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Abstract

In this paper by using a model-theoretic approach, we prove Craig interpolation

property for Formal Propositional Logic, FPL, Basic propositional logic, BPL

and the uniform left-interpolation property for FPL. We also show that there are

countably infinite extensions of FPL with the uniform interpolation property.
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1. Introduction

A Craig interpolant for formulas ϕ(q⃗, p⃗) and ψ(p⃗, r⃗) where ⊢ ϕ → ψ, is a
formula χ(p⃗) such that ⊢ ϕ → χ and ⊢ χ → ψ. The uniform interpola-
tion property is, in a sense, the generalization of the Craig interpolation
property. If instead of two formulas, we restrict the interpolant to one
formula and a subset of its propositional variables (which are to be the
shared variables), we reach a stronger definition: a uniform left-interpolant
for ϕ(q⃗, p⃗) with respect to p⃗ is a formula χ(p⃗) such that for all formulas
ψ(p⃗, r⃗) with ⊢ ψ → ϕ, χ acts as an interpolant for ϕ and ψ. The uniform
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right-interpolant is defined analogously. A logic whose formulas have both
uniform left and right-interpolants is said to satisfy the uniform interpola-
tion property.

It is easy to show that classical propositional logic has the uniform
interpolation property. But showing it for intuitionistic propositional logic
is highly nontrivial. This was shown first by using a proof theoretic method
in [6] and then semantically in [5]. A. Visser in [8] established the result
using bisimulation techniques.

The goal of this paper is to establish new interpolation results for Ba-
sic propositional logic BPL and Formal propositional logic, FPL, using
the bisimulation techinque of [8]. BPL and FPL are propositional logics
which correspond with modal logics K4 and GL by the Gödel transla-
tion, respectively, in the same way that Intuitionistic Propositional Logic
IPL corresponds with modal logic S4. The main difference between IPL
and BPL is that the rule Modus Ponens is weakened in BPL. We show
that FPL satisfies the uniform left-interpolation property. The same ap-
proach with minor differences leads the Craig interpolation property for
Basic propositional logic, BPL. We Also show that there are countably
infinite extensions of FPL with the uniform interpolation property.

The organiztion of the paper is as follows: in the next section we present
an overview of the syntax and semantics of BPL. Basic model theory
for BPL including canonical models and layered bisimulation, which are
a natural generalization of results known for intuitionistic propositional
logic, will be studied in section three. Interpolation properties for formal
propositional logic and some of its extensions will be presented in section
four.

2. Axioms, rules and Kripke models

In this preliminaries section we introduce the most basic concepts and
notations we need related to syntax and semantics of basic propositional
logic, for more details see [7] and [3, 4].

The language for BPL is essentially the same as the language for IPL.
We build formulas in the standard way from propositional variables, or
atoms, using ⊤,⊥,∧,∨,→. Expressions ¬ϕ and ϕ ↔ ψ are usual abbrevi-
ations for ϕ→ ⊥ and (ϕ→ ψ) ∧ (ψ → ϕ), respectively.
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We assume that p, q, r, . . . range over propositional variables, ϕ, ψ, χ, . . .
range over arbitrary formulas, and p⃗, q⃗, r⃗, . . . range over finite sets of propo-
sitional variables. For p⃗ and q⃗, we abbreviate p⃗∪ q⃗ by p⃗, q⃗. PV(ϕ) is the set
of propositional variables in ϕ. Sub(ϕ) is the set of subformulas of ϕ. For
a set of propositional variables P, L(P) denotes the set of those formulas
which only contains propositional variables from P. There are different
axiomatizations for BPL. The natural deduction system for BPL was
first introduced by A. Visser in [7]. We choose axiomatization method
which was introduced in [3]. A sequent is simply an expression of the form
ϕ ⇒ ψ, where ϕ and ψ are formulae. We write ϕ ⇔ ψ as short for ϕ ⇒ ψ
and ψ ⇒ ϕ.

In the rules below, a single horizontal line means that if the sequents
above the line are included, then so are the ones below the line. A double
line means the same, but in both directions.

ϕ⇒ ϕ ϕ⇒ ⊤ ⊥ ⇒ ϕ ϕ ∧ (ψ ∨ θ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ θ)

ϕ⇒ ψ ψ ⇒ θ
ϕ⇒ θ

ϕ⇒ ψ ϕ⇒ θ
ϕ⇒ ψ ∧ θ

ϕ⇒ ψ θ ⇒ ψ
ϕ ∨ θ ⇒ ψ

ϕ ∧ ψ ⇒ θ
ϕ⇒ ψ → θ

(ϕ→ ψ) ∧ (ψ → θ) ⇒ ϕ→ θ
(ϕ→ ψ) ∧ (ϕ→ θ) ⇒ ϕ→ ψ ∧ θ
(ϕ→ ψ) ∧ (θ → ψ) ⇒ ϕ ∨ θ → ψ

Table 1. Sequent calculus of BPL

A sequent theory is a set of sequents that includes the sequent axioms
and is closed under the closure rules, as given in table 1. A sequent theory
Σ is consistent if ⊤ ⇒ ⊥ ̸∈ Σ. A theory Γ is schematic if Γ ⊢ ϕ ⇒ ψ
implies Γ ⊢ τϕ ⇒ τψ for all substitutions τ . A basic intermediate logic
is a consistent schematic sequent theory. The intuitionistic propositional
logic, IPL, is BPL plus the sequent schema ⊤ → ϕ ⇒ ϕ, and the Formal
Propositional logic, FPL, is the extension of BPL by the Löb’s axiom
schema, (⊤ → ϕ) → ϕ⇒ ⊤ → ϕ, or equivalently, by Löb’s rule:

ϕ ∧ (⊤ → ψ) ⇒ ψ
ϕ⇒ ψ

.

The theories BPL, IPL,CPL and FPL are all basic intermediate logics.
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Sequents ⊤ ⇒ ϕ are often identified with formulas ϕ. Given a sequent
theory Σ we define F (Σ) as {ϕ | ⊤ ⇒ ϕ ∈ Σ}. A f ormula theory (or
simply a theory) is a set of formulas of the form F (Σ). The formula theory
is consistent if Σ is consistent or, equivalently, if ⊥ is not an element of
the formula theory. Let Σ ∪ {ϕ ⇒ ψ} be a set of sequents. We say that
the ϕ ⇒ ψ is provable from the Σ in the logic BPL and we denoted it by
Σ ⊢BPL ϕ⇒ ψ, when the sequent ϕ⇒ ψ is provable in the sequent calculus
BPL augmented by ϕi ⇒ ψi for all ϕi ⇒ ψi ∈ Σ. When Σ is empty we
simply write ⊢ ϕ⇒ ψ. Also, we use Σ ⊢ ϕ instead of Σ ⊢ ⊤ ⇒ ϕ.

Proposition 2.1 ([3]). Let Σ be a sequent theory. Then:

1. (Functional Completeness) Σ ∪ {ϕ} ⊢ ψ ⇒ θ if and only if Σ ⊢
ϕ ∧ ψ ⇒ θ.

2. (Formalization) Σ ∪ {ϕ1 ⇒ ψ1, ..., ϕn ⇒ ψn} ⊢ ϕ0 ⇒ ψ0 implies
Σ ⊢ (ϕ1 → ψ1) ∧ ... ∧ (ϕn → ψn) ⇒ ϕ0 → ψ0.

Σ is called a faithful theory if the converse of Proposition 2.1.2, also
holds. IPL and all of its extensions including Classical Propositional Logic,
CPL, and BPL, FPL are examples of faithful theories.

Define the relation ≺ on all theories by Γ ≺ ∆ if and only if for all
ϕ, ψ ∈ L(P) such that both Γ ⊢ ϕ→ ψ and ∆ ⊢ ϕ, we have ∆ ⊢ ψ.

Proposition 2.2. The relation ≺ is transitive, and Γ ≺ ∆ implies Γ ⊆ ∆.

Proof: We first prove the second claim. Suppose Γ ≺ ∆. If ϕ ∈ Γ, then
Γ ⊢ ϕ which implies, by above Formalization theorem, that Γ ⊢ ⊤ → ϕ
and thus ∆ ⊢ ϕ. Hence ϕ ∈ ∆. So Γ ⊆ ∆. For transitivity, suppose that
Γ ≺ ∆ ≺ ∆′ are such that Γ ⊢ ϕ → ψ and ∆′ ⊢ ϕ, for any ϕ, ψ ∈ L(P).
Then Γ ⊆ ∆ ⊢ ϕ→ ψ, so ∆′ ⊢ ψ. Therefore Γ ≺ ∆′.

Moving on to the samantics of BPL, a Kripke frame F is a pair (W,≺)
where W is a non-empty set and ≺ is a transitive binary relation on W .
The reflexive closure of ≺ is denoted by ⪯. Also, for k, k′ ∈ W , k′ ⪰ k
means that k ⪯ k′.

A Kripke model based on Kripke frame F is a triple M = (W,≺, V )
where F = (W,≺) and the function V assigns to each atoms p of the
language of BPL a subset V (p) ⊆ W which is upward closed, that is, if
k ∈ V (p) and k ≺ k′, then k′ ∈ V (p).
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Given a Kripke model M = (W,≺, V ), the notion of a formula ϕ being
true at a point k ∈W , written M, k ⊩ ϕ or k ⊩ ϕ for short, is like in IPL.
We extend ⊩ to all sequents. For any sequent ϕ⇒ ψ, it is defined by

k ⊩ ϕ⇒ ψ if and only if for all k′ ⪰ k, k′ ⊩ ϕ implies k′ ⊩ ψ.

A trivial induction on the complexity of formulas yields that, k ⊩ ϕ and
k ≺ k′ implies k′ ⊩ ϕ. So, k ⊩ ϕ if and only if k ⊩ ⊤ ⇒ ϕ. A sequent
ϕ⇒ ψ is true in a Kripke model M, written M ⊩ ϕ⇒ ψ, if and only if for
all k ∈ W , k ⊩ ϕ ⇒ ψ. We often write M ⊩ ϕ as short for M ⊩ ⊤ ⇒ ϕ.
ϕ ⇒ ψ is valid on a Kripke frame F, F ⊩ ϕ ⇒ ψ, iff ϕ ⇒ ψ is true on
every Kripke model based on F. Let C be a class of Kripke frames, ϕ⇒ ψ
is C-valid, C ⊩ ϕ⇒ ψ, iff ϕ⇒ ψ is valid on every Kripke frame in C.

For a set Γ of sequents, M ⊩ Γ means that M ⊩ ϕ ⇒ ψ, for all
ϕ ⇒ ψ ∈ Γ. For a set of sequents Γ ∪ {ϕ ⇒ ψ}, the notation Γ ⊩ ϕ ⇒ ψ
means that for any Kripke model M, if M ⊩ Γ, then M ⊩ ϕ.

In the sequel we show a Kripke model by its forcing relation. For k ∈W ,
we call M = (W,≺,⊩, k) pointed and it is called rooted, with root k, if
and only if k ⪯ k′, for all k′ ∈ W . Also it is called a tree Kripke model
if and only if ⟨W,≺⟩ is a tree. We denote the class of all models, pointed
models and rooted models by Mod, Pmod and Rmod, respectively. We
denote W by M when clear from the context. We write M(p⃗) for the
result of restricting V to p⃗.

If M = (W,≺,⊩) is a Kripke model and w a world of M, the submodel
of M generated by w is the Kripke model M[w] := M′ = (W [w],≺′,⊩′)
where W [w] = {x ∈W |w ⪯ x}, and ≺′ and ⊩′ are restrictions of ≺ and ⊩
to W [w].

Here we stick to the following characterization ofBPL and FPLmodels
throughout the paper.

Theorem 2.3 ([3]). BPL and FPL are sound and complete for the class
of all irreflexive Kripke models and all conversely well-founded irreflexive
Kripke models, respectively.

The depth of a node k ∈W is defined inductively by

d(k) := sup{d(k′) + 1 | k′ ≺ k}, where sup(∅) = 0,

and the depth of a model M is defined as

d(M) := sup{d(k) | k ∈W}.
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We notice that d(M) = ∞ is possible. We define inductively □nϕ by
□0ϕ := ϕ, □ϕ := ⊤ → ϕ and □n+1ϕ := □□nϕ, for n ∈ ω. The following
extensions of BPL were introduced in [3]

• Fn := BPL+□n⊥, for n ∈ ω,

• FPL⊥ := BPL+ L⊥, where L⊥ := (□⊥ → ⊥) → □⊥.

One can see that BPL proves L⊥ ⇔ ⊤ → L⊥, so FPL⊥ is faithful.
Given a Kripke frame ⟨W,≺⟩, a world e ∈ W is called an end-node if it
is maximal with respect to ⪯. A Kripke frame ⟨K,≺⟩ with end-nodes is
a Kripke frame such that for every w ∈ K there is some end-node e ∈ W
with w ⪯ e.

Proposition 2.4 ([3]).

1. FPL⊥ is sound and complete with respect to the class of all irreflexive
Kripke frames with end-nodes,

2. For every n ≥ 1, the logic Fn is strongly complete with respect to the
class of all irreflexive Kripke models with depth not greater than n.

3. Basic model theory

In this section, first we briefly review the notion of Henkin construction for
basic propositional logic. The results we report on the Henkin model can
be found in [4]. However, for the sake of entirety and because of phrasing
the results in terms of saturated sets of formulas instead of prime sequent
theories and also new relations between saturated sets compare to [4], we
decided to present them in full proofs. After which, we recall the notion
of bisimulation (and in general, layered bisimulation) between two models.
For convenience in our context, this notion has been slightly modified, i.e.,
the zig and zag conditions hold strictly. In the sequel we need to extend
the set of all natural numbers ω with an extra top element ∞. Let ω∞

be ω ∪ {∞} which is equipped with the obvious natural ordering ≤. We
extend addition by, ∞+α = α+∞ = ∞ and ∞− n = ∞. We let n range
over ω, and α range over ω∞.

We start by the following lemma which can be proved by induction on
the complexity of formulas and distributivity axiom of BPL.
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Lemma 3.1. Let ϕ ∈ L(P) be a formula. Then it can be written, modulo
BPL provability, as

∨
i

∧
j ϕij where ϕij is an atom in P, ⊤, ⊥ or an

implication.

We call
∨
i

∧
j ϕij the disjunctive normal form of ϕ.

A set X ⊆ L(P) is called P-adequate if P ⊆ X and X is closed under
subformulas. We say that a consistent set Γ ⊆ X is X-saturated if it is
X-deductively closed and X-prime, i.e.,

• Γ ⊢ ϕ and ϕ ∈ X implies ϕ ∈ Γ,

• Γ ⊢ ϕ ∨ ψ and ϕ ∨ ψ ∈ X implies Γ ⊢ ϕ or Γ ⊢ ψ.

We say that a consistent set Γ is prime exactly when it is L(P)-prime.
Given the P-adequate set X, let HX be the collection of all X-saturated
sets. The Kripe model HX := (HX ,≺,⊩) where for every Γ ∈ HX and
every propositional variable p ∈ P, Γ ⊩ p if and only if p ∈ Γ is called
canonical model over P with respect to X.

Proposition 3.2. Let X be a P-adequate set. For any formula ϕ ∈ X
and any Γ ∈ HX , HX ,Γ ⊢ ϕ if and only if Γ ⊩ ϕ.

Proof: We complete the proof by induction on the complexity of φ. We
consider the interesting case where ϕ = ψ → θ. Let Γ ⊢ ψ → θ and
∆ ∈ HX be such that Γ ≺ ∆ and ∆ ⊩ ψ. By induction hypothesis ∆ ⊢ ψ
and because of Γ ≺ ∆ and Γ ⊢ ψ → θ we have ∆ ⊢ ψ ⇒ θ and hence ∆ ⊢ θ.
First, applying induction hypothesis gives ∆ ⊩ θ. And thus Γ ⊩ ψ → θ.

Conversely, suppose that Γ ⊬ ψ → θ. Put Γψ = {η ∈ X | Γ ⊢ ψ → η}.
First, we notice that Γψ is X-deductively closed. Suppose that Γψ ⊢ α,
for α ∈ X. Then there exist formulas η1, · · · , ηi such that η1, · · · ηi ⊢ α.
Put η = η1 ∧ · · · ∧ ηi. Hence, Γ ⊢ ψ → η and ⊢ η → α which implies
that Γ ⊢ ψ → α. Then α ∈ Γψ. Next, we show that Γ ≺ Γψ. Suppose
that Γ ⊢ α → β and Γψ ⊢ α. Then Γ ⊢ ψ → α which implies, by
transitivity, that Γ ⊢ ψ → β. Therefore, Γψ ⊢ β. Note that, Γψ ⊬ θ. Now,
Assume that Σ = {∆ | ∆ is a X- deductively closed set of formulas with
∆ ⊢ ψ,∆ ⊬ θ and Γ ≺ ∆}. Σ is nonempty, since Γψ ∈ Σ. (Σ,⊆) satisfies
the chain condition for Zorn’s lemma. For, suppose that {∆i}i∈I is a chain
of elements of Σ then, one can see that

⋃
∆i is X deductively closed set,⋃

∆i ⊢ ψ and
⋃
∆i ⊬ θ. We only show that Γ ≺

⋃
∆i. So, suppose that

Γ ⊢ γ → δ and
⋃
∆i ⊢ γ. Then there exists a j such that ∆j ⊢ γ which
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implies that ∆j ⊢ δ, since Γ ≺ ∆j . Hence, Γ ≺
⋃

∆i. Let ∆ be a maximal
element of Σ. ∆ is X-saturated. To see that, we need to show that it is
X-prime. Assume α∨β ∈ X is such that ∆ ⊢ α∨β,∆ ⊬ α and ∆ ⊬ β. But
Γ ≺ ∆ ≺ Γ∆,α := {η | Γ ⊢ δ ∧ α → η, for some δ ∈ ∆} and Γ ≺ ∆ ≺ Γ∆,β ,
then by maximality of ∆ we obtain Γ∆,α ⊢ θ and Γ∆,β ⊢ θ which implies
that Γ ⊢ α ∧ δ1 → θ and Γ ⊢ β ∧ δ2 → θ, for some δ1, δ2 ∈ ∆. Then
Γ ⊢ (α ∧ δ1) ∨ (β ∧ δ2) → θ. But ∆ ⊢ (α ∧ δ1) ∨ (β ∧ δ2), then ∆ ⊢ θ which
is a contradiction. Hence, we have Γ ≺ ∆ and ∆ ⊬ θ. Then, by induction
hypothesis, Γ ≺ ∆ ⊩ ψ, and ∆ ⊮ θ. So Γ ⊮ ψ → θ.

Definition 3.3. LetK be a set of disjoint pointed models for aX-saturated
set ∆. We define Glue(HX [∆],K) as follows:

• Glue(HX [∆],K) := (HX [∆] ∪ (
⋃
iKi) ∪ {m},≺), where m is a new

distinct point, (Ki,≺i,⊩i, ki)’s are mutually disjoint pointed models
in K and ≺ is defined by:

≺ = ≺i↾Ki[ki] ∪ ≺HX
↾HX [∆]

∪ {(m, y) : y ∈
⋃
i

Ki[ki] \ {ki} ∪HX [∆] \ {∆}},

• m ⊩ p exactly when p ∈ ∆.

We would like to notice that in the model Glue(HX [∆],K), m is ir-
reflexive and m ̸≺ ki and m ̸≺ ∆ unless ki ≺i ki and ∆ ≺HX [∆] ∆.

Lemma 3.4. Let K be a class of pointed models for a X-saturated set ∆
and ϕ ∈ X. Then Glue(HX [∆],K),m ⊩ ϕ exactly when ϕ ∈ ∆.

Proof: For atoms the claim is clear. From the construction, conjunction
and disjunction are easy due to X-saturatedness of ∆. For implication
suppose that ϕ = ψ → γ. If ψ → γ ∈ ∆ and m ≺ l, then l must be in
one of the models Ki[ki] \ {ki} or HX [∆] \ {∆}. If l ∈ Ki[ki] \ {ki} then,
since Ki[ki] \ {ki} is a model of ∆ we have l ⊩ ψ ⇒ γ which implies that
m ⊩ ψ → γ. The case l ∈ HX [∆] \ {∆} is obvious.

Conversely, suppose that m ⊩ ψ → γ. Then for any l ∈ HX [∆] \ {∆}
we have l ⊩ ψ ⇒ γ which implies that ∆ ⊩ ψ → γ. But since ψ → γ ∈ X
we have ψ → γ ∈ ∆.
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Theorem 3.5. Let X be a P-adequate and ∆ be X-saturated. Then ∆ is
prime.

Proof: Suppose that ∆ ⊢ ϕ ∨ ψ, for ϕ and ψ ∈ L(P). Since X is P-
adquate, ϕ and ψ have disjunctive normal forms: ϕ =

∨
i

∧
j ϕij and ψ =∨

r

∧
s ψrs, where ϕij , ψrs ∈ X or they are in implication form. We will

show that there exist i or r such that ∆ ⊢
∧
j ϕij or ∆ ⊢

∧
s ψrs. It is clear

that it shows that either ∆ ⊢ ϕ or ∆ ⊢ ψ.
Assume, for any i and r, that ∆ ⊬

∧
j ϕij and ∆ ⊬

∧
s ψrs. Then there

exist (Ki, ki) and (Lr, lr) such that (Ki, ki) ⊩ ∆, (Ki, ki) ⊮
∧
j ϕij and

(Lr, lr) ⊩ ∆, (Lr, lr) ⊮
∧
s ψrs. By Lemma 3.4 we haveGlue(HX [∆], {Ki}∪

{Lr}),m ⊩ ∆. Therefore m ⊩ ϕ ∨ ψ, since ∆ ⊢ ϕ ∨ ψ. Hence, there exist i
or r such that m ⊩

∧
j ϕij or m ⊩

∧
s ψrs. Assume m ⊩

∧
j ϕij , the other

case is similar. Since (Ki, ki) ⊮
∧
j ϕij , there are two cases: If ϕij is an

atom then by Lemma 3.4 since m ⊩ ϕij and P ⊆ X we have ϕij ∈ ∆ and
since (Ki, ki) ⊩ ∆ we would have (Ki, ki) ⊩ ϕij which is a contradiction.
If ϕij = δ → γ, for some δ and γ. In this case, since m ⊩ δ → γ, then for
any l ≻ ki we have l ⊩ δ → γ which implies that (Ki, ki) ⊩ δ → γ which is
impossible.

Remark 3.6. We notice that Henkin models can be constructed similarly
for FPL. Although H is not an FPL-model in this case, what we want
from H in our proof of Lemma 4.8 is for it to be transitive, which it trivially
is.

Definition 3.7. We define the complexity measure i(ϕ) of a formula ϕ
recursively as follows:

1. i(p) = 0, for each propositional variable p;

2. i(⊤) = i(⊥) := 0;

3. i(ϕ ∧ ψ) = i(ϕ ∨ ψ) := max{i(ϕ), i(ψ)};

4. i(ϕ→ ψ) := max{i(ϕ), i(ψ)}+ 1.

We define Bn(P) := {ϕ ∈ L(P) | i(ϕ) ≤ n} and B∞(P) := L(P). By
induction on n we may prove the following fact:

Fact 3.8. Bn(p⃗) is finite modulo BPL-provable equivalence.

By the above fact, we assume that Bn(p⃗) is finite from now on.
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Definition 3.9. Let M = (W,≺,⊩) be any Kripke model. For each X ⊆
L(P), m ∈W and n ∈ ω, we define:

1. ThX(m) = {ϕ ∈ X | m ⊩ ϕ};

2. ThPn (m) = {ϕ ∈ Bn(P) | m ⊩ ϕ};

3. ThX(⟨M,m⟩) := ThX(m) and Th(m) := ThL(P)(m);

4. Yn(m) := Yn,m(p⃗) :=
∧
Thp⃗n(m);

5. Nn(m) := Nn,m(p⃗) :=
∨
{ϕ ∈ Bn(p⃗) | m ⊮ ϕ}.

Fact 3.10. Yn,m(p⃗) is a prime formula.

Proof: We first note, by definition, that Bn(p⃗) is closed under subformu-
las. Next, we show that Yn,m(p⃗) is an Bn(p⃗)-saturated. Suppose that ϕ ∈
Bn(p⃗) and that Yn,m(p⃗) ⊢ ϕ. Then m |= ϕ which implies that ϕ ∈ Yn,m(p⃗).
For Bn(p⃗)-primness suppose that ϕ∨ψ ∈ Bn(p⃗) and Yn,m(p⃗) ⊢ ϕ∨ψ. Then
m |= ϕ ∨ ψ which implies that m |= ϕ or m |= ψ. Hence, ϕ ∈ Yn,m(p⃗) or
ψ ∈ Yn,m(p⃗). Therefore, by Theorem 3.5, Yn,m(p⃗) is prime.

Let M = (W,≺,⊩) and M′ = (W ′,≺′,⊩′), be any two P-models. We
say a relation Z ⊆W×ω∞×W ′ is a layered P-bisimulation (l -bisimulation)
between M and M′ if it satisfies the following three conditions:

1. (w,α,w′) ∈ Z implies w ⊩ p if and only if w′ ⊩ p, for all atome
p ∈ P;

2. (w,α + 1, w′) ∈ Z and w ≺ x implies (w′, α, x′) ∈ Z, for some
x′ ≻′ w′;

3. (w,α+1, w′) ∈ Z and w′ ≺′ x′ implies (x, α, x′) ∈ Z, for some x ≻ w.

We call (2) the zigα+1-property and (3) zagα+1- property. If α = ∞,
we simply call them the zig- and the zag-property. We write wZαw′ for
(w,α,w′) ∈ Z and wZw′ for wZ∞w

′. To clarify the definition in the case
of α = ∞, we rewrite clauses of the above definition, as follows:

1. (w,∞, w′) ∈ Z implies w ⊩ p if and only if w′ ⊩ p, for all atome
p ∈ P;

2. (w,∞, w′) ∈ Z and w ≺ x implies (w′,∞, x′) ∈ Z, for some x′ ≻′ w′;

3. (w,∞, w′) ∈ Z and w′ ≺′ x′ implies (x,∞, x′) ∈ Z, for some x ≻ w.

A binary relation Z between M and M′ is a bisimulation between M and
N exactly when {⟨w,∞, w′⟩ | wZw′} is an l -bisimulation.
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We say l -bisimulation Z is downward closed if for any (w, n,w′) ∈
W × ω ×W ′, (w, n,w′) ∈ Z implies that (w,m,w′) ∈ Z, for all m ≤ n.
Let PVM(w) := {p ∈ P : M, w ⊩ p}, we define wZ≺0w

′ exactly when
PVM(w) ⊆ PVM′(w′); and wZ≺α+1w

′ exactly when PVM(w) ⊆ PVM′(w′)
and for all x′ ≻′ w′ there exists x ≻ w with xZαx′.

We notice that since the set of all l -bisimulations between two mod-
els M and M′ are closed under union, then there is always a maximal
l -bisimulation, ≃M,M′

, which is also downward closed. We will often drop
the superscript of ≃M,M′

. In case of α = ∞, we will drop the sub-
script of ≃M,M′

α (if no confusion is possible). Zα is full if it is both to-
tal and surjective as a relation between M and M′. We say that M and
M′ α-bisimualte (bisimualte), or M ≃α M′ (M ≃ M′,) if there is a full
α- bisimulation (bisimulation) between them. Z : M ≃α M′ means that
Z is a full α-bisimulation witnessing that M ≃α M′. For a set of proposi-
tional variables Q, M ≃α,Q M′ means that M and M′ α-bisimulate with
respect to the variables in Q. Note that for rooted models M and M′ we
have M ≃α M′ if and only if rM ≃α rM′ .

We say that w ∈ W and w′ ∈ W ′ are α-equivalent, written w ≡α w′,
exactly when Thα(w) = Thα(w

′). We notice that for α = ∞, w and w′ are
α-equivalent if Th(w) = Th(w′).

Theorem 3.11. Let M = (W,≺,⊩) and M′ = (W ′,≺′,⊩′) be any Kripke
models, w ∈W,w′ ∈W ′ and α ∈ ω∞. Then wZαw′ implies w ≡α w′.

Proof: The proof is by induction on the complexity of formulas. We only
check the case of implication. So suppose that ϕ = γ → ψ. Suppose
w ⊮ γ → ψ. Then for some x ≻ w, x ⊩ γ and x ⊮ ψ. Notice that
γ, ψ ∈ Bα−1(P). Moreover, since wZαw′, then there is x′ ≻′ w′ such that
xZα−1x

′. Hence, by induction, we get x′ ⊩′ γ and x′ ⊮′ ψ. Therefore, w′ ⊮′

γ → ψ. By a similar argument, we can prove the reverse implication.

Theorem 3.12. Let M = ⟨W,≺,⊩⟩ and M′ = ⟨W ′,≺′,⊩′⟩ be any two
Kripke models. For any w ∈ W,w′ ∈ W ′ and n ∈ ω, the following are
equivalent:

1. ThPn (w) ⊆ ThPn (w
′);

2. There exists a layered P- bisimulation Z between M and M′ such
that wZ≺nw

′;

3. There exists a downward closed layered P- bisimulation Z between M
and M′ such that wZ≺nw

′.
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Proof: (2 ⇒ 1): We prove that for allm ∈ ω, x ∈W and x′ ∈W ′, if there
exists a layered P-bisimulation Z between M and M′ such that xZ≺mx

′,
then ThPm(x) ⊆ ThPm(x′).

Let m = 0, then the set B0(P) is a set of implication-free formulas. By
the assumption PVM(x) ⊆ PVM′(x′), so if ϕ = p is a propositional variable,
then we have our result. The cases for conjunction and disjunction can be
done by induction. Now, Suppose that the statement holds for m > 0,
and that there exists a layered P-bisimulation Z between M and M′ such
that xZ≺m+1x

′. By induction on the complexity of given ϕ ∈ Bm+1(P)
we prove, x ⊩ ϕ implies x′ ⊩′ ϕ. We only check that for ϕ := γ → ψ.
We notice that γ, ψ ∈ Bm(P). Suppose that x′ ⊮′ γ → ψ then for some
y′ ≻′ x′, y′ ⊩′ γ and y′ ⊮′ ψ. Since xZ≺m+1x

′, there is a y ≻ x, such that
yZmy′. Then, by induction and Theorem 3.11, y ⊩ γ and y ⊮ ψ. That
means x ⊮′ γ → ψ which is a contradiction.

(1 ⇒ 3): We prove that for all m ∈ ω, x ∈W and x′ ∈W ′, if ThPm(x) ⊆
ThPm(x′), then there exists a layered P- bisimulation Z between M and M′

with wZ≺mw
′.

Form = 0, put Z = ∅ which is obviously downward closed. Now assume
that the statement holds for m > 0. Suppose ThPm+1(x) ⊆ ThPm+1(x

′).
Define a relation Z on W × ω ×W ′ as:

wZiw′ if and only if ThPi (w) = ThPi (w
′).

Clearly, Zi’s are persistent over atoms. We only show the zig property,
suppose wZiw′ and w ≺ y. We want to show that there is y′ ≻′ w′ such
that yZi−1y

′. Define ϕ(y) := Yi−1(y) → Ni−1(y). We have w ⊮ ϕ(y)
and since ϕ(y) ∈ Bi(P), w′ ⊮ ϕ(y). Therefore, for some y′ ≻′ w′ we have
y′ ⊩ Yi−1(y), but y

′ ⊮ Ni−1(y). Hence yZi−1y
′. It remains to show that

xZ≺m+1x
′. So assume that k′ ≻′ x′, then x′ ⊮ ϕ(k′). Thus by assumption

we have x ⊮ ϕ(k′) which implies that for some k ≻ x, k ⊩ Ym(k′) and k ⊮
Nm(k′). Hence, kZmk′. Obviously, Z is a downward closed l-bisimulation.

(3 ⇒ 2): Obvious.

4. Interpolation

In this section, we prove the lifting theorem which helps us in establishing
the Craig interpolation property. After which, we prove the amalgamation
lemma for FPL which results in its uniform left-interpolation property.
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The proofs are highly influenced by that of similar theorems in [8]. In this
section all models are irreflexive unless explicitly mentioned.

Theorem 4.1 (Lifting). Let M = (W,≺,⊩) be a q⃗, p⃗-model and M′ =
(W ′,≺′,⊩′) be a p⃗, r⃗- model with M(p⃗) ≃α M′(p⃗). Then there exists q⃗, p⃗, r⃗-
model M′′ = (W ′′,≺′′,⊩′′) such that M(q⃗, p⃗) ≃α M′′(q⃗, p⃗) and M′(p⃗, r⃗) ≃α
M′′(p⃗, r⃗).

Proof: Let Z : M(p⃗) ≃α M′(p⃗). Define q⃗, p⃗, r⃗-model M′′ as follows:

• W ′′ := {(w,w′) | (w, β,w′) ∈ Z for some β};

• (w,w′) ≺′′ (v, v′) exactly when w ≺ v and w′ ≺′ v′;

• (w,w′) ⊩′′ s exactly when w ⊩ s or w′ ⊩′ s.

It’s easy to see that for s ∈ q⃗, p⃗ we have (w,w′) ⊩′′ s exactly when w ⊩ s
and for s ∈ p⃗, r⃗ we have (w,w′) ⊩′′ s exactly when w′ ⊩′ s. Next, define
Z ′ by wZ ′

i(w,w
′) if wZiw′ and Z ′′ by w′Z ′′

i (w,w
′) if wZiw′. It’s easy to

see that Z ′ : M(q⃗, p⃗) ≃α M′′(q⃗, p⃗) and Z ′′ : M′(p⃗, r⃗) ≃α M′′(p⃗, r⃗).

Corollary 4.2. Let M be a q⃗, p⃗-model and M′ be a p⃗, r⃗-model with
M(p⃗) ≃n M′(p⃗). Then there exists q⃗, p⃗, r⃗-modelM′′ such that Th(q⃗,p⃗)n (M) =

Th(q⃗,p⃗)n (M′′) and Th(p⃗,r⃗)n (M′) = Th(p⃗,r⃗)n (M′′).

By the lifting lemma we are ready to prove the Craig interpolation
property for BPL. The Craig interpolation property for BPL was proved
in [4]. The proof of the Craig interpolation property for FPL, FPL⊥,
EBPL and Fn, for n ∈ ω are new.

We say a class C of Kripke models has the lifting property if for all
models M and M′ in C, the constructed model M′′ in the lifting lemma is
also in C.

Theorem 4.3 (Craig Interpolation). Let L be a logic over BPL which is
sound and complete with respect to a class C having lifting property. Then
L satisfies the Craig interpolation property.

Proof: Suppose that ϕ ∈ Bm(q⃗, p⃗) and ψ ∈ Bn(p⃗, r⃗) are such that L ⊢
ϕ → ψ. We show that ψ∗

k(p⃗) :=
∨
{χ ∈ Bk(p⃗) | L ⊢ χ → ψ} is their Craig

interpolant, where k := max(m,n).
Clearly L ⊢ ψ∗

k(p⃗) → ψ. If L ⊬ ϕ → ψ∗
k(p⃗), there exists a q⃗, p⃗-pointed

model (M, w) such that w ⊩ ϕ but w ⊮ ψ∗
k(p⃗). Let Y := Yk,w((p⃗)) and
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N := N
(p⃗)
k (w). For contradiction, suppose Y ⊢ N ∨ ψ. Note that by Fact

3.10, Y is prime. So Y ⊢ N or Y ⊢ ψ. Since Y ⊬ N, it follows that Y ⊢ ψ and
hence by definition of ψ∗

k(p⃗) we have Y ⊢ ψ∗
k(p⃗) which is a contradiction,

since w ⊮ ψ∗
k(p⃗). So Y ⊬ N ∨ ψ. Then there exists q⃗, r⃗-pointed model

(M′, w′) such that w′ ⊩ Y but w′ ⊮ N ∨ ψ. Now, by Theorem 3.12, we
have M′(p⃗) ≃k M(p⃗). Then, by Corollary 4.2, there exists p⃗, q⃗, r⃗-model

M′′ such that Th
(q⃗,p⃗)
k (M) = Th

(q⃗,p⃗)
k (M′′) and Th

(p⃗,r⃗)
k (M′) = Th

(p⃗,r⃗)
k (M′′).

In particular, M′′ ⊩ ϕ and M′′ ⊮ ψ which is a contradiction. Therefore,
L ⊢ ϕ→ ψ∗

k(p⃗).

Corollary 4.4. BPL, FPL, and Fn, for n ∈ ω, have the Craig interpo-
lation property.

Proof: For BPL it is trivial. For FPL, note that in the lifting lemma,
when M and M′ are conversely well-founded, so will be the constructed
model M′′. Also, when M and M′ have depth at most n, then M′′ also
has depth at most n.

The following logic is another interesting extension of BPL which be-
haves very similar to IPL [2].

EBPL = BPL+⊤ → ⊥ ⇒ ⊥.

It was proved in [2, Corollary 3.9] that the logic EBPL is sound and
complete for the class of finite models with reflexive leaves. Obviously this
class of models has the lifting property. Therefore we have the following
corollary.

Corollary 4.5. The logic EBPL has the Craig interpolation property.

We say a formulas ϕ is constant if V (ϕ) = ∅. In the following theorem we
show that every faithful extension of basic propositional logic with constant
formulas preserves Craig interpolation property.

Theorem 4.6. Let X be a set of constant fourmulas. If a logic L has the
Craig interpolation property and L + X is faithful, then L + X also has
Craig interpolation property.

Proof: Suppose that L has the Craig interpolation property. Let L+X ⊢
ϕ → ψ. Then by faithfulness we have L + X ⊢ ϕ ⇒ ψ. Then there are
constant formulas θ1, · · · , θn in X such that in L we have θ1, · · · , θn ⊢ ϕ⇒
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∆
ΦX

m
∼2dX (m′)

n

∆

=

FF

ΦX
m′

⪯

EE

∼2dX (m′)+1

n′

⪯

OO

Figure 1. Witnessing triple

ψ. Put θ =
∧
θi, then by Proposition 2.1 we have L ⊢ θ ∧ ϕ ⇒ ψ which

implies that L ⊢ θ ∧ ϕ → ψ. Now by interpolation property of L, there
is a formula η in V (ϕ) ∩ V (ψ) such that L ⊢ θ ∧ ϕ → η and L ⊢ η → ψ.
Hence,by faithfulness, L+X ⊢ ϕ→ η and L+X ⊢ η → ψ.

Corollary 4.7. FPL⊥ has the Craig interpolation property.

The proof of the next lemma is similar to the one used in [8] for IPL.
However, to show that this proof -especially claim 2- does not work forBPL
but does work for FPL, the details have been provided. In the following
lemma, all models are conversely well-founded, i.e., FPL- models.

Lemma 4.8 (Amalgamation). Consider disjoint sets q⃗, p⃗ and r⃗. Let X ⊆
L(q⃗, p⃗) be a finite P-adequate set. Let ⟨M, w0⟩ ∈ Pmod(q⃗, p⃗), ⟨M′, w′

0⟩ ∈
Pmod(p⃗, r⃗). Let:

ν := |{ϕ ∈ X | ϕ is a propositional variable or an implicational formula}|.

Suppose that w0 ≃2ν+1,p⃗ w
′
0. Then there exists a q⃗, p⃗, r⃗-model ⟨M′′, w′′

0 ⟩
such that w′′

0 ≃p⃗,r⃗ w′
0 and ThX(w′′

0 ) = ThX(w0).

Proof: Let Z be a downwards closed witness of w0 ≃2ν+1,p⃗ w
′
0. Define

ΦX : M −→ HX by ΦX(w) := ∆(w) := {ϕ ∈ X | w ⊩ ϕ}. Define further
for w ∈ M: dX(w) = dHX

(∆(w)). Note that dX(w) ≤ ν.
Consider a pair ⟨∆, n⟩ for ∆ in H and n in M′. We say that m′,m, n′

is a witnessing triple for ⟨∆, n⟩ if:

∆ = ∆(m) = ∆(m′), m′ ⪯ m,n′ ⪯′ n, m′Z2dX(m′)+1n
′, mZ2dX(m′)n.
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The requested model M′′ is defined as follows:

• W ′′ = {⟨∆, n⟩ | there is a witnessing triple for⟨∆, n⟩},

• w′′
0 := ⟨∆(w0), w

′
0⟩,

• ⟨∆, n⟩ ≺′′ ⟨Γ, n′⟩ exactly when ∆ ⪯ Γ and n ≺′ n′,

• ⟨∆, n⟩ ⊩ s exactly when ∆ ⊩ s or n ⊩ s.

Note that by assumption w0Z2ν+1w
′
0 and the fact that 2dX(w0) + 1 ≤

2ν + 1 we have w0Z2dX(w0)+1w
′
0. So, w0, w0, w

′
0 is a witnessing triple for

w′′
0 . Let m

′,m, n′ be a witnessing triple for ⟨∆, n⟩. For p ∈ p⃗ ∩X we have
∆ ⊩ p if and only if m ⊩ p if and only if n ⊩ p, and hence ⟨∆, n⟩ ⊩ p if and
only if ∆ ⊩ p if and only if n ⊩ p. Also, note that M′′ is an FPL-model.
The following claims prove the lemma.

Claim 1. w′′
0 ≃p⃗,r⃗ w′

0,

Claim 2. For ϕ ∈ X, ⟨∆, n⟩ ⊩ ϕ exactly when ϕ ∈ ∆.

Proof of Claim 1: For B defined by ⟨∆, n⟩Bn, by a same argument as [8],
we show that it is a bisimulation. Clearly Thp⃗,r⃗(⟨∆, n⟩) = Thp⃗,r⃗(n). We
only check the zag-property of B. Suppose ⟨∆, n⟩Bn ≺ m. We are looking
for a pair ⟨Γ,m⟩ such that ∆ ⪯ Γ. Let k′, k, n′ be a witnessing triple for
⟨∆, n⟩. Since k′ ∼2dX(k′)+1 n

′ ⪯ m, there is a h such that h ≺ k′ and
h ∼2dX(k′) m. Put, Γ := ∆(h). We need a witnessing triple k′∗, k∗, n′∗ for
⟨Γ,m⟩. If Γ = ∆, then put: k′∗ := k′, k∗ := h, n′∗ := n′, see figure 2.

If Γ ̸= ∆, then put: k′∗ := h, k∗ := h, n′∗ := m. We notice that since
k′ ⪯ h, then ∆ = ∆(k′) ≺ Γ which implies that dX(h) < dX(k′). Therefore,
2dX(h) + 1 ≤ 2X(k′), so h ∼2dX(k′)+1 m which implies that h ∼2dX(k′) m,
because Z is downward close. Clearly w′′

0Bw′
0.

Proof of Claim 2: We proceed by induction on the complexity of a formula
ϕ ∈ X. The cases of atoms, conjuntctions and disjunctions are trivial.
Consider ϕ→ ψ ∈ X and the node ⟨∆,m⟩ with witnessing triple k′, k,m′.
Suppose ϕ → ψ /∈ ∆. Since ∆ = Th(k), then k ⊮ ϕ → ψ. So, there is an
h ≻ k with h ⊩ ϕ and h ⊮ ψ. Let h, by conversely well-foundedness of
M, be a maximal in M with h ≻ k, h ⊩ ϕ and h ⊮ ψ. By maximality, we
find h ⊩ ϕ → ψ. Let Γ := ∆(h). Since ϕ → ψ /∈ ∆ and ϕ → ψ ∈ Γ, we
find ∆ ≺ Γ, which implies that dX(k′) ≥ 1. Since kZ2dX(k′)m and k ≺ h,
there is an n ≻ m with hZ2dX(h)−1n. Therefore hZ2dX(h)+1n. So we can
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Γ = ∆
ΦX

k∗ = h
∼2dX (k′)

m

∆
ΦX

k
∼2dX (k′)

n

⪯

OO

∆

=

OO

=

DD

ΦX
k′∗ = k′

⪯

OO

⪯

CC

∼2dX (k′)+1

n′∗ = n′

⪯

OO

take h, h, n to witness ⟨Γ, n⟩. Clearly ⟨∆,m⟩ ≺′′ ⟨Γ, n⟩. By the induction
hypothesis, ⟨Γ, n⟩ ⊩ ϕ while ⟨Γ, n⟩ ⊮ ψ, i.e., ⟨∆, n⟩ ⊮ ϕ→ ψ.

The other half of the argument, i.e., that ϕ → ψ ∈ ∆ implies (∆, n) ⊩
ϕ→ ψ, is easy.

Definition 4.9. Let ϕ(q⃗, p⃗) be a formula.

1. A uniform left-interpolant for ϕ(q⃗, p⃗) with respect to p⃗ is a formula
χ(p⃗) such that for all formulas ψ(p⃗, r⃗) with ⊢ ψ → ϕ, χ acts as an
interpolant for ϕ and ψ.

2. A uniform right-interpolant for ϕ(q⃗, p⃗) with respect to p⃗ is a formula
χ(p⃗) such that for all formulas ψ(p⃗, r⃗) with ⊢ ϕ → ψ, χ acts as an
interpolant for ϕ and ψ.

3. A logic whose formulas have both uniform left and right-interpolants
is said to satisfy the uniform interpolation property.

Although the Amalgamation lemma is held for FPL models, unlike in
intuitionistic logic, we can only prove the uniform left-interpolation prop-
erty.

Theorem 4.10. FPL has the uniform left-interpolation property.

Figure 2.
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Proof: Note that by the Amalgamation lemma, in proof of Craig inter-
polation for FPL we can let X := sub(ϕ), and by defining ν as before, we
find that ϕ∗2v+1 works as Craig interpolant for any given ψ satisfying the
conditions. Therefore, ϕ∗2v+1 is the uniform left-interpolant for ϕ.

In the remainder of this section, we prove the uniform interpolation for
some extensions of FPL. As a matter of fact, we show that countably
infinite of such extensions exist.

A logic L is said to be locally tabular if for any finite set P of proposi-
tional variables, there are only finitely many formulas built from variables
in P up to L-provable equivalence.

Theorem 4.11. If L is a locally tabular logic over BPL and has the Craig
interpolation property, then L has the uniform interpolation property.

Proof: Consider a formula ϕ(q⃗, p⃗). Let Ψ = {ψ(p⃗, r⃗) | L ⊢ ψ → ϕ}.
Consider an effective counting of members of Ψ as ψ1, ψ2, · · · , ψn. By
Craig interpolation, for every i we can find χi(p⃗) such that L ⊢ χi → ϕ
and L ⊢ ψi → χi. Now,

∨
χi works as the uniform left-interpolant of ϕ for

all ψn.
For the uniform right-interpolant, let Ψ = {ψ(p⃗, r⃗) | L ⊢ ϕ → ψ}. We

can, by locally tabularity, find an effective counting of members of Ψ as
ψ1, ψ2, · · · , ψn. By Craig interpolation, for every i we can find χi(p⃗) such
that L ⊢ ϕ → χi and L ⊢ χi → ψi. Therefore

∧
χi works as the uniform

right-interpolant of ϕ for all ψn.

The following theorem was proved algebraically in [1, Theorem 2.12].

Theorem 4.12. For every n ∈ ω, the logic Fn is locally tabular.

Corollary 4.13. The logic Fn, for n ∈ ω, have the uniform interpolation
property.

Proof: Apply Corollary 4.4, Theorem 4.11 and Theorem 4.12.

We close this paper with the following problem.

Problem. Do BPL, FPL, FPL⊥ and EBPL have the uniform interpo-
lation property?

Acknowledgements. We are grateful to Amirhossein Akbar Tabatabai
for his thoughtful remarks and the invaluable discussions that we have had.



Interpolation Property on Visser’s Formal Propositional Logic 315

References
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