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Abstract

In our previous work we proved the conjecture NP = PSPACE by advanced

proof theoretic methods that combined Hudelmaier’s cut-free sequent calculus

for minimal logic (HSC) with the horizontal compressing in the corresponding

minimal Prawitz-style natural deduction (ND). In this Addendum we show how

to prove a weaker result NP = coNP without referring to HSC. The underlying

idea (due to the second author) is to omit full minimal logic and compress only

“naive” normal tree-like ND refutations of the existence of Hamiltonian cycles

in given non-Hamiltonian graphs, since the Hamiltonian graph problem in NP-

complete. Thus, loosely speaking, the proof of NP = coNP can be obtained by

HSC-elimination from our proof of NP = PSPACE.

Keywords: Graph theory, natural deduction, computational complexity.

1. Introduction

Recall that in [2, 3] we proved that intuitionistically valid purely implica-
tional formulas ρ have dag-like ND proofs ∂ whose weights (= the total
numbers of symbols) are polynomial in the weights |ρ| of ρ. ∂ were defined
by a suitable two-fold horizontal compression of the appropriate tree-like
ND ∂1 obtained by standard conversion of basic tree-like HSC proofs π
existing by the validity of ρ. We observed that the height and the total
weight of distinct formulas occurring in (π, and hence also) ∂1 are both
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polynomial in |ρ|. From this we inferred that the compressed dag-like ND
proofs ∂ are weight-polynomial in |ρ|. Moreover, it is readily seen that the
latter conclusion holds true for any tree-like ND ∂′ with the polynomial
upper bounds on the height and total weight of distinct formulas used. We
just arrived at the following Theorem 1.3, where NM→ is standard purely
implicational ND for minimal logic (see also Appendix and [3] for more
details).

Definition 1.1. Tree-like NM→-deduction ∂ with the root-formula (=
conclusion) ρ is called polynomial if its weight (= total number of symbols)
is polynomial in the weight of conclusion, |ρ|. ∂ is called quasi-polynomial
if the height of ∂ plus total weight of distinct formulas occurring in ∂ is
polynomial in |ρ|.
Definition 1.2. A given (tree- or dag-like) NM→-deduction is called
a proof of its root-formula ρ iff every maximal thread connecting ρ with
a leaf α is closed, i.e. it contains a “discharging” (→ I) with conclusion
α → β, for some β.

Theorem 1.3. In NM→, any quasi-polynomial tree-like proof of ρ is com-
pressible into a polynomial dag-like proof of ρ.

Now let P be a NP-complete problem and suppose that ρ is valid iff
P has no positive solution. From the existence of a tree-like ND proof ∂′

as above we’ll infer the existence of a polynomial dag-like ND proof ∂ of
ρ, which will eventually imply NP = coNP. In particular, let P be the
Hamiltonian Graph Problem. For any graph G consider purely implica-
tional formula ρ expressing in standard way that G has no Hamiltonian
cycles. Suppose that the canonical proof search in NM→ yields a normal
tree-like proof ∂′ of ρ whose height is polynomial in |G| (and hence in |ρ|),
provided that G is non-Hamiltonian. Since normal ND proofs satisfy the
subformula property, such ∂′ will obey the requested polynomial upper
bounds in question, and hence the weight of its horizontal dag-like com-
pression ∂ will be polynomially bounded, as desired. That is, we argue as
follows.

Lemma 1.4. Let P be the Hamiltonian graph problem and suppose that
purely implicational formula ρ express in standard way that a given graph
G has no Hamiltonian cycles. There exists a quasi-polynomial normal tree-
like proof of ρ in NM→ whose height is polynomial in |G| (and hence |ρ|),
provided that G is non-Hamiltonian.
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Recall that polynomial ND proofs (whether tree- or dag-like) have time-
polynomial certificates ([3]: Appendix), while the non-hamiltoniancy of
simple and directed graphs is coNP-complete. Hence Theorem 1.3 yields

Corollary 1.5. NP = coNP holds true.

This argument does not refer to sequent calculus. Summing up, in
order to complete our HSC-free proof of NP = coNP it will suffice to
prove Lemma 1.4. This will be elaborated in the rest of the paper.

2. Hamiltonian problem

Consider a simple1 directed graph G = ⟨VG, EG⟩, card (VG) = n. A Hamil-
tonian path (or cycle) in G is a sequence of nodes X = v1v2 . . . vn, such
that, the mapping i 7→ vi is a bijection of [n] = {1, · · · , n} onto VG and
for every 0 < i < n there exists an edge (vi, vi+1) ∈ EG. The (decision)
problem whether or not there is a Hamiltonian path in G is known to be
NP-complete (cf. e.g. [1]). If the answer is YES then G is called Hamil-
tonian. In order to verify that a given sequence of nodes X , as above, is a
Hamiltonian path it will suffice to confirm that:

1. There are no repeated nodes in X ,

2. No element v ∈ VG is missing in X ,

3. For each pair ⟨vi, vj⟩ in X there is an edge (vi, vj) ∈ EG.

It is readily seen that the conjunction of 1, 2, 3 is verifiable by a de-
terministic TM in n-polynomial time. Consider a natural formalization of
these conditions (cf. e.g. [1]) in propositional logic with one constant ⊥
(falsum) and three connectives ∧, ∨, → (as usual ¬F := F → ⊥).

Definition 2.1. For any G = ⟨VG, EG⟩, card(VG) = n > 0, as above,
consider propositional variables Xi,v, i ∈ [n], v ∈ VG. Informally, Xi,v

should express that vertex v is visited in the step i in a path on G. Define
propositional formulas A−E as follows and let αG := A∧B ∧C ∧D ∧E.

1A simple graph has no multiple edges. For every pair of nodes (v1, v2) in the graph
there is at most one edge from v1 to v2.
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1. A =
∧

v∈V (X1,v ∨ . . . ∨Xn,v) (: every vertex is visited in X).

2. B =
∧

v∈V

∧
i̸=j (Xi,v → (Xj,v → ⊥)) (: there are no repetitions

in X).

3. C =
∧

i∈[n]

∨
v∈V Xi,v (: at each step at least one vertex is visited).

4. D =
∧

v ̸=w

∧
i∈[n] (Xi,v → (Xi,w → ⊥)) (: at each step at most one

vertex is visited).

5. E =
∧

(v,w) ̸∈E

∧
i∈[n−1] (Xi,v → (Xi+1,w → ⊥)) (: if there is no edge

from v to w then w can’t be visited immediately after v).

Thus G is Hamiltonian iff αG is satisfiable. Denote by SATCla the set
of satisfiable formulas in classical propositional logic and by TAUTInt the
set of tautologies in intuitionistic propositional logic. Then the following
conditions hold: (1) G is non-Hamiltonian iff αG ̸∈ SATCla, (2) G is non-
Hamiltonian iff ¬αG ∈ TAUTCla, (3) G is non-Hamiltonian iff ¬αG ∈
TAUTInt. Glyvenko’s theorem yields the equivalence between (2) and (3).
Hence G is non-Hamiltonian iff there is an intuitionistic proof of ¬αG. Such
proof is called a certificate for the non-hamiltoniancy of G. [7] (also [4])
presented a translation from formulas in full propositional intuitionistic
language into the purely implicational fragment of minimal logic whose
formulas are built up from → and propositional variables. This translation
employs new propositional variables qγ for logical constants and complex
propositional formulas γ (in particular, every α ∨ β and α ∧ β should be
replaced by qα∨β and qα∧β , respectively) while adding implicational axioms
stating that qγ is equivalent to γ . For any propositional formula γ, let γ⋆

denote its translation into purely implicational minimal logic in question.
Note that size (γ⋆) ≤ (size (γ))

3
. Now let γ := ¬αG. So γ ∈ TAUTInt iff

γ⋆ is provable in the minimal logic. Moreover, it follows from [7], [4] that
for any normal intuitionistic ND proof ∂ of γ there is a normal proof ∂→
of γ⋆ in the corresponding ND system for minimal logic, NM→, such that
height (∂→) = O (height (∂)). Thus in order to prove Lemma 1.4 it will
suffice to establish

Claim 2.2. G is non-Hamiltonian iff there exists a normal intuitionistic
tree-like ND proof of αG → ⊥ , i.e. ¬αG, whose height is polynomial in n.
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2.1. Proof of Claim 2.2

The sufficiency easily follows from the soundness of ND. Consider the
necessity. In the sequel we suppose that a non-Hamiltonian graph G
is fixed and αG = A ∧ B ∧ C ∧ D ∧ E (cf. Definition 2.1). Let p :
{1, . . . , n} 7→ VG be any sequence of nodes from VG of the length n and
let Xp :=

{
X1,p[1], · · · , Xn,p[n]

}
be corresponding set of propositional vari-

ables. Xp and p represent a path in G that starts by visiting vertex p[1],
encoded by X1,p[1], followed by p[2], encoded by X2,p[2], etc., up to p[n]
encoded by Xn,p[n]. Since G is non-Hamiltonian, Xp is inconsistent with
αG.

Lemma 2.3. For any p and Xp as above there is a normal intuitionis-
tic tree-like ND Πp with conclusion ⊥, assumptions from Xp ∪ {αG} and
height (Πp) = O

(
n2

)
:

Xp ∪ {αG}
Πp

⊥

Proof: Πp is defined as follows. Since G is non-Hamiltonian, we observe
that at least one of the conditions 1, 3 to be a Hamiltonian path (see above
in § 2) fails for Xp. Hence at least one of the following is the case.

There are repeated nodes. There are 1 ≤ i < j ≤ n, such that p[i] = p[j] =
v ∈ VG; let i < j be the least such pair. Consider a deduction Γp :

Xj,v

Xi,v Xi,v → (Xj,v → ⊥)

Xj,v → ⊥
⊥

of ⊥ from Xi,v, Xj,v and Xi,v → (Xj,v → ⊥). Since {Xi,v, Xj,v} ⊂
Xp, the assumption Xi,v → (Xj,v → ⊥) is a component of the con-
junction B from αG. So let ∆p be a chain of ∧-elimination rules de-
ducingXi,v → (Xj,v → ⊥) from αG. Now let Πp be the corresponding
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concatenation ∆p◦Γp deducing ⊥ from {Xi,v, Xj,v, αG} ⊂ Xp∪{αG}.
Clearly Πp is normal and height (Πp) = O

(
n2

)
.

There is a missing edge. There is 1 ≤ i < n, such that p[i] = v ∈ VG,
p[i + 1] = w ∈ VG and (v, w) /∈ EG; Let i be the least such number.
Consider a deduction Γp :

Xi+1,w

Xi,v Xi,v → (Xi+1,w → ⊥)

Xi+1,w → ⊥
⊥

of⊥ fromXi,v,Xi+1,w andXi,v→(Xi+1,w→⊥). Since {Xi,v, Xi+1,w}
⊂ Xp and (v, w) /∈ EG, the assumption Xi,v → (Xi+1,w → ⊥) is a
component of the conjunction E from αG. So let ∆p be a chain
of ∧-elimination rules deducing Xi,v → (Xi+1,w → ⊥) from αG.
Now let Πp be the corresponding concatenation ∆p ◦ Γp deducing
⊥ from {Xi,v, Xi+1,w, αG} ⊂ Xp ∪ {αG}. Clearly Πp is normal and
height (Πp) = O

(
n2

)
.

In the sequel for the sake of brevity we let VG = {1, · · · , n}. Now
consider the deductions Πi

p, 1 ≤ i ≤ n, in the extended ND that includes

standard n-ary ∨-elimination rules. Πi
p are defined by recursion on i using

(in the initial case i = 1) the Πp(1/k) from the last lemma, where sequences
p (−j) : {1, . . . , n} 7→ VG ∪ {0} and p (j/k) : {1, . . . , n} 7→ VG are defined
by

p (−j) [k] :=

{
p [k] , if k = j,
0, else,

and

p (j/k) :=

{
p [k] , if k = j,
p [j] , else.

So let

Π1
p =

X1,v1∨ · · · ∨X1,vn

Xp(−1)∪{αG} , [X1,v1 ]

Πp(1/1)

⊥ · · ·

Xp(−1)∪{αG} , [Xn,vn ]

Πp(1/n)

⊥
⊥

,
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Πj+1
p :=

Xj+1,v1∨· · ·∨Xj+1,vn

Xp(−(j+1))∪{αG},[Xj+1,v1 ]

Πj
p((j+1)/1)

⊥ · · ·

Xp(−(j+1))∪{αG},[Xj+1,vn ]

Πi
p((j+1)/n)

⊥
⊥

.

Thus for i = n we obtain.

Πn
p =

Xn,v1∨ · · · ∨Xn,vn

Xp(−(n−1))∪{αG} , [Xn,v1 ]

Πn−1
p(n/1)

⊥ · · ·

Xp(−(n−1))∪{αG} , [Xn,vn ]

Πn−1
p(n/n)

⊥
⊥

.

Lemma 2.4. For any p : {1, . . . , n} 7→ VG, Π
n
p is a normal intuitionistic

tree-like deduction with conclusion ⊥ and (the only) open assumption αG

in the extended ND in question Moreover, height
(
Πn

p

)
= O

(
n2

)
.

Proof: This easily follows from Lemma 2.4 by induction on n.

Now let Π := Πn
Id where Id : {1, . . . , n} 7→ VG is the identity Id [i] := i.

Denote by Π̂ the canonical tree-like embedding of Π into basic intuition-
istic ND with plain (binary) ∨-eliminations that is obtained by successive
unfolding of the n-ary ∨-elimination rules with premises Xj,v1 ∨ · · · ∨Xj,vn

involved. Note that height
(
Π̂
)
= O

(
n3

)
. Moreover let ∂ denote Π̂ followed

by the introduction of αG → ⊥ :

αG

[αG]

Π̂
⊥

αG → ⊥

Corollary 2.5. ∂ is a normal intuitionistic tree-like ND proof of αG → ⊥
whose height is polynomial in n, as required.
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Appendix: More on Theorem 1.3

Theorem 1.3 (cf. Introduction). In standard ND for purely implicational
minimal logic, NM→, any quasi-polynomial tree-like proof ∂ of ρ is com-
pressible into a polynomial dag-like proof ∂∗ of ρ.

Proof sketch2: The mapping ∂ ↪→ ∂∗ is obtained by a two-folded hor-
izontal compression ∂ ↪→ ∂♭ ↪→ ∂∗, where ∂♭ is a polynomial dag-like
deduction in NM♭

→ that extends NM→ by a new separation rule (S)

(S) :

n times︷ ︸︸ ︷
α · · · α

α
(n arbitrary)

whose identical premises are understood disjunctively: “if at least one
premise is proved then so is the conclusion” (in contrast to ordinary infer-
ences: “if all premises are proved then so are the conclusions”). The notion
of provability in NM♭

→ is modified accordingly such that proofs are locally
correct deductions assigned with appropriate sets of threads that are closed
and satisfy special conditions of local coherency. Now ∂♭ arises from ∂ by
ascending (starting from the root) merging of different occurrences of iden-
tical formulas occurring on the same level, followed by inserting instances
of (S) instead of resulting multipremise inferences. Corresponding locally
coherent threads in ∂♭ are inherited by the underlying (closed) threads in
∂ (in contrast to ordinary local correctness, the local coherency is not veri-
fiable in polynomial time, as the total number of threads in question might
be exponential in |ρ|). A desired “cleansed” NM→-subdeduction ∂∗ ⊂ ∂♭

arises by collapsing (S) to plain repetitions

(R) :
α

α

with respect to the appropriately chosen premises of (S). The choice is
made non-deterministically using the set of locally coherent threads in ∂♭.

2See [3] for more details.
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