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ANALYTIC NON-LABELLED PROOF-SYSTEMS
FOR HYBRID LOGIC:

OVERVIEW AND A COUPLE OF STRIKING FACTS

Abstract

This paper is about non-labelled proof-systems for hybrid logic, that is, proof-

systems where arbitrary formulas can occur, not just satisfaction statements. We

give an overview of such proof-systems, focusing on analytic systems: Natural

deduction systems, Gentzen sequent systems and tableau systems. We point out

major results and we discuss a couple of striking facts, in particular that non-

labelled hybrid-logical natural deduction systems are analytic, but this is not

proved in the usual way via step-by-step normalization of derivations.

Keywords: Hybrid logic, natural deduction systems, sequent systems, normaliza-

tion, cut-elimination, analyticity.

1. Introduction

In the standard Kripke semantics for modal logic, the truth-value of a for-
mula is relative to points in a set, that is, a formula is evaluated “locally”
at a point, where points usually are taken to represent possible worlds,
times, locations, persons, or something else. Hybrid modal logics are ex-
tended modal logics where it is possible to directly refer to such points in
the object language. This means that locality can be handled explicitly,
and, crucially, one can formulate statements about what is the case at a
particular time or what is the case from the perspective of a specific per-
son. The history of what now is known as hybrid logic goes back to the
philosopher Arthur Prior’s work in the 1960s.
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The most basic hybrid logic is obtained by extending ordinary modal
logic with nominals, which are propositional symbols of a new sort, each
interpreted in a restricted way, being true at exactly one point. Most hybrid
logics involve further additional machinery; in the present paper we shall
consider a kind of operator called satisfaction operator. The motivation for
adding satisfaction operators is to be able to formalize a statement being
true at a particular time, location, or something else. In general, if a is
a nominal and ϕ is an arbitrary formula, then a new formula @aϕ can be
built, where @a is a satisfaction operator. A formula of this form is called
a satisfaction statement. The formula @aϕ expresses that the formula ϕ
is true at one particular point, namely the point to which the nominal a
refers.

A bit of terminology: We call a proof-system for hybrid logic labelled if
all formulas in the system are satisfaction statements. This should not be
confused with labelled proof systems for ordinary modal logic, where the
labels are part of metalinguistic machinery, modelling the Kripke semantics
(of course, there is a close connection between labelled systems for modal
logic and labelled systems for hybrid logic, since the outermost satisfaction
operators in the hybrid-logical systems can be seen as internalizing met-
alinguistics labels in the object language). A non-labelled proof system for
hybrid logic is a system where arbitrary formulas are allowed.

Labelled proof systems for hybrid logic do now constitute a well-estab-
lished research field with a large number of publications, one reason be-
ing that the extra expressive power of hybrid logic remedies a number of
deficiencies of proof-systems for ordinary modal logic, for example, proof-
systems for wide classes of hybrid logics can be obtained in a uniform way
by adding rules or axioms as appropriate (it should be mentioned, though,
that uniform proof-systems for ordinary modal logic can be given at the
expense of using metalinguistic machinery). However, the present note is
about non-labelled proof systems for hybrid logic, which have a less smooth
and continuous history than the labelled systems.

The way of reasoning in non-labelled systems is very different from rea-
soning in labelled systems: Reasoning in non-labelled systems does not
directly rely on the global encodings that satisfaction operators make pos-
sible, hence, these systems can be considered more in line with the lo-
cal character of the Kripke semantics for modal logic. In fact, this more
local reasoning style enables explicit formalization of reasoning involving
shifts between perspectives (what satisfaction operators do), and in partic-
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ular, reasoning taking place from different perspectives (embodied in the
(Term) rule which we shall come back to, see Figure 1). This for example
makes non-labelled systems suitable for formalizing the perspectival rea-
soning taking place in psychological false-belief tests, see the overview in
[8]. The reasoning style in non-labelled systems also gives rise to a number
of proof-theoretical issues of a more mathematical nature, which will be a
main topic of the present paper.

First a definition: A proof-system is analytic if any derivable formula
has a derivation satisfying the subformula property, that is, having the
property that any formula in the derivation is a subformula of the conclu-
sion or one of the premises. Analyticity is a common success criterion in
proof-theory, one reason being that analytic provability facilitates proof-
search and therefore is a step towards automated theorem proving. Given
completeness, analyticity guarentees that any valid argument (that is, the
truth of the premises implies the truth of the conclusion) can be formalized
using only subformulas of the premises and the conclusion. The notion of
analyticity goes back to G.W. Leibniz (1646–1716) who called a proof an-
alytic if and only if the proof is based on concepts contained in the proven
statement, the main aim being to be able to construct a proof by an analysis
of the result, as described in the introductory chapter of the book [1].

After having introduced the formal syntax and semantics of hybrid logic
in Section 2, in Section 3 we give an overview of different types of non-
labelled natural deduction systems, Gentzen sequent systems, and tableau
systems, pointing out analyticity results and how such results are proved.
In Section 4 we discuss two striking and related facts:

• The natural deduction system of [6] is analytic, but this is not proved
in the usual way via normalization of derivations such that normal
derivations satisfy the subformula property. In fact, no set of reduc-
tion rules serving this purpose is known for the system.

• Seligman’s paper [20] sketches a syntactic cut-elimination procedure
for a sequent system, but this procedure is complex and highly non-
local, that is, some steps in the procedure involve operations on
derivations beyond usual local operations like permutation of rules,
or replacing a cut on a compound formula by cuts on its subformu-
las, or in the case of first-order logic, simple non-local operations like
substituting of terms for variables.
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In Section 5 we then zoom in on an analyticity proof for the natural deduc-
tion system of [6], and we consider an extension of this system with rules
corresponding to conditions on the accessibility relation. We give an ana-
lyticity proof for the extended system, which is a straightforward extension
of a proof given in the appendix of [7], which in turn is a sharpened ver-
sion of a proof given in the book [6] (see Section 5 for a detailed account).
Finally, in Section 6 we make a few remarks on further work.

2. Formal syntax and semantics of hybrid logic

In what follows we give the formal syntax and semantics of the basic hybrid
logic described informally in the introduction. It is assumed that a set of
ordinary propositional symbols and a countably infinite set of nominals
are given. The sets are assumed to be disjoint. The metavariables p, q,
r, . . . range over ordinary propositional symbols and a, b, c, . . . range over
nominals. Formulas are built from nominals and ordinary propositional
symbols using the connectives ∧, →, ⊥, □, and @a. As usual, ¬ϕ is an
abbreviation for ϕ→ ⊥ and ♢ϕ is an abbreviation for ¬□¬ϕ.

Definition 2.1. A model for hybrid logic is a tuple (W,R, {Vw}w∈W )
where

1. W is a non-empty set;

2. R is a binary relation on W ; and

3. for each w, Vw is a function that to each ordinary propositional sym-
bol assigns an element of {0, 1}.

Note that a model for hybrid logic is the same as a model for ordinary
modal logic. Given a model M = (W,R, {Vw}w∈W ), an assignment is a
function g that to each nominal assigns an element of W . The relation
M, g, w |= ϕ is defined by induction, where g is an assignment, w is an
element of W , and ϕ is a formula.

M, g, w |= p iff Vw(p) = 1
M, g, w |= a iff w = g(a)

M, g, w |= ϕ ∧ ψ iff M, g, w |= ϕ and M, g, w |= ψ
M, g, w |= ϕ→ ψ iff M, g, w |= ϕ implies M, g, w |= ψ
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M, g, w |= ⊥ iff falsum
M, g, w |= □ϕ iff for any v ∈W such that wRv, M, g, v |= ϕ
M, g, w |= @aϕ iff M, g, g(a) |= ϕ

Validity is defined in the usual way. For further background on hybrid
logic, see [5] and the references therein.

3. Overview of published results

Non-labelled proof systems for hybrid logic can be split up into two types:
Systems where the proof rules for modal operators are taken from standard
proof systems for ordinary modal logic, and systems where modal operators
are dealt with like in labelled systems, that is, analogous to first-order
quantifiers, ranging over accessible worlds in the Kripke semantics. We call
the first type of non-labelled systems mixed, and the second type Seligman-
style.

In Table 1 we map out published works on non-labelled natural de-
duction systems, Gentzen sequent systems and tableau systems for hybrid
logic (to the best of our knowledge). We are particularly interested in how
completeness and analyticity results are proved, and how general the re-
sults are, that is, whether the systems can be extended with axioms or
rules coding up classes of conditions on the accessibility relation.1 Regard-
ing the latter, then we remark that a pure formula is a formula where all
propositional symbols are nominals. We shall come back to geometric rules
in Section 5.

Note that cut-free sequent systems are usually analytic since the cut-
rule is the only rule that introduces a new formula when read from bottom
to top. Note also that most tableau systems do not include the cut-rule,
hence, such systems are usually analytic. In principle, one could also ask
for a syntactic cut-elimination procedure for a tableau system, but this
issue is usually not addressed in the more semantically inclined tableau
literature, and we shall not address it either in the present note.

1An even more fine-grained classification of the systems would be in terms of the
form of the proof rules, for example along the lines of [18] as well as further literature
in the proof-theoretic semantics tradition, but we shall leave this to further work.



148 Torben Braüner

Table 1. Non-labelled proof systems for hybrid logic

Mixed Seligman-style

ND [14], Subsection 12.4.1, [20] Complete via an axiom system

systems first system which is given a Henkin-style

Based on ND rules for K completeness proof

Complete via a hybrid-logical Normalization/analyticity

axiom system not addressed

Extendable with pure formulas [14], Subsection 12.4.1,

as axioms second system

Normalization/analyticity Complete via a hybrid-logical

not addressed axiom system

Extendable with pure formulas

as axioms

Normalization/analyticity

not addressed

[6], Chapter 4, complete via

a translation from

a labelled ND system

Extendable with geometric rules

No normalization, but analyticity

cf. Section 5 of the present paper

Gentzen [16] Based on sequent rules [20] Complete via a ND system

sequent for K and a direct syntactic

systems Complete via a sequent system cut-elimination proof

for first-order logic [21] (similar to system in [20])

Extendability unknown Complete via a sequent system

cf. page 59 for first-order logic

Cut-freeness inherited from Cut-freeness inherited from

the first-order system the first-order system

Tableau [3] complete via translation from

systems a labelled tableau system

[15] (same system as [3])

Semantic completeness

Extendable with pure formulas

as axioms

[11, 10] formalizes completeness

of [3, 15] in the proof assistant

Isabelle/HOL
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4. The lack of normalization and local syntactic
cut-elimination

The lack of normalization for the natural deduction system of the book
[6] was already pointed out in the paper [4] (which later became part of
the book). In the present section we shall take a closer look at this issue,
and make a comparison to sequent systems. We first outline the natural
deduction system in question.

4.1. Seligman-style natural deduction for hybrid logic

Natural deduction style proofs are meant to formalize the way human be-
ings actually reason, as pointed out in many places in the literature, and
some psychologists have even found experimental support for natural de-
duction being a mechanism underlying human deductive reasoning, see [19].

Now, Seligman’s natural deduction system is obtained by extending the
standard natural deduction system for propositional logic (which we omit
here) with the rules in Figure 1, cf. Chapter 4 of [6]. The system is a
modified version of the system originally published by Jerry Seligman in
[20] in the context of situation theory: Rules for modal operators have
been added, the rule (Term) has been modified, as we shall describe in
Subsection 4.2, and moreover, the original system of [20] included rules for
substituting co-referring terms (nominals, in the context of hybrid logic),
but we do not need substitution rules, as witnessed by the completeness
proof in [6].

Natural deduction systems usually have two different kinds of rules for
each connective: Rules which introduce a connective and rules which elimi-
nate a connective. Note that the rules (@I) and (@E) are the introduction
and elimination rules for the satisfaction operator. Natural deduction rules
allow to make and discharge assumptions; a discharge of assumptions is in-
dicated by putting brackets [ . . . ] around the assumptions in question.

The rule (Term) in Figure 1 enables hypothetical reasoning about what
is the case at a specific possible world, usually different from the actual
world. The hypothetical reasoning is formalized by the subderivation de-
limited by the rule (the vertical line of dots), and the hypothetical world is
the world referred to by the nominal discharged by the rule, indicated by [a]
in the (Term) rule. This nominal might be called the point-of-view nomi-
nal. The side-condition that the assumptions ϕ1, . . . , ϕn and the conclusion
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[♢c]
···

@cϕ
(□I)∗

□ϕ

□ϕ ♢e
(□E)

@eϕ

a ϕ
(@I)

@aϕ

a @aϕ
(@E)

ϕ

ϕ1 . . . ϕn

[ϕ1] . . . [ϕn][a]···
ψ
(Term)⋆

ψ

[a]
···
ψ
(Name)†

ψ

∗ The nominal c does not occur free in □ϕ or in any undischarged assumptions other

than the specified occurrences of ♢c.

⋆ The formulas ϕ1, . . . , ϕn, and ψ are all satisfaction statements and there are no

undischarged assumptions in the derivation of ψ besides the specified occurrences

of ϕ1, . . . , ϕn, and a.

† The nominal a does not occur in ψ or in any undischarged assumptions other than

the specified occurrences of a.

Figure 1. Natural deduction rules for hybrid logic

ψ all have to be satisfaction statements, ensures that their truth-values are
not affected when the world of evaluation is shifted (the rule would not be
sound if that was the case).

The way the (Term) rule delimits a subderivation is similar to the way
subderivations are delimited by proof-boxes in linear logic (introduced by
J.-Y. Girard in [12]). Using proof-boxes in the style of linear logic, the
(Term) rule could alternatively be formulated as follows (compare to our
formulation in Figure 1).
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ϕ1 . . . ϕn

aϕ1 . . . ϕn
...

ψ

ψ

4.2. What is the problem with the natural deduction system?

Usually, one wants to equip a natural deduction system with a normalizing
set of reduction rules such that normal derivations satisfy the subformula
property. Normalization says that any derivation by repeated applications
of reduction rules can be rewritten to a derivation which is normal, that is,
no reductions apply. From this it follows that the system under considera-
tion is analytic.

However, such normalizing reduction rules are not known for the Selig-
man-style natural deduction system. Even though Chapter 4 of [6] gives a
set of reduction rules with other desirable properties, it ends by exhibiting
a derivation where none of the reduction rules in question can be applied,
but where the subformula property is not satisfied:

b

@ab @ap @aq

[a] [@ab]
(@E)

b

[a] [@ap]
(@E)

p

[a] [@aq]
(@E)

q
(∧I)

p ∧ q
(@I)

@b(p ∧ q)
(Term)

@b(p ∧ q)
(@E)

p ∧ q
(∧E1)

p

Note that occurrences of the formulas p ∧ q and @b(p ∧ q) (indicated by
putting frames around them) are not subformulas of the end-formula p or
one of the undischarged assumptions, b, @ab, @ap, @aq. Intuitively, the
formula p∧q is a maximum formula (it is introduced and then eliminated),
but there are applications of (@I), (Term), and (@E) sandwiched in be-



152 Torben Braüner

tween the introduction and the elimination, preventing application of the
standard reduction rule for the ∧ connective, and moreover, the reduction
rule for the satisfaction operator @b does not not help:

··· π1
ϕ

··· π2
ψ

(ϕ ∧ ψ)

ϕ

⇝
··· π1
ϕ

··· π1
b

··· π2
b

··· π3
ϕ

@bϕ

ϕ

⇝
··· π3
ϕ

The natural deduction system is complete and analytic (addressed in Sec-
tion 5), so there does indeed exist a derivation, in fact, a very simple one,
with the displayed premises and conclusion, and satisfying a version of the
subformula property, but what is desired is a systematic and local rewriting
procedure that removes the occurrences of the formula p ∧ q.

As explained in Subsection 4.1, the (Term) rule can be seen as creat-
ing a linear logic style proof-box around a subderivation, as indicated in
the alternative formulation of the rule at the end of that subsection. This
box does not allow eliminations to be commuted inside the border of the
box, and it does not allow introductions to be commuted outside the bor-
der. This implies that what intuitively is a maximum formula, might be
“stuck” at the border. This in turn prevents proving the usual theorem,
stemming from Dag Prawitz’ classic [17], on which the subformula property
is based: Any normal derivation can be split up into segments, each con-
sisting of two consecutive parts, read from top to bottom, a part containing
only eliminations, followed by a part containing only introductions. Not
only is this important theorem the basis of the subformula property, it can
also be used to translate normal natural deduction derivations into cut-
free Gentzen sequent derivations, thus making cut-elimination a corollary
of normalization. It should be remarked that such desirable mathemat-
ical results can be obtained for labelled hybrid-logical proof systems, cf.
sections 2.2 and 2.4 of the book [6].

A problem analogous to the problem pointed out above, arises in con-
nection with the discharged and reintroduced assumptions ϕ1 . . . ϕn in the
(Term) rule, cf. Figure 1. The original (Term) rule of [20] did not in-
volve such explicit substitutions, but we make use of explicit substitutions
here because we need the property called closure under substitution, which
is a prerequisite for rewriting derivations using reduction rules. Closure
under substitution says that if a derivation of a formula ϕ is substituted
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for an undischarged assumption ϕ in another derivation, that is, the two
derivations are composed, then a correct derivation is obtained (in par-
ticular, the side-conditions of instances of (Term) are not violated). The
natural deduction system of the paper [20] does not satisfy closure under
substitution, but that paper did not attempt to give reduction rules. See
Subsection 4.1.1 of [6] for further elaboration.

We remark that explicit substitutions have been used to solve analogous
problems in other logics, for example in connection with a natural deduc-
tion system for an intuitionistic version of the modal logic S4 given in [2].
Also here explicit substitutions are used to prevent that substitutions of
derivations cause the violation of the side-condition of a rule, in this case
the introduction rule for the □ modality. The price payed in the paper [2]
is the addition of further reduction rules, allowing certain derivations to
be commuted inside the proof-box created by the □-introduction rule, but
in the case of that paper, the strategy succeeds, that is, after the addition
of further reduction rules, a normalization result can be proved such that
normal derivations satisfy the subformula property.

4.3. Comparison to sequent systems

As we remarked earlier, the lack of results like normalization and local syn-
tactic cut-elimination procedures appears to be a common problem for non-
labelled systems, and moreover, there is often a close connection between
normalization in natural deduction systems and syntactic cut-elimination
in Gentzen sequent systems, so let us try to convert, rule-by-rule, the ex-
ample natural deduction derivation of Subsection 4.2 to a derivation in the
sequent system of [21] (a bit simpler than the sequent system of [20]):

a, b, p, q ⊢ p a, b, p, q ⊢ q
∧R

a, b, p, q ⊢ p ∧ q
∨@L(twice)

a, b, @ap, @aq ⊢ p ∧ q
∨@R

a, b, @ap, @aq ⊢ @b(p ∧ q)
∨@L

a, @ab, @ap, @aq ⊢ @b(p ∧ q)
term

@ab, @ap, @aq ⊢ @b(p ∧ q)

b, p, q ⊢ p
∧L

b, p ∧ q ⊢ p
∨@L

b, @b(p ∧ q) ⊢ p
cut

b, @ab, @ap, @aq ⊢ p
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See the rules in Figures 6 and 7 of [21] (we have added standard sequent
rules for the ∧ connective, denoted ∧L and ∧R). Intuitively, we would like
to rewrite the derivation such that a cut on the formula p ∧ q is obtained,
where the left premise is an instance of ∧R and the right premise is an
instance of ∧L, such that the cut formula can be removed in the standard
way, cf. for example the cut-elimination proof in Chapter 13 of [13]. How-
ever, there does not seem to be a systematic and local way to carry out
such a transformation. The sequent system given in [16] also includes the
rules ∨@L and ∨@R as well as a version of the term rule, and if the above
derivation is carried out in that system, exactly the same problem arises.

Now, the paper [20] does sketch a syntactic cut-elimination procedure,
but this procedure involves complex and highly non-local transformation
steps, in particular, see case (b) at page 132 of that paper.

5. Analyticity of Seligman-style natural deduction

This section fills a gap in the literature on Seligman-style natural deduction
systems: A brief history of this type of systems can be read off from Table 1
in Section 3, and to this we add that analyticity was first proved in an
appendix of the paper [7], which was on a completely different issue, namely
the application of Seligman-style natural deduction systems to formalize
psychological reasoning tests called false-belief tests. In the present section
we consider extension of the system with rules corresponding to conditions
on the accessibility relation.

In the following we show that analyticity holds when the proof system
is extended with appropriate rules for geometric theories, or to be precise,
what are called basic geometric theories, cf. Subsection 2.2.1 of [6]. The
history of such rules goes back to [22] where they were used in connection
with a labelled proof-system for an intuitionistic version of modal logic. A
basic geometric theory is a finite number of first-order formulas of the form

∀a((S1 ∧ . . . ∧ Sn) → ∃c
m∨
j=1

(Sj1 ∧ . . . ∧ Sjnj ))

where n,m ≥ 0 and n1, . . . , nm ≥ 1, and where the metavariables Sk and
Sjk range over atomic formulas of the forms R(a, c) and a = c (of course,
the binary predicate R is to be interpreted as the accessibility relation).
To such a formula θ is associated the rule (Rθ) given in Figure 2, where
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s1 . . . sn

[s11] . . . [s1n1
]

···
ϕ . . .

[sm1] . . . [smnm
]

···
ϕ
(Rθ)

∗

ϕ

∗ None of the nominals in c occur free in ϕ or in any of the undischarged assumptions

other than the specified occurrences of sjk (recall that c are the first-order variables

existentially quantified over in the formula θ).

Figure 2. Natural deduction rules for geometric theories

sk = HT (Sk) and sjk = HT (Sjk), defined as HT (R(a, c)) = @a♢c and
HT (a = c) = @ac.

It is straightforward to check that if a formula θ of the form displayed
above is a Horn clause (take m = 1, nm = 1, and the list of variables c
to be empty), then the rule (Rθ) given in Figure 2 can be replaced by the
following simpler rule.

s1 . . . sn

s11

Let T be any fixed basic geometric theory. We let N′ denote the Seligman-
style natural deduction system defined in Subsection 4.1 and this system
extended with the rules {(Rθ) | θ ∈ T} will be denoted N′ +T.

Rules of the form displayed in Figure 2 are also used in the labelled
hybrid-logical natural systems of [6], and since all formulas in the rules
are satisfaction statements, such rules might seem to be against the spirit
of Seligman-style systems, but arguably, this is acceptable since the rules
already from the start were intended to code up conditions on the accessi-
bility relations.

In some concrete cases, rules of the form in Figure 2 can be reformu-
lated as rules with fewer satisfaction operators, for example, the first-order
condition transitivity

∀a∀b∀c((R(a, b) ∧R(b, c)) → R(a, c))

is associated with the left-hand-side rule, which is interderivable with the
simpler right-hand-side rule:
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@a♢b @b♢c

@a♢c

♢b @b♢c

♢c

Showing that the two rules can simulate each other is very simple; note that
simulating the left-hand-side rule with the right-hand-side rule requires the
(Term) rule, and the converse direction requires the (Name) rule. However,
the scope of such simplifications seems to be limited since occurrences of
only one satisfaction operator are removed (involving a nominal referring
to the actual world).

Given a basic geometric theory T, we say that model M for hybrid logic
is a T-model if and only if M∗ |= θ for every formula θ ∈ T, where M∗ is
the obvious first-order model corresponding to the hybrid-logical model M.
In other words, a T-model is a model where the first-order condition on the
accessibility relation expressed by the basic geometric theory T is satisfied
(so it is really a requirement on the frame on which the model is based).

5.1. Completeness and analyticity of the extended system

In the present subsection, we prove a completeness result saying that any
valid formula has a derivation in N′ +T satisfying a version of the subfor-
mula property. This is a straightforward extension of a completeness result
for N′ given in the appendix of [7], which in turn is a sharpened version
of a completeness result for N′ given in Section 4.3 of the book [6] (Theo-
rem 4.1 in [6], which does not involve the subformula property). The proof
in this subsection is similar to the proof in the appendix of [7], but we have
included the proof anyway to make the present paper more self-contained.
However, the reader wanting to follow the details of our proof is advised to
obtain a copy of [6].

We first extend the translation (·)◦ from N to N′ given in Section 4.3
of [6] such that it translates a derivation π in N + T to a derivation π◦

in N′ + T. The extended version of (·)◦ simply translates an instance of
a proof-rule (Rθ) to itself. Note that this preserves the property that π
and π◦ have the same end-formulas and the same parcels of undischarged
assumptions. The following lemma intuitively says that all formulas in π◦

stem from π, that is, the translation (·)◦ does not add new structure to
formulas.

Lemma 5.1. Let π be a derivation in N + T. Any formula θ occuring in
π◦ has at least one of the following properties.
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1. θ occurs in π.

2. @aθ occurs in π for some satisfaction operator @a.

3. θ is a nominal a such that some formula @aψ occurs in π.

Proof: Induction on the structure of the derivation of π. Each case in
the translation (·)◦ is checked.

Note that in Item 1 of the lemma above, the formula θ must be a
satisfaction statement since since N + T is a labelled system, and hence,
all formulas in π are satisfaction statements. In what follows @dΓ denotes
the set of formulas {@dξ | ξ ∈ Γ}.

Theorem 5.2. Let π be a normal derivation of @dϕ from @dΓ in N +T.
Any formula θ occuring in π◦ has at least one of the following properties.

1. θ is of the form @aψ such that ψ is a subformula of ϕ, some formula
in Γ, or some formula of the form c or ♢c.

2. θ is a subformula of ϕ, some formula in Γ, or some formula of the
form c or ♢c.

3. θ is a nominal.

4. θ is of the form @a(p → ⊥) or p → ⊥ where p is a subformula of ϕ
or some formula in Γ.

5. θ is of the form @a⊥ or ⊥.

Proof: Follows from Lemma 5.1 above together with Theorem 2.4 (called
the quasi-subformula property) in Subsection 2.2.5 of [6].

We are now ready to give our main result, which, as indicated above,
is a sharpened version of the completeness result given in Theorem 4.1 in
Section 4.3 of the book [6].

Theorem 5.3. Let ϕ be a formula and Γ a set of formulas. The first
statement below implies the second statement.

1. For any T-model M, any world w, and any assignment g, if M, g, w |=
ξ for any formula ξ ∈ Γ, then M, g, w |= ϕ.

2. There exists of derivation of ϕ from Γ in N′+T such that any formula
θ occuring in the derivation has at least one of the five properties listed
in Theorem 5.2.



158 Torben Braüner

Proof: Let d be a new nominal. It follows that for any T-model M and
any assignment g, if, for any formula @dξ ∈ @dΓ, it is the case that M, g |=
@dξ, then M, g |= @dϕ. By completeness of the system N+T, Theorem 2.2
in Subsection 2.2.3 of the book [6], there exists a derivation π of @dϕ from
@dΓ in N +T. By normalization, Theorem 2.3 in Subsection 2.2.5 of the
book, we can assume that π is normal. Then by Theorem 5.2, the derivation
π◦ satisfies at least one of the five properties listed in the theorem. We now
apply the rules (@I), (@E), and (Name) to π◦ obtaining a derivation of ϕ
from Γ in N′ +T, also satisfying at least one of the five properties.

Note that if the formula occurrence θ mentioned in the theorem is not
of one of the forms covered by Item 4, and does not have any of a finite
number of very simple forms not involving ordinary propositional symbols,
then either θ is a subformula of ϕ or some formula in Γ, or θ is of the form
@aψ such that ψ is a subformula of ϕ or some formula in Γ. This is the
version of the subformula property we intended to prove.

We remark that if the proof system N′ +T is extended with rules for
the standard hybrid-logical binders ↓ and ∀, then the theorem above still
holds.

Now, the proof of Theorem 5.3 is via a translation from the labelled
proof-system N+T, and this labelled system can2 be equipped with a set
of normalizing reduction rules such that normal derivations satisfy a version
of the subformula property, and if a normal derivation in the labelled system
is translated into the non-labelled system N′ + T, then it turns out that
the resulting non-labelled derivation satisfies the version of the subformula
property in Theorem 5.3. Thus, we have proved analyticity of N′ +T, not
via a normalization result for this system, but via a normalization result
for a labelled system.

The strategy to obtain analyticity of a proof-system via a translation
from another system already known to be analytic, has been used elsewhere,

2Thus, it seems that it is easier to find normalizing reduction rules for labelled proof-
systems that for non-labelled systems, but even for labelled systems it is not always
possible: For a counter-example, see Subsection 9.4.1 of the book [6] which gives a pair
of labelled introduction and elimination rules (for a new unary connective ♯), similar to
the labelled hybrid-logical introduction and elimination rules for the modal operator □,
but when equipped with the obvious reduction rule, it turns out that a derivation π can
be defined that cannot be normalized, that is, when the reduction rule is applied to the
one and only maximum formula in π, a new copy of the derivation π is created.
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for example, Chapter 4 of the book [14] gives two analytic natural deduc-
tion systems for classical logic, and analyticity is proved by translation of
derivations from another analytic system called KE.3

6. Conclusion and further work

Several types of proof-systems generalizes the standard formats of natural
deduction and Gentzen sequent systems that we have considered in this
note, for example hypersequent systems and Nuel Belnap’s display logic.
Such systems have also been given for modal logics, see [9] and [23], and
it is an interesting question whether these systems can shed light on the
the issues raised in the present paper, in particular the combination of
analyticity and lack of normalization for non-labelled hybrid logical natural
deduction systems.
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[4] T. Braüner, Two Natural Deduction Systems for Hybrid Logic: A Compa-

rison, Journal of Logic, Language and Information, vol. 13 (2004),

pp. 1–23, DOI: https://doi.org/10.1023/A:1026187215321.
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