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Abstract

In this paper, we utilized triangular conorms (S-norm). The essence of using

S-norm is that the similarity order does not change using different norms. In

fact, we are investigating for a new conception for calculating the similarity of

two Fermatean fuzzy sets. For this purpose, utilizing an S-norm, we first present

a formula for calculating the similarity of two Fermatean fuzzy values, so that

they are truthful in similarity properties. Following that, we generalize a formula

for calculating the similarity of the two Fermatean fuzzy sets which prove truthful

in similarity conditions. Finally, various numerical examples have been presented

to elaborate this method.
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1. Introduction

The contemporary decision-making theory has been played a remarkable
role in the latest research related to multiple-attribute decision-making
problems (MADM) with a variety of applications in engineering and sci-
ence. In real life, the attribute information is fuzzy in nature, sometimes
which cannot be expressed through real numbers. Zadeh put forward
an ice-breaking conception known as Fuzzy sets [26], these notions deal
with uncertainty and precisely characterized the required uncertain data.
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Atanassov [2] initiated the concept of intuitionist fuzzy set (IFS), which
is a generalization of Zadeh’s fuzzy sets. Another generalization of fuzzy
sets is Pythagorean fuzzy sets (PFSs), which was given by Yager [24] as
an efficient expansion of intuitionist fuzzy sets. PFS is also characterized
by the degree of membership and the degree of non-membership, whose
sum of squares is equal to or less than 1. Senapati and Yager [19] intro-
duced the concept of Fermatean fuzzy set (FFS), which is the extension
of Pythagorean fuzzy sets, and it covers more space than Intuitionistic
fuzzy sets and Pythagorean fuzzy sets. It is an appropriate way to deal
with an ambiguous situation and is characterized by a membership de-
gree and a non-membership degree fulfilling the condition that the cube
of its membership degree and non-membership is equal to or less than 1.
Senapati and Yager [18] studied subtraction, division, and Fermatean arith-
metic mean operations over FFS. Many new operations for FFS were de-
fined by Senapati and Yager. Senapati and Yager [17] introduced four new
types of weighted aggregation operators for FFS, namely, Fermatean fuzzy
weighted average (FFWA) operator, Fermatean fuzzy weighted geomet-
ric (FFWG) operator, Fermatean fuzzy weighted power average (FFWPA)
operator, and Fermatean fuzzy weighted power geometric (FFWPG) oper-
ator. Recently, Aydemir and Gunduz [3] discussed the TOPSIS method in
terms of Dombi aggregation operators based on FFSs and gave a complete
overview of FF-sets in the framework of Dombi operations. In [10], the au-
thors have extended FFSs into Hamacher operations and investigated the
basic properties of FFSs in Hamacher operations. Some practical exam-
ples of real-world scenarios were discussed for the validation of the theory.
They [11] extended the work of [10] and proposed a set of new aggrega-
tion operators in Fermatean fuzzy environment based upon the Hamacher
operations with the prioritization of attributes. They developed develop
Fermatean fuzzy Hamacher prioritized average (FFHPA) operator, and Fer-
matean fuzzy Hamacher prioritized weighted average (FFHPWA) operator,
Fermatean fuzzy Hamacher prioritized geometric (FFHPG) operator, and
Fermatean fuzzy Hamacher prioritized weighted geometric (FFHPWG) op-
erator. They [22] introduced the concept of Fermatean fuzzy matrices,
which are direct extensions of an intuitionistic fuzzy matrix. They also
put forward some algebraic operations, such as max-min, min-max, com-
plement, algebraic sum, algebraic product, scalar multiplication (nA), and
exponentiation (An). Recently, Liu et al. [12] generalized the notion of
intuitionistic linguistic fuzzy sets (ILFS) and introduced the Fermatean
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fuzzy linguistic set (FFLS) theory by integrating the idea of the linguis-
tic term set with FFS. Besides, an MCDM approach was formulated for
solving decision problems with FFL information. Further, Liu et al. [13]
defined some new distance and similarity measures between FFLSs based
on linguistic scale function (LSF) and utilized them in the development
of TODIM and TOPSIS methods. They [23] defined several new aggre-
gation operators (AOs), namely, the Fermatean fuzzy linguistic weighted
averaging (FFLWA) operator, the Fermatean fuzzy linguistic weighted geo-
metric (FFLWG) operator, the Fermatean fuzzy linguistic ordered weighted
averaging (FFLOWA) operator the Fermatean fuzzy linguistic hybrid av-
eraging (FFLHA) operator, and Fermatean fuzzy linguistic hybrid geomet-
ric (FFLHG) operator under the FFL environment. Several properties of
these AOs are investigated in detail. Recently, they [20] introduced Fer-
matean fuzzy Hamacher interactive weighted averaging, Fermatean fuzzy
Hamacher interactive ordered weighted averaging, and Fermatean fuzzy
Hamacher interactive hybrid weighted averaging operators. They [8] de-
veloped the theory for the choice of the most suitable laboratory for the
COVID-19 test under the Fermatean fuzzy environment. The effectiveness
of a sanitizer in COVID-19 was discussed by Akram et al. [1]. In this paper
[9], the emerging concept of the Fermatean fuzzy set is studied in detail
and three well-known multi-attribute evaluation methods, namely SAW,
ARAS, and VIKOR are extended under Fermatean fuzzy environment.
They [5] proposed a novel Fermatean fuzzy entropy measure to describe
the fuzziness degree of FFSs. The new Fermatean fuzzy entropy takes
into account the uncertainty information and the indeterminacy degree of
FFSs. The authors [16] extended the TOPSIS using Fermatean Fuzzy Soft
Sets to develop a new approach for solving MCGDM problems. They pro-
vided an example to show the computational efficiency of the proposed
method. In this paper [21], they defined interval-valued Fermatean fuzzy
sets (IVFFSs). They also determined algebraic and aggregation operations
for interval-valued Fermatean fuzzy (IVFF) numbers. In this paper [15],
the authors have proposed three newly improved score functions for the
effective ranking of Fermatean fuzzy sets. They have applied the proposed
score function to calculate the separation measure of each alternative from
the positive and negative ideal solutions to determine the relative closeness
coefficient. In this paper [25], they investigated the properties of continuous
Fermatean fuzzy information. They defined the subtraction and division
operations of Fermatean fuzzy functions and discussed their properties.
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Further, they examined the continuity, derivatives, and differentials of Fer-
matean fuzzy functions. In this paper [4], they defined an operation on
Spherical Fermatean fuzzy matrices and discussed their properties. They
also proved some new results on Spherical Fermatean fuzzy matrices. Re-
cently, they [14] introduced a hybrid methodology based on CRITIC and
EDAS methods with Fermatean fuzzy sets (FFSs). They developed a new
improved generalized score function (IGSF) with its desired properties.

The Similarity measures are important and useful tools for determining
the degree of similarity between two objects. The definition of a measure
of similarity between PFSs is of the most important topics in PFSs theory
and compares the information carried by the PFS. Similarity measures
between PFSs are an important tool for the MADMP problem, medical
diagnosis, decision making, pattern recognition, machine learning, image
processing, and other real-world problems. Recently, some researchers have
been involved in the development evaluation of the similarity measure of
PFSs and their applications. For example, Zhang [28] developed a new
method based on the similarity measure to meet various groups of criteria
decision-making problems in a Pythagorean fuzzy environment.

The similarity measures established under the umbrella of Fermatean
fuzzy sets are extensively and efficiently utilized in many fields mainly in-
cluding medical diagnosis, water management systems, pattern recognition,
signal detection, and security verification. One of the methods of studying
two sets is to calculate the similarity of two sets. Triangular norms and
connorms generalize the basic connectives between fuzzy sets, intuitionistic
fuzzy sets, Pythagorean fuzzy sets, and Feramatean fuzzy sets. In that role,
our goal is to propose similarity measures based on norms for FFSs, and
some of the basic properties of the new similarity measures were discussed.
The motivation to write this article is that we introduce similarity measure
and a new similarity measure for Fermatean fuzzy sets. The advantage
of using the S-norm is that the order of similarity does not change using
different norms. Also, we propose a multi-criteria group decision-making
method based on the new similarity measures. The Numerical results in-
dicate that the proposed methods are reasonable and applicable and also
that they are well suited in pattern recognition, linguistic variables, and
multicriteria decision-making with FFSs over existing methods.

The rest of the article presented is described as follows: In the “Prelimi-
naries” section, we review some definitions and properties. In “S-similarity 
measure of Fermatean fuzzy sets section”, we propose several new simi-
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larity measures for FFSs based on norms. In the “Applications” section,
we present various numerical examples. In the “Comparative Analysis”
section, we compare the proposed similarity measures with the existing
similarity measures. At the end conclusion section is provided.

2. Preliminaries

The concept of Intuitionistic fuzzy set brought by Atanassov [2], which
is the generalization of the traditional fuzzy set.

Definition 2.1 ([2]). The intuitionistic fuzzy sets defined on a non-empty
set X as objects having the form A = {⟨x, ζA(x), ηA⟩ : x ∈ X}, where the
functions ζA(x) : X 7→ [0, 1] and ηA(x) : X 7→ [0, 1], denote the degree of
membership and the degree of non-membership of each element x ∈ X to
the set A respectively, and 0 ≤ ζA(x) + ηA(x) ≤ 1 for all x ∈ X.

Definition 2.2 ([24]). Pythagorean fuzzy sets defined on a non-empty set
X as objects having the form P = {⟨x, ζP (x), ηP ⟩ : x ∈ X}, where the
functions ζP (x) : X 7→ [0, 1] and ηP (x) : X 7→ [0, 1], denote the degree of
membership and the degree of non-membership of each element x ∈ X to
the set P respectively, and 0 ≤ ζ2P (x) + η2P (x) ≤ 1 for all x ∈ X. For any

Pythagorean fuzzy set P and x ∈ X, πP =
√

1− (ζP (x))2 − (ηP (x))2 is
called the degree of indeterminacy of x to P.

Definition 2.3 ([19]). Fermatean fuzzy sets defined on a non-empty set
X as objects having the form γ = {⟨x, ζγ(x), ηγ⟩ : x ∈ X}, where the
functions ζγ(x) : X 7→ [0, 1] and ηγ(x) : X 7→ [0, 1], denote the degree
of membership and the degree of non-membership of each element x ∈ X
to the set γ respectively, and 0 ≤ ζ3γ(x) + η3γ(x) ≤ 1 for all x ∈ X. For

any Fermatean fuzzy set γ and x ∈ X, πγ =
√
1− (ζγ(x))3 − (ηγ(x))3 is

called the degree of indeterminacy of x to γ. For simplicity, we consider
the Fermatean fuzzy numbers (FFNs) be the components of the FFS.

From the figure below, it is clear that FFS covers more space, and it
is the best tool in dealing with ambiguity compared to Intuitionistic fuzzy
set and Pythagorean fuzzy set.
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Definition 2.4 ([19]). Let γ1 = (nγ1
,mγ1

) and γ2 = (nγ2
,mγ2

) be two
FFNS, a nature quasi-ordering on the FFNs is defined as follows:

γ1 ≥ γ2 if and only if nγ1
≥ nγ2

and mγ1
≤ mγ2

Definition 2.5 ([6]). Let γ1, γ2, and γ3 be three sets. A real function
s(·, ·) is called the similarity measure if s satisfies the following properties:

1. 0 ≤ s(γ1, γ2) ≤ 1,

2. s(γ1, γ2) = s(γ2, γ1)

3. s(γ1, γ2) = 1 ↔ γ1 = γ2

4. If γ1 ⊆ γ2, and γ2 ⊆ γ3, then s(γ1, γ3) ≤ min{s(γ1, γ2), s(γ2, γ3)}

Definition 2.6 ([7]). A binary operation S : [0, 1] × [0, 1] 7→ [0, 1] is a
continuous S-norm if it satisfies the following conditions:

(S-1) S is associative and commutative.

(S-2) S(a, 0) = a for all a ∈ [0, 1].

(S-3) S(a, b) ≤ S(c, d) whenever a≤c and b≤d, for each a, b, c, d ∈ [0, 1].
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Some of the basic S-norm are as follows:

S1(a, b) = max{a, b} S2(a, b) = min{a+ b, 1} S3(a, b) = a+ b− ab.

Definition 2.7 ([19]). Let γ1 = (nγ1
,mγ1

) and γ2 = (nγ2
,mγ2

) be two
FFNs. Then the Euclidean distance between γ1 and γ2 is:

d(γ1, γ2)=

√
1

2
[((nγ1

)3−(nγ2
)3)2+((mγ1

)3−(mγ2
)3)2+((πγ1

)3−(πγ2
)3)2].

Definition 2.8 ([19]). Let Let γ1 = (nγ1
,mγ1

) and γ2 = (nγ2
,mγ2

) be
two FFNs, then

1. d(γ1, γ2) = d(γ2, γ1);

2. d(γ1, γ2) = 0 if and only if γ1 = γ2;

3. 0 ≤ d(γ1, γ2) ≤
√
2.

Definition 2.9 ([19]). Let γ = (nγ ,mγ), γ1 = (nγ1
,mγ1

) and γ2 =
(nγ2

,mγ2
) be three FFNs, then their operations are defined as follows:

i γ1 ∩ γ2 = (min{nγ1 , nγ2},max{mγ1 ,mγ2});

ii γ1 ∪ γ2 = (max{nγ1
, nγ2

},min{mγ1
,mγ2

});

iii γc = (mγ , nγ).

3. S-similarity measure of Fermatean fuzzy sets

In this section we introduce a similarity measure and s-similarity measure
for FFNS.

Definition 3.1. let γi = (ζγi , ηγi)(i = 1, 2) be two FFNs, the similarity
measure between γ1 and γ2 is defined as follows:

sm(γ1, γ2) =
d(γ1, (γ2)

c)

d(γ1, γ2) + d(γ1, (γ2)c)
(3.1)

where d(·, ·) is the distance measure of FFNs and (γ2)
c = (mγ2

, nγ2
) is the

complement operation of the FFNs γ2.
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Clearly, by using the definitions of the Fermatean fuzzy distance mea-
sure and the complement operation of FFNs, the sm(γ1, γ2) can be de-
scribed as: √

1
2 (Γ

2 +∆2 +Θ2)√
1
2 (Φ

2 +Ψ2 +Θ2) +
√

1
2 (Γ

2 +∆2 +Θ2)
, (3.2)

where:

Γ = (ζγ1)
3 − (ηγ2)

3,

∆ = (ηγ1)
3 − (ζγ2)

3,

Θ = (πγ1
)3 − (πγ2

)3,

Φ = (ζγ1
)3 − (ζγ2

)3,

Ψ = (ηγ1
)3 − (ηγ2

)3.

Proposition 3.2. let γi = (ζγi
, ηγi

)(i = 1, 2) be two FFNs, then 0 ≤
sm(γ1, γ2) ≤ 1.

Proof: Because 0 ≤ d(γ1, γ2) ≤
√
2 and 0 ≤ d(γ1, (γ2)

c) ≤
√
2, then

sm(γ1, γ2) =
d(γ1, (γ2)

c)

d(γ1, γ2) + d(γ1, (γ2)c)
≤ d(γ1, (γ2)

c)

d(γ1, (γ2)c)
= 1.

Moreover, by Definition 3.1, it is obvious that sm(γ1, γ2) ≥ 0. Thus,
0 ≤ sm(γ1, γ2) ≤ 1.

Proposition 3.3. let γi = (ζγi , ηγi)(i = 1, 2) be two FFNs, then
sm(γ1, γ2) = 1 if and only if γ1 = γ2.

Proof: If sm(γ1, γ2) = 1, then d(γ1, γ2) = 0, then we obtain ((ζγ1
)3 −

(ζγ2
)3)2 = 0 , ((ηγ1

)3 − (ηγ2
)3)2 = 0 and ((πγ1

)3 − (πγ2
)3)2 = 0. By

Definition 2.5, we know that 0 ≤ ζγ1 , ηγ1 , ζγ2 , ηγ2 ≤ 1, 0 ≤ (ζγ1)
3+(ηγ1)

3 ≤
1, and 0 ≤ (ζγ2)

3 + (ηγ2)
3 ≤ 1. Thus, ζγ1 = ζγ2 , ηγ1 = ηγ2 , πγ1 = πγ2 i.e.,

γ1 = γ2. On the other hand, if γ1 = γ2, by Definition 2.5 we get ζγ1
= ζγ2

,
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ηγ1 = ηγ2 . Clearly, d(γ1, γ2) = 0, namely, sm(γ1, γ2) = 1 which completes
the proof.

Proposition 3.4. let γi = (ζγi , ηγi)(i = 1, 2) be two FFNs, then
sm(γ1, γ2) = sm(γ2, γ1).

Proof: By Definition 3.1,

sm(γ2, γ1) =
d(γ2, (γ1)

c)

d(γ2, γ1) + d(γ2, (γ1)c)

=

√
1
2 ((−Γ)2+(−∆)2+(−Θ)2)√

1
2 ((−Φ)2+(−Ψ)2+(−Θ)2)+

√
1
2 ((−Γ)2+(−∆)2+(−Θ)2))

=

√
1
2 (Γ

2+∆2+Θ2)√
1
2 (Φ

2+Ψ2+Θ2)+
√

1
2 (Γ

2+∆2+Θ2)

=
d(γ1, (γ2)

c)

d(γ1, γ2) + d(γ1, (γ2)c)
= sm(γ1, γ2).

Hence it is proved that sm(γ1, γ2) = sm(γ2, γ1).

Definition 3.5. Let γ1 and γ2 be two FFNs, such that γ1 = (ζγ1
, ηγ1

) and
γ2 = (ζγ2 , ηγ2), where ζ3γ1

+ η3γ1
≤ 1 and ζ3γ2

+ η3γ2
≤ 1. The s-similarity

measure for the FFNs γ1 and γ2 represented by s(γ1, γ2)S is defined as:

s(γ1, γ2)S = 3

√
1− S((ζγ1

− ζγ2
)2, (ηγ1

− ηγ2
)2), (3.3)

where S(·, ·) is a continuous S-norm.

Theorem 3.6. Let γi = (ζγi , ηγi)(i = 1, 2, 3) be three FFNs. Therefore
s(·, ·)S corresponding to the equation (3.3) is satisfied in the following prop-
erty:

1. 0 ≤ s(γ1, γ2)S ≤ 1,

2. s(γ1, γ2)S = s(γ2, γ1)S ,

3. s(γ1, γ2)S = 1 ↔ γ1 = γ2,

4. If ζγ1 ≤ ζγ2 ≤ ζγ3 , and ηγ1 ≥ ηγ2 ≥ ηγ3 , then s(γ1, γ3)S ≤
min{s(γ1, γ2)S , s(γ2, γ3)S}.
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Proof: We can easily achieve 1, 2 and 3. For 4: If ζγ1 ≤ ζγ2 ≤ ζγ3 , and
ηγ1 ≥ ηγ2 ≥ ηγ3 , then

(ζγ1
− ζγ2

)2 ≤ (ζγ1
− ζγ3

)2,

(ζγ3
− ζγ2

)2 ≤ (ζγ1
− ζγ3

)2,

(ηγ1
− ηγ2

)2 ≤ (ηγ1
− ηγ3

)2,

(ηγ3
− ηγ2

)2 ≤ (ηγ1
− ηγ3

)2.

Regarding (S-3) of Definition 2.6

S((ζγ1 − ζγ2)
2, (ηγ1 − ηγ2)

2) ≤ S((ζγ1 − ζγ3)
2, (ηγ1 − ηγ3)

2),

S((ζγ3 − ζγ2)
2, (ηγ3 − ηγ2)

2) ≤ S((ζγ1 − ζγ3)
2, (ηγ1 − ηγ3)

2).

Hence

3
√
1−S((ζγ1−ζγ2)

2, (ηγ1−ηγ2)
2)≥ 3

√
1− S((ζγ1−ζγ3)

2, (ηγ1−ηγ3)
2)

3
√
1−S((ζγ3−ζγ2)

2, (ηγ3−ηγ2)
2)≥ 3

√
1−S((ζγ1−ζγ3)

2, (ηγ1−ηγ3)
2).

By Definition 3.5

s(γ1, γ2)S ≥ s(γ1, γ3)S , s(γ2, γ3)S ≥ s(γ1, γ3)S ,

then

s(γ1, γ3)S ≤ min{s(γ1, γ2)S , s(γ2, γ3)S}, which is the required proof.

Remark 3.7. s(γ1, γ2)S2
≤ s(γ1, γ2)S3

≤ s(γ1, γ2)S1
. It can be easily be

proved that

i. s(γ1, γ2)S1
= 3
√

1−max{(ζγ1
− ζγ2

)2, (ηγ1
− ηγ2

)2},

ii. s(γ1, γ2)S2
= 3
√
1−min{(ζγ1

− ζγ2
)2 + (ηγ1

− ηγ2
)2, 1},

iii. s(γ1, γ2)S3
= 3
√
1−{(ζγ1

−ζγ2
)2+(ηγ1

−ηγ2
)2−(ζγ1

−ζγ2
)2(ηγ1

−ηγ2
)2}.

Let a = (ζγ1
−ζγ2

)2 and b = (ηγ1
−ηγ2

)2, then we have 0 ≤ a ≤ 1, 0 ≤ b ≤ 1
and 0 ≤ a+ b− ab ≤ 1, a+ b− ab ≤ a+ b. Eventually, we have a+ b− ab ≤
min{a+ b, 1}, that is s(γ1, γ2)S2 ≤ s(γ1, γ2)S3 .
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Moreover, it is obvious that a ≤ a + b − ab and b ≤ a + b − ab, then
max{a, b} ≤ a+ b− ab that is s(γ1, γ2)S3 ≤ s(γ1, γ2)S1 .

Proof: (iii). Let a = (ζγ1 − ζγ2)
2 and b = (ηγ1 − ηγ2)

2, then we have

S3(a, b)=a+b−ab=(ζγ1−ζγ2)
2+(ηγ1−ηγ2)

2−(ζγ1−ζγ2)
2(ηγ1−ηγ2)

2.

By (3.3), we have

s(γ1, γ2)S3
= 3
√
1−{(ζγ1−ζγ2)

2+(ηγ1
−ηγ2

)2−(ζγ1
−ζγ2

)2(ηγ1
−ηγ2

)2}.

Hence it is proved.

Definition 3.8. Let κi = (ζi, ηi)(i = 1, 2) be two FFSs, a weighted cosine
similarity measure between κ1 and κ2 is as follows:

WFFC1 =

n∑
i=1

wi

ζ3κ1
(xi)ζ

3
κ2
(xi) + η3κ1

(xi)η
3
κ2
(xi)

3
√
ζκ1

(xi)4 + ηκ1
(xi)4

3
√

ζκ2
(xi)4 + ηκ2

(xi)4
. (3.4)

Definition 3.9. Let κi = (ζi, ηi)(i = 1, 2) be two FFSs, two weighted
cosine similarity measure between κ1 and κ2 is as follows:

WFFCS1(κ1, κ2)=

n∑
i=1

wi cos
[π
2

(
|ζ3κ1

(xi)−ζ3κ2
(xi)|∨|η3κ1

(xi)−η3κ2
(xi)|

)]
,

(3.5)

WFFCS2(κ1, κ2)=

n∑
i=1

wi cos
[π
4

(
|ζ3κ1

(xi)−ζ3κ2
(xi)|∨|η3κ1

(xi)−η3κ2
(xi)|

)]
.

(3.6)

Definition 3.10. Let κi = (ζi, ηi)(i = 1, 2) be two FFSs, two weighted
cotangent similarity measure between κ1 and κ2 is as follows:

WFFCT 1(κ1, κ2) =
n∑

i=1

wi cot

[
π

4
+

π

4

(
|ζ3κ1

(xi)− ζ3κ2
(xi)|

∨ |η3κ1
(xi)− η3κ2

(xi)|
) ]
,

(3.7)
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WFFCT 2(κ1, κ2) =
n∑

i=1

wi cot

[
π

4
+

π

8
(|ζ3κ1

(xi)− ζ3κ2
(xi)|

+ |η3κ1
(xi)− η3κ2

(xi)|)
]
.

(3.8)

where w = {w1, w2, . . . , wn} is the weight vector of xi(i = 1, 2, . . . , n), with
wi ∈ [0, 1](i = 1, 2, . . . , n),

∑n
i=1 wi = 1 and the symbol ∨ is the maximum

operation.

Definition 3.11. Let U = {u1, u2, . . . , un} denote discourse set and κ1

and κ2 ∈ F (U) be two FFSs. s(κ1, κ2)S denotes the s-similarity measure
for the FFSs κ1 and κ2.

s(κ1, κ2)S =
n∑

i=1

wis(Fκ1(ui), Fκ2(ui))S , (3.9)

where wi > 0 is the weight of the element ui ∈ U, i = 1, 2, . . . , n, where∑n
i−1 wi = 1 and it depends on what decision maker and s(·, ·)S is defined

in (3.3).

Theorem 3.12. Let κi = (ζκi
, ηκi

)(i = 1, 2, 3) ∈ F (U) be three FFNs.
Therefore s(·, ·)S corresponding to the equation (3.9) is satisfied in the fol-
lowing property:

1. 0 ≤ s(κ1, κ2)S ≤ 1,

2. s(κ1, κ2)S = s(κ2, κ1)S,

3. s(κ1, κ2)S = 1 ↔ κ1 = κ2,

4. If κ1 ⊆ κ2 ⊆ κ3, then s(κ1, κ3)S ≤ min{s(κ1, κ2)S , s(κ2, κ3)S}.

Proof: It is easy to obtain 1,2 and 3. For 4:
If κ1 ⊆ κ2 ⊆ κ3, then Fκ1

(ui) ≤ Fκ2
(ui) ≤ Fκ3

(ui); then, with case 4
of Theorem 3.6:

s(Fκ1(ui), Fκ3(ui))S ≤ min{s(Fκ1(ui), Fκ2(ui))S , s(Fκ2(ui), Fκ3(ui))S}.

Then

n∑
i=1

wis(Fκ1(ui), Fκ3(ui))S ≤
n∑

i=1

wis(Fκ1(ui), Fκ2(ui))S ,
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n∑
i=1

wis(Fκ1
(ui), Fκ3

(ui))S ≤
n∑

i=1

wis(Fκ2
(ui), Fκ3

(ui))S .

Moreover, we have

s(κ1, κ3)S ≤ s(κ1, κ2)S , s(κ1, κ3)S ≤ s(κ2, κ3)S .

Finally
s(κ1, κ3)S ≤ min{s(κ1, κ2)S , s(κ2, κ3)S}.

Therefore, s(κ1, κ3)S ≤ min{s(κ1, κ2)S , s(κ2, κ3)S} and the proof is com-
pleted.

4. Applications

To provide more insights for the similarity measure for FFSs, in this section,
we present two numerical examples.

Example 4.1. Considering a pattern recognition problem about the classi-
fication of building materials, three classes of building material are repre-
sented by FFSs κ1, κ2, κ3 in X = {x1, x2, x3}, respectively.

κ1 = {(x1, 0.6, 0.5), (x2, 0.8, 0.2), (x3, 0.7, 0.3)},
κ2 = {(x1, 0.2, 0.4), (x2, 0.9, 0.3), (x3, 0.52, 0.55)},
κ3 = {(x1, 0.66, 0.4), (x2, 0.8, 0.4), (x3, 0.6, 0.5)}.

Given another kind of unknown building material κ = {(x1, 0.1, 0),
(x2, 0.1, 0), (x3, 0.1, 0)}, our aim is to justify which class the unknown pat-
tern κ belongs to. If we consider the weight of xi(i = 1, 2, 3), to be 0.5,
0.3, and 0.2, respectively. In Table 1, the similarity measures from κ to
κi(i = 1, 2, 3) are given.

From Table 1, it is clear that the weighted similarity measures between
κ2 and κ are the largest.

Example 4.2. Assume that there are four patterns denoted with FFSs in
X = {x1, x2, x3, x4}. The four patterns are denoted as follows:

κ1 = {(x1, 0.6, 0.2), (x2, 0.3, 0.5), (x3, 0.7, 0.4), (x4, 0.4, 0.7)},
κ2 = {(x1, 0.7, 0.4), (x2, 0.5, 0), (x3, 0.9, 0.2), (x4, 0.3, 0.6)},
κ3 = {(x1, 0.8, 0.5), (x2, 0.6, 0), (x3, 0.3, 0.4), (x4, 0.5, 0.7)},
κ4 = {(x1, 0.9, 0.2), (x2, 0.2, 0.5), (x3, 0.7, 0), (x4, 0.1, 0.6)}.
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Table 1. Similarity measures between κi(i = 1, 2, 3) and κ

Similarity measures (κ1, κ) (κ2, κ) (κ3, κ)
s(κi, κ)S1

0.8664 0.8676 0.8625
s(κi, κ)S2 0.7907 0.8247 0.7738
s(κi, κ)S3 0.8163 0.8433 0.8074

Table 2. Similarity measures between κi(i = 1, 2, 3, 4) and κ

Similarity measures (κ1, κ) (κ2, κ) (κ3, κ) (κ4, κ)
WFFC1(κi, κ) 0.0129 0.0187 0.0203 0.0194
WFFCS1(κi, κ) 0.9584 0.9632 0.9108 0.8038
WFFCS2(κi, κ) 0.9839 0.9588 0.9619 0.9427
WFFCT 1(κi, κ) 0.7806 0.6897 0.7152 0.5768
WFFCT 2(κi, κ) 0.8525 0.8076 0.8001 0.7332

s(κi, κ)S1 0.9741 0.9586 0.9580 0.9563
s(κi, κ)S2 0.9618 0.9526 0.9419 0.9407
s(κi, κ)S3

0.9628 0.9594 0.9445 0.9425

Assume that a sample κ = {(x1, 0.5, 0.1), (x2, 0.5, 0.2), (x3, 0.4, 0.1),
(x4, 0.4, 0.2)} is given. Given three kinds of mineral fields, each is fea-
tured by the content of three minerals and contains one kind of typical
hybrid minerals. The four kinds of typical hybrid minerals are represented
by FFSs κ1, κ2, κ3, κ4 in X, respectively. Given another kind of hybrid
mineral κ, to which field does this kind of mineral κ most probably belong
to? Our aim is to classify the pattern κ in one of classes κi(i = 1, 2, 3, 4).
For this, the proposed similarity measures which have been computed from
κ to κi(i = 1, 2, 3, 4) are given in Table 2. We consider the weight of
xi(i = 1, 2, 3, 4) to be 0.4,0.3,0.2, and 0.1, respectively.

The results have been added in Table 2 to provide a better view of
the comparison results. The italic numbers in Table 2 refer to the most
appropriate option. According to the results given in Table 2, it is clear
that ranking for similarity measures with different S-norm is as follows:

κ4 < κ3 < κ2 < κ1.

Meanwhile, similarity measures based on the cosine function between FFSs
do not have the same order for ranking.
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5. Comparative analysis

In this section, we compare the proposed similarity measures with the ex-
isting similarity measures defined in the paper [27].

Definition 5.1. [27]
Let κ1 = {⟨xi, ζκ1

(xi), ηκ1
(xi)|xi ∈ X} and κ2 = {⟨xi, ζκ2

(xi), ηκ2
(xi)|xi ∈

X} be two FFNs on the domain X, then the similarity measures between
κ1 and κ2 can be calculated as

sm1(κ1, κ2)=
1

n

n∑
i=1

ζ2κ1
(xi)ζ

2
κ2
(xi)+η2κ1

(xi)η
2
κ2
(xi)√

ζ4κ1
(xi)+η4κ1

(xi)
√
ζ4κ2

(xi)+η4κ2
(xi)

, (5.1)

sm2(κ1, κ2)=
1

n

n∑
i=1

ζ2κ1
(xi)ζ

2
κ2
(xi)+η2κ1

(xi)η
2
κ2
(xi)+π2

κ1
(xi)π

2
κ2
(xi)√

ζ4κ1
(xi)+η4κ1

(xi)+π4
κ1
(xi)

√
ζ4κ2

(xi)+η4κ2
(xi)+π4

κ2
(xi)

,

(5.2)

sm3(κ1, κ2)=

n∑
i=1

cos

[
π

2

(
|ζ2κ1

(xi)−ζ2κ2
(xi)|∨|η2κ1

(xi)−η2κ2
(xi)|

) ]
, (5.3)

sm4(κ1, κ2)=

n∑
i=1

cos

[
π

4

(
|ζ2κ1

(xi)−ζ2κ2
(xi)|+|η2κ1

(xi)−η2κ2
(xi)|

) ]
, (5.4)

sm5(κ1, κ2)=

n∑
i=1

cos

[
π

2
(|ζ2κ1

(xi)−ζ2κ2
(xi)|

∨|η2κ1
(xi)−η2κ2

(xi)|∨|π2
κ1
(xi)−π2

κ2
(xi)|)

]
,

(5.5)

sm6(κ1, κ2)=

n∑
i=1

cos

[
π

4
(|ζ2κ1

(xi)−ζ2κ2
(xi)|+|η2κ1

(xi)

−η2κ2
(xi)|+|π2

κ1
(xi)−π2

κ2
(xi)|)

]
.

(5.6)

Example 5.2. Let the feature space beX = {x1, x1, x3}, κ1 = {(x1, 0.2, 0.4),
(x2, 0.7, 0.3), (x3, 0.4, 0.1)} and κ2 = {(x1, 0.2, 0.4), (x2, 0.7, 0.3),
(x3, 0.4, 0.13)} are two FFSs on X, respectively. κ1 and κ2 are highly sim-
ilar but not exactly the same. Let the weight of xi (i = 1, 2, 3) be 0.7, 0.2,
and 0.1, respectively. The existing similarity measures and the proposed
similarity measures between κ1 and κ2 are calculated, respectively. The
computed results are as follows:
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sm1(κ1, κ2) = 1 sm2(κ1, κ2) = 1 sm3(κ1, κ2) = 1

sm4(κ1, κ2) = 1 sm5(κ1, κ2) = 1 sm6(κ1, κ2) = 1

s(κ1, κ2)S1
= 0.9436 s(κ1, κ2)S2

= 0.9436 s(κ1, κ2)S3
= 0.9436

WFFC1 = 0.0668 WFFCS1 = 0.9999 WFFCS2 = 1.

WFFCT 1 = 0.9954 WFFCT 2 = 0.9977

The computed results show that existing similarity measures can’t distin-
guish κ1 and κ2 from each other, leading to the mistaken conclusion that
they’re the same. In this case, the existing similarity measures are un-
reasonable. The proposed similarity measures can distinguish PFSs that
are very similar but inconsistent. In conclusion, the new proposed similar-
ity measures are more distinct and can be used to solve a wide range of
problems. The MCDM method based on the proposed measures is more
accurate and reliable than the MCDM method based on the existing mea-
sures in the case of a single decision-maker and multiple decision-makers.
The proposed measures are simpler and easier to operate than the existing
operators.

6. Conclusion

Since in decision-making process, selecting the best possible course from all
of the possible alternatives is a challenging task. We provide an effective
approach to select an eligible alternative based on our opinion is its simi-
larity to ideal point. More specifically, we have proposed some similarity
measures for FFSs based on S-norms by considering the degree of mem-
bership and degree of non-membership. Then, we applied our similarity
measures between FFSs to pattern recognition and medical diagnosis using
numerical examples. The results show that the proposed similarity mea-
sures in FFS environment can suitably handle the real-life decision-making
problem. In the future, the application of our proposed similarity measures
of FFSs needs to be explored in complex decision making, risk analysis, and
many other fields under uncertain environments.
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