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Abstract

In this paper, we study bounded versions of some model-theoretic notions and

results. We apply these results to models of bounded arithmetic theories as well

as some related complexity questions. As an example, we show that if the theory

S1
2(PV) has bounded model companion then NP = coNP. We also study bounded

versions of some other related notions such as Stone topology.
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1. Introduction

The study of first-order theory of arithmetic PA dates back to Hilbert’s
Program in the foundation of mathematics and Gödel’s incompleteness
theorems in 1930s. Since then this theory has been a subject of inter-
est for mathematicians, logicians, and computer scientists. In particular,
studying various bounded fragments of this theory has been proved to have
significant consequences in complexity theory (see e.g., [8], [6] and [9]).

Some important examples of bounded arithmetic theories are the first-
order version of Cook’s equational theory PV, denoted by PV1, and Buss’s
theory S12 and its conservative expansion to the language of PV denoted
by S12(PV) (see [1, 5, 4]). It is known that S12(PV) is ∀Σb

1-conservative over
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PV1. The theory PV1 is the weakest theory of arithmetic we work with in
this paper.

In this paper, we also work with a general notion of bounded theory.
By a bounded theory, we mean a consistent first-order theory whose lan-
guage contains a binary relation symbol ⩽, which is a partially ordered
relation and has a few more basic properties, and is axiomatized by a set
of (universal closures of) bounded formulas (see [11, 2] ).

A theory T has bounded quantifier elimination if any bounded formula
is T -equivalent to a quantifier-free formula. By a Σb

1-formula we mean
a quantifier-free formula prefixed by a bounded existential quantifier. A
model M of T is called bounded existentially closed if whenever N is a

model of T with M ⊆ N , then we have M ≺Σb
1 N , i.e. for any Σb

1-formula
φ(x) with parameters from M , and any a ∈M, if N |= φ(a), then we have
M |= φ(a).

A theory T is called bounded model complete if whenever M ⊆ N are

models of T , then M ≺Σb
1 N . Obviously, a theory T is bounded model

complete if and only if any model M |= T is a bounded existentially closed
model. The following fact is proved in [11]:

Fact 1.1. Let T be a bounded theory. The following are equivalent:

(1) T is bounded model complete.

(2) Every model of T is a bounded existentially closed model of T .

(3) For any Σb
1-formula there is a T -equivalent Πb

1-formula.

(4) For any bounded formula there is a T -equivalent Πb
1-formula.

If any of the above conditions holds for a theory T , we say that T proves
NP = coNP.

Corollary 1.2. Let T be a bounded theory which is bounded model
complete. Then T is ∀Σb

1-axiomatizable.

Proof: See Corollary 2.6 in [11].

Propositional logic is closely related to the main open problems in com-
plexity theory. A famous fundamental problem in propositional logic asks
whether there is a propositional proof system in which every tautology
has a polynomial size proof. By a famous result of Cook and Rechow,
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NP = coNP if and only if there exists a propositional proof system in
which every tautology has a polynomial size proof.

In this paper, we prove some more results concerning bounded model
complete theories. We also define the notions of bounded model companion
and bounded model completion in the context of bounded arithmetic and
provide some applications around the question NP =? coNP in models of
bounded arithmetic. We say that NP = coNP holds in a model M if for
each Πb

1-formula φ(x), there is a Σb
1-formula ψ(x) such that M |= ψ ↔ φ.

We also study the notion of bounded Stone topology and its applications in
the context of bounded arithmetic.

2. NP = coNP in models of bounded arithmetic

Let P be an abstract propositional proof system as described in [9]. By
PrfP (y, x) we mean the PV-formula which states that “y is a proof for
x in P”. We also show this formula by y ⊢P x. Note that this formula
is quantifier-free. Another important formula is Taut(x) which is a Πb

1-
formula and says that “x is a tautology”.

Frege systems and extended Frege systems are special types of proposi-
tional proof systems. For more details on the propositional proof systems,
specially Frege and Extended Frege systems, see [9], chapter 4.

Definition 2.1. Let P be a proof system.
(i) By “P is complete”, we mean the PV-sentence

∀x∃y(Taut(x) → y ⊢P x).

(ii) By “P is t-bounded”, we mean the PV-sentence

∀x∃y ≤ t(x)(Taut(x) → y ⊢P x)

where t is a term.

Note that “P is t-bounded” is PV1-equivalent to a ∀Σb
1-sentence.

Proposition 2.2. Let T be a consistent extension of S12(PV) and φ(x) be
a bounded formula. If T ⊢ ∀xφ(x), then N |= ∀xφ(x).

Proof: See [1], Chapter 8.
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Lemma 2.3. Let R be a consistent extension of PV1 and φ(x) be either a
Σb

1 or a Πb
1 formula. If R ⊢ ∀xφ(x), then N |= ∀xφ(x).

Proof: Let R ⊢ ∀xφ(x) but N |= ¬φ(n) for some tuple n ∈ N. Then,
S12(PV) ⊢ ¬φ(n). In the case that φ(x) is a Σb

1-formula, ¬φ(n) is a universal
sentence and we have PV1 ⊢ ¬φ(n) since S12(PV) and PV1 have the same
universal consequences. In the other case, φ(x) is a Πb

1-formula. We know
that S12(PV) and PV1 have the same Σb

1-theorems. Since the ¬φ(n) is a
Σb

1-formula, we have PV1 ⊢ ¬φ(n). This contradicts consistency of R.

As mentioned above (Corollary 1.2 ), if T is a bounded theory which
is bounded model complete, then T is ∀Σb

1-axiomatizable. It implies that
if the theory S12(PV) is bounded model complete, then S12(PV) = PV1 as
S12(PV) is ∀Σb

1-conservative over PV1. Note that if PV1 is bounded model
complete, then obviously S12(PV) is also bounded model complete.

Theorem 2.4. The following conditions are equivalent.

(i) NP = coNP

(ii) S12(PV)+“P is t-bounded” is consistent for some proof system P and
term t.

(iii) PV1 + “P is t-bounded” is consistent for some proof system P and
some term t.

Proof: Assume (i), then, by the Cook and Reckhow theorem, there is a
proof system P such that any tautology has a polynomial size P -proof.
Hence, “P is t-bounded” holds in the standard model for some term t.
Therefore, the standard model is a model for S12(PV) + “P is t-bounded”
for some term t. Now assume (ii). Since “P is t-bounded” is a ∀Σb

1-formula,
then by Proposition 2.2, we have “P is t-bounded” in N for some term t.
Hence, the standard model satisfies

∀x [Taut(x) ≡ ∃y ⩽ t (y ⊢P x)].

Consequently, NP = coNP holds in the standard model.
Finally assume (iii), using Lemma 2.3 and the same argument as above, we
can see that NP = coNP holds in N.
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Corollary 2.5. If S12(PV)+“EF is t-bounded” is consistent for some term
t, then NP = coNP. Moreover, the same result holds for PV1 in place of
S12(PV).

Proof: Let S12(PV) + “EF is t-bounded” be consistent for some term t.
Since “EF is t-bounded” is ∀Σb

1, by Proposition 2.2, we have “EF is t-bound-
ed” in N for some term t. Hence, the standard model satisfies

∀x [Taut(x) ≡ ∃y ⩽ t (y ⊢EF x)].

Consequently, NP = coNP holds in the standard model.
Moreover, assuming PV1 + “EF is t-bounded” is consistent for some term
t, using Lemma 2.3 and the same argument as above, we can see that
NP = coNP holds in N.

Lemma 2.6. We have NP = coNP if and only if there is a bounded consis-
tent extension of S12(PV) which is bounded model complete.

Proof: Let NP = coNP. Consider the theory W introduced by Buss in
Proposition 1 in Chapter 8 of [1]. This proposition together with Fact 1.1,
imply that W is bounded model complete. Conversely, suppose that T is
a consistent extension of S12(PV) which is bounded model complete. Thus,
there exists a Σb

1-formula φ(x) such that

T ⊢ ∀x(Taut(x) ≡ φ(x)).

Therefore, by Proposition 2.2, ∀x(Taut(x) ≡ φ(x)) is true in the standard
model.

Remark 2.7. If PV1 has a bounded model complete extension T , then by
Lemma 2.3 and the same argument as in the proof of Lemma 2.6, we
conclude that NP = coNP.

Proposition 2.8. If NP = coNP holds in some model of PV1, then NP =
coNP really.

Proof: Assume that M |= PV1 satisfies NP = coNP and T is the full
Π1-theory of M , that is the set of all ∀∆0-sentences true in M . For each
Σb

1-formula φ(x), there is some Πb
1-formula, say ψ(x), such that M |= φ ≡

ψ. Thus, φ ≡ ψ ∈ T . Now, using Fact 1.1 and the above remark, we get
NP = coNP really.

Definition 2.9. Let T be a consistent theory.
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(i) T is called b-complete if for each bounded L-sentence σ either
T ⊢ σ or T ⊢ ¬σ.

(ii) A model M |= T is a b-prime model of T , if N |= T implies that
there is a b-elementary embedding from M into N (i.e., elementary with
respect to bounded formulas).

Clearly, each prime model is b-prime. We note that the converse is not
true, since by the MRDP theorem, N is a b-prime model of PA which is
not prime. Also, it is well-known that N is embeddable in every model
of S12(PV), and this embedding is bounded elementary. So the standard
model N is a b-prime model of S12(PV).

Note that, a model M of a theory T is said to be algebraically prime
iff M is isomorphically embeddable in every model of T , that is, for each
N |= T , there is a submodel M0 ⊆ N with M0

∼=M .

Lemma 2.10. Let T be a bounded model complete theory. If T has an
algebraically prime model, then T is b-complete.

Proof: Let M |= T be an algebraically prime model and σ be a bounded
sentence. By Fact 1.1, there is a Σb

1-sentence τ such that T ⊢ σ ↔ τ .
Suppose that M |= σ. Let N |= T be arbitrary. We have M |= τ . Since

M ≺Σb
1 N , we have N |= τ and so N |= σ. This implies T ⊢ σ. Similarly,

if M ̸|= σ, then T ⊢ ¬σ.

Note that, by [9, Corollary 15.3.10], “EF is complete” in a model M |=
PV if and only if any extension of M is Σb

1-elementary. This implies that if
the theory PV + “EF is complete” is consistent, then it is bounded model
complete, because all of its models are bounded existentially closed model.

Proposition 2.11. If the standard model satisfies “EF is t-bounded” for
some term t, then PV + “EF is t-bounded” is a b-complete theory.

Proof: By the assumption, PV+“EF is t-bounded” is consistent for some
term t. By [9, Corollary 15.3.10], this theory is bounded model complete.
Since N is embedded in any model of this theory, by Lemma 2.10 this theory
is b-complete.

Definition 2.12. Let T be a bounded theory and M |= T . By Diag(M)
one means the set of all quantifier-free L(M)-sentences which are true in
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M . By BDiag(M), we mean the set of all bounded L(M)-sentences which
are true in M .

Proposition 2.13. A bounded theory T is a bounded model complete
theory if and only if T ∪ BDiag(M) is b-complete, for all M |= T .

Proof: Let T be a bounded model complete theory and M |= T . Clearly,
T ∪ BDiag(M) is bounded model complete. Hence, by Lemma 2.10, T ∪
BDiag(M) is b-complete. On the other hand, suppose T ∪ BDiag(M) is
b-complete. Assume that M,N |= T with M ⊆ N and σ is a Σb

1-sentence
in L(M). Since N |= T ∪ BDiag(M), if N |= σ, then T ∪ BDiag(M) ⊢ σ

and so M |= σ. Thus, M ≺Σb
1 N .

3. Model companion of bounded theories

In this section, we introduce bounded versions of the notions of model
companion and model completion. We use these notions in the study of
bounded arithmetic theories. For more details about model companion and
model completion, see [3, 7].

Definition 3.1. Let T be a bounded theory. We say a bounded theory T′

is a bounded model companion of T if the following two conditions hold.
i) T and T′ have the same universal consequences,
ii) T′ is bounded model complete.

Theorem 3.2. Let T be a ∀Σb
1 theory and T′ be its bounded model compan-

ion. Then, M is a model of T′ if and only if M is a bounded existentially
closed model of T.

Proof: First, assume that M is a model of T′. By the definition of
bounded model companion, M is embeddable in a model N of T and N
is embeddable in a model K of T′. We also have M is Σb

1-elementarily
embedded in K, and so in N . Now, by the assumption, M is a model of
T. Moreover, if M is embedded in a model M ′ of T, then the embedding
is Σb

1-elementary similarly.
Conversely, let M be a bounded existentially closed model of T. Then,

M is Σb
1-elementarily embeddable in a model of T′, and so M is a model

of T′.

The following theorem is the bounded version of Theorem 3.1.9 in [3].
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Theorem 3.3 (Σb
1-elementary chain theorem). Let {Mi}i<λ be a chain of

models with Mi ≺Σb
1 Mj for each i < j < λ. Then, Mk ≺Σb

1 M =
⋃

i<λMi,
for all k < λ.

Proof: Assume that M |= ∃x ⩽ t(y) φ(x, b), where b is a tuple in Mk.
Hence M |= (a ⩽ t(c) ∧ φ(a, b)) for some c, a ∈M . Let c, a ∈Ml for some
l ⩾ k. Thus, Ml |= (a ⩽ t(c) ∧ φ(a, b)) and so Ml |= ∃x ⩽ t(y) φ(x, b).

Since Mk ≺Σb
1 Ml, we have Mk |= ∃x ⩽ t(y) φ(x, b).

Corollary 3.4. If a ∀Σb
1 theory T has a bounded model companion, then

this theory is unique up to equivalence.

Proof: Let T ∗ and T ∗∗ be model companions of T . Then, T ∗ and T ∗∗

are bounded model complete with the same universal consequences. Let
M1 be a model of T ∗. There is a chain of models

M1 ⊆M2 ⊆ ...

such thatMi is a model of T ∗ for odd i and of T ∗∗ for even i. Suppose that
M is the union of the chain. Now,Mi’s form a Σb

1-elementary chain for odd
i. Using the Σb

1-elementary chain theorem,M is a Σb
1-elementary extension

of M1. Similarly, M is a Σb
1-elementary extension of M2. Therefore, M1 is

a model of T ∗∗. In a similar way, every model of T ∗∗ is a model of T ∗, and
so T ∗ and T ∗∗ are logically equivalent.

Theorem 3.5. Let T be a ∀Σb
1 theory. Then, T has a bounded model

companion if and only if the class of all bounded existentially closed models
of T can be axiomatized by a bounded theory.

Proof: Suppose that the mentioned class is axiomatized by a bounded
theory T′. Since every model of T′ is a model of T and every model of T
is embeddable in a model of T′ (the proof is similar to the proof of Lemma
3.5.7 in [3]), T and T′ have the same universal consequences. Moreover, if
a modelM1 of T′ is embedded in a modelM2 of T′, then this embedding is
Σb

1-elementary, and so T′ is bounded model complete. The other direction
is an immediate consequence of Theorem 3.2.

Let us now study some applications of the above results in the context
of bounded arithmetic theories. The theory PV1 has a bounded model
companion if and only if the class of bounded existentially closed models of
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PV1 is a bounded elementary class (i.e., being axiomatized by a bounded
theory). Let M |= PV1. By definition, M satisfies NP = coNP if any
Σb

1-formula with possible parameters from M is equivalent in M to a Πb
1-

formula with possible parameters in M . Hence, the main question is the
following.

Question 3.6. Is the class of all models of PV1 +NP = coNP a bounded
elementary class?

Assuming NP = coNP, a possible way of axiomatizing the class of
bounded existentially closed models of PV1 is adding the sentence “EF
is t-bounded” to PV1 for some suitable term t. If this sentence is true
in some model of PV1 for some term t, then this theory is consistent and
bounded. The remaining question is why this theory has the same universal
consequences as PV1. Or equivalently, why any model of PV1 is embedded
in a model of that sentence. By [9], any model of PV1 can be embedded in
a model of PV1 in which the mentioned sentence holds for elements greater
than some fixed non-standard element. Indeed, the following result shows
that the answer to the above question is probably negative.

Theorem 3.7. If PV1 has a bounded model companion, then NP = coNP
really.

Proof: Assume that T is the bounded model companion of PV1. Then

T ⊢ ∀x(Taut(x) ≡ φ(x))

where φ(x) is a Σb
1-formula. Thus, T is a consistent extension of PV1

which satisfies ∀x(Taut(x) ≡ φ(x)). By Lemma 2.3, this sentence is true
in the standard model of natural numbers, and so NP = coNP in the real
world.

In the rest of this section, we study bounded version of the notion model
completion.

Definition 3.8. A theory T ∗ is a bounded model completion of a theory
T if T ∗ is a bounded model companion of T and for every model M |= T ,
T ∗ ∪Diag(M) is b-complete.
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Lemma 3.9. A bounded model complete theory T has bounded quantifier
elimination if and only if T is a bounded model completion of T∀.

Proof: Assume that T is a bounded model completion of T∀. Let φ(x) be
a bounded formula and Σ(x) be the set of all quantifier free consequences
of T + φ(x). Also, assume that M realizes Σ(a) and D is the diagram of
(M,a) in the new language L∪{c} where a ∈M . Since T ∪D is consistent
with T ∪ Σ(c), it is consistent with φ(c). As T ∪ D is b-complete, we
have T ∪D |= φ(c). So (M,a) is a model of φ(c). Therefore, T ∪ Σ(c) |=
φ(c). We can find a sentence ψ(c) ∈ Σ(c) such that T |= φ(c) ↔ ψ(c).
Hence, T has quantifier elimination for bounded formulas. The converse is
straightforward.

We showed that if PV1 has a bounded model companion, then NP =
coNP really. The converse is an open problem. In the case of bounded
model completion, we have the following result.

Proposition 3.10. If PV1 has a bounded model completion, then P = NP.

Proof: Let T be a bounded model completion for PV1. By Lemma 3.9,
T has bounded quantifier elimination. Therefore, any Σb

1-formula has a
T -equivalent quantifier-free formula, i.e. T ⊢ P = NP. On the other hand,
Diag(N) ∪ T is a consistent b-complete theory. Let M |= Diag(N) ∪ T . It
is easy to see that N ≺Σb

1 M . Since P = NP holds in M , it holds in N
too.

4. Bounded Stone topology

In this section, we study bounded version of the notion of Stone topology.
For this, we need to impose some natural conditions on the theories and
models we consider which are satisfied by the theories of bounded arith-
metic.

Let T be a theory in a language L. Suppose that M is a L-structure
and A ⊆ M . By LA, we mean the language obtained by adding constant
symbols ca to L, for each a ∈ A. The structure M can be naturally
considered as a LA-structure by interpreting ca by a. Let ThbA(M) denote
the set of all bounded LA-sentences true in M .

The following definition gives the desired condition.



Models of Bounded Arithmetic Theories. . . 173

Definition 4.1.

(i) A model M is said to be t-cofinal (t for term) if the interpretation of
the set of all L-terms is cofinal in M .

(ii) A theory T is said to be cofinal in the language L, if for every model
M |= T there is t-cofinal model N |= T such that M and N agree on
the bounded sentences of L.

It is easy to see that S12(PV) is a cofinal theory, since it is Σ1-complete
with respect to the standard model.

Definition 4.2. Let T be a bounded theory and p be a set of bounded
L-formulas with free variables v1, ..., vn. We call p a n-ary b-type over T , if
p ∪ T is satisfiable. Also, the b-type p is b-complete if φ ∈ p or ¬φ ∈ p for
each bounded L-formula φ. Moreover, by BSn(T ) we mean the set of all
b-complete n-ary b-types over T . Also, ∆LA

denotes the set of all bounded
formulas in the language LA.

Suppose that M is a L-structure and A ⊆M . For a ∈M , let

tpMb (a) = {φ(v) ∈ ∆LA
:M |= φ(a)}.

If p is a b-type, then there is an elementary extension N of M such that
p is realized in N . It is easy to see that a b-type p is b-complete if and
only if there exists an elementary extension N of M and a ∈ N such that
p = tpNb (a).

Definition 4.3. Assume that φ is a bounded L-formula with free variables
v1, ..., vn. Let

[φ]b = {p ∈ BSn(T ) : φ ∈ p}.

(i) The bounded Stone topology on BSn(T ) is the topology generated
by the sets [φ]b.

(ii) A b-complete b-type p is isolated in the bounded Stone topology if
{p} = [φ]b for some bounded formula φ.

We can easily show (similar to the proof of Proposition 4.1.11 in [10])
that p ∈ BSn(T ) is isolated if and only if there exists a bounded formula
φ(v) such that for all ψ ∈ p, we have

T |= ∀v(φ(v) → ψ(v)).
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Definition 4.4. Let φ(v) be a bounded formula such that T ∪ {φ(v)} is
satisfiable, and p be a (not necessarily complete) b-type. We say that φ
b-isolates p, if for every ψ ∈ p

T |= ∀v(φ(v) → ψ(v)).

A b-type p is said to be b-isolated if there is some bounded formula φ such
that b-isolates p.

Definition 4.5. Let T be a bounded theory.

(i) A theory T is said to be b-atomic, if the set of all b-isolated n-ary
b-types p is dense in BSn(T ).

(ii) A model M of T is said to be b-atomic, if tpMb (a) is b-isolated for
each a ∈M .

It is easy to see that, a theory T is b-atomic if and only if it has a
b-atomic model.

Lemma 4.6. Let L be a countable language and T be a cofinal b-complete
L-theory. Then a model M of T is b-prime if and only if it is countable
and b-atomic.

Proof: Let M be a countable b-atomic model of T . Suppose that N |=
T and a0, a1, ... is an enumeration of the elements of M . By definition
4.1, there is a sequence t0, t1, .. of closed terms such that ai ⩽ ti. Since
M is b-atomic, there is a formula θi(v0, ..., vi) that b-isolates the type
tpMb (a0, ..., ai) for each i.

We construct a sequence j0 ⊆ j1 ⊆ ... of partial b-elementary maps
from M into N , where the domain of jk is {a0, ..., ak−1}. Let j0 = ∅.
Given js, let js(ai) = bi for i < s. Since M |= θs(a0, ..., as) and js is a
partial b-elementary embedding,

N |= ∃v ⩽ ts θs(b0, ..., bs−1, v).

Let bs ∈ N such that N |= θs(b0, ..., bs). By the assumption, we get

tpMb (a0, ..., as) = tpNb (b0, ..., bs).

Thus, js+1 := js ∪ {(as, bs)} is a partial b-elementary embedding. Now,
j :=

⋃
k<ω jk is a b-elementary embedding from M into N .

The other direction of the theorem is obvious.
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Corollary 4.7. S12(PV) is a b-atomic theory.

Proof: The theory S12(PV) has the standard model as a b-prime model,
and so by Lemma 4.6, S12(PV) is a b-atomic theory.
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