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Abstract

In this article, we present the positional logic that is suitable for the formalisation
of reasoning about social phenomena. It is the effect of extending the Minimal
Realisation (MR) logic with new expressions. These expressions allow, inter alia,
to consider different points of view of social entities (humanistic coefficient). In
the article, we perform a metalogical analysis of this logic. Finally, we present
some simple examples of its application.
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1. Introduction: Quality vs quantity

Our work aims to develop a new perspective on the possibility of applying
positional logic to social sciences issues. This paper can also be perceived
as an attempt to build a bridge between philosophical and logical concepts
and the specific needs of sociology. However, this analysis does not only
refer to classic philosophical theories (as sometimes sociologist did in the
past), but also presents the proposal of extension and usage of Minimal
Realisation (MR) logic for solving an important methodological problem:
How to combine qualitative and quantitative perspectives in sociology. The

Presented by: Tomasz Jarmużek, Fengkui Ju, Piotr Kulicki, Beishui Liao
Received: March 17, 2021
Published online: May 28, 2021

c© Copyright by Author(s), Łódź 2021
c© Copyright for this edition by Uniwersytet Łódzki, Łódź 2021

https://doi.org/10.18778/0138-0680.2021.09
https://publicationethics.org/
http://orcid.org/0000-0001-7700-1800
http://orcid.org/0000-0002-0596-4672
http://orcid.org/0000-0001-6445-8385


206 Aleksander Parol, Krzysztof Pietrowicz, Joanna Szalacha-Jarmużek

problem discussed in this paper is very similar to the issue that could
recently be found in [6], concerning: how to build a bridge between big
data and thick data in the sociology of the Internet. However, our answer
is completely different. This work treats tradition (in this case Jerzy Łoś
concepts, which are the foundation for MR logic) not only as an important
point of reference, but also as a practical ’tool’ for contemporary research
and vital methodological issues of sociology.

In contemporary sociology, there is a clear division between quantita-
tive and qualitative researchers. Quantitative researchers seek to explain
social phenomena in the manner of natural science. The emphasis is there-
fore on the formalisation, validity, reliability, and looking for cause–effect
relationships. The qualitatively oriented researchers focus on meanings,
understanding (Verstehen), local descriptions, interpretations and recon-
structions of collective ways of perceiving the world.

Our proposal is a continuation of the attempt to build a bridge between
the two kinds of research orientations. It seems that the grammatical con-
structions typical for positional logic, especially Minimal Realisation, allow
combining the quantitative formalisation with the humanistic coefficient.
The humanistic coefficient concept was developed one hundred years ago
by Florian Znaniecki [10], who postulated the need not to limit researchers’
observation only to their own direct experience of the data, but to recon-
struct the experience of the people who are the subject of the research.
Thus, it is a kind of qualitative perspective.

This paper is inspired by [7]. In our article, we develop the programme
described there. We extend the MR logic with new means of expressions.
While in [4] the MR logic was extended with multiple positions in the
range of operator R and expressions with predicates, here we take another
step forward. We add the expressions with nested predicate expressions in
the range of operatorR to the language. It allows us to talk about relations
and properties ‘from some point of view’ which is typical for a qualitative
description of social phenomena. Although this is not the final level of
extension of MR, the logic we propose already permits the description of
quite complex social situations. Some examples are provided in section 6.
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2. Language and semantics

The purpose of the logical part of this paper is to develop a formal frame-
work for social sciences. Our approach to achieving this goal is to follow the
programme article [7]. The cited paper established a strategy of extending
the system of Minimal Realisation, in a way suitable for our purpose. We
attempt to partially execute this task in the following sections. We start
by providing the syntactic and semantic base.

We will use the minimal system for R–operator as a basis for further
extensions. This logic, abbreviated as MR, was presented for the first time
in a paper by [5] as the general system of positional logic. Its minimalism
is a result of both, semantic and syntactic weaknesses. Indeed, in the
context of the systems preceding it—systems constructed by Łoś, Prior
and Rescher—MR is characterized by the minimal number of assumptions
and the poorest language to express them.

The mentioned weaknesses of the system lead to some unfavorable con-
sequences. Among other things, the poor language reduces the expressive
power of the theory built upon it. Such theory may not be sufficient to
express facts regarding complex phenomena. On the other hand, the min-
imalism of the system makes it easy to extend.

In our investigations, we follow the design of extension partially out-
lined in ([7], pp. 13–16). It requires addition of predicate symbols to the
alphabet. By doing so, the language of our logic will consists of: logical
connectives Con = {¬,∧,∨,→,↔}, variables Var = {pi : i ∈ N}, positional
letters PL = {ai : i ∈ N}, predicates PS = {P in : i, n ∈ N}, realisation
operator R and brackets: ), (, where N denotes the set of natural numbers.
For the definitions and theorems ahead, let us denote the set of predictate
expressions: PE = {P i

n(α1, ..., αi) : P i
n ∈ PS, α1, ..., αi ∈ PL, for some

i, n ∈ N}. Additional changes are carried out on the level of the grammati-
cal rules. We prefer to extend the class of expressions in a way that allows
speaking about the context in the manner of a more complex structure.
Therefore, expressions consisting of the R–operator will not contain one
positional letter, but a sequence of positional letters of any length. From
the semantic point of view, it will allow accounting for more than one con-
text factor, considering the truth value of a given expression (notice that
both changes were examined in [4]).

However, the crucial new modification is also on the level of grammati-
cal rules. What is new is that we add to the language the expressions with
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nested predicate expressions in the range of operator R. The new expres-
sions allow us to talk about relations and properties ‘from some point of
view’ which is characteristic of social phenomena.

Let us start with the introduction of basic syntactic notions.

Definition 2.1 (Auxiliary Expressions). The set of auxiliary expressions
AE is the smallest set satisfying the conditions stated as follows:

1. Var ⊆ AE,

2. PE ⊆ AE,

3. ¬A ∈ AE, where A ∈ AE,

4. A ∗B ∈ AE, where A,B ∈ AE, and ∗ ∈ Con \ {¬}.

Those expressions are in relation to the expressions constructed using
the R–operator. That is, the elements of AE are the only expressions that
can be in a range of the R–operator. This fact is outlined in the next
definition.

Definition 2.2 (Formulas). The set of formulas For is the smallest set
satisfying conditions stated as follows:

1. Rα1,...,αi
(A) ∈ For, where A ∈ AE and α1, ..., αi ∈ PL for some i ∈ N,

2. PE ⊆ For,

3. ¬φ ∈ For, where φ ∈ For,

4. φ ∗ ψ ∈ For, where φ, ψ ∈ For and ∗ ∈ Con \ {¬}.

From the set of all formulas, the subset of all formulas that do not
contain standard logical connectives outside the range of the R–operator
or belong to PE, can be distinguished. We will denote it by ForAT.

To simplify the notation, let us abbreviate Γ,Γ1,Γ2, ... for any sequences
of positional letters α1, . . . αn, for some n ∈ N. The set of all finite se-
quences of positional letters will be denoted by SE. We can formally con-
struct this set as follows:

SE = {α1, ..., αi : ∃i∈N∀n∈{1,...,i}αn ∈ PL}.

To express the information of the length of a sequence, we will use an
upper index. Therefore a sequence of positional letters of a length i ∈ N
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will be denoted by Γi. Similarly, we will denote the set of all sequences of
a given length i ∈ N by adding an upper index to the name of this set. For
example, the symbol for the set of all sequences of positional letters of the
length i ∈ N, would be SEi. Futher conventions are that any non-empty set
of objects will be symbolized by W . Further, w,w1, w2, ... will denote its
elements and by w,w1,w2, ... we will denote sequences of elements fromW
of any length. By W will denote the class of those sequences. Of course,
the previous conventions are applicable.

Based on the notions defined above, we present semantics. First, we
define the notion of a model for our language. Its definition will be an
extension of a corresponding definition provided for Minimal Realisation
given in ([5], p. 9).

Definition 2.3 (Model). A model M for the set For is any quintuple
〈W, d, δ, {δw}w∈W, v〉, where:

• W is a non–empty set of objects,

• d : SE −→W is such a function that ∀i∈N d(Γi) ∈Wi,

• δ : PS −→ P(W) is such a function that ∀i,n∈N δ(P i
n) ⊆Wi,

• {δw}w∈W is a family of functions δw that fulfil the condition given
for δ,

• v : W×AE −→ {0, 1} is a function that for any w ∈W, any i, n ∈ N,
P i
n ∈ PS, and A,B ∈ AE satisfies the following conditions:

1. v(w, P i
n(Γi)) = 1 iff d(Γi) ∈ δw(P i

n),

2. v(w,¬A) = 1 iff v(w, A) = 0,

3. v(w, A ∧B) = 1 iff v(w, A) = 1 and v(w, B) = 1,

4. v(w, A ∨B) = 1 iff v(w, A) = 1 or v(w, B) = 1,

5. v(w, A→ B) = 1 iff v(w, A) = 0 or v(w, B) = 1,

6. v(w, A↔ B) = 1 iff v(w, A) = v(w, B).

It is worth pointing out three facts. First, in our definition, the argu-
ments of the function d, are sequences of positional letters, not the letters
themselves. Therefore, the consistency requires that the function returns a
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value from the set W of the length corresponding to the length of the inter-
preted positional sequence. Second, the same restriction must be imposed
on the function δ which ranges across the set of all predicates. Finally, the
interpretation of predicates must enable us to treat predicate expressions
differently, depending on whether one is in the range of the R–operator or
not. In the case of the latter, such expressions could be interpreted by a
standard δ function. However, in the case of the former, the interpretation
of the expression should be related to the interpretation of the positional
sequence bounded by the R–operator. This condition is satisfied by creat-
ing a family of δw functions which are defined in the same manner as δ but
depending on the w ∈W.

The class of all models satisfying the conditions stated above, will be
denoted by M. Considering any model of this class, we would like to evalu-
ate the truth value for any formula in this model. The relation constructed
in the next definition, enables us to do so.

Definition 2.4 (Truth in a Model). Let M = 〈W, d, δ, {δw}w∈W, v〉 and
M ∈M, φ ∈ For. A formula φ is true in M (in short: M � φ) iff it satisfies
the following conditions:

1. if φ = RΓ(A) for some Γ ∈ SE and A ∈ AE, then v(d(Γ), A) = 1,

2. if φ = P i
n(Γi) for some i, n ∈ N, Γi

n ∈ SE and P i
n ∈ PS then d(Γi) ∈

δ(P i
n),

3. if φ = ¬ψ for some ψ, then it is not that M � φ (in short: M 2 ψ),

4. if φ = ψ ∧ χ for some ψ, χ, then M � ψ and M � χ,

5. if φ = ψ ∨ χ for some ψ, χ, then M � ψ or M � χ,

6. if φ = ψ → χ for some ψ, χ, then M 2 ψ or M � χ,

7. if φ = ψ ↔ χ for some ψ, χ, then M � ψ and M � χ or M 2 ψ and
M 2 χ.

Definition 2.5 (Semantic Consequence Relation). Let Λ∪{φ} ⊆ For. The
formula φ follows from the set Λ with respect to the set of models M (in
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short: Λ �M φ) iff for any M ∈ M, if for all ψ ∈ Λ, M � ψ (in short:
M � Λ), then M � φ. When ∅ �M φ, the formula φ is called a tautology of
M.

However, as the set of models M will be the only one considered here,
we will omit its symbol in such contexts. The logic that is determined by
the class of models M, will be denoted by MRnp as an abbreviation for
Minimal Realisation with Nested Predicates.

3. Axiomatic system

In this section, the relation of the syntactic consequence for MRnp is de-
fined. This will be achieved by providing a set of axioms and syntactic rules
for the logic. Since MR was already presented as an axiomatic system, we
take advantage of this fact as it is possible to reuse some of the results
concerning the original version of our system.

For this purpose, four axiom schemes are used. To introduce the first
one, let us denote the set of all formulas of Classical Propositional Logic
(CPL) by ForCPL and the set of all its tautologies by TautCPL. Additionally,
we will define the notion of substitution function.

Definition 3.1 (Substitution Function). Substitution function for CPL
formulas is any function s : ForCPL −→ For that for any φ, ψ ∈ ForCPL and
∗ ∈ Con \ {¬} satisfies following conditions:

1. s(¬φ) = ¬s(φ),

2. s(φ ∗ ψ) = s(φ) ∗ s(ψ).

The first axiom scheme is restricted to CPL tautologies in our language
– namely, each substitution of a CPL tautology is an axiom of our logic.
The formulation of this scheme in the formal languages looks identical to
its formulation in the original version.

Axiom 3.1. s(φ), if φ ∈ TautCPL and s is a substitution function.

The next two axiom schemes differ in formulation from the correspond-
ing axiom schemes formulations in the original system. Specifically, the
R–operator does not bind a positional constant. In our version, it binds
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a finite sequence of any given length of positional letters. For any ex-
pressions A,B ∈ AE and any sequence of positional letters Γ ∈ SE those
schemes appear as follows:

Axiom 3.2. ¬RΓA↔ RΓ¬A.

Axiom 3.3. (RΓA ∧RΓB)→ RΓ(A ∧B).

The last axiom scheme presents the idea that a CPL tautology is true
in any given context.

Axiom 3.4. RΓA, if A ∈ TautCPL.

Besides the aforementioned schemes, we assume the Modus Ponens rule
(in short: MP).

φ, φ→ ψ
ψ

The set of axioms we will denote by MRax. Having MRax, we accept
the standard notion of syntactic consequence relation.

Definition 3.2 (Syntactic Consequence Relation). Let Λ ∪ {φ} ⊆ For.
The formula φ is provable based on the set Λ with respect to MRax (in
short: Λ `MRax φ) iff there is such a sequence of formulas: ψ1, . . . , ψn that
ψn = φ and for all 1 ≤ i ≤ n if at least one of the below conditions is
fulfilled:

1. ψi ∈ Λ

2. ψi ∈MRax

3. for some j, k < i there exist such ψj , ψk that ψk = ψj → ψi.

When ∅ `MRax φ, the formula φ is called a thesis.

Since we consider only one axiomatic system, we will write ` rather than
`MRax to simplify the notation. Using those concepts, we will introduce
the notion of a maximal consistent set.

Definition 3.3 (MRax–consistent |MRax–inconsistent Set of Formulas).
Let ∆ ⊆ For. Then:

• ∆ is called an MRax–consistent set of formulas iff ∆ 0 φ, for some
φ ∈ For,
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• ∆ is called an MRax–inconsistent set of formulas iff it is not MRax–
consistent.

For any MRax–consistent set the standard facts about consistent sets
hold. This is a consequence of the fact that our logic is founded on CPL as
it contains axiom 3.1 and MP. Basing on the previous definition, we can
construct the notion of a maximal MRax–consistent set of formulas.

Definition 3.4 (Maximal MRax–consistent Set). Let ∆ ⊆ For. We call
∆ a maximal MRax–consistent iff both:

1. ∆ is MRax–consistent,

2. for any Λ ⊆ For if ∆ ⊂ Λ, then Λ is MRax–inconsistent.

Using the symbol MaxMRax , we will denote the class of all maximal
MRax–consistent sets. Some intuitions about the properties of those sets
are expressed by the next three facts.

The first fact says that such sets are closed under the syntactic con-
sequence relation. Therefore any formula φ ∈ For, for which there exists
proof based on the maximal MRax–consistent set, has to be a element of
such set. And conversely, if a formula is an element of a maximal MRax–
consistent set, there is a proof of the formula on the ground of this set.

Fact 3.5. Let ∆ ∈MaxMRax and φ ∈ For. Then ∆ ` φ iff φ ∈ ∆.

The next fact expresses the relation between the set MRax and a maxi-
mal MRax–consistent set. More specifically it states that all formulas from
MRax are contained in such a set.

Fact 3.6. Let ∆ ∈MaxMRax . Then MRax ⊆ ∆.

The last of the aforementioned facts states that any maximal MRax –
consistent set is closed under the listed conditions.

Fact 3.7. Let ∆ ∈MaxMRax . Then for any φ, ψ ∈ For it is true that:

• ¬φ ∈ ∆ iff φ /∈ ∆,

• φ ∧ ψ ∈ ∆ iff φ ∈ ∆ and ψ ∈ ∆,

• φ ∨ ψ ∈ ∆ iff φ ∈ ∆ or ψ ∈ ∆,
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• φ→ ψ ∈ ∆ iff φ /∈ ∆ or ψ ∈ ∆,

• φ↔ ψ ∈ ∆ iff φ ∈ ∆ and ψ ∈ ∆ or φ /∈ ∆ and ψ /∈ ∆.

The most important theorem concerning the maximalMRax–consistent
sets is the so–called Lindenbaum’s Lemma. It states that any MRax–
consistent set is a subset of some maximal MRax–consistent set.

Lemma 3.8. Let Λ ⊆ For. Then if Λ is MRax–consistent, there is such
∆ ⊆ For that Λ ⊆ ∆ and ∆ ∈MaxMRax .

4. Soudness and completeness

In the previous sections, we established the relations of semantic and syn-
tactic consequences. With that in mind, in this section, we investigate a
relationship between those two relations and provide a list of theorems and
facts regarding this relationship. Two of the main results that we want to
present in this section are soundness and completeness of our logic.

To obtain the former result, we will need to first prove the following
lemma.

Lemma 4.1. For any formula φ ∈MRax, it is also a tautology.

Proof: Of course, the substitution of any tautology of CPL is a tautology
of our logic by the notion of the substitution function defined in 3.1 and
the truth conditions 2.4. Therefore, any formula that is an instance of an
axiom 3.1 is a tautology of our system.

Now let us assume that for any M ∈ M, M � ¬RΓ(A), for some
Γ ∈ SE and A ∈ AE. Then according to definition 2.4, it is the case iff
M 2 RΓ(A) and thus v(d(Γ), A) = 0. By definition 2.3, it is equivalent to
the v(d(Γ),¬A) = 1 and thus M � RΓ(¬A).

To prove that the axiom scheme 3.3 is tautological, let us assume that
for a M ∈ M, M � (RΓA ∧ RΓB). Then, based on the definition 2.4, it
is the case iff M � RΓA and M � RΓB. According to the same definition,
by equivalence we obtain v(d(Γ), A) = 1 and v(d(Γ), B) = 1 and using
definition 2.3, it is the case iff v(d(Γ), A ∧B) = 1. And thus, equivalently,
M � RΓ(A ∧B).

Further, let us assume that A ∈ TautCPL and M 2 RΓA, for some M ∈
M. According to the definition 2.4, M 2 RΓA iff v(d(Γ), A) = 0 for some
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valuation function v. Then by definition 2.3, valuation v falsifies formula A.
However, as A is a tautology, it leads to an immediate contradiction.

Theorem 4.2 (Soundness). Let Λ ∪ {φ} ⊆ For. If Λ ` φ, then Λ � φ.

Proof: Let us assume that Λ ` φ, M ∈M, and that all elements of Λ are
true in the model M ∈ M. Thus, according to definition 3.2 there exists
such a sequence of formulas ψ1, ..., ψn that ψn = φ, for some n ∈ N. We
prove that M � ψi, for 1 ≤ i ≤ n, and thus M � φ, since ψn = φ.

If we assume that n = 1, there are two possible cases — ψ1 ∈ Λ or
ψ1 ∈MRax. Consider the first one according to the assumption M � ψ1.
In the second case, due to lemma 4.1, M � ψ1. Since the sequence is of the
length one, we obtain M � φ.

Let us assume that n > 1. We make an induction, based on the length
of the assumed sequence. The initial step is similar to the case when n = 1.
So, for the inductive step we assume that for some 1 ≤ k < n, if j ≤ k, then
M � ψj . Now, let us consider the formula ψk+1. There are the following
three possibilities:

1. ψk+1 ∈MRax,

2. ψk+1 ∈ Λ,

3. there exists ψl, ψm, such that ψm = ψl → ψk+1, for some l,m ≤ k.

The first two cases are similar to the case when n = 1. Now consider
the third one. As l,m ≤ k, so by the inductive hypothesis, M � ψl and
M � ψl → ψk+1. Now, according to definition 2.4, we get that M 2 ψl or
M � ψk+1. Thus, M � ψk+1.

Having thus proved the soundness of MRnp, we will prove the converse
implication—that is the completeness theorem. It requires us to define the
notion of a canonical model. It is a special structure that is also a model
for our logic interpreted within the set of formulas. However, first we define
the notion of canonical quasi-model.

Definition 4.3 (Canonical Quasi-Model). Let ∆ ∈MaxMRax . A canon-
ical quasi-model is a quintuple 〈W∆, d∆, δ∆, {δ∆Γ

}Γ∈W∆
, v∆〉 such that:

• W∆ = SE,

• d∆ : SE −→W∆ such that ∀i∈N d∆(Γi) = Γi,
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• δ∆ : PS −→ P(W∆) such that ∀i,n∈N δ∆(P i
n) = {Γi : P i

n(Γi) ∈ ∆},

• {δ∆Γ
}Γ∈W∆

is the family of functions δ∆Γ
such that ∀i,n∈N δ∆Γ

(P i
n) =

{Γi : RΓ(P i
n(Γi)) ∈ ∆},

• v∆ : W∆ × (Var ∪ PS) −→ {0, 1} such that:

1. for any A ∈ Var, v∆(Γ, A) = 1 iff RΓ(A) ∈ ∆,
2. for any P i

n ∈ PS, i, n ∈ N and Γ1 ∈ SE,
v∆(Γ, P i

n(Γ1)) = 1 iff d∆(Γ1) ∈ δ∆Γ
(P i
n).

The above definition presents a structure that does not fully correspond
to the definition of a model for MRnp. The conditions for the function
of valuation in definition 2.3 contain cases of complex expressions formed
with logical connectives. In the latter definition, only the primitive cases
are considered explicitly. The following lemma will prove that a structure
satisfying conditions given in definition 4.3 satisfies the conditions from
definition 2.3—for complex expressions within the R–operator.
Fact 4.4. Let ∆ ∈MaxMRax and M = 〈W∆, d∆, δ∆, {δ∆Γ

}Γ∈W∆
, v∆〉 be

a canonical quasi-model. Then it can be extended to a canonical model (in
short: ∆–model).

Proof: Assume all the hypotheses. The fact that M can be extended to
a ∆–model is equivalent to the fact that the function v∆ can be extended
to range over W∆ × AE. Thus, that it satisfies the following conditions:

1. for any A ∈ Var, v∆(Γ, A) = 1 iff RΓ(A) ∈ ∆,

2. for any P i
n ∈ PS, i, n ∈ N and Γ1 ∈ SE,

v∆(Γ, P i
n(Γ1)) = 1 iff d∆(Γ1) ∈ δ∆Γ

(P i
n),

3. v∆(Γ,¬A) = 1 iff v∆(Γ, A) = 0,

4. v∆(Γ, A ∧B) = 1 iff v∆(Γ, A) = 1 and v∆(Γ, B) = 1,

5. v∆(Γ, A ∨B) = 1 iff v∆(Γ, A) = 1 or v∆(Γ, B) = 1,

6. v∆(Γ, A→ B) = 1 iff v∆(Γ, A) = 0 or v∆(Γ, B) = 1,

7. v∆(Γ, A↔ B) = 1 iff v∆(Γ, A) = v∆(Γ, B).

Assume that C ∈ AE. Let us provide a proof for this fact by induction
over complexity of the considered expression. Thus if C ∈ Var ∪ PS the
theorem is fulfilled due to the fact that M is a canonical quasi-model.
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Suppose that the theorem is true for the expressions of the complexity
equal to n. Let us consider an expression C of the complexity equal to n+1.
Then it is the case that for some A,B ∈ AE, C is one of the listed forms
¬A,A ∧B,A ∨B,A→ B,A↔ B. Therefore, basing on the definition 4.3,
distributivity laws for R and the classical connectives (see [5], pp. 151–153)
and facts 3.7 and 3.5, we obtain the thesis.

A structure named as the ∆–model should possess a certain property.
Namely, any formula that is true in that model should be also an element of
the maximal MRax–consistent set on which the canonical model is based.
The fact of possessing this mentioned property is expressed by the next
lemma.

Lemma 4.5. Let ∆ ∈MaxMRax , M be the ∆–model. Then for any φ ∈ For
it is the case that M � φ iff φ ∈ ∆.

Proof: We will present the proof by induction over the complexity of the
formulas. Consider the initial case where φ ∈ ForAT. Then the formula φ is
an expression created with the R–operator, a positional sequence and an
expression of the set AE or φ is a predicate expression.

Let us assume the former case, that is φ = RΓ(A) for some Γ ∈ SE and
A ∈ AE. We will use here fact 4.4. We have M � RΓ(A) iff RΓ(A) ∈ ∆, if
A ∈ Var. If A ∈ PE, then let us notice that the condition d∆(Γ1) ∈ δ∆Γ

(P i
n),

for some P i
n ∈ PS, i, n ∈ N and Γ1 ∈ SE, is equivalent to the statement

RΓ(P i
n(Γ1)) ∈ ∆. Cases for non-atomic expressions follows also from the

fact 4.4. Consider the latter case that φ is a predicate expression. Then
the condition d∆(Γ1) ∈ δ∆(P i

n), for all P i
n ∈ PS, i, n ∈ N and Γ1 ∈ SE, is

equivalent to the statement P i
n(Γ1) ∈ ∆.

Assume that the hypothesis is satisfied for all formulas φ with complex-
ity equal or lesser than n, for some n ∈ N. We will prove also that it is
satisfied for expressions of the complexity equal to n+ 1. In such case, we
should consider the following formulas: ¬ψ, ψ ∧χ, ψ ∨χ, ψ → χ or ψ ↔ χ
for some ψ and χ with the complexities equal or lesser than n. We analyse
the cases for ¬ and ∧. For the rest of them, the proof could be carried out
analogously.

Assume the former case first. Then M � ¬ψ is equivalent to M 2 ψ.
From the inductive hypothesis, it is equivalent to the fact that ψ /∈ ∆.
From the assumption that ∆ is the maximal MRax–consistent, we get the
next equivalent fact ¬ψ ∈ ∆.
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Assume the second case. Then M � ψ ∧ χ is equivalent to M � ψ and
M � χ. From the fact that complexity of both formulas is lesser or equal
to n and the inductive hypothesis, we obtain by equivalence ψ, χ ∈ ∆.
As ∆ is the maximal MRax–consistent, it is equivalent to the fact that
ψ ∧ χ ∈ ∆.

This lemma is crucial for the next theorem. It expresses the fact that
for any MRax–consistent set of formulas, there exists a canonical model in
which all the formulas from the set are true.

Theorem 4.6. Let Λ ⊆ For be a MRax–consistent set. Then there exists
such ∆ ∈MaxMRax that M is a ∆–model and M � Λ.

Proof: Assume the hypothesis. As Λ is a MRax–consistent set of for-
mulas, from Lindenbaum’s Lemma (lemma 3.8), there exists such a set of
formulas ∆ ∈MaxMRax that Λ ⊆ ∆. Then according to the definition 4.3
and the fact 4.4 there exists a ∆–model M. According to the lemma 4.5 –
for any formula φ ∈ ∆ it is the case that M � φ, where M is ∆-model. It
leads to the conclusion that M � Λ.

Theorem 4.7 (Completness Theorem). Let Λ ∪ {φ} ⊆ For. If Λ � φ, then
Λ ` φ.

Proof: Assume all hypotheses. Moreover, suppose that Λ 0 φ. We know
that Λ∪{¬φ} isMRax–consistent. According to the lemma 3.8, there exists
such a maximal MRax–consistent set ∆ ∈MaxMRax that Λ ∪ {¬φ} ⊆ ∆.
Therefore, according to the theorem 4.6, M � Λ ∪ {¬φ} where M is the
∆–model. As a result, we obtain Λ 2 φ.

5. Expressive power of presented logic

As we outlined in the previous sections, our system emerges from the Min-
imal Realisation logic by expanding its alphabet and grammatical rules.
The axioms schemes for MRnp have a similar form to the corresponding
axiom schemes of the original system. Therefore, in this paper, we ex-
panded the language of our logic, preserving the theses of the base system.

Knowing this, we show, that there exists a mapping from the set of
MRnp formulas (in short: ForMRnp) into the set of MR formulas (in short:
ForMR). Using this mapping, we prove that any expression of the former
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system is a thesis if and only if it can be mapped into a corresponding
thesis of the latter. The mentioned proof will be provided in a manner
similar as in [4] (see: [4], p. 361).

To construct such a mapping, first, we will focus on the expressions that
are in the range of the R–operator, that is expressions from the class AE.
As this class was extended by the addition of predicate expressions, in a
comparison to the system of Minimal Realisation, the mapping must take
into account such cases. To distinguish the mentioned classes of expressions
for the two systems, we consider in the paper, we add a system name in
the lower index, similar to the classes of formulas.

Definition 5.1. µ : AEMRnp −→ AEMR:

• µ(A) = A if A ∈ Var,

• µ(A) = p if A ∈ PE, for some p ∈ Var,

• µ(¬A) = ¬µ(A),

• µ(A ∗B) = µ(A) ∗ µ(B) for ∗ ∈ Con \ {¬}.

Of course, we have the continuum of such mappings. Any of them
serves as the identity function for all such expressions, that do not contain
predicates. Otherwise, it translates them into their version in which ev-
ery occurrence of a predicate expression is replaced by a given sentential
variable. Thus, we will define it as a mapping ranging over the class of
formulas.

Definition 5.2. σ : ForMRnp −→ ForMR:

• σ(Rα1,...,αn(A)) = Rαi(µ(A)), for some 1 ≤ i ≤ n, any n ∈ N,
A ∈ AE, and some µ,

• σ(φ) = Rα(µ(φ)), if φ ∈ PE, for some α ∈ PL, and for some µ,

• σ(¬φ) = ¬σ(φ),

• σ(φ ∗ ψ) = σ(φ) ∗ σ(ψ) for ∗ ∈ Con \ {¬}.

As MRnp is extended by allowing the R–operator to bind sequences
of positional letters, defined mapping must accordingly translate them into
the expressions of MR. This is done by mapping the positional sequence
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α1, . . . , αn onto one of its elements. Another case that was not present
in the original system is the validity of the formula containing a predi-
cate expression outside the R—operator. This case is considered in the
second point of the above definition. A predicate expression is translated
into an R—operator expression in the context symbolized by some arbi-
trarily chosen positional letter. The expression within the R—operator is
a translation of the predicate by the previously defined mapping µ.

With the notions defined above, we will attempt to set a certain corre-
spondence between both systems. The following theorem will present this
relationship.

Theorem 5.3. Let φ ∈ For. Then �MRnp φ iff for any σ, �MR σ(φ).

Proof: Assume the hypothesis. Moreover, let us assume that �MRnp φ.
Then, according to theorem 4.7 `MRnp φ. Thus, there exists a proof of a
formula φ within our system. As the class of axioms does not contain any
specific axiom for predicate expressions, it suffices that the proof will be
repeated for σ(φ) just by mapping all its elements into the class ForMR.
This is since any instance of an MRnp axiom scheme χ is an instance of
the MR axiom scheme after translating σ(χ) for any mapping σ. Hence,
if ψ1, ..., ψi for some i ∈ N is a proof of φ in MRnp, then σ(ψ1), ..., σ(ψi) is
a proof of σ(φ) in MR. By the correctness theorem for MR ([5], p. 155),
we obtain �MR σ(φ).

Now let us assume that �MR σ(φ) for any σ. If it is the case for any
function σ, then especially it is the case for all injective functions. Let
us consider such a function. After restricting, the function would satisfy
conditions for a bijection σbi. Thus, there exists an inverse function σ−1

bi .
According to the completness theorem for MR ([5], p. 159), we obtain
`MR σbi(φ). It is equivalent to the fact that there exists a proof ψ1, ..., ψn
for some n ∈ N and for 1 ≤ i ≤ n, ψi ∈ ForMR, where ψn = σbi(φ). Due to
the fact, that σ−1

bi maps axioms of MR into some form of MRnp axioms
and the MP preserves its properties after such mapping, we get that there
exists such a proof σ−1

bi (ψ1), ..., σ−1
bi (ψn) for some n ∈ N and for 1 ≤ i ≤ n,

ψi ∈ ForMRnp where ψn = σ−1
bi (σbi(φ)). It is equivalent to the fact that

`MRnp φ. According to the theorem 4.7, we obtain �MRnp φ.
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6. Applications in social sciences

This part of the article is devoted to the presentation of an example of the
application of MRnp logic in the sociological perspective. As was stated
in the introduction (section 1), of all social sciences we identifies sociology
as the science with greater methodological challenges.

Sociology functions as a conglomerate of various theoretical approaches,
paradigms, and at the same time it operates in a multitude of sub–disciplines
that often intersect with other social sciences (e.g. sociology of politics with
political science or sociology of knowledge with philosophy). Among the
classic distinction between ways of conducting sociological research, there
is also a permanent division into macro, meso and micro–sociology. Each
of these subdivisions focuses on other objects and dimensions of social life
– from long–term global or national processes, through analyzes of the life
of an organization, to sociometric analyzes of interpersonal relations cre-
ated at the crossroad of sociology and psychology. Whether we are talking
about macrosociology or the analysis of small social groups, at each level
there is an attempt to find repetitive patterns in complex, multi–layered
interpersonal relations. At each of these levels, three issues are also present
as follows:

(1) The problem of the complexity of the analyzed world (including in-
dividual and collective actors, interactions, cultural patterns, power
mechanisms, material resources, etc.),

(2) The problem of actors’ self–awareness, and

(3) How this awareness influences the course of the analyzed processes
over time and space.

The application of extensions of MR logic to sociological concepts and
theories is a vast task considering how vast and complex is the field of so-
ciological theory. Therefore, we propose that such a task must start with
a reference to basic sociological concepts such as behaviour or interaction.
The proposal stated below should be perceived as a kind of a ‘sample’ in
the wider project of application of MRnp logic to the sociological perspec-
tive. For this, we decided to use the classical, behavioral postulates by
George C. Homans. There are two reasons for this choice. First, there
have been attempts in sociology to present Homans’ concepts using the
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language of logic [8]. So our proposal fits into historical research. Second,
in our opinion since this is specifically the first case of application of MRnp

logic to the social sciences – starting with postulates about basic forms of
social relations is the right way to do. In his works Homans presented a
very reductionist perspective on human relations and famously formulated
5 postulates (laws) of human interactions. In Homans theory, each social
process starts with specific human behaviour and each social interaction
starts with human contact. The general concept is that there are patterns
of human behaviour that influence interactions and therefore have an im-
pact on the shape of the whole society. Homans’ theory is an example
of sociologists’ attempts to formulate theorems that would have a general
range, as much as possible. However it is also an example of a theory that
lacks a humanistic approach and is blind to the issue of providing an insight
into deeper meanings and understandings of social situations [3].

Therefore we have picked two postulates from Homans’ 5 laws of inter-
action (given below as (P1) and (P2)). These postulates are formulated
from a rather ‘objective’ perspective and are already in quite a formal man-
ner. This means that they lack the humanistic coefficient, or a kind of an
in–sight into a subjective perception of human behaviour.

(P1) The more often a particular action of a person is rewarded, the
more likely the person is to perform that action.

(P2) If in the past the occurrence of a particular stimulus, or set of
stimuli, has been the occasion on which a person’s action was rewarded,
then the more similar the present stimuli are to the past ones, the more
likely the person is to perform the action, or some similar action.

To formalize (P1) and (P2) we need a theory built upon MRnp. In the
language we distinguish three predicate constants that are read as given on
the right:

Fr(x, y) x is a smaller frequency than y

Prob(x, y) x is a less probability than y

Sim(x, y, z) y is a stimulus less similar to the stimulus x
than the stimulus z is.

We assume that predicates Fr(x, y) and Prob(x, y) are among others ir-
reflexive and transitive (so, also asymmetric):
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(Irreflexivity Fr) ¬Fr(α1, α1)

(Transitivity Fr) Fr(α1, α2) ∧ Fr(α2, α3)→ Fr(α1, α3)

(Irreflexivity Prob) ¬Prob(α1, α1)

(Transitivity Prob) Prob(α1, α2) ∧ Prob(α2, α3)→ Prob(α1, α3)

Instead of single-argument predicates being a reward and perform, to sim-
plify a description, we introduce positional letters perform and reward. Fur-
ther an agent will be denoted by positional letter a. In the end, we should
add that with metavariable A, B with the set of values AE we will un-
derstand objects of an agents’s activity in a specific context. Thus such
activities can be quite complex.

(P1 form) Fr(b1, b2) ∧ Prob(c1, c2) ∧Ra,b1,reward(A) ∧Ra,b2,reward(B)→
→ Ra,c1,perform(A) ∧Ra,c2,perform(B)

Homans’ (P1) has been written above using the language of our logic,
highlighted predicates and positional letters. It must be mentioned here,
that our formalisation reveals a hidden comparison that is stated in the
original postulate (formulated in the English language). The same happens
in the formalisation of (P2). The expressions used there, namely, ‘the more
often. . . ’ and ‘the more likely. . . ’ express a comparison of the level of the
rewarding degree of a subject’s action and the probability of taking on
this action, with the level of rewarding and the probability of taking up
another, different action, from what was presented in our formalisation.
We compare actions A and B. The formula Ra,b1,reward(A) says, that an
agent a is rewarded for activity A with a frequency b1, and the formula
Ra,b2,reward(B) states, that an agent a is rewarded for activity B with a
frequency b2. Because the frequency b1 is smaller than b2 (the formula
Fr(b1, b2)), the agent a will take on activity B (formula Ra,c2,perform(B))
with greater probability (formula Prob(c1, c2)) than activity A (formula
Ra,c1,perform(A)).

Let us address the formalisation of Homans’ (P2):

(P2 form) Ra,s1,perform,reward(A) ∧ Sim(s1, s2, s3) ∧ Prob(c1, c2)→
→ Ra,s2,c1,perform(A) ∧Ra,s3,c2,perform(A)
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Formula Ra,s1,perform,reward(A) says, that an agent a performed an ac-
tivity A because of an stimulus s1, which later has been rewarded. If this
formula is true and a stimulus s2 is less likely than stimulus s1 or stimulus
s3 (formula Sim(s1, s2, s3)), then it is less likely that an agent a will take on
an activity A because of the stimulus s2 (formula Ra,s2,c1,perform(A)) than
because of the stimulus s3 (formula Ra,s3,c2,perform(A)), where Prob(c1, c2)
says, that c1 is a smaller probability than c2.

Homans’ postulates are formulated from the point of view of an objec-
tive observer, a scientist who studies human interactions and behaviours,
for instance a biologist who observes and studies interactions between ani-
mals in a laboratory. Therefore to use Homans’ postulates to MRnp logic
application, we introduce some changes to his original statements. Below
we present them with the addition of the aspect of individual beliefs. So,
instead of general statements about human behaviour, we provide state-
ments that contain agents’ beliefs about some aspects of the nature of social
interactions ((P1h) and (P2h)).

(P1h) If an agent beliefs that the more often a particular action of a
person is rewarded, the more likely the person is to perform that action.

(P2h) If in the past the occurrence of a particular stimulus, or set of
stimuli, was the occasion on which a person’s action was rewarded and he
beliefs that the more similar the present stimuli are to the past ones, the
more likely the person is to perform the action, or some similar action.

The reformulation of Homans’ postulates has been made to add the hu-
manistic coefficient to the statements about human behaviour. Intending
to formalize (P1) and (P2), instead of introducing a single-argument predi-
cate being a belief, and to simplify a record, we introduce a positional letter
belief.

(P1h form) Ra,believe(Fr(b1, b2)) ∧ Prob(c1, c2) ∧Ra,b1,reward(A)∧
∧Ra,b2,reward(B)→ Ra,c1,perform(A) ∧Ra,c2,perform(B)

(P2h form) Ra,s1,perform,reward(A)∧Ra,believe(Sim(s1, s2, s3))∧Prob(c1, c2)→
→ Ra,s2,c1,perform(A) ∧Ra,s3,c2,perform(A)

In the formulas (P1h form) and (P2h form) the subformulas
Ra,believe(Fr(b1, b2)) and Ra,believe(Sim(s1, s2, s3)) express a subjective point
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of view of the agent a. Therefore to conclude from two Homans’ postulates
one needs something more than Fr(b1, b2) or Sim(s1, s2, s3) as premises.

Our examples and the whole proposal is of course rather ‘modest’ and
simple. However, they show that we need to develop this project with the
addition of the nesting of the R operator and quantifiers.

7. Further developments

One of our hopes for MRnp logic and the Łoś R–operator is that they will
contribute to sociology by connecting the qualitative perspective with the
quantitative one. Our proposal for applying Homans’ postulates is how-
ever, just the beginning, as stated before. Sociological theories that seek
to describe complex social phenomena need more accurate modelling of
contexts, in which many agents participate in a collective action. Com-
putational sociology with the references and usage of agent–based models
(ABMs) is trying to achieve this goal as well. ABMs are considered to be
especially instrumental:

“...when the macro patterns of sociological interest are not the
simple aggregation of individual attributes but the result of
bottom–up processes at a relational level” [1].

However, one of the many conclusions resulting from the studies on ABMs
and sociology, is that this type of modelling of social phenomena has many
features typical of methodological individualism [2]. Therefore it presents
rather a individualistic point of view and still stumbles upon an issue of
‘strong commitment to minimal behavioural complexity’ [9].

Nevertheless, our goals are not entirely different from those formulated 
for ABMs, we try to achieve (as for now) less pragmatic, more theoretical 
results. Our proposal of extension of MR logic is a further step for the 
programme that was laid out in [7]. The need to combine the humanistic 
coefficient with the formalisation that was expressed there, can be fulfilled 
with the language of the MR system. The application to sociological the-
orems and postulates has shown that it is possible to grasp not only one’s 
behavior, but also a set of beliefs as separate variables. The idea of changing 
George Homans’ postulates from an ‘objective’ style to a more ‘subjective’ 
one (with visible convictions of the agent), makes us suppose that it will 
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theses more qualitatively. We need to add quantifiers and nesting of the
R-operator expressions to the language of MRnp.

be possible to represent other quantitative, more formalised sociological
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