E4 could be seen
as the “4-valued logic of (relevant) entailment” whereas BN4 could be con-
sidered as the “4-valued logic of the relevant conditional”. The main reason
for this is that they believe that E4 is related to BN4 in a similar way to
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which Anderson and Belnap’s logic of entailment E is related to the system 
R (cf. [1] about the logics E and R). In particular, according to Méndez 
and Robles, BN4 can intuitively be described as a 4-valued extension of 
contractionless relevant logic R (RW) and E4 as a 4-valued extension 
of reductioless logic Er1.

Although E4 was presented as a companion to BN4 worthy of considera-
tion, Robles and Méndez asserted that E4 might not be the only alternative
to BN4 and set out six different variations of the conditional function of
MBN4 which could turn out to be possibly interesting 4-valued logics in
the family of relevant logics. Some research on the logics built upon these
tables has recently been conducted in [6]. In particular, it has been proved
that they are the only variants of MBN4 and ME4 which verify Routley
and Meyer’s logic B. Furthermore, they have been endowed with a Belnap-
Dunn semantics. The aim of this paper is to provide a general reduced
Routley-Meyer type semantics for those logics in order to connect them to
the wide range of logics interpretable with this semantics and specially to
the systems BN4 and E4, which have been also already interpreted by the
R-M type semantics [9]. It is worth underlining that: (I) validity of formu-
lae depends on a singleton in the reduced general Routley-Meyer semantics
(i.e., the set of designated points is limited to a single element); (II) re-
duced models are generally preferable when there is the possibility to define
them (cf. [4, 5]). As a matter of fact, we face some problems when defining
reduced models for the majority of the logics here considered given the
apparent ineliminability of disjunctive rules. However, these inconvenients
are solved according to the methodology suggested in ([4, 5, 11]).

The structure of this paper proceeds as follows. In Section 2, the im-
plicative variants of MBN4 and ME4 which verify Routley and Meyer’s logic
B are displayed. In Section 3, a basic logic which serves a mere instrumen-
tal role—the logic b4—is presented and also extended to each of the logics
considered in this paper. Next, reduced general Routley-Meyer semantics
for the logic b4 is provided in Section 4. In Section 5 and Section 6, a se-
ries of lemmas and notions for extensions of the logic b4—Eb4-logics—are
recalled as they were already proved in previous papers ([3, 9]) following
the method described in [11, chapter 4]. Finally, completeness theorems for

1RW will be the result of dropping the axiom contraction ([A→ (A→ B)]→ (A→
B)) from R and Er the result of dropping the axiom reductio ((A → ¬A) → ¬A) from
E. The label Er is Robles and Méndez’s.
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b4 and its extensions are proved in Section 7 and Section 8, respectively.
In particular, in Section 8, the essential postulates of the extensions of b4
considered in this paper are displayed and proved adequate for Eb4-models
where their corresponding axiom is valid.

2. Implicative variants of MBN4 and ME4 which
verify Routley and Meyer’s logic B

In this section, I display the matrices upon which the logics considered
in this paper were built, i.e., the implicative variants of MBN4 and ME4
which verify Routley and Meyer’s logic B (cf. [11, chapter 4]).

First, the notions of Languages and Logics are fairly standard (cf. [9]). 
The propositional language L consists of a denumerable set of propositional 
variables p0, p1..., pn, ... and some or all of the following connectives →, ∧, 
∨, ¬. A, B, C, etc. are metalinguistic variables. Logics are formulated 
as Hilbert-style axiomatic systems. The notions of proof and theorem are 
understood as it is customary (Γ `L A means that A is derivable from the 
set of wffs Γ in the logic L; and `L A means that A is a theorem of 
the logic L).

Next, I introduce the matrices upon which systems BN4 and E4 are
built.

Definition 2.1 (Brady’s matrix MBN4 and Robles and Méndez’s matrix
ME4). The propositional language L consists of the connectives →, ∧, ∨
and ¬. Brady’s matrix MBN4 and Robles and Méndez’s matrix ME4 are
the structures < V, D, z >, where (i) V is {0, 1, 2, 3} and it is partially
ordered as shown in the following lattice:

3

1

0

2

(ii) D = {2, 3}; (iii) z = {f→, f∧, f∨, f¬} where f∧ and f∨ are defined as
the glb (or lattice meet) and the lub (or lattice join), respectively. f¬ is an
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involution with f¬(0) = 3, f¬(3) = 0, f¬(1) = 1 and f¬(2) = 2. Tables for
∧, ∨ and ¬ are now displayed.

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

0 1 2 3
¬ 3 1 2 0

Finally, f→ is defined in each system according to the following tables2:

t1 (BN4)

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 1 2 3
3 0 1 0 3

t5 (E4)

→ 0 1 2 3
0 3 3 3 3
1 0 2 0 3
2 0 0 2 3
3 0 0 0 3

Definition 2.2 (Variants of MBN4 and ME4 considered in this paper).
Each Mti (1 ≤ i ≤ 8) is a structure (V, D, z) where V, D, f∧, f∨ and f¬
are defined as in MBN4 and ME4 (cf. Definition 2.1) and f→ is defined
according to the corresponding ti below (t1 and t5 are left out here to refer
to BN4 and E4, respectively):

t2

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 0 2 3
3 0 0 0 3

t3

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 0 2 3
3 0 0 0 3

t4

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 1 2 3
3 0 1 0 3

t6

→ 0 1 2 3
0 3 3 3 3
1 0 2 0 3
2 0 1 2 3
3 0 0 0 3

t7

→ 0 1 2 3
0 3 3 3 3
1 0 2 1 3
2 0 0 2 3
3 0 0 0 3

t8

→ 0 1 2 3
0 3 3 3 3
1 0 2 1 3
2 0 1 2 3
3 0 0 0 3

Remark 2.3 (Implicative variants of MBN4 and ME4 which verify Routley
and Meyer’s logic B). The matrices considered in this paper are the only

2From now on, the labels t1 and t5 will be used to refer to the implicative tables
of BN4 and E4, respectively, since labels t2-t4 will be used to refer to the implicative
tables of the variants of BN4 and, likewise, t6-t8 will be used for those of the implicative
variants of E4.
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implicative variants of MBN4 (t2–t4) and ME4 (t6–t8) which verify Routley
and Meyer’s logic B (cf. [11, Chapter 4]). This was already proved as a
Proposition in [6, Proposition 3.2].

3. The basic logic b4 and its extensions

The eight logics considered in this paper are developed in this section as
implicative extensions of b4. Therefore, the basic logic b4 is a system
contained in every Lti-logic (1 ≤ i ≤ 8), i.e., in every logic built upon the
matrices characterized by the implicative tables displayed in Section 2 (cf.
Definitions 2.1 and 2.2). As a matter of fact, the label b4 is intended to
abbreviate “basic logic contained in every companion of BN4 or E4 which
includes Routley and Meyer’s logic B”. In the following sections, b4 will be
used as a common ground for the soundness and completeness proofs.

Definition 3.1 (The basic logic b4). The logic b4 is axiomatized with the
following axioms and rules ADJ, MP, dMP, dPREF, dSUF, dCON, dCTE
displayed below:
Axioms

A1 A→ A

A2 (A ∧B)→ A / (A ∧B)→ B

A3 [(A→ B)∧(A→ C)]→[A→(B ∧ C)]

A4 A→(A ∨B) / B →(A ∨B)

A5 [(A→ C)∧(B → C)]→[(A ∨B)→ C]

A6 [A∧(B ∨ C)]→[(A ∧B)∨(A ∧ C)]

A7 ¬¬A→ A

A8 A→ ¬¬A

A9 ¬A→ [A ∨ (A→ B)]

A10 B → [¬B ∨ (A→ B)]

A11 (A ∨ ¬B) ∨ (A→ B)

A12 (A→ B) ∨ [(¬A ∧B)→ (A→ B)]

A13 A→ [B → [[(A ∨B) ∨ ¬(A ∨B)] ∨ (A→ B)]]
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Rules of inference

Adjunction: A, B ⇒ A ∧B

Modus Ponens: A, A→ B ⇒ B

Disjunctive Modus Ponens: C ∨A, C ∨ (A→ B)⇒ C ∨B

Disjunctive prefixing: C ∨ (A→ B)⇒ C ∨ [(D → A)→ (D → B)]

Disjunctive suffixing: C ∨ (A→ B)⇒ C ∨ [(B → D)→ (A→ D)]

Disjunctive Contraposition: C ∨ (A→ B)⇒ C ∨ (¬B → ¬A)

Disjunctive Counterexample: C ∨ (A ∧ ¬B)⇒ C ∨ ¬(A→ B)

Remark 3.2 (About b4). b4 is the result of adding the axioms A9–A13
and rules dMP, dPREF, dSUF, dCON and dCTE to Routley and Meyer’s
basic logic B (cf. [11, Chapter 4]). As a matter of fact, b4 can be seen
as an extension of dB (i.e., the disjunctive version of Routley and Meyer’s
logic B).

Next, I prove some theorems of b4 which will be useful throughout this
paper.

Proposition 3.3 (Some theorems and rules of b4). The following theorems
and rules are derivable in b4.

T1 A↔ (A ∨A)

T2 [(A→ B) ∧ (C → D)]→ [(A ∧ C)→ (B ∧D)]

T3 [A ∨ (B ∨ C)]↔ [(A ∨B) ∨ C]

T4 (A→ B)→ [A→ (B ∨ C)]

T5 (A→ B)→ [(A ∧ C)→ (B ∨D)]

T6 ¬(A ∧B)↔(¬A ∨ ¬B)

T7 (¬A ∧ ¬B)↔ ¬(A ∨B)

T8 A→ [¬A ∨ (¬A→ B)]

T9 ¬A→ [B ∨ [(A ∧B)→ C]]

TRAN A→ B, B → C ⇒ A→ C

SUM A→ B ⇒ (A ∨ C)→ (B ∨ C)
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Every correspondent non-disjunctive version of the rules of b4 except for
the rule MP (i.e., PREF, SUF, CON, CTE) is also a derived rule of b4.

Proof: T1–T7, SUM and TRAN are theorems and rules of the system B.
T8 is obtained by A8, A9 and TRAN. T9 can be proved using A2, A9 and
rules TRAN, CON and SUM. Finally, rules PREF, SUF, CON and CTE
can easily be derived from their disjunctive version plus the rule MP, A4
and T1.

In the following lines, I introduce the extensions of b4 which I have
referred to from the beginning of the section. In the first place, I define the
notion of extensions (and expansions) of a propositional logic.

Definition 3.4 (Extensions and expansions of a propositional logic L).
Let L be a logic formulated with axioms a1,..., an and rules of derivation
r1,..., rm. A logic L′ includes L iff a1,..., an are theorems of L′ and rules
r1,..., rm are provable in L′. If such were the case, L′ would be either
an extension of L (i.e., a strengthening of L in the language of L) or an
expansion of it (i.e., a strengthening of L in an expansion of the language
of L). We shall generally refer to extensions of a logic L by EL-logics.

Definition 3.5 (Extensions of b4 considered in this paper—Lti-logics).
We refer by Lti (1 ≤ i ≤ 8) to the eight extensions of b4 considered in
this paper, these are, BN4 (Lt1), E4 (Lt5) and the logics characterized by
the implicative variants of MBN4 and ME4 (Lt2-Lt4 and Lt6-Lt8, respec-
tively). Each Lti-logic is the result of adding the following axioms (from
the list below) to b4:

Lt1 (BN4): A14-A16

Lt2: A17-A23

Lt3: A14, A15, A18, A19, A22–A24

Lt4: A16, A17, A20–A22

Lt5 (E4): A17–A21, A23, A25–A27

Lt6: A17, A20, A21, A23, A26, A28, A29

Lt7: A14, A18, A19, A21, A23, A26, A30

Lt8: A14, A21, A23, A26, A29, A30
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Now, I display the list of axioms from which the Lti-logics are built:

A14 (A ∧ ¬B)→ [(A ∧ ¬B)→ ¬(A→ B)]

A15 A ∨ [¬(A→ B)→ A]

A16 ¬B ∨ [¬(A→ B)→ ¬B]

A17 [A ∧ (A→ B)]→ B

A18 [(A→ B) ∧ ¬B]→ ¬A

A19 A→ [B ∨ ¬(A→ B)]

A20 ¬B → [¬A ∨ ¬(A→ B)]

A21 [¬(A→ B) ∧ ¬A]→ A

A22 ¬(A→ B)→ (A ∨ ¬B)

A23 [¬(A→ B) ∧B]→ ¬B

A24 B → {[B ∧ ¬(A→ B)]→ A]}

A25 (A→ B) ∨ ¬(A→ B)

A26 (¬A ∨B) ∨ ¬(A→ B)

A27 [(A→ B) ∧ (A ∧ ¬B)]→ ¬(A→ B)

A28 ¬(A→ B) ∨ [(A ∧ ¬B)→ ¬(A→ B)]

A29 {[¬(A→ B) ∧ ¬A]→ ¬B} ∨ ¬B

A30 {[¬(A→ B) ∧B]→ A} ∨A
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4. Eb4-models in Routley-Meyer ternary relational
semantics

In this section, the soundness of b4 is proved, but I establish the setting
within which an RM-semantics for any Eb4-logic can be developed. In this
sense, some of the facts upon which the soundness proof leans upon are
applicable to Eb4-logics in general. First, we underline that the label EL
will be used to refer to an extension of the logic L (cf. Definition 3.4).
Now, we set the notion of Eb4-models.

Definition 4.1 (Eb4-models). An Eb4-model M is a structure < T , K,
R, ∗, �> where K is a non-empty set, T ∈ K, R is a ternary relation
on K and ∗ is a unary operator on K subject (at least) to the following
definitions and postulates for all a, b, c ∈ K:

d1 a ≤ b =df RTab

d2 a = b =df a ≤ b & b ≤ a

d3 R2abcd =df (∃x ∈ K) (Rabx & Rxcd)

p1 a ≤ a

p2 (a ≤ b & Rbcd)⇒ Racd

p3 R2Tabc⇒ (∃x ∈ K) (RTbx & Raxc)

p4 R2Tabc⇒ (∃x ∈ K) (Rabx & RTxc)

p5 a∗∗ ≤ a

p6 a ≤ a∗∗

p7 a ≤ b⇒ b∗ ≤ a∗

p8 RT ∗TT ∗

p9 Rabc⇒(b ≤ a∗or b ≤ a)

p10 Rabc⇒ (a ≤ c or a∗ ≤ c)

p11 RTab⇒ (T ∗ ≤ b or a ≤ T )

p12 (RTab&R2Tcde)⇒ (a ≤ c∗ or d ≤ c∗ or c ≤ b or c ≤ e)

p13 (Rabc&Rcde)⇒ (a ≤ c or b ≤ c or c∗ ≤ c or d ≤ c or b ≤ e)
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Finally, � is a valuation relation from K to the set of all wffs such that the
following conditions (clauses) are satisfied for every propositional variable
p, wffs A, B and a ∈ K:

(i) (a ≤ b & a � p)⇒ b � p

(ii) a � A ∧B iff a � A & a � B

(iii) a � A ∨B iff a � A or a � B

(iv) a � A→ B iff for all b, c ∈ K, (Rabc & b � A)⇒ c � B

(v) a � ¬A iff a∗ 2 A

A structure < T , K, R, ∗, �> like the latest represent the most basic
Eb4-model. On the other hand, other different Eb4-models can be defined
adding new postulates to those of the basic Eb4-model presented above
(i.e., p1–p13). As a matter of fact, reduced semantics for the Lti-logics
displayed in Definition 3.5 (which are indeed Eb4-logics) are defined in
Section 8 following the aforementioned method.

Definition 4.2 (b4-models). A b4-model is a Eb4-model with no addi-
tional postulate.

In what follows, the definitions of truth, validity and semantic conse-
quence in a class of Eb4-models are defined.

Definition 4.3 (Truth in a class of Eb4-models). Let M be a class of
Eb4-models and M ∈M. A wff A is true in M iff T � A in this model.

Definition 4.4 (Validity in a class of Eb4-models). Let M be a class of
Eb4-models. A wff A is valid in M (in symbols, � A) iff T � A in all
M ∈M.

Definition 4.5 (Semantic consequence in a class of Eb4-models). Let M
be a class of Eb4-models. Then, for all M ∈M and any set of wffs Γ and
wff A: Γ �M A (A is a semantic consequence of Γ in the model M) iff
T � A if T � Γ (T � Γ iff T � B for all B ∈ Γ ). Then, Γ �M A (A is a
semantic M-consequence of Γ ) iff Γ �M A for all M ∈M.

Next, we specify what (in our view) constitutes a semantics and when
a logic is endowed with a semantics.



38 Sandra M. López

Definition 4.6 (Reduced general Routley-Meyer semantics for Eb4-logics).
Let L be a Eb4-logic. Σ = {M, �} is a semantics for L iff L is sound and
complete with respect to Σ. If this condition is fulfilled, we establish that
L-models (i.e., M ∈ M) together with the definition of validity in M con-
stitute a Routley-Meyer semantics for L.

The following couple of lemmas is needed to prove that the system b4
is sound w.r.t. the semantics just defined.

Lemma 4.7 (Hereditary condition). Let M be a class of Eb4-models. For
any M ∈M, a, b ∈ K and wff A: (a ≤ b& a � A)⇒ b � A.

Proof: By induction on the length of A. The conditional case is proved
with p2 and the negation case with p7 and d1.

Lemma 4.8 (Entailment Lemma). Let M be a class of Eb4-models. For
any wffs A, B, we have �M A→ B iff a � A⇒ a � B for all a ∈ K in all
M ∈M.

Proof: (⇒) By p1 and d1. (⇐) By d1 and Lemma 4.7.

Proposition 4.9 (Γ `b4 A⇒ Γ �M A). Let M be a class of Eb4-models.
For any set of wffs Γ , wff A and M ∈M, if Γ `b4 A, then Γ �M A.

Proof: We have to prove three different cases: (i) A ∈ Γ ; (ii) A is an
axiom; (iii) A is derived by means of any rule of b4. In the first place, case
(i) is trivial. As for the case (ii), it will be proved that the axioms are valid
in any class of Eb4-model. The validity of axioms A1–A8 is proved as in
[11, Chapter 4] and that of A9 and A11 as (the validity of A10 and A13,
respectively) in [9, p. 12]. Now, A10, A12 and A13 will be proved. We
lean upon the Entailment Lemma (Lemma 4.8) and proceed by reductio
ad absurdum. We also use the Hereditary Condition (Lemma 4.7) and
clauses (ii)–(v) in Definition 4.1. Furthermore, the postulates displayed in
Definition 4.1 will be used to prove the validity of the named axioms.

(A10) B → [¬B ∨ (A → B)] is valid in any Eb4-model. Suppose that
there are a ∈ K in some Eb4-model M and wffs A, B such that (1) a � B
but (2) a 2 ¬B ∨ (A → B). By clause (iii) of Definition 4.1, (3) a 2 ¬B
& (4) a 2 A→ B. By clause (v) of the same definition and 3, (5) a∗ � B.
Then, there are b, c ∈ K such that (6) Rabc, (7) b � A, (8) c 2 B by 4
and clause (iv). Now, given 6 and p10 (Rabc⇒ (a ≤ c or a∗ ≤ c)), we have
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a ≤ c or a∗ ≤ c. Finally, (9) c � B by applying the Hereditary Condition
(Lemma 4.7) to either 1 or 5. However, 8 contradicts 9.

(A12) (A → B) ∨ [(¬A ∧ B) → (A → B)] is valid in any Eb4-model.
Suppose that there is some Eb4-model M and wffs A, B such that (1)
T 2 (A → B) ∨ [(¬A ∧ B) → (A → B)]. Then, (2) T 2 A → B and
(3) T 2 (¬A ∧ B) → (A → B). By clause (iv), (4) RTab, (5) a � A, (6)
b 2 B, for some a, b ∈ K—given 2—and (7) RTcx, (8) c � ¬A∧B and (9)
x 2 A → B for some c, x ∈ K—given 3. Again, by applying clause (iv)
to 9, we get (10) Rxde, (11) d � A and (12) e 2 B, for some d, e ∈ K.
Similarly, by applying clause (ii) to 8, we obtain (13) c � ¬A (i.e., c∗ 2 A)
and c � B. Now, given p12 ((RTab&R2Tcde)⇒ (a ≤ c∗ or d ≤ c∗ or c ≤ b
or c ≤ e)), 4, 7 and 10, we have a ≤ c∗ or d ≤ c∗ or c ≤ b or c ≤ e. Let us
suppose a ≤ c∗ or d ≤ c∗, then we have (14) c∗ � A—contradicting 13—by
applying the Hereditary Condition to either 5 or 11, respectively. Next, let
us suppose c ≤ b, then we get (15) b � B similarly, given 13. However, 15
contradicts 6. Finally, let us suppose c ≤ e, we get (16) e � B (given 13),
which contradicts 12.

(A13) A → [B → [[(A ∨ B) ∨ ¬(A ∨ B)] ∨ (A → B)]] is valid in any
Eb4-model. Suppose that there is some Eb4-model M and wffs A, B such
that (1) a � A but (2) a 2 B → [[(A ∨ B) ∨ ¬(A ∨ B)] ∨ (A → B)]. By
clause (iv), (3) Rabc, (4) b � B and (5) c 2 [(A∨B)∨¬(A∨B)]∨ (A→ B),
for b, c ∈ K. Then, we get (6) c 2 A ∨ B (i.e., c 2 A & c 2 B), (7)
c 2 ¬(A ∨ B) (i.e., c∗ � A ∨ B), (8) c 2 A → B, by clause (iii). Now, by
clause (iv), we have (9) d � A and (10) e 2 B for some d, e ∈ K such that
(11) Rcde. Then, a ≤ c or b ≤ c or c∗ ≤ c or d ≤ c or b ≤ e given 3, 11
and p13 ((Rabc&Rcde) ⇒ (a ≤ c or b ≤ c or c∗ ≤ c or d ≤ c or b ≤ e)).
Similarly as the proof of A12, we can easily see that a contradiction is
reached whatever the case may be given the Hereditary Condition plus 1,
4, 6, 7, 9 and 10.

Case (iii), A is the result of applying a rule of b4, has on its own
several subcases. The subcase of ADJ is trivial and the subcases when A
is derived by MP and dMP are proved as in [9, Theorems 3.7, 3.10]. The
remaining disjunctive rules are proved similarly3. As an example, let us
prove the subcase when A is the result of applying the rule dCTE. Suppose
Γ �M D∨(B∧¬C) for some wffs B, C and D. Furthermore, suppose T � Γ .

3The reader can also find the proofs for some of these rules displayed in
[11, Chapter 4, pp. 336, ff.].
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Then, (1) T � D ∨ (B ∧ ¬C) and by reductio, (2) T 2 D ∨ ¬(B → C).
Now, we have (3) T � D or T � B ∧ ¬C and (4) T 2 D & T 2 ¬(B → C)
(i.e., T ∗ � B → C) by applying clause (iii) to 1 and 2, respectively. Then,
obviously, (5) T � B ∧ ¬C (i.e., T � B & T ∗ 2 C). Now, by applying
clause (iv) to p8 (RT ∗TT ∗), 4 and 5, we obtain (6) T ∗ � C. However, 5
contradicts 6.

Theorem 4.10 (Soundness of b4). For any set of wffs Γ and wff A: If
Γ `b4 A, then Γ �b4 A.

Proof: It is trivial given Proposition 4.9.

5. Extension and primeness lemmas

In the present section, we shall introduce the extension lemmas. Firstly,
we set the notion of Eb4-theories and several other related notions. We
also display a couple of definitions and some lemmas which will be crucial
points in the completeness theorem proved in Section 7. In these lemmas,
we apply the method developed in “Relevant logics and their rivals I” (cf.
[11, Chapter 4]) and followed by Brady (cf. [3, pp. 24–25]). We shall omit
some of those proofs since they are similar to Brady’s4 [3].

In the first place, we set some preliminary definitions.

Definition 5.1 (Eb4-theories). Let L be an Eb4-logic. An L-theory T
is a set of wffs closed under Adjunction (Adj) and provable L-entailment
(L-ent). That is to say, a set of wffs is closed under Adj iff, whenever A,
B ∈ T , then A ∧ B ∈ T ; a set of wffs is closed under L-ent iff, whenever
A→ B is a theorem of L and A ∈ T , then B ∈ T .

Definition 5.2 (Types of Eb4-theories). Let L be an Eb4-logic and T an
L-theory. We set (1) T is prime iff, for wffs A and B, whenever A∨B ∈ T ,
then either A ∈ T or B ∈ T ; (2) T is regular iff T contains all theorems in
L; (3) T is trivial iff it contains every wff; (4) T is a-consistent (consistent
in an absolute sense) iff T is not trivial; (5) T is empty iff it contains no
wff.

4We shall also follow Robles and Méndez’s structure and method for the extension
lemmas (cf. [10, pp. 845-847]). In addition, some of the outlined proofs were already
given in [6, 9].
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Definition 5.3 (Sets of wffs closed under a certain rule). For any wffs A,
B, C and D, a set of wffs Γ is closed by: (1) MP iff A → B ∈ Γ and
A ∈ Γ , then B ∈ Γ ; (2) dMP iff (A → B) ∨ C ∈ Γ and A ∨ C ∈ Γ then
B ∨ C ∈ Γ ; (3) CON iff A → B ∈ Γ , then ¬B → ¬A ∈ Γ ; (4) dCON iff
(A → B) ∨ C ∈ Γ , then (¬B → ¬A) ∨ C ∈ Γ ; (5) PREF iff A → B ∈ Γ ,
then (C → A) → (C → B) ∈ Γ ; (6) dPREF iff (A → B) ∨ D ∈ Γ ,
then [(C → A) → (C → B)] ∨ D ∈ Γ ; (7) SUF iff A → B ∈ Γ ,
then (B → C) → (A → C) ∈ Γ ; (8) dSUF iff (A → B) ∨ D ∈ Γ ,
then [(B → C) → (A → C)] ∨ D ∈ Γ ; (9) CTE iff A ∧ ¬B ∈ Γ , then
¬(A→ B) ∈ Γ ; (10) dCTE iff (A∧¬B)∨C ∈ Γ , then ¬(A→ B)∨C ∈ Γ ;
(11) MT iff A → B ∈ Γ and ¬B ∈ Γ , then ¬A ∈ Γ ; (12) TRAN iff
A→ B ∈ Γ and B → C ∈ Γ , then A→ C ∈ Γ .

Definition 5.4 (Full regularity). Let L be an Eb4-logic, an L-theory T is
fully regular iff it is a regular L-theory (cf. Definitions 5.1 and 5.2) which is
closed under the rules of b4 (i.e., MP, dMP, dCON, dPREF, dSUF, dCTE;
cf. Definition 5.3).

Proposition 5.5 (Derived rules under which fully regular Eb4-theories
are closed). Let L be an Eb4-logic, if T is a fully regular L-theory, then it
is closed under (1) CON, (2) PREF, (3) SUF, (4) CTE, (5) MT and (6)
TRAN.

Proof: Cases (1)–(4): by A4 and T1 (A ↔ (A ∨ A)) and the fact that
T is fully regular (i.e., closed under dCON, dPREF, dSUF and dCTE,
respectively for each case). Cases (5)–(6): by hypothesis, T is fully reg-
ular (therefore closed under MP) and by the fact that T is closed under
CON and SUF (given what has already been proved in cases (1) and (3)),
respectively for each case.

Definition 5.6 (Disjunctive Eb4-derivability). Let L be an Eb4-logic, Γ
and Θ be non-empty sets of wffs, Θ is disjunctively derivable from Γ in
Eb4 (in symbols, Γ `dL Θ) iff A1 ∧ ... ∧ An `L B1 ∨ ... ∨ Bn for some wffs
A1, ..., An ∈ Γ and B1, ..., Bn ∈ Θ.

The following lemma is essential in order to prove the Extension to
maximal sets lemma (Lemma 5.9).
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Lemma 5.7 (Preliminary lemma to the extension lemma). Let L be an
Eb4-logic closed under no other rules than those specified in Definition 5.4.
For any wffs A, B1,..., Bn, if {B1, ..., Bn} `L A, then, for any wff C,
C ∨ (B1 ∧ ... ∧Bn) `L C ∨A.

Proof: Induction on the length of A (cf. p. 27 in [3] and Lemma 6.2 in
[10]).

Now, the process of extending sets of wffs to maximal sets is required.

Definition 5.8 (Maximal sets). Let L be an Eb4-logic, Γ is an L-maximal
set of wffs iff Γ 0d

L Γ (Γ is the complement of Γ ).

Lemma 5.9 (Extension to maximal sets). Let L be an Eb4-logic closed
under no other rules than those specified in Definition 5.4, Γ and Θ sets
of wffs such that Γ 0d

L Θ. Then, there are sets of wffs Γ ′ and Θ′ such that
Γ ⊆ Γ ′, Θ ⊆ Θ′, Θ′ = Γ ′ and Γ ′ 0d

L Θ
′ (i.e., Γ ′ is an L-maximal set such

that Γ ′ 0d
L Θ

′).

Proof: Cf. Lemma 9 in [3] and Lemma 6.4 in [10].

Finally, Primeness Lemma should be proved.

Lemma 5.10 (Primeness). Let L be an Eb4-logic closed under no other
rules than those specified in Definition 5.4. If Γ is an L-maximal set, then
it is a fully regular prime L-theory.

Proof: This Lemma was already provided for the exact same frame of
logics in [6, Lemma 7.5].

6. Preliminary lemmas to the completeness theorem

Following Routley et al. (cf. [11, Chapter 4]), a series of preliminary
lemmas will be proved in order to be used in the completeness proofs for
the Lti-logics. We start by presenting the notion of a T -theory.
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Definition 6.1 (T -theory). Let L be an Eb4-logic and T a fully regu-
lar prime L-theory (cf. Definition 5.1). A T -theory is a set of formulas
closed under Adjunction (Adj.) and T -entailment (T -ent.). That is, a
is a T -theory if whenever A, B ∈ a, then A ∧ B ∈ a; and if whenever
A→ B ∈ T and A ∈ a, then B ∈ a.

Given the fact that T is regular (i.e., if `Eb4 A→ B, then A→ B ∈ T ),
it is remarkable that any T -theory is an Eb4-theory. Therefore, if `L A→
B and A ∈ a, then B ∈ a, given that a is closed under T -ent.

Now, some relations on sets of T -theories will be displayed.

Definition 6.2 (The sets KT , KC). Let T be a fully regular and prime
Eb4-theory. KT is the set of all T -theories, and KC is the set of all
a-consistent non-empty and prime T -theories (cf. Definition 5.2).

Definition 6.3 (The relations RT , RC and �C). Let T be a fully regular
and prime T -theory and KT and KC be defined as in Definition 6.2. RT

is defined on KT as follows: for all a, b, c ∈ KT , RTabc iff for all wffs A,
B, (A → B ∈ a & A ∈ b) ⇒ B ∈ c. Next, RC is the restriction of RT to
KC . On the other hand, �C is defined as follows: for any a ∈ KC and wff
A, a �C A iff A ∈ a.

Next, we define a unary operator on KC .

Definition 6.4 (The operation ∗C). The unary operation ∗C is defined

on KC as follows: for each a ∈ KC , a∗
C

= {A | ¬A /∈ a}.

Let L be an Eb4-logic, we will use the Extension Lemma (cf. Lemma 5.9)
to build a fully regular and prime L-theory T in Proposition 7.3. For now,
we define upon T the notions of the sets and relations expressed above
(Definitions 6.2–6.4) and we define the following notion.

Definition 6.5 (The canonical Eb4-model). Let L be an Eb4-logic, the
canonical L-model is the structure < T , KC , RC , ∗C , �C>, whose mem-
bers are understood according to definitions 6.2–6.4.

The canonical Eb4-model will be shown to be an Eb4-model by means
of which non-theorems of L are falsified.
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Now, some useful lemmas for the completeness theorem developed in
Section 7 will be proved. Let us suppose that we are given a fully regular
and prime Eb4-theory T upon which the items KT , KC , RC , ∗C , �C are
defined as in Definition 6.5. First, we investigate the relations RT and RC .

Lemma 6.6 (Defining x for a, b in RT ). Let a, b be non-empty T -theories.
The set x = {B | ∃A(A→ B ∈ a & A ∈ b)} is a non-empty T -theory such
that RTabx.

Proof: x is a T -theory: by T2 and the fact that x is closed under PREF.
x is non-empty: by A13 (cf. [9, Lemma 5.5]).

Lemma 6.7 (Extending b in RTabc to a member in KC). Let a and b be
non-empty T -theories, and a and c a-consistent, prime T -theories such that
RTabc. Then, there is an a-consistent (and non-empty) prime T -theory x
such that b ⊆ x and RTaxc.

Proof: By the Kuratowski-Zorn’s Lemma and T8 and T9 (cf. [11, pp.
309, ff.] and [9, Lemma 5.6]).

Lemma 6.8 (Extending a in RTabc to a member in KC). Let a and b
be non-empty T -theories and c an a-consistent, prime T -theory such that
RTabc. Then, there is an a-consistent (and non-empty) prime T -theory x
such that a ⊆ x and RTxbc.

Proof: Cf. [9, Lemma 5.7].

Next, we set a definition to consider in relation to the succeeding lemma,
which shows that the relation ≤C is just a set inclusion relation among
a-consistent and non-empty prime T -theories.

Definition 6.9 (The relation ≤C). For any a, b ∈ KC : a ≤C b iff RCT ab.

Lemma 6.10 (≤C and ⊆ are coextensive). For any a, b ∈ KC : a ≤C b iff
a ⊆ b.

Proof: (⇒) By A1. (⇐) By Definitions 6.2, 6.3 and 6.9
(cf. [9, Lemma 5.9]).

In relation to the later, we also set the following lemma.

Lemma 6.11 (Extension to prime T -theories). Let a be a T -theory and A
a wff such that A /∈ a. Then, there is a prime T -theory x such that a ⊆ x
and A /∈ x.
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Proof: By simply applying the Kuratowski-Zorn Lemma as in
[11, Chapter 4, pp. 310–311].

Throughout the following lemmas, the unary operator ∗ will be inves-
tigated5.

Lemma 6.12 (Primeness of ∗-images). Let a be a prime T -theory. Then,

(1) a∗
C

is a prime T -theory as well; (2) for any wff A, ¬A ∈ a∗C iff A /∈ a.

Proof: (1) a∗ is closed under T -ent, by the fact that T is closed by CON;
a∗ is closed under Adj., by T6; a∗ is prime, by T7. (2) By A7 and A8.

Lemma 6.13 (∗C is an operation on KC). Let a be an a-consistent and

non-empty prime T -theory, then a∗
C

is an a-consistent and non-empty
T -theory as well.

Proof: In Lemma 6.12, it was already proved that, given our hypothesis,
a∗ is also a prime T -theory. Next, it is also clear that a∗ is a-consistent:
there is some wff A such that A ∈ a (a is non-empty); therefore, ¬A /∈ a∗
by Lemma 6.12. Similarly, since a is a-consistent, there is some wff A such
that A /∈ a; therefore, ¬A ∈ a∗ by the same lemma.

Finally, next lemma proves that the relation �C follows the clauses
(i)–(v) in the definition of an Eb4-model (cf. Definition 4.1).

Lemma 6.14 (The relation �C and clauses (i)–(v)). For all a, b, c ∈ KC

and wffs A, B:

(i) (a ≤C b and a �C p)⇒ b �C p

(ii) a �C A ∧B iff a �C A and a �C B

(iii) a �C A ∨B iff a �C A or a �C B

(iv) a �C A→ B iff for all b, c ∈ KC , (RCabc and b �C A)⇒ c �C B

(v) a �C ¬A iff a∗ 2C A

Proof: (i) Immediate by Lemma 6.10. (ii) By A2 and the fact that a is
closed under Adj. (iii) By A4 and primeness of a. (iv) (⇒) Immediate
by Definition 6.3; (⇐) By contraposition, we suppose a 2C A → B and

5The label C on ∗C will be omitted throughout the proofs of the following lemmas.
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show that there are b, c ∈ KC such that RCabc, A ∈ b and B /∈ c. We
need Lemmas 6.6, 6.7 and 6.8. This kind of proof is already available in the
literature (cf. [9, Lemma 5.13]). Finally, (v) is immediate by Definition 6.4.

7. Completeness of b4

In this section, we shall prove strong completeness of b4 w.r.t. the semantics
defined in Section 4. We start by defining the useful concept of “set of
consequences of a set of wffs”.

Definition 7.1 (The set of consequences of Γ in b4). The set of conse-
quences in b4 of a set of wffs Γ (in symbols CnΓ [b4]) is defined as follows:
CnΓ [b4] = {A | Γ `b4 A}.

We note the following remark.

Remark 7.2 (The set of consequences of Γ in b4 is a fully regular theory). It
is obvious that for any Γ , CnΓ [b4] contains all theorems of b4 and is closed
under the rules of b4. Consequently, it is also closed under b4-entailment.

Proposition 7.3 (The building of T ). Let Γ be a set of wffs and A a wff
such that Γ 0b4 A. Then, there is a fully regular, a-consistent and prime
b4-theory T such that Γ ⊆ T and A /∈ T .

Proof: Suppose Γ 0b4 A (i.e., A /∈ CnΓ [b4] given Remark 7.2). Then,
CnΓ [b4] 0d

b4 {A} by Definition 5.6; otherwise (B1∧ ...∧Bn) `b4 A for some
B1, ..., Bn ∈ Γ and hence A would be in CnΓ [b4] after all. Next, there is
some (fully regular and a-consistent) prime b4-theory T such that Γ ⊆ T
(since Γ ⊆ CnΓ [b4]) and A /∈ T , by application of Lemmas 5.7 and 5.9.

Definition 7.4 (The canonical b4-model). The canonical b4-model is the
structure < T , KC , RC , ∗C , �C>, where KC , RC , ∗C , �C are defined
upon the b4-theory T as indicated in Definitions 6.2–6.4.

Once proved that the canonical b4-model is a b4-model, Proposition 7.3
is used to show Γ 2C A in the canonical b4-model, this is, for any set of
wffs Γ and wff A such that Γ 0b4 A, it will be shown that A is not a
semantic b4-consequence of Γ (cf. Definition 4.5).
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In the following paragraphs, it will be proved that the canonical b4-
model is indeed a b4-model. Firstly, we prove that b4 postulates hold
canonically by using a correspondent axiom scheme or rule from Defini-
tion 3.1. In this sense, we shall talk about corresponding postulate (c.p.)
to a rule or axiom scheme.

Lemma 7.5 (b4 postulates hold canonically). The semantical postulates
(p1–p13) hold in the canonical b4-model.

Proof: Lemma 6.10 is used to simplify these proofs. p1, p2, p5, p6 and
p7 are proved as in [11, Chapter 4] and p9 and p11 as in [9]. Also, in [11,
p. 339], the c.p. to the (disjunctive) affixing rule is proved. The c.p. to the
(disjunctive) sufixing and preffixing rules (i.e., p3 and p4) can be proved
similarly. Let us now prove p8, p10, p12 and p13.

p8 (RT ∗T T ∗) holds in the canonical b4-model: Suppose that there
are wffs A, B such that (1) A→ B ∈ T ∗ (i.e., ¬(A→ B) /∈ T ) and A ∈ T .
Then, given that T is closed under CTE, we get (2) A∧¬B /∈ T . Therefore,
(3) A /∈ T or ¬B /∈ T since T is also closed under Adj. Finally, we get
¬B /∈ T (i.e., B ∈ T ∗), given 1 and 3.

p10 Rabc ⇒ (a ≤ c or a∗ ≤ c) holds in the canonical b4-model:
Suppose that there are a, b, c ∈ KC and wffs A, B such that (1) Rabc but
(2) A ∈ a, A /∈ c, B ∈ a∗ (i.e., ¬B /∈ a) and B /∈ c. Now, let C be a wff
such that (3) C ∈ b (b was non-empty). On the other hand, we have (4)
A ∨ B ∈ a by 2, A4 (A → (A ∨ B)) and the fact that a is closed under
T -ent. Similarly, by A10 in the form (A∨B)→ �¬(A∨B)∨ [C → (A∨B)],
we get (5) ¬(A ∨ B) ∨ [C → (A ∨ B)] ∈ a. Therefore, (6) ¬(A ∨ B) ∈ a
or C → (A ∨ B) ∈ a (a is prime). If we suppose C → (A ∨ B) ∈ a,
we get A ∨ B ∈ c –given 1 and 3–, contradicting 2 (A /∈ c and B /∈ c).
Therefore, let us take ¬(A ∨ B) ∈ a. Then, (7) ¬A ∧ ¬B ∈ a by T7
(¬(A ∨ B) → (¬A ∧ ¬B)) and (8) ¬B ∈ a by A2 ((¬A ∧ ¬B) → ¬B).
However, 8 contradicts 2 (¬B /∈ a).

p12 (RTab&R2Tcde) ⇒ (a ≤ c∗ or d ≤ c∗ or c ≤ b or c ≤ e) holds
in the canonical b4-model: Suppose that there are a, b, c, d, e ∈ KC

and wffs A, B, C, D such that (1) RT ab and R2T cde but (2) A ∈ a,
A /∈ c∗(i.e., ¬A ∈ c), B ∈ d, B /∈ c∗ (i.e., ¬B ∈ c), C ∈ c, C /∈ b, D ∈ c
and D /∈ e. By A12 in the form [(A ∨ B) → (C ∧D)]∨{[¬(A ∨ B) ∧ (C ∧
D)]→[(A ∨ B) → (C ∧D)]} and the fact that T is regular and prime, (3)
(A∨B)→ (C∧D) ∈ T or [¬(A∨B)∧ (C∧D)]→[(A∨B)→ (C∧D)] ∈ T .
Let us suppose (4) (A ∨ B)→ (C ∧D) ∈ T . Now, we have (5) A ∨ B ∈ a
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by A4 (A → (A ∨ B)) and 2 (A ∈ a). Thus, (6) C ∧ D ∈ b, given 4, 5
and RT ab in 1. However, 2 (C /∈ b) contradicts 6. Let us now suppose (7)
[¬(A∨B)∧(C∧D)]→ [(A∨B)→ (C∧D)] ∈ T . We have (8) ¬A∧¬B ∈ c
by 2 and therefore, (9) ¬(A∨B) ∈ c given T7 (cf. Proposition 3.3). Thus,
(10) ¬(A∨B)∧ (C ∧D) ∈ c by 2. On the other hand, by d2 and 1, there is
(11) x ∈ KC such that RT cx and Rxde. Then, (12) (A∨B)→ (C∧D) ∈ x
by 7 and 10, since RT cx (by 11). Finally, (13) C ∧D ∈ e since we have 12,
Rxde (in 11) and A ∨B ∈ d (by 2). However, 13 contradicts D /∈ e in 2.

p13 (Rabc&Rcde) ⇒ (a ≤ c or b ≤ c or c∗ ≤ c or d ≤ c or b ≤ e)
holds in the canonical b4-model: Suppose that there are a, b, c, d, e ∈ KC

and wffs A, B, C, D, E such that (1) Rabc & Rcde but (2) A ∈ a &
A /∈ c; B ∈ b & B /∈ c; C ∈ c∗ & C /∈ c; D ∈ d & D /∈ c; E ∈ b
& E /∈ e. Then, we have (3) B ∧ E ∈ b and also (4) (A ∨ D) ∨ C ∈ a
by A4 (in the form A → [A ∨ (D ∨ C)]) and T3. Now, by A13 in the
form [(A ∨ D) ∨ C] → �(B ∧ E) →{[[((A ∨ D) ∨ C) ∨ (B ∧ E)]∨¬[((A ∨
D) ∨ C) ∨ (B ∧ E)]]∨[((A ∨ D) ∨ C) → (B ∧ E)]} and 4, we obtain (5)
(B ∧E)→{[[((A∨D)∨C)∨ (B ∧E)]∨¬[((A∨D)∨C)∨ (B ∧E)]]∨[((A∨
D) ∨ C)→ (B ∧ E)]}∈ a. Then, (6) {[((A ∨D) ∨ C) ∨ (B ∧ E)] ∨ ¬[((A ∨
D)∨C)∨ (B ∧E)]}∨[((A∨D)∨C)→ (B ∧E)] ∈ c, given Rabc in 1, 3 and
5. This is, (7) {[((A∨D)∨C)∨ (B ∧E)]∨¬[((A∨D)∨C)∨ (B ∧E)]}∈ c
or [((A ∨ D) ∨ C) → (B ∧ E)] ∈ c since c is prime. Let us suppose (8)
[((A∨D)∨C)→ (B∧E)] ∈ c. Similarly as in 4, we have (9) (A∨D)∨C ∈ d
by A4 and T3 given 2 (D ∈ d). Then, (10) B ∧ E ∈ e by 8 and 9 given
Rcde in 1. However, 10 contradicts 2 (E /∈ e). Therefore, we suppose (11)
[((A∨D)∨C)∨(B∧E)]∨¬[((A∨D)∨C)∨(B∧E)] ∈ c. Thus, by primeness
of c, [((A∨D)∨C)∨(B∧E)] ∈ c or ¬[((A∨D)∨C)∨(B∧E)] ∈ c. Suppose
(12) [((A∨D)∨C)∨ (B∧E)] ∈ c, i.e., (13) (A∨D)∨C ∈ c or (B∧E) ∈ c,
given the fact that c is prime. Now, we have (14) (A ∨ D) ∨ C /∈ c by 2.
Therefore, (15) B ∧ E ∈ c (i.e., B ∈ c and E ∈ c). However, 2 (B /∈ c)
contradicts 15. Finally, suppose (16) ¬[((A∨D)∨C)∨ (B∧E)] ∈ c. Then,
by T7 and the fact that c is closed by Adj., (17) ¬((A ∨ D) ∨ C) ∈ c &
¬(B ∧ E) ∈ c. Now, again by T7, (18) ¬(A ∨D) ∈ c & ¬C ∈ c. But this
contradicts 2 (¬C /∈ c).

Proposition 7.6 (The canonical b4-model is a b4-model). The canonical
b4-model is indeed a b4-model.
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Proof: Given Definition 7.4 and Proposition 7.3, the proof follows by the
fact that ∗C is an operation on KC (Lemma 6.13), the adequacy of the
canonical clauses (Lemma 6.14) and the fact that postulates hold canoni-
cally (Lemma 7.5).

Theorem 7.7 (Strong completeness of b4). For any set of wffs Γ and wff
A: if Γ �b4 A, then Γ `b4 A.

Proof: For some set of wffs Γ and wff A, suppose Γ 0b4 A. By Proposition
7.3, there is a fully regular, a-consistent and prime b4-theory T such that
Γ ⊆ T and A /∈ T . Then, following Definition 7.4, the canonical b4-model
is defined upon T and is indeed a b4-model, given Proposition 7.6. Then,
Γ 2C A since T �C Γ but T 2C A. Therefore, Γ 2b4 A by Definition 4.5.

8. Routley-Meyer ternary relational semantics for
the Lti-logics

In the present section, we endow the Lti-logics with a Routley-Meyer
ternary relational semantics. Given that a Routley-Meyer semantics for
an Eb4-logic L is provided when L-models together with the notion of
L-validity are defined (cf. Definition 4.6), the idea is to give a semanti-
cal postulate corresponding to each one of the axiom schemes A14–A30 in
Definition 3.5. Then soundness and completeness theorems for extensions
of the logic b4 with any of these schemes are immediate.

Next, I display the list of corresponding postulates (c.p.) to the axiom
schemes of the Lti-logics. In general, a postulate pj (14 ≤ j ≤ 30) will be
referred to as corresponding to an axiom scheme Aj iff (1) Aj is true in
any Eb4-model M which contains pj and (2) pj is provable in any canonical
Eb4-model where Aj is true.

p14 Rabc ⇒ (Rc∗ab∗ or Rc∗ba∗ or Rc∗aa∗ or Rc∗bb∗) is the c.p. to
A14 (A ∧ ¬B)→ [(A ∧ ¬B)→ ¬(A→ B)]

p15 (RTab & Ra∗cd)⇒ (c ≤ T or c ≤ b) is the c.p. to A15 A∨ [¬(A→
B)→ A]

p16 (RTab & Ra∗cd) ⇒ (T ∗ ≤ d or b∗ ≤ d) is the c.p. to A16 ¬B ∨
[¬(A→ B)→ ¬B]
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p17 Raaa is the c.p to A17 [A ∧ (A→ B)]→ B

p18 Raa∗a∗ is the c.p. to A18 [(A→ B) ∧ ¬B]→ ¬A

p19 Ra∗aa is the c.p. to A19 A→ [B ∨ ¬(A→ B)]

p20 Ra∗a∗a∗ is the c.p. to A20 ¬B → [¬A ∨ ¬(A→ B)]

p21 Ra∗bc⇒ (b ≤ a or b ≤ a∗) is the c.p. to A21 [¬(A→ B)∧¬A]→ A

p22 Ra∗bc ⇒ (a∗ ≤ c or b ≤ a) is the c.p. to A22 ¬(A → B) →
(A ∨ ¬B)

p23 Ra∗bc⇒ (a ≤ c or a∗ ≤ c) is the c.p. to A23 [¬(A→ B)∧B]→ ¬B

p24 (Rabc & Rb∗de) ⇒ (a ≤ e or b ≤ e or d ≤ c) is the c.p. to A24
B → {[B ∧ ¬(A→ B)]→ A}

p25 RTab⇒ RT ∗ab is the c.p. to A25 (A→ B) ∨ ¬(A→ B)

p26 RT ∗T ∗T is the c.p. to A26 (¬A ∨B) ∨ ¬(A→ B)

p27 Raaa∗ or Ra∗aa∗ is the c.p. to A27 [(A → B) ∧ (A ∧ ¬B)] →
¬(A→ B)

p28 RTab⇒ (RT ∗aa∗ or Rb∗aa∗) is the c.p. to A28 ¬(A→ B)∨ [(A∧
¬B)→ ¬(A→ B)]

p29 (RTab & Ra∗cd)⇒ (T ∗ ≤ d & b∗ ≤ d & c ≤ a∗) is the c.p. to A29
{[¬(A→ B) ∧ ¬A]→ ¬B} ∨ ¬B

p30 (RTab & Ra∗cd) ⇒ (c ≤ T or c ≤ b or a ≤ d) is the c.p. to A30
{[¬(A→ B) ∧B]→ A} ∨A

Next, the notion of an Lti-model (1 ≤ i ≤ 8) is defined.
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Definition 8.1 (Lti-models). An Lti-model (1 ≤ i ≤ 8) M is a structure
< T , K, R, ∗, �> where K, T , R, ∗ and � are defined according to the
Definition 4.1 and R is also subject to an additional set of postulates for
each Lti-logic:

Lt1-models: p14–p16;

Lt2-models: p17–p23;

Lt3-models: p14, p15, p18, p19, p22–p24;

Lt4-models: p16, p17, p20–p22;

Lt5-models: p17–p21, p23, p25-p27;

Lt6-models: p17, p20, p21, p23, p26, p28, p29;

Lt7-models: p14, p18, p19, p21, p23, p26, p30;

Lt8-models: p14, p21, p23, p26, p29, p30.

The definitions of truth, validity and semantic consequence in the Lti-
models are defined as in Definitions 4.3–4.5. Now, given that Lemmas and
Propositions were already proved for Eb4-logics and that the Lti-logics are
indeed Eb4-logics, it suffices to prove that axioms A14–A30 are valid in
Eb4-models where p14–p30 hold.

Proposition 8.2 (Validity of A14–A30). Let M be a class of Eb4-models
and M ∈M. Then, for any j (14 ≤ j ≤ 30), Aj is true in M iff pj holds in
M.

Proof: We proceed as in Proposition 4.9. A few instances will suffice as
an illustration. In particular, we display the proofs for A14, A16, A20, A24
and A29. Proofs for A17 and A18 are already in the main literature [11,
Chapter 4] and those for A25 and A27 can be found in [9, p. 13]. The rest
of the axiom schemes of the Lti-logics can be proved in a similar way.

(A14) (A ∧ ¬B)→ [(A ∧ ¬B)→ ¬(A→ B)] is valid in any Eb4-model
in which p14 holds: Suppose there are a ∈ K in some Lti-model M and
wffs A, B such that a � A ∧ ¬B (i.e., (1) a � A and (2) a∗ 2 B) and
(3) a 2 (A ∧ ¬B) → ¬(A → B). Then, we have for some b, c ∈ K, (4)
Rabc & (5) b � A ∧ ¬B (i.e., b � A and b∗ 2 B) & (6) c 2 ¬(A → B)
(i.e., c∗ � A → B) by clause (iv) in Definition 4.1. Given 4 and p14
(Rabc ⇒ (Rc∗ab∗ or Rc∗ba∗ or Rc∗aa∗ or Rc∗bb∗)), we get (7) Rc∗ab∗or
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Rc∗ba∗ or Rc∗aa∗ or Rc∗bb∗. Now, whatever the case may be, we get a
contradiction by applying clause (iv). If we suppose either (8) Rc∗ab∗ or
(9) Rc∗bb∗, then given 6 and, respectively, 1 and 5 we shall get (10) b∗ � B,
contradicting 5. Similarly, if we suppose either (11) Rc∗ba∗ or (12) Rc∗aa∗,
we shall get (13) a∗ � B again by 6 and, respectively, 5 and 1. However,
2 and 13 are contradictory.

(A16) ¬B ∨ [¬(A→ B)→ ¬B] is valid in any Eb4-model in which p16
holds: Suppose that in some Lti-model M there are wffs A, B such that
(1) T 2 ¬B ∨ [¬(A → B) → ¬B], this is, (2) T 2 ¬B (i.e., T ∗ � B) and
(3) T 2 ¬(A→ B)→ ¬B given clause (iii). Now, by clause (iv), there are
some a, b ∈ K such that (4) RTab, (5) a � ¬(A → B) (i.e., a∗ 2 A → B)
and (6) b 2 ¬B (i.e., b∗ � B). Again by clause (iv) and 5, there are
c, d ∈ K such that (7) Ra∗cd, (8) c � A and (9) d 2 B. Then, given 4, 7
and p16 ((RTab & Ra∗cd) ⇒ (T ∗ ≤ d or b∗ ≤ d)), we get (10) T ∗ ≤ d or
b∗ ≤ d. Now, given 9, a contradiction follows from any case shown in 10
by applying the Hereditary Condition (Lemma 4.7) to 2 or 6, respectively.

(A20) ¬B → [¬A ∨ ¬(A → B)] is valid in any Lti-model in which p20
holds: Suppose there are a ∈ K in some Lti-model M and wffs A, B such
that (1) a � ¬B (i.e., a∗ 2 B) and (2) a 2 ¬A ∨ ¬(A → B), this is,
(3) a 2 ¬A (i.e., a∗ � A) and (4) a 2 ¬(A→ B) (i.e., a∗ � A→ B). Now,
by p20 (Ra∗a∗a∗), 3 and 4, we get (5) a∗ � B, which contradicts 1.

(A24) B → {[B ∧¬(A→ B)]→ A} is valid in any Eb4-model in which
p24 holds: Suppose there are a ∈ K in some Lti-model M and wffs A, B
such that (1) a � B but (2) a 2 [B ∧ ¬(A → B)] → A. Then, there are
some b, c ∈ K such that (3) Rabc, (4) b � B ∧ ¬(A → B) (i.e., b � B
and b∗ 2 A → B) and (5) c 2 A. Again, there are some d, e ∈ K such
that (6) Rb∗de, (7) d � A and (8) e 2 B. Next, by 3, 6 and p24 ((Rabc &
Rb∗de)⇒ (a ≤ e or b ≤ e or d ≤ c)), we get (a ≤ e or b ≤ e or d ≤ c). As
in the previous proofs, whatever the case may be, a contradiction follows
by the Hereditary Condition given 1, 4, 5, 7 and 8.

(A29) {[¬(A → B) ∧ ¬A] → ¬B} ∨ ¬B is valid in any Eb4-model in
which p29 holds: Suppose that in some Lti-model M there are wffs A, B
such that (1) T 2 ¬B ∨ {[¬(A → B) ∧ ¬A] → ¬B}, this is, (2) T 2 ¬B
(i.e., T ∗ � B) and (3) T 2 [¬(A→ B) ∧ ¬A]→ ¬B. Then, by clause (iv),
(4) RTab & (5) a � ¬(A → B) ∧ ¬A and (6) b 2 ¬B (i.e., b∗ � B) for a,
b ∈ K. Now, given 5, we have (7) a � ¬(A → B) (i.e., a∗ 2 A → B) and
(8) a � ¬A (i.e., a∗ 2 A) by clause (ii). Again by applying clause (iv) to
7, there are c, d ∈ K such that (9) Ra∗cd, (10) c � A and (11) d 2 B.
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Next, we have (12) (T ∗ ≤ d or b∗ ≤ d or c ≤ a∗) given p29 ((RTab &
Ra∗cd) ⇒ (T ∗ ≤ d or b∗ ≤ d or c ≤ a∗)), 4 and 9. Let us suppose T ∗ ≤ d
or b∗ ≤ d, then we have (13) d � B –contradicting 11– by applying the
Hereditary Condition to either 2 or 6, respectively. Finally, let us suppose
c ≤ a∗, then we get (14) a∗ � A similarly, given 10. However, 14 contradicts
8.

Next, we prove the adequacy of the semantical postulates.

Proposition 8.3 (Proof of p14–p30 in canonical Eb4-models). Let L be
an Eb4-logic and for any j (1 ≤ j ≤ 30) let the canonical L∪{Aj}-model
M be a canonical Eb4-model. Then, pj is provable in M.

Proof: The proof proceeds as that of Lemma 7.5. Proofs for p17 and p18
on the one hand and p25 and p27 on the other hand can be found in [11,
Chapter 4] and [9, p. 22], respectively. We prove Proposition 8.3 for the
postulates used above in Proposition 8.2. The rest of the postulates can
be proved similarly.

p14 Rabc ⇒ (Rc∗ab∗ or Rc∗ba∗ or Rc∗aa∗ or Rc∗bb∗) holds in any
canonical Eb4-model where A14 is valid. In order to prove p14, A14 in
the following form will be used: [(A ∧ E) ∨ (C ∧ G)] ∧ ¬[(D ∨ F ) ∧ (B ∨
H)] → �{[(A ∧ E) ∨ (C ∧ G)] ∧ ¬[(D ∨ F ) ∧ (B ∨ H)]} →¬{[(A ∧ E) ∨
(C ∧ G)] → [(D ∨ F ) ∧ (B ∨ H)]}. Suppose there are a, b, c ∈ KC and
wffs A, B, C, D, E, F , G, H such that (1) Rabc but (2) A → B ∈ c∗,
A ∈ a, B /∈ b∗, (3) C → D ∈ c∗, C ∈ b, D /∈ a∗, (4) E → F ∈ c∗,
E ∈ a, F /∈ a∗ and (5) G → H ∈ c∗, G ∈ b, H /∈ b∗. Given 2 and 4,
we have A ∧ E ∈ a and by A4, (6) (A ∧ E) ∨ (C ∧ G) ∈ a. Similarly,
given 2 and 3, we have D ∨ F /∈ a∗ (i.e., ¬(D ∨ F ) ∈ a) and by A4, (7)
¬(D∨F )∨¬(B∨H) ∈ a, this is, (8) ¬[(D∨F )∧ (B∨H)] ∈ a by applying
T6. Next, we have (9) [(A ∧ E) ∨ (C ∧G)] ∧ ¬[(D ∨ F ) ∧ (B ∨H)] ∈ a by
6 and 8. Now, by applying A14 in the aforementioned form, we get (10)
{[(A ∧E) ∨ (C ∧G)] ∧ ¬[(D ∨ F ) ∧ (B ∨H)]} →¬{[(A ∧E) ∨ (C ∧G)]→
[(D ∨ F ) ∧ (B ∨ H)]} ∈ a. As before, given 2 and 4, we have C ∧ G ∈ b
and by A4, (11) (A ∧ E) ∨ (C ∧ G) ∈ b. Similarly, given 1 and 4, we get
B ∨H /∈ b∗ (i.e., ¬(B ∨H) ∈ b) and by A4, (12) ¬(D ∨F )∨¬(B ∨H) ∈ b.
Whence, (13) ¬[(D∨F )∧ (B∨H)] ∈ b by T6. Then, we get (14) [(A∧E)∨
(C∧G)]∧¬[(D∨F )∧(B∨H)] ∈ b given 11 and 13. Now we have 1, 10 and
14, therefore (15) ¬{[(A ∧E) ∨ (C ∧G)]→ [(D ∨ F ) ∧ (B ∨H)]} ∈ c (i.e.,
[(A∧E)∨(C∧G)]→ [(D∨F )∧(B∨H)] /∈ c∗). In the following lines, we will
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get to [(A∧E)∨(C∧G)]→ [(D∨F )∧(B∨H)] ∈ c∗, thus, a contradiction. By
2 (A→ B ∈ c∗ and E → F ∈ c∗) and T4, we get (16) A→ (B∨H) ∈ c∗ and
(17) E → (D ∨F ) ∈ c∗. Whence (18) [A→ (B ∨H)]∧ [E → (D ∨F )] ∈ c∗
and by T2, (19) (A ∧ E) → [(B ∨ H) ∧ (D ∨ F )] ∈ c∗. Now, proceeding
again as in 16–19, we get (20) (C ∧ G) → [(B ∨H) ∧ (D ∨ F )] ∈ c∗ given
2 (C → D ∈ c∗ and G → H ∈ c∗). Finally, given 19 and 20, we get (21)
{(A ∧ E)→ [(B ∨H) ∧ (D ∨ F )]}∧{(C ∧G)→ [(B ∨H) ∧ (D ∨ F )]} ∈ c∗
and by applying T5, (22) (A ∧ E) ∨ (C ∧G)]→ [(D ∨ F ) ∧ (B ∨H)] ∈ c∗,
as we needed.

p16 (RT ab & Ra∗cd) ⇒ (T ∗ ≤ d or b∗ ≤ d) holds in any canonical
Eb4-model where A16 is valid. Suppose there are a, b, c ∈ KC and wffs
A, B such that (1) RTab and Ra∗cd but (2) A ∈ T ∗, A /∈ d, B ∈ b∗ and
B /∈ d. Then, we have (3) ¬A /∈ T , whence (4) ¬(A ∨ B) /∈ T by A2 and
T7. Next, we have for an arbitrary wff C, (5) ¬(A∨B)∨[¬[C → (A∨B)]→
¬(A ∨ B)] ∈ T by A16. Therefore, (6) ¬[C → (A ∨ B)] → ¬(A ∨ B) ∈ T
given 4 and the fact that T is prime. Now, we get (7) ¬(A ∨ B) /∈ b by 2
(B ∈ b∗, i.e., ¬B /∈ b), A2 and T7. Lastly, given 1, 6 and 7, we have (8)
¬[C → (A ∨ B)] /∈ a (i.e., C → (A ∨ B) ∈ a∗) and on the other hand (9)
A ∨B /∈ d by 2. Thus, C /∈ c (by 1, 9 and 8), contradicting the fact that c
is not empty.

p20 Ra∗a∗a∗ holds in any canonical Eb4-model where A20 is valid.
Suppose that there are a ∈ KC and wffs A and B such that (1) A →
B ∈ a∗ (¬(A → B) /∈ a) and (2) A ∈ a∗ (i.e., ¬A /∈ a), whence (3)
¬A ∨ ¬(A→ B) /∈ a since a is prime. We have to prove B ∈ a∗. Then, by
3 and A20 (¬B → [¬A∨¬(A→ B)]), we have (4) ¬B /∈ a, this is, B ∈ a∗.

p24 (Rabc& Rb∗de)⇒ (a ≤ e or b ≤ e or d ≤ c) holds in any canonical
Eb4-model where A24 is valid. Suppose there are a, b, c, d, e ∈ KC and
wffs A, B, C such that (1) Rabc and Rb∗de but (2) A ∈ a, A /∈ e, B ∈ b,
B /∈ e, C ∈ d and C /∈ c. Then, (3) A ∨ B ∈ a by 2 and A4. Next, using
A24 in the form (A ∨ B)→ �[(A ∨ B) ∧ ¬[C → (A ∨ B)]]→ C, we get (4)
[(A∨B)∧¬[C → (A∨B)]]→ C ∈ a. Given 1, 2 (C /∈ c) and 4, we get (5)
(A∨B)∧¬[C → (A∨B)] /∈ b. Thus, (6) A∨B /∈ b or ¬[C → (A∨B)] /∈ b.
However, given 2 (B ∈ b) and A4, we clearly have (7) ¬[C → (A ∨B)] /∈ b
(i.e., C → (A ∨ B) ∈ b∗). Finally, (8) A ∨ B ∈ e (by 1, 2 (C ∈ d) and 7),
contradicting 2 (A /∈ e and B /∈ e).

p29 (RT ab & Ra∗cd) ⇒ (T ∗ ≤ d or b∗ ≤ d or c ≤ a∗) holds in any
canonical Eb4-model where A29 is valid. Suppose there are a, b, c, d ∈ KC

and wffs A, B, C such that (1) RT ab and Ra∗cd but (2) A ∈ T ∗, A /∈ d,
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B ∈ b∗, B /∈ d, C ∈ c and C /∈ a∗. Given 2 and A4, we have (3) A∨B ∈ T ∗
(i.e., ¬(A ∨B) /∈ T ). Then, by A29 in the form ¬(A ∨B) ∨ {[¬[C → (A ∨
B)]∧¬C]→ ¬(A∨B)}, we get (4) [¬[C → (A∨B)]∧¬C]→ ¬(A∨B) ∈ T
since T is regular and prime. As in 3, we have now (5) A ∨ B ∈ b∗ (i.e.,
¬(A ∨ B) /∈ b) by A4 and 2. Next, we get (6) ¬[C → (A ∨ B)] ∧ ¬C /∈ a
given 1, 4 and 5. Thus, (7) ¬[C → (A ∨ B)] /∈ a or ¬C /∈ a (i.e., C ∈ a∗).
Therefore, (8) ¬[C → (A∨B)] /∈ a (i.e., C → (A∨B) ∈ a∗) given 2 (C /∈ a∗).
Finally, we get (9) A ∨B ∈ d (by 1, 2 and 8), contradicting 2.

9. Conclusion

The variants of BN4 and E4 which contain Routley and Meyer’s logic B
were developed in [6] as possible alternatives to the systems BN4 and E4.
The Lti-logics are clearly related to the family of relevant logics since they
enjoy the quasi relevance property characteristic of logics such as R-Mingle6.
Given the position of Lti-logics among members in the family of relevant
logics, the ternary relational semantics developed for them in the present
paper could be seen as an essential tool to compare them to many other
different logics of the said family. This work is also meant to be a detail-
ing of how this kind of semantics works when it comes to 4-valued logics
and an additional support to what is shown in [11, Chapter 4]: Routley-
Meyer semantics is a malleable and powerful instrument for interpreting
non-classical logics.

Acknowledgements. Work supported by the Spanish Ministry of Edu-
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Abstract

In this paper we analyse logic of false belief in the intuitionistic setting. This

logic, studied in its classical version by Steinsvold, Fan, Gilbert and Venturi,

describes the following situation: a formula ϕ is not satisfied in a given world,

but we still believe in it (or we think that it should be accepted). Another

interpretations are also possible: e.g. that we do not accept ϕ but it is imposed

on us by a kind of council or advisory board. From the mathematical point of

view, the idea is expressed by an adequate form of modal operator W which is

interpreted in relational frames with neighborhoods. We discuss monotonicity of

forcing, soundness, completeness and several other issues. Finally, we mention

the fact that it is possible to investigate intuitionistic logics of unknown truths.

Keywords: Intuitionistic modal logic, non-normal modal logic, neighborhood se-

mantics.
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1. Preliminaries

Logic of false belief was studied e.g. by Steinsvold [3], Gilbert and Venturi
[2] or Fan [1]. Those authors obtained several interesting results concerning
completeness and expressivity. Their propositional systems were based on
classical modal logics (i.e. with the law of the excluded middle). As for the
semantics, they used relational (Kripke) and neighborhood frames.
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In general, the idea is to describe the following situation: ϕ is false but
it is still believed (see [2]). This concept is expressed by the very definition
of forcing: if w is a possible world then w 
 Wϕ⇔ w 1 ϕ and V (ϕ) ∈ Nw.
The fact that ϕ is erroneously taken for true, is modelled by the second
part of this definition: we see that V (ϕ) is among our neighborhoods.

Other interpretations are also possible. For example, we deny ϕ (in a
given world) but it is imposed on us by a kind of council or advisory board.
We are encouraged to accept ϕ, at least in a particular world, because
the set of all worlds accepting ϕ is one of our neighborhoods. This means
that V (ϕ) gathers worlds (and thus situations or circumstances) which are
similar to our present situation, hence maybe we should rethink our opinion
on ϕ. Also, we can identify possible worlds with different people, accepting
(or not) various formulas. Then w-neighborhoods can be considered as
(more or less) credible groups of advisors or lustrators.

We can assume that our worlds are pre-ordered and if w ≤ v, then v
accepts at least everything which was previously approved by w, i.e. lower
located worlds have certain influence on the upper worlds. In some sense,
we get a hierarchy of information and credibility. Now our model becomes
intuitionistic: we have persistence of truth (with respect to ≤). This ap-
proach will be studied in the present paper. We are interested mostly in
completeness and monotonicity of forcing. We show several intuitionistic
versions of classical false belief systems. We discuss restrictions which can
or have to be imposed on neighborhoods. We also point out some subtle
limitations and advantages of intuitionistic framework in the context of
minimal, maximal and intermediate canonical models. Finally, we make
some comments on the intuitionistic logic of unknown truths. Classical
systems of this kind are often examined together with logics of false belief.
We show some general ideas, difficulties and suppositions.

2. Logic of false belief

2.1. Alphabet and language

Our logic is propositional, without quantifiers. We introduce the alphabet
of our language below.
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Definition 2.1. iEW -alphabet consists of:

1. PV which is a fixed denumerable set of propositional variables
p, q, r, s, . . .

2. Common logical connectives and constants which are ∧, ∨, ⊥ and→.

3. The only derived connective which is ¬ (thus ¬ϕ is a shortcut for
ϕ→ ⊥).

4. One modal operator: W.

Well-formed formulas are built recursively in a standard style: if ϕ, ψ
are wff’s then also ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ and Wϕ. Note that ⇐,⇒ and ⇔
are used only on the level of meta-language (which is classical).

2.2. Structures and models

Our initial structure is a pre-ordered neighborhood frame (pn -frame) de-
fined as follows:

Definition 2.2. pn -frame is a triple F = 〈W,N ,≤〉 where ≤ is a partial
order on W and N is a function from W into P (P (W )).

This definition is very general and it does not provide any relationship
between ≤ and N . In particular, it will not allow us to speak about mono-
tonicity of forcing with respect to modal formulas. Thus, we shall introduce
a particular subclass of pn -frames.

Definition 2.3.
iEWpn -frame is a pn -frame with the following additional restriction:

[w ≤ v,X ∈ Nw, v /∈ X]⇒ X ∈ Nv. (2.1)

Having structures with appropriate features, we may introduce the no-
tion of model. The first one is general and can be considered as a pattern
for the further development of particular models.

Definition 2.4. A pn -model is a quadruple M = 〈W,N ,≤, V 〉 where
〈W,N ,≤〉 is a pn -frame and V is a function from PV into P (W ) such
that: if w ∈ V (q) and w ≤ v then v ∈ V (q).
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Definition 2.5. For every pn -model M = 〈W,N ,≤, V 〉, forcing of for-
mulas in a world w ∈W is defined inductively:

1. w 1 ⊥.

2. w 
 q ⇔ w ∈ V (q) for any q ∈ PV .

3. w 
 ϕ ∧ ψ (resp. ϕ ∨ ψ) ⇔ w 
 ϕ and (resp. or) w 
 ψ.

4. w 
 ϕ→ ψ ⇔ v 1 ϕ or v 
 ψ for each v ∈W such that w ≤ v.

We do not make difference between primal valuation and its extended
version, using only one symbol V . Let us use shortcut V (ϕ) for {z ∈ W ;
z 
 ϕ}.

Remark 2.6. Of course, the definition above allows us to say that w 
 ¬ϕ
⇔ for any v ≥ w, v 1 ϕ.

Again, we narrow down our initial definition:

Definition 2.7. An iEWpn -model is a pn -model with valuation and forc-
ing of non-modal formulas defined just like in Def. 2.5 but with an addi-
tional clause:

w 
 Wϕ ⇔ w 
 ¬ϕ and V (ϕ) ∈ Nw.

2.3. Monotonicity of forcing

Here we prove the following fact:

Theorem 2.8. In every iEWpn -model M = 〈W,N ,≤, V 〉 the following
holds: if w 
 γ and w ≤ v, then v 
 γ.

Proof: We shall discuss only the modal case. Assume that γ = Wϕ,
w, v ∈ W , w ≤ v and w 
 γ. Hence, w 
 ¬ϕ and V (ϕ) ∈ Nw. Of course
v 
 ¬ϕ. In particular, it means that v /∈ V (ϕ) ∈ Nw. Now Cond. 2.1
allows us to say that V (ϕ) ∈ Nv. Hence, w 
 Wϕ.

There is a difference between our definition of W and the one presented
by the authors in [1] or [2]. Their operator was defined as follows: w 
 Wϕ
⇔ w 1 ϕ and V (ϕ) ∈ Nw. However, their framework was classical, so there
was no difference between lack of acceptance and acceptance of negation.
In our intuitionistic setting, this approach would be problematic: if w 1 ϕ,
then it does not mean that ϕ is denied in each (or even in one) world v
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placed above w. In fact, there is no reason for it: this is the whole difference
between classical and intuitionistic negation, at least from the semantical
point of view. Hence, we had to modify the interpretation of W.

One could say that there is no need to use pre-orders. Maybe we should
express everything in the language of neighborhoods? In fact, we have
already established pure neighborhood semantics for intuitionistic modal
logics1. However, it was applicable for normal modal logics. It was based
on the assumption that minimal neighborhood (corresponding to the intu-
itionistic pre-order) is always contained in the maximal one (the idea was
that forcing of �ϕ in a given world w is equivalent with its forcing in any
world from

⋃
Nw). In case of weak modal logics it would not be relevant.

Of course, we may easily replace ≤ with neighborhoods but we think that
it would lead us to the concept of two neighborhood families (one ”intu-
itionistic” and one ”modal”). This can be made but it would be rather a
matter of notation and some aesthetic preferences.

Note that the concept of pre-ordered neighborhood model (for weak
intuitionistic modal logics) was used (for example) by Dalmonte et al. in
[4]. They used pre-order to speak about monotonicity of forcing—and
neighborhoods to speak about modalities (well, they used two families of
neighborhoods but one of them was connected with � and the other one
with ♦, none of them modelled pre-order which was, as we said, directly
introduced).

2.4. Axiomatization

In this subsection we present sound and complete axiomatization of our
basic system.

Definition 2.9. iEW is defined as the smallest set of formulas contain-
ing IPC ∪ {WE } and closed under the following set of inference rules:
{MP , REW }, where:

1. IPC is the set of all intuitionistic axiom schemes and their modal
instances (i.e. W-instances).

2. WE is the axiom scheme Wϕ→ ¬ϕ.

3. REW is the rule of extensionality : ϕ↔ ψ `Wϕ↔Wψ.

4. MP is the rule modus ponens: ϕ,ϕ→ ψ ` ψ.

1See https://arxiv.org/pdf/1707.03859.pdf

https://arxiv.org/pdf/1707.03859.pdf
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The notion of syntactic consequence (i.e. `) is rather standard: if Γ is
a set of iEW -formulas, then w ` ϕ iff ϕ can be obtained from the finite
subset of Γ by using axioms of iEW and both inference rules. Clearly, if
ϕ ∈ Γ, then Γ ` ϕ. The same concept of ` will be accepted in the further
systems.

The following theorem holds (and is simple to prove):

Theorem 2.10. iEW is sound with respect to the class of all iEWpn -
frames.

We can briefly prove completeness of our system with respect to the
appropriate class of frames. For brevity, we assume that the reader is aware
of the fact that each consistent iEW -theory can be extended to the prime
theory (this is just an intuitionistic version of the well-known Lindenbaum
lemma). Hence, we may go directly to the canonical model.

For brevity, we start from the general pattern that will be used many
times later.

Definition 2.11. iLWcan-pn -model is a triple 〈W,≤,N , V 〉 where L may
be any logic expressed in iEW -language, and:

1. W is the set of all prime theories of the logic L.

2. For every w, v ∈W we say that w ≤ v iff w ⊆ v.

3. N is a function from W into P (P (W )).

4. V : PV → P (W ) is a function defined as it follows: w ∈ V (q)⇔ q ∈
w.

Later we shall use the following shortcut: ϕ̂ = {z ∈ W ;ϕ ∈ z}. Now
we may deal with the first particular case:

Definition 2.12. iEWcan-pn -model is an iLWcan-pn -model where L =
iEW and for every w ∈W and for each formula ϕ:
Nw = {ϕ̂;Wϕ ∈ w}.

We need the following lemma:

Lemma 2.13. iEWcan-pn -model is indeed an iEWpn -model.

Proof: In fact, we must check that the monotonicity holds. Let us assume
that w ⊆ v and v /∈ X ∈ Nw. Now X = ϕ̂ for certain ϕ such that Wϕ ∈ w.
However, w is contained in v, hence Wϕ ∈ v. Thus ϕ̂ ∈ Nv.
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Remark 2.14. Note that we did not use the fact that v /∈ X. Actually, it
was not important. For this reason, we may say that iEWcan-pn -model
satisfies even stronger restriction, namely:

[w ≤ v,X ∈ Nw]⇒ X ∈ Nv. (2.2)

Clearly, our completeness theorem will be true for this smaller class of
frames (models). However, we may be interested not only in narrowing
down these classes for which completeness result can be proved, but also
in broadening those which are sufficient for the monotonicity of forcing.

Our neighborhood function is well-defined. First, if we assume that W
is a collection of all prime theories and ϕ̂ = ψ̂, then we can easily prove
that ` ϕ↔ ψ (using only non-modal tools). Second, assume that ϕ̂ ∈ Nw

and ϕ̂ = ψ̂. If ϕ̂ ∈ Nw, then Wϕ ∈ w. But ϕ ↔ ψ ∈ iEW (as we
know from the first point of these considerations). Now, by means of REW ,
Wϕ↔Wψ ∈ iEW ⊆ w. By MP , Wψ ∈ w.

Our expected theorem about properties of the canonical model is below:

Theorem 2.15. Let M = 〈W,≤,N , V 〉 be a iEWcan-pn -model. Then for
each γ and for each w ∈W the following holds: w 
 γ ⇔ γ ∈ w.

Proof: Boolean cases are simple (of course we should remember that
implication is intuitionistic). As for the modal case, let us assume that
γ = Wϕ.

(⇒)
Assume that w 
 γ. Hence, w 
 ¬ϕ and V (ϕ) ∈ Nw. By induc-

tion hypothesis ϕ̂ ∈ Nw. But then, by the very definition of canonical
neighborhood, Wϕ ∈ w.

(⇐)
Let Wϕ ∈ w. By means of WE and MPwe infer that ¬ϕ ∈ w. This is

Boolean case: we are able to prove in a standard manner2 that w 
 ¬ϕ.
From the definition of canonical neighborhood we have that ϕ̂ ∈ Nw. But
ϕ̂ = {z ∈ W ;ϕ ∈ z}. Now we use induction hypothesis (which is true in
any world of our canonical model) to say that {z ∈ W ;ϕ ∈ z} = {z ∈
W ; z 
 ϕ}. But the last set is precisely V (ϕ). Hence V (ϕ) ∈ Nw. We sum
up our results to say that w 
 Wϕ.

2We may use the fact that ¬ϕ can be written as ϕ→ ⊥.
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Now it is easy to formulate theorem about completeness:

Theorem 2.16. iEW is strongly complete with respect to the class of all
iEWpn -frames; and also with respect to those in which neighborhood func-
tion satisfies Cond. 2.2.

The proof of the theorem above is standard and based on the assumption
that w is a theory and w 0 ϕ. The idea is to show that there is a prime
theory v in a canonical model such that w ⊆ v and w 1 ϕ.

One could say that our logic is not a proper system of ”false belief”
because it is (in its modal aspect) much weaker than some systems studied
in [3], [2] and [1]. This will be discussed in the next subsection.

2.5. Stronger systems of false belief

It is not difficult to add one very natural axiom to our initial kit, namely
WC : (Wϕ ∧Wψ)→W(ϕ ∧ ψ). Here are necessary definitions:

Definition 2.17. iECW is defined as iEW ∪ {WC }.

Definition 2.18. iECWpn -model is defined as iEWpn -model with one
additional clause (the one of closure under binary intersections):

[X,Y ∈ Nw]⇒ X ∩ Y ∈ Nw. (2.3)

Canonical model for iECW (i.e. iECWcan-pn -model) is defined exactly
in the same way as iEWcan-pn -model (but its worlds are prime theories
of iECW ). Thus, we should only prove the following lemma:

Lemma 2.19. iECWcan-pn -model is indeed an iECWpn -model.

Proof: This is simple. Assume that X,Y ∈ Nw. Hence, X = ϕ̂ and
Y = ψ̂ (for certain ϕ and ψ such that Wϕ ∈ w and Wψ ∈ w). Then

X ∩ Y = ϕ̂ ∩ ψ̂ = ϕ̂ ∧ ψ. At the same time, we use axiom WC to say that
W(ϕ ∧ ψ) ∈ w. Thus X ∩ Y ∈ Nw.

Now we can say that:

Theorem 2.20. iECW is strongly complete with respect to the class of all
iECWpn -frames (and those iECWpn -frames which satisfy Cond. 2.2).
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Let us introduce another system: it will be an intuitionistic version of
MW studied in [1].3

Definition 2.21. iMW is defined as iEW ∪ {RMW }, where:

1. RMW is the rule ϕ→ ψ ` (Wϕ ∧ ¬ψ)→Wψ).

We introduce a new kind of models:

Definition 2.22. iMWpn -model is an iEWpn -model with one additional
clause (the one of supplementation):

[X ∈ Nw, X ⊆ Y ]⇒ Y ∈ Nw. (2.4)

Lemma 2.23. iMW is sound with respect to the class of all iMWpn -models.

Proof: We shall check only RMW . Assume that ϕ → ψ is globally true.
Suppose that there are M = 〈W,≤,N , V 〉 and w ∈ W such that w 1
(Wϕ ∧ ¬ψ) → Wψ). Hence, there is v ≥ w such that v 
 (Wϕ ∧ ¬ψ) but
v 1 Wψ. This means that: i) v 
 ¬ϕ, V (ϕ) ∈ Nv, v 
 ¬ψ; and ii) v 1 ¬ψ
or V (ψ) /∈ Nv. It is not possible that v 1 ¬ψ. On the other hand, if ϕ→ ψ
is globally true, then V (ϕ) ⊆ V (ψ). Supplementation allows us to say that
V (ψ) ∈ Nv. This is contradiction.

Let us go to the canonical model.

Definition 2.24. iMWcan-pn -model is an iLWcan-pn -model where L =
iMW and for every w ∈W and for each formula ϕ:
Nw = {X ⊆ W ; there is Y ∈ nw such that Y ⊆ X}, where nw =

{ϕ̂;Wϕ ∈ w}.

We must prove the following lemma:

Lemma 2.25. iMWcan-pn -model is indeed an iMWpn -model.

Proof: Let us think about monotonicity condition, namely Cond. 2.1.
Assume that w ⊆ v, v /∈ X and X ∈ Nw. Now there is Y ∈ nw such that
Y ⊆ X. However, as we already know, function n satisfies Cond. 2.2 which
is even stronger than Cond. 2.1. Hence Y ∈ nv and thus X ∈ Nv.

3Precisely speaking, Fan used axiom W(ϕ ∧ ψ) ∧ ¬ψ → Wψ. The rule REW can be
derived from this axiom and WE .
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As for the supplementation, it is obvious by the very definition of
iMWcan-pn -model. Assume that X ∈ Nw and X ⊆ Y . Then there is
S ∈ nw such that S ⊆ X ⊆ Y . We are ready.

Remark 2.26. Note that in fact iMWcan-pn -model satisfies stronger mono-
tonicity condition, i.e. Cond. 2.2. As in the case of iEWcan-pn -model,
we did not use the fact that v /∈ X.

The next theorem is crucial for completeness:

Theorem 2.27. Let M = 〈W,≤,N , V 〉 be an iMWcan-pn -model. Then
for each γ and for each w ∈W the following holds: w 
 γ ⇔ γ ∈ w.

Proof: We consider the modal case. Assume that γ = Wϕ.
(⇒)
Let w 
 Wϕ. Then w 
 ¬ϕ and V (ϕ) ∈ Nw. Hence ¬ϕ ∈ w and

ϕ̂ ∈ Nw. Also there is ψ̂ ∈ nw such that ψ̂ ⊆ ϕ̂ and Wψ ∈ w. Now
` ψ → ϕ, i.e. this formula is a theorem. Hence, (by means of RMW )
` (Wψ ∧ ¬ϕ) → Wϕ. Assume now that Wϕ /∈ w. There are two possible
reasons. First: Wψ /∈ w (contradiction). Second: ¬ϕ /∈ w. But ¬ϕ ∈ w, as
we already know.

(⇐)
Assume that Wϕ ∈ w. Now ¬ϕ ∈ w and then w 
 ¬ϕ. Then ϕ̂ ∈ Nw.

By induction hypothesis, V (ϕ) ∈ Nw. Thus, w 
 Wϕ.

Theorem 2.28. iMW is strongly complete with respect to the class of all
iMWpn -models (and those iMWpn -models which satisfy Cond. 2.2).

Let us sum up these results.

Definition 2.29. iKW is defined as iMW ∪ {WC }.

Definition 2.30. iKWpn -model is an iEWpn -model satisfying both sup-
plementation and closure under binary intersections.

Definition 2.31. iKWcan-pn -model is defined just like iMWcan-pn -mo-
del (but W consists of iKW prime theories).

Theorem 2.32. iKW is strongly complete with respect to the class of all
supplemented iMWpn -models closed under binary intersections (and those
of them which satisfy Cond. 2.2).
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Proof: It is enough to check closure under intersections in
iKWcan-pn -model. Let X,Y ∈ Nw. Hence, there are ϕ̂, ψ̂ ∈ nw such

that ϕ̂ ⊆ X and ψ̂ ⊆ Y . Clearly, ϕ̂ ∩ ψ̂ = ϕ̂ ∧ ψ ⊆ X ∩ Y . Also, by means
of WC , W(ϕ ∧ ψ) ∈ w and thus X ∩ Y ∈ nw. Finally, X ∩ Y ∈ Nw.

There are some issues which should be discussed. This will be done in
the next subsection.

2.6. About canonical models and monotonicity

In general, we borrowed some ideas from [1] and [2]. However, there are
some subtle differences. Let us resume the line of thought presented in [1]
with respect to the classical version of iMW , that is MW.

i) Fan assumed that the canonical model for MW is any model based
on maximal theories4 in which Wϕ ∨ ϕ ∈ w ⇔ ϕ̂ ∈ Nw [*]. Let us define
also another condition for the further needs: Wϕ ∈ w ⇔ ϕ̂ ∈ Nw [**].

Thus, he has defined the whole family of such models (from the minimal
to the maximal one; the former contains precisely proof-sets5, the latter
consists of proof-sets and all non-proof-sets).

Whereas we defined our nw (for any w ∈ W ) precisely just like in the
minimal model. We said that nw contains only those ϕ̂ for which Wϕ ∈ w.
Also, our line of reasoning was closer to [**] than to [*] but this is not
crucial here.

ii) Then Fan introduced the notion of supplemented canonical model
M+ (supplementation of canonical model M , in other words) in which
N+

w = {X ⊆ W ; there is Y ∈ Nw such that Y ⊆ X}. He showed that
M+ is indeed canonical: that it satisfies [*]. Due to some reasons, it would
be problematic for him to show that M+ satisfies [**]. It would require
typical monotonicity rule ϕ→ ψ `Wϕ→Wψ which is not sound.

Our way is different. We do not say that neighborhood function N in
our iMWcan-pn -model is ”canonical” in the same sense as n. It would be
irrelevant because the definition of nw leaves no place for any variants: as
we said, these are precisely proof-sets satisfying certain property. However,
maybe it would be sensible to follow Fan directly? Assume that nw is
defined by means of, let us say, clause [**]. It can be [*] also, it does not

4With valuation defined as usual.
5Such proof-sets ϕ̂ that Wϕ ∨ ϕ ∈ w, of course.
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matter: the real problem lies in the persistence of truth. Both [*] and [**]
are too vague to force monotonicity (with respect to n and in the sense
of Cond. 2.1 or Cond. 2.2). Assume that w ⊆ v and X ∈ nw. We may
also suppose that v /∈ X. If X = ϕ̂ for certain ϕ, then we can repeat our
actual reasoning. But if X 6= ϕ̂ for any ϕ, then we cannot say anything
special about this fact. Of course, if our model was maximal, then by the
very definition X would belong to nv. But if not, then we would be in a
quandary.

It seems that a similar solution to a similar dilemma has been obtained
in [4]. Recall that these authors prepared bi-neighborhood semantics for
weak intuitionistic modal logics and they also used minimal canonical mod-
els. In case of richer logics they used canonical models ”equipped with”
supplementation (just as our iMWcan-pn -model), not the supplementa-
tion of previously defined model.

Gilbert and Venturi found different solution than Fan did. They as-
sumed that neighborhoods in canonical model (for the classical version of
iKW ) are defined by means of [**]. Then they used negative supplementa-
tion. This is the following condition:

Y ∈ Nw, Y ⊆ X, w /∈ X ⇒ X ∈ Nw

In the negative supplementation of canonical model, for any w ∈ W
and for each ϕ we have:

N+
w = {X ⊆W ; there is Y ∈ Nw such that Y ⊆ X and w /∈ X}.

Again, this ”feature of negativity” (that is, the assumption that w /∈ X)
is helpful in proving that negative supplementation is indeed canonical.
From our point of view, one thing is interesting. Let us reproduce the
definition of iKWcan-pn -model but with the following definition of neigh-
borhoods:

Nw = {X ⊆W ; there is Y ∈ nw such that Y ⊆ X and w /∈ X},

where nw = {ϕ̂;Wϕ ∈ w}.
This is in accordance with our previous considerations. The whole

proof of completeness is almost identical. However, there is one noteworthy
moment. Let us prove that Cond. 2.1 of monotonicity is satisfied. Let
w ⊆ v, X ∈ Nw and v /∈ X. There is Y ∈ nw such that Y ⊆ X. However,
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n satisfies Cond. 2.2 (Lem. 2.13 and Rem. 2.14), so Y ∈ nv. Thus X ∈ Nv.
Note that in this case we prove only that N satisfies Cond. 2.1 and not
necessarily Cond. 2.2. Clearly, we used the assumption that v /∈ X.

3. Conclusion and future work

In this paper we have discussed several false belief systems based on the
intuitionistic core. In general, these results are rather natural. However, it
does not mean that all of them are straightforward. We have pointed out
some nuances and compared our results with those of other authors.

Logics of false belief are often investigated together with the logics of
unknown truths. It seems that this line of research is more complicated.
Classical versions of these systems were introduced by Steinsvold in [3].
Neighborhood semantics for them has been presented by Gilbert and Ven-
turi in [2]. Some new results on this matter have been later obtained by
Fan in [1].

The very idea of uknown truth is that a formula is true but not known.
This is expressed by the following interpretation of the modal operator •:

w 
 •ϕ⇔ w 
 ϕ and V (ϕ) /∈ Nw. (3.1)

We may also say that ϕ is accepted (by our agent) but it is not suggested
by his ”advisory board”.

As for the operator •, it can be used interchangeably with ◦ which is
defined as below:

w 
 ◦ϕ⇔ w 1 ϕ or V (ϕ) ∈ Nw ⇔ if w 
 ϕ then V (ϕ) ∈ Nw. (3.2)

In a classical setting we may identify ◦ with ¬ • ϕ and • with ¬ ◦ ϕ.
The authors mentioned above have already proved completeness of several
systems based on ◦ (or, equivalently, •).

Things become more complex when our logic is intuitionistic. There
are at least three problems: monotonicity of ◦6; interchangeability of •

6Assume that w 
 ◦ϕ. It can mean that w 1 ϕ. Just as in the case of our earlier
operator W, it is not reasonable to expect that ϕ will be rejected in each v ≥ w. It
would be difficult (if at all possible) to impose an appropriate condition on frames. One
possible solution is to replace rejection of ϕ with an acceptance of ¬ϕ. However, this
does not give us mutual duality of ◦ and •, at least not the same as in the classical
system.



70 Tomasz Witczak

and ◦7; soundness and completeness. We shall not discuss these issues
here: they deserve more detailed studies which we consider as our future
work.

Finally, we think that it would be natural to connect (both classical and
intuitionistic) logics of false belief (or / and unknown truths) with some
paraconsistent tools. Actually, we think about operators of indeterminacy
(N) and ambiguity (M), invented and investigated by Żabski in [5]. Ba-
sically, Żabski assumed that valuation V connects each formula ϕ with 0
or 1. Now V (Nϕ) = 1 ⇔ V (ϕ) = 0 and V (¬ϕ) = 0, while V (Mϕ) = 1
⇔ V (ϕ) = 0 and V (¬ϕ) = 0. Of course negation is not classical or in-
tuitionistic here. Rather, it is paraconsistent. Note that it makes sense,
from the philosophical point of view, to model the following situation: ϕ
is undetermined or ambiguous (e.g. in a given world w), yet it is believed
(or suggested by our advisors). We have already made some (unpublished)
attempts in this direction, also in the quasi-intuitionistic setting (namely,
in paraconsistent models with persistence of truth).

Acknowledgements. We are grateful to our anonymous reviewers for
their comments which helped us to reformulate the structure of our paper
(and some particular statements or definitions).
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SEQUENT CALCULI FOR ORTHOLOGIC
WITH STRICT IMPLICATION

Abstract

In this study, new sequent calculi for a minimal quantum logic (MQL) are dis-

cussed that involve an implication. The sequent calculus GO for MQL was estab-

lished by Nishimura, and it is complete with respect to ortho-models (O-models).

As GO does not contain implications, this study adopts the strict implication and

constructs two new sequent calculi GOI1 and GOI2 as the expansions of GO.

Both GOI1 and GOI2 are complete with respect to the O-models. In this study,

the completeness and decidability theorems for these new systems are proven.

Furthermore, some details pertaining to new rules and the strict implication are

discussed.

Keywords: Quantum logic, sequent calculus, completeness theorem, implication,

orthologic.

1. Introduction

Quantum logic (QL) has been introduced in order to manage strange propo-
sitions of quantum physics, such as uncertainty principle. Many structures
have been studied to represent and analyze such propositions. In partic-
ular, Orthomodular lattices describe the propositional spaces of quantum
physics and have been studied as the main structure of QL in the work by
Birkhoff and Von Neumann [3]. An orthomodular lattice is based on closed
subspaces of a Hilbert space, which is a state space of particles in quantum
physics. Instead of these lattices, the Kripke model of QL, the orthomod-
ular model (OM-model), can be used, which also describes a state space
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of quantum particles [12]. Ortholattices, which are conceptually simpler
than orthomodular lattices, have also been studied. The logic based on
ortholattices is a minimal QL (MQL) or orthologic. Moreover, the Kripke
model for MQL, i.e., ortho-model (O-model), also exists [12].

As it is usually studied, QL does not contain logical implications and
includes only negations, conjunctions, and disjunctions. Several implica-
tions in QL have been suggested; however, they all have difficulties for
varying reasons [12, 14]. Therefore, the deduction systems, such as the
Hilbert style axiomatization or sequent calculi that include implications,
are not well developed. This problem also holds for MQL. In MQL, the
number of appropriate implications is even smaller than that in QL. There-
fore, as a part of research to address these problems, this study constructs
two new sequent calculi for MQL that include rules for specific implication
and provides the completeness theorems with respect to O-models.

When the implications are added to QL or MQL, some problems are
encountered. In classical logic, the implication A → B and ¬A ∨ B can
be identified. However, in QL, if ¬A ∨ B is adopted as an implication,
critical properties for the implication, such as modus ponens, do not hold.
Therefore, in QL, many other implications have been considered. Among
them, polynomial implications that can be defined in terms of connectives
¬, ∧ and ∨, have been predominantly studied. The polynomial implication
Sasaki arrow ¬A∨ (A∧B) has attracted the most attention in QL. In ad-
dition to the Sasaki arrow, the contrapositive Sasaki arrow ¬(A ∨ B) ∨ B,
the relevance arrow (A∧B)∨ (¬A∧B)∨ (¬A∧¬B), and two other arrows
have been explored [12, 13, 14]. These implications are the only polyno-
mial implications that have suitable properties in terms of the orthomod-
ular lattice and have been studied from both physical and mathematical
standpoints [21].

These implications have been investigated in many ways because of their
strangeness. The meaning and properties of these implications in quantum
physics are associated with the notion of projections [12, 22]. For example,
the Sasaki arrow ¬A ∨ (A ∧B) can be translated as “after a measurement
of A, if the state is projected to a state which A is true, then B is true.”
By utilizing this property and embedding the projection relationship in
the model, various properties of the Hilbert space can be analyzed using
the Kripke model [22]. Recently, these implications have been used in the
context of quantum set theory, achieving results in the analysis of observed
values in quantum mechanics [29]. The algebraic features of these impli-
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cations have been widely studied in the case of orthomodular lattices and
ortholattices [1, 6, 4, 8, 17]. These studies focus on the logical aspects of
orthomodular lattices using implications. Furthermore, concepts regard-
ing orthomodular lattices, such as semilattices, have been analyzed, where
implications occupy a principal position [10, 9, 11]. Among them, implica-
tion algebras have been discussed as implication studies that exclude other
logical operators [1, 7, 13, 15, 16]. In this field, the properties of ortho-
modular lattices have been elucidated by analyzing algebraic axioms and
conditions for implications. This algebraic research is a purely mathemat-
ical study rather than a research related to quantum physics. Few studies
on QL have employed binary relational models compared with the num-
ber of studied on such algebraic studies. Models using binary relations
can express the dynamic relations of quantum physics, and some dynamic
concepts are closely related to implications. Therefore, research using the
Kripke model, such as that proposed in this study, should be conducted.

However, in ortholattices, polynomial implications do not satisfy modus
ponens. In this study, the notion of strict implication proposed in the lit-
erature [12] is adopted for MQL, as the strict implication exhibits good
mathematical properties, particularly in the Kripke models, and has physi-
cally significant meanings. In an ortholattice L, strict implication is defined
with some restrictions as follows [12]:

a→ b =
⊔
{c ∈ L | c 6= 0 ∧ ∀d((d 6= 0 ∧ c � d′ ∧ d ≤ a)⇒ d ≤ b)}

where ≤ is the order in L, t is the join, and 0 is the least element. Although
this definition seems complicated at the first glance, the definition in the
Kripke model corresponding to this definition is clear. This is one reason
for adopting the Kripke model in the present study. Intuitively, from a
quantum physics viewpoint, the strict implication A→ B can be translated
as “after the measurement of any physical quantity, if A is true, then B is
true.”

Some advantages of the strict implication should be noticed.

• In ortholattices, the Sasaki arrow does not satisfy modus ponens.
However, the strict implication satisfies modus ponens in both lat-
tices. Therefore, when MQL is considered, the strict implication is
more suitable than the Sasaki arrow.
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• All material implications are abbreviations of formulas constructed
using conjunctions, disjunctions, and negations. However, the strict
implication cannot be (finitely) constructed by means of these sym-
bols [12]. Therefore, when the strict implication is added to MQL,
the descriptive ability of the logic increases.

• The definition of the strict implication in O-models is similar to that
of the implication in intuitionistic logic. The deduction rules of the
strict implication are similar to those in the sequent calculus LBP
for the basic propositional logic (BPL) [20, 31]. Therefore, we can
analyze the relationship between QL and other logics using this im-
plication.

Although a sequent calculus for MQL with the strict implication exists,
a sequent is a labeled type sequent [23]. From the logic viewpoint, it is
important to construct and discuss a simple type of sequent calculus for
logic. Furthermore, some deduction systems for QL or MQL that involve
implications are studied; however, they are either not sequent calculi or the
implication used in these systems is not a strict implication [5, 28]. Sequent
calculi GO [25] and GMQL [26, 27] have been studied as foundational
sequent calculi for MQL which only includes ¬, ∧ and ∨. The present
study adopts GO for technical reasons, which is presented in Section 6.
The rules for the strict implication are added to GO, and new calculi
GOI1 and GOI2 are constructed. This study proves the completeness
theorem for these new systems.

Some formulas valid with general implications in other logics are invalid
with the strict implication in O-models. For example, p → (q → p) is
invalid. Therefore, general rules for implications, for example, such as
those for the implication in classical logic, cannot be used. As mentioned
earlier, this study uses a modified version of the rule for the implication
of LBP reported in the literature [20]. The implication of BPL also does
not satisfy some ordinary natures of implication. The semantics of this
implication in a Kripke model is the same as that of the strict implication.
In other words, x |= A → B is regarded as “for all y, such that xRy, if
y |= A, then y |= B.”

In Sections 2 and 3, some basics and the sequent calculus of MQL are
presented. In Sections 4 and 5, the new sequent calculi GOI1 and GOI2
are constructed and some related theorems are proven. The deduction
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ability of GOI1 and GOI2 is intrinsically the same; however, the rules for
the strict implication are different and each has pros and cons. In Section 6,
some details regarding the strict implication and rules are discussed.

2. Basics

This study uses language that has a denumerable infinite set of proposi-
tional variables, the propositional constant ⊥, the unary connective ¬, and
binary connectives ∧ and →. Formulas are constructed in the usual way.
We denote propositional variables by p, q, . . ., formulas by A,B,C, . . ., and
finite sets of formulas by Γ ,∆,Σ,Π, . . .. We use A∨B as the abbreviation
of ¬(¬A ∧ ¬B).

An O-frame is a pair (W,⊥), where W is a nonempty set, and ⊥ is an
irreflexive and symmetric binary relation on W . For traditional reasons, we
use the symbol ⊥ in two ways; one as a relation, the other as a formula. The
relation symbol ⊥ came from the orthogonal relation in the Hilbert space,
and the formula symbol ⊥ denotes the bottom. They can be distinguished
by the context.

We write x 6⊥ y if not x⊥y. We write x⊥X if, for all y ∈ X, x⊥y,
where x ∈ W and X ⊆ W . Given X ⊆ W , we define the set X⊥ =
{x ∈W |x⊥X}. We say that X is ⊥-closed if X⊥⊥ = X.

An O-model is a triple (W, ⊥, V ), where (W, ⊥) is an O-frame and V 
is a function assigning each propositional variable p to a ⊥-closed subset 
of W .

We define the set ‖A‖ by induction on the composition of A as follows.

‖p‖ = V (p)

‖A ∧B‖ = ‖A‖ ∩ ‖B‖

‖¬A‖ = ‖A‖⊥

‖A→ B‖ = {x ∈W | for all y ∈W , if x 6⊥ y and y ∈ ‖A‖, y ∈ ‖B‖ }

‖⊥‖ = ∅

A is true at x if x ∈ ‖A‖ and write x |= A. It is easy to evaluate that
‖¬A‖ = ‖A → ⊥‖ is fulfilled in this definition. Therefore, we regard ¬A
as the abbreviation of A→ ⊥.
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Lemma 2.1. For all ‖A‖, ‖A‖ is ⊥-closed.

Proof: In the cases of ‖p‖, ‖A∧B‖ and ‖¬A‖, see [25]. For all x ∈ ‖A→
B‖, x⊥{y ∈W | y |= A and y 2 B}. Then, {y ∈W | y |= A and y 2 B} ∈
‖A→ B‖⊥. Therefore, if z ∈ ‖A→ B‖⊥⊥

then z⊥{y ∈ W | y |= A and
y 2 B}. It means z ∈ ‖A→ B‖. That is, there is no point z which satisfies

z /∈ ‖A→ B‖ and z ∈ ‖A→ B‖⊥⊥
. Therefore, ‖A→ B‖ is ⊥-closed.

3. Sequent calculus GO

GO is defined below [25].

Axiom: A⇒ A
Rules:

Γ ⇒ ∆,A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(cut) Γ ⇒ ∆

Π,Γ ⇒ ∆,Σ
(weakening)

A,Γ ⇒ ∆

A∧B,Γ ⇒ ∆
(∧L)

B,Γ ⇒ ∆

A∧B,Γ ⇒ ∆
(∧L)

Γ ⇒ ∆,A Γ ⇒ ∆,B

Γ ⇒ ∆,A∧B (∧R)

Γ ⇒ ∆,A

¬A,Γ ⇒ ∆
(¬L) A⇒ ∆

¬∆⇒ ¬A (¬R)

A,Γ ⇒ ∆

¬¬A,Γ ⇒ ∆
(¬¬L)

Γ ⇒ ∆,A

Γ ⇒ ∆,¬¬A (¬¬R)

In [25], Γ ,∆,Π and Σ are defined as probable infinite sets. We restrict
these to finite sets because infinite sets are not essential here.

Consider an O-model (W,⊥, V ). Sequent Γ ⇒ ∆ is false at x ∈ W if
for all formulas A ∈ Γ , x |= A, and, for all formulas B ∈ ∆, x 2 B. If
Γ ⇒ ∆ is not false at x, then it is true at x. Sequent Γ ⇒ ∆ is falsifiable
if there exists an O-model (W,⊥, V ) and x ∈W , and Γ ⇒ ∆ is false at x.
If Γ ⇒ ∆ is unfalsifiable, we say Γ ⇒ ∆ is valid.

Theorem 3.1. The soundness and completeness theorem for GO. Γ ⇒ ∆
is provable in GO if, and only if, (iff) Γ ⇒ ∆ is valid.

Proof: See [25].
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4. Sequent calculus GOI1

In this section, a sequent calculus including the strict implication is es-
tablished. The sequent calculus GOI1 is defined as an expansion of GO. 
The rule (→ R) and axiom ⊥ ⇒ are added to GO. The rule (→ R) is the 
transformation of the rule (→) in [20]. Because this rule (→ R) is com-
plex, using GOI2 in the next chapter for the main calculus of MQL 
with the strict implication would be better. However, (→ R) is useful 
to prove the completeness theorem. Therefore, first the details of GOI1 
are shown. The definitions of truth, falsity, and validity of a sequent are 
identical to that in GO.

⊥ ⇒ (⊥)

Γ 1, A⇒ B,∆1, Σ Γ 2, A⇒ B,∆2, Σ . . . Γ 2n , A⇒ B,∆2n , Σ

C1 → D1, C2 → D2, . . . , Cn → Dn, Π ⇒ A→ B,Λ
(→R)

where, 0 ≤ n, Γ i = {Dj |j ∈ γ(i)}, ∆i = {Cj |j ∈ δ(i)}, 〈δ(i), γ(i)〉 is the
i-th element of all partitions of {1, . . . , n}. Π and Λ are formula sets. Σ
is a set of all formulas of the shape E → F such that E is included in the
premise of the lower sequent and F is included in the conclusion of the
lower sequent or ⊥. Therefore, Σ = {E → F |E ∈ {C1 → D1, . . . , Cn →
Dn, Π}, F ∈ {A→ B,Λ,⊥}}.

For example, suppose Π = {I}, Λ = {J,K}, then (→R) is as below in
the case of n = 0, n = 1, and n = 2.

A⇒ B, I → (A→ B), I → J, I → K, I → ⊥
I ⇒ A→ B, J,K

A⇒ B,C1, Σ D1, A⇒ B,Σ

C1 → D1, I ⇒ A→ B, J,K

where Σ is {(C1 → D1) → (A → B), (C1 → D1) → J, (C1 → D1) →
K, (C1 → D1)→ ⊥, I → (A→ B), I → J, I → K, I → ⊥}.

A⇒ B,C1, C2, Σ D1, A⇒ B,C2, Σ D2, A⇒ B,C1, Σ D1, D2, A⇒ B,Σ

C1 → D1, C2 → D2, I ⇒ A→ B, J,K
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where Σ is {(C1 → D1) → (A → B), (C1 → D1) → J, (C1 → D1) →
K, (C1 → D1) → ⊥, (C2 → D2) → (A → B), (C2 → D2) → J, (C2 →
D2)→ K, (C2 → D2)→ ⊥, I → (A→ B), I → J, I → K, I → ⊥}.

In GOI1, the rule (→ L) is admissible.

Γ 1,⇒ ∆1, A B, Γ 2 ⇒ ∆2

Γ 1, Γ 2, A→ B ⇒ ∆1, ∆2
(→L)

We will prove this lemma in Section 5.

Theorem 4.1. The soundness theorem for GOI1. If Γ ⇒ ∆ is provable
in GOI1, Γ ⇒ ∆ is valid.

Proof: Proven by induction on the construction of a proof. For rules in
GO, the proof is the same as the proof in [25]. For (→R), we only evaluate
n = 2. The other cases are similar. For contradiction, suppose all premises
of the rule are valid, and there exists O-model (W,⊥, V ) and x ∈W , such
that the conclusion of the rule is false at x. Then, as A→ B is false at x,
there exists y ∈W , satisfying x 6⊥ y, y |= A and y 2 B. Because we assume
that y |= A and all premises are valid, from the first premise, B or C1 or
C2 or one of the formulas in Σ is true at y; however, B is false at y. Now,
suppose E → F ∈ Σ. We have x |= E and x 2 F by assumption and the
definition of (→R). If y |= E → F , from y 6⊥ x and x |= E, x |= F , which
is a contradiction. Therefore, for all E → F ∈ Σ, y 2 E → F . Therefore,
C1 or C2 is true at y. In the former case, from x |= C1 → D1 and y |= C1,
y |= D1. From the second premise, B or C2 or one of the formulas in Σ
is true at y. Similarly, the only possibility is C2; therefore, C2 is true at
y. To continue this method to the end of premises, B or Σ is the only
possibility, which is a contradiction. The latter case and cases of the other
possibilities are similar to this method.

To prove the completeness theorem, we define the set Ω as follows.
Ω(Γ ⇒ ∆) = { All subformulas in Γ ∪ ∆} ∪ { ¬p | p appear in some
formulas in Γ ∪ ∆} ∪ {⊥}. For example, Ω(¬(p → q) ⇒ r ∧ q) =
{⊥, p, q, r,¬p,¬q,¬r, p→ q, r ∧ q,¬(p→ q)}. For each unprovable sequent
Γ ⇒ ∆, we define a canonical O-model (Wc,⊥c, Vc) of Γ ⇒ ∆ as follows.

Wc: {Γ 1 ⇒ ∆1|Γ 1 ⇒ ∆1 is unprovable in GOI1 and Γ 1 ∪∆1 = Ω(Γ ⇒
∆)}
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⊥c: (Γ 1 ⇒ ∆1)⊥(Γ 2 ⇒ ∆2) iff for some A and B, at least one of (1) (2)
is true. (1) A → B ∈ Γ 1, A ∈ Γ 2 and B ∈ ∆2. (2) A → B ∈ Γ 2,
A ∈ Γ 1 and B ∈ ∆1.

Vc: assigns p to the set {Γ 1 ⇒ ∆1|p /∈ ∆1}.

Lemma 4.2. (Wc,⊥c) is an O-frame. Vc(p) is ⊥-closed. Therefore, (Wc,⊥c,
Vc) is an O-model.

Proof: If (Γ 1 ⇒ ∆1)⊥(Γ 1 ⇒ ∆1), there is A and B that A ∈ Γ 1, A →
B ∈ Γ 1 and B ∈ ∆1. But A,A→ B ⇒ B is proven using (→L); therefore,
Γ 1 ⇒ ∆1 can be proven, which is a contradiction. Therefore, for every
Γ 1 ⇒ ∆1 ∈ WC , (Γ 1 ⇒ ∆1) 6⊥ (Γ 1 ⇒ ∆1). Symmetry is obvious from
the definition. If p /∈ Ω(Γ ⇒ ∆), Vc(p) = Wc. This is clearly ⊥-closed.
If p ∈ Ω(Γ ⇒ ∆), for every Γ 1 ⇒ ∆1 ∈ Wc, p ∈ Γ 1 or p ∈ ∆1. Then,
(Γ 1 ⇒ ∆1) |= p iff p ∈ Γ 1. Therefore, if we can prove the next statement,
we can prove this lemma.

For all (Γ 1 ⇒ ∆1) ∈ Wc, if p ∈ ∆1, there exists (Γ 2 ⇒ ∆2) ∈ WC ,
satisfying ¬p ∈ Γ 2 and (Γ 1 ⇒ ∆1) 6⊥ (Γ 2 ⇒ ∆2).

For convenience, we prove this statement after the next lemma.

Lemma 4.3. For all canonical O-models and all formulas A ∈ Ω, A is true
at (Γ 1 ⇒ ∆1) if A ∈ Γ 1 and A is false at (Γ 1 ⇒ ∆1) if A ∈ ∆1.

Proof: Proven by induction on the composition of A.
For A = p, the proof is obvious from the definition of a canonical O-

model.
For A = B ∧ C, the proof is the same as in [25].
For A = ¬B, the proof is included in A = B → C.
For A = B → C, suppose B → C ∈ Γ 1. Then, for all (Γ 2 ⇒ ∆2)

satisfying B ∈ Γ 2 and C ∈ ∆2, (Γ 1 ⇒ ∆1)⊥(Γ 2 ⇒ ∆2) by the definition of
the canonical O-model. Then, by definition of→ and induction hypothesis,
B → C is true at (Γ 1 ⇒ ∆1).

Suppose B → C ∈ ∆1. Because Γ 1 ⇒ ∆1 cannot be proven, when we
regard this sequent as the lower sequent of the rule (→R), an unprovable
sequent Γ 2, B ⇒ C,∆2 exists, which is of the shape of a sequent in the
upper sequent of (→R). Then, Γ 2 and ∆2 distribute all formulas of the



82 Tomoaki Kawano

shape of E → F in Γ 1, regarded as a Ci → Di. If there are formulas
in Γ 2, B ⇒ C,∆2 that are excluded in Ω(Γ ⇒ ∆), we delete them from
Γ 2, B ⇒ C,∆2 and make a new sequent Γ 3, B ⇒ C,∆3. Then, Γ 3 ∪
{B,C}∪∆3 ⊆ Ω(Γ ⇒ ∆) and this sequent is still unprovable. This sequent
can be expanded to the sequent Γ 4 ⇒ ∆4 ∈Wc because for all formulas G,
at least one Γ 3, B ⇒ C,∆3, G or G,Γ 3, B ⇒ C,∆3 is unprovable because
of the rule (cut) and because Γ 3, B ⇒ C,∆3 is unprovable. Furthermore,
(Γ 1 ⇒ ∆1) 6⊥ (Γ 4 ⇒ ∆4) is satisfied because we delete all probability of
holding the relation⊥ when we construct Γ 2, B ⇒ C,∆2. Therefore, by the
definition of → and induction hypothesis, B → C is false at Γ 1 ⇒ ∆1.

Now we can prove the statement in Lemma 4.2 using the method of
the proof of Lemma 4.3. If Γ 1 ⇒ ∆1, p (∈ Wc) is unprovable, Γ 1 ⇒
∆1, p,¬¬p is also unprovable. We regard (p → ⊥) → ⊥ as B → C in
Lemma 4.3. The same argument for B → C ∈ ∆1 in Lemma 4.3 can
be applied. That is, we can find (Γ 4 ⇒ ∆4) ∈ Wc, satisfying ¬p ∈ Γ 4,
⊥ ∈ ∆4, and (Γ 1 ⇒ ∆1, p) 6⊥ (Γ 4 ⇒ ∆4). If ¬¬p is included in Ω(Γ ⇒ ∆),
Γ 1 ⇒ ∆1, p,¬¬p is the same as Γ 1 ⇒ ∆1, p and is included in Wc. If ¬¬p
is excluded in Ω(Γ ⇒ ∆), sequent Γ 4 ⇒ ∆4 (¬p ∈ Γ 4), constructed from
Γ 1 ⇒ ∆1, p,¬¬p is included in Wc, even if Γ 1 ⇒ ∆1, p,¬¬p is excluded
in Wc. That is, when we make Γ 3,¬p ⇒ ⊥, ∆3 from Γ 1 ⇒ ∆1, p,¬¬p,
we eliminate all formulas that are excluded in Ω(Γ ⇒ ∆). Furthermore,
it satisfies (Γ 1 ⇒ ∆1, p) 6⊥ (Γ 4 ⇒ ∆4) because Γ 1 ⇒ ∆1, p is a part of
Γ 1 ⇒ ∆1, p,¬¬p.
Theorem 4.4. The completeness theorem for GOI1. If Γ ⇒ ∆ is valid,
Γ ⇒ ∆ is provable in GOI1.

Proof: Suppose Γ ⇒ ∆ is unprovable. We can make a canonical O-
model of Γ ⇒ ∆. Because (cut) is included in GOI1, there exists (Γ ′ ⇒
∆′) ∈ Wc, an expansion of Γ ⇒ ∆. By Lemma 4.3, Γ ⇒ ∆ is false at
(Γ ′ ⇒ ∆′).

5. Sequent calculus GOI2

We define the sequent calculus GOI2 as an expansion of GO. We add the
axioms (→ ⊥) and (⊥) and the rule (→ R)’ to GO. The rule (→ R)’ is
similar to the rule (→) in [20], but there are no contexts in this rule.
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A⇒ (A→ B)→ ⊥, B (→ ⊥)

Γ 1, A⇒ B,∆1 Γ 2, A⇒ B,∆2 ... Γ 2n , A⇒ B,∆2n

C1 → D1, C2 → D2, ..., Cn → Dn ⇒ A→ B
(→R)’

where 0 ≤ n, Γ i = {Dj |j ∈ γ(i)}, ∆i = {Cj |j ∈ δ(i)}, 〈δ(i), γ(i)〉 is the
i-th element of all partitions of {1, ..., n}.

The rule (→ R)’ is a natural expansion of the rule (¬R) in GO. That
is, if all Dj and B in (→ R)’ are ⊥, it is the same as (¬R) in GO because
of A→ ⊥ ≡ ¬A.

Theorem 5.1. The soundness and completeness theorem for GOI2. Γ ⇒
∆ is provable in GOI2 iff Γ ⇒ ∆ is valid.

Proof: We can prove that all rules of GOI1 are derivable in GOI2, and
vice versa. The proof of (→ ⊥) in GOI1 and (→R) in GOI2 is explained
below. The other cases are obvious.

A→ B ⇒ A→ B
A→ B ⇒ ⊥, A→ B,A→ ((A→ B)→ ⊥), A→ ⊥

(weakening)

A⇒ (A→ B)→ ⊥, B
(→R)

Suppose all sequents of upper sequents in (→R) are provable. For ex-
ample, suppose n = 2. Then,

A⇒ B,C1, C2, Σ
D1, A⇒ B,C2, Σ
D2, A⇒ B,C1, Σ
D1, D2, A⇒ B,Σ

are all provable. Now we regard all formulas in Σ as a Ci (n < i). For ex-
ample, if Σ has three elements, we regard Σ as {C3, C4, C5}. Furthermore,
we define all Di (n < i) as Di = ⊥. Then,

A⇒ B,C1, C2, C3, C4, C5

D1, A⇒ B,C2, C3, C4, C5

...
D1, D2, D3, D4, D5, A⇒ B

are all provable because, if all formulas in Σ = {C3, C4, C5} are on the
right-hand side, it is obvious from the assumption. If one of a {D3, D4, D5}

⊥ ⇒ (⊥)
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can use all these sequents and use (→R)’. Then, because E ⇒ (E → F )→
⊥, F is provable using (→ ⊥), use (cut), and prove the lower sequent of
(→R).

Theorem 5.2. In GOI1 and GOI2, the rule (→ L) is admissible.

Proof: By using (cut) and because A,A → B ⇒ B is provable in these
systems,

A→ B ⇒ A→ B
A→ B,⇒ ((A→ B)→ ⊥)→ ⊥

A⇒ (A→ B)→ ⊥, B
A, ((A→ B)→ ⊥)→ ⊥⇒ B

A,A→ B ⇒ B

Because the canonical model (Wc,⊥c, Vc) finite, we can prove the fol-
lowing theorem using the usual method as in GO.

Theorem 5.3. GOI1 and GOI2 are decidable. That is, an effective pro-
cedure determines whether a sequent Γ ⇒ ∆ is provable in GOI1 and
GOI2.

Proof: From the construction method of the canonical model (Wc,⊥c, Vc),
built from a sequent Γ ⇒ ∆, we obtain a finite model for any Γ ⇒ ∆, and
the model’s complexity can be bounded by the complexity of formulas and
the number of propositional letters in Γ and ∆. Therefore, by evaluating
all finite models up to the bound, whether sequent Γ ⇒ ∆ is valid can be
determined. From the soundness and completeness theorem, this method
can determine whether Γ ⇒ ∆ is provable in GOI1 and GOI2.

6. Conclusion and remarks

This study introduced two sequent calculi for MQL that involve the strict
implication. The rule for the implication in GOI1 is complicated. On the
contrary, the rule for the implication in GOI2 is less complicated and it
is a natural expansion of the rule (¬R). However, the axiom (→ ⊥) must
be included in GOI2. In both the calculi, the cut-elimination theorem
does not hold. In actuality, p, q ⇒ ¬(r ∧ ¬(p ∧ q)) cannot be proven
without (cut), as in GO [25]. In other words, based on the rules for

is on the left-hand side and because all are ⊥, this sequent is provable. We
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GOI1 and GOI2, in the proof of p, q ⇒ ¬(r ∧ ¬(p ∧ q)), we can only
use (weakening), (cut), or (→R) to deduce p, q ⇒ ¬(r ∧ ¬(p ∧ q)). How-
ever, it is easy to confirm that (weakening) does not work. Additionally,
r ∧ ¬(p ∧ q) ⇒ ⊥,¬p,¬q, p → ¬(r ∧ ¬(p ∧ q)), q → ¬(r ∧ ¬(p ∧ q)) can be
checked for invalidity. Moreover, it is challenging to construct a sequent
calculus for QL and MQL that satisfies the cut-elimination theorem using
an ordinary method. The situation is similar to that in the modal logic
S5. Both S5 and QL exhibit a symmetric frame. If an attempt is made
to construct a canonical model of the S5-frame in a stepwise manner, the
procedure cannot be stopped because of the symmetry. An effective tool
for addressing this problem is an extension of the sequent calculus. Various
extensions of sequence calculus for S5 have been constructed and analyzed
[2, 18, 19, 24, 30]. As one of them, labeled sequent calculi or tree sequent
calculi have been studied. A labeled sequent calculus for MQL with the
strict implication has been established and is cut-free [23]. It is still an
open question whether a normal sequent calculus for MQL that satisfies
the cut-elimination theorem exists.

In BPL, the law of modus ponens does not hold [20]. Modus ponens
A,A → B ⇒ B represents the reflexive condition of relations in frames
which is not the nature of frames of BPL. Therefore, the rule (→ L) is not
sound in LBP. (→ L) cannot be constructed if only (→ R)’ exists for the
implication. In GOI1 and GOI2, because other rules or axioms for the
implication are included, (→ L) can be constructed.

Another sequent calculus for MQL called GMQL [26, 27] is also com-
plete with respect to O-models and exclude implications, similar to GO. In
GO, based on the definition of the truth of a sequent, Γ ⇒ ∆,A,B cannot
be regarded as Γ ⇒ ∆,A ∨ B because commas on the right side of the
sequent indicate a union of sets. ‖A‖ ∪ ‖B‖ and ‖A∨B‖ are different sets
in O-models, and ‖A‖∪‖B‖ is not always ⊥-closed. For example,⇒ A,¬A
cannot be proven in GO; however, ⇒ A∨¬A (= ⇒ ¬(¬A∧¬¬A)) can be
proven. In GMQL, Γ ⇒ ∆,A,B represent Γ ⇒ ∆,A ∨ B. Because the
rules in GMQL are close to the notion of a lattice, the rules for ∧ and ∨
in GMQL are symmetric because ∧ and ∨ are symmetric in ortholattices.
In the case of GO, that excludes an implication, this notion of a union of
sets is inessential because of the following theorem [20].



86 Tomoaki Kawano

Theorem 6.1. If Γ ⇒ ∆ is provable in GO and ∆ is nonempty, then
there exists A ∈ ∆ such that Γ ⇒ A is provable and all sequents in that
proof have at most one formula on the right side.

When considering the rules for implications, GMQL is unsuitable be-
cause in the rules for strict implication, the notion of a union of sets on
the right side of a sequent is used rather than ∨. In the case of GOI1
and GOI2, the notion of a union of sets is essential and Theorem 6.1 does
not hold in these calculi. This finding can be confirmed by considering
the axiom (→ ⊥) and the completeness theorem. In other words, both
A⇒ (A→ B)→ ⊥ and A⇒ B are invalid.

In a sense, the axiom (→ ⊥) represents the symmetry of the relation in
frames. If GOI2 includes only (→R)’ for the strict implication, the sym-
metry cannot be handled because (→R)’ is a part of the sequent calculus
reported in the literature [20] which is sound and complete with respect
to the frames that do not need to be symmetrical. Assume that in an O-
model (W,⊥, V ), x |= A and x 6|= B, then for all y ∈ W such that x 6⊥ y,
y 6|= A → B attributed is the symmetry of 6⊥. If B = ⊥, then the axiom
(→ ⊥) is A ⇒ ¬¬A. When the translation in the literature [12] which
translate a formula of QL to a formula of modal logic is applied, this se-
quent corresponds to A⇒ �3A, representing the symmetry in the modal
logic.

In the rule (→) in LBP, in every left side of the sequent, contexts can
be used. Therefore, p → (q → p) can be proven in a sequent calculus for
LBP using n = 0 of (→), which cannot be proven in GOI1.

Γ ,A⇒ B

Γ ⇒ A→ B
(n = 0 of (→) in LBP)

p⇒ p
q, p⇒ p
p⇒ q → p

⇒ p→ (q → p)
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[6] I. Chajda, R. Halaš, An Implication in Orthologic, International Journal

of Theoretical Physics, vol. 44(7) (2005), pp. 735–744, DOI: https://doi.

org/10.1007/s10773-005-7051-1.
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A SEQUENT SYSTEM WITHOUT IMPROPER
DERIVATIONS

Abstract

In the natural deduction system for classical propositional logic given by 
G. Gentzen, there are some inference rules with assumptions discharged by the 
rule. D. Prawitz calls such inference rules improper, and others proper. Im-
proper inference rules are more complicated and are often harder to under-
stand than the proper ones.

In the present paper, we distinguish between proper and improper derivations

by using sequent systems. Specifically, we introduce a sequent system `Sc for

classical propositional logic with only structural rules, and prove that `Sc does

not allow improper derivations in general. For instance, the sequent ⇒ p → q

cannot be derived from the sequent p ⇒ q in `Sc. In order to prove the failure of

improper derivations, we modify the usual notion of truth valuation, and using

the modified valuation, we prove the completeness of `Sc. We also consider

whether an improper derivation can be described generally by using `Sc.

Keywords: Sequent system, improper derivation, natural deduction.
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1. Introduction

In the natural deduction system for classical propositional logic given in
Gentzen [4], there are some inference rules with assumptions discharged by
the rule. For instance, the implication introduction rule and the disjunction
elimination rule have such assumptions. Prawitz [7] calls such inference
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rules improper, and others proper. The differences between proper and
improper inference rules are also pointed out in Fine [3], Robering [8], and
Breckenridge and Magidor [1]. However, there is no description allowing to
distinguish them by formal systems. In the present paper, we distinguish
between proper and improper derivations by using sequent systems. So,
we need to confirm what derivations are proper or improper in sequent
systems.

In the following three subsections, we provide some preparations, con-
sider what derivations are proper or improper in sequent systems, and
describe our purposes in more detail.

1.1. Preliminaries

Here, we provide some preparations.
Formulas are constructed from ⊥ (contradiction) and the propositional

variables by using logical connectives ∧ (conjunction), ∨ (disjunction), and
→ (implication) in the usual way. We use p, q, and r, with or without
subscripts, for propositional variables, and φ, ψ, and χ, with or without
subscripts, for formulas. The set of formulas is denoted by Wff. We define
¬ϕ as ϕ → ⊥. We assume ¬ to connect formulas stronger than ∧ and ∨,
which in turn are stronger than→, and omit those parentheses that can be
recovered according to this priority of the connectives. Also, we use U and
V , with or without subscripts, for sets of formulas, especially we use Greek
letters Γ,∆, · · · , with or without subscripts, for finite sets of formulas.

A sequent is the expression (Γ⇒ ϕ). We often write

ϕ1, · · · , ϕi,Γ1, · · · ,Γj ⇒ ϕ

instead of
({ϕ1, · · · , ϕi} ∪ Γ1 ∪ · · · ∪ Γj ⇒ ϕ).

We use X,Y , and Z, with or without subscripts, for sequents. The an-
tecedent ant(Γ ⇒ ϕ) and the succedent suc(Γ ⇒ ϕ) of a sequent Γ ⇒ ϕ
are defined as

ant(Γ⇒ ϕ) = Γ and suc(Γ⇒ ϕ) = ϕ,

respectively. We use S and T , with or without subscripts, for sets of se-
quents.
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A sequent system is defined as a collection comprising a set Axi of
sequents and a set Inf of inference rules of the form

X1 · · · Xn

X
(I).

Specifically, a proof figure of X from T in the sequent system is defined by
means of the set Axi∪ T as axioms and Inf as inference rules in the usual
way. We use `, with or without subscripts, for sequent systems and write
T ` X if there exists a proof figure of X from T in `. We often call an
expression T ` X a derivation, and identify the above inference rule (I)
with the derivation

{X1, · · · , Xn} ` X.

We write ` X and T,U ` X instead of ∅ ` X and T ∪ {⇒ φ | φ ∈ U} ` X,
respectively. Also, we write T ` Γ⇒ ∆ if T ` Γ⇒ ψ for every ψ ∈ ∆. We
note

T 6` Γ⇒ ∆ ⇐⇒ T 6` Γ⇒ ψ for some ψ ∈ ∆.

We say that ` is consistent if 6` ⊥.
For a sequent system for classical propositional logic, we use the system

`Gc which corresponds to the natural deduction system in Gentzen [4] and
Prawitz [7]. Specifically, we define the system `Gc as follows.

Definition 1.1. A proof figure of X from T in `Gc is defined by means
of the following axioms and inference rules.
Axioms:

• φ⇒ φ,

• ⊥ ⇒ φ,

• members of T .

Inference rules: See Figure 1.

We note that, among the inference rules in Figure 1, there are just three
inference rules (∨ ⇒), (⇒→), and (RAA) corresponding to the improper
ones in the natural deduction system.

A sequent system `S(S) is defined as follows.

Definition 1.2. A proof figure of X from T in the system `S(S) is defined
by means of the following axioms and inference rules.



94 Katsumi Sasaki

Γ⇒ ψ

φ,Γ⇒ ψ
(w⇒)

Γ→ φ φ,Γ→ ψ

Γ→ ψ
(cut)

φ1, φ2,Γ⇒ ψ

φ1 ∧ φ2,Γ⇒ ψ
(∧ ⇒)

Γ⇒ φ1 Γ⇒ φ2
Γ⇒ φ1 ∧ φ2

(⇒ ∧)

φ1,Γ⇒ ψ φ2,Γ⇒ ψ

φ1 ∨ φ2,Γ⇒ ψ
(∨ ⇒)

Γ⇒ φi
Γ⇒ φ1 ∨ φ2

(⇒ ∨)(i = 1, 2)

Γ⇒ φ1 φ2,Γ⇒ ψ

φ1 → φ2,Γ⇒ ψ
(→⇒)

φ1,Γ⇒ φ2
Γ⇒ φ1 → φ2

(⇒→)

¬φ,Γ⇒ ⊥
Γ⇒ φ

(RAA)

Figure 1. Inference rules in `Gc

Axioms: members of S ∪ T ,
Inference rules: (w ⇒) and (cut).

We write `Sc instead of `S(S) if S = {X |`Gc X}. It will be shown 
in section 2 and section 3 that `Sc distinguishes proper and improper 
derivations.

The system `S(C) has only structural rules, and all logical content is
put into axiomatic sequents. Such systems has been considered in Hertz
[5], Suszko [10], Suszko [11], and Schroeder-Heister [9]. We can also see
the works by Hertz and Suszko in Indrzejczak [6]. However, a difference
between proper and improper derivations is not discussed there.

1.2. Proper and improper derivations in sequent systems

In the present section, we consider what derivations are proper or improper
in sequent systems, especially the derivations among the ones in Figure 1.
We consider an derivation

D : {Γ1 ⇒ φ1, · · · ,Γn ⇒ φn} ` Γ⇒ φ.
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We note that improper inference rule has an assumption discharged by the
rule. Therefore, D is proper if Γ1 ∪ · · · ∪ Γn ⊆ Γ, and so, (w→), (⇒ ∧),
and (⇒ ∨) are proper.

We consider the case that Γ1 ∪ · · · ∪ Γn 6⊆ Γ by Fine’s description ([3],
p. 69) below:

“A proper inference is one that is meant to valid in the stan-
dard way; the conclusion is meant to follow straightforwardly
from premisses.”

In this point of view, three derivations (cut), (∧ →), and (→⇒) are proper
since the succedent of the lower sequent follow straightforwardly from the
antecedent as in Figure 2, where Γ = {γ1, · · · , γm}. We note that each
figure in Figure 2 is a tree satisfying:

(T1) every leaf is either a member of the antecedent of the lower sequent
or an empty node,

(T2) except leaves, every node is a formula,

(T3) the root is the succedent of the lower sequent,

(T4) every branch is either ]=⇒ or ]−→, where

φ1
...

φn

=⇒ ψ ⇐⇒ (φ1, · · · , φn ⇒ ψ) is an upper sequent,

φ1
...

φn

−→ ψ ⇐⇒ `Gc (φ1, · · · , φn ⇒ ψ).

We can also see such trees for (⇒ ∧) and (⇒ ∨) in Figure 3, where Γ =
{γ1, · · · , γm}.

On the other hand, three derivations (∨ ⇒), (⇒→), and (RAA) are
improper since there is no such tree. More precisely, we have

• {φ1,Γ ⇒ ψ} 6`Gc (φ1 ∨ φ2,Γ ⇒ φ2) and {φ2,Γ ⇒ ψ} 6`Gc (φ1 ∨
φ2,Γ⇒ φ1) if (Γ, φ1, φ2, ψ) = (∅, p, q, r),
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• 6`Gc Γ⇒ φ1 if (Γ, φ1) = (∅, p),

• 6`Gc Γ⇒ ¬φ if (Γ, φ) = (∅, p).

(cut) (∧ ⇒) (→⇒)

γ1
...

γm

=⇒ φ
γ1

...
γm

=⇒ ψ

φ1 ∧ φ2]−→ φ1
φ1 ∧ φ2]−→ φ2

γ1
...

γm

=⇒ ψ

γ1
...

γm


φ1 → φ2

=⇒ φ1

]
−→ φ2

γ1
...

γm

=⇒ ψ

Figure 2. Trees for (cut), (∧ ⇒), and (→⇒)

(⇒ ∧) (⇒ ∨) D∗

γ1
...

γm


γ1

...
γm


=⇒ φ1

=⇒ φ2

−→ φ1∧φ2
γ1

...
γm

=⇒ φi]−→ φ1∨φ2 r]=⇒ q]−→ p∨q

Figure 3. Trees for (⇒ ∧), (⇒ ∨), and D∗

Consequently, among the derivations in Figure 1, (∨ ⇒), (⇒→), and
(RAA) are improper, and the others are proper. In general, D is proper if
D has a tree satisfying (T1), (T2), (T3), and (T4). Also, for ψ ∈ Γ1, ψ is
discharged by D if the following two conditions hold:

(D1) {Γ2 ⇒ φ2, · · · ,Γn ⇒ φn} 6`Gc Γ⇒ ψ,

(D2) {Γ2 ⇒ φ2, · · · ,Γn ⇒ φn} 6`Gc Γ⇒ φ.
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Moreover, D is improper if there exists ψ ∈ Γ1 satisfying (D1) and (D2).
Here, we need (D2) since the derivation

D∗ : {p⇒ r, r ⇒ q} ` r ⇒ p ∨ q,

which has the tree in Figure 3, should be proper and p in p ⇒ r satisfies
(D1). We have to note that the meaning of proper and improper derivations
has not been clarified yet since there may be a case that the following two
conditions hold:

• D has no tree satisfying (T1), (T2), (T3), and (T4),

• there is no formula φ ∈ Γi satisfying (D1) and (D2).

In section 3, we consider this in more detail by using `Sc.
Here, we also note that the system `S(S) has only proper structural

inference rules, and consequently, it is natural to see that if T `S(S) Γ⇒ φ,
then

“Γ⇒ φ is derived straightforwardly from T”. (P1)

and the derivation is proper.

1.3. The purposes

In the present paper, we distinguish proper and improper derivations by
the sequent system `Sc. Improper derivations are more complicated and
are often harder to understand than the proper ones since they have as-
sumptions discharged by the rule and have no tree satisfying (T1), (T2),
(T3), and (T4) in the previous subsection. So, if we obtain a system that
distinguishes proper and improper derivations, then we know what kind of
inference rules are hard to understand. This knowledge is valuable when
we teach proof in mathematics education.

In order to distinguish proper and improper derivations, there are two
purposes.

One is to prove that our system `Sc distinguishes the proper and im-
proper derivations among the ones in Figure 1. However, it is not hard
to see that the proper derivations in Figure 1 hold in `Sc. So, the main
theorem we should prove is as follows.
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Theorem 1.3. None of the improper derivations (∨ ⇒), (⇒→), and (RAA)
holds in `Sc in general.

We prove the theorem above in the following section by using completeness.
The other is to consider whether an improper derivation can be de-

scribed generally by using `Sc. As we mentioned in the previous subsec-
tion, the description in the subsection is not enough to clarify proper and
improper derivations. We consider it in more detail in section 3.

2. Completeness

In the present section, we prove Theorem 1.3. In order to prove the theo-
rem, we modify the usual notion of truth valuation, and using the modified
valuation, we prove completeness of the system `Sc. Theorem 1.3 will be
obtained as a corollary of the completeness.

The definition of the usual truth valuation is as follows.

Definition 2.1. We say that a mapping v : Wff → {t, f} is a truth valu-
ation if the following conditions hold:

1. v(⊥) = f,

2. v(φ ∧ ψ) = t ⇐⇒ v(φ) = v(ψ) = t,

3. v(φ ∨ ψ) = f ⇐⇒ v(φ) = v(ψ) = f,

4. v(φ→ ψ) = f ⇐⇒ v(φ) = t and v(ψ) = f.

We use v, with or without subscripts, for truth valuations. We write v(U) =
t if v(φ) = t for every φ ∈ U . Also, we write v(X) = t if v(ant(X)) = f or
v(suc(X)) = t. Moreover, we write v(T ) = t if v(X) = t for every X ∈ T .

We modify the above definition of truth valuation as follows.

Definition 2.2. Let v be a set of truth valuations. We define a mapping
v : Wff → {t, f} as follows:

v(φ) = t ⇐⇒ for every v ∈ v, v(φ) = t.

We note that

• ∅(φ) = t,

• {v}(φ) = v(φ),

• {v1, v2}(φ) = t ⇐⇒ v1(φ) = v2(φ) = t.
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We write v(U), v(X), and v(T ), similarly to v(U), v(X), and v(T ), re-
spectively.

The main theorem in the present section is as follows.

Theorem 2.3. The following conditions are equivalent:

(1) T `Sc X,

(2) for every set v of truth valuations, v(T ) = t implies v(X) = t.

In order to prove the above theorem, we provide some preparations. The
completeness below can be shown in the usual way. For example, we can
refer to Chagrov and Zakharyaschev [2].

Lemma 2.4.

U `Gc⇒ φ ⇐⇒ for every truth valuation v, v(U) = t implies v(φ) = t.

Lemma 2.5.

(1) T ∪ {⇒ ψ} `Gc Γ⇒ φ ⇐⇒ T `Gc (ψ,Γ⇒ φ).

(2) T ∪ {⇒ ψ} `Sc Γ⇒ φ ⇐⇒ T `Sc (ψ,Γ⇒ φ).

(3) `Gc X ⇐⇒ `Sc X.

(4) U `Gc X ⇐⇒ U `Sc X.

Proof: (1), (2), and the direction “⇐=” of (3) can be shown by an in-
duction on a proof figure. The direction “=⇒” of (3) is clear since every
member of {X |`Gc X} is an axiom of `Sc.

For (4). By (1), (2), and (3), for every finite set U∗ of formulas, we
have

U∗ `Gc X ⇐⇒ `Gc (U∗,ant(X)⇒ suc(X))
⇐⇒ `Sc (U∗,ant(X)⇒ suc(X))
⇐⇒ U∗ `Sc X.

(4.1)

Also, we note that

U `Gc X ⇐⇒ U∗ `Gc X for some finite subset U∗ of U,

and the same equivalence holds in `Sc. Hence, we obtain (4).

We note that the expression U ` X is an abbreviation of {⇒ φ | φ ∈
U} ` X. So, none of the improper derivations (∨ ⇒), (⇒→), and (RAA)
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can be expressed in the form of U ` X. On the other hand, some of the
proper derivations in Figure 1 can be expressed in the form. For example,
the derivation {⇒ p} `⇒ p ∨ q can be expressed in the form.

By means of this example, we show how a proof figure for U `Gc X
transfer to the one for U `Sc X. Specifically, we show the proof figures, in
Table 1, for four derivations occurring in the above (4.1) in Lemma 2.5.

Table 1. Proof figures for derivations in (4.1) in Lemma 2.5

Derivation Proof figure

{⇒ p} `Gc⇒ p ∨ q ⇒ p

⇒ p ∨ q
(⇒ ∨)

`Gc (p⇒ p ∨ q) p⇒ p

p⇒ p ∨ q
(⇒ ∨)

`Sc (p⇒ p ∨ q) p⇒ p ∨ q

{⇒ p} `Sc⇒ p ∨ q ⇒ p p⇒ p ∨ q
⇒ p ∨ q

(cut)

Lemma 2.6. If `Sc X, then for every set v of truth valuations v(X) = t.

Proof: By Lemma 2.5 and Lemma 2.4.

Lemma 2.7. If T `Sc X, then for every set v of truth valuations, v(T ) = t
implies v(X) = t.

Proof: Suppose that T `Sc X and v(T ) = t. We show v(X) = t by an
induction on a proof figure of X from T in `Sc.

Basis. If X ∈ T , then by v(T ) = t, we have v(X) = t. If `Gc X, then
we have `Sc X, and using Lemma 2.6, we have v(X) = t.

Induction step is clear from

• v(Γ⇒ ψ) = t implies v(φ,Γ⇒ ψ) = t,

• v(Γ⇒ φ) = v(φ,Γ⇒ ψ) = t implies v(Γ⇒ ψ) = t.
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Definition 2.8. We call a pair 〈U, V 〉 of sets of formulas T -consistent if
T,U 6`Sc⇒ φ for each φ ∈ V . We call T -consistent pair 〈U, V 〉 maximal
if U ∪ V = Wff .

Lemma 2.9. If T 6`Sc Γ⇒ φ, then there exists a maximal T -consistent pair
〈U, V 〉 satisfying Γ ⊆ U and φ ∈ V .

Proof: Suppose that T 6`Sc Γ⇒ φ. We define U and V as

U = {χ | T `Sc Γ⇒ χ} and V = Wff\U.

It is sufficient to show the following three conditions:

(1) Γ ⊆ U and φ ∈ V ,

(2) (maximarity) U ∪ V = Wff ,

(3) (consistency) for each formula ψ ∈ V , T,U 6`Sc⇒ ψ.

(1) and (2) are clear from the definition. We show (3). Suppose that ψ ∈ V .
By the definition of `Sc, we have only to show

(4) for each finite subset U∗ of U , T,U∗ 6`Sc Γ⇒ ψ.

In order to show (4), we use an induction on the number of members of U∗.
If U∗ ⊆ Γ, then by T 6`Sc Γ ⇒ φ and Lemma 2.5, we have (4). Suppose
that there exists χ ∈ U∗\Γ ⊆ U . Then by the definition of U , we have

T `Sc Γ⇒ χ,

and so,
T,U∗\{χ} `Sc Γ⇒ χ, (∗1)

By the induction hypothesis, we have

T,U∗\{χ} 6`Sc Γ⇒ ψ, (∗2)

By (∗1), (∗2), and cut, we obtain (4).

Lemma 2.10. If T 6`Sc Γ⇒ φ, then there exists a set v of truth valuations
such that v(T ) = t and v(Γ⇒ φ) = f.

Proof: Suppose that T 6`Sc Γ ⇒ φ. By Lemma 2.9, there exists a maxi-
mal T -consistent pair 〈U, V 〉 satisfying Γ ⊆ U and φ ∈ V . Since 〈U, V 〉 is
T -consistent, for each ψ ∈ V , we observe
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T,U 6`Sc⇒ ψ.

Therefore
U 6`Sc⇒ ψ.

Using Lemma 2.5 and Lemma 2.4, there exists a truth valuation vψ satis-
fying

vψ(U) = t and vψ(ψ) = f.

We define v as
v = {vψ | ψ ∈ V }.

Then we have

v(U) = t and v(ψ) = f for every ψ ∈ V,

and using Γ ⊆ U and φ ∈ V , we have

v(Γ⇒ φ) = f.

So, we have only to show

(1) v(T ) = t.

Let X be a sequent in T . We divide the cases.
The case that ant(X) 6⊆ U . By the maximality of 〈U, V 〉, we have

ant(X) ∩ V 6= ∅, and so, ψ ∈ ant(X) for some ψ ∈ V , Using vψ(ψ) = f,
we have v(ψ) = f. Using ψ ∈ ant(X), we obtain v(X) = t.

The case that ant(X) ⊆ U . Using X ∈ T , we have T,U `Sc⇒ suc(X).
Since 〈U, V 〉 is T -consistent, we observe suc(X) 6∈ V . Using maximality of
〈U, V 〉, we have suc(X) ∈ U , and using v(U) = t, we have v(suc(X)) = t.
Hence, we have v(X) = t.

Hence, we obtain (1).

By Lemma 2.7 and Lemma 2.10, we obtain Theorem 2.3. Theorem 1.3 is
obtained by the following corollary.

Corollary 2.11.

(1) {p⇒ q} 6`Sc⇒ p→ q.

(2) {p⇒ r, q ⇒ r} 6`Sc p ∨ q ⇒ r.

(3) {¬p⇒ ⊥} 6`Sc⇒ p.
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Proof: For (1). We define truth valuations v1, v2 as

(v1(p), v1(q)) = (t, f), (v2(p), v2(q)) = (f, f).

Then as in Table 2, we obtain

{v1, v2}(p⇒ q) = t and {v1, v2}(⇒ p→ q) = f.

Using Theorem 2.3, we obtain (1).
(2) and (3) can be shown similarly using Table 3 and Table 4, respec-

tively.

Table 2. A truth table for (1)

p q p⇒ q p→ q ⇒ p→ q

v1 t f f
v2 f f

{v1, v2} f t f f

Table 3. A truth table for (2)

p q r p⇒ r q ⇒ r p ∨ q p ∨ q ⇒ r

v1 t f f t
v2 f t t

{v1, v2} f f f t t t f

Table 4. A truth table for (3)

p ¬p ¬p⇒ ⊥ ⇒ p

v1 f t
v2 t f

{v1, v2} f f t f
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Also, by the fact that classical logic is the maximally consistent logic
(cf. Chagrov and Zakharyaschev [2]), we have the following corollary.

Corollary 2.12. If `S(S) is consistent, then

(1) {p⇒ q} 6`S(S)⇒ p→ q,

(2) {p⇒ r, q ⇒ r} 6`S(S) p ∨ q ⇒ r,

(3) {¬p⇒ ⊥} 6`S(S)⇒ p.

3. Improper derivations and the system `Sc
In the present section, we consider whether an improper derivation can be
described generally by using our system `Sc. Specifically, we consider a
derivation D : T ` Γ⇒ φ and give a precise expression of

“D is improper”, (IP1)

assuming that (IP1) is equivalent to

“D has some assumptions discharged by D” (IP2)

and negation of (P1) in subsection 1.2.
As is described in subsection 1.2, (IP2) follows from the existence of

a formula satisfying (D1) and (D2). More generally, we have that (C1)
implies (IP2), where (C1) is the following condition.

(C1) There exists X ∈ T satisfying the following two conditions:

(C1.1) T\{X} 6`Gc Γ⇒ ant(X),

(C1.2) T\{X} 6`Gc Γ⇒ φ.

However, as we also mentioned in subsection 1.2, there may be an im-
proper derivation which does not satisfy (C1). We give such improper
derivation in the following example.

Example 3.1. We consider the following two derivations:

D1: {p⇒ ⊥, q ⇒ ⊥} `⇒ ¬p ∨ ¬q,

D2: {p⇒ ⊥,¬p⇒ ⊥} `⇒ ⊥.
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(1) D1 has two proofs in `Gc. One is to prove

{p⇒ ⊥} `Gc⇒ ¬p ∨ ¬q

and the other is to prove

{q ⇒ ⊥} `Gc⇒ ¬p ∨ ¬q.

If we take the former, then the assumption p in p⇒ ⊥ is discharged
by D1, and if we take the latter, then the assumption q in q ⇒ ⊥ is.

(2) D2 also has two proofs. One is to prove

{p⇒ ⊥} `Gc⇒ ¬p

and the other is to prove

{¬p⇒ ⊥} `Gc⇒ p.

If we take the former, then the assumption p in p⇒ ⊥ is discharged
by D2, and if we take the latter, then the assmption ¬p in ¬p ⇒ ⊥
is.

So, D1 must be improper, but it does not satisfy (C1) because of (C1.2).
Also, D2 must be improper, but it does not satisfy (C1) because of (C1.1).

Consequently, in order to give a precise expression of (IP2), (C1) should
be modified. Specifically, we consider the following modified condition
(C2), and by Example 3.1, it is natural to see that (C2) implies (IP2). We
also confirm that D1 and D2 satisfy (C2).

(C2) There exists a non-empty subset T ′ of T satisfying the following two
conditions:

(C2.1) T\T ′ 6`Gc Γ⇒ ant(X) for each X ∈ T ′,

(C2.2) T\T ′ 6`Gc Γ⇒ φ.

Now, we consider the condition:

T 6`Sc Γ⇒ φ. (C3)

In subsection 1.2, we confirmed that the negation of (C3) implies (P1).
We have already confirmed that (C2) implies (IP2). Also, we assumed the
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(C2) =⇒ (IP2) ⇐⇒ (IP1) ⇐⇒ the negation of (P1) =⇒ (C3)

Figure 4. Relations among (C2), (C3), (P1), (IP1), and (IP2)

equivalence among the conditions (IP2), (IP1), and the negation of (P1).
We can see these relations in Figure 4.

Therefore, if we show the equivalence between (C2) and (C3), then
each of (C2) and (C3) is one of the precise expressions of (IP1). Hence,
the remaining to be done is to prove such equivalence, i.e., the following
theorem.

Theorem 3.2. If T `Gc Γ ⇒ φ, then the conditions (C2) and (C3) are
equivalent.

We prove the above theorem, including the derivations that do not hold
in `Gc. Specifically, we prove the following lemma. The theorem above is
obtained as a corollary of the lemma.

Lemma 3.3. The following two conditions are equivalent:

(1) T 6`Sc Γ⇒ φ,

(2) there exists a subset T ′ of T satisfying the following two conditions:

(2.1) T\T ′ 6`Gc Γ⇒ ant(X) for each X ∈ T ′,
(2.2) T\T ′ 6`Gc Γ⇒ φ.

Proof: For (1) =⇒ (2). Suppose that (1) holds. Then by Theorem 2.3,
there exists a set v of truth valuations such that v(T ) = v(Γ) = t and
v(φ) = f. We define T ′ as

T ′ = {X ∈ T | v(ant(X)) = f}.

Then we observe v(ant(Y )) = t for every Y ∈ T\T ′. Using v(T ) = t, we
have

v(suc(Y )) = t for every Y ∈ T\T ′. (∗1)

We show (2.1). LetX be a sequent in T ′. Then we observe v(ant(X)) =
f, and so, there exists vX ∈ v such that vX(ant(X)) = f. Also, by v(Γ) = t,
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we have vX(Γ) = t. Moreover, by (∗1), we have vX(suc(Y )) = t for every
Y ∈ T\T ′, and so, vX(T\T ′) = t. Using Lemma 2.4, we have (2.1).

We show (2.2). By v(φ) = f, there exists v0 ∈ v such that v0(φ) =
f. Also, by v(Γ) = t, we have v0(Γ) = t. Moreover, by (∗1), we have
v0(suc(Y )) = t for every Y ∈ T\T ′, and so, v0(T\T ′) = t. Using Lemma
2.4, we have (2.2).

For (2) =⇒ (1). Suppose that (2) holds. Then by (2.1) and Lemma 2.4,
for every X ∈ T ′, there exists vX such that

vX(T\T ′) = vX(Γ) = t and vX(ant(X)) = f.

Also, by (2.2) and Lemma 2.4, there exists v0 such that

v0(T\T ′) = v0(Γ) = t and v0(φ) = f.

We define v as
v = {v0} ∪ {vX | X ∈ T ′}.

Then we have v(T\T ′) = v(Γ) = t and v(ant(X)) = v(φ) = f for every
X ∈ T ′, and so, we have v(T ) = v(Γ) = t and v(φ) = f. Using Theorem
2.3, we obtain (1).
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WEAKLY FREE MULTIALGEBRAS

Abstract

In abstract algebraic logic, many systems, such as those paraconsistent logics

taking inspiration from da Costa’s hierarchy, are not algebraizable by even the

broadest standard methodologies, as that of Blok and Pigozzi. However, these

logics can be semantically characterized by means of non-deterministic algebraic

structures such as Nmatrices, RNmatrices and swap structures. These structures

are based on multialgebras, which generalize algebras by allowing the result of

an operation to assume a non-empty set of values. This leads to an interest in

exploring the foundations of multialgebras applied to the study of logic systems.

It is well known from universal algebra that, for every signature Σ, there exist

algebras over Σ which are absolutely free, meaning that they do not satisfy any

identities or, alternatively, satisfy the universal mapping property for the class

of Σ-algebras. Furthermore, once we fix a cardinality of the generating set, they

are, up to isomorphisms, unique, and equal to algebras of terms (or propositional

formulas, in the context of logic). Equivalently, the forgetful functor, from the

category of Σ-algebras to Set, has a left adjoint. This result does not extend to

multialgebras. Not only multialgebras satisfying the universal mapping property

do not exist, but the forgetful functor U , from the category of Σ-multialgebras

to Set, does not have a left adjoint.

In this paper we generalize, in a natural way, algebras of terms to multi-

algebras of terms, whose family of submultialgebras enjoys many properties of

the former. One example is that, to every pair consisting of a function, from a

submultialgebra of a multialgebra of terms to another multialgebra, and a collec-

tion of choices (which selects how a homomorphism approaches indeterminacies),

there corresponds a unique homomorphism, what resembles the universal map-

ping property. Another example is that the multialgebras of terms are generated
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by a set that may be viewed as a strong basis, which we call the ground of

the multialgebra. Submultialgebras of multialgebras of terms are what we call

weakly free multialgebras. Finally, with these definitions at hand, we offer a sim-

ple proof that multialgebras with the universal mapping property for the class of

all multialgebras do not exist and that U does not have a left adjoint.

Keywords: Algebras of terms, universal mapping property, absolutely free alge-

bras, multialgebras, hyperalgebras, non-deterministic algebras, category of mul-

tialgebras, non-deterministic semantics.

2020 Mathematical Subject Classification: 03G25, 08C05, 08B20.

1. Introduction

An interesting and fruitful strategy in contemporary formal logic is trying
to find an algebraic counterpart for a given logic or family of logics. This
is the main goal of the area of mathematical logic known as algebraic logic,
or abstract algebraic logic (AAL) in a more general perspective.

The idea behind (traditional) algebraic logic is to develop an algebraic
study of a given class of models (algebras) associated to a given logic. For
instance, it can be insightful to study the relationship between Boolean
(Heyting, respectively) algebras and propositional classical (intuitionistic,
respectively) logic, while an important area of mathematical fuzzy logic
deals with the relationship between fuzzy logics and certain classes of resid-
uated lattices. In turn, AAL is more interested in analyzing and classify-
ing the algebraization methods per se. As one would expect, the scope of
(abstract) algebraic logic is far from being universal: there are important
classes of logics which lie outside the usual methods and techniques of AAL.

A good source of examples to this phenomenon can be found in the
field of paraconsistency. Because of this, certain classes of paraconsistent
logics, as the ones known as logics of formal inconsistency,1 are char-
acterized by means of semantics of non-deterministic character such as
non-deterministic matrices, Fidel structures or swap structures (see for
instance [3]). Besides giving a semantical characterization, as well as
a decision procedure, for these logics, such non-deterministic structures

1LFIs, introduced in [4] and coming from the tradition of da Costa’s approach to
paraconsistency ([9])
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constitute an interesting object of study by themselves (see, for instance,
[3, Chapter 6], [5] and [7]).

It is worth observing that non-deterministic matrix semantics (intro-
duced in [1]) and, more generally, swap structures semantics, are (classes
of) multialgebras equipped with a subset of designated elements of their
domains, what generalizes the very idea of logical matrices. Multialgebras,
also known as hyperalgebras or non-deterministic algebras, introduced in
[10], generalize the concept of algebra by replacing operations by multiop-
erations (or hyperoperations), whose results assume multiple values, that
is, a subset of the universe. Here, we will restrict ourselves to multialgebras
whose operations cannot return an empty set of values, which is a common
requirement when working with non-classical logics and their semantics.

In the realm of universal algebra, it is a well known result ([2]) that
there exist algebras A over a given signature Σ that satisfy the so-called
universal mapping property, for the class of all Σ-algebras, over some subset
X of their universe A. This property says that, for any other Σ-algebra
B with universe B and any function f : X → B, there exists exactly one
homomorphism f between A and B that extends f . Such algebras are
called (absolutely) free Σ-algebras generated by X. Moreover, any free
Σ-algebra generated by X is isomorphic to the Σ-algebra of terms over X,
which will be denoted here by T(Σ, X). Thus, free algebras are unique
up to isomorphisms. In the language of categories, the existence of free
Σ-algebras means that the forgetful functor U : Alg(Σ) → Set, from
the category of Σ-algebras to the category of sets, has a left adjoint F ,
associating to a set X any Σ-algebra with the universal mapping property
over X (which, as mentioned above, can be taken as being T(Σ, X)).

While algebras satisfying the universal mapping property always ex-
ist, and are (up to isomorphisms) algebras of terms, the situation is quite
different in the context of multialgebras. Indeed, it is well-known that mul-
tialgebras satisfying the universal mapping property do not exist, and so
the forgetful functor U : MAlg(Σ) → Set, from the category of multial-
gebras over the signature Σ to the category of sets, does not have a left
adjoint. This means that any possible “multialgebra of terms” generalizing
in some sense the notion of algebra of terms to the category of multial-
gebras necessarily will not satisfy the universal mapping property. A new
proof of this fact will be given in Section 4.



112 Marcelo E. Coniglio, Guilherme V. Toledo

The aim of this paper is proposing a very natural generalization to the
category of multialgebras of the concept of algebra of terms by means of a
family FT (Σ,V) of multialgebras of terms indexed by the cardinals κ > 0.
Any submultialgebra of a multialgebra of this family satisfies several equiv-
alent characterizations, which are necessarily weaker than the standard
characterization of absolutely free algebras by means of the universal map-
ping property. We propose the novel notion of weakly free Σ-multialgebras
as those multialgebras satisfying any, and therefore all, of these weaker
conditions. In particular, all of them are isomorphic to a submultialgebra
of a multialgebra in FT (Σ,V) for some V.

This paper is organized as follows: Section 2 proposes a natural notion
of multialgebras of (non-deterministic) terms. In Section 3, five equiva-
lent characterizations of the submultialgebras of multialgebras of terms are
given, which lead to the notion of weakly free multialgebras. In Section 4 we
apply one of the five characterizations obtained in Section 3 to offer a sim-
ple proof of the well-known result which states that the category MAlg(Σ)
of multialgebras does not have free objects. Finally, some conclusions are
provided in Section 5.

2. Multialgebras of non-deterministic terms

This section introduces the first main notion proposed in the paper: mul-
tialgebras of (non-deterministic) terms. As we shall see, a generalization
to the category of multialgebras of the concept of algebra of terms is at-
tained by means of a family of multialgebras of terms indexed by all the
cardinals κ > 0, instead of considering a single object. This reveals the
complexity required for adapting the notion of free objects to the category
of multialgebras: all the possible sizes for the outputs of the multioperators,
assuming that the outputs consist of sets of terms instead of terms, should
be considered. In this sense, κ represents the maximum of such sizes in a
given multialgebra of terms. Before introducing the definition itself, some
standard notions will be recalled.

A signature is a collection Σ = {Σn}n∈N of (possibly empty) pairwise
disjoint sets Σn. Elements of Σn are functional symbols of arity n. We
will denote by Σ either the collection itself or, when there is no risk of
confusion, the set

⋃
n∈N Σn.
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A Σ-multialgebra, or multialgebra, is a pair A = (A, {σA}σ∈Σ), where
A is a non-empty set (the universe of A) and {σA}σ∈Σ is a collection of
functions indexed by

⋃
n∈N Σn such that, if σ ∈ Σn, σA is a function of the

form
σA : An → P(A) \ {∅},

that is, an n−ary function from A to the set of non-empty subsets of A.
A homomorphism between two Σ-multialgebras A = (A, {σA}σ∈Σ) and

B = (B, {σB}σ∈Σ) is a function f : A→ B such that, for all n ∈ N, σ ∈ Σn
and elements a1, . . . , an ∈ A,

{f(a) : a ∈ σA(a1, . . . , an)} ⊆ σB(f(a1), . . . , f(an)).

When in the previous relation we replace inclusion by equality, we say
that f is a full homomorphism. To denote that the function f is a ho-
momorphism from A to B, we write f : A → B. If the homomorphism
f : A → B is injective, we call it a monomorphism and, if it is surjective,
we call it an epimorphism. A bijective full homomorphism will be called
an isomorphism.

The class of all Σ-multialgebras, equipped with the homomorphisms
between them (where composition and identity homomorphisms are as in
the category of sets), becomes the category MAlg(Σ). In this category,
the epics are precisely the epimorphisms, while any monomorphism is a
monic. In turn, isomorphisms, as defined above, are exactly the isomor-
phisms in the categorical sense (see, for instance, [5], Section 2). Notice,
however, that is not known whether all monics are monomorphisms. Any
standard Σ-algebra can be seen as a Σ-multialgebra in which the operators
return singletons. It is easy to see that the category of Σ-algebras is a full
subcategory of MAlg(Σ).

Given two Σ-multialgebras A = (A, {σA}σ∈Σ) and B = (B, {σB}σ∈Σ)
such that B ⊆ A, we say B is a submultialgebra of A if the identity function
id : B → A is a homomorphism from B to A (being therefore a monic).
That is, for every b1, . . . , bn ∈ B,

σB(b1, . . . , bn) ⊆ σA(b1, . . . , bn).

Given a set V of variables and a signature Σ = {Σn}n∈N, the algebra of
terms generated by V over Σ will be denoted by T(Σ,V), and its universe
will be denoted by T (Σ,V). The set T (Σ,V) is the smallest subset X of
the set of finite, non-empty sequences over V ∪

⋃
n∈N Σn such that:
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1. V ∪ Σ0 ⊆ X;

2. σα1 . . . αn ∈ X, whenever n ≥ 1, σ ∈ Σn and α1, . . . , αn in X.

The set T (Σ,V) becomes the Σ-algebra T(Σ,V) when we define, for any
σ ∈ Σn and terms α1, . . . , αn in T (Σ,V),

σT(Σ,V)(α1, . . . , αn) = σα1 . . . αn.

We define the order (or complexity) o(α) of a term α of T(Σ,V) as:
o(α) = 0 if α ∈ V ∪ Σ0; and o(σα1 . . . αn) = 1 + max{o(α1), . . . , o(αn)}.

Definition 2.1. Given a signature Σ and a cardinal κ > 0, the expanded
signature Σκ = {Σκn}n∈N is the signature such that Σκn = Σn×κ, where we
will denote the pair (σ, β) by σβ for σ ∈ Σ and β ∈ κ.

We demand that κ is greater than zero, which guarantees that, if Σ is
non-empty, so is Σκ.

Definition 2.2. Given a set of variables V, a signature Σ and a cardi-
nal κ > 0, we define the κ-branching Σ-multialgebra of non-deterministic
terms, or simply κ-branching multialgebra of terms, when Σ is obvious
from the context, as

mT(Σ,V, κ) = (T (Σκ,V), {σmT(Σ,V,κ)}σ∈Σ),

with universe T (Σκ,V) and such that, for σ∈Σn and α1, . . . , αn∈T (Σκ,V),

σmT(Σ,V,κ)(α1, . . . , αn) = {σβα1 . . . αn : β ∈ κ}.

Let FT (Σ,V) = (mT(Σ,V, κ))κ≥1 be the family of such multialgebras of
terms.

The intuition behind this definition is that connecting given terms
α1, . . . , αn with a functional symbol σ can, in a broader interpretation
taking into account non-determinism, return many terms with the same
general shape, namely σα1 . . . αn. All of such terms are constructed with
functional symbols σβ , and the collection of them (for β ∈ κ) corresponds
to the non-deterministic term generated from the given input.

In the general case, not all functional symbols should return the same
number κ of generalized terms. Because of this, the submultialgebras of
mT(Σ,V, κ) will be considered, where the cardinality of the outputs will
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vary as long as it is bounded by κ. Here, we will restrict ourselves to the
cases where Σ0 6= ∅ or V 6= ∅, so that mT(Σ,V, κ) is always well defined.

The order of an element α of mT(Σ,V, κ) is, by definition, its order as
an element of T (Σκ,V). Notice that, if

σmT(Σ,V,κ)(α1, . . . , αn) ∩ θmT(Σ,V,κ)(β1, . . . , βm) 6= ∅,

then σ = θ, n = m and α1 = β1, . . . , αn = βm, since if the intersection is
not empty there are β, γ ∈ κ such that σβα1 . . . αn = θγβ1 . . . βm and by
the structure of T (Σκ,V) we find that σβ = θγ .

Example 2.3. The Σ-algebras of terms T(Σ,V), when considered as mul-
tialgebras such that σT(Σ,V)(α1, . . . , αn) = {σα1 . . . αn}, are multialgebras
of terms, with κ = 1. That is, T(Σ,V) and mT(Σ,V, 1) are isomorphic.

From now on, the cardinal of a set X will be denoted by |X|.

Example 2.4. A directed graph is a pair (V,A), with V a non-empty set of
elements called vertices and A ⊆ V 2 a set of elements called arrows. We
say that there is an arrow from u to v, both in V , if (u, v) ∈ A. We say
that the n-tuple (v1, . . . , vn) is a path between u and v if u = v1, v = vn
and (vi, vi+1) ∈ A for every i ∈ {1, . . . , n − 1}. We say that u ∈ V has a
successor if there exists v ∈ V such that (u, v) ∈ A, and u has a predecessor
if there exists v ∈ V such that (v, u) ∈ A.

A directed graph F = (V,A) is a forest if, for any two u, v ∈ V , there
exists at most one path between u and v, and a forest is said to have height
ω if every vertex has a successor. We state that forests of height ω are in
bijection with the submultialgebras of the multialgebras of terms over the
signature Σs with exactly one operator s of arity 1.

Indeed, take as V the set of elements of F that have no predecessor and
define, for u ∈ V ,

sA(u) = {v ∈ V : (u, v) ∈ A}.

It is easy to see that the Σs-multialgebra A = (V, {sA}), submultialgebra
of mT(Σs,V, |V |), carries the same information that F .

Example 2.5. More generally, a directed multi-graph [6], or directed m-
graph, is a pair (V,A) with V a non-empty set of vertices and A a subset of
V +×V , where V + =

⋃
n∈N\{0} V

n is the set of finite, non-empty, sequences

over V . We will say that (v1, . . . , vn) is a path between u and v if u = v1,
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v = vn and, for every i ∈ {1, . . . , n− 1}, there exists vi1 , . . . , vim such that
((vi1 , . . . , vim), vi+1) is in A, with vi = vij for some j ∈ {1, . . . ,m}.

An m-forest is a directed m-graph such that any two elements are con-
nected by at most one path, and an m-forest is said to have n-height ω,
for n ∈ N \ {0}, if, for any (u1, . . . , un) ∈ V n, there exists v ∈ V such
that ((u1, . . . , un), v) ∈ A. Finally, we see that every m-forest F = (V,A)
with n-height ω, for every n ∈ S ⊆ N \ {∅}, is essentially equivalent to the
ΣS-multialgebra A = (V, {σA}σ∈ΣS

), with

σA(u1, . . . , un) = {v ∈ V : ((u1, . . . , un), v) ∈ A},

for σ of arity n, and ΣS the signature with exactly one operator of arity
n for every n ∈ S. It is not hard to see that A is a submultialgebra
of mT(ΣS ,V, |V |), with V the set of elements v of V such that, for no
(u1, . . . , un) ∈ V +, ((u1, . . . , un), v) ∈ A.

3. Being a submultialgebra of mT(Σ,V , κ) as. . .

The class of submultialgebras of the members of FT (Σ, V) = 
(mT(Σ, V, κ))κ≥1 is proposed to be the generalization of the free Σ-algebras 
to the category MAlg(Σ) of multialgebras. Because of this, the next step 
is to characterize the submultialgebras of mT(Σ, V, κ). In this section, 
five different characterizations of such multialgebras will be found, proving 
that all of them are equivalent (see Theorem 3.42). From this we arrive to 
the second main notion proposed in this paper: weakly free multialgebras 
over Σ.

3.1. . . . being cdf-generated

In universal algebra, the algebras of terms T(Σ,V) have the universal map-
ping property for the class of all Σ-algebras over V. This means that there
exists a set, in their case the set of variables V, such that, for every other
Σ-algebra B with universe B and function f : V → B, there exists a unique
homomorphism f : T(Σ,V) → B extending f . As we mentioned before,
this is no longer true when dealing with multialgebras, but we can define
a closely related concept with the aid of what we will call collections of
choices.
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Collections of choices are motivated by the notion of legal valuations,
first defined in Avron and Lev’s seminal paper [1] in the context of non-
deterministic logical matrices. A map ν from T(Σ,V) (seen as the alge-
bra of propositional formulas over Σ generated by V) to the universe of a
Σ-multialgebra A is a legal valuation whenever ν(σα1 . . . αn) ∈
σA(ν(α1), . . . , ν(αn)), for any connective σ in Σ. Essentially, for any for-
mula σα1 . . . αn, ν “chooses” a value from all the possible values
σA(ν(α1), . . . , ν(αn)), possible values which depend themselves on the pre-
vious choices ν(α1), . . . , ν(αn) performed by ν.

A collection of choices automatizes all these aforementioned choices,
what justifies its name.

Definition 3.1. Given multialgebras A = (A, {σA}σ∈Σ) and B =
(B, {σB}σ∈Σ) over the signature Σ, a collection of choices from A to B
is a collection C = {Cn}n∈N of collections of functions

Cn =
{
Cσb1,...,bna1,...,an : σ ∈ Σn, a1, . . . , an ∈ A, b1, . . . , bn ∈ B

}
such that, for σ ∈ Σn, a1, . . . , an ∈ A and b1, . . . , bn ∈ B, Cσb1,...,bna1,...,an is a
function of the form

Cσb1,...,bna1,...,an : σA(a1, . . . , an)→ σB(b1, . . . , bn).

Example 3.2. If B is actually an algebra, that is, all its operations return
singletons, there exists only one collection of choices from any A to B. This
means that in the classical environment of universal algebras, collections
of choices are somewhat irrelevant.

Example 3.3. A directed tree is a directed forest where there exists exactly
one element without predecessor. We say that v ramifies from u if there
exists an arrow from u to v. Then, for a collection of choices C from T1

to T2 (T1 = (V1, A1) and T2 = (V2, A2) are directed trees of height ω,
considered as Σs-multialgebras) and for every v ∈ V1 and u ∈ V2, the
function Csuv chooses, for each of the elements that ramify from v, one
element that ramifies from u.

Definition 3.4. Given a signature Σ, a Σ-multialgebra A = (A, {σA}σ∈Σ)
is choice-dependent freely generated by X if X ⊆ A and, for all Σ-multial-
gebras B = (B, {σB}σ∈Σ), all functions f : X → B and all collections of
choices C from A to B, there is a unique homomorphism fC : A → B such
that:
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1. fC |X = f ;

2. for all σ ∈ Σn and a1, . . . , an ∈ A,

fC |σA(a1,...,an) = CσfC(a1),...,fC(an)
a1,...,an .

For simplicity, when A is choice-dependent freely generated by X, we
will say that A is cdf-generated by X.

In the next definition, we introduce the concept of ground to indicate
what elements of a multialgebra are not “achieved” by its multioperations.
To better visualize this definition one can keep in mind that the ground of
an algebra of terms is its set of indecomposable terms, that is, variables.

Definition 3.5. Given a Σ-multialgebra A = (A, {σA}σ∈Σ), we define its
build as

B(A) =
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ A
}
.

We define the ground of A as

G(A) = A \B(A).

Example 3.6. B(T(Σ,V)) = T (Σ,V) \ V and G(T(Σ,V)) = V.

Example 3.7. If F = (V,A) is a directed forest of height ω, thought as a
Σs-multialgebra, its ground is the set of elements v in V without predeces-
sors.

Proposition 3.8.

1. If f : A → B is a homomorphism between Σ-multialgebras, then
B(A) ⊆ f−1(B(B)) and f−1(G(B)) ⊆ G(A);

2. If B is a submultialgebra of A, B(B) ⊆ B(A) and G(A)∩B ⊆ G(B).

Proof:

1. If a ∈ B(A), there exist σ ∈ Σn and a1, . . . , an ∈ A such that a ∈
σA(a1, . . . , an). Since f(σA(a1, . . . , an)) ⊆ σB(f(a1), . . . , f(an)), we
find that f(a) ∈ σB(f(a1), . . . , f(an)) and therefore f(a) ∈ B(B),
meaning that a ∈ f−1(B(B)). Using that G(A) = A \ B(A) we
obtain the second mentioned inclusion.
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2. If b ∈ B(B), there exist σ ∈ Σn and b1, . . . , bn ∈ B such that
b ∈ σB(b1, . . . , bn), and given that σB(b1, . . . , bn) ⊆ σA(b1, . . . , bn) we
obtain b ∈ B(A). Using again that G(A) = A \ B(A) we finish the
proof.

From this it also follows that if f : A → B is a homomorphism, G(B)∩
f(A) is contained in {f(a) : a ∈ G(A)}. Indeed, if b is in G(B)∩f(A), any
a ∈ A such that f(a) = b is in f−1(G(B)) and, by the previous proposition,
is also in G(A). And therefore b is in {f(a) : a ∈ G(A)}.

Generalizing Example 3.6, we have that G(mT(Σ,V, κ)) = V, or equiv-
alently B(mT(Σ,V, κ)) = T (Σκ,V) \ V, what we show by induction. If α
is of order 0, either we have α = σβ , for a σ ∈ Σ0 and β ∈ κ, and therefore
α ∈ B(mT(Σ,V, κ)); or we have that α = p ∈ V. In that last case, if there
exist σ ∈ Σm and α1, . . . , αm ∈ T (Σκ,V) such that

p ∈ σmT(Σ,V,κ)(α1, . . . , αm),

we have p = σβα1 . . . αm for β ∈ κ, which is absurd given the structure of
T (Σκ,V), forcing us to conclude that p /∈ B(mT(Σ,V, κ)). If α is of order
n > 0, we have that α = σβα1 . . . αm for σ ∈ Σm, β ∈ κ and α1, . . . , αm of
order at most n − 1, and therefore we have α in σmT(Σ,V,κ)(α1, . . . , αm),
meaning that α ∈ B(mT(Σ,V, κ)).

Definition 3.9. Given a Σ-multialgebra A = (A, {σA}σ∈Σ) and a set
S ⊆ A, we define the sets 〈S〉m by induction: 〈S〉0 = S ∪

⋃
σ∈Σ0

σA; and
assuming we have defined 〈S〉m, we define

〈S〉m+1 = 〈S〉m∪
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ 〈S〉m
}
.

The set generated by S, denoted by 〈S〉, is then defined as 〈S〉 =
⋃
m∈N〈S〉m.

We say A is generated by S if 〈S〉 = A.

Lemma 3.10. Every submultialgebra A of mT(Σ,V, κ) is generated
by G(A).

Proof: Suppose a is an element of A not contained in 〈G(A)〉 of minimum
order. Given that a cannot belong to G(A) ∪

⋃
σ∈Σ0

σA = 〈G(A)〉0, there
exist n > 0, σ ∈ Σn and a1, . . . , an ∈ A such that a ∈ σA(a1, . . . , an).
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Since σA(a1, . . . , an) ⊆ σmT(Σ,X,κ)(a1, . . . , an) we derive that a1, . . . , an
are of smaller order than a. By our hypothesis, there must exist m1, . . . ,mn

such that aj ∈〈G(A)〉mj
for all j∈{1, . . . , n}; taking m=max{m1, . . . ,mn}

one obtains that a1, . . . , an ∈ 〈G(A)〉m, and therefore

a ∈ σA(a1, . . . , an) ⊆ 〈G(A)〉m+1,

which contradicts our assumption that a is not in 〈G(A)〉.
Theorem 3.11. Every submultialgebra A of mT(Σ,V, κ) is cdf-generated
by G(A).

Proof: Let A = (A, {σA}Σ) be a submultialgebra of mT(Σ,V, κ), let
B = (B, {σB}Σ) be any Σ-multialgebra, let f : G(A) → B be a function
and C a collection of choices from A to B. We define fC : A → B by
induction on 〈G(A)〉m:

1. if a ∈ 〈G(A)〉0 and a ∈ G(A), we define fC(a) = f(a);

2. if a ∈ 〈G(A)〉0 and a ∈ σA, for some σ ∈ Σ0, we define fC(a) =
Cσ(a);

3. if fC is defined for all elements of 〈G(A)〉m, a1, . . . , an ∈ 〈G(A)〉m
and σ ∈ Σn, for every element a ∈ σA(a1, . . . , an) we define

fC(a) = CσfC(a1),...,fC(an)
a1,...,an (a).

First, we must prove that fC is well defined. There are two possibly
problematic cases to consider for an element a ∈ A:

1. the one in which a ∈ G(A) and there are σ ∈ Σn and a1, . . . , an ∈ A
with a ∈ σA(a1, . . . , an), corresponding to a falling simultaneously in
the cases (1) and (2), or (1) and (3) of the definition;

2. and the one where there are σ ∈ Σn, θ ∈ Σm, a1, . . . , an ∈ A and
b1, . . . , bm ∈ A such that a ∈ σA(a1, . . . , an) and a ∈ θA(b1, . . . , bm),
a situation that corresponds to the cases (2) and (3), (2) and (2),2 or
(3) and (3)3 occurring simultaneously.

2That is, a ∈ 〈G(A)〉0, and a ∈ σA and a ∈ θA, for different σ, θ ∈ Σ0, where
defining fC(a) as both Cσ(a) and Cθ(a) could be impossible.

3That is, fC is defined for all of 〈G(A)〉k, a1, . . . , an, b1, . . . , bm ∈ 〈G(A)〉k, and
a ∈ σA(a1, . . . , an) and a ∈ θA(b1, . . . , bm), for σ ∈ Σn and θ ∈ Σm, meaning it could
be impossible to define fC(a) in a systematic way.
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The first case is not possible, since G(A) ⊆ A\σA(a1, . . . , an) for every
σ ∈ Σn and a1, . . . , an ∈ A. In the second case, we find that

a ∈ σA(a1, . . . , an) ∩ θA(b1, . . . , bm) ⊆
σmT(Σ,V,κ)(a1, . . . , an) ∩ θmT(Σ,V,κ)(b1, . . . , bm),

so n = m, σ = θ and a1 = b1, . . . , an = bm, and therefore fC(a) is well-
defined.

Second, we must prove that fC is defined over all of A. That is simple,
for fC is defined over all of 〈G(A)〉 and we established in Lemma 3.10 that
A = 〈G(A)〉.

So fC : A→ B is a well-defined function. It remains to be shown that
it is a homomorphism. So, given σ ∈ Σn and a1, . . . , an, we see that

fC(σA(a1, . . . , an)) =
{
CσfC(a1),...,fC(an)

a1,...,an (a) : a ∈ σA(a1, . . . , an)
}

⊆ σB(fC(a1), . . . , fC(an)),

while we also have that fC clearly extends both f and all Cσ
fC(a1,...,fC(an)
a1,...,an .

To finish the proof, suppose g : A → B is another homomorphism

extending both f and all Cσ
g(a1,...,g(an)
a1,...,an . We will prove that g = fC again

by induction on the m of 〈G(A)〉m. For m = 0, an element a ∈ 〈G(A)〉0 is
either in G(A), when we have g(a) = f(a) = fC(a), or in σA for a σ ∈ Σ0,
when g(a) = Cσ(a) = fC(a).

Suppose g is equal to fC in 〈G(A)〉m and take an a ∈ 〈G(A)〉m+1 \
〈G(A)〉m. Then, there exist σ ∈ Σn and a1, . . . , an ∈ 〈G(A)〉m such that
a ∈ σA(a1, . . . , an) and so

g(a) = Cσg(a1),...,g(an)
a1,...,an (a) = CσfC(a1),...,fC(an)

a1,...,an (a) = fC(a).

This proves that g = fC and that, in fact, fC is unique. That is, A is
cdf-generated by G(A).

The proof of the following lemma may be found in Section 2 of [5].

Lemma 3.12. Let A = (A, {σA}σ∈Σ) and B = (B, {σB}σ∈Σ) be Σ-multi-
algebras, and let f : A → B be a homomorphism. Then, the structure
C = (f(A), {σC}σ∈Σ) such that

σC(c1, . . . , cn) =
⋃
{f(σA(a1, . . . , an)) : f(a1) = c1, . . . , f(an) = cn}
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is a Σ-submultialgebra of B, while f : A → C is an epimorphism. The
Σ-multialgebra C is known as the direct image of A trough f .

Theorem 3.13. If the multialgebra A = (A, {σA}σ∈Σ) over Σ is cdf-
generated by X, then A is isomorphic to a submultialgebra of mT(Σ, X, |A|)
containing X.

Proof: Take f : X → T (Σ|A|, X) to be the identity map (that is, f(x) =
x), and take a collection of choices C such that, for σ ∈ Σn, a1, . . . , an ∈ A
and α1, . . . , αn ∈ T (Σ|A|, X),

Cσα1,...,αn
a1,...,an : σA(a1, . . . , an)→ σmT(Σ,X,|A|)(α1, . . . , αn)

is an injective function. Such collection of choices exists since
σA(a1, . . . , an) ⊆ A and σmT(Σ,X,|A|)(α1, . . . , αn) is of cardinality |A|. Since
A is cdf-generated by X, there exists a homomorphism

fC : A →mT(Σ, X, |A|) extending f and each Cσ
fC(a1),...,fC(an)
a1,...,an .

Let B = (fC(A), {σB}σ∈Σ) be the direct image of A trough fC , so that
fC : A → B is an epimorphism, what is possible given Lemma 3.12. Notice
too that

X = X ∩ fC(A) = G(mT(Σ, X, |A|)) ∩ fC(A) ⊆ G(B)

because B is a submultialgebra of mT(Σ, X, |A|). Now, take any g :
G(B) → A such that g(x) = x, for every x ∈ X, and a collection of
choices D from B to A such that, for any σ ∈ Σn, b1, . . . , bn ∈ fC(A) and
a1, . . . , an ∈ A, the function

Dσa1,...,anb1,...,bn
: σB(b1, . . . , bn)→ σA(a1, . . . , an)

satisfies the following: if a ∈ σA(a1, . . . , an) is such that Cσb1,...,bna1,...,an(a) ∈
σB(b1, . . . , bn), then Dσa1,...,anb1,...,bn

(Cσb1,...,bna1,...,an(a)) = a. Given that Cσb1,...,bna1,...,an
is injective, this condition is well-defined.

Since B is cdf-generated by G(B), we know there exists a homomor-

phism gD : B → A extending g and the functions Dσ
gD(b1),...,gD(bn)
b1,...,bn

.
Finally, we take gD ◦ fC : A → A. It extends the injection id = g ◦ f :

X → A, for which id(x) = x. It also extends the collection of choices E
defined by
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Eσ
a′1,...,a

′
n

a1,...,an = Dσ
a′1,...,a

′
n

fC(a1),...,fC(an) ◦ C
fC(a1),...,fC(an)
a1,...,an :

σA(a1, . . . , an)→ σA(a′1, . . . , a
′
n),

for σ ∈ Σn and a1, . . . an, a
′
1, . . . , a

′
n ∈ A. This way, Eσa1,...,ana1,...,an is the

identity on σA(a1, . . . , an). Indeed, for any a ∈ σA(a1, . . . , an),

CσfC(a1),...,fC(an)
a1,...,an (a) = fC(a)

by definition of fC , and, given that fC : A → B is a homomorphism, fC(a)

belongs to σB(fC(a1), . . . , fC(an)), meaning that Cσ
fC(a1),...,fC(an)
a1,...,an (a) ∈

σB(fC(a1), . . . , fC(an)). Then

Eσa1,...,ana1,...,an (a) = Dσa1,...,anfC(a1),...,fC(an)(C
fC(a1),...,fC(an)
a1,...,an (a)) = a

by the definition of D.
But notice that the identical homomorphism I : A → A also extends

both id and E and, given the uniqueness of such extensions on the definition
of being cdf-generated, we obtain that I = gD ◦ fC . The fact that fC :
A → B has a left inverse implies that it is injective, and by definition of B
it is also surjective, meaning that it is a bijective function. Moreover, gD
is the inverse function of fC . Finally, for σ ∈ Σn and a1, . . . , an ∈ A,

fC(σA(a1, . . . , an)) ⊆ σB(fC(a1), . . . , fC(an)),

since fC is a homomorphism. However, given that gD is also a homomor-
phism,

gD(σB(fC(a1), . . . , fC(an))) ⊆ σA(gD ◦ fC(a1), . . . , gD ◦ fC(an))

= σA(a1, . . . , an),

and by applying fC to both sides, one obtains

σB(fC(a1), . . . , fC(an)) = fC(gD(σB(fC(a1), . . . , fC(an))))

⊆ fC(σA(a1, . . . , an)).

This proves that fC is a bijective full homomorphism, that is, an isomor-
phism.
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Notice that, from the proof above, we can see that if A = (A, {σA}σ∈Σ)
is cdf-generated by X, then A is in fact isomorphic to a submultialgebra
of mT(Σ, X,M(A)), where

M(A) = max
{
|σA(a1, . . . , an)| : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ A

}
.

It is clear that M(A) = κ for the multialgebra A = mT(Σ,V, κ). The
value M(A) has been already regarded in the literature as an important
aspect of multialgebras, see [8] (observe, however, that their definition of
homomorphism is quite different from ours).

Notice, furthermore, that written in classical terms, the previous Theo-
rems 3.11 and 3.13 state a well known result: an algebra is absolutely free
iff it is isomorphic to some algebra of terms over the same signature.

Corollary 3.14. Every cdf-generated multialgebra A is generated by its
ground G(A).

Proof: Since every cdf-generated multialgebra is isomorphic to a sub-
multialgebra of some mT(Σ, X, κ), from 3.13, and every submultialgebra
of mT(Σ, X, κ) is generated by its ground, the result follows.

Corollary 3.15. Every cdf-generated multialgebra A is cdf-generated
by its ground G(A).

Definition 3.16. A Σ-multialgebra A = (A, {σA}σ∈Σ) is said to be dis-
connected if, for every σ ∈ Σn, θ ∈ Σm, a1, . . . , an, b1, . . . , bm ∈ A,

σA(a1, . . . , an) ∩ θA(b1, . . . , bm) 6= ∅

implies that n = m, σ = θ and a1 = b1, . . . , an = bm.

Example 3.17. T(Σ,V) is disconnected.

Example 3.18. All directed forests of height ω, when considered as Σs-mul-
tialgebras, are disconnected, given that no two arrows point to the same
element.

It is clear that if B is a submultialgebra of A and A is disconnected,
then B is also disconnected, since if σB(a1, . . . , an)∩θB(b1, . . . , bm) 6= ∅, for
a1, . . . , an, b1, . . . , bm ∈ B, given that σB(a1, . . . , an) ⊆ σA(a1, . . . , an) and
θB(b1, . . . , bm) ⊆ θA(b1, . . . , bm), we find that σA(a1, . . . , an) ∩
θA(b1, . . . , bm) 6= ∅ and therefore n = m, σ = θ and a1 = b1, . . . , an = bm.
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We noticed before that mT(Σ,V, κ) is disconnected, and by Theo-
rem 3.13 we obtain that every cdf−generated algebra is disconnected. This
also means something deeper: being disconnected is, in a way, a measure
of how free of identities a multialgebra is. After all, the fact that no two
multioperations agree on any elements is strongly indicative that the mul-
tialgebra does not satisfy any identities.

3.2. . . . being disconnected and generated by its ground

Now, we continue to look at other possible characterizations of the submul-
tialgebras of the multialgebras of terms. One sees that algebras of terms
do not have identities, what would partially correspond in our study to the
concept of being disconnected. But what is possibly more representative of
our intuition for terms is that one starts by defining them from elements
that are as simple as possible (variables), and continues indefinitely. The
concept of indecomposable element is here replaced by that of being an el-
ement of the ground, so one would expect that being generated by it plays
some role in what we have defined so far.

Lemma 3.19. If A is cdf-generated by X, then X ⊆ G(A).

Proof: If A is cdf-generated by X, then A is isomorphic to a submultial-
gebra of mT(Σ, X, |A|) containing X, from Theorem 3.13. Let us assume
that A is equal to this submultialgebra, without loss of generality. Then,
X = G(mT(Σ, X, |A|)) ∩A ⊆ G(A).

Lemma 3.20. If A is cdf-generated by both X and Y , with X ⊆ Y , then
X = Y .

Proof: Suppose X 6= Y and let y ∈ Y \ X. Take a Σ-multialgebra B,
over the same signature as that of A, such that |B| ≥ 2, and a collection
of choices C from A to B.

Take also two functions g, h : Y → B such that g|X = h|X and g(y) 6=
h(y), what is possible since |B| ≥ 2. Given that A is cdf-generated by Y ,
there exist unique homomorphisms gC and hC extending both g and C,
and h and C, respectively.

However, gC and hC extend both g|X : X → B and C, and since A
is cdf-generated by X, we find that gC = hC . This is not possible, since
gC(y) 6= hC(y), what must imply that Y \X = ∅ and therefore X = Y .
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Theorem 3.21. Every cdf-generated multialgebra A is cdf-generated only
by its ground.

Proof: From Corollary 3.14, A is cdf-generated by G(A), and from
Lemma 3.19, if A is also cdf-generated by X, then X ⊆ G(A). By
Lemma 3.20, this implies that X = G(A).

We have proved so far that if A is cdf-generated, then A is generated by
its ground and disconnected. We would like to prove that this is enough to
characterize a cdf-generated multialgebra. That is, if A is generated by its
ground and disconnected, then it is cdf-generated, exactly by its ground.

The idea is similar to the one we used to prove that all submultialgebras
of mT(Σ,V, κ) are cdf-generated: take a multialgebra A that is both gen-
erated by its ground G(A), which will be denoted by X, and disconnected,
and fix a multialgebra B over the same signature, a function f : X → B
and a collection of choices C from A to B.

We define a function fC : A → B using induction on the 〈X〉n. For
n = 0, either we have an element x ∈ X, when we define fC(x) = f(x), or
we have a ∈ σA for some σ ∈ Σ0, when we define fC(a) = Cσ(a). Notice
that, up to this point, there are no contradictions in this definition, given
that an element cannot belong both to X and to a σA, since X = G(A).

Suppose we have successfully defined fC on 〈X〉m and take an a ∈
σA(a1, . . . , an) for a1, . . . , an ∈ 〈X〉m. We then define

fC(a) = CσfC(a1),...,fC(an)
a1,...,an (a).

Again the function remains well-defined: a cannot belong to X, since X =
G(A), and cannot belong to a θA(b1, . . . , bp) unless p = n, θ = σ and
b1 = a1, . . . , bp = an, since A is disconnected.

Clearly fC is a homomorphism, since the image of σA(a1, . . . , an) under
fC is contained in σB(fC(a1), . . . , fC(an)), and fC extends both f and C.

Lemma 3.22. If a multialgebra A is both generated by its ground X and
disconnected, A is cdf-generated by X.

Proof: It remains for us to show that fC , as defined above, is the only
homomorphism extending f and C. Suppose g is another such homomor-
phism and we shall proceed yet again by induction.

On 〈X〉0, we have that fC(x) = f(x) = g(x) for all x ∈ X; and for
σ ∈ Σ0 and a ∈ σA we have that
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fC(a) = Cσ(a) = g(a),

hence fC and g coincide on 〈X〉0. Suppose that fC and g are equal on
〈X〉m and take a ∈ σA(a1, . . . , an) for a1, . . . , an ∈ 〈X〉m. We have by
induction hypothesis that

fC(a) = CσfC(a1),...,fC(an)
a1,...,an (a) = Cσg(a1),...,g(an)

a1,...,an (a) = g(a),

which concludes our proof.

Theorem 3.23. A multialgebra A is cdf-generated iff A is generated by its
ground and disconnected.

It is important to analyze, by means of examples, the differences be-
tween the several concepts involved: are there multialgebras that are dis-
connected but not generated by their grounds? Are there multialgebras
that are generated by their grounds but not disconnected? If not, does
being generated by its ground imply being disconnected or vice-versa? We
show below that this is not the case by providing examples answering pos-
itively both previous questions.

Example 3.24. Take the signature Σs from Example 2.4. Consider the
Σs−multialgebra C = ({−1, 1}, {sC}) such that sC(−1) = {1} and sC(1) =
{−1} (that is, sC(x) = {−x}).

We state that C is disconnected, but not generated by its ground. C is
clearly disconnected since sC(−1)∩sC(1) = ∅; now, B(C) = sC(−1)∪sC(1) =
{−1, 1}, and so G(C) = ∅.

Since Σs has no 0-ary operators and G(C) = ∅, it follows that 〈G(C)〉0 =
∅ and therefore 〈G(C)〉n = ∅ for every n ∈ N, meaning that G(C) does not
generate C.

Example 3.25. Take again the signature Σs with a single unary operator,
from Example 2.4. Consider the Σs-multialgebra B = ({0, 1}, {sB}) such
that sB(0) = {1} and sB(1) = {1} (that is, sB(x) = {1}).

Then B is clearly not disconnected, since sB(0) ∩ sB(1) = {1}, yet B is
generated by its ground: B(B) = {1} and so G(B) = {0}, and we see that
〈G(B)〉1 is already {0, 1}.
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−1 1

sC

sC

The Σs-multialgebra C

0 1
sB sB

The Σs-multialgebra B

3.3. . . . being disconnected and having a strong basis

We give another characterization of being cdf-generated, that is, being dis-
connected and having a strong basis, in a sense we now define. Remember
that Σ-algebras with the universal mapping condition for the entire class
of Σ-algebras (i.e. algebras of terms) are easier to be defined than the ones
with the universal mapping property for some proper variety. That is why
in this article we define only multialgebras of terms. The “strong basis”
carries the qualifier “strong” for we hope that, once an adequate generaliza-
tion of algebras satisfying the universal mapping property for some proper
variety is found for the subject of multialgebras, these multialgebras will
have minimal, not minimum, generating sets, i.e. basis.

Definition 3.26. We say B ⊆ A is a strong basis of the Σ-multialgebra
A = (A, {σA}σ∈Σ) if it is the minimum of the set G = {S ⊆ A : 〈S〉 = A}
ordered by inclusion.

Example 3.27. The set of variables V is a strong basis of T(Σ,V).

Example 3.28. The set of elements without predecessor of a directed forest
of height ω is a strong basis of the forest, considered as a Σs-multialgebra.

Lemma 3.29. For every subset S of the universe of a Σ-multialgebra A,
G(A) ∩ 〈S〉 ⊆ S.

Proof: Suppose x ∈ G(A) ∩ 〈S〉: if x /∈ S, we will show that x cannot be
in 〈S〉, which contradicts our assumption. Indeed, if x /∈ S then

x /∈ 〈S〉0 = S ∪
⋃
σ∈Σ0

σA,
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since x /∈ S, and x ∈ G(A) implies that

x ∈ A \B(A) ⊆ A \
⋃
σ∈Σ0

σA.

Now, for induction hypothesis, suppose that x /∈ 〈S〉m. Then,

x /∈ 〈S〉m+1 = 〈S〉m ∪
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn,

a1, . . . , an ∈ 〈S〉m
}

since x /∈ 〈S〉m, and x ∈ G(A) implies that

x ∈ A \B(A)⊆A \
⋃{

σA(a1, . . . , an) : n∈N, σ ∈ Σn, a1, . . . , an∈〈S〉m
}
.

Theorem 3.30. If the Σ-multialgebra A has a strong basis B, G(A) ⊆ B.

Proof: By Lemma 3.29, G(A) = G(A) ∩A = G(A) ∩ 〈B〉 ⊆ B.

Definition 3.31. If B is a strong basis of a disconnected Σ-multialgebra
A, we define the B-order of an element a ∈ A as the natural number

oB(a) = min
{
k ∈ N : a ∈ 〈B〉k

}
.

This is a clear generalization of the order, or complexity, of a term. In
fact, the order of a term in T (Σ,V) is exactly its V-order.

It is clear that, if a ∈ σA(a1, . . . , an) and oB(a) ≥ 1, then
oB(a1), . . . , ob(an) < oB(a). In fact, suppose m + 1 = oB(a), implying
that

a ∈ 〈B〉m+1 = 〈B〉m ∪
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn,

a1, . . . , an ∈ 〈B〉m
}
.

Since m + 1 = min{k ∈ N : a ∈ 〈B〉k}, we have that a /∈ 〈B〉m and
therefore

a ∈
⋃{

σA(a1, . . . , an) : n ∈ N, σ ∈ Σn, a1, . . . , an ∈ 〈B〉m
}
.

Finally, we obtain that there exist p ∈ N, θ ∈ Σp and b1, . . . , bp ∈ 〈B〉m
such that a ∈ θA(b1, . . . , bp). Since a ∈ σA(a1, . . . , an), this implies that
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σA(a1, . . . , an)∩θA(b1, . . . , bp) 6= ∅, and therefore p = n, θ = σ and b1 = a1,
. . . , bp = an, so that oB(a1), . . . , oB(an) ≤ m.

But what if a ∈ σA(a1, . . . , an), for n > 0, and oB(a) = 0, implying
a ∈ B? We claim this case cannot occur, for if it does,

B∗ =
(
B ∪ {a1, . . . , an}

)
\ {a}

generates A, while clearly not containing B. We have that a ∈ 〈B∗〉1, since
a1, . . . , an ∈ B∗ and a ∈ σA(a1, . . . , an), and given that B \ {a} ⊆ B∗, it
follows that B ⊆ 〈B∗〉1, and so 〈B〉0 ⊆ 〈B∗〉1.

It is then true that 〈B〉m ⊆ 〈B∗〉m+1 for every m ∈ N. Indeed, if
this is true for m, let b ∈ 〈B〉m+1, and then either b ∈ 〈B〉m, so that
b ∈ 〈B∗〉m+1 ⊆ 〈B∗〉m+2, or there exist θ ∈ Σp and b1, . . . , bp ∈ 〈B〉m such
that b ∈ θA(b1, . . . , bp). In this case, since 〈B〉m ⊆ 〈B∗〉m+1, we have that

b∈θA(b1, . . . , bp)⊆
⋃{

σA(a1, . . . , an) : n∈N, σ∈Σn,

a1, . . . , an∈〈B∗〉m+1

}
⊆〈B∗〉m+2,

so once again b ∈ 〈B∗〉m+2. Since 〈B〉 =
⋃
m∈N〈B〉m equals A, we have

that 〈B∗〉 also equals A, as we previously stated. This is absurd, since
B is the minimum of {S ⊆ A : 〈S〉 = A}, ordered by inclusion, and
B 6⊆ B∗. The conclusion must be that if a ∈ σA(a1, . . . , an) for n > 0, then
oB(a1), . . . , oB(an) < oB(a), regardless of the value of oB(a).

Lemma 3.32. If A is disconnected and has a strong basis B, then B = G(A)
and so A is generated by its ground.

Proof: Suppose a ∈ B \ G(A). Since a is in the build of A, there exist
σ ∈ Σn and elements a1, . . . , an ∈ A such that a ∈ σA(a1, . . . , an). If n > 0,
oB(a) > oB(a1) ≥ 0, which contradicts the fact that a ∈ B and therefore
oB(a) = 0.

If n = 0, it is clear that B∗ = B\{a} is a generating set smaller than B:
generating set because, if σ ∈ Σ0 and a ∈ σA, a ∈

⋃
σ∈Σ0

σA and therefore
B ⊆ 〈B∗〉0, so that 〈B〉m ⊆ 〈B∗〉m+1. This is also a contradiction, since B
is a strong basis.

Theorem 3.33. A is generated by its ground and disconnected iff it has a
strong basis and it is disconnected.

Proof: We already proved, in Lemma 3.32, that if A is disconnected and
has a strong basis B, then it is generated by its ground and disconnected.
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Conversely, if A is disconnected and generated by its ground, first of all it
is clearly disconnected.

Now, if 〈G(A)〉 = A, one has that G(A) ⊆ S for every S ∈ {S ⊆ A :
〈S〉 = A}, by Lemma 3.29. Therefore, the ground is a strong basis.

Once again, we ask ourselves: does being disconnected imply having
a strong basis or vice-versa? We show that this is not the case by provid-
ing examples of a multialgebra that is disconnected but does not have a
strong basis, and one of a multialgebra that has a strong basis but is not
disconnected.

Example 3.34. Take the signature Σs and the Σs-multialgebra C from Ex-
ample 3.24.

We know that C is disconnected, but we also state that it does not have
a strong basis: in fact, we see that the set

{
S ⊆ {−1, 1} : 〈S〉 = {−1, 1}

}
is exactly

{
{−1}, {1}, {−1, 1}

}
, and this set has no minimum.

Example 3.35. Take the Σs-multialgebra B from Example 3.25.
As we saw before, B is not disconnected. However we state that it has

a strong basis: B = {0} generates B and, since {1} does not generate the
multialgebra, we find that B is a minimum generating set.

From these two examples, one could hypothesize that for a multialge-
bra being generated by its ground is equivalent to having a strong basis.
Clearly, being generated by its ground implies having a strong basis, that
is, the ground. But as we show in the example below, having a strong basis
does not imply being generated by its ground.

Example 3.36. Take the signature Σs from Example 2.4, and consider the
Σs-multialgebra M = ({−1, 0, 1}, {sM}) such that sM(0) = {0}, sM(1) =
{1} and sM(−1) = {1} (that is, sM(x) = {abs(x)}, where abs(x) denotes
the absolute value of x).

We have that G(M) = {−1} and that 〈{−1}〉 = {−1, 1}, so that M is
not generated by its ground. But we state that {−1, 0} is a strong basis.
First of all, it clearly generates M. Furthermore, the generating sets of
M are only {−1, 0} and {−1, 0, 1}, so that {−1, 0} is in fact the smallest
generating set.
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The Σs-multialgebra M

3.4. . . . being disconnected and chainless

The last equivalence to being a submultialgebra of mT(Σ,V, κ) we give
depends on the notion of being chainless, which is rather graph-theoretical
in nature. Think of a tree that ramifies ever downward. One can pick any
vertex and proceed, against the arrows, upwards until an element without
predecessor is reached. More than that, it is not possible to find an infinite
path, starting in any one vertex, by always going against the arrows: such
a path, if it existed, would be what we shall call a chain. A multialgebra
without chains is, very naturally, chainless.

As it was in the case of strong basis, there isn’t a parallel concept
to being chainless in universal algebra: it seems that this concept is far
more natural when dealing with multioperations, although it can be easily
applied to algebras if one wishes to do so. Closely related (although not
equivalent) to chains are the branches in the formation trees of terms: if
allowed to grow infinitely, these would became chains.

Given a permutation τ : {1, . . . , n} → {1, . . . , n} in Sn, the group of
permutations on n elements, the action of τ in an n-tuple (x1, . . . , xn) ∈ Xn

is given by
τ(x1, . . . , xn) = (xτ(1), . . . , xτ(n)).

Given 1 ≤ i, j ≤ n, we define [i, j] to be the permutation such that [i, j](i) =
j, [i, j](j) = i and, for k ∈ {1, . . . , n} different from i and j, [i, j](k) = k.

Definition 3.37. Given a Σ-multialgebra A, a sequence {an}n∈N of ele-
ments of A is said to be a chain if, for every n ∈ N, there exist a positive
natural number mn ∈ N \ {0}, a functional symbol σn ∈ Σmn

, a permuta-
tion τn ∈ Smn and elements an1 , . . . , a

n
mn−1 ∈ A such that

an ∈ σnA(τn(an+1, a
n
1 , . . . , a

n
mn−1)).
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A Σ-multialgebra is said to be chainless when it has no chains.

Example 3.38. Take a directed forest of height ω and add a loop to it, that
is, choose a vertex v and add an arrow from v to v. Then, {an}n∈N such
that an = v, for every n ∈ N, is a chain.

Example 3.39. T(Σ,V) is chainless.

Lemma 3.40. If A is chainless, then it is generated by its ground.

Proof: Suppose that A is not generated by its ground. Thus, A \ 〈G(A)〉
is not empty, and must therefore contain some element a0. We create a
chain {an}n∈N by induction, the case n = 0 being already done.

So, suppose we have created a finite sequence of elements a0, . . . , ak ∈
A \ 〈G(A)〉 such that, for each 0 ≤ n < k, there exist a positive integer
mn ∈ N\{0}, a functional symbol σn ∈ Σmn , a permutation τn ∈ Smn and
elements an1 , . . . , a

n
mn−1 ∈ A such that

an ∈ σnA(τn(an+1, a
n
1 , . . . , a

n
mn−1)).

Since ak ∈ A\〈G(A)〉, we have that ak is not an element of the ground.
So, there must exist mk ∈ N, a functional symbol σk ∈ Σmk

and elements
bk1 , . . . , b

k
mk
∈ A such that

ak ∈ σkA(bk1 , . . . , b
k
mk

).

Now, if all bk1 , . . . , b
k
mk

belonged to 〈G(A)〉, so would ak: there must be an

element ak+1 ∈ {bk1 , . . . , bkmk
}, say bkl , such that ak+1 ∈ A\〈G(A)〉. We then

define aki as bkj , for j = min{i ≤ p ≤ mk : p 6= l} and i ∈ {1, . . . ,mk − 1},
and

τk = [l − 1, l] ◦ · · · ◦ [1, 2],

and then it is clear that {an}n∈N becomes a chain, with the extra condition
that {an}n∈N ⊆ A \ 〈G(A)〉. Therefore A is not chainless.

It becomes clear that a disconnected, chainless multialgebra is, by
Lemma 3.40, disconnected and generated by its ground. We state that,
in fact, the converse also holds, when we arrive to yet another characteri-
zation of being a submultialgebra of mT(Σ,V, κ).
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So, suppose A is disconnected and generated by its ground, and let
{an}n∈N be a chain in A. Clearly no an can belong to the ground, since

an ∈ σnA(τn(an+1, a
n
1 , . . . , a

n
mn−1)),

and therefore oG(A)(an+1) < oG(A)(an), that is, the G(A)-order of an+1

is smaller than the G(A)-order of an. We obtain a contradiction, since if
oG(A)(a0) = m, then oG(A)(am+1) < 0, what is impossible. Then, A must
be chainless.

Theorem 3.41. A is generated by its ground and disconnected iff it is
chainless and disconnected.

Finally, Theorems 3.11, 3.12, 3.23, 3.33 and 3.41 can be summarized as
follows:

Theorem 3.42. Let A be a Σ-multialgebra. The following statements are
equivalent:

1. A is a submultialgebra of some mT(Σ,V, κ);

2. A is cdf-generated;

3. A is generated by its ground and disconnected;

4. A has a strong basis and is disconnected;

5. A is chainless and disconnected.

This leads us to the second main notion introduced in the paper:

Definition 3.43. A weakly free multialgebra over Σ is a multialgebra over
Σ satisfying any of the equivalent conditions of Theorem 3.42.

By definition, weakly free multialgebras over Σ coincide, up-to isomor-
phisms, with the submultialgebras of the members of the families FT (Σ,V),
for some set V of generators (recall Definition 2.2).

It is important to stress the point that, although not all concepts present
in the previous theorem have natural counterparts in universal algebra, by
defining them for algebras presented as multialgebras we find that all of
the conditions in the theorem are valid only for Σ-algebras of terms. This
follows easily from the fact that the only cdf-generated algebras are the
algebras of terms themselves. That is, weakly free algebras coincide with
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(absolutely) free algebras. Note that any subalgebra of T(Σ, X) is of the
form T(Σ, Y ) for some Y . Thus, it can be observed that the generalization
in MAlg(Σ) of the collection of subalgebras of T(Σ,V) corresponds to the
class of submultialgebras of the members of the family FT (Σ,V). In turn,
the meaning of T(Σ,V) itself is generalized in the category MAlg(Σ) of
Σ-multialgebras through the class of submultialgebras of the members A
of FT (Σ,V) such that G(A) = V.

Now, a few examples concerning being chainless, disconnected, having
a strong basis and being generated by the ground will be given.

Example 3.44. Take the signature Σs from Example 2.4, and consider the
Σs−multialgebra Y = (N ∪ {a, b}, {sY}) such that sY(n) = {n + 1}, for
n ∈ N, and sY(a) = sY(b) = {0}.

We see that Y is chainless since, given a chain {an}n∈N, it must be
contained in the build of Y, that is, N: but then an+1 = an − 1, what is a
contradiction, since there is only a finite number of elements smaller than
a0. At the same time, Y is not disconnected, since sY(a) = sY(b).

a

0 1 · · ·

b

sY

sY sY

sY

The Σs-multialgebra Y

Example 3.45. Take the Σs-multialgebra C from Example 3.24.
We know that C is disconnected, however it is also not chainless: in

fact, {(−1)n}n∈N and {(−1)n+1}n∈N are chains in C.

As we saw, being chainless implies being generated by its ground and
having a strong basis. The converse, however, is not true.

Example 3.46. Take the Σs-multialgebra B from Example 3.25.
We have already established that B has a strong basis and is generated

by its ground, {0}, yet it is not chainless: {1}n∈N is a chain in B.
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4. Multialgebras cannot satisfy the universal
mapping property

Now, we turn to a somewhat folkloric result: the category of multialgebras
does not have free objects. This is equivalent to saying that there do not
exist multialgebras satisfying the universal mapping property for the class
of all Σ-multialgebras, or better yet, that the forgetful functor from this
category to Set does not have a left adjoint. Of course, such a result can be
stated in various ways, depending on the adopted definition of homomor-
phism and even on the definition of multialgebra to be considered. So, we
offer what we consider to be a simple proof of such result for the category
MAlg(Σ) as we have defined it.

Definition 4.1. A Σ-multialgebra A = (A, {σA}σ∈Σ) satisfies the univer-
sal mapping property for the class of all Σ-multialgebras, over a set X ⊆ A,
if, for every Σ-multialgebra B = (B, {σB}σ∈Σ) and map f : X → B, there
exists a unique homomorphism f : A → B extending f .

In other words, if j : X → A is the inclusion, there exists only one
homomorphism f : A → B commuting the following diagram in Set.

A

X B

fj

f

Proposition 4.2. If A and B satisfy the universal mapping property for
the class of all Σ-multialgebras over, respectively, X and Y such that |X| =
|Y |, then A and B are isomorphic.

Proof: Since X and Y are of the same cardinality, there exist bijective
functions f : X → Y and g : Y → X inverses of each other. Take the exten-
sions f : A → B and g : B → A and we have that g ◦ f is a homomorphism
extending g ◦ f = id, the identity on X.

Since the identical homomorphism IdA : A → A also extends id, we
have that IdA = g ◦ f . In a similar way we have that IdB = f ◦ g; proving
both f and g are full is trivial, so A and B are isomorphic.

This way we can refer ourselves to the single Σ-multialgebra satisfying
the universal mapping property over X, up to isomorphisms.
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Remember that we have defined MAlg(Σ) as the category whose ob-
jects are exactly all Σ-multialgebras and for which, given Σ-multialgebras
A and B, HomMAlg(Σ)(A,B) is the set of all homomorphisms from A to
B. We will denote by U : MAlg(Σ)→ Set the forgetful functor.

Lemma 4.3. The functor F : Set→MAlg(Σ), associating a set X with a
Σ-multialgebra satisfying the universal mapping property over X, which we
will denote FX, and a function f : X → Y with the only homomorphism
f : FX → FY extending f , is a left adjoint of U .

Proof: For X a set and A a Σ-multialgebra with universe A we consider
the functions, indexed by pairs consisting of a Σ-multialgebra A and a set
X,

ΦA,X : HomSet(X,UA)→ HomMAlg(Σ)(FX,A)

taking a map f : X → A to the only homomorphism f : FX → A extending
f . Each ΦA,X is clearly a bijection given that FX satisfies the universal
mapping property over X.

Now, given sets X and Y , Σ-multialgebras A and B, a function f :
Y → X and a homomorphism h : A → B, we have only to prove that the
following diagram commutes in Set.

HomSet(X,UA) HomMAlg(Σ)(FX,A)

HomSet(Y,UB) HomMAlg(Σ)(FY,B)

ΦA,X

Hom(f,Uh) Hom(Ff,h)

ΦB,Y

So we take a function g : X → UA. Taking the upper right side of the
diagram we have ΦA,Xg = g and Hom(Ff, h)g = h ◦ g ◦ Ff ; on the lower
left one, Hom(f,Uh)g = Uh ◦ g ◦ f and ΦB,Y Uh ◦ g ◦ f = Uh ◦ g ◦ f .

Now, both h ◦ g ◦ Ff and Uh ◦ g ◦ f are homomorphisms from FY to
B extending Uh ◦ g ◦ f : Y → UB. For the second one this is obvious, for
the first we take an element y ∈ Y and see that

h ◦ g ◦ Ff(y) = h ◦ g ◦ f(y) = h ◦ g ◦ f(y) = Uh ◦ g ◦ f(y)

since, respectively: Ff = f (and f extends f); g extends g (which is defined
on X 3 f(y)); and Uh = h, (considered only as a function between sets).
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Given that FY satisfies the universal mapping property over Y , we have
that h ◦ g ◦ Ff = Uϕ ◦ g ◦ f and the diagram in fact commutes.

Theorem 4.4. Given a non-empty signature Σ and a set X, there does not
exist a Σ-multialgebra which satisfies the universal mapping property over
X.

Proof: Suppose that A = (A, {σA}σ∈Σ) satisfies the universal mapping
property over X and let V be a set that properly contains X, meaning that
V 6= ∅ and therefore that T(Σ,V) is well defined. Then, take the identity
function j : X → T (Σ,V), such that j(x) = x for every x ∈ X, and the
homomorphism j : A → T(Σ,V) extending j.

Now, take the identity function id : V → T (Σ2,V) and the collections
of choices C and D from T(Σ,V) to mT(Σ,V, 2) such that, for σ ∈ Σn,

Cσβ1,...,βn
α1,...,αn

(σα1 . . . αn) = σ0β1 . . . βn

and
Dσβ1,...,βn

α1,...,αn
(σα1 . . . αn) = σ1β1 . . . βn,

and consider the only homomorphisms idC , idD : T(Σ,V) → mT(Σ,V, 2)
extending, respectively, id and C, and id and D, which we know to exist
given that T(Σ,V) is cdf -generated by V. Since idC ◦ j, idD ◦ j : A →
mT(Σ,V, 2) both extend the function j′ : X → T (Σ2,V) such that j′(x) =
x for every x ∈ X (recalling that V properly contains X), we have idC ◦j =
idD ◦ j.

Now, if α ∈ T (Σ,V) \ V, we have that there exist σ ∈ Σn, for some
n ∈ N, and elements α1, . . . , αn ∈ T (Σ,V) such that α = σα1 . . . αn. In
this case,

idC(α) = σ0idC(α1) . . . idC(αn) 6= σ1idD(α1) . . . idD(αn) = idD(α),

given that the leading functional symbols are distinct. From this, idC and
idD are always different outside of V.

Since idC ◦ j = idD ◦ j, we must have that j(A) ⊆ V, and this is absurd
since we are assuming Σ non-empty. Indeed, if Σ0 6= ∅, for a σ ∈ Σ0

and a ∈ σA we have that j(a) = σ is in T (Σ,V), but not in V. If it
is another Σn which is not empty, given a ∈ A (which exists since the
universes of multialgebras are assumed to be non-empty) we have that, for
b ∈ σA(a, . . . , a), it holds that j(b) = σ(j(a), . . . , j(a)), which is not in V.
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We must conclude that there are no multialgebras with the universal
mapping property.

Corollary 4.5. The category MAlg(Σ) does not have an initial object.

Proof: We state that, if A is an initial object, A has the universal map-
ping property over ∅. In fact, for every Σ-multialgebra B and map f : ∅ →
B, there exists a single homomorphism !B : A → B extending f = ∅, that
is, the only homomorphism between A and B. But multialgebras with the
universal mapping property do not exist, by Theorem 4.4. This concludes
the proof.

Theorem 4.6. The forgetful functor U : MAlg(Σ)→ Set does not have a
left adjoint.

Proof: For suppose we have a left adjoint F : Set → MAlg(Σ) of U ,
so that F has a right adjoint and is therefore cocontinuous. Since ∅ is
the initial object in Set, we have that F∅ must be an initial object in
MAlg(Σ), which does not exist by Corollary 4.5.

5. Conclusions and future work

The results obtained along the paper indicate that multialgebras of terms
constitute a rich topic of study, and deserve to be further analyzed. Their
connections to the theories of graphs and of partial orders seem clear, and
suggest other properties of these objects, and possibly other characteri-
zations. Multialgebras have been used in order to get satisfactory non-
deterministic semantics for some non-classical logics, in particular para-
consistent logics (see, for instance, [3, Chapter 6], [5] and [7]). From the
present study, we hope to obtain, with the aid of mT(Σ,V, κ) (now seen
as the multialgebra of propositional formulas) and its submultialgebras,
new interpretations of existing semantics for logic systems and new seman-
tics altogether. Clearly, decision problems concerning these multialgebras
become relevant and need to be addressed.

Finally, in what is possibly the most important open question concern-
ing multialgebras of terms, we refer back to something we have already
mentioned in this text. In universal algebra, a Σ-algebra A has the uni-
versal mapping property for a variety V of Σ-algebras over a subset X of
its universe when, for every B in V and every function f : X → B, there
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exists a unique homomorphism f : A → B extending f . These are known
as the relatively free algebras, which can be obtained in a variety from a
quotient of T(Σ,V). Some questions naturally arise: are there analogous
of cdf-generated multialgebras with respect to classes of multialgebras? If
so, are they obtained in some reasonable way from the multialgebras of
terms?
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