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ON GE-ALGEBRAS

Abstract

Hilbert algebras are important tools for certain investigations in intuitionistic

logic and other non-classical logic and as a generalization of Hilbert algebra a

new algebraic structure, called a GE-algebra (generalized exchange algebra), is

introduced and studied its properties. We consider filters, upper sets and con-

gruence kernels in a GE-algebra. We also characterize congruence kernels of

transitive GE-algebras.
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1. Introduction

A. Monteiro in ([15]) (see also [16]) called Hilbert algebra a triple (X, ∗, 1)
where X is a non-empty set, ∗ is a binary operation on X, 1 is an element
of X such that the following properties are satisfied for every x, y, z ∈ X :

(H1) x ∗ (y ∗ x) = 1

(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1
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https://doi.org/10.18778/0138-0680.2020.20
https://publicationethics.org/
https://orcid.org/0000-0001-8661-7914
https://orcid.org/0000-0001-9495-6027
https://orcid.org/0000-0002-0181-8969


82 Ravikumar Bandaru, Arsham Borumand Saeid, Young Bae Jun

(H3) x ∗ 1 = 1

(H4) x ∗ y = 1 and y ∗ x = 1 imply x = y.

In 1960, L. Iturrioz proved that (H3) follows from (H1) and (H4) and
that (H1),(H2) and (H4) are independent. In the same year A. Diego,
answering a problem posed by A. Monteiro, obtained an equational defi-
nition of these algebras. The literature on Hilbert algebras can be seen in
([8],[5, 4],[6],[11],[13],[10, 9]). Kim and Kim ([14]) introduced the notion of
a BE-algebra as a generalization of a dual BCK-algebra. R. A. Borzooei
and J. Shohani ([3]) introduced the notion of a generalized Hilbert algebra
and studied its properties. J. C. Abbott ([1]) introduced a concept of im-
plication algebra in the sake to formalize the logical connective implication
in the classical propositional logic. R. A. Borzooei and S. K. Shoar ([2])
have shown that the implication algebras are equivalent to dual implicative
BCK-algebras.

In this paper, we introduce the concept of GE-algebra which is a gener-
alization of Hilbert algebra and study its properties. We define the notion
of transitive and of commutative GE-algebra and observe that every com-
mutative GE-algebra is a transitive GE-algebra. Also we give a condition
under which a GE-algebra to become an Implication algebra. We give the
relation between GE-algebra and other algebras (Hilbert algebra, dual im-
plicative BCK-algebra, g-Hilbert algebra and BE-algebra). We consider
filters, upper sets and congruence kernels in a GE-algebra and characterize
congruence kernels whenever a GE-algebra is transitive.

2. Preliminaries

First, we recall certain definitions from [1],[2],[5],[7], [12] and [14] that are
required in the paper.

Definition 2.1. ([1]) An implication algebra is a set X with a binary
operation ∗ which satisfies the following conditions:

(I1) (x ∗ y) ∗ x = x,

(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x,

(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.
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Theorem 2.2. ([7]) In any implication algebra (X, ∗), the following con-
ditions hold:

(1) x ∗ (x ∗ y) = x ∗ y.

(2) x ∗ x = y ∗ y.

(3) There exists a unique element 1 in X such that

(a) x ∗ x = 1, 1 ∗ x = x and x ∗ 1 = 1.

(b) if x ∗ y = 1 and y ∗ x = 1, then x = y, for all x, y ∈ X.

Definition 2.3. ([2]) A dual BCK-algebra is a triple (X, ∗, 1) where X is
a non-empty set with a binary operation ∗ and a constant 1 satisfying the
following axioms for all x, y, z in X :

(DBCK1) (y ∗ z) ∗ [(z ∗ x) ∗ (y ∗ x)] = 1,

(DBCK2) y ∗ [(y ∗ x) ∗ x] = 1,

(DBCK3) x ∗ x = 1,

(DBCK4) x ∗ y = 1 and y ∗ x = 1 imply x = y,

(DBCK5) x ∗ 1 = 1.

Definition 2.4. ([5]) A Hilbert algebra is an algebra (X, ∗, 1) of type (2, 0)
such that the following axioms hold, for all x, y, z ∈ X:

(H1) x ∗ (y ∗ x) = 1,

(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,

(H3) if x ∗ y = y ∗ x = 1, then x = y.

It is proved that the above definition is equivalent to the system
{H4, H5, H6, H7} where:

(H4) x ∗ x = 1.

(H5) 1 ∗ x = x.

(H6) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

(H7) (x ∗ y) ∗ ((y ∗ x) ∗ x) = (y ∗ x) ∗ ((x ∗ y) ∗ y).

A Hilbert algebra X is said to be commutative if it satisfies (I2).
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Definition 2.5. ([3]) A generalized Hilbert algebra (or biefly, g-Hilbert
algebra) is an algebra (X, ∗, 1) of type (2, 0) such that the following axioms
hold, for all x, y, z ∈ X:

(GH1) 1 ∗ x = x,

(GH2) x ∗ x = 1,

(GH3) x ∗ (y ∗ z) = y ∗ (x ∗ z),

(GH4) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

Definition 2.6. ([14]) A BE-algebra is an algebra (X, ∗, 1) of type (2, 0)
such that the following axioms hold, for all x, y, z ∈ X:

(BE1) x ∗ x = 1,

(BE2) 1 ∗ x = 1,

(BE3) x ∗ 1 = 1,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

A BE-algebra X is said to be commutative and self-distributive if it
satisfies (I2) and (H6).

3. GE-algebras

In this section, we define the notion of a GE-algebra which is a general-
ization of the notion of Hilbert algebra and study its properties. Also, we
define the notions of transitive GE-algebra and of commutative GE-algebra
and give conditions under which a GE-algebra to become Implication alge-
bra, dual implicative BCK-algebra and commutative Hilbert algebra.

Definition 3.1. A GE-algebra is a non-empty set X with a constant 1
and a binary operation ∗ satisfying axioms:

(GE1) x ∗ x = 1,

(GE2) 1 ∗ x = x,

(GE3) x ∗ (y ∗ z) = x ∗ (y ∗ (x ∗ z)), for all x, y, z ∈ X.

We can observe that every Hilbert algebra/implication algebra is a GE-
algebra but the converse need not be true.
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Example 3.2. Let X = {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 b b 1
b 1 a 1 1 d
c 1 a 1 1 d
d 1 1 c c 1

Then (X, ∗, 1) is a GE-algebra but not a Hilbert algebra since b∗c = c∗b = 1
but b 6= c.

Let (X, ∗, 1) be a GE-algebra. Define a binary relation “ ≤ ” on X by

x ≤ y if and only if x ∗ y = 1.

There are no hidden difficulties to prove the following theorem hence
we omit its proof.

Theorem 3.3. In a GE-algebra X, for all x, y, z ∈ X , the following con-
ditions hold:

(1) x ∗ 1 = 1.

(2) x ∗ (x ∗ y) = x ∗ y.

(3) 1 ≤ x implies x = 1.

(4) x ≤ y ∗ x.

(5) x ≤ (x ∗ y) ∗ y.

(6) x ≤ (y ∗ x) ∗ x.

(7) x ≤ (x ∗ y) ∗ x.

(8) x ≤ y ∗ (y ∗ x).

(9) x ∗ (y ∗ z) ≤ y ∗ (x ∗ z).

(10) x ≤ y ∗ z if and only if y ≤ x ∗ z.

The following theorem can be proved easily.
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Theorem 3.4. Let (X, ∗, 1) be a GE-algebra. Then, for all x, y, z ∈ X, the
following are equivalent.

(1) x ∗ y ≤ (z ∗ x) ∗ (z ∗ y),

(2) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

Definition 3.5. A GE-algebra (X, ∗, 1) is said to be transitive if it satisfies

x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)

for all x, y, z ∈ X.

Example 3.6. Let X = {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c c
b 1 a 1 d d
c 1 a 1 1 1
d 1 a 1 1 1

Then (X, ∗, 1) is a transitive GE-algebra but not Hilbert algebra/dual
BCK-algebra/BE-algebra since a∗ (b∗c) = a∗d = c 6= d = b∗c = b∗ (a∗c).

The following theorem can be proved easily.

Theorem 3.7. In a transitive GE-algebra (X,*,1), for all x, y, z ∈ X, the
following conditions hold:

(1) x ≤ y implies z ∗ x ≤ z ∗ y.

(2) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

(3) x ≤ y implies y ∗ z ≤ x ∗ z.

(4) ((x ∗ y) ∗ y) ∗ z ≤ x ∗ z.

(5) x ≤ y and y ≤ z imply x ≤ z.

Definition 3.8. A GE-algebra (X, ∗, 1) is said to be commutative if it
satisfies (x ∗ y) ∗ y = (y ∗ x) ∗ x, for all x, y ∈ X.



On GE-algebras 87

We can observe that every commutative GE-algebra is a transitive GE-
algebra. But converse need not be true. From Example 3.6, we can observe
that

(b ∗ c) ∗ c = 1 ∗ c = c 6= b = 1 ∗ b = (c ∗ b) ∗ b.

The following theorem shows that every commutative GE-algebra is a
Hilbert algebra.

Theorem 3.9. If (X, ∗, 1) is a commutative GE-algebra then X is a Hilbert
algebra.

Proof: Let X be a commutative GE-algebra and x, y, z ∈ X. Then
(i) x∗(y∗x) = x∗(y∗(x∗x)) = x∗(y∗1) = x∗1 = 1. (ii) Let x∗y = 1 and
y∗x = 1. Then (x∗y)∗y = y and hence (y∗x)∗x = x which implies x = y.
(iii) We know that x∗(y∗z) = y∗(x∗z) ≤ (x∗y)∗(x∗(x∗z)) = (x∗y)∗(x∗z).
Hence (x ∗ (y ∗ z)) ∗ [(x ∗ y) ∗ (x ∗ z)] = 1. Thus X is a Hilbert algebra

The converse of the above theorem need not be true.

Example 3.10. Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 a 1 1
c 1 a b 1

Then (X, ∗, 1) is a Hilbert algebra which is not a commutative GE-algebra,
since

(a ∗ b) ∗ b = 1 ∗ b = b 6= 1 = a ∗ a = (b ∗ a) ∗ a.

Theorem 3.11. Every generalized Hilbert algebra is a GE-algebra.

Proof: Let (X, ∗, 1) be a generalized Hilbert algebra and x, y, z ∈ X. Then
x ∗ (y ∗ (x ∗ z)) = y ∗ (x ∗ (x ∗ z)) = y ∗ ((x ∗ x) ∗ (x ∗ z)) = y ∗ (1 ∗ (x ∗ z)) =
y ∗ (x ∗ z) = x ∗ (y ∗ z). Hence (X, ∗, 1) is a GE-algebra.

The converse of the above theorem need not be true. From Example
3.2, we can observe that X is a GE-algebra but not a generalized Hilbert
algebra since

d ∗ (a ∗ b) = d ∗ b = c 6= b = a ∗ c = a ∗ (d ∗ b).
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Theorem 3.12. Every commutative GE-algebra is a generalized Hilbert
algebra.

Proof: Let (X, ∗, 1) be a commutative GE-algebra. Then X is a Hilbert
algebra and hence a generalized Hilbert algebra.

The converse of the above theorem need not be true. From Example
3.10, we can observe that X is a generalized Hilbert algebra but not a
commutative GE-algebra.

Theorem 3.13. Every self-distributive BE-algebra is a GE-algebra.

Proof: Let (X, ∗, 1) be a self-distributive BE-algebra and x, y, z ∈ X.
Then x ∗ (x ∗ y) = (x ∗ x) ∗ (x ∗ y) = 1 ∗ (x ∗ y) = x ∗ y and x ∗ (y ∗ z) =
x ∗ (x ∗ (y ∗ z)) = x ∗ (y ∗ (x ∗ z)). Hence X is a GE-algebra.

The converse of the above theorem need not be true. From Example
3.2, we can observe that X is a GE-algebra but not a self-distributive
BE-algebra.

Theorem 3.14. Let (X, ∗, 1) be a BE-algebra satisfying the property x ∗
(x ∗ y) = x ∗ y, for all x, y ∈ X. Then X is a GE-algebra.

All non-existential results known for BE-algebras apply to GE-algebras.

Theorem 3.15. Let X be a GE-algebra. Then X is commutative if and
only if X is an implication algebra.

Example 3.16. Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 1 1 1
c 1 1 1 1

Then (X, ∗, 1) is a GE-algebra which is not an Implication algebra, since
(b ∗ c) ∗ c 6= (c ∗ b) ∗ b. Hence, a commutative condition is necessary in the
last theorem.
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Proposition 3.17. Let (X, ∗, 1) be a GE-algebra. Then the following are
equivalent.

(i) X is commutative,

(ii) X is implication algebra,

(iii) X is dual implicative BCK-algebra,

(iv) X is commutative Hilbert algebra.

4. Filters and upper sets

In this section, we introduce filters and upper sets in a GE-algebra and
study their properties. We characterize filters in terms of upper sets.

Definition 4.1. A subset F of X is called a filter of X if it satisfies the
following:

(GEF1) 1 ∈ F

(GEF2) if x ∗ y ∈ F and x ∈ F then y ∈ F .

Obviously, {1} and X are filters of X. A filter F is said to be proper if
F 6= X.

Example 4.2.

(a) In Example 3.2, we can see that I1 = {1, a, d} and I2 = {1, b, c} are
filters of X.

(b) In Example 3.6, we can see that I1 = {1, a}, I2 = {1, a, d}, I3 =
{1, b, c} and I4 = {1, d} are filters of X.

We denote the set of all filters of X by F (X).
The proof of the following lemma is straightforward and hence we omit the
proof.

Lemma 4.3. If {Fi}i∈Λ is a family of filters of X, then
⋂
i∈Λ

Fi is a filter

of X.

Since the set F (X) is closed under arbitrary intersections, we have the
following theorem.
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Theorem 4.4. (F (X),⊆) is a complete lattice.

Proposition 4.5. Let F be a filter of X. If a ∈ F and a ≤ x, then x ∈ F.

Theorem 4.6. Let X be a GE-algebra and F a non-empty subset of X
satisfying the following conditions:

(GEF3) x ∈ X and y ∈ F imply x ∗ y ∈ F

(GEF4) x ∈ X, a, b ∈ F imply (a ∗ (b ∗ x)) ∗ x ∈ F .

Then F is a filter of X.

Proof: Let F be a non-empty subset ofX satisfying (GEF3) and (GEF4).
Then 1 ∈ F. Hence (GEF1) holds. Let x ∈ F and x ∗ y ∈ F. Then
y = 1 ∗ y = [(x ∗ y) ∗ (x ∗ y)] ∗ y ∈ F and hence (GEF2) holds. Therefore
F is a filter of X.

Theorem 4.7. If X is a GE-algebra and F is a filter of X, then F satisfies
(GEF3) and (GEF4).

Proof: Let F be a filter of X and a ∈ F, x ∈ X. Then a ∗ (x ∗ a) = 1 ∈ F
and hence, by (GEF2), x∗a ∈ F . Let a, b ∈ F. Since a∗[(a∗(b∗x))∗(b∗x)] =
1 ∈ F , we have (a ∗ (b ∗ x)) ∗ (b ∗ x) ∈ F . Hence b ∗ [(a ∗ (b ∗ x)) ∗ x] =
b ∗ [(a ∗ (b ∗ x)) ∗ (b ∗ x)] ∈ F . Thus (a ∗ (b ∗ x)) ∗ x ∈ F .

Theorem 4.8. Let F be a non-empty subset X. Then F is a filter of X if
and only if for every a, b ∈ F and x ∈ X, a ∗ (b ∗ x) = 1 implies x ∈ F.

Proof: Suppose F is a filter of X and a, b ∈ F, x ∈ X such that a∗(b∗x) =
1. By (GEF1), we have a∗(b∗x) ∈ F . Then, by (GEF2), we obtain x ∈ F.
Conversely, assume that the condition holds. Let a ∈ F. Then a∗(a∗1) = 1
implies 1 ∈ F. Suppose x ∗ y ∈ F and x ∈ F . Then x ∗ [(x ∗ y) ∗ y] = 1
implies y ∈ F. Hence F is a filter of X.

Corollary 4.9. Let F be a non-empty subset of X. Then F is a filter of
X if and only if for every ai ∈ F (i ∈ N) and x ∈ X, an ∗(· · ·∗(a1 ∗x) · ··) = 1
implies x ∈ F .

Lemma 4.10. Let F be a filter of X. Then (a∗x)∗x ∈ F for all a ∈ F and
x ∈ X.

Proposition 4.11. A non-empty subset F of a GE-algebra X is a filter
of X if and only if it satisfies (i)1 ∈ F (ii) x ∗ (y ∗ z) ∈ F, y ∈ F implies
x ∗ z ∈ F for all x, y, z ∈ X.
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Let X be a GE-algebra and x, y ∈ X. Define

U(x) = {z ∈ X | x ∗ z = 1} and U(x, y) = {z ∈ | x ∗ (y ∗ z) = 1}

The set U(x) (resp. U(x, y)) is called an upper set of x (resp. of x and y).
We can observe that 1, x ∈ U(x) and 1, x, y ∈ U(x, y). Also, U(1) = {1} is
always a filter of X.

The following theorem can be proved easily.

Theorem 4.12. Let X be a GE-algebra. Then, for any x, y ∈ X,

(i) U(x, y) is a subalgebra of X.

(ii) U(x) =
⋂
y∈X

U(x, y).

(iii) U(x, y) = U(y, x).

Corollary 4.13. Let F be a non-empty subset of X. Then F is a filter
of X if and only if U(x, y) ⊆ F for all x, y ∈ F.

Proof: Let F be a filter of X and x, y ∈ F, z ∈ U(x, y). Then x∗ (y ∗z) =
1 ∈ F and hence z ∈ F . So that U(x, y) ⊆ F. Conversely, assume that
U(x, y) ⊆ F for all x, y ∈ F. Since F is non-empty, we have z ∈ F such
that 1 ∈ U(z, z) ⊆ F . Hence (GEF1) holds. Let x ∗ y ∈ F and x ∈ F .
Then y ∈ U(x ∗ y, x) ⊆ F. Thus (GEF2) holds. Therefore F is a filter of
X.

Proposition 4.14. Let X be a GE-algebra and F a filter of X. Then, for
any x, y ∈ F ,

(i) U(x) ⊆ F .

(ii) F =
⋃

x,y∈F
U(x, y).

Theorem 4.15. Let X be a transitive GE-algebra and x, y ∈ X. Then, for
any x, y ∈ X,

(i) U(x, y) is a filter of X.

(ii) U(x) is a filter of X.
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(iii) x ≤ y if and only if U(y) ⊆ U(x).

(iv) x ≤ y and y ≤ x if and only if U(x) = U(y).

Finally, we conclude this section with the following theorem.

Theorem 4.16. Let X be a transitive GE-algebra and x, y ∈ X. Then
y ∈ U(x) if and only if U(x) = U(x, y).

5. Congruence kernels

In this section, we give a characterization of congruence kernels in a transi-
tive GE-algebra. Let θ be a binary relation on a GE-algebra (X, ∗, 1). We
denote {x ∈ X | (x, 1) ∈ θ} by [1]θ. If θ is a congruence relation on X then
[1]θ is called a congruence kernel.

Lemma 5.1. If θ is a congruence relation on X then kernel [1]θ is a filter
of X.

Proof: Clearly 1 ∈ [1]θ. Suppose x ∈ [1]θ and x ∗ y ∈ [1]θ . Then
(x, 1), (x ∗ y, 1) ∈ θ and hence (x ∗ y, y) = (x ∗ y, 1 ∗ y) ∈ θ. By symmetry
of θ, (y, x ∗ y) ∈ θ. Therefore, by transitivity of θ, we obtain (y, 1) ∈ θ
proving y ∈ [1]θ.

Theorem 5.2. Let (X, ∗, 1) be a transitive GE-algebra. Then every filter
F of X is a kernel of a congruence θF given by

(x, y) ∈ θF if and only if x ∗ y ∈ F and y ∗ x ∈ F.

Moreover, θF is the greatest congruence on X having the kernel F.

Proof: Let F be a filter of X. Since 1 ∈ F , we have θF is reflexive.
Clearly θF is symmetric. We prove transitivity of θF . Let (x, y) ∈ θF
and (y, z) ∈ θF . Then x ∗ y, y ∗ x, y ∗ z, z ∗ y ∈ F . Hence, by Theorem
3.7(2) and by Proposition 4.5, (y ∗ z) ∗ (x ∗ z) ∈ F . Therefore x ∗ z ∈ F.
Similarly, we can prove that z ∗ x ∈ F. Thus (x, z) ∈ θF . Now, we prove
the substitution property of θF . Let (x, y) ∈ θF and (u, v) ∈ θF . Then
x∗y, y∗x, u∗v, v∗u ∈ F and hence, by Theorem 3.7(2) and by Proposition
4.5, (x∗u)∗(y∗u) ∈ F and (y∗u)∗(x∗u) ∈ F. Therefore, (x∗u, y∗u) ∈ θF .
Since X is transitive, we have, by Proposition 4.5, (y ∗ u) ∗ (y ∗ v) ∈ F and
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(y ∗ v) ∗ (y ∗ u) ∈ F . Hence (y ∗ u, y ∗ v) ∈ θF . By transitivity of θF , we
conclude (x ∗ u, y ∗ v) ∈ θF . Thus θF is a congruence relation on X.

If x ∈ F then 1 ∗ x = x ∈ F and x ∗ 1 = 1 ∈ F . Therefore (x, 1) ∈ θF ,
i.e., x ∈ [1]θF . Conversely, let x ∈ [1]θF . Then (x, 1) ∈ θF and hence
x = 1 ∗ x ∈ F which shows that F = [1]θF . Thus F is the kernel of the
congruence θF .

Finally, if ψ is a congruence relation on X such that [1]ψ = F then for
(x, y) ∈ ψ we have (x∗y, 1) = (x∗y, y∗y) ∈ ψ and (y∗x, 1) = (y∗x, y∗y) ∈ ψ
thus x ∗ y ∈ F and y ∗ x ∈ F which gives (x, y) ∈ θF . Hence ψ ⊆ θF i.e.,
θF is the greatest congruence relation of X having the kernel F.

The following example shows that filters need not be congruence kernels
in a GE-algebra

Example 5.3. Let X = {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 1 c
b 1 a 1 1
c 1 a b 1

Then (X, ∗, 1) is a GE-algebra. But it is not transitive since (b∗c)∗ [(a∗b)∗
(a∗c)] = c 6= 1. Clearly, F = {1, a, b} is a filter of X. Let (b, a) ∈ θ for some
congruence relation θ on X. Then (1, c) ∈ θ and hence c ∈ [1]θ 6= {1, a, b}.
Thus F is not a congruence kernel.

Finally, we conclude this section with the following theorem.

Theorem 5.4. Let (X, ∗, 1) be a transitive GE-algebra. Then filters of X
coincide with congruence kernels.

6. Conclusion and future work

Hilbert algebras represent the algebraic counterpart of the implicative frag-
ment of intuitionistic propositional logic. In fact, Hilbert algebras are an
algebraic counterpart of positive implicational calculus. Various type of
generalization of algebraic structures were defined in the literature.
In this paper, we have introduced the concept of GE-algebras as a gener-
alization of Hilbert algebras and studied their properties. In addition, we



94 Ravikumar Bandaru, Arsham Borumand Saeid, Young Bae Jun

have considered filters and upper sets in a GE-algebra and characterized
filters in terms of upper sets. We characterized congruence kernels in a
transitive GE-algebra. Finally, we show that filters and congruence kernels
coincide in a transitive GE-algebra.

We hope this work would serve as a foundation for further studies on
the structure of GE-algebras like fuzzy GE-algebras, soft GE-algebras and
hyper GE-algebras.

Acknowledgements. The authors are grateful to the referee for his valu-
able comments and suggestions for the improvement of the paper.
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Matemática, Universidad Nacional del Sur, Bah́ıa Blanca, Argentina (1960).
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