EXTENDED BCK-IDEAL BASED ON SINGLE-VALUED NEUTROSOPHIC HYPER $B C K$-IDEALS

Abstract

This paper introduces the concept of single-valued neutrosophic hyper $B C K$ subalgebras as a generalization and alternative of hyper $B C K$-algebras and on any given nonempty set constructs at least one single-valued neutrosophic hyper $B C K$-subalgebra and one a single-valued neutrosophic hyper $B C K$-ideal. In this study level subsets play the main role in the connection between singlevalued neutrosophic hyper $B C K$-subalgebras and hyper $B C K$-subalgebras and the connection between single-valued neutrosophic hyper $B C K$-ideals and hyper $B C K$-ideals. The congruence and (strongly) regular equivalence relations are the important tools for connecting hyperstructures and structures, so the major contribution of this study is to apply and introduce a (strongly) regular relation on hyper $B C K$-algebras and to investigate their categorical properties (quasi commutative diagram) via single-valued neutrosophic hyper $B C K$-ideals. Indeed, by using the single-valued neutrosophic hyper $B C K$-ideals, we define a congruence relation on (weak commutative) hyper $B C K$-algebras that under some conditions is strongly regular and the quotient of any (single-valued neutrosophic)hyper $B C K$-(sub)algebra via this relation is a (single-valued neutrosophic)(hyper $B C K$ subalgebra) BCK-(sub)algebra.

Keywords: single-valued neutrosophic (hyper) $B C K$-subalgebra, quasi commutative diagram, extendable single-valued neutrosophic (hyper) $B C K$-ideal.

2020 Mathematical Subject Classification: 03B47, 06F35, 03B52.

Presented by: Janusz Czelakowski
Received: January 21, 2021
Published online: August 10, 2023
(C) Copyright by Author(s), Łódź 2023
(C) Copyright for this edition by the University of Lodz, Lódź 2023

1. Introduction

Theory of neutrosophic set as an extension of classical set, (intuitionistic) fuzzy set [21] and interval-valued (intuitionistic) fuzzy set is introduced by Smarandache for the first time in 2005 [18] and novel concept of neutrosophy theory titled neutro-(hyper)algebra as the development of classical (hyper)algebra and partial-(hyper)algebra [19]. This concept handles problems involving ambiguous, hesitancy, and conflicting data and describes the main tool in modeling unsure hypernetworks in all sciences, see in more detail, accessible single-valued neutrosophic graphs [3], derivable single-valued neutrosophic graphs based on KM-single-valued neutrosophic metric [5] and single-valued neutrosophic directed (hyper)graphs and applications in networks [4], single-valued neutrosophic general machine [17] and a novel similarity measure of single-valued neutrosophic sets based on modified manhattan distance and its applications [22]. Today, in the scope of logical (hyper)algebras, (hyper) $B C K$-algebras and their generalization such as fuzzy hyper $B C K$-subalgebras and single-valued neutrosophic hyper $B C K$-subalgebras are investigated and applied in related interdisciplinary sciences such as inf-hesitant fuzzy ideals in BCK/BCIalgebras [10], length neutrosophic subalgebras of BCK=BCI-algebras [9], fuzzy soft positive implicative hyper BCK-ideals of several types [13], implicative neutrosophic quadruple BCK-Algebras and ideals [15], construction of an HV-K-algebra from a BCK-algebra based on ends lemma [16], and implicative ideals of BCK-algebras based on MBJ-neutrosophic sets [20]. The fundamental relations make an important role in the connection between hyper BCK-subalgebras and BCK-subalgebras and some research is published in this scopes such as on fuzzy quotient, BCK-algebras [2], (semi)topological quotient BCK-algebras [14] and extended fuzzy BCKsubalgebras [23].

Recently in the scope of neutro logical (hyper) algebra Hamidi, et al. introduced the concept of neutro $B C K$-subalgebras [6] and single-valued neutro hyper BCK-subalgebras [7] as a generalization of $B C K$-algebras and hyper $B C K$-subalgebras, respectively and presented the main results in this regard.

Regarding these points, we try to develop the notation of fuzzy hyper $B C K$-subalgebras to the concept of single-valued neutrosophic hyper $B C K$-subalgebras and so we want to seek the connection between single-valued neutrosophic $B C K$-algebras and single-valued neutrosophic
hyper $B C K$-algebras. In this paper, we consider single-valued neutrosophic hyper $B C K$-ideals and describe the relationship between ($B C K$ ideals) hyper $B C K$-ideals and single-valued neutrosophic hyper $B C K$ ideals. The connection between of category of logical algebras and the category of logical hyperalgebras (as quasi commutative diagram) is based on fundamental relation and this problem is made a motivation to introduce some relation on hyper $B C K$-subalgebras via the single-valued neutrosophic hyper $B C K$-subalgebras and single-valued neutrosophic hyper $B C K$-ideals, it is the main and major contribution of this study. We apply a fundamental relation to any given hyper $B C K$-algebras and discuss the quotient of single-valued neutrosophic hyper $B C K$-algebras to the convert of single-valued neutrosophic $B C K$-algebras and discuss the quotient of single-valued neutrosophic hyper $B C K$-ideals to the convert of single-valued neutrosophic $B C K$-ideals. Moreover, applying the concept of single-valued neutrosophic hyper $B C K$-ideals, we get a congruence relation on (weak commutative) hyper $B C K$-algebras that the quotient of any given hyper $B C K$-algebra via this relation is a (hyper $B C K$-algebra) $B C K$-algebra. An isomorphism theorem of single-valued neutrosophic hyper $B C K$-ideals is obtained using the special single-valued neutrosophic hyper $B C K$-ideals. In the section 3 , we investigated on single-valued neutrosophic hyper $B C K$-subalgebras, especially we converted any given nonempty set to hyper $B C K$-subalgebra and obtained a family of singlevalued neutrosophic hyper $B C K$-subalgebras. In the section 4 , it is presented the concepts of single-valued neutrosophic hyper $B C K$-ideals, especially any given nonempty set extended to a hyper $B C K$-algebra with at least a single-valued neutrosophic hyper $B C K$-ideal.

2. Preliminaries

In this section, we recall some concepts that need to our work.
Definition 2.1. [8] Let $X \neq \emptyset$. Then a universal algebra $(X, \vartheta, 0)$ of type $(2,0)$ is called a $B C K$-algebra, if $\forall x, y, z \in X$:
$(B C I-1)((x \vartheta y) \vartheta(x \vartheta z)) \vartheta(z \vartheta y)=0$,
$(B C I-2)(x \vartheta(x \vartheta y)) \vartheta y=0$,
$(B C I-3) x \vartheta x=0$,
$(B C I-4) x \vartheta y=0$ and $y \vartheta x=0$ imply $x=y$,
$(B C K-5) 0 \vartheta x=0$,
where $\vartheta(x, y)$ is denoted by $x \vartheta y$.

Definition 2.2. [1, 11] Let $X \neq \emptyset$ and $P^{*}(X)=\{Y \mid \emptyset \neq Y \subseteq X\}$. Then for a map $\varrho: X^{2} \rightarrow P^{*}(X)$ a hyperalgebraic system $(X, \varrho, 0)$ is called a hyper $B C K$-algebra, if $\forall x, y, z \in X$:
$(H 1)(x \varrho z) \varrho(y \varrho z) \ll x \varrho y$,
$(H 2)(x \varrho y) \varrho z=(x \varrho z) \varrho y$,
(H3) $x \varrho X \ll x$,
(H4) $x \ll y$ and $y \ll x$ imply $x=y$,
where $x \ll y$ is defined by $0 \in x \varrho y, \forall W, Z \subseteq X, W \ll Z \Leftrightarrow \forall a \in$ $W \exists b \in Z$ s.t $a \ll b,(W \varrho Z)=\bigcup_{a \in W, b \in Z}(a \varrho b)$ and $\varrho(x, y)$ is denoted by $x \varrho y$.

We will call X is a weak commutative hyper $B C K$-algebra if, $\forall x, y \in$ $X,(x \varrho(x \varrho y)) \cap(y \varrho(y \varrho x)) \neq \emptyset$.

Theorem 2.3. [11] Let $(X, \varrho, 0)$ be a hyper BCK-algebra. Then $\forall x, y, z \in$ X and $W, Z \subseteq X$,
(i) $(0 \varrho 0)=0,0 \ll x,(0 \varrho x)=0, x \in(x \varrho 0)$ and $(W \ll 0 \Rightarrow W=0)$,
(ii) $x \ll x, x \varrho y \ll x$ and $(y \ll z \Rightarrow x \varrho z \ll x \varrho y)$,
(iii) $W \varrho Z \ll W, W \ll W$ and $(W \subseteq Z \Rightarrow W \ll Z)$.

Definition 2.4. [18] Let V be a universal set. A neutrosophic subset (NS) X of V is an object having the following form $X=\left\{\left(x, T_{X}(x), I_{X}(x), F_{X}(x)\right)\right.$ $\mid x \in V\}$, or $X: V \rightarrow[0,1] \times[0,1] \times[0,1]$ which is characterized by a truthmembership function T_{X}, an indeterminacy-membership function I_{X} and a falsity-membership function F_{X}. There is no restriction on the sum of $T_{X}(x), I_{X}(x)$ and $F_{X}(x)$.

From now on, $\forall x, y \in[0,1]$, consider $T_{\min }(x, y)=\min \{x, y\}$ and $S_{\text {max }}(x, y)=\max \{x, y\}$ as triangular norm and triangular conorm, respectively.

Definition 2.5. [12] Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra. A singlevalued neutrosophic subset $A=\left(T_{A}, I_{A}, F_{A}\right)$ of X is called a single-valued neutrosophic hyper $B C K$-ideal, if $\forall x, y \in X$ it satisfies the following properties:
$(F H 1) x \ll y \Rightarrow T_{A}(x) \geq T_{A}(y), I_{A}(x) \geq I_{A}(y)$ and $F_{A}(x) \leq F_{A}(y)$,
(FH2) $T_{A}(x) \geq T_{\min }\left\{T_{A}(y), \bigwedge\left(T_{A}(x \varrho y)\right)\right\}, I_{A}(x) \geq T_{\min }\left\{I_{A}(y), \bigwedge\left(I_{A}(x\right.\right.$ $\varrho y)$) $\}$ and
$F_{A}(x) \leq S_{\max }\left\{F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right\}$.

3. Single-valued neutrosophic hyper $B C K$-subalgebras

In this section, we make the concept of single-valued neutrosophic hyper $B C K$-subalgebras as an extension of fuzzy hyper $B C K$-subalgebras and seek some of their properties.

From now on, consider (X, ϱ) as a hyper $B C K$-subalgebra.
Definition 3.1. A single-valued neutrosophic subset $A=\left(T_{A}, I_{A}, F_{A}\right)$ of (X, ϱ) is called a single-valued neutrosophic hyper $B C K$-subalgebra of $(X, \varrho, 0)$, if
(i) $\bigwedge\left(T_{A}(x \varrho y)\right) \geq T_{\min }\left(T_{A}(x), T_{A}(y)\right)$;
(ii) $\bigvee\left(I_{A}(x \varrho y)\right) \leq S_{\max }\left(I_{A}(x), I_{A}(y)\right)$;
$(i i i) \bigvee\left(F_{A}(x \varrho y)\right) \leq S_{\max }\left(F_{A}(x), F_{A}(y)\right)$.
Theorem 3.2. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-subalgebra of $(X, \varrho, 0)$. Then
(i) $T_{A}(0) \geq T_{A}(x)$;
(ii) $\bigwedge\left(T_{A}(x \varrho 0)\right)=T_{A}(x)$;
(iii) $\bigwedge\left(T_{A}(0 \varrho x)\right)=T_{A}(0)$;

Proof: (i) Let $x \in X$. Since $0 \in x \varrho x$, we get that $T_{A}(0) \geq \bigwedge\left(T_{A}(x \varrho x)\right) \geq$ $T_{\text {min }}\left(T_{A}(x), T_{A}(x)\right)=T_{A}(x)$.
(ii) Let $x \in X$. Since $x \in x \varrho 0$, we get that $T_{A}(x) \geq \bigwedge\left(T_{A}(x \varrho 0)\right) \geq$ $T_{\min }\left(T_{A}(x), T_{A}(0)\right)=T_{A}(x)$. So $\bigwedge\left(T_{A}(x \varrho 0)\right)=T_{A}(x)$.
(iii) Immediate by Theorem 2.3.

Theorem 3.3. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-subalgebra of X. Then
(i) $I_{A}(0) \leq I_{A}(x)$;
(ii) $\bigvee\left(I_{A}(x \varrho 0)\right)=I_{A}(x)$;
(iii) $\bigvee\left(I_{A}(0 \varrho x)\right)=I_{A}(0)$;

PRoof: (i) Let $x \in X$. Since $0 \in x \varrho x$, we get that $I_{A}(0) \leq \bigvee\left(I_{A}(x \varrho x)\right) \leq$ $S_{\max }\left(I_{A}(x), I_{A}(x)\right)=I_{A}(x)$.
(ii) Let $x \in X$. Since $x \in x \varrho 0$, we get that $I_{A}(x) \leq \bigvee\left(I_{A}(x \varrho 0)\right) \leq$ $S_{\max }\left(I_{A}(x), I_{A}(0)\right)=I_{A}(x)$. So $\bigvee\left(I_{A}(x \varrho 0)\right)=I_{A}(x)$.
(iii) Immediate by Theorem 2.3.

Corollary 3.4. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-subalgebra of $(X, \varrho, 0)$. Then
(i) $F_{A}(0) \leq F_{A}(x)$;
(ii) $\bigvee\left(F_{A}(x \varrho 0)\right)=F_{A}(x)$;
(iii) $\bigvee\left(F_{A}(0 \varrho x)\right)=F_{A}(0)$;
(iv) $T_{\min }\left(T_{A}(x), I_{A}(0), F_{A}(0)\right) \leq T_{\min }\left(T_{A}(0), I_{A}(x), F_{A}(x)\right)$.

Theorem 3.5. Let $0 \notin X \neq \emptyset$. Then X converted to a hyper BCK-algebra $\left(X^{\prime}, \varrho, 0\right)\left(X^{\prime}=X \cup\{0\}\right)$ with at least a single-valued neutrosophic hyper BCK-subalgebra.

Proof: Let $x, y \in X^{\prime}$. Define " ϱ " on X^{\prime} by $0 \varrho y=0, x \varrho x=\{0, x\}(x \neq$ 0), else $x \varrho y=x$. Clearly $\left(X^{\prime}, \varrho, 0\right)$ is a hyper $B C K$-algebra. Now, it is easy to see that every single-valued neutrosophic set $A=\left(T_{A}, I_{A}, F_{A}\right)$ that $T_{A}(0)=1, I_{A}(0)=F_{A}(0)=0$, is a single-valued neutrosophic hyper $B C K$-subalgebra of X^{\prime}.

Let $\mathcal{S V N} h=\left\{A=\left(T_{A}, I_{A}, F_{A}\right) \mid A\right\}$, whence X is a hyper $B C K-$ algebra, A is a single-valued neutrosophic hyper $B C K$-subalgebra of X and $|X| \geq 1$.

Corollary 3.6. Let $X \neq \emptyset$. Then X can be extended to a hyper $B C K$ algebra that $|\mathcal{S V N} h|=|\mathbb{R}|$.

Proof: Let $|X|=1$. Then (X, ϱ, x) is a hyper $B C K$-algebra such that $x \varrho x=X$. Then for a single-valued neutrosophic set $A=\left(T_{A}, I_{A}, F_{A}\right)$ by $T_{A}(x)=I_{A}(x)=F_{A}(x)=\alpha$ is a single-valued neutrosophic hyper $B C K$ subalgebra of X where $\alpha \in[0,1]$. If $|X| \geq 2$, then by Theorem 3.5, define $A=\left(T_{A_{\alpha}}, I_{A_{\alpha}}, F_{A_{\alpha}}\right)$ by

$$
T_{A_{\alpha}}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=0 \\
\alpha, & \text { if } x \neq 0
\end{array}, I_{A_{\alpha}}(x)= \begin{cases}0, & \text { if } x=0 \\
\alpha, & \text { if } x \neq 0\end{cases}\right.
$$

and $\quad F_{A_{\alpha}}(x)=\left\{\begin{array}{ll}0, & \text { if } x=0, \\ \alpha, & \text { if } x \neq 0,\end{array}\right.$ Obviously, $A=\left(T_{A_{\alpha}}, I_{A_{\alpha}}, F_{A_{\alpha}}\right)$ a singlevalued neutrosophic hyper $B C K$-subalgebra of X and so $|\mathcal{S V N} h|=|[0,1]|$.

Let X be a hyper $B C K$-algebra, $A=\left(T_{A}, I_{A}, F_{A}\right)$ a single-valued neutrosophic hyper $B C K$-subalgebra of X and $\alpha, \beta, \gamma \in[0,1]$. Define $T_{A}^{\alpha}=$ $\left\{x \in X \mid T_{A}(x) \geq \alpha\right\}, I_{A}^{\beta}=\left\{x \in X \mid I_{A}(x) \leq \beta\right\}, F_{A}^{\gamma}=\left\{x \in X \mid F_{A}(x) \leq\right.$ $\gamma\}$ and $A^{(\alpha, \beta, \gamma)}=\left\{x \in X \mid T_{A}(x) \geq \alpha, I_{A}(x) \leq \beta, F_{A}(x) \leq \gamma\right\}$.

ThEOREM 3.7. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-subalgebra of X. Then
(i) $0 \in A^{(\alpha, \beta, \gamma)}=T_{A}^{\alpha} \cap I_{A}^{\beta} \cap F_{A}^{\gamma}$,
(ii) $A^{(\alpha, \beta, \gamma)}$ is a hyper BCK-subalgebra of X,
(iv) if $0 \leq \alpha \leq \alpha^{\prime} \leq 1$, then $T_{A}^{\alpha^{\prime}} \subseteq T_{A}^{\alpha}, I_{A}^{\alpha^{\prime}} \supseteq I_{A}^{\alpha}$ and $F_{A}^{\alpha^{\prime}} \supseteq F_{A}^{\alpha}$.

Proof: (i) Clearly $A^{(\alpha, \beta, \gamma)}=A^{\alpha} \cap A^{\beta} \cap A^{\gamma}$ and by Theorems 3.2, 3.3, and Corollary 3.4, we get that $0 \in A^{(\alpha, \beta, \gamma)}$.
(ii) Let $x, y \in T_{A}^{\alpha}$. Then $T_{\min }\left(T_{A}(x), T_{A}(y)\right) \geq \alpha$. Now, for any $z \in$ $x \varrho y, T_{A}(z) \geq T_{\min }\left(T_{A}(x \varrho y)\right) \geq T_{\min }\left(T_{A}(x), T_{A}(y)\right) \geq \alpha$. Hence $z \in T_{A}^{\alpha}$ and so $x \varrho y \subseteq T_{A}^{\alpha}$. In similar a way $x, y \in I_{A}^{\beta} \cap F_{A}^{\gamma}$, implies that $x \varrho y \subseteq$ $\left(I_{A}^{\beta} \cap F_{A}^{\gamma}\right)$. Then $A^{(\alpha, \beta, \gamma)}$ is a hyper $B C K$-subalgebra of X.
(iii) Immediate.

Corollary 3.8. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-subalgebra of X. If $0 \leq \alpha \leq \alpha^{\prime} \leq 1$, then $A^{\left(\alpha^{\prime}, \alpha, \alpha\right)}$ is a hyper $B C K$-subalgebra of $A^{\left(\alpha, \alpha^{\prime}, \alpha^{\prime}\right)}$.

Let X be a hyper $B C K$-algebra, S be a hyper $B C K$-subalgebra of X and $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime} \in[0,1]$. Define

$$
\begin{gathered}
T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(x)=\left\{\begin{array}{lc}
\alpha^{\prime}, & \text { if } x \in S, \\
\alpha, & \text { if } x \notin S,
\end{array}, I_{A}^{\left[\beta, \beta^{\prime}\right]}(x)=\left\{\begin{array}{cc}
\beta^{\prime}, & \text { if } x \in S, \\
\beta, & \text { if } x \notin S,
\end{array},\right. \text { and }\right. \\
F_{A}^{\left[\gamma, \gamma^{\prime}\right]}(x)=\left\{\begin{array}{lr}
\gamma^{\prime}, & \text { if } x \in S, \\
\gamma, & \text { if } x \notin S,
\end{array} .\right. \text { Thus we have the following theorem. }
\end{gathered}
$$

Theorem 3.9. Let X be a hyper BCK-algebra and S be a hyper $B C K$ subalgebra of X. Then
(i) $T_{A}^{\left[\alpha, \alpha^{\prime}\right]}$ is a fuzzy hyper BCK-subalgebra of X.
(ii) $I_{A}^{\left[\beta, \beta^{\prime}\right]}$ is a fuzzy hyper BCK-subalgebra of X.
(iii) $F_{A}^{\left[\gamma, \gamma^{\prime}\right]}$ is a fuzzy hyper $B C K$-subalgebra of X.
(iv) $A=\left(T_{A}^{\left[\alpha, \alpha^{\prime}\right]}, I_{A}^{\left[\beta, \beta^{\prime}\right]}, F_{A}^{\left[\gamma, \gamma^{\prime}\right]}\right)$ is a single-valued neutrosophic hyper BCK-subalgebra of X.

Proof: (i) Let $x, y \in X$. If $x, y \in S$, since S is a hyper subalgebra of X, we get that $x \varrho y \subseteq S$ and so

$$
\bigwedge T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(x \varrho y) \geq \bigwedge T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(S)=\alpha^{\prime} \geq T_{\min }\left(T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(x), T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(y)\right)
$$

If $(x \in S$ and $y \notin S)$ or $(x \notin S$ and $y \in S)$ or $(x \notin S$ and $y \notin S)$ then $\left.\bigwedge T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(x \varrho y)\right) \in\left\{\alpha, \alpha^{\prime}\right\}$. Thus $\left.\bigwedge T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(x \varrho y)\right) \geq T_{\min }\left(T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(x)\right.$, $\left.T_{A}^{\left[\alpha, \alpha^{\prime}\right]}(y)\right)$ and so $T_{A}^{\left[\alpha, \alpha^{\prime}\right]}$ is a fuzzy hyper $B C K$-subalgebra of X.
(ii), (iii) Are similar to (i).
(iv) Let $x, y \in X$. If $x, y \in S$, since S is a hyper $B C K$-subalgebra of X, we get that $x \varrho y \subseteq S$ and so $\left.\bigvee I_{A}^{\left[\beta, \beta^{\prime}\right]}(x \varrho y)\right) \leq \bigvee I_{A}^{\left[\beta, \beta^{\prime}\right]}(S)=$ $\alpha^{\prime} \leq S_{\max }\left(I_{A}^{\left[\beta, \beta^{\prime}\right]}(x), I_{A}^{\left[\beta, \beta^{\prime}\right]}(y)\right)$. If $(x \in S$ and $y \notin S)$ or $(x \notin S$ and $y \in S)$ or $(x \notin S$ and $y \notin S)$ then $\left.\bigvee I_{A}^{\left[\beta, \beta^{\prime}\right]}(x \varrho y)\right) \in\left\{\beta, \beta^{\prime}\right\}$. Thus
$\left.\bigvee T_{A}^{\left[\beta, \beta^{\prime}\right]}(x \varrho y)\right) \leq S_{\max }\left(I_{A}^{\left[\beta, \beta^{\prime}\right]}(x), I_{A}^{\left[\beta, \beta^{\prime}\right]}(y)\right)$. In similar a way, can see that $\left.\bigvee F_{A}^{\left[\gamma, \gamma^{\prime}\right]}(x \varrho y)\right) \leq S_{\max }\left(F_{A}^{\left[\gamma, \gamma^{\prime}\right]}(x), F_{A}^{\left[\gamma, \gamma^{\prime}\right]}(y)\right)$ an by item $(i), A=$ $\left(T_{A}^{\left[\alpha, \alpha^{\prime}\right]}, I_{A}^{\left[\beta, \beta^{\prime}\right]}, F_{A}^{\left[\gamma, \gamma^{\prime}\right]}\right)$ is a single-valued neutrosophic hyper $B C K$-subalgebra of X.

4. Single-valued neutrosophic hyper $B C K$-ideals of hyper $B C K$-algebras

In this section, we extended any given nonempty set to a hyper $B C K$ algebra with at least a single-valued neutrosophic hyper $B C K$-ideal and investigate their properties. Also, single-valued neutrosophic hyper $B C K$ ideals are converted to hyper $B C K$-ideal via valued cuts. The homomorphisms play the main role in the extension of single-valued neutrosophic hyper $B C K$-ideals and consequently in the extension of hyper $B C K$-ideals. A fundamental relation is applied to generate single-valued neutrosophic $B C K$-ideals from single-valued neutrosophic hyper $B C K$-ideal and so it is considered their properties of via related diagrams. We consider the (weak commutative) hyper $B C K$-algebras and define a regular equivalence relation on any given hyper $B C K$-algebras via single-valued neutrosophic hyper $B C K$-ideals and prove some isomorphism theorems in this regard, that is the major contribution of this section.

Throughout this work, we denote hyper $B C K$-algebra $(X, \varrho, 0)$ by X.
Proposition 4.1. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra and $A=$ $\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-ideal. Then

$$
S_{\max }\left(T_{A}(0), I_{A}(0), F_{A}(x)\right) \geq S_{\max }\left(T_{A}(x), I_{A}(x), F_{A}(0)\right) .
$$

Proof: Immediate by definition.
Theorem 4.2. Let $0 \in X$ be an arbitrary set. Then X extended to a hyper BCK-algebra ($X, \varrho, 0$) with at least a single-valued neutrosophic hyper BCK-ideal.

Proof: Let $x, y \in X$. Define " ϱ " on X by Theorem 3.5. Clearly, $(X, \varrho, 0)$ is a hyper $B C K$-algebra. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic set, where $A(0)=(1,1,0)$ and $x, y \in X$, then $F_{A}(0)=0 \leq F_{A}(y)$. If $x \neq y$, then

$$
F_{A}(x) \leq S_{\max }\left(F_{A}(y), F_{A}(x)\right)=S_{\max }\left(F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right) .
$$

If $0 \neq x=y$, then

$$
F_{A}(x) \leq S_{\max }\left(F_{A}(y), F_{A}(x)\right)=S_{\max }\left(F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right)
$$

In similar a way,

$$
\forall x, y \in X, T_{A}(x) \geq T_{\min }\left(T_{A}(y), T_{A}(x)\right)=T_{\min }\left(T_{A}(y), \bigwedge\left(T_{A}(x \varrho y)\right)\right)
$$

and $I_{A}(x) \geq T_{\text {min }}\left(I_{A}(y), I_{A}(x)\right)=T_{\text {min }}\left(I_{A}(y), \bigwedge\left(I_{A}(x \varrho y)\right)\right)$. Therefore, A is a single-valued neutrosophic hyper $B C K$-ideal.

Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra which is defined in Theorem 4.2 and

$$
\mathcal{S V N} h i=\{\mu \mid \mu \text { is a single-valued }
$$

neutrosophic hyper BCK-ideal on $(X, \varrho, 0)\}$,
then we have the following result.
Corollary 4.3. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra. If $|X| \geq 1$, then $|\mathcal{S V N} h i|=|\mathbb{R}|$.

Example 4.4. Let $X=\{-1,-2,-3,-4,-5\} \subseteq \mathbb{Z}$. Then $(X, \varrho,-1)$ is a hyper $B C K$-algebra as follows:

ϱ	-1	-2	-3	-4	-5
-1	$\{-1\}$	$\{-1\}$	$\{-1\}$	$\{-1\}$	$\{-1\}$
-2	$\{-2\}$	$\{-1,-2\}$	$\{-2\}$	$\{-2\}$	$\{-2\}$
-3	$\{-3\}$	$\{-3\}$	$\{-1,-3\}$	$\{-3\}$	$\{-3\}$
-4	$\{-4\}$	$\{-4\}$	$\{-4\}$	$\{-1,-4\}$	$\{-4\}$
-5	$\{-5\}$	$\{-5\}$	$\{-5\}$	$\{-5\}$	$\{-1,-5\}$

Define $A: X \rightarrow[0,1]^{3}$ by $T_{A}(x)=I_{A}(x)=\frac{1}{-x}$ and $F_{A}(x)=\frac{1}{x}$. It is easy to see that $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal.

Theorem 4.5. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra and $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper BCK-ideal of X. Then $\forall x, y \in X$ and $Y, Z \subset X$:
(i) if $Y \ll Z$, then $\exists z \in Z$ such that $T_{\min }\left(\bigvee\left(T_{A}(Y)\right), \bigvee\left(I_{A}(Y)\right)\right) \geq$ $T_{\text {min }}\left(T_{A}(z), I_{A}(z)\right)$ and $\bigwedge\left(F_{A}(Y)\right) \leq F_{A}(z) ;$
(ii) if $Y \ll Z$, then $T_{\min }\left(\bigvee\left(T_{A}(Y)\right), \bigvee\left(I_{A}(Y)\right)\right) \geq T_{\min }\left(\bigwedge\left(T_{A}(Z)\right)\right.$, \bigwedge $\left.\left(I_{A}(Z)\right)\right)$ and $\bigvee\left(F_{A}(Z)\right) \geq \bigwedge\left(F_{A}(Y)\right) ;$
(iii) $T_{\min }\left(T_{A}(x), I_{A}(x)\right) \leq T_{\min }\left(\bigvee\left(T_{A}(x \varrho y), \bigvee\left(I_{A}(x \varrho y)\right)\right.\right.$ and $F_{A}(x) \geq$ $\bigwedge\left(F_{A}(x \varrho y)\right)$.
(iv) $T_{\min }\left(T_{A}(x), I_{A}(x)\right) \leq T_{\min }\left(\bigwedge\left(T_{A}(x \varrho y), \bigwedge\left(I_{A}(x \varrho y)\right)\right.\right.$ and $F_{A}(x) \geq$ $\bigvee\left(F_{A}(x \varrho y)\right)$.

Proof: (i) Since $Y \ll Z, \forall y \in Y, \exists z \in Z$ such that $y \ll z$. Hence $\bigvee\left(T_{A}(Y)\right) \geq T_{A}(y) \geq T_{A}(z)$. In similar a way, $\bigvee\left(I_{A}(Y)\right) \geq I_{A}(y) \geq I_{A}(z)$ and so $T_{\min }\left(\bigvee\left(T_{A}(Y)\right), \bigvee\left(I_{A}(Y)\right)\right) \geq T_{\min }\left(T_{A}(z), I_{A}(z)\right)$. In addition, $\forall y \in Y, \exists z \in Z$ such that $\bigwedge\left(F_{A}(Y)\right) \leq F_{A}(y) \leq F_{A}(z)$.
(ii) Let $Y \ll Z$. Then $\forall y \in Y, \exists z \in Z$ such that $y \ll z$, so $T_{A}(y) \geq$ $T_{A}(z), I_{A}(y) \geq I_{A}(z)$ and $F_{A}(y) \leq F_{A}(z)$. It follows that $\bigvee\left(T_{A}(Y)\right) \geq$ $T_{A}(y) \geq T_{A}(z) \geq \bigwedge\left(T_{A}(Z)\right), \bigvee\left(I_{A}(Y)\right) \geq I_{A}(y) \geq I_{A}(z) \geq \bigwedge\left(I_{A}(Z)\right)$ and $\bigvee\left(F_{A}(Z)\right) \geq F_{A}(z) \geq F_{A}(y) \geq \bigwedge\left(F_{A}(Y)\right)$. Hence $T_{\min }\left(\bigvee\left(T_{A}(Y)\right)\right.$, $\left.\bigvee\left(I_{A}(Y)\right)\right) \geq T_{\min }\left(\bigwedge\left(T_{A}(Z)\right), \bigwedge\left(I_{A}(Z)\right)\right)$ and $\bigvee\left(F_{A}(Z)\right) \geq \bigwedge\left(F_{A}(Y)\right)$.
(iii) By Theorem 2.3, x@ $y \ll x$. Then by (ii), we get that $T_{A}(x) \leq$ $\bigvee T_{A}(x \varrho y), I_{A}(x) \leq \bigvee\left(I_{A}(x \varrho y)\right)$ and $F_{A}(x) \geq \bigwedge\left(F_{A}(x \varrho y)\right)$.
(iv) By Theorem 2.3, $x \varrho y \ll x$. Then $\forall t \in(x \varrho y), t \ll x$, we get that $T_{A}(t) \geq T_{A}(x)$, so $\bigwedge T_{A}(x \varrho y) \geq T_{A}(x)$ and similar a way $\bigwedge I_{A}(x \varrho y) \geq$ $I_{A}(x)$ is obtained. Also $x \varrho y \ll x$ implies that $\forall t \in(x \varrho y), t \ll x$ so $F_{A}(t) \leq F_{A}(x)$. Thus $\bigvee\left(F_{A}(x \varrho y)\right) \leq F_{A}(x)$.

Corollary 4.6. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra and A be a singlevalued neutrosophic hyper $B C K$-ideal of X. Then $\forall x, y \in X$ and $Y, Z \subset$ X, get $T_{\min }\left(\bigvee\left(T_{A}(Y \varrho Z)\right), \bigvee\left(I_{A}(Y \varrho Z)\right)\right) \geq T_{\min }\left(\bigwedge\left(T_{A}(Y)\right), \bigwedge\left(I_{A}(Y)\right)\right)$ and $\bigvee\left(F_{A}(Y)\right) \geq \bigwedge\left(F_{A}(Y \varrho Z)\right)$.

Let $\alpha, \beta, \gamma \in[0,1]$ and $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-ideal of X. Define $A^{\lfloor\alpha, \beta, \gamma\rfloor}=T^{(\alpha)} \cap I^{(\beta)} \cap F^{(\gamma)}$, where $T^{(\alpha)}=$ $\left\{x \in X \mid T_{A}(x) \geq \alpha\right\}, I^{(\beta)}=\left\{x \in X \mid I_{A}(x) \geq \beta\right\}$ and $F^{(\gamma)}=\{x \in$ $\left.X \mid F_{A}(x) \leq \gamma\right\}$.

Theorem 4.7. neutrosophic hyper BCK-ideal is a single-valued neutrosophic hyper $B C K$-ideal. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra and $A=$ $\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper BCK-ideal of X such that $T^{(\alpha)}, I^{(\beta)}, F^{(\gamma)} \neq \emptyset$. Then $\forall x, y, z \in X$:
(i) $0 \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$;
(ii) if $y \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$ and $x \ll y$, then $x \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$;
(iii) $(y \varrho z) \ll x$ implies that $T_{A}(y) \geq T_{\min }\left(T_{A}(z), T_{A}(x)\right), I_{A}(y) \geq T_{\min }($ $\left.I_{A}(z), I_{A}(x)\right), F_{A}(y) \leq S_{\max }\left(F_{A}(z), F_{A}(x)\right) ;$
(iv) $A^{\lfloor\alpha, \beta, \gamma\rfloor}$ is a hyper $B C K$-ideal of X.

Proof: (i) There exists $x \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$ such that $T_{A}(x) \geq \alpha, I_{A}(x) \geq \beta$ and $F_{A}(x) \leq \gamma$. By Corollary 4.1, $T_{A}(0) \geq T_{A}(x), I_{A}(0) \geq I_{A}(x), F_{A}(0) \leq$ $F_{A}(x)$, conclude that $0 \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$.
(ii) Since $x \ll y$, by definition, we get that $T_{A}(x) \geq T_{A}(y), I_{A}(x) \geq$ $I_{A}(y)$ and $F_{A}(x) \leq F_{A}(y)$. Now, $y \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$ implies that $x \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$.
(iii) $(y \varrho z) \ll x$ implies that $0 \in(y \varrho z) \varrho x$, then by Theorem 4.5, we get that $T_{A}(x) \leq \bigwedge\left(T_{A}(y \varrho z)\right), I_{A}(x) \leq \bigwedge\left(I_{A}(y \varrho z)\right)$ and $F_{A}(x) \geq$ $\bigvee\left(F_{A}(y \varrho z)\right)$. Now, A is a single-valued neutrosophic hyper $B C K$-ideal so

$$
\begin{aligned}
& T_{A}(y) \geq T_{\min }\left(T_{A}(z), \bigwedge\left(T_{A}(y \varrho z)\right)\right) \geq T_{\min }\left(T_{A}(z), T_{A}(x)\right) \\
& I_{A}(y) \geq T_{\min }\left(I_{A}(z), \bigwedge\left(I_{A}(y \varrho z)\right)\right) \geq T_{\min }\left(I_{A}(z), I_{A}(x)\right) \\
& F_{A}(y) \leq S_{\max }\left(F_{A}(z), \bigvee\left(F_{A}(y \varrho z)\right)\right) \leq S_{\max }\left(F_{A}(z), F_{A}(x)\right) .
\end{aligned}
$$

(iv) Let $x, y \in X, x \varrho y \ll A^{\lfloor\alpha, \beta, \gamma\rfloor}$ and $y \in A^{(\alpha, \beta, \gamma)}$. Then $T_{A}(y) \geq$ $\alpha, I_{A}(y) \geq \beta, F_{A}(y) \leq \gamma$ and by Theorem 4.5,

$$
\bigwedge\left(T_{A}(x \varrho y)\right) \geq \alpha, \bigwedge\left(I_{A}(x \varrho y)\right) \geq \beta \text { and } \bigvee\left(F_{A}(x \varrho y)\right) \leq \gamma . \text { Hence }
$$

$$
\begin{aligned}
& T_{A}(x) \geq T_{\min }\left(T_{A}(y), \bigwedge\left(T_{A}(x \varrho y)\right)\right) \geq T_{\min }(\alpha, \alpha)=\alpha \\
& I_{A}(x) \geq T_{\min }\left(I_{A}(y), \bigwedge\left(I_{A}(x \varrho y)\right)\right) \geq T_{\min }(\beta, \beta)=\beta \\
& F_{A}(x) \leq S_{\max }\left(F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right) \geq S_{\max }(\gamma, \gamma)=\gamma
\end{aligned}
$$

Therefore, $x \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$ and so $A^{\lfloor\alpha, \beta, \gamma\rfloor}$ is a hyper $B C K$-ideal.
Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra. A map $f: X \rightarrow X$ is called a homomorphism, if $f(0)=0$ and $\forall x, y \in X, f(x \varrho y)=f(x) \varrho f(y)$. If f be an onto homomorphism and $A=\left(T_{A}, I_{A}, F_{A}\right)$ a single-valued neutrosophic subset of X. Define $A_{f}=\left(T_{A_{f}}, I_{A_{f}}, F_{A_{f}}\right)$ by

$$
A_{f}(x)=\left(T_{A}(f(x)), I_{A}(f(x)), F_{A}(f(x)) .\right.
$$

Thus, have the following theorem.
Theorem 4.8. Let $(X, \varrho, 0)$ be a hyper BCK-algebra. Then the singlevalued neutrosophic set $A=\left(T_{A}, I_{A}, F_{A}\right)$, is a single-valued neutrosophic hyper $B C K$-ideal of X if and only if $A_{f}=\left(T_{A_{f}}, I_{A_{f}}, F_{A_{f}}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal of X.

Proof: Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$ ideal of X and $x \in X$. Then

$$
\begin{aligned}
& T_{A_{f}}(0)=T_{A}(f(0))=T_{A}(0) \geq T_{A}(f(x))=T_{A_{f}}(x) \\
& I_{A_{f}}(0)=I_{A}(f(0))=I_{A}(0) \geq I_{A}(f(x))=I_{A_{f}}(x) \\
& F_{A_{f}}(0)=F_{A}(f(0))=F_{A}(0) \leq F_{A}(f(x))=F_{A_{f}}(x)
\end{aligned}
$$

and $\forall x, y \in X$,

$$
\begin{aligned}
T_{A_{f}}(y)=T_{A}(f(y)) & \geq T_{\min }\left(T_{A}(f(x)), \bigwedge\left(T_{A}(f(y) \varrho f(x))\right)\right) \\
& =T_{\min }\left(T_{A}(f(x)), \bigwedge\left(T_{A}(f(y \varrho x))\right)\right. \\
& =T_{\min }\left(T_{A_{f}}(x), \bigwedge\left(T_{A_{f}}(y \varrho x)\right)\right) .
\end{aligned}
$$

In similar a way, $I_{A_{f}}(y) \geq T_{\min }\left(I_{A_{f}}(x), \bigwedge\left(I_{A_{f}}(y \varrho x)\right)\right)$ and $F_{A_{f}}(y) \leq$ $S_{\text {miax }}\left(F_{A_{f}}(x), \bigvee\left(F_{A_{f}}(y \varrho x)\right)\right)$ are obtained. Hence $A_{f}=\left(T_{A_{f}}, I_{A_{f}}, F_{A_{f}}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal of X.

Conversely, assume that $A_{f}=\left(T_{A_{f}}, I_{A_{f}}, F_{A_{f}}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal of X and $y \in X$. Since f is onto, $\exists x \in X$ such that $f(x)=y$. Then

$$
\begin{aligned}
& T_{A}(0)=T_{A}(f(0))=T_{A_{f}}(0) \geq T_{A_{f}}(x)=T_{A}(y) \\
& I_{A}(0)=I_{A}(f(0))=I_{A_{f}}(0) \geq I_{A_{f}}(x)=I_{A}(y) \\
& F_{A}(0)=F_{A}(f(0))=F_{A_{f}}(0) \leq F_{A_{f}}(x)=F_{A}(y) .
\end{aligned}
$$

Let $x, y \in X$. Then there exists $a, b \in X$ such that $f(a)=x$ and $f(b)=y$. Hence we get that

$$
\begin{aligned}
T_{A}(y)=T_{A}(f(b)) & =T_{A_{f}}(b) \\
& \geq T_{\min }\left(T_{A_{f}}(a), \bigwedge\left(T_{A_{f}}(b \varrho a)\right)\right) \\
& =T_{\min }\left(T_{A}(f(a)), \bigwedge\left(T_{A}(f(b \varrho a))\right)\right) \\
& =T_{\min }\left(T_{A}(f(a)), \bigwedge\left(T_{A}(f(b) \varrho f(a))\right)\right. \\
& =T_{\min }\left(T_{A}(x), \bigwedge\left(T_{A}(y \varrho x)\right) .\right.
\end{aligned}
$$

In similar a way, can see that $I_{A}(y) \geq T_{\min }\left(I_{A}(x), \bigwedge\left(I_{A}(y \varrho x)\right)\right.$ and $F_{A}(y) \leq S_{\max }\left(F_{A}(x), \bigvee\left(F_{A}(y \varrho x)\right)\right.$. Therefore $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal of X.
Theorem 4.9. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra, $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper BCK-ideal of X and $f: X \rightarrow X$ be a homomorphism,
(i) if $x \in \operatorname{ker}(f)$, then $\forall y \in X, T_{\min }\left(T_{A_{f}}(x), I_{A_{f}}(x)\right) \geq$ $T_{\text {min }}\left(T_{A}(y), I_{A}(y)\right)$ and $F_{A_{f}}(x) \leq F_{A}(y)$.
(ii) if at least one of T_{A} or I_{A} or F_{A} is one to one, then ker (f) is a hyper $B C K$-ideal.
(iii) if $\exists x \in X$ such that $A(x)=(1,1,0)$, then $A_{(1,0)}=\left\{x \in X \mid T_{A}(x)=\right.$ $\left.I_{A}(x)=1, F_{A}(x)=0\right\}$ is a hyper BCK-ideal in X.
(iv) $A_{(0,0)}$ is a single-valued neutrosophic hyper BCK-ideal in X.

Proof: (i) Let $x \in \operatorname{ker}(f)$. Then, $T_{A_{f}}(x)=T_{A}(f(x))=T_{A}(0), I_{A_{f}}(x)=$ $I_{A}(f(x))=I_{A}(0)$ and $F_{A_{f}}(x)=F_{A}(f(x))=F_{A}(0)$. Thus $\forall y \in X$, $T_{A_{f}}(x) \geq T_{A}(y), I_{A_{f}}(x) \geq I_{A}(y)$ and $F_{A_{f}}(x) \leq F_{A}(y)$.
(ii) Clearly $0 \in \operatorname{ker}(f)$. Let $y \in \operatorname{ker}(f)$ and $x \varrho y \ll \operatorname{ker}(f)$, where $x, y \in$ X. Then $T_{A_{f}}(y)=T_{A}(0), I_{A_{f}}(y)=I_{A}(0), F_{A_{f}}(y)=F_{A}(0)$, $\bigwedge\left(T_{A_{f}}(x \varrho y)\right)=T_{A}(0), \bigwedge\left(I_{A_{f}}(x \varrho y)\right)=I_{A}(0)$ and $\bigvee\left(F_{A_{f}}(x \varrho\right.$ $y))=F_{A}(0) \mathrm{So}$

$$
\begin{gathered}
T_{A_{f}}(x) \geq T_{\min }\left(T_{A_{f}}(y), \bigwedge\left(T_{A_{f}}(x \varrho y)\right)\right)=T_{\min }\left(T_{A}(0), T_{A}(0)\right)=T_{A}(0) \\
I_{A_{f}}(x) \geq T_{\min }\left(I_{A_{f}}(y), \bigwedge\left(I_{A_{f}}(x \varrho y)\right)\right)=T_{\min }\left(I_{A}(0), I_{A}(0)\right)=I_{A}(0) \\
F_{A_{f}}(x) \leq S_{\max }\left(F_{A_{f}}(y), \bigvee\left(F_{A_{f}}(x \varrho y)\right)\right)=S_{\max }\left(F_{A}(0), F_{A}(0)\right)=F_{A}(0)
\end{gathered}
$$

Hence $T_{A_{f}}(x)=T_{A}(0), I_{A_{f}}(x)=I_{A}(0)$ and $F_{A_{f}}(x)=F_{A}(0)$. If if at least one of T_{A} or I_{A} or F_{A} is a one to one map, then $x \in \operatorname{ker}(f)$.
(iii) Since there exists $x \in X$ such that $A(x)=(1,1,0)$, we get that $1=T_{A}(x) \leq T_{A}(0), 1=I_{A}(x) \leq I_{A}(0)$ and $0=F_{A}(x) \geq F_{A}(0)$. Hence $T_{A}(0)=I_{A}(0)=1, F_{A}(0)=0$ and so $0 \in A_{(1,0)}$. Now, let $y \in A_{(1,0)}$ and $x \varrho y \ll A_{(1,0)}$, where $x, y \in X$. Then, $T_{A}(y)=I_{A}(y)=1, F_{A}(y)=0$, $\bigwedge\left(T_{A}(x \varrho y)\right)=\bigwedge\left(I_{A}(x \varrho y)\right)=1$ and $\bigvee\left(F_{A}(x \varrho y)\right)=0$. So

$$
\begin{gathered}
T_{A}(x) \geq T_{\min }\left(T_{A}(y), \bigwedge\left(T_{A}(x \varrho y)\right)\right)=T_{\min }(1,1)=1 \\
I_{A}(x) \geq T_{\min }\left(I_{A}(y), \bigwedge\left(I_{A}(x \varrho y)\right)\right)=T_{\min }(1,1)=1 \\
F_{A}(x) \leq S_{\max }\left(F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right)=S_{\max }(0,0)=0
\end{gathered}
$$

Hence $T_{A}(x)=I_{A}(x)=1, F_{A}(x)=0$ and so $x \in A_{(1,0)}$.
(iv) Since $A_{(0,0)}=X$, then the proof is clear.

Theorem 4.10. Let $(X, \varrho, 0)$ be a hyper BCK-algebra, I be a hyper BCKideal and $A=\left(T_{A}, I_{A}, F_{A}\right), A^{\prime}=\left(T_{A^{\prime}}, I_{A^{\prime}}, F_{A^{\prime}}\right)$ be single-valued neutrosophic hyper $B C K$-ideals of X. Then
(i) $X_{A}=\left\{x \in X \mid T_{A}(x)=T_{A}(0), I_{A}(x)=I_{A}(0), F_{A}(x)=F_{A}(0)\right\}$ is a hyper BCK-ideal of X;
(ii) if $A^{\prime}(0)=A(0)$, then $X_{A^{\prime}} \varrho X_{A}=\bigcup_{\substack{a^{\prime} \in X_{A^{\prime}} \\ a \in X_{A}^{\prime}}}\left(a^{\prime} \varrho\right.$ a $)$, is a hyper $B C K$ ideal;
(iii) X_{A} is a hyper $B C K$-ideal of $X_{A} \varrho X_{A^{\prime}}$;
(iv) if A is restricted to I, then A is a single-valued neutrosophic hyper $B C K$-ideal of I.

Proof: (i) Let $x, y \in X$ such that $x \varrho y \ll X_{A}$ and $y \in X_{A}$. Then $T_{A}(y)=T_{A}(0), I_{A}(y)=I_{A}(0), F_{A}(y)=F_{A}(0), \bigwedge\left(T_{A}(x \varrho y)\right)=T_{A}(0)$, $\bigwedge\left(I_{A}(x \varrho y)\right)=I_{A}(0)$ and $\bigvee\left(F_{A}(x \varrho y)\right)=F_{A}(0)$, So $T_{A}(x) \geq T_{\min }\left\{T_{A}(y)\right.$, $\left.\bigwedge\left(T_{A}(x \varrho y)\right)\right\}=T_{A}(0), I_{A}(x) \geq T_{\min }\left\{I_{A}(y), \bigwedge\left(I_{A}(x \varrho y)\right)\right\}=I_{A}(0)$ and $F_{A}(x) \leq S_{\max }\left\{F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right\}=F_{A}(0)$. So $T_{A}(x)=T_{A}(0), I_{A}(x)=$ $I_{A}(0), F_{A}(x)=F_{A}(0)$, hence $x \in X_{A}$ and X_{A} is a hyper BCK-ideal.
(ii) Clearly $0 \in X_{A^{\prime}} \varrho X_{A}$. Let $t, t^{\prime} \in X$ such that $t^{\prime} \varrho t \ll X_{A^{\prime}} \varrho X_{A}$ and $t \in X_{A^{\prime}} \varrho X_{A}$. Then there exist $a^{\prime} \in X_{A^{\prime}}$ and $a \in X_{A}$ such that $t \in a^{\prime} \varrho a$ so by Theorem 4.5,

$$
\begin{aligned}
& T_{A}^{\prime}(t) \geq \bigwedge\left(T_{A}^{\prime}\left(a^{\prime} \varrho a\right)\right) \geq T_{A}^{\prime}\left(a^{\prime}\right)=T_{A}^{\prime}(0), I_{A}^{\prime}(t) \geq \bigwedge\left(I_{A}^{\prime}\left(a^{\prime} \varrho a\right)\right) \\
\geq & I_{A}^{\prime}\left(a^{\prime}\right)=I_{A}^{\prime}(0) F_{A}^{\prime}(t) \leq \bigvee\left(F_{A}^{\prime}\left(a^{\prime} \varrho a\right)\right) \leq F_{A}^{\prime}\left(a^{\prime}\right)=F_{A}^{\prime}(0)
\end{aligned}
$$

and so

$$
\begin{aligned}
& T_{A}^{\prime}\left(t^{\prime}\right) \geq T_{\min }\left(T_{A}^{\prime}(t), \bigwedge\left(T_{A}^{\prime}\left(t^{\prime} \varrho t\right)\right)\right) \geq T_{\min }\left(T_{A}^{\prime}(t), T_{A}^{\prime}(0)\right) \\
& I_{A}^{\prime}\left(t^{\prime}\right) \geq T_{\min }\left(I_{A}^{\prime}(t), \bigwedge\left(I_{A}^{\prime}\left(t^{\prime} \varrho t\right)\right)\right) \geq T_{\min }\left(I_{A}^{\prime}(t), I_{A}^{\prime}(0)\right) \\
& F_{A}^{\prime}\left(t^{\prime}\right) \leq S_{\max }\left(F_{A}^{\prime}(t), \bigwedge\left(F_{A}^{\prime}\left(t^{\prime} \varrho t\right)\right)\right) \geq S_{\max }\left(F_{A}^{\prime}(t), F_{A}^{\prime}(0)\right)
\end{aligned}
$$

Hence $t^{\prime} \in X_{A^{\prime}}$ and so $t^{\prime} \in t^{\prime} \varrho 0 \subseteq X_{A^{\prime}} \varrho X_{A}$. Therefore $X_{A^{\prime}} \varrho X_{A}$ is a hyper $B C K$-ideal in X.
(iii) Let $x \in X_{A}$. Since $x \in x \varrho 0$, we get that $x \in X_{A} \subseteq X_{A \varrho} \varrho X_{A^{\prime}}$ and by $(i), X_{A}$ is a hyper $B C K$-ideal of $X_{A} \varrho X_{A^{\prime}}$.
(iv) The proof is clear.

Let X be a hyper $B C K$-algebra and $x, y \in X$. Then $x \beta y \Leftrightarrow \exists n \in$ $\mathbb{N},\left(a_{1}, \ldots, a_{n}\right) \in X^{n}$ and $\exists u \in \varrho\left(a_{1}, \ldots, a_{n}\right)$ such that $\{x, y\} \subseteq u$. The relation β is a reflexive and symmetric relation, but not transitive relation. Let $C(\beta)$ be the transitive closure of β (the smallest transitive relation such that contains β). Hamidi, et.al in [1], proved that for any given weak commutative hyper $B C K$-algebra $X, C(\beta)$ is a strongly regular relation
on X and $(X / C(\beta), \vartheta, \overline{0})$ is a $B C K$-algebra, where $C(\beta)(x) \vartheta C(\beta)(y)=$ $C(\beta)(x \varrho y)$ and $\overline{0}=C(\beta)(0)$.

Theorem 4.11. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra. If $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal of X, then there exists a single-valued neutrosophic hyper $B C K$-ideal $\bar{A}=\left(\overline{T_{A}}, \overline{I_{A}}, \overline{F_{A}}\right)$ of $(X / C(\beta)$, $\vartheta, \overline{0})$ such that $\forall x, y \in X$,
(i) $\bar{A}(\overline{0}) \geq \bar{A}(C(\beta)(x))$;
(ii) $\overline{T_{A}}(C(\beta)(y)) \geq T_{\min }\left(\overline{T_{A}}\left(C(\beta)(x), \bigwedge\left(\overline{T_{A}}(\vartheta(C(\beta)(y), C(\beta)(x)))\right)\right.\right.$,
(iii) $\overline{I_{A}}(C(\beta)(y)) \geq T_{\min }\left(\overline{I_{A}}\left(C(\beta)(x), \bigwedge\left(\overline{I_{A}}(\vartheta(C(\beta)(y), C(\beta)(x)))\right)\right.\right.$,
$(i v) \overline{F_{A}}(C(\beta)(y)) \leq S_{\max }\left(\overline{F_{A}}\left(C(\beta)(x), \bigwedge\left(\overline{F_{A}}(\vartheta(C(\beta)(y), C(\beta)(x)))\right)\right.\right.$.

Proof: (i) We define $\bar{A}: X / C(\beta) \rightarrow[0,1]^{3}$ by $\left(\overline{T_{A}}(C(\beta)(t)), \overline{I_{A}}(C(\beta)(t))\right.$, $\left.\overline{F_{A}}(C(\beta)(t))\right)=\left(\bigvee_{t C(\beta) x} T_{A}(x), \bigvee_{t C(\beta) x} I_{A}(x), \bigwedge_{t C(\beta) x} F_{A}(x)\right)$, where $x, t \in$ X. Consider the following diagram:

Firstly we show that \bar{A} is well-defined. Let $t, t^{\prime}, x \in X$ and $C(\beta)(t)=$ $C(\beta)\left(t^{\prime}\right)$. Then $t C(\beta) t^{\prime}$ and

$$
\begin{aligned}
& \overline{T_{A}}(C(\beta)(t))=\bigvee_{x C(\beta) t} T_{A}(x)=\bigvee_{x C(\beta) t^{\prime}} T_{A}(x)=\overline{T_{A}}\left(C(\beta)\left(t^{\prime}\right)\right) \\
& \overline{I_{A}}(C(\beta)(t))=\bigvee_{x C(\beta) t} I_{A}(x)=\bigvee_{x C(\beta) t^{\prime}} I_{A}(x)=\overline{I_{A}}\left(C(\beta)\left(t^{\prime}\right)\right) \\
& \overline{F_{A}}(C(\beta)(t))=\bigwedge_{x C(\beta) t} F_{A}(x)=\bigwedge_{x C(\beta) t^{\prime}} F_{A}(x)=\overline{F_{A}}\left(C(\beta)\left(t^{\prime}\right)\right)
\end{aligned}
$$

In addition, $\forall x, t \in X$, we get that

$$
\begin{aligned}
& \overline{T_{A}}(C(\beta)(0))=\bigvee_{t C(\beta) 0} T_{A}(t)=T_{A}(0) \geq \bigvee_{t C(\beta) x} T_{A}(t)=\overline{T_{A}}(C(\beta)(x)) \\
& \overline{I_{A}}(C(\beta)(0))=\bigvee_{t C(\beta) 0} T_{A}(t)=I_{A}(0) \geq \bigvee_{t C(\beta) x} I_{A}(t)=\overline{I_{A}}(C(\beta)(x)) \\
& \overline{F_{A}}(C(\beta)(0))=\bigwedge_{t C(\beta) 0} F_{A}(t)=F_{A}(0) \leq \bigwedge_{t C(\beta) x} F_{A}(t)=\overline{F_{A}}(C(\beta)(x)) .
\end{aligned}
$$

(ii) Let $x, y \in X$. Since $\forall t \in C(\beta)(y)$ and $\forall t^{\prime} \in C(\beta)(x)$,

$$
\begin{aligned}
& \bigvee_{t C(\beta) y} T_{A}(t) \geq T_{A}(t) \geq T_{\min }\left(T_{A}\left(t^{\prime}\right), \bigwedge\left(T_{A}\left(t \varrho t^{\prime}\right)\right)\right) \\
& \bigvee_{t C(\beta) y} I_{A}(t) \geq I_{A}(t) \geq T_{\min }\left(I_{A}\left(t^{\prime}\right), \bigwedge\left(I_{A}\left(t \varrho t^{\prime}\right)\right)\right) \\
& \bigwedge_{t C(\beta) y} F_{A}(t) \leq F_{A}(t) \leq S_{\max }\left(F_{A}\left(t^{\prime}\right), \bigwedge\left(F_{A}\left(t \varrho t^{\prime}\right)\right)\right)
\end{aligned}
$$

we get that

$$
\begin{aligned}
\overline{T_{A}}(C(\beta)(y)) & =\bigvee_{t C(\beta) y} T_{A}(t) \\
& \geq \bigvee_{\substack{t^{\prime} \in C(\beta)(x) \\
t C(\beta) y}}\left(T_{\min }\left(T_{A}\left(t^{\prime}\right), \bigwedge\left(T_{A}\left(t \varrho t^{\prime}\right)\right)\right)\right. \\
& \geq T_{\min }\left(\bigvee_{t^{\prime} \in C(\beta)(x)} T_{A}\left(t^{\prime}\right), \bigvee_{t^{\prime} \in C(\beta)(x)} \bigwedge_{t \in C(\beta)(y)}\left(T_{A}\left(t \varrho t^{\prime}\right)\right)\right) \\
& \geq T_{\min }\left(\bigvee_{t^{\prime} \in C(\beta)(x)} T_{A}\left(t^{\prime}\right), \bigwedge_{m \in \vartheta(C(\beta)(y), C(\beta)(x))} \bigvee^{\prime}\left(T_{A}(m)\right)\right. \\
& \geq T_{\min }\left(\overline { T _ { A } } \left(C(\beta)(x), \bigwedge\left(\overline{T_{A}}(\vartheta(C(\beta)(y), C(\beta)(x)))\right) .\right.\right.
\end{aligned}
$$

(iii,iv) Similar to item (ii), can see that

$$
\begin{aligned}
& \overline{I_{A}}(C(\beta)(y)) \geq T_{\min }\left(\overline { I _ { A } } \left(C(\beta)(x), \bigwedge\left(\overline{I_{A}}(\vartheta(C(\beta)(y), C(\beta)(x)))\right)\right.\right. \text { and } \\
& \overline{F_{A}}(C(\beta)(y)) \leq S_{\max } \overline{F_{A}}\left(C(\beta)(x), \bigvee\left(\overline{F_{A}}(\vartheta(C(\beta)(y), C(\beta)(x)))\right) .\right.
\end{aligned}
$$

Let $(Y, \vartheta, 0, \preceq)$ be a $B C K$-algebra and $B=\left(T_{B}, I_{B}, F_{B}\right)$ a single-valued neutrosophic subset of Y. Then $B=\left(T_{B}, I_{B}, F_{B}\right)$ is called a singlevalued neutrosophic $B C K$-ideal of Y, if (1); $\forall x, y \in Y, x \preceq y \Rightarrow T_{A}(x) \geq$ $T_{A}(y), I_{A}(x) \geq I_{A}(y)$ and $F_{A}(x) \leq F_{A}(y)$,
(2); $T_{A}(x) \geq T_{\min }\left\{T_{A}(y), T_{A}(x \vartheta y)\right\}, I_{A}(x) \geq T_{\min }\left\{I_{A}(y), I_{A}(x \vartheta y)\right\}$ and $F_{A}(x) \leq S_{\max }\left\{F_{A}(y), F_{A}(x \vartheta y)\right\}$.

Corollary 4.12. Let $(X, \varrho, 0)$ be a weak commutative hyper $B C K$-algebra. If $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a single-valued neutrosophic hyper $B C K$ ideal of X, then there exists a single-valued neutrosophic $B C K$-ideal $B=$ $\left(T_{B}, I_{B}, F_{B}\right)$ of $B C K$-algebra $(X / C(\beta), \vartheta, \overline{0})$, such that $T_{B} \circ \pi \geq T_{A}, I_{B} \circ$ $\pi \geq I_{A}$, and $F_{B} \circ \pi \leq F_{A}$.

Proof: By Theorem 4.11, consider $B=\overline{T_{A}}$. For any $x \in X$, since $x C(\beta) x$, we get that $\left(T_{B} \circ \pi\right)(x)=T_{B}(C(\beta)(x))=\bigvee_{t C(\beta) x} T_{A}(t) \geq T_{A}(x),\left(I_{B} \circ\right.$

$$
\begin{aligned}
& \pi)(x)=I_{B}(C(\beta)(x))=\bigvee_{t C(\beta) x} I_{A}(t) \geq I_{A}(x) \text { and } \\
& \quad\left(F_{B} \circ \pi\right)(x)=F_{B}(C(\beta)(x))=\bigwedge_{t C(\beta) x} F_{A}(t) \leq F_{A}(x) .
\end{aligned}
$$

Example 4.13. Let $X=\{0, b, c, d\}$. Then $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a singlevalued neutrosophic hyper $B C K$-subalgebra of hyper $B C K$-algebra $(X, \varrho, 0)$ as follows:

ϱ	0	b	c	d
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
b	$\{b\}$	$\{0\}$	$\{0\}$	$\{0\}$
c	$\{c\}$	$\{c\}$	$\{0\}$	$\{0\}$
d	$\{d\}$	$\{d\}$	$\{c\}$	$\{0, c\}$

	0	b	c	d
T_{A}	1	0.9	0.3	0.3
I_{A}	1	0.9	0.3	0.3
F_{A}	0.1	0.15	0.25	0.25

Clearly (X, ϱ, A) is not weak commutative and T is a single-valued neutrosophic hyper $B C K$-ideal. Now we get that $X / C(\beta)=\{C(\beta)(0)=$ $\{0, c\}, C(\beta)(b)=\{b\}, C(\beta)(d)=\{d\}\}$,

ϑ	$C(\beta)(0)$	$C(\beta)(b)$	$C(\beta)(d)$
$C(\beta)(0)$	$C(\beta)(0)$	$C(\beta)(0)$	$C(\beta)(0)$
$C(\beta)(b)$	$C(\beta)(b)$	$C(\beta)(0)$	$C(\beta)(0)$
$C(\beta)(d)$	$C(\beta)(d)$	$C(\beta)(d)$	$C(\beta)(0)$

and

	$C(\beta)(0)$	$C(\beta)(b)$	$C(\beta)(d)$
$\overline{T_{A}}$	1	0.9	0.3
$\overline{I_{A}}$	1	0.9	0.3
$\overline{F_{A}}$	0.1	0.25	0.25

It is easy to see that $(X / C(\beta), \vartheta, C(\beta)(0), \bar{A})$ is a hyper $B C K$-algebra.
Definition 4.14. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra and $A=\left(T_{A}\right.$, I_{A}, F_{A}) be a single-valued neutrosophic hyper $B C K$-ideal of X. For any $x, y \in X$, define binary relations $R^{T_{A}}, R^{I_{A}}, R^{F_{A}}$ on X as follows:

$$
\begin{aligned}
& x R^{T_{A}} y \Leftrightarrow T_{A}(x) \leq T_{A}(y) \text { and } \bigwedge\left(T_{A}(\varrho(x, y))\right) \geq T_{A}(y) \\
& x R^{I_{A}} y \Leftrightarrow I_{A}(x) \leq I_{A}(y) \text { and } \bigwedge\left(I_{A}(\varrho(x, y))\right) \geq I_{A}(y) \\
& x R^{F_{A}} y \Leftrightarrow F_{A}(x) \geq F_{A}(y) \\
& \text { and } \bigvee\left(F_{A}(\varrho(x, y))\right) \leq F_{A}(y) \text { and } R=R^{T_{A}} \cap R^{I_{A}} \cap R^{F_{A}} .
\end{aligned}
$$

Theorem 4.15. Let $(X, \varrho, 0)$ be a hyper BCK-algebra, $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-ideal of X and $x, y \in X$.
(i) R is an equivalence relation on X.
(ii) if A is one to one and $x R y$, then $\forall z \in X$ we have (x@ z) $R(y \varrho z)$ and $(z \varrho x) R(z \varrho y)$.
(iii) if A is one to one, $x R y$ and $u R w$ then (x@ u)R(y@ $w) \forall u, w \in X$.

Proof: (i) By Theorem 4.5, $T_{A}(x) \leq \bigwedge\left(T_{A}(x \varrho x)\right), I_{A}(x) \leq \bigvee\left(I_{A}(x \varrho x)\right)$, $F_{A}(x) \geq \bigwedge\left(F_{A}(x \varrho x)\right)$ and so R is a reflexive relation. Let $x, y \in X$ such that $x R y$. Then $T_{A}(x) \leq T_{A}(y), I_{A}(x) \leq I_{A}(y), F_{A}(x) \geq F_{A}(y)$, $\bigwedge\left(T_{A}(\varrho(x, y))\right) \geq T_{A}(y), \bigwedge\left(I_{A}(\varrho(x, y))\right) \geq I_{A}(y)$ and $\bigvee\left(F_{A}(\varrho(x, y))\right) \leq$ $F_{A}(y)$. Since

$$
\begin{aligned}
& T_{A}(x) \geq T_{\min }\left(T_{A}(y), \bigwedge\left(T_{A}(x \varrho y)\right)\right) \geq T_{\min }\left(T_{A}(y), T_{A}(y)\right)=T_{A}(y) \\
& I_{A}(x) \geq T_{\min }\left(I_{A}(y), \bigwedge\left(I_{A}(x \varrho y)\right)\right) \geq T_{\min }\left(I_{A}(y), I_{A}(y)\right)=I_{A}(y) \\
& F_{A}(x) \leq S_{\max }\left(F_{A}(y), \bigvee\left(F_{A}(x \varrho y)\right)\right) \leq S_{\max }\left(F_{A}(y), F_{A}(y)\right)=F_{A}(y)
\end{aligned}
$$

we get that $T_{A}(x)=T_{A}(y), I_{A}(x)=I_{A}(y), F_{A}(x)=F_{A}(y)$. Using Theorem $4.5, \bigwedge\left(T_{A}(y \varrho x)\right) \geq T_{A}(y)=T_{A}(x), \bigwedge\left(I_{A}(y \varrho x)\right) \geq I_{A}(y)=I_{A}(x)$ and $\bigvee\left(F_{A}(y \varrho x)\right) \leq F_{A}(y)=F_{A}(x)$ so R is a symmetric relation. Let $x R y$ and $y R z$. Then $T_{A}(x)=T_{A}(y)=T_{A}(z), I_{A}(x)=I_{A}(y)=I_{A}(z), F_{A}(x)=$ $F_{A}(y)=F_{A}(z)$ and clearly R is a transitive relation.
(ii) Let $x R y$ and $z \in X$. Then by $(i), T_{A}(x)=T_{A}(y), I_{A}(x)=$ $I_{A}(y), F_{A}(x)=F_{A}(y)$ and since A is a one to one map, we have $x=y$. Hence there exists $a \in x \varrho z$ and $y \in y \varrho z$ such that $T_{A}(a) \leq T_{A}(b)$,
$\bigwedge\left(T_{A}(a \varrho b)\right) \geq T_{A}(b), I_{A}(a) \leq I_{A}(b), \bigwedge\left(I_{A}(a \varrho b)\right) \geq I_{A}(b)$ and $F_{A}(a) \geq$ $F_{A}(b), \bigvee\left(F_{A}(a \varrho b)\right) \leq F_{A}(b)$. Therefore $(x \varrho z) R(y \varrho z)$ and in a similar way get that $(z \varrho x) R(z \varrho y)$.
(iii) Let $x R y$ and $u R w$. Then by $(i i),(x \varrho u) R(y \varrho u)$ and (y@u)R(y@w). Using the transitivity of R, we get that $(x \varrho u) R(y \varrho w)$.
Corollary 4.16. Let $(X, \varrho, 0)$ be a hyper $B C K$-algebra and $A=$ $\left(T_{A}, I_{A}, F_{A}\right)$ be a single-valued neutrosophic hyper $B C K$-ideal of X and $x, y \in X$.
(i) if A is one to one, then R is a congruence relation on X;
(ii) $R(0)=X_{A}$ and if A is one to one, then $R(0)=\{0\}$;
(iii) if A is one to one, then R is a strongly regular relation on X.

Proof: (i) Immediate by Theorem 4.15.
(ii) Let $x \in R(0)$. Then by Theorem 4.15, $T_{A}(x)=T_{A}(0), I_{A}(x)=$ $I_{A}(0), F_{A}(x)=F_{A}(0)$ and so $R(0)=X_{A}$. Since A is one to one, we get that $X_{A}=\left\{x \mid T_{A}(x)=T_{A}(0), I_{A}(x)=I_{A}(0), F_{A}(x)=F_{A}(0)\right\}=\{0\}$.
(iii) Let $x, y, z \in X$ and $x R y$. Then $x=y$ and so $x \varrho z=y \varrho z$. Therefore $(x \varrho z) \overline{\bar{R}}(y \varrho z),(z \varrho x) \overline{\bar{R}}(z \varrho y)$ and so R is a strongly regular relation.
THEOREM 4.17. Let $(X, \varrho, 0)$ be a (weak commutative) hyper BCK-algebra and $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a one to one single-valued neutrosophic hyper $B C K$-ideal of X. Then, $\left(X / R, \varrho^{\prime}, R(0)\right)$ is a ($B C K$-algebra) hyper $B C K$ algebra such that $\forall x, y \in X, R(x) \varrho^{\prime} R(y)=R(x \varrho y)$.

Proof: By Corollary 4.16, ϱ^{\prime} is well-defined and the proof is straightforward.

THEOREM 4.18. Let $\left(X, \varrho_{1}, 0\right)$ and $\left(Y, \varrho_{2}, 0^{\prime}\right)$ be (weak commutative) hyper $B C K$-algebras and $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a one to one single-valued neutrosophic hyper $B C K$-ideal of Y. If $f: X \rightarrow Y$ is an epimorphism, then
(i) A_{f} is a single-valued neutrosophic hyper $B C K$-ideal of X;
(ii) $X / R_{f} \cong Y / R$ such that $x R_{f} x^{\prime} \Leftrightarrow T_{A}(f(x)) \leq T_{A}\left(f\left(x^{\prime}\right)\right), I_{A}(f(x)) \leq$ $I_{A}\left(f\left(x^{\prime}\right)\right), F_{A}(f(x)) \geq F_{A}\left(f\left(x^{\prime}\right)\right), \bigwedge\left(T_{A}\left(f\left(x \varrho x^{\prime}\right)\right)\right) \geq T_{A}\left(f\left(x^{\prime}\right)\right)$,
$\bigwedge\left(I_{A}\left(f\left(x \varrho x^{\prime}\right)\right)\right) \geq I_{A}\left(f\left(x^{\prime}\right)\right)$ and $\bigvee\left(F_{A}\left(f\left(x \varrho x^{\prime}\right)\right)\right) \leq F_{A}\left(f\left(x^{\prime}\right)\right)$, where $x, x^{\prime} \in X$.

Proof: (i) Clearly for all $x \in X, T_{A_{f}}(0)=T_{A}(f(0))=T_{A}\left(0^{\prime}\right) \geq$ $T_{A}(f(x))=T_{A_{f}}(x), I_{A_{f}}(0)=I_{A}(f(0))=I_{A}\left(0^{\prime}\right) \geq I_{A}(f(x))=I_{A_{f}}(x)$ and $F_{A_{f}}(0)=F_{A}(f(0))=F_{A}\left(0^{\prime}\right) \leq F_{A}(f(x))=F_{A_{f}}(x)$. Let $x, x^{\prime} \in X$. Since A is a single-valued neutrosophic hyper $B C K$-ideal of Y, we get that

$$
\begin{aligned}
T_{A_{f}}(x)=T_{A}(f(x)) & \geq T_{\min }\left\{T_{A}\left(f\left(x^{\prime}\right)\right), \bigwedge\left(T_{A}\left(f(x) \varrho_{2} T_{A}\left(f\left(x^{\prime}\right)\right)\right)\right\}\right. \\
& =T_{\min }\left\{T_{A}\left(f\left(x^{\prime}\right), \bigwedge\left(T_{A}\left(f\left(x \varrho_{1} x^{\prime}\right)\right)\right)\right\}\right. \\
& =T_{\min }\left\{T_{A_{f}}\left(x^{\prime}\right), \bigwedge\left(T_{A_{f}}\left(x \varrho_{1} x^{\prime}\right)\right)\right\}
\end{aligned}
$$

In similar a way, can see that $I_{A_{f}}(x) \geq T_{\min }\left\{I_{A_{f}}\left(x^{\prime}\right), \bigwedge\left(I_{A_{f}}\left(x \varrho_{1} x^{\prime}\right)\right)\right\}$ and $I_{A_{f}}(x) \leq S_{\max }\left\{F_{A_{f}}\left(x^{\prime}\right), \bigvee\right.$ $\left.\left(F_{A_{f}}\left(x \varrho_{1} x^{\prime}\right)\right)\right\}$.
(ii) Since T_{A} and $T_{A_{f}}$ are single-valued neutrosophic hyper $B C K$ ideals of Y, X, respectively, then by Theorem $4.17,\left(X / R_{f}, \varrho^{\prime}, R_{f}(0)\right)$ and $\left(Y / R, \varrho^{\prime}, R\left(0^{\prime}\right)\right)$ are ($B C K$-algebras) hyper $B C K$-algebras. Now, define a $\operatorname{map} \varphi: X / R_{f} \rightarrow Y / R$ by $\varphi\left(R_{f}(x)\right)=R(f(x))$. Let $x, x^{\prime} \in X$. Then

$$
\begin{aligned}
\varphi\left(R_{f}^{T_{A}}(x)\right) & =\varphi\left(R_{f}^{T_{A}}\left(x^{\prime}\right)\right) \Leftrightarrow f(x) R^{T_{A}} f\left(x^{\prime}\right) \\
& \Leftrightarrow T_{A}(f(x)) \leq T_{A}\left(f\left(x^{\prime}\right)\right), \bigwedge\left(T_{A}\left(f(x) \varrho_{2} f\left(x^{\prime}\right)\right)\right) \geq T_{A}\left(f\left(x^{\prime}\right)\right) \\
& \Leftrightarrow T_{A_{f}}(x) \leq T_{A_{f}}\left(x^{\prime}\right) \text { and } \bigwedge\left(T_{A}\left(f\left(x \varrho_{1} x^{\prime}\right)\right)\right) \geq T_{A}\left(f\left(x^{\prime}\right)\right) \\
& \Leftrightarrow T_{A_{f}}(x) \leq T_{A_{f}}\left(x^{\prime}\right) \text { and } \bigwedge\left(T_{A_{f}}\left(x \varrho_{1} x^{\prime}\right)\right) \geq T_{A_{f}}\left(x^{\prime}\right) \\
& \Leftrightarrow R_{f}^{T_{A}}(x)=R_{f}^{T_{A}}\left(x^{\prime}\right)
\end{aligned}
$$

In similar a way, $\varphi\left(R_{f}^{I_{A}}(x)\right)=\varphi\left(R_{f}^{I_{A}}\left(x^{\prime}\right)\right) \Leftrightarrow R_{f}^{I_{A}}(x)=R_{f}^{I_{A}}\left(x^{\prime}\right)$ and $\varphi\left(R_{f}^{F_{A}}(x)\right)=\varphi\left(R_{f}^{F_{A}}\left(x^{\prime}\right)\right) \Leftrightarrow R_{f}^{F_{A}}(x)=R_{f}^{F_{A}}\left(x^{\prime}\right)$. It follows that $\varphi\left(R_{f}(x)\right)=$ $\varphi\left(R_{f}\left(x^{\prime}\right)\right) \Leftrightarrow R_{f}(x)=R_{f}\left(x^{\prime}\right)$ and hence φ is a well-defined and one to one map. Clearly φ is an epimorphism, and so it is an isomorphism.

Corollary 4.19. (Isomorphism Theorem) Let $(X, \varrho, 0)$ be a hyper $B C K$ algebra and $A=\left(T_{A}, I_{A}, F_{A}\right), A^{\prime}=\left(T_{A}^{\prime}, I_{A}^{\prime}, F_{A}^{\prime}\right)$ be one to one single-valued neutrosophic hyper $B C K$-ideals of X such that $A(0)=A^{\prime}(0)$. Then
(i) $A^{\prime} \cap A$ is a single-valued neutrosophic hyper $B C K$-ideal of X;
(ii) $\left(X_{A} \varrho X_{A^{\prime}}\right) / R_{A} \cong X_{A} / R_{A^{\prime} \cap A}$.

Proof: (i) Let $x \in X$. Then

$$
\begin{aligned}
& \left(T_{A}^{\prime} \cap T_{A}\right)(0)=T_{\min }\left(T_{A}^{\prime}(0), T_{A}(0)\right) \geq T_{\min }\left(T_{A}^{\prime}(x), T_{A}(x)\right)= \\
& \left(T_{A}^{\prime} \cap T_{A}\right)(x),\left(I_{A}^{\prime} \cap I_{A}\right)(0)=T_{\min }\left(I_{A}^{\prime}(0), I_{A}(0)\right) \geq \\
& T_{\min }\left(I_{A}^{\prime}(x), I_{A}(x)\right)=\left(I_{A}^{\prime} \cap I_{A}\right)(x),\left(F_{A}^{\prime} \cap F_{A}\right)(0) \\
& =S_{\max }\left(F_{A}^{\prime}(0), F_{A}(0)\right) \\
& \leq S_{\max }\left(F_{A}^{\prime}(x), F_{A}(x)\right)=\left(F_{A}^{\prime} \cap F_{A}\right)(x)
\end{aligned}
$$

Let $x, y \in X$. Then

$$
\begin{aligned}
& \left(T_{A}^{\prime} \cap T_{A}\right)(x)=T_{\min }\left(T_{A}^{\prime}(x), T_{A}(x)\right) \\
\geq & T_{\min }\left[T_{\min }\left[T_{A}^{\prime}(y), \bigwedge\left(T_{A}^{\prime}(x \varrho y)\right)\right], T_{\min }\left[T_{A}(y), \bigwedge\left(T_{A}(x \varrho y)\right)\right]\right] \\
= & T_{\min }\left[T_{\min }\left[T_{A}^{\prime}(y), T_{A}(y)\right], T_{\min }\left[\bigwedge\left(T_{A}^{\prime}(x \varrho y)\right), \bigwedge\left(T_{A}(x \varrho y)\right)\right]\right] \\
= & T_{\min }\left[\left(T_{A}^{\prime} \cap T_{A}\right)(y), \bigwedge\left(\left(T_{A}^{\prime} \cap T_{A}\right)(x \varrho y)\right)\right]
\end{aligned}
$$

In similar a way can see that $\left(I_{A}^{\prime} \cap I_{A}\right)(x) \geq T_{\text {min }}\left[\left(I_{A}^{\prime} \cap I_{A}\right)(y), \bigwedge\left(\left(I_{A}^{\prime} \cap I_{A}\right)\right.\right.$ and $\left(F_{A}^{\prime} \cap F_{A}\right)(x) \leq S_{m a x}\left[\left(F_{A}^{\prime} \cap F_{A}\right)(y), \bigvee\left(\left(F_{A}^{\prime} \cap F_{A}\right)\right.\right.$.
(ii) By Theorem 4.10, $A^{\prime} \cap A$ is a single-valued neutrosophic hyper $B C K$-ideal of X_{A}, then we define $\varphi: X_{A} / R_{A^{\prime} \cap A} \rightarrow\left(X_{A \varrho} X_{A^{\prime}}\right) / R_{A}$ by $\varphi\left(R_{A^{\prime} \cap A}(x)\right)=R_{A}(x)$. Let $x, x^{\prime} \in X_{A}$ and $R_{A^{\prime} \cap A}(x)=R_{A^{\prime} \cap A}\left(x^{\prime}\right)$. Then $\left(A^{\prime} \cap A\right)(x)=\left(A^{\prime} \cap A\right)\left(x^{\prime}\right)$ and since $A^{\prime} \cap A$ is one to one, we get that $x=x^{\prime}$. Hence $R_{A}(x)=R_{A}\left(x^{\prime}\right)$. Moreover, $\varphi\left(R_{A^{\prime} \cap A}(x) \varrho^{\prime} R_{A^{\prime} \cap A}\left(x^{\prime}\right)\right)=$ $\varphi\left(R_{A^{\prime} \cap A}\left(x \varrho x^{\prime}\right)\right)=R_{A}\left(x \varrho x^{\prime}\right)=R_{A}(x) \varrho^{\prime} R_{A}\left(x^{\prime}\right)$ and so φ is a homomorphism. Clearly φ is bijection and so is an isomorphism.

Example 4.20. Let $X=\{0,1,2,3,4,5\}$. Then $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a singlevalued neutrosophic hyper $B C K$-subalgebra of X hyper $B C K$-algebra $(X, \varrho, 0)$ as follows:

ϱ	0	1	2	3	4	5
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{2\}$	$\{2\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,3\}$	$\{3\}$	$\{3\}$
4	$\{4\}$	$\{4\}$	$\{4\}$	$\{4\}$	$\{0,4\}$	$\{0\}$
5	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{0,5\}$
T_{A}	0.72	0.61	0.54	0.34	0.27	0.19
I_{A}	0.19	0.8	0.2	0.21	0.26	0.25
F_{A}	0.15	0.28	0.34	0.39	0.48	0.61

(i) If $\alpha=0.5, \beta=0.7, \gamma=0.4$, then $T^{\alpha}=\{0,1,2\}, I^{\beta}=\{0,2,3,4,5\}$, $F^{\gamma}=\{0,1,2,3\}$ and so $A^{(\alpha, \beta, \gamma)}=\{0,2\}$, which is a hyper $B C K$-subalgebra of ($X, \varrho, 0$).
(ii) Consider $S=\{0,5\}, \alpha=0.5, \alpha^{\prime}=0.7, \beta=0.6, \beta^{\prime}=0.8, \gamma=0.85$ and $\gamma^{\prime}=0.9$. Then

$$
\begin{aligned}
& T_{A}^{\left[\alpha, \alpha^{\prime}\right]}=\{(0,0.5),(1,0.7),(2,0.7),(3,0.7),(4,0.7),(5,0.5)\} \\
& I_{A}^{\left[\beta, \beta^{\prime}\right]}=\{(0,0.6),(1,0.8),(2,0.8),(3,0.8),(4,0.8),(5,0.6)\} \\
& F_{A}^{\left[\gamma, \gamma \beta^{\prime}\right]}=\{(0,0.85),(1,0.9),(2,0.9),(3,0.9),(4,0.9),(5,0.85)\}
\end{aligned}
$$

are fuzzy hyper $B C K$-subalgebras of X and $A=\left(T_{A}^{\left[\alpha, \alpha^{\prime}\right]}, I_{A}^{\left[\beta, \beta^{\prime}\right]}, F_{A}^{\left[\gamma, \gamma^{\prime}\right]}\right)$ is a single-valued neutrosophic hyper $B C K$-subalgebra of X.
(iii) Let $\alpha=0.3, \beta=0.1$ and $\gamma=0.5$. Then $A^{\lfloor\alpha, \beta, \gamma\rfloor}=T^{(\alpha)} \cap I^{(\beta)} \cap$ $F^{(\gamma)}=\{0,1,2,3\} \cap\{0,1,2,3,4,5\} \cap\{0,1,2,3,4\}=\{0,1,2,3\}$. Clearly $2 \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$ and $0 \ll 2$, then $0 \in A^{\lfloor\alpha, \beta, \gamma\rfloor}$.
Example 4.21. Let $X=\{0,1,2,3\}$ and $Y=\left\{0^{\prime}, a, b, c\right\}$. Then $A=$ $\left(T_{A}, I_{A}, F_{A}\right)$ is a single-valued neutrosophic hyper $B C K$-ideal of hyper $B C K$-algebra ($X, \varrho, 0$) as follows:

ϱ	0	1	2	3	ϱ^{\prime}	0^{\prime}	a	b	c
0	\{0\}	\{0\}	\{0\}	\{0\}	0^{\prime}	\{0'\}	$\left\{0^{\prime}\right\}$	$\left\{0^{\prime}\right\}$	$\left\{0^{\prime}\right\}$
1	\{1\}	$\{0,1\}$	\{1\}	\{1\}	a	\{a\}	$\left\{0^{\prime}, a\right\}$	\{a\}	\{a\}
2	\{2\}	\{2\}	$\{0,2\}$	\{2\}	b	\{b\}	$\{b\}$	$\left\{0^{\prime}, b\right\}$	\{b\}
3	\{3\}	\{3\}	\{3\}	$\{0,3\}$	c	$\{c\}$	\{c\}	\{c\}	$\left\{0^{\prime}, c\right\}$

and

	0	1	2	3
T_{A}	0.93	0.73	0.13	0.13
I_{A}	0.87	0.67	0.1	0.05
F_{A}	0.13	0.23	0.33	0.4

(i) Define $f: Y \rightarrow X$ by $f=\left\{\left(0^{\prime}, 0\right),(c, 1),(b, 2),(a, 3)\right\}$, clearly f is a homomorphism. Hence A_{f} is a single-valued neutrosophic hyper $B C K$ ideal of hyper $B C K$-algebra $\left(Y, \varrho^{\prime}, 0^{\prime}\right)$ that is obtained as follows:

	0^{\prime}	a	b	c
$T_{A_{f}}$	0.93	0.13	0.13	0.73
$I_{A_{f}}$	0.87	0.05	0.1	0.67
$F_{A_{f}}$	0.13	0.4	0.33	0.23

(ii) Computations show that $R^{T_{A}}=\{(x, x),(2,3),(3,2) \mid x \in X\}, R^{I_{A}}=$ $\{(x, x) \mid x \in X\}, R^{F_{A}}=\{(x, x) \mid x \in X\}$ and so $R=\{(x, x) \mid x \in X\}$ that is a congruence relation. It follows that $R_{f}=\{(x, x) \mid x \in Y\}$ and so $X / R \cong X \cong Y \cong Y / R_{f}$.
(iii) Clearly $X_{A}=R(0)=\{0\}$ and $\operatorname{ker}(f)=\{0\}$ that is a trivial (hyper) $B C K$-ideal. Also for all $x \in \operatorname{ker}(f)$ and for all $y \in X, T_{\min }\left(T_{A_{f}}(x), I_{A_{f}}(x)\right)$ $\geq T_{\min }\left(T_{A}(y), I_{A}(y)\right)$.

Example 4.22. Let $X=\{0,1,2,3\}$. Then $A=\left(T_{A}, I_{A}, F_{A}\right)$ and $A^{\prime}=$ $\left(T_{A^{\prime}}, I_{A^{\prime}}, F_{A^{\prime}}\right)$ are single-valued neutrosophic hyper $B C K$-ideals of hyper $B C K$-algebra $(X, \varrho, 0)$ as follows:

ϱ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0\}$	$\{1\}$	$\{0\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{0\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0\}$

	0	1	2	3
T_{A}	0.95	0.85	0.25	0.25
I_{A}	0.9	0.8	0.2	0.1
F_{A}	0.15	0.2	0.3	0.35

and

	0	1	2	3
$T_{A^{\prime}}$	0.95	0.75	0.15	0.15
$I_{A^{\prime}}$	0.9	0.7	0.1	0.05
$F_{A^{\prime}}$	0.15	0.25	0.35	0.4

Then

$$
\begin{aligned}
A \cap A^{\prime}= & A^{\prime}, X_{A}=X_{A^{\prime}}=\{0\}, R^{T_{A}}=R^{T_{A^{\prime}}}=\{(x, x),(2,3),(3,2) \mid x \in X\} \\
& R^{I_{A}}=R^{I_{A^{\prime}}}=\{(x, x),(2,3),(3,2) \mid x \in X\}, R^{F_{A}}=R^{F_{A^{\prime}}}= \\
& \{(x, x) \mid x \in X\} \text { and so } R_{A}=R^{T_{A}} \cap R^{I_{A}} \cap R^{F_{A}}=R_{A^{\prime}}= \\
& R^{T_{A^{\prime}}} \cap R^{I_{A^{\prime}}} \cap R^{F_{A^{\prime}}}=\{(x, x) \mid x \in X\}
\end{aligned}
$$

It follows that $\left(X_{A} \varrho X_{A^{\prime}}\right)=\{0\}$ and so $\left(X_{A} \varrho X_{A^{\prime}}\right) / R_{A}=\{0\} / R_{A} \cong$ $\{0\} / R_{A^{\prime}} \cong\{0\} / R_{A^{\prime} \cap A}=X_{A} / R_{A^{\prime} \cap A}$.

5. Conclusion

In some problems in the real world, there are many uncertainties (such as fuzziness, incompatibilities, and randomness), in an expert system, belief system, and information fusion, especially in some scopes of computer sciences such as artificial intelligence. Thus we need to deal with uncertain information and logic establishes the foundations for it, because computer sciences are based on classical logic. The concept of $B C K$-algebra is one of the important logical algebras that are applied in computer sciences and other networking sciences. In addition, defects in classical algebras that can not work in groups and have limitations can be eliminated with the help of logical hyperalgebra. Thus the concept of hyper $B C K$-algebra is an important logical hyperalgebra that is applied in the computer sciences and other hypernetworking sciences that some groups of elements must be operated together and have been proposed for semantical hypersystems of logical hypersystems. In addition in some applications such as expert systems, belief systems, and information fusion, we should consider not only the truth membership supported by the evidence but also the falsitymembership against the evidence, which is beyond the scope of fuzzy subsets. Thus the concept of a neutrosophic subset is a powerful general formal framework that generalizes the concept of the classic set and the fuzzy subset is characterized by a truth-membership function, an indeterminacymembership function, and a falsity-membership function. This assumption is very important in a lot of situations such as information fusion when we try to combine the data from different sensors. In this paper, we consider the collectivity of logical (hyper) $B C K$-algebras and single-valued neutrosophic hyper $B C K$-subalgebras to solve some complex real prob-
lems dealing with the principles of logical hyperalgebra(one or more groups based on these principles must be combined) and have uncertain information such as complex intelligent hypernetworks and related other sciences. Thus the non-classical mathematics together with the concept of neutrosophic subset, therefore, has nowadays become a useful tool in applications mathematics and complex hypernetworks. Moreover, we can refer to some academic contributions of single-valued neutrosophic subsets such as singlevalued neutrosophic directed (hyper)graphs and applications in networks [4], application of single-valued neutrosophic in lifetime in wireless sensor (hyper)network [4], an application of single-valued neutrosophic subsets in social (hyper)networking [4], application of single-valued neutrosophic sets in medical diagnosis, application of neutro hyper BCK-algebras and single-valued neutrosophic hyper BCK-subalgebras in economic hypernetwork [7], and application of neutro hyper BCK-algebras and single-valued neutrosophic hyper BCK-subalgebras in data (hyper)networks [7]. To conclude, we considered the notion of single-valued neutrosophic hyper $B C K$ ideals and investigated some of their new useful properties. We considered that for any $\alpha \in[0,1]$ there is an algebraic relation between of a singlevalued neutrosophic subset hyper $B C K$-subalgebra, $A=\left(T_{A}, I_{A}, F_{A}\right)$ and $A=\left(T_{A}{ }^{\alpha}, I_{A}{ }^{\alpha}, F_{A}{ }^{\alpha}\right)$. In addition, with respect to the concept of hyper $B C K$-ideals of given hyper $B C K$-algebra, is constructed quotient $B C K$ algebra structures. On any nonempty set, is constructed an extendable single-valued neutrosophic $B C K$-(ideal)subalgebra and isomorphism theorem of single-valued neutrosophic hyper $B C K$-ideals is obtained. One of the advantages of this study is the conversion of complex hypernetworks to complex networks in such a way that all the details of the complex hypernetworks are preserved and transferred to the complex networks, but there are some limitations in this work. Although neutrosophic subsets are more flexible and useful as compared to all fuzzy theories, there are some limitations whence we need more than three functions in designing and modeling the real problem with complexity and high dimension. Also, the computations of single-valued neutrosophic hyper $B C K$-ideals for any given hyper $B C K$-algebras with large cardinal is hard and so the related mathematical tools such as congruence and strongly relations, nontrivial homomorphisms are complicated. Hence these problems prevent us from having a definite and simple algorithm for our computations.

We wish this research is important for the next studies in logical hyperalgebras. In our future studies, we hope to obtain more results regard-
ing single-valued neutrosophic (hyper) $B C K$-subalgebras and their applications in handing information regarding various aspects of uncertainty, non-classical mathematics (fuzzy mathematics or great extension and development of classical mathematics) that are considered to be a more powerful technique than classical mathematics.

Acknowledgements. We thank the anonymous referee for the useful comments and suggestions, which helped us to improve the overall quality of the paper.

References

[1] R. A. Borzooei, R. Ameri, M. Hamidi, Fundamental relation on hyper BCKalgebras, Analele Universitatii din Oradea-Fascicola Matematica, vol. 21(1) (2014), pp. 123-136.
[2] S. S. Goraghani, On Fuzzy Quotient BCK-algebras, TWMS Journal of Applied and Engineering Mathematics, vol. 10(1) (2020), pp. 59-68, URL: https://jaem.isikun.edu.tr/web/index.php/archive/104-vol10no1/491-on-fuzzy-quotient-bck-algebras.
[3] M. Hamidi, A. B. Saied, Accessible single-valued neutrosophic graphs, Journal of Computational and Applied Mathematics, vol. 57 (2018), pp. 121-146, DOI: https://doi.org/10.1007/s12190-017-1098-z.
[4] M. Hamidi, F. Smarandache, Single-valued neutrosophic directed (Hyper)graphs and applications in networks, Journal of Intelligent \& Fuzzy Systems, vol. 37(2) (2019), pp. 2869-2885, DOI: https://doi.org/10.3233/ JIFS-190036.
[5] M. Hamidi, F. Smarandache, Derivable Single Valued Neutrosophic Graphs Based on KM-single-valued neutrosophic Metric, IEEE Access, vol. 8 (2020), pp. 131076-131087, DOI: https://doi.org/10.1109/ACCESS.2020. 3006164.
[6] M. Hamidi, F. Smarandache, Neutro-BCK-Algebra, International Journal of Neutrosophic Science, vol. 8 (2020), pp. 110-117, URL: https://digitalrepository.unm.edu/math_fsp.
[7] M. Hamidi, F. Smarandache, Single-Valued Neutro Hyper BCK-Subalgebras, Journal of Mathematics, vol. 2021 (2021), pp. 1-11, DOI: https://doi. org/10.1155/2021/6656739.
[8] Y. Imai, K. Iseki, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Bulletin of the Section of Logic, vol. 42 (1966), pp. 19-22, DOI: https://doi.org/10.3792/pja/1195522169.
[9] Y. B. Jun, M. Khan, F. Smarandache, S. Z. Song, Length Neutrosophic Subalgebras of BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(4) (2020), pp. 377-400, DOI: https://doi.org/10.18778/0138-0680. 2020.21.
[10] Y. B. Jun, S. Z. Song, Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(1) (2020), pp. 53-78, DOI: https://doi.org/10.18778/0138-0680.2020.03.
[11] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCKalgebras, Italian Journal of Pure and Applied Mathematics, vol. 10 (2000), pp. 127-136.
[12] S. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Neutrosophic Hyper BCK-Ideals, Neutrosophic Sets and Systems, vol. 27 (2019), pp. 201217, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/626.
[13] S. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Fuzzy Soft Positive Implicative Hyper BCK-ideals Of Several Types, Miskolc Mathematical Notes, vol. 22(1) (2021), pp. 299-315, DOI: https://doi.org/10.18514/ MMN.2021.2855.
[14] N. Kouhestani, S. Mehrshad, (Semi)topological quotient BCK-algebras, Afrika Matematika, vol. 28 (2017), pp. 1235-1251, DOI: https://doi.org/ 10.1007/s13370-017-0513-9.
[15] G. Muhiuddin, A. N. Al-Kenani, E. H. Roh, Y. B. Jun, Implicative Neutrosophic Quadruple BCK-Algebras and Ideals, Symmetry, vol. 11(2) (2019), p. 277, DOI: https://doi.org/10.3390/sym11020277.
[16] R. Naghibi, S. M. Anvariyeh, Construction of an HV-K-algebra from a BCK-algebra based on Ends Lemma, Journal of Discrete Mathematical Sciences and Cryptography, vol. 25(2) (2022), pp. 405-425, DOI: https://doi.org/10.1080/09720529.2019.1689606.
[17] M. Shamsizadeh, Single Valued Neutrosophic General Machine, Neutrosophic Sets and Systems, vol. 490 (2022), pp. 509-530, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/2502.
[18] F. Smarandache, Neutrosophic Set, a generalisation of the intuitionistic single-valued neutrosophic sets, International Journal of Pure
and Applied Mathematics, vol. 24 (2005), pp. 287-297, URL: https: //digitalrepository.unm.edu/math_fsp.
[19] F. Smarandache, Generalizations and Alternatives of Classical Algebraic Structures to Neutroalgebraic Structures and Antialgebraic Structures, Journal of Fuzzy Extension and Applications, vol. 1(2) (2020), pp. 85-87, DOI: https://doi.org/10.22105/jfea.2020.248816.1008.
[20] M. M. Takallo, R. A. Borzooei, S. Z. Song, Y. B. Jun, Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets, AIMS Mathematics, vol. 6(10) (1965), pp. 11029-11045, DOI: https://doi.org/10.3934/math. 2021640.
[21] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (2021), pp. 338-353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X.
[22] Y. Zeng, H. Ren, T. Yang, S. Xiao, N. Xiong, A Novel Similarity Measure of Single-Valued Neutrosophic Sets Based on Modified Manhattan Distance and Its Applications, Electronics, vol. 11(6) (2022), p. 941, DOI: https: //doi.org/10.3390/electronics11060941.
[23] J. Zhan, M. Hamidi, A. B. Saeid, Extended Fuzzy BCK-Subalgebras, Iranian Journal of Fuzzy Systems, vol. 13(4) (2016), pp. 125-144, DOI: https: //doi.org/10.22111/IJFS.2016.2600.

Mohammad Hamidi

University of Payame Noor
Department of Mathematics
19395-4697
Tehran, IRAN
e-mail: m.hamidi@pnu.ac.ir

