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Abstract

The relationship between formal (standard) logic and informal (common-sense,

everyday) reasoning has always been a hot topic. In this paper, we propose

another possible way to bring it up inspired by connexive logic. Our approach is

based on the following presupposition: whatever method of formalizing informal

reasoning you choose, there will always be some classically acceptable deductive

principles that will have to be abandoned, and some desired schemes of argument

that clearly are not classically valid. That way, we start with a new version

of connexive logic which validates Boethius’ (and thus, Aristotle’s) Theses and

quashes their converse from right to left. We provide a sound and complete

axiomatization of this logic. We also study the implication-negation fragment of

this logic supplied with Boolean negation as a second negation.

Keywords: Many-valued logics, connexive logic, four-valued logic MC, informal

reasoning.

1. Introduction

The early 21st century has witnessed a growing interest in connexive logic.
One of the reasons for this interest is related to the unsatisfactory for-
mal explication of natural reasoning with logical tools. The point at is-
sue is not only some challengeable classically valid deductive postulates
applied as standards of natural reasoning but also of the insufficiency of
logical principles accepted in classical logic for an adequate formalization
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of reasoning. Our article was prompted by similar considerations: while
speculating about the peculiarities of current informal (or argumentative)
reasoning formalization, we noted the presence of some undesirable classical
deductive principles and the absence of desirable non-classical ones.

In this respect, connexive logic as an alternative to classical logic looks
like a very promising candidate. In this paper, we attempt to take another
step in this direction and examine some properties of connexive logic that
to our way of thinking may be useful for modeling informal, common-sense
reasoning.

Connexive logics are usually characterized as requiring that (A → B) →
(B → A) is not a theorem, and validating the following set of deductive
principles.1

• Aristotle’s Thesis I: ¬(A → ¬A),

• Aristotle’s Thesis II: ¬(¬A → A),

• Boethius’ Thesis I: (A → ¬B) → ¬(A → B),

• Boethius’ Thesis II: (A → B) → ¬(A → ¬B).

The present paper deals, basically, with those connexive logics that fall
under the scope of the so-called ‘Bochum plan’ [8]; that is, being presented
in the FDE-like framework (see, for example, [6]) and obtained by tweaking
the falsity condition of implication. Plenty of logic were introduced within
this paradigm: Wansing’s C [18] and MC [19], Omori and Wansing’s C3
[16], Omori’s dLP [13] and BDW [14], etc. Some related logics that were
introduced independently from the Bochum plan, such as Cooper’s OL
[5, 1], Cantwell’s CN [4], and Olkhovikov’s LImp [12], nonetheless, can be
represented within it. In all these systems, the classically valid converses
of Boethius’ Theses (BT hereinafter) from right to left are also valid. This
made it possible to strengthen the corresponding principles to equivalences:

• Strong Boethius Thesis I: (A → ¬B) ↔ ¬(A → B),

• Strong Boethius Thesis II: (A → B) ↔ ¬(A → ¬B).

However, this strengthening raises some doubts. For example, S.McCall
[10] finds it to be counterintuitive, and H. Wansing and D. Skurt in [20]
object to his arguments. The differences of opinion were mainly concerned

1Notice, however, that there are other ways to characterize connexive logics, see [19]
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with the acceptability of BT from right to left in the context of connexive
logic, but we argue that these principles clearly are not consistent with
the common-sense interpretation. Generally speaking, negating the im-
plication ¬(A → B) can mean completely different things. For example
in argumentation, there is a distinction between criticism of the claim, or
conclusion (rebutting), and criticism of the connection between the reasons
and claim (undercutting). In the latter case, ¬(A → B) does not mean that
(A → ¬B). Moreover, this principle can be interpreted as a kind of ‘fallacy
of relevance’: in classical logic, for arbitrary propositional variables p and
q, it holds that ¬(p → q) → (p → ¬q). It is a kind of a cock and bull story,
that might sound like that: ‘If it is not true that if elderberry grows in the
garden, then my uncle lives in Kyiv, then it is true that if elderberry grows
in the garden, then my uncle doesn’t live in Kyiv’ !

To put it in a nutshell, we believe that the presumptive logic of everyday
reasoning should contain some contra-classical deductive principles and not
contain some classical ones. We are not alone in this regard. To name but a
few, consider recent papers by S. Rahman, H. Rückert et al (consult [17] as
a telling example). There is also a self-reliant approach to connexivity asso-
ciated with experimental philosophy. In particular, paper [7] provides the
empirical grounds for various interpretations of the negation of indicative
conditionals, which in some cases coincide with the connexive interpreta-
tion (see also [15]). In fact, this interpretation of connexivity is based on
the same common-sense reasoning that people conduct in the process of
arguing. Thus, we incline to believe that concerning implication as a rep-
resentation of informal (argumentative) reasoning the desirable principles
are BT1 and BT2 but not their converses.

On the other hand, this paper is motivated by the question of whether
the Bochum plan has sufficient capacity to obtain straightforward and sim-
ple semantics that invalidates the converses of BT1 and BT2. And though
there is a disagreement about whether it is desirable to have a logic that
validates these principles, we believe that all parties could agree that the
very opportunity of having a transparent way to obtain a logic without
them is certainly desirable. From that perspective, in what follows we will
develop our version of connexive logic. In so doing, in the next section,
we start with a brief semantical consideration of so-called Minimal Mate-
rial Connexive logic. Section 3 provides an axiomatization of this logic,
and Section 4 deals with the implication-negation fragment of the Minimal
Material Connexive logic enriched with Boolean negation.
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2. Minimal Material Connexive Logic: Semantics

Throughout the paper we will discuss logics that are built over the stan-
dard propositional language L, containing four propositional connectives:
implication, conjunction, disjunction, and negation. The notion of a for-
mula is defined in a standard manner. The set of all propositional variables
of L is denoted by P. The set of all formulae of L is denoted by F.

One of the simplest connexive logics is a four-valued logic MC, intro-
duced by Wansing [18]. It can be seen as an expansion of Dunn-Belnap’s
logic FDE [2, 3, 6] with the following implication connective.

f→
MC T B N F

T T B N F

B T B N F

N B B B B

F B B B B

On a par with other related logics, such as Wansing’s C [18] and
Cantwell’s CN [4], MC validates the converses of BT1 and BT2. As we
remarked above, this property seems to be counterintuitive within the ar-
gumentative context and even criticized by some authors. In what follows,
we want to preserve the simplicity of Wansing’s approach and obtain a
logic where the converses of BT1 and BT2 fail. We denote such logic by
MMC which is an abbreviation for ‘Minimal Material Connexive Logic’.

We start off by defining the following logical matrix.

Definition 2.1. An MMC-matrix for L is a tuple M = ⟨V,D,O⟩, where:
(a) V = {T, B, N, F}, (b) D = {T, B}, (c) for every n-ary connective ⋄ of L,
O contains a corresponding n-ary function f⋄: Vn → V. The functions
included in O are defined by means of the following tables:

f¬ A
F T

B B

N N

T F

f→ T B N F

T T B F F

B T B F F

N B B B B

F B B B B
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f∧ T B N F

T T B N F

B B B F F

N N F N F

F F F F F

f∨ T B N F

T T T T T

B T B T B

N T T N N

F T B N F

An MMC-valuation in an MMC-matrix M is a function v : F → V
that satisfies the following condition for every n-ary connective ⋄ of L and
A1, . . . , An ∈ F:

v(⋄(A1, . . . , An)) = f⋄(v(A1), . . . , v(An)).

Definition 2.2. For every Γ ∪ {A} ⊆ F: Γ ⊨MMC A ⇔ for every v in
M, if v(B) ∈ D (for all B ∈ Γ), then v(A) ∈ D. A formula A is called
MMC-valid iff v(A) ∈ D, for every MMC-valuation.

Henceforth, we will use the terms ‘matrix’, ‘valuation’, and ‘valid’ in-
stead of ‘MMC-matrix’, ‘MMC-valuation’, and ‘MMC-valid’, respec-
tively, if otherwise is not required by the context.

Definition 2.3. A generalized truth values MMC-model for L is a pair
S = ⟨S, ξ⟩, where S is the set of generalized truth values {{T, F}, {T}, {F},
∅}, and ξ is a valuation function mapping every propositional variable into
S. The following semantic conditions are needed to determine the semantic
values of complex formulae.

• T ∈ ξ(¬A) ⇔ F ∈ ξ(A),

• F ∈ ξ(¬A) ⇔ T ∈ ξ(A),

• T ∈ ξ(A ∧B) ⇔ T ∈ ξ(A) and T ∈ ξ(B),

• F ∈ ξ(A ∧B) ⇔ F ∈ ξ(A) or F ∈ ξ(B),

• F ∈ ξ(A ∨B) ⇔ F ∈ ξ(A) and F ∈ ξ(B),

• T ∈ ξ(A ∨B) ⇔ T ∈ ξ(A) or T ∈ ξ(B),

• T ∈ ξ(A → B) ⇔ if T ∈ ξ(A) then T ∈ ξ(B),

• F ∈ ξ(A → B) ⇔ if T ∈ ξ(A) then (F ∈ ξ(B) or T /∈ ξ(B)).
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Definition 2.4. For every Γ ∪ {A} ⊆ F: Γ ⊨S A ⇔ for every ξ in S,
if T ∈ ξ(B) (for all B ∈ Γ), then T ∈ ξ(A). A formula A is S-valid iff
T ∈ ξ(A) under every valuation in S.

The Wansing-style approach to connexivity is recognized by many au-
thors as the most intuitively plausible. To understand why this is the case,
the semantic framework of generalized truth values is very convenient. In-
deed, to obtain the semantics for Wansing’s MC, it is sufficient to replace
the falsity condition of implication from Definition 2.3 with the following
one.

F ∈ ξ(A → B) ⇔ if T ∈ ξ(A) then F ∈ ξ(B).

Thus, it is clear that MMC can be considered as a result of the general-
ization of MC with respect to the falsity of implication. Intuitively, when
the MC-theorists are asserting the falsity of a conditional sentence they
are quite opinionated regarding the epistemic status of the consequent. In
turn, MMC-theorists are more ‘non-deterministic’ in this respect.

We finish this section by proving the equivalence of the matrix and
generalized truth values semantics of MMC.

Lemma 2.5. For every A ∈ F, every MMC-valuation v in an MMC-
matrix M, and every S-valuation in a generalized truth values MMC-
model S the following hold.

v(A) = T ⇔ T ∈ ξ(A) and F /∈ ξ(A),

v(A) = B ⇔ T ∈ ξ(A) and F ∈ ξ(A),

v(A) = N ⇔ T /∈ ξ(A) and F /∈ ξ(A),

v(A) = F ⇔ T /∈ ξ(A) and F ∈ ξ(A).

Proof: Using standard induction on the complexity of A.

With the help of Lemma 2.5, the following theorem can be proven.

Theorem 2.6. For any Γ ∪ {A} ⊆ F: Γ ⊨MMC A ⇔ Γ ⊨S A.

Proof: Assume Γ ̸⊨MMC A. Then, by Definition 2.2, there is an MMC-
valuation v in a MMC-matrix M, such that v(Γ) ⊆ {T, B} and v(A) ̸⊆
{T, B}, that is v(A) ⊆ {N, F}. By Lemma 2.5, there is an S-valuation ξ in a
generalized truth values MMC-model S, such that T ∈ ξ(B) for all B ∈ Γ
and T /∈ ξ(A), thereby providing Γ ̸⊨S A (by Definition 2.4). Therefore,
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if Γ ⊨S A, then Γ ⊨MMC A. The converse of the latter statement can be
proven by analogous argument.

We consider it acceptable to designate our logic by the term ’minimal’
for the following reason. In [9] Estrada-González and Ramirez-Cámara
suggested a list of desiderata that can be used to distinguish between dif-
ferent senses of connexivity. According to their list, a logic is claimed to
be minimally connexive if it validates both Aristotle theses, BT1, BT2 and
invalidates (A → B) → (B → A), i.e. exactly the same requirements that
we discussed in the introduction section. Again, according to [9], a logic
is called ‘subminimal connexive’ if it satisfies at least some but not all of
the just mentioned conditions. The logic MC can be rightfully claimed as
‘minimal’ in Estrada-González and Ramirez-Cámara sense. However, one
could use another notion of minimality by requiring in addition that the
converses of Boethius’ theses fail to be valid. In this different sense of min-
imality MMC is more suitable than MC. For counterexamples falsifying
Boethius’ theses in MMC, consider a valuation v, such that v(A) = T and
v(B) = N. Thus, MMC is a kind of a ‘downgraded’ version of MC.

Finally, both logics are inconsistent but not trivial, as (p∧¬p) → p and
¬((p ∧ ¬p) → p) are simultaneously valid in MMC and MC.

3. Minimal Material Connexive Logic:
Axiomatization

3.1. Proof-theory

A Hilbert-style proof-system H for MMC is defined by means of the fol-
lowing axioms and rules.

Axioms:

(A1) A → (B → A),

(A2) (A → (B → C)) → ((A → B) → (A → C)),

(A3) ((A → B) → A) → A,

(A4) ((A → C) ∧ (B → C)) → ((A ∨B) → C),

(A5) A → (A ∨B),
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(A6) B → (A ∨B),

(A7) ((A → B) ∧ (A → C)) → (A → (B ∧ C)),

(A8) (A ∧B) → A,

(A9) (A ∧B) → B,

(A10) ¬¬A ↔ A,

(A11) ¬(A ∧B) ↔ (¬A ∨ ¬B),

(A12) ¬(A ∨B) ↔ (¬A ∧ ¬B),

(A13) (A → ¬B) → ¬(A → B),

(A14) B → (¬(A → B) → (A → ¬B)),

(A15) A ∨ ¬(B → A),

Inference Rules:

(MP)
A → B, A

B
.

Definition 3.1. A proof of a formula A in H is a sequence of formu-
las A1, . . . , An, A, where 0 ≤ n, such that every formula in the sequence
A1, . . . , An, A either (1) is an axiom of H, or (2) is obtained with the help
of (MP) from the preceding formulas.

We write ⊢H A to denote that A has a proof in H (such A is called a
theorem). Γ ⊢H A means that A has a proof from hypotheses Γ in H, i. e.
there is a sequence of formulas A1, . . . , An, A, where 0 ≤ n, such that every
formula in the sequence A1, . . . , An, A either (1) belongs to Γ, or (2) is an
axiom of H, or (3) is obtained with the help of (MP) from the preceding
formulas. As in the case of MC, the pure implicational fragment of MMC
is classical, hence the following Deduction Theorem is provable in MMC.
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Theorem 3.2. For any Γ ∪ {A,B} ⊆ F, if Γ, A ⊢H B, then Γ ⊢H A → B.

Proof: The proof is quite standard, it can be obtained using (A1), (A2)
and (MP). For details the reader can consult, for example, [11].

Interestingly, a Hilbert-style system for Wansing’s MC can be obtained
by making a simple change to H, namely it is sufficient to replace (A14)
and (A15) with

¬(A → B) → (A → ¬B). (CBT 1)

Notice, however, that (A14) should not be disregarded by MC-theorists
because it is, in fact, a theorem of MC and can be proven, using (A1) and
(CBT 1).

Nevertheless, MC is not an extension of MMC since (A15) is not a
theorem of MC. This can be easily checked with the help of the soundness
result forMC. Apropos it establishes the independence of (A15) inMMC.
Thus, both logics are orthogonal to each other.

3.2. Completeness and soundness of MMC

Now we turn to the completeness proof and begin with some auxiliary
notions.

Definition 3.3. A set of formulas T is called a theory if it is closed under
⊢H. A theory T is called prime iff, for every formulas A and B, it holds
that A∨B ∈ T implies A ∈ T or B ∈ T . Finally, T is called non-trivial if
A /∈ T for some formula A.

To pave the way for the proof of the canonical valuation lemma, consider
the following set of derivable formulae.

Fact 3.4. The formulae below are derivable.

A ∨ (A → B) (T1)

A ∨ ¬(A → B) (T2)

¬B → ¬(A → B) (T3)

Proof: For (T1) we use (A3) and Theorem 3.2. For (T2) we use (T1) and
(A13). For (T3) we use (A1) and (A13).

Now is the time to prove the following useful lemma.
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Lemma 3.5. For any prime theory Γ, it holds that A → B ∈ Γ iff A /∈ Γ
or B ∈ Γ.

Proof: Suppose A → B ∈ Γ and A ∈ Γ and B /∈ Γ. Then, by (MP), we
have a contradiction. For the converse we have two cases. Suppose that
A /∈ Γ and A → B /∈ Γ. Then, by (T1), we have contradiction, since Γ is
prime. Now, suppose that B ∈ Γ and A → B /∈ Γ. Then, using (A1) and
(MP), we obtain contradiction.

Definition 3.6. Let T be a non-empty non-trivial prime theory. We define
an MMC-canonical valuation ξT by requiring that for every p ∈ P:

T ∈ ξT (p) ⇔ p ∈ T , F ∈ ξT (p) ⇔ ¬p ∈ T .

Lemma 3.7. Let ξT be a MMC-canonical valuation. Then, for every
A ∈ F, the following holds.

T ∈ ξT (A) ⇔ A ∈ T , F ∈ ξT (A) ⇔ ¬A ∈ T .

Proof: By induction on the complexity of a formula A. We abbreviate
‘inductive hypothesis’ by ‘IH’. The basic case, when A ∈ P, follows from
Definition 3.6.

For negation. We begin with the truth condition: T ∈ ξT (¬B) iff F ∈
ξT (B) (by Definition 2.3) iff ¬B ∈ T (by IH). The falsity condition is also
straightforward: F ∈ ξT (¬B) iff T ∈ ξT (B) iff B ∈ T (by IH) iff ¬¬B ∈ T
(by (A10)).

For conjunction. T ∈ ξT (B ∧ C) iff T ∈ ξT (B) and T ∈ ξT (C) (by Def-
inition 2.3) iff B ∈ T and C ∈ T (by IH) iff B ∧ C ∈ T (by (A7), (A8),
(A9)). F ∈ ξT (B ∧ C) iff F ∈ ξT (B) or F ∈ ξT (C) (by Definition 2.3) iff
¬B ∈ T or ¬C ∈ T (by IH) iff ¬(B ∧ C) ∈ T (by (A11)).

For disjunction. T ∈ ξT (B ∨C) iff T ∈ ξT (B) or T ∈ ξT (C) (by Definition
2.3) iff B ∈ T or C ∈ T (by IH) iff B ∨ C ∈ T (by (A5), (A6) and prime-
ness). F ∈ ξT (B ∨ C) iff F ∈ ξT (B) and F ∈ ξT (C) (by Definition 2.3) iff
¬B ∈ T and ¬C ∈ T (by IH) iff ¬(B ∨ C) ∈ T (by (A12)).

For implication. Let F ∈ ξT (B → C) and ¬(B → C) /∈ T . Then, by
Definition 2.3, we have
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T ̸∈ ξT (B) or (F ∈ ξT (C) or T /∈ ξT (C)).

There are the three cases to consider.

(a) T ̸∈ ξT (B) ⇒IH B /∈ T

(b) F ∈ ξT (C) ⇒IH ¬C ∈ T ,

(c) T /∈ ξT (C) ⇒IH C /∈ T .

We have to show that every case leads to a contradiction. For (a) we
use B ∨ ¬(B → C) (see (T2), Fact 3.4) and primeness of T . For (b)
we use ¬C → ¬(B → C) (see (T3), Fact 3.4). The proof of (c) uses
C ∨ ¬(B → C) ∈ T , which is provable with the help of (A15).

Suppose ¬(B → C) ∈ T and F /∈ ξT (B → C). From the latter, using
Definition 2.3, we obtain

T ∈ ξT (B) and F /∈ ξT (C) and T ∈ ξT (C).

By IH,
B ∈ T and ¬C /∈ T and C ∈ T .

From this, using C → (¬(B → C) → (B → ¬C)) (A14), we obtain a
contradiction. Therefore, F ∈ ξT (B → C).

Let T ∈ ξT (B → C). Then, by Definition 2.3, T /∈ ξT (B) or T ∈ ξT (C).
Applying IH, we have B /∈ T or C ∈ T . Now Lemma 3.5 gives the desired
result in both directions.

We use a standard version of Lindenbaum’s lemma, so its proof is omit-
ted.

Lemma 3.8. For any Γ ∪ {A} ⊆ F, if Γ ̸⊢H A, then, there exists a non-
trivial prime theory Γ′, such that Γ ⊆ Γ′ and Γ′ ̸⊢H A.

Thus, we can move toward the completeness theorem.

Theorem 3.9. For any Γ ∪ {A} ⊆ F, if Γ ⊨S A, then Γ ⊢H A.

Proof: As usual.

Finally, the soundness theorem is proven as usual.
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Theorem 3.10. For any Γ ∪ {A} ⊆ F, if Γ ⊢H A, then Γ ⊨S A.

Proof: As usual.

In virtue of Theorem 2.6 we obtain the following corollary.

Corollary 3.11. For any Γ ∪ {A} ⊆ F, Γ ⊢H A iff Γ ⊨MMC A.

4. Expanding pure connexive fragment of MMC with
Boolean negation

Slightly adopting the terminology from [21] we will denote the implication-
negation fragment of MMC as ‘pure connexive fragment’. Moving further
along this avenue we arrive at relatively poor logic with implication and
negation as the only primitives. In fact, in this case, it is interesting to add
the second Boolean negation ∼ to indicate non relevant arguments, so that
∼A means that A is absent from the current argumentative discourse. This
move will allow comparing the behavior of two negations in the same con-
text and at the same time will simplify the axiomatization of the resulting
fragment.

Boolean negation differs from DeMorgan ¬ only in N and B lines: ∼ N =
B, ∼ B = N. Thus, we add to Definition 3 two items:

T ∈ ξ(∼A) ⇔ T /∈ ξ(A) (BN1)

F ∈ ξ(∼A) ⇔ F /∈ ξ(A) (BN2)

The resulting system will be implication-negation fragment of MMC sup-
plied with an extra negation: MMC¬,∼

−→ . A Hilbert-style axiomatization
of MMC¬,∼

−→ contains (MP), (A1) – (A2), (A10), (A13), (A14), and the
following list of axioms:

(A16) (∼C → ∼B) → ((∼C → B) → C),

(A17) ∼¬A ↔ ¬∼A,

(A18) (A → ∼B) → ¬(A → B),

The completeness proof becomes simpler. Now we do not need theories to
be prime, instead we require them to be normal with respect to the Boolean
negation: ∼A ∈ T ⇔ A /∈ T . Moreover, we impose the following require-
ment on MMC¬,∼

−→ -theories: for any MMC¬,∼
−→ -theory T , if A → B is a
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theorem of MMC¬,∼
−→ and A ∈ T , then B ∈ T . Taking these modifications

into account, the definition of canonical valuation is otherwise preserved.
We no longer need Lemma 2, and can immediately proceed to the proof of
an analogue of Lemma 3. Consider only the different cases.

For Boolean negation. We begin with the truth condition: T ∈ ξT (∼B)
iff T /∈ ξT (B) (by (BN1)) iff B /∈ T (by IH) iff ∼B ∈ T (by normality).
The falsity condition is also straightforward: F ∈ ξT (∼B) iff F /∈ ξT (B)
iff ¬B /∈ T (by IH) iff ∼¬B ∈ T (by normality) iff ¬∼B ∈ T (by (A17)).

For implication. When T ∈ ξT (B → C), there are two cases: T /∈ ξT (B)
or T ∈ ξT (C). By IH, they may be presented as C ∈ T or B /∈ T . The
first option exploits (A1) while the proof in the second case is based on
(T4) ∼B → (B → C): using the normality of T , we obtain ∼B ∈ T , and
hence, by (T4), we have B → C ∈ T .

The case with F ∈ ξT (B → C) falls into three possibilities:

(a) T ̸∈ ξT (B) ⇒IH B /∈ T

(b) F ∈ ξT (C) ⇒IH ¬C ∈ T ,

(c) T /∈ ξT (C) ⇒IH C /∈ T .

For (a) (T4) is needed to show that ∼B → ¬(B → C), for (b) apply sub-
stitutional case of (A1), and (c) requires (A18) to receive ∼C → ¬(B → C).

Lindenbaum’s Lemma is proved in a natural way.

5. Conclusion

In this work, we were concerned with the problem of modifying a four-
valued connexive implication in such a way that allows it to fit better in
the context of common-sense reasoning. As far as we can see, the resulting
implication, aside from the ultimate goal, allows one to use a connexive
logic with another (more restrictive) notion of minimality, compared to
the implication of Wansing’s logic MC. We equipped the corresponding
logic MMC with a sound and complete Hilbert-style calculus. We also
considered implication-negation fragment of MMC, expanded with the
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Boolean negation and provided an adequate Hilbert-style calculus for this
fragment. As to the future work, we find it interesting to explore how
the ideas presented in this paper can be applied to other Wansing-style
connexive logics, especially to constructive connexive logics.
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