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COMPLETENESS, CATEGORICITY
AND IMAGINARY NUMBERS:
THE DEBATE ON HUSSERL1

Abstract

Husserl’s two notions of “definiteness” enabled him to clarify the problem of imag-

inary numbers. The exact meaning of these notions is a topic of much controversy.

A “definite” axiom system has been interpreted as a syntactically complete the-

ory, and also as a categorical one. I discuss whether and how far these readings

manage to capture Husserl’s goal of elucidating the problem of imaginary num-

bers, raising objections to both positions. Then, I suggest an interpretation of

“absolute definiteness” as semantic completeness and argue that this notion does

not suffice to explain Husserl’s solution to the problem of imaginary numbers.

Keywords: Husserl, completeness, categoricity, relative and absolute defi-
niteness, imaginary numbers.

1. Introduction

Since the publication of Hill [10] and Majer [17], much attention has been
devoted to Husserl’s two notions of “definiteness” (relative and absolute def-
initeness), which were introduced in a Double Lecture (henceforth, Dop-
pelvortrag) for the Göttingen Mathematical Society in 1901. These no-
tions enabled him “to clarify the logical sense of the computational tran-
sition through the ‘imaginary”’ and, in connection with that, to bring
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FPU15/00830. I thank the anonymous referee for his/her constructive comments and
suggestions.
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out the sound core of Hermann Hankel’s2 renowned, but logically un-
substantiated and unclear, “principle of the permanence of formal laws”
(Husserl [13], p. 97).

What Husserl describes as the “computational transition through the
‘imaginary’” is the extension of the number-concept3. The Principle of Per-
manence says that the progressive extension of the number-concept should
preserve (to the greatest extent possible) the arithmetical laws of the posi-
tive whole numbers. Strictly speaking, it asserts that the laws governing the
newly introduced numbers have to be consistent with the laws constraining
the old ones.

Husserl’s Doppelvortrag was an attempt to find a justification for this
Principle. A consensus has emerged that, according to Husserl, if every
level of the hierarchy of numbers has a definite axiom system, then the
extension of the number-concept can never lead to contradictions. There
is, however, disagreement in the literature as to the exact meaning of the
word “definite”. A passionate debate has opposed those like da Silva [4]
and [5], who read “definiteness” as syntactic completeness, and those like
Hartimo [8] and [9], who favor reading it in terms of categoricity. Cen-
trone [3] pointed out that Husserl himself seems to oscillate between both
characterizations.

In the present paper, I discuss the plausibility of the different interpre-
tations of “definiteness” in the literature. Is a syntactically complete axiom
system compatible with the extension of the number-concept? And a cate-
gorical one? I will provide a new interpretation of “absolute definiteness”4

(as semantic completeness) which is, I think, conceptually stronger. I will
also maintain that “definiteness” does not suffice to explain Husserl’s justi-
fication of the transition through the imaginary: the hierarchy of numbers
must contain a copy of the previous levels.

2Although the Principle of Permanence is discussed in Hankel [7], it was formulated
by Peacock.

3“Here I of course take the term ‘imaginary’ in the widest possible sense, according
to which also the negative, indeed even the fraction, the irrational number, and so forth,
can be regarded as imaginary” (Husserl [14], p. 412).

4In my opinion, a relatively definite theory is not semantically complete. However,
this would require a separate paper.
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2. State of the art

In the Doppelvortrag, Husserl’s notion of definiteness was introduced in a
twofold manner and served a double purpose. First of all, it shows the
perfect delimitation of a “domain” (or “sphere of existence”)5 by its axiom
system:

The further question: Would such a system be definite? It
would be definite if, for the demarcated sphere of existence,
for the given individuals, and for the individuals not given, no
further new axiom were possible (Husserl [14], p. 424).

Secondly, it guarantees that every meaningful proposition of the lan-
guage of the system is decided from the axioms:

A formal axiom system which contains no extra-essential closure
axiom is said to be a definite one if each proposition that has
a sense at all through the axiom system eo ipso falls under the
axiom system, be it as consequence or be it as contradiction
(Husserl [14], p. 431).

Almost thirty years after the Doppelvortrag, this duality between the
“full description of the domain” and “maximality of the axiom system”
remains invariable in Husserl’s definition of his central notion. He [13] ex-
plicitly asserted that, if a domain is wholly captured by an axiom system
(in modern terms, if a theory axiomatizes a structure), then every proposi-
tion constructed in the system has to be either a consequence of the axioms
or an “analytic contradiction” (see p. 96).

Husserl also split the notion of definiteness in relative (the axiom system
for “the whole and the fractional numbers”) and absolute definiteness6 (the
axiom system for the “continuous number sequence” i.e., for the reals) in
the context of the transition through the imaginary. The exact meaning of
these notions, as well as their role in the extension of the number-concept,
are matters of much controversy.

5Husserl speaks of “domain” (or “sphere of existence”) of a group of axioms in the
sense that a system of objects satisfies certain general laws. I will use the term “domain”
to refer to such a system of objects, because using the term “structure” seems quite
anachronistic (see Hodges [11] and Husserl [14], pp. 437–38).

6“Therefore, absolutely definite = complete, in Hilbert ’s sense” (Husserl [14], p. 127).
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2.1. Centrone

Centrone [3] maintained an interpretation of “relative definiteness” as syn-
tactic completeness and “absolute definiteness” as categoricity. Regarding
the extension of the number-concept, she makes the following claim:

The thesis that Husserl proposes in the Doppelvortrag is a con-
ditional claim: if T is consistent and syntactically complete
(definite) then every consistent extension of T is conservative,
so that the transition through the imaginary is justified (Cen-
trone [3], p. 178).

Syntactic completeness is a very unusual property of a set of sentences7,
because the set is so strong that, for every sentence ϕ of its language, either
ϕ or ¬ϕ has to be provable from the set. It follows that, if a sentence ψ
formulated in the language of a complete set T is not provable from T ,
then T ∪ {ψ} will be inconsistent. This property is often known as the
maximality of a consistent set.

But Centrone’s solution does not function. Suppose for the sake of
argument that T is a complete axiom system for the naturals. The sentence
ϕ := “there exists an x such that when added to 1 gives 0” is not provable
from T . Since T is complete, ¬ϕ has to be provable from T . Let T ′ be
an axiom system for the integers which is an extension of T . It is easy to
see that ϕ is a theorem of T ′, which means that the extension T ′ of T is
inconsistent. Thus, “definite” cannot be syntactically complete.

Furthermore, an extension T ′ of a theory T is conservative if T ′ is just
a theory containing T . More precisely, every sentence of the language of T
which is provable from T ′ is also a theorem of T . Is the extension of the
number-concept a conservative extension?

Let T and T ′ be the axiom systems for the fields of real and complex
numbers, respectively. While the reals can be ordered, there is no total or-
dering of the complexes that is compatible with the field operations. The
sentence ψ := “there exists an x such that x < 0 and −x < 0” is provable
from T ′ if we suppose that the complexes can be totally ordered. If Cen-
trone were right, then ψ would be also provable from T , which contradicts
the axioms of a total order. Consequently, the extension T ′ of T is not
conservative.

7A set of sentences is a theory (see Hodges [12], p. 33).
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Contrary to Centrone’s interpretation, Husserl did not believe that the
extension of the number-concept had to be conservative. In the double
lecture, he argued that the “expansion of the numbers series” leads to a
new domain in which new relations and elements may be defined:

The series of the positive whole numbers is a part of the series
of numbers that is infinite at both ends. This in turn is part
of the two-fold manifold of the complex numbers. The system
of the positive whole numbers is defined by certain elementary
relations. In these latter nothing is modified through expansion
of the number series [...] In the new domain new relations as well
as new elements may be defined. In the new domain there then
will be such conceivable relations as include the old elements
and old relations (Husserl [14], p. 457).

Husserl explicitly stated that a domain of numbers cannot be extended
in a way that the same axiom system describes the broader domain (see
[14], p. 427). If the same axiom system holds for both domains, then the
narrower domain will not be extended at all. New propositions must be
true in the broader domain (and hence the extension from T to T ′ cannot
be conservative).

2.2. Da Silva

Da Silva [4] and [5] read “relative definiteness” as syntactic completeness
relative to a particular set of expressions and “absolute definiteness” as
syntactic completeness. The former is the central notion for understanding
Husserl’s solution to the problem of imaginary numbers:

Husserl’s solution for the problem of imaginary elements has, I
believe, the following form: given systems A and B such that
A and B are consistent and B extends A, let D be the formal
manifold determined by A [...] and suppose that A is complete
relative to the assertions of LD(A), i.e., the assertions of L(A)
with all variables restricted to D. Now, if any of these assertions
(i.e., assertions of LD(A)) is proved byB, it can also be accepted
from the perspective of A (Da Silva [4], p. 423).

A theory is (syntactically) complete relative to a particular set of ex-
pressions ∆ of its language if, for every sentence ϕ ∈ ∆, either ϕ or ¬ϕ has
to be a theorem of the theory. Therefore, the set of expressions ∆ is the
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collection of all statements that the theory can either prove or disprove, and
it is called its apophantic domain8. This domain is obtained by restricting
quantification to the domain of D, so the sentences of ∆ refer exclusively to
the narrower domain (i.e., they do not contain terms denoting imaginary
numbers).

The restriction of syntactic completeness to a particular set of sentences
intends to avoid the difficulties of Centrone’s approach. The sentence ϕ :=
“there exists an x such that when added to 1 gives 0” is now undecidable
starting from the axioms of the natural numbers, because it refers to a
number which belongs to the integers. Theorems of T are preserved in
theories that extend T provided that they are about the narrower domain.
For this reason, the provability of ϕ by means of the axioms of the integers
does not imply a contradiction anymore. Does da Silva’s restriction explain
the transition through the imaginary?

Let T and T ′ be the axiom systems for the rationals and the reals, re-
spectively. The sentence θ := “

√
2 is an irrational number” does not belong

to the apophantic domain of T , as it refers to a number which is imagi-
nary from the point of view of T . If da Silva were right, then θ would be
undecidable starting from the axioms of the rationals. However, the proof
that shows the irrationality of

√
2 can be achieved by means of T and the

rational root theorem. Hence, da Silva’s restriction of syntactic complete-
ness to a particular set of sentences does not account for the extension of
the number-concept.

In the Doppelvortrag, Husserl claimed that the truth-value of an ex-
pression9 that alludes to a broader domain is decided on the basis of the
axioms for the narrower, for the reason that it is false in the old domain.

Let us consider, for example, the axiom system of the whole
numbers, positive and negative. Then x2 = −a, x = ±

√
−a

certainly has a sense. For square is defined, and −a, and =
also. But “in the domain” there exists no

√
−a. The equation

8“If an assertion belongs to the apophantic domain of a system, then it is either true
on the basis of the axioms of the system, if they can prove it, or it is false on the basis
of these axioms, if they can prove its negation” (Da Silva [4], p. 427).

9Since quantifiers had not been introduced in 1901, Husserl’s “expressions” are prob-
ably just equations or operations among numbers. However, in the scholarly debate on
Husserl these “expressions” are understood as “sentences” (in the modern sense). See,
for instance, da Silva [4] and da Silva [5].
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is false in the domain, inasmuch as such an equation cannot
hold at all in the domain (Husserl [14], pp. 438–39).

He also defended that an axiom system is definite if “it leaves open or
undecided no question related to the domain and meaningful in terms of
this system of axioms” ([14], pp. 438), which implies that no proposition
will be undecidable from a definite set of axioms.

2.3. Hartimo

Hartimo [8] and [9] interpreted “relative” and “absolute definiteness” as
categoricity. The usage of imaginary numbers in calculations is justified if
both the narrower and the broader domain are fully described by a cate-
gorical set of axioms.

Our suggestion is that Husserl’s remarks in the Doppelvortrag
are best understood if by the formal domain Husserl means
something like a domain of a categorical theory [...] Each ax-
iom system defines a unique formal domain that is included in
the unique formal domain of the more extended axiom system
(Hartimo [8], pp. 302–03).

A theory is categorical if for every pairM and N of its models there is
an isomorphism between M and N . In other words, a categorical theory
has exactly only one model. It still remains to be explained how cate-
goricity relates to justifying the extension of the number-concept. Hartimo
[8] suggested that, according to Husserl, categoricity implies some kind of
“maximality” which guarantees that the transition through the imaginary
can never lead to contradictions. She also [9] argued that this maximality
corresponds to syntactic completeness.

In favor of Hartimo’s reading, it has to be said that the axiomatically
constructed second-order arithmetic of natural numbers is categorical. But
it is also incomplete by Gödel’s theorems. Hartimo alleged that Husserl’s
view of “definiteness” combines expressive power (categoricity) and deduc-
tive power (syntactic completeness). Both ideals combined, which are not
simultaneously attainable in the interesting cases, were called “monomath-
ematics” by Tennant [23].

From these ideals, we can draw some important conclusions regarding
the problem of imaginary numbers. If a definite axiom system is categorical
and complete, then Hartimo’s proposal is open to the same objections as
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Centrone’s. If it is categorical and complete relative to a particular set of
expressions, then Hartimo is forced to address the objections against da
Silva.

In short, it seems that the interpretation of “definiteness” as syntactic
completeness (or implying syntactic completeness) does not make plausible
Husserl’s idea of how the number-concept should be extended.

3. Semantic completeness

In a lecture probably delivered in 1939, which Tarski never published and
entitled “On the Completeness and Categoricity of Deductive Systems”10,
he introduced the notion of “semantic completeness”. After remarking that
every theory affected by Gödel’s first incompleteness theorem is essentially
incomplete (i.e., it always contains undecidable propositions), Tarski aimed
to present semantic analogues of syntactic completeness (he called “abso-
lute completeness” to syntactic completeness):

On the basis of the foregoing we see that absolute complete-
ness occurs rather as an exception in the domain of the deduc-
tive sciences, and by no means can it be treated as a universal
methodological demand. In this connection, I want to call your
attention to certain concepts very closely related to the concept
of absolute completeness, which are the result of a weakening
of this concept and whose occurrence is not such an exceptional
phenomenon. (Tarski, [22], p. 488).

Tarski believed that the notion of provability developed in modern logic
was not the formal counterpart of the intuitive concept of consequence11.
For this reason, the notion of semantic completeness is obtained by replac-
ing “provability” with “logical consequence” in the definition of syntactic
completeness. A (consistent) theory is semantically complete if, for every
sentence ϕ of its language, ϕ or ¬ϕ is a logical consequence of the axioms.
Awodey and Reck [1] stated the following four equivalent conditions for
semantic completeness:

1. For all sentences ϕ and all modelsM and N of T , if |=M ϕ
then |=N ϕ.

10It is published in Mancosu [18].
11See Tarski [21], p. 409 and Tarski [22], p. 489.
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2. For all sentences ϕ, either T |= ϕ or T |= ¬ϕ.

3. For all sentences ϕ, either T |= ϕ or T ∪ {ϕ} is not satis-
fiable.

4. There is no sentence ϕ such that both T∪{ϕ} and T∪{¬ϕ}
are satisfiable (p. 3).

As Centrone [3] rightly noticed, one cannot seriously defend that Hus-
serl already distinguished between the syntactic notion of provability and
the semantic concept of logical consequence. However, the interpretation
of “definiteness” as semantic completeness, instead of syntactic complete-
ness, certainly makes more plausible Husserl’s attempts to link the full
description of a domain with the maximality of its axiom system.

To begin with, it is clear that a semantically complete theory is max-
imal in some general sense. Consider, for instance, the fourth condition
above. It corresponds to Carnap’s notion of “non-forkability”12, which was
identified by Fraenkel [6] and states that there is no sentence ϕ (of the lan-
guage of T ) such that T ∪{ϕ} and T ∪{¬ϕ} have a model. In other words,
a theory is non-forkable if it does not branch out to other sets of sentences
containing both ϕ and ¬ϕ. A proof of the implication from semantic com-
pleteness to relative completeness, which Tarski considered equivalent to
non-forkability, is given in Mancosu [18] (see pp. 457–58).

The implication from categoricity to semantic completeness also
holds13. We saw that reading (absolute and relative) definiteness as cate-
goricity implying syntactic completeness weakened Husserl’s position, be-
cause categoricity and syntactic completeness are not both simultaneously
attainable for the interesting cases. In contrast, Tarski [22] showed that
every categorical theory – semantically categorical, in Tarski’s terminology
– is semantically complete.

Finally, a few words about the transition through the imaginary. If ac-
cording to Husserl the axiom systems for the naturals, integers, rationals,
reals, and complexes must be definite, then these systems must be seman-
tically complete. Otherwise, my interpretation will be flawed. Fortunately:

We know many systems of sentences that are categorical; we
know, for instance, categorical systems of axioms for the arith-
metic of natural, integral, rational, real, and complex numbers,

12See Carnap [2], pp. 130–33.
13See Carnap [2], p. 138, and Lindenbaum and Tarski [15], pp. 390–92.
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for the metric, affine, projective geometry of any number of
dimensions etc [...] From theorems I and II, we see that all
mentioned systems are at the same time semantically or rela-
tively complete. Thus, in opposition to absolute completeness,
relative or semantical completeness occurs as a common phe-
nomenon (Tarski [22], p. 492).

For instance, from the categoricity of second-order Peano arithmetic
we conclude that this theory is semantically complete (see Manzano [19],
p. 128). One could be tempted to infer that the extension of the number-
concept will be justified if every logical consequence of T (the axiom system
for the narrower domain) is likewise a logical consequence of T ′ (the axiom
system for the broader one), but this is clearly not true. Instead, I will
argue that such an extension is permitted iff every sentence which is true
in the narrower domain M is also true in the copy of M contained in the
broader domain N . In model theory, we say that there is an embedding of
M in N .

4. Not a sufficient condition

The debate on Husserl’s notions of definiteness presupposes that a defi-
nite axiom system is a sufficient condition for the transition through the
imaginary. But there is another necessary condition that has not been em-
phasized as deserved in the literature. Let me quote the entire relevant
passage.

According to this the following general law seems to result: A
transition through the imaginary is permitted 1) if the imagi-
nary can be formally defined in a consistent and comprehensive
system of deduction, and 2) if the original domain of deduc-
tion when formalized has the property that every proposition
falling within that domain is either true on the basis of the ax-
ioms of that domain or else is false on the same basis (i.e., is
contradictory to the axioms).
However, it is easily seen that this formulation does not suffice,
although it already brings to expression the most essential part
of the truth [...]
But there is still the question whether the derived propositions
of the broader domain fall in this sense within the narrower
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domain. If that is not determined in advance, we can say abso-
lutely nothing about it (Husserl [14], pp. 428–29).

There are two points that are important here. First, Husserl highlights
the role of consistency and definiteness in the extension of the number-
concept. The axiom system for the original domain has to be consistent
and definite. Second, he claims that both requirements do not suffice.
Propositions about the narrower domain but obtained from the axioms of
the broader are permitted if they are true propositions in the narrower
domain14. The question is: How can such a result be established?

In the passages following the above, Husserl argues that this result
can be proved if the extension of the number-concept does not induce new
determinations on the old domain. For instance, the sentence χ := “there
exists an x whose square is −1”, which extends the number-concept when
added to the axiom system for the reals, does not define any arithmetical
law of the real numbers. Husserl believed that, “if I expand an M0 to M,
then theM0 remains inM thus as structure still anM0. It is not thereby
modified in species” (Husserl [14], p. 456).

Notice that for Husserl, the broader domain must contain a copy of the
narrower one. The textual evidence for this is given in the first appendix
of his Doppelvortrag :

ME is to be an expansion of M0. Thus ME consists of the
elements ofM0 plus other elements. But that does not suffice.
TheM0 must be a part ofME . ME has a part that falls under
the concept M0. But that too is not sufficient. The expansion
to ME must not disturb M0 as that which it is, and above all
must not specialize it (Husserl [14], p. 454).

If a manifold is given to me as anM0, thenM is an expansion
of M0 if M0 undergoes no further “specialization” within M
(Husserl [14], p. 456).

Furthermore, in the Doppelvortrag he stated that every domain of num-
bers of a lower level is completely contained in the higher levels. When a
domain is contained in another one, Husserl explicitly speaks about “ex-
pansion” of the narrower domain or “contraction” of the broader one (see

14“The inference from the imaginary is permitted in the singular case or for a class,
if we can know in advance and can see that for this case or for this class the inference is
decided by the narrower system” (Husserl [14], p. 437).
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[14], p. 421). If every object a of a domain M must occur in N , and if
every operation f defined onM must be defined on N , then, Husserl says,
M is contained in N . The inclusion of the narrower domain as a part of
the broader one “is the presupposition for the possibility of the transition
through the Imaginary” (Husserl [14], p. 451).

This “presupposition” is also coherent with the construction of num-
bers. As it is well-known, the hierarchy of numbers is formally expressed as
N ⊂ Z ⊂ Q ⊂ R ⊂ C. However, these inclusions are an abuse of notation
because the set of integers is a quotient set of N × N; the set of rationals
is a quotient set of Z × Z∗; the set of real numbers is the set of all the
Dedekind cuts; and the set of complex numbers is the set R × R. Let me
briefly explain why the construction of numbers speaks in favor of Husserl’s
presupposition.

The inclusion N ⊂ Z really expresses the identification of N with Z+,
which means that there is an isomorphism between N and the subset Z+

of Z. Therefore, we can put into one-one correspondence every number
n of the naturals with every number [(n, 0)] of Z+. Likewise, Q contains
an ordered ring isomorphic to the ordered ring of the integers, and so on.
Every level of the hierarchy of numbers contains a copy of the previous
levels, which is mathematically indistinguishable from them. Hence, the
extension of the number-concept does not introduce new determinations
on the narrower domains, just as Husserl required.

5. Isomorphism and elementary equivalence

At the beginning of the Doppelvortrag, Husserl faces the problem of cal-
culating with those numbers which are “absurd” or “imaginary” from the
point of view of the original domain15. The main challenge, related to the
Principle of Permanence, was introduced next.

How is it to be explained that one can operate with the absurd
according to rules, and that, if the absurd is then eliminated
from the propositions, the propositions obtained are correct?
(Husserl [14], p. 433).

15“Imaginary objects = objects which do not occur in A, are not defined there, are not
established by means of the axioms and existential definitions of A, so that, therefore,
if we regard A as the axiom system of a domain which has no other axioms – and thus
also no other objects – those objects are in fact ‘impossible”’ (Husserl [14], p. 433).
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Before looking at this passage in detail, I want to call your atten-
tion to Husserl’s concept of “proposition’.” He argued that the equation
“7 + 5 = 12” is a proposition, which is correct iff its truth necessarily fol-
lows from the definitions of the numbers “7’,”‘ ‘5,” and “12,” and from
the definition of addition (see Husserl [14], p. 194). If we extend the
number-concept to solve the equation “7 + 5 + x = 0’,” then our domain
of numbers must include the number “−12,”, which is “absurd” from the
point of view of the naturals. But we still can single out propositions about
the old domain (i.e., equations without imaginary numbers). The question
is: Why correct propositions about natural numbers, such as “7 + 5 = 12”,
are still correct if we restrict a broader domain of numbers to the copy of
the naturals contained in such a domain?

Consider, for instance, the truth of the proposition “7 + 5 = 12” in the
domain of the positive integers. This proposition is true in both the nat-
ural numbers and the positive integers because the result of adding “7Z”
(the equivalence class representing the number “7”) to “5Z” (the equiva-
lence class representing the number “5”) is “12Z” (the equivalence class
representing the number “12”). Let h be the isomorphism between N and
Z+. More formally, we would say that “7 + 5 = 12” is true in the positive
integers, for the reason that h(7) + h(5) = h(7 + 5).

We only need to generalize these reflections on the preservation of truth
to arrive at the solution of the problem quoted above. True propositions
of a certain domain must also be true propositions of every isomorphic
domain. In contemporary model theory, the isomorphism theorem16 states
that, if there is an isomorphism between M and N , then every formula ϕ
satisfied by M will be satisfied by N . Thus, every n-tuple a1, ..., an of M
satisfies ϕ if h(a1, ..., an) satisfies ϕ. It also establishes that, if a term t
denotes an individual a inM, then its denotation in N will be h(a), where
h is the isomorphism from M to N .

Although many commentators have read Husserl’s Doppelvortrag
through the glasses of modern logic (see, for instance, da Silva [5], p. 1928),
he never proved an isomorphism theorem. Since the oldest theorem of
model theory is probably due to Löwenheim [16], it would be anachronistic
to look for such a proof in the Doppelvortrag. However, Husserl felt that
this kind of result could be actually achieved.

16See Manzano [20], pp. 68–69.
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The utilization of a broader system in order to bring forth
propositions of the narrower one can only be permitted if we
possess some characterizing mark by which we recognize that
every proposition that has a sense in the narrower domain also
is decided in the broader one, thus must be its consequence or
its contradictory (Husserl [14], p. 437; my emphasis).

I claim that this “characterizing mark” is the fact that the isomorphism
between M and N implies elementary equivalence. For instance, the or-
dered ring Q contains an ordered ring isomorphic (and hence elementarily
equivalent) to Z. It follows that every sentence that is true in the narrower
ring is also true in its copy contained in the broader ring. “The laws of
the expanded domain include those of the narrower one, but in such a way,
however, that for the old domain no new laws are established” (Husserl
[14], p. 457).

Let me conclude by pointing out the main difference between the other
readings of Husserl’s Doppelvortrag and my own approach. Whereas the
justification of the transition through the imaginary has usually been asso-
ciated with the preservation of the theorems of a (syntactically) complete
theory, I have argued that it is better understood as the preservation of
the true sentences of certain isomorphic domains (N and Z+, and so on).

6. Conclusions

This paper began with a discussion of the recent contributions to the debate
on Husserl’s two notions of “definiteness”. We saw that the interpretation
of (relative) definiteness as syntactic completeness seems unsatisfactory,
because it presupposes that every extension from T (the axiom system for
the narrower domain) to T ′ (the axiom system for the broader) must be
conservative. Furthermore, if T is complete, then proper extensions of T
will be inconsistent. On the other hand, the interpretation of (relative) def-
initeness as syntactic completeness is relative to a set of sentences flaws,
for the reason that certain provable sentences (from the axioms of the old
domain) are considered to be undecidable. Finally, the reading of definite-
ness as categoricity implying syntactic completeness (due to a pre-gödelian
predicament which is called “monomathematics”) is open to the same con-
ceptual difficulties.
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I claimed that the interpretation of absolute definiteness as semantic
completeness makes Husserl’s position more plausible. There are categori-
cal axiom systems for the natural numbers, the integers, and so on, which
are also semantically complete, as categoricity implies semantic complete-
ness. Semantic completeness is not such an uncommon phenomenon. How-
ever, this implication does not suffice to explain Husserl’s justification of
the “transition through the imaginary”. He remarks that the extension of
the number-concept must not induce any new determinations on the nar-
rower domains. This necessary condition has not been fairly emphasized
in the literature.

I offered textual evidence in favor of understanding this requirement as
the fact that the highest domains of the hierarchy of numbers contain a copy
of the previous levels. For instance, the set of the integers includes a subset
that is mathematically indistinguishable from the natural numbers (N ∼=
Z+). There is also an isomorphism from the integers to a certain subset
of the rationals, and so on. Every true sentence of N is a true sentence of
Z+ by the isomorphism theorem, which explains that true formulas about
the naturals are preserved if we restrict the integers to the positive ones.
Husserl never proved such a result, but the fact that isomorphism implies
elementary equivalence enabled me to explain his solution (definiteness +
a hierarchy of numbers containing the lowest levels) to the problem of
imaginary numbers.
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