Takao Inoué (1)

A SOUND INTERPRETATION OF LEŚNIEWSKI'S EPSILON IN MODAL LOGIC KTB

Abstract

In this paper, we shall show that the following translation I^{M} from the propositional fragment $\mathbf{L}_{\mathbf{1}}$ of Leśniewski's ontology to modal logic KTB is sound: for any formula ϕ and ψ of $\mathbf{L}_{\mathbf{1}}$, it is defined as $(\mathrm{M} 1) I^{M}(\phi \vee \psi)=I^{M}(\phi) \vee I^{M}(\psi)$, (M2) $I^{M}(\neg \phi)=\neg I^{M}(\phi)$, $(\mathrm{M} 3) I^{M}(\epsilon a b)=\diamond p_{a} \supset p_{a} . \wedge . \square p_{a} \supset \square p_{b} . \wedge . \Delta p_{b} \supset p_{a}$, where p_{a} and p_{b} are propositional variables corresponding to the name variables a and b, respectively. In the last section, we shall give some comments including some open problems and my conjectures.

Keywords: Leśniewski's ontology, propositional ontology, translation, interpretation, modal logic, KTB, soundness, Grzegorczyk's modal logic.

2020 Mathematical Subject Classification: 03B45, 03B60, 03B70.

\section*{1. Introduction and I^{M}}

Inoué [9] initiated a study of interpretations of Leśniewski's epsion ϵ in the modal logic \mathbf{K} and its certain extensions. That is, Ishimoto's propositional fragment $\mathbf{L}_{\mathbf{1}}$ (Ishimoto [12]) of Leśniewski's ontology \mathbf{L} (refer to Urbaniak [19]) is partially embedded in \mathbf{K} and in the extensions, respectively, by the following translation I from $\mathbf{L}_{\mathbf{1}}$ to them: for any formula ϕ and ψ of $\mathbf{L}_{\mathbf{1}}$, it is defined as

[^0](I1) $I(\phi \vee \psi)=I(\phi) \vee I(\psi)$,
(I2) $I(\neg \phi)=\neg I(\phi)$,
(I3) $I(\epsilon a b)=p_{a} \wedge \square\left(p_{a} \equiv p_{b}\right)$,
where p_{a} and p_{b} are propositional variables corresponding to the name variables a and b, respectively. Here, " $\mathbf{L}_{\mathbf{1}}$ is partially embedded in \mathbf{K} by $I "$ means that for any formula ϕ of a certain decidable nonempty set of formulas of $\mathbf{L}_{\mathbf{1}}$ (i.e. decent formulas (see $\S 3$ of Inoué [10])), ϕ is a theorem of $\mathbf{L}_{\mathbf{1}}$ if and only if $I(\phi)$ is a theorem of \mathbf{K}. Note that I is sound. The paper [10] also proposed similar partial interpretations of Leśniewski's epsilon in certain von Wright-type deontic logics, that is, ten Smiley-Hanson systems of monadic deontic logic and in provability logic GL, respectively. (See Åqvist [1] and Boolos [3] for those logics.)

The interpretation I is however not faithful. A counterexample for the faithfulness is, for example, $\epsilon a c \wedge \epsilon b c . \supset . \epsilon a b \vee \epsilon c c$ (for the details, see [10]). Blass [2] gave a modification of the interpretation and showed that his interpretation T is faithful, using Kripke models. Inoué [11] called the translation Blass translation (for short, B-translation) or Blass interpretation (for short, B-interpretation). The translation B from $\mathbf{L}_{\mathbf{1}}$ to \mathbf{K} is defined as follows: for any formula ϕ and ψ of $\mathbf{L}_{\mathbf{1}}$,
$(\mathrm{B} 1) B(\phi \vee \psi)=B(\phi) \vee B(\psi)$,
(B2) $B(\neg \phi)=\neg B(\phi)$,
$(\mathrm{B} 3) B(\epsilon a b)=p_{a} \wedge \square\left(p_{a} \supset p_{b}\right) \wedge . p_{b} \supset \square\left(p_{b} \supset p_{a}\right)$,
where p_{a} and p_{b} are propositional variables corresponding to the name variables a and b, respectively. Inoué [11] extended Blass's faithfulness result for many normal modal logics, provability logic and von Wright-type deontic logics including $\mathbf{K 4}, \mathbf{K D}, \mathbf{K B}, \mathbf{K D 4}$, etc, GL and ten SmileyHanson systems of monadic deontic logic, using model constructions based on Hintikka formula (cf. Kobayashi and Ishimoto [13]).

In this paper, we first propose a translation I^{M} from \mathbf{L}_{1} in modal logic $\mathbf{K T B}$, which will be specified in $\S 2$.

DEfinition 1.1. A translation I^{M} of Leśniewski's propositional ontology $\mathbf{L}_{\mathbf{1}}$ in modal logic KTB is defined as follows: for any formula ϕ and ψ of \mathbf{L}_{1},
$(\mathrm{M} 1) I^{M}(\phi \vee \psi)=I^{M}(\phi) \vee I^{M}(\psi)$,
$(\mathrm{M} 2) I^{M}(\neg \phi)=\neg I^{M}(\phi)$,
$(\mathrm{M} 3) I^{M}(\epsilon a b)=\diamond p_{a} \supset p_{a} . \wedge . \square p_{a} \supset \square p_{b} . \wedge . \diamond p_{b} \supset p_{a}$,
where p_{a} and p_{b} are propositional variables corresponding to the name variables a and b, respectively.

We call I^{M} to be M-translation or M-interpretation.
In the following $\S 2$, we shall collect the basic preliminaries for this paper. In $\S 3$, using proof theory, we shall show that I^{M} is sound, as the main theorem of this paper. In $\S 4$, we shall give some comments including some open problems and my conjectures.

2. Propositional ontology L_{1} and modal logic KTB

Let us recall a formulation of $\mathbf{L}_{\mathbf{1}}$, which was introduced in [12]. The Hilbert-style system of it, denoted again by $\mathbf{L}_{\mathbf{1}}$, consists of the following axiom-schemata with a formulation of classical propositional logic CP as its axiomatic basis:
$(\mathrm{Ax} 1) \quad \epsilon a b \supset \epsilon a a$,
$(\mathrm{Ax} 2) \quad \epsilon a b \wedge \epsilon b c . \supset \epsilon a c$,
$(\mathrm{Ax} 3) \quad \epsilon a b \wedge \epsilon b c . \supset \epsilon b a$,
where we note that every atomic formula of $\mathbf{L}_{\mathbf{1}}$ is of the form $\epsilon a b$ for some name variables a and b and a possible intuitive interpretation of $\epsilon a b$ is 'the a is b '. We note that (Ax1), (Ax2) and (Ax3) are theorems of Leśniewski's ontology (see Słupecki [17]).

The modal logic \mathbf{K} is the smallest logic which contains all instances of classical tautology and all formulas of the forms $\square(\phi \supset \psi) \supset . \square \phi \supset$ $\square \psi$ being closed under modus ponens and the rule of necessitation (for \mathbf{K} and basics for modal logic, see Bull and Segerberg [4], Chagrov and Zakharyaschev [5], Fitting [6], Hughes and Cresswell [8] and so on).

We recall the naming of modal logics as follows (refer to e.g. Poggiolesi [15] and Ono [14], also see Bull and Segerberg [4]):
$\mathbf{K T}: \mathbf{K}+\square \phi \supset \phi(\mathbf{T}$, reflexive relation $)$
$\mathbf{K B}: \mathbf{K}+\phi \supset \square \diamond \phi(\mathbf{B}$, symmetric relation)
$\mathbf{K T B}: \mathbf{K T}+\mathbf{B}$ (reflexive and symmetric relation).

3. The soundness of I^{M}

Theorem 3.1. (Soundness) For any formula ϕ of $\mathbf{L}_{\mathbf{1}}$, we have

$$
\vdash_{\mathbf{L}_{1}} \phi \Rightarrow \vdash_{\mathbf{K T B}} I^{M}(\phi) .
$$

Proof: Let ϕ be a formula of $\mathbf{L}_{\mathbf{1}}$. We shall prove the meta-implication by induction on derivation.
Basis.
(Case 1) We shall first treat the case for (Ax1). Let a and b be name variables. Then we have the following inferences in KTB:
(*) $I^{M}(\epsilon a b)$ (Assumption)
(1.1) $\diamond p_{a} \supset p_{a}$ from (*) and Definition 1.1) \dagger
(1.2) $\square p_{a} \supset \square p_{a}($ true in $\mathbf{K}) \dagger$
(1.3) $\diamond p_{a} \supset p_{a} . \wedge . \square p_{a} \supset \square p_{a} . \wedge . \diamond p_{a} \supset p_{a}($ from (1.1) and (1.2))
(1.4) $I^{M}(\epsilon a a)$ (from (1.3) and Definition 1.1)
(1.5) $I^{M}(\epsilon a b \supset \epsilon a a)($ from $(*),(1.4)$ and Definition 1.1).
(Case 2) Next we shall deal with the case of (Ax2). Let a, b and c be name variables. Then we have the following inferences in KTB:

```
(**) I}\mp@subsup{I}{}{M}(\epsilonab\wedge\epsilonbc)(Assumption
(2.1) I I
(2.2) I}\mp@subsup{}{}{M}(\epsilonbc) (from (**) and Definition 1.1
(2.3)}\diamond\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{}.\wedge.\square\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{b}{}.\wedge.\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (2.1) and Def 1.1)
(2.4) }\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{b}{}.\wedge.\square\mp@subsup{p}{b}{}\supset\square\mp@subsup{p}{c}{}.\wedge.\diamond\mp@subsup{p}{c}{}\supset\mp@subsup{p}{b}{}(\mathrm{ from (2.2) and Def 1.1)
(2.5) }\diamond\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (2.3)) }
(2.6) }\square\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{b}{}(\mathrm{ (from (2.3))
(2.7) }\square\mp@subsup{p}{b}{}\supset\square\mp@subsup{p}{c}{}\mathrm{ (from (2.4))
(2.8) }\square\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{c}{}(\mathrm{ (from (2.6) and (2.7)) †
(2.9) }\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (2.3))
(2.10)}\square(\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{})\mathrm{ (from (2.9) and the rule of necessitation)
(2.11) }\square\diamond\mp@subsup{p}{b}{}\supset\square\mp@subsup{p}{a}{}\mathrm{ (from (2.10) with a true inference in K)
(2.12)}\square\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{}\mathrm{ (true in KT)
(2.13)}\square\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (2.11) and (2.12))
```

```
(2.14) pb \supset\square\diamond\mp@subsup{p}{b}{}(\mathrm{ true in KB)}
(2.15)}\diamond\mp@subsup{p}{c}{}\supset\mp@subsup{p}{b}{}(\mathrm{ from (2.4))
(2.16)}\diamond\mp@subsup{p}{c}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (2.13) and (2.14) and (2.15)) }
(2.17)}\diamond\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{}.\wedge.\square\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{c}{}.\wedge.\diamond\mp@subsup{p}{c}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (2.5), (2.8) and (2.16))
(2.18) I}\mp@subsup{I}{}{M}(\epsilonac) (from (2.17) and Definition 1.1
(2.19) I}\mp@subsup{I}{}{M}(\epsilonab\wedge\epsilonbc.\supset\epsilonac)(from (**), (2.18) and Definition 1.1)
```

(Case 3) Lastly we shall proceed to the case of (Ax 3). Let a, b and c be name variables. Then we also have the following inferences in KTB:

```
(***) I}\mp@subsup{}{}{M}(\epsilonab\wedge\epsilonbc) (Assumption
(3.1) I I
(3.2) I}\mp@subsup{I}{}{M}(\epsilonbc)(from (***) and Definition 1.1
(3.3)}\diamond\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{}.\wedge.\square\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{b}{}.\wedge.\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (3.1) and Def 1.1)
(3.4)}\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{b}{}.\wedge.\square\mp@subsup{p}{b}{}\supset\square\mp@subsup{p}{c}{}.\wedge.\diamond\mp@subsup{p}{c}{}\supset\mp@subsup{p}{b}{}(\mathrm{ from (3.2) and Def 1.1)
(3.5) }\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{b}{}(\mathrm{ from (3.4)) }
(3.6)}\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (3.3))
(3.7) }\square(\diamond\mp@subsup{p}{b}{}\supset\mp@subsup{p}{a}{})\mathrm{ (from (3.6) and the rule of necessitation)
(3.8) }\checkmark>\mp@subsup{p}{b}{}\supset\square\mp@subsup{p}{a}{}\mathrm{ (from (3.7) with a true inference in K)
(3.9) pb \supset\square\diamond
(3.10) }\square\mp@subsup{p}{b}{}\supset\mp@subsup{p}{b}{}(\mathrm{ true in KT)
(3.11) }\square\mp@subsup{p}{b}{}\supset\square\mp@subsup{p}{a}{}(\mathrm{ from (3.8) and (3.9) and (3.10)) }
(3.12)}\diamond\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{}(\mathrm{ from (3.3))
(3.13) p}\mp@subsup{p}{a}{}\supset\square\diamond\mp@subsup{p}{a}{}(\mathrm{ true in KB)
(3.14) }\diamond\mp@subsup{p}{a}{}\supset\square\diamond\mp@subsup{p}{a}{}(\mathrm{ from (3.12) and (3.13))
(3.15) }\square(\diamond\mp@subsup{p}{a}{}\supset\mp@subsup{p}{a}{})\mathrm{ (from (3.12) and the rule of necessitation)
(3.16) }\square\diamond\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{a}{}(\mathrm{ from (3.15) with a true inference in K)
(3.17) }\diamond\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{a}{}(\mathrm{ from (3.14) and (3.16))
(3.18) }\square\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{b}{}(\mathrm{ from (3.3))
(3.19)}\diamond\mp@subsup{p}{a}{}\supset\square\mp@subsup{p}{b}{}(\mathrm{ from (3.17) and (3.18))
(3.20) }\square\mp@subsup{p}{b}{}\supset\mp@subsup{p}{b}{}(\mathrm{ true in KT)
(3.21) }\mp@subsup{p}{a}{}\supset\mp@subsup{p}{b}{}(\mathrm{ from (3.19) and (3.20)) }
```

$(3.22) \diamond p_{b} \supset p_{b} . \wedge . \square p_{b} \supset \square p_{a} . \wedge . \diamond p_{a} \supset p_{b}$
(from (3.5), (3.11) and (3.21))
(3.23) $I^{M}(\epsilon b a)$ (from (3.22) and Definition 1.1)
(3.24) $I^{M}(\epsilon a b \wedge \epsilon b c . \supset \epsilon b a)$ (from $(* * *),(3.23)$ and Definition 1.1).

Induction Steps. The induction step is easily dealt with. Suppose that ϕ and $\phi \supset \psi$ are theorems of $\mathbf{L}_{\mathbf{1}}$. By induction hypthesis, $I^{M}(\phi)$ and $I^{M}(\phi \supset \psi)\left(\leftrightarrow I^{M}(\phi) \supset I^{M}(\psi)\right)$ are theorems of KTB. By modus ponens, we obtain $\vdash_{\text {ктв }} I^{M}(\psi)$. Thus this completes the proof the theorem.

4. Comments

One motive from which I wrote [9] and [10] is that I wished to understand Leśniewski's epsilon ϵ on the basis of my recognition that Leśniewski's epsilon would be a variant of truth-functional equivalence \equiv. Namely, my original approach to the interpretation of ϵ was to express the deflection of ϵ from \equiv in terms of Kripke models. Another (hidden) motive of mine for I^{M} is to interpret $\mathbf{L}_{\mathbf{1}}$ in intuitionistic logic and bi-modal logic. It is wellknown that Leśniewski's epsilon can be interpreted by the Russellian-type definite description in classical first-order predicate logic with equality (see [12]). Takano [18] proposed a natural set-theoretic interpretation for the epsilon. To repeat, I do not deny the interpretation using the Russelliantype definite description and a set-theoretic one. I wish to obtain another interpretation of Leśniewski's epsilon having a more propositional character. We have the following direct open problems.

Open problem 1: Is I^{M} faithful?
Open problem 2: Find the set of other translations and modal logics in which $\mathbf{L}_{\mathbf{1}}$ is embedded. I think that there seems to be many possibilities.

Open problem 3: Can $\mathbf{L}_{\mathbf{1}}$ be embedded in S4.2? (See e.g. Hamkins and Löwe [7].)

Open problem 4: Can $\mathbf{L}_{\mathbf{1}}$ be embedded in Grzegorczyk's modal Logic? (See e.g. Savateev and Shamkanov [16])

My conjectures are the following.
Conjecture 4.1. I^{M} is faithful.

Conjecture 4.2. t seems that $\mathbf{L}_{\mathbf{1}}$ cannot be embedded in intuitionistic propositional logic.

Conjecture 4.3. It seems that $\mathbf{L}_{\mathbf{1}}$ can well be embedded in intuitionistic modal propositional logic.

Acknowledgements. I would like to thank anonymous referees for valuable comments which helped improve this paper.

References

[1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605-714, DOI: https://doi.org/10.1007/978-94-009-6259-0.
[2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217-223.
[3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183.
[4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1-82, DOI: https://doi.org/10.1007/978-94-009-6259-0.
[5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997).
[6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983), DOI: https://doi.org/10.1007/978-94-017-2794-5.
[7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793-1817, DOI: https://doi.org/10.1090/S0002-9947-07-04297-3.
[8] G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984).
[9] T. Inoué, Partial interpretation of Leśniewski's epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95-96.
[10] T. Inoué, Partial interpretations of Leśniewski's epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223-233.
[11] T. Inoué, On Blass translation for Leśniewski's propositional ontology and modal logics, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-021-09962-1.
[12] A. Ishimoto, A propositional fragment of Leśniewski's ontology, Studia Logica, vol. 36 (1977), pp. 285-299, DOI: https://doi.org/10.1007/ BF02120666.
[13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski's ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181-195, DOI: https://doi.org/10.1007/BF00370344.
[14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019), DOI: https://doi.org/10.1007/978-981-13-7997-0.
[15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/ 10.1007/978-90-481-9670-8.
[16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22-50, DOI: https://doi.org/10.1017/S1755020319000510.
[17] J. Supecki, S. Leśniewski's calculus of names, Studia Logica, vol. 3 (1955), pp. 7-71, DOI: https://doi.org/10.1007/BF02067245.
[18] M. Takano, A semantical investigation into Leśniewski's axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71-77, DOI: https://doi.org/10. 1007/BF00370810.
[19] R. Urbaniak, Leśniewski's Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-319-00482-2.

Takao Inoué
Meiji Pharmaceutical University
Department of Medical Molecular Informatics
Tokyo, Japan
Hosei University
Graduate School of Science and Engineering
Tokyo, Japan
Hosei University
Department of Applied Informatics
Faculty of Science and Engineering
Tokyo, Japan
e-mail: takaoapple@gmail.com

[^0]: Presented by: Patrick Blackburn
 Received: July 22, 2020
 Published online: November 9, 2021
 © Copyright by Author(s), Łódź 2021
 (C) Copyright for this edition by Uniwersytet Lódzki, Lódź 2021

