
Bulletin of the Section of Logic

Volume 52/1 (2023), pp. 1–18

https://doi.org/10.18778/0138-0680.2023.01

Gholam Reza Rezaei

Rajab Ali Borzooei

Mona Aaly Kologhani

Young Bae Jun

ROUGHNESS OF FILTERS IN EQUALITY
ALGEBRAS

Abstract

Rough set theory is an excellent mathematical tool for the analysis of a vague

description of actions in decision problems. Now, in this paper by considering

the notion of an equality algebra, the notion of the lower and the upper ap-

proximations are introduced and some properties of them are given. Moreover,

it is proved that the lower and the upper approximations define an interior op-

erator and a closure operator, respectively. Also, using D-lower and D-upper

approximation, conditions for a nonempty subset to be definable are provided

and investigated that under which condition D-lower and D-upper approxima-

tion can be filter.
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1. Introduction

The rough sets theory introduced by Pawlak in [11] has often proved to
be an excellent mathematical tool for the analysis of a vague description
of objects called actions in decision problems. Many different problems
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can be addressed by rough sets theory. During the last few years some
mathematicians studied about roughness theory in different fields of math-
ematics. For example an algebraic approach to rough sets has been given
by Iwinski in [2]. Rough set theory is applied to semigroups and groups
see [8, 9]. In 1994, Biswas and Nanda in [1] introduced and discussed the
concept of rough groups and rough subgroups. Jun in [6] applied rough set
theory to BCK-algebras. Recently, Rasouli in [12] introduced and studied
the notion of roughness in MV-algebras. A new structure, called equality
algebras, is introduced by Jenei in [4] and it is continued in [3, 5]. The
study of equality algebras is motivated by EQ-algebras of Novák et al.
in [10]. The equality algebra has two connectives, a meet operation and
an equivalence, and a constant. Novák et al. in [10] introduced a closure
operator in the class of equality algebras, and discussed relations between
equality algebras and BCK-algebras.

Zebardast et al. in [13] have shown that there are relations among
equality algebras and some of other logical algebras such as residuated
lattice, MTL-algebra, BL-algebra, MV-algebra, Hertz-algebra, Heyting-
algebra, Boolean-algebra, EQ-algebra and hoop-algebra. They found that
under which conditions, equality algebras are equivalent to these logical al-
gebras. Zebardast et al. in [13] also studied commutative equality algebras.
They considered characterizations of commutative equality algebras.

In this paper we discuss the roughness of filter of an equality algebra.
Using a filter D of an equality algebra E, we first define a congruence
relation, so called a D-congruence relation, on E, and construct a D-lower
and D-upper approximation and a D-approximation space. We investigate
several properties of D-lower and D-upper approximation. We show that
a D-lower (resp., D-upper) approximation is an interior (resp., closure)
operator. In a D-approximation space, we define the notions of D-lower
(resp. a D-upper) rough filter, and show that every filter containing D is
both a D-lower and a D-upper rough filter. We provide a characterization
of the definable subsets by using D-lower and D-upper approximation.

2. Preliminaries

In this section, we recollect some definitions and results which will be used
in this paper.

algebra, if for any u, v, w ∈ E it satisfies in the following conditions.
Definition 2.1. [4] An algebraic structure (E, ∧, ∼, 1) is called an equality
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(E1) (E,∧, 1) is a commutative idempotent integral monoid,

(E2) the operation “∼” is commutative,

(E3) u ∼ u = 1,

(E4) u ∼ 1 = u,

(E5) if u ≤ v ≤ w, then u ∼ w ≤ v ∼ w and u ∼ w ≤ u ∼ v,

(E6) u ∼ v ≤ (u ∧ w) ∼ (v ∧ w),

(E7) u ∼ v ≤ (u ∼ w) ∼ (v ∼ w),

where u ≤ v if and only if u ∧ v = u.

In an equality algebra (E,∧,∼, 1), for any u, v ∈ E, we define an oper-
ation → (implication) on E by u → v := u ∼ (u ∧ v).

Proposition 2.2 ([4]). Let (E,∧,∼, 1) be an equality algebra. Then for
any u, v, w ∈ E the following assertions are valid.
(i) u → v = 1 if and only if u ≤ v,
(ii) u ∼ v = 1 if and only if u = v,
(iii) u → (v → w) = v → (u → w),
(iv) 1 → u = u, u → 1 = 1 and u → u = 1,
(v) u ≤ v → w if and only if v ≤ u → w,
(vi) u ≤ v → u,
(vii) u ≤ (u → v) → v,
(viii) u → v ≤ (v → w) → (u → w),
(ix) if v ≤ u, then u ↔ v = u → v = u ∼ v,
(x) if u ≤ v, then v → w ≤ u → w and w → u ≤ w → v,
(xi) ((u → v) → v) → v = u → v.

An equality algebra E is bounded if there exists an element 0 ∈ E such
that 0 ≤ u, for all u ∈ E. In a bounded equality algebra E, we define the
negation “ ′ ” on E by u′ = u → 0 = u ∼ 0, for all u ∈ E.

A subset D of E is called a deductive system (or filter) of E if for any
u, v ∈ E, it satisfies in the following statements:

(F1) If u ≤ v such that u ∈ D, then v ∈ D,
(F2) If u ∈ D and u ∼ v ∈ D, then v ∈ D.
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Denote by DS(E) the set of all deductive systems of E (see [5]).

Lemma 2.3. [3] Let (E,∼,∧, 1) be an equality algebra. A subset D of E is
a deductive system of E if and only if 1 ∈ D and for any u, v ∈ E if u ∈ D
and u → v ∈ D, then v ∈ D.

Definition 2.4. [13] An equality algebra (E,∧,∼, 1) is called commuta-
tive, if for any u, v ∈ E,

(u → v) → v = (v → u) → u.

Let ϱ be an equivalence relation on a set E and let P(E) denote the
power set of E. For all x ∈ E, let [x] ϱ denote the equivalence class of
x with respect to ϱ . Let ϱ ∗ and ϱ ∗ be mappings from P(E) to P(E)
defined by

ϱ ∗ : P(E) → P(E), D 7→ {x ∈ E | [x] ϱ ⊆ D}

and

ϱ ∗ : P(E) → P(E), D 7→ {x ∈ E | [x] ϱ ∩D ̸= ∅},

respectively. The pair (E, ϱ ) is called an approximation space based
on ϱ. A subset D of E is called definable if ϱ ∗(D) = ϱ ∗(D), and rough 
otherwise. The set ϱ ∗(D) (resp., ϱ ∗(D)) is called the lower (resp. upper) 
approximation.

Notation. In the following, we suppose (E, ∧, ∼, 1) is an equality
algebra with the induced operation “→” (or simply denoted by E) and D
is a filter of E, unless otherwise stated.

3. Roughness of filters

In this section, we define the notion of the lower and the upper approxima-
tions on equality algebras and investigate some properties of them. Also,
we show that the lower and the upper approximations form an interior op-
erator and a closure operator, respectively.

Let ∼=D be a relation on E which is defined by

x ∼=D y if and only if x ∼ y ∈ D.
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By routine caculation, it is clear that ∼=D is an equivalence relation on E
related to D. Further, we know that ∼=D satisfies the following condition:

if u ∼=D v and x ∼=D y, then (u ∼ x) ∼=D (v ∼ y) and (u ∧ x) ∼=D (v ∧ y).

Thus ∼=D is a congruence relation on E and we say ∼=D is the D-congruence
relation on E. Denote by E/D the collection of all equivalence classes, that
is, E/D = {D[x] | x ∈ E}. Then D[1] = D. For any D[x], D[y] ∈ E/D,
define two binary operations “⊓” and “≈” on E/D as follows:

D[x] ⊓D[y] = D[x ∧ y] and D[x] ≈ D[y] = D[x ∼ y].

It is routine to verify that (E/D,⊓,≈, D[1]) is an equality algebra, and for
any D[x], D[y] ∈ E/D, the implication “⇝” on E/D is given by,

D[x]⇝ D[y] = D[x → y].

For the D-congruence relation ∼=D on E, consider the mappings

appr
D

: P(E) → P(E), L 7→ {x ∈ E | D[x] ⊆ L},
apprD : P(E) → P(E), L 7→ {x ∈ E | D[x] ∩ L ̸= ∅},

which are called the D-lower approximation and the D-upper approxima-
tion of L, respectively. Then (E,∼=D) is an approximation space based
on the filter D of E (briefly, D-approximation space), and it is denoted
by (E,D). A subset L of E is said to be definable with respect to D if
appr

D
(L) = apprD(L), and rough otherwise.

The next proposition is similar to the Proposition 3.3 in [7].

Proposition 3.1. [7] Let (E,D) be a D-approximation space. For any
L,M ∈ P(E), we have

(i) appr
D
(L) ⊆ L ⊆ apprD(L),

(ii) appr
D
(L ∩M) = appr

D
(L) ∩ appr

D
(M),

(iii) appr
D
(L) ∪ appr

D
(M) ⊆ appr

D
(L ∪M),

(iv) apprD(L ∩M) ⊆ apprD(L) ∩ apprD(M),

(v) apprD(L) ∪ apprD(M) = apprD(L ∪M),

(vi) appr
D
(apprD(L)) ⊆ apprD(apprD(L)),
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(vii) appr
D
(appr

D
(L)) ⊆ apprD(appr

D
(L)),

(viii) appr
D
(Lc) = (apprD(L))

c
,

(ix) apprD(Lc) =
(
appr

D
(L)

)c

,

(x) appr
D
(L) = ∅ for L ̸= E,

(xi) apprD(L) = L for L ̸= ∅,

(xii) appr
D
(L) = L if and only if apprD(Lc) = Lc.

Definition 3.2. Suppose S is a set. A function C : P(S) → P(S) is called
a closure operator on a set S if for all subsets X,Y ⊆ S, the following
conditions hold:

(C1) X ⊆ C(X),

(C2) if X ⊆ Y , then C(X) ⊆ C(Y ),

(C3) C(C(X)) = C(X).

Definition 3.3. Suppose S is a set. A function int : P(S) → P(S) is
said to be an interior operator on a set S if for all subsets X,Y ⊆ S, the
following conditions hold:

(i) int(X) ⊆ X,

(ii) if X ⊆ Y , then int(X) ⊆ int(Y ),

(iii) int(int(X)) = int(X).

Theorem 3.4. Let (E,D) be a D-approximation space. Then appr
D

and
apprD are an interior operator and a closure operator, respectively.

Proof: The proof is clear.

Proposition 3.5. Let (E,D) be a D-approximation space. Then D[x] is
definable with respective to D, for all x ∈ E.

Proof: By Proposition 3.1(i), it is clear that appr
D
(D[x]) ⊆ apprD(D[x]),

for all x ∈ E. Let y ∈ apprD(D[x]). Then D[y] ∩ D[x] ̸= ∅, and so
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D[x] = D[y]. Thus y ∈ appr
D
(D[x]). Therefore, D[x] is definable with

respective to D for all x ∈ E.

Proposition 3.6. Let (E,D) be a D-approximation space with D = {1}.
Then every subset of E is definable.

Proof: The proof is straightforward.

Corollary 3.7. Every equality algebra is definable with respect to any
filter.

Proof: The proof is clear.

Proposition 3.8. Let ∼=D and ∼=B be equivalence relations on E related
to filters D and B respectively. If D ⊆ B, then ∼=D ⊆∼=B .

Proof: Let x, y ∈ E such that x ∼=D y. Then x ∼ y ∈ D ⊆ B, which
implies that x ∼=B y. Hence ∼=D ⊆∼=B .

For any subsets D and B of E, we define

D ∧B = {u ∧ v | u ∈ D, v ∈ B}, D ∼ B = {u ∼ v | u ∈ D, v ∈ B},

and D → B = {u → v | u ∈ D, v ∈ B}.

If either D or B is empty, then we define D ∧ B = ∅, D ∼ B = ∅ and
D → B = ∅. It is clear that D → B = (D ∧B) ∼ D.

Proposition 3.9. Let (E,D) be aD-approximation space. Given aD-con-
gruence relation ∼=D on E, if L,M ∈ P(E), then

(i) apprD(L) → apprD(M) ⊆ apprD(L → M),

(ii) apprD(L) ∧ apprD(M) ⊆ apprD(L ∧M),

(iii) apprD(L) ∼ apprD(M) ⊆ apprD(L ∼ M).

Proof: (i) Let w ∈ apprD(L) → apprD(M). Then w = u → v for some
u ∈ apprD(L) and v ∈ apprD(M), and so D[u] ∩ L ̸= ∅ and D[v] ∩M ̸= ∅.
It follows that there are x, y ∈ E such that x ∈ D[u]∩L and y ∈ D[v]∩M .
Since ∼=D is a D-congruence relation on E, we have

x → y ∈ D[u] → D[v] = D[u → v] = D[w].

Since x → y ∈ L → M , it follows that x → y ∈ D[w] ∩ (L → M), and so
w ∈ apprD(L → M). Hence, (i) is valid.
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(ii) Let w ∈ apprD(L) ∧ apprD(M). Then w = u ∧ v for some u ∈
apprD(L) and v ∈ apprD(M). Since u ∈ apprD(L) and v ∈ apprD(M),
there exist x ∈ D[u] ∩ L and y ∈ D[v] ∩ M . It follows that x ∼=D u
and y ∼=D v. Since ∼=D is a congruence relation on E, we have x ∧ y ∼=D

u ∧ v = w. Then x ∧ y ∈ D[u ∧ v] = D[w] and x ∧ y ∈ L ∧ M . Hence
x∧y ∈ D[w]∩(L∧M), that is,D[w]∩(L∧M) ̸= ∅, and so w ∈ apprD(L∧M).
Therefore

apprD(L) ∧ apprD(M) ⊆ apprD(L ∧M).

(iii) The proof is similar to the proof of (ii).

Proposition 3.10. For a D-approximation space (E,D) and any L,M ∈
P(E), we have
(i) appr

D
(L) → appr

D
(M) ⊆ appr

D
(L → M).

(ii) appr
D
(L) ∧ appr

D
(M) ⊆ appr

D
(L ∧M).

(iii) appr
D
(L) ∼ appr

D
(M) ⊆ appr

D
(L ∼ M).

Proof: (i) Let w ∈ appr
D
(L) → appr

D
(M). Then w = u → v for some

u ∈ appr
D
(L) and v ∈ appr

D
(M). Hence D[u] ⊆ L and D[v] ⊆ M . It

follows that
D[u → v] = D[u] → D[v] ⊆ L → M.

Then w = u → v ∈ appr
D
(L → M).

(ii) If x ∈ appr
D
(L) ∧ appr

D
(M), then there exist u ∈ appr

D
(L) and

v ∈ appr
D
(M) such that x = u ∧ v, D[u] ⊆ L and D[v] ⊆ M . It follows

that

D[x] = D[u ∧ v] = D[u] ∧D[v] ⊆ L ∧M.

Hence x ∈ appr
D
(L ∧M), and therefore

appr
D
(L) ∧ appr

D
(M) ⊆ appr

D
(L ∧M).

(iii) Let x ∈ appr
D
(L) ∼ appr

D
(M). Then x = u ∼ v for some

u ∈ appr
D
(L) and v ∈ appr

D
(M). Thus D[u] ⊆ L and D[v] ⊆ M , which

imply that
D[x] = D[u ∼ v] = D[u] ∼ D[v] ⊆ L ∼ M.

Hence x ∈ appr
D
(L ∼ M).

Proposition 3.11. Let (E,D) be a D-approximation space and L,M ∈
P(E). If appr

D
(L ∼ M) = ∅ (resp., appr

D
(L ∧ M) = ∅ and appr

D
(L →

M) = ∅), then appr
D
(L) = ∅ or appr

D
(M) = ∅.
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Proof: Let L,M ∈ P(E) such that appr
D
(L) ̸= ∅ and appr

D
(M) ̸= ∅.

Then there exist u ∈ appr
D
(L) and v ∈ appr

D
(M), such that D[u] ⊆ L

and D[v] ⊆ M . Since u ∈ D[u] and v ∈ D[v], we have u ∈ L and v ∈ M .
Then u ∼ v ∈ L ∼ M , and so

u ∼ v ∈ D[u ∼ v] = D[u] ∼ D[v] ⊆ L ∼ M.

Hence appr
D
(L ∼ M) ̸= ∅, which is a contradiction. Therefore, appr

D
(L) =

∅ or appr
D
(M) = ∅.

The proof of other cases is similar.

Definition 3.12. Let (E,D) be a D-approximation space. A subset L of
E is called a D-lower (resp. a D-upper) rough filter of E if appr

D
(L) (resp.,

apprD(L)) is a filter of E. If L is both a D-lower and a D-upper filters
of E, then L is called a D-rough filter of E.

Example 3.13. Let E = {0, u, v, 1} be a set with the following Hasse dia-
gram.

rr rr

0

u v

1

�
�

A
A
�
�

A
A

Then (E,∧, 1) is a commutative idempotent integral monoid. We define a
binary operation “∼” on E by the following table.

∼ 0 u v 1
0 1 v u 0
u v 1 0 u
v u 0 1 v
1 0 u v 1

Then E = (E,∧,∼, 1) is an equality algebra, and the implication “→”
is given by the following Cayley table.
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→ 0 u v 1
0 1 1 1 1
u v 1 v 1
v u u 1 1
1 0 u v 1

Consider a D-approximation space (E,D) where D = {u, 1} is a filter
of E. Then D[u] = D[1] = {u, 1} and D[v] = D[0] = {v, 0}. For a subset
L = {0, u, 1} of E, we have

appr
D
(L) = {x ∈ E | D[x] ⊆ {0, u, 1}} = {u, 1},

and
apprD(L) = {x ∈ E | D[x] ∩ {0, u, 1} ̸= ∅} = {0, u, v, 1},

are filters of E. Hence D is a D-rough filter of E. If we take a subset
M = {v} of E, then appr

D
(M) = ∅ and apprD(M) = {0, v} are not

filters of E. Hence D is not a D-rough filter of E. Also, if we take a
subset K = {u, 1} of E, then appr

D
(K) = ∅ that is not a filter of E and

apprD(K) = {u, 1} is a filter of E. Hence D is a D-upper rough filter of E.

The extension theorem of D-upper rough filter of E is obtained from
the following theorem.

Theorem 3.14. Let (E,D) be a D-approximation space. Then every filter
L of E which contains D is a D-upper rough filter of E.

Proof: Let L be a filter of E such that D ⊆ L. Then D[1] ∩ L ̸= ∅,
and so 1 ∈ apprD(L). Suppose x, y ∈ E such that x ∈ apprD(L) and
x ∼ y ∈ apprD(L). Then D[x] ∩ L ̸= ∅ and D[x ∼ y] ∩ L ̸= ∅, which
imply that there exist u, v ∈ L such that u ∈ D[x] and v ∈ D[x ∼ y].
Hence u ∼=D x and v ∼=D (x ∼ y). It follows that u ∼ x ∈ D ⊆ L and
v ∼ (x ∼ y) ∈ D ⊆ L. Since u, v ∈ L and L is a filter of E, we have x ∈ L
and x ∼ y ∈ L, and so y ∈ L. Note that y ∈ D[y], and so y ∈ D[y] ∩ L.
Hence y ∈ apprD(L), and therefore apprD(L) is a filter of E, that is, L is
a D-upper rough filter of E.

Corollary 3.15. Let (E,D) be a D-approximation space with D = {1}.
Then every filter L of E is a D-upper rough filter of E.
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In the following example we show that the converse of Theorem 3.14 is
not true, in general.

Example 3.16. Let E be the equality algebra as in Example 3.13 and (E,D)
be a D-approximation space of E. Suppose D = {u, 1} is a filter of E and
∼=D is an equivalence relation on E related toD. ThenD[0] = {0, v} = D[v]
and D[u] = D = D[1]. Let L = {v, 1} be a subset of E. Then L does not
contain D and

apprD(L) = {x ∈ E | D[x] ∩ L ̸= ∅} = E.

Thus L is a D-upper rough filter of E.

Theorem 3.17. Let (E,D) be a D-approximation space. Then every filter
L of E which contains D is a D-lower rough filter of E.

Proof: Let L be a filter of E such that D ⊆ L. Since D = D[1], if
x ∈ D[1], then x ∈ D ⊆ L, and so D[1] ⊆ L. Hence 1 ∈ appr

D
(L). Let

x, y ∈ E such that x ∈ appr
D
(L) and x ∼ y ∈ appr

D
(L). Then D[x] ⊆ L

and D[x] ∼ D[y] = D[x ∼ y] ⊆ L. Let u ∈ D[x] and v ∈ D[y]. Then
u ∼=D x and v ∼=D y, which imply that (u ∼ v) ∼=D (x ∼ y), that is,
u ∼ v ∈ D[x ∼ y] ⊆ L. Since u ∈ L and L is a filter of E, we get v ∈ L
and D[y] ⊆ L. Thus y ∈ appr

D
(L), and therefore appr

D
(L) is a filter of E.

Consequently, L is a D-lower rough filter of E.

Corollary 3.18. Let (E,D) be a D-approximation space such that D =
{1}. Then every filter L of E is a D-lower rough filter of E.

Proposition 3.19. Let (E,D) be a D-approximation space. For any sub-
set L of E, we have

(i) D ⊆ L if and only if D ⊆ appr
D
(L).

(ii) L ⊆ D if and only if apprD(L) = D.

Proof: (i) Assume that D ⊆ L. If x ∈ D, then D[x] = D ⊆ L. Hence
x ∈ appr

D
(L), and so D ⊆ appr

D
(L). By Proposition 3.1(i), the proof of

converse is clear.
(ii) Suppose L ⊆ D and x ∈ apprD(L). Then D[x] ∩ L ̸= ∅, and thus

there exists y ∈ D[x]∩L which implies that D[x] = D[y] and y ∈ L. Hence
D[y] = D, and so x ∈ D. This shows that apprD(L) ⊆ D. Let z ∈ D.
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Then D[z] = D and so D[z]∩L = D ∩L ̸= ∅. Thus z ∈ apprD(L), that is,
D ⊆ apprD(L). By Proposition 3.1(i), the proof of converse is clear.

Corollary 3.20. Let (E,D) be a D-approximation space. If L is a filter
of E such that L ⊆ D, then L is a D-upper rough filter of E.

Theorem 3.21. If L is a filter in a D-approximation space (E,D), then

(i) D ⊆ apprD(L).

(ii) D ⊆ L if and only if appr
D
(L) ⊆ L = apprD(L).

Proof: (i) Let x ∈ D. Since x ∈ D[x], it is clear that 1 ∈ D[x]. Moreover,
since L is a filter in a D-approximation space (E,D), we have 1 ∈ L and
so 1 ∈ D[x] ∩ L. Hence x ∈ apprD(L), and therefore D ⊆ apprD(L).

(ii) Assume that D ⊆ L. Then by Proposition 3.1(i), appr
D
(L) ⊆ L ⊆

apprD(L). Let x ∈ apprD(L). Then D[x] ∩ L ̸= ∅ and thus there exists
u ∈ L such that u ∈ D[x]. Since D ⊆ L, it follows that u ∼ x ∈ D ⊆ L.
Hence x ∈ L and so apprD(L) ⊆ L.

Conversely, suppose appr
D
(L) ⊆ L = apprD(L) and x ∈ D. Since D

and L are filters, we get 1 ∈ D ∩ L = D[x] ∩ L. Hence x ∈ apprD(L) = L.
Therefore D ⊆ L.

Corollary 3.22. If L is a filter of a D-approximation space (E,D), then

appr
D
(L) = L = apprD(L),

and L is a D-rough filter of E.

For any nonempty subset L of E, we let L′ = {x′ | x ∈ L}. It is clear
that if L and M are nonempty subsets of E, then L ⊆ M staisfies L′ ⊆ M ′.

Proposition 3.23. In a D-approximation space (E,D), for any
L ∈ P(E) \ {∅}, we have (apprD(L))′ ⊆ apprD(L′).

Proof: Let u ∈ (apprD(L))′ for any nonempty subset L of E. Then u = x′

for some x ∈ apprD(L) and so D[x] ∩ L ̸= ∅. It follows that there exists
v ∈ L such that v ∈ D[x], which implies that v′ ∈ L′ and v ∼ x ∈ D. By
(E2) and (E7) we have

v ∼ x = x ∼ v ≤ (x ∼ 0) ∼ (v ∼ 0) = x′ ∼ v′.

Since D is a filter of E and u = x′, it follows that u ∼ v′ = x′ ∼ v′ ∈ D.
Hence v′ ∈ D[u] ∩ L′, that is, D[u] ∩ L′ ̸= ∅. Therefore u ∈ apprD(L′)
which shows that (apprD(L))′ ⊆ apprD(L′).
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The next example shows that the converse of Proposition 3.23 is not
true in general.

Example 3.24. Let E = {0, u, v, w, 1} be a set with the following Hasse
diagram.

rr rrr
0

w

u v

1

JJ





JJ

Then (E,∧, 1) is a commutative idempotent integral monoid. We define
a binary operation “∼” on E by Table 1.

Table 1. Table of the implication “∼”

∼ 0 u v w 1
0 1 0 0 0 0
u 0 1 w v u
v 0 w 1 u v
w 0 v u 1 w
1 0 u v w 1

Then E = (E,∧,∼, 1) is an equality algebra, and the implication “→” is
given by Table 2.

Table 2. Table of the implication “→”

→ 0 u v w 1
0 1 1 1 1 1
u 0 1 v v 1
v 0 u 1 u 1
w 0 1 1 1 1
1 0 u v w 1
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Let D = {u, 1}. It is clear that D is a filter of E. Let ∼=D be an
equivalence relation on E related toD. ThenD[1] = D[u] = {u, 1}, D[w] =
D[v] = {v, w} and D[0] = {0}. If L = {0, u}, then L′ = {0, 1}. Thus

apprD(L′) = {0, u, 1} , apprD(L) = {0, u, 1}.

But (apprD(L))′ = ({0, u, 1})′ = {0, 1}. Hence apprD(L′) ⊈ (apprD(L))′.

In the following example, we show that there exists a nonempty subset
L of E such that appr

D
(L′) ⊈ (appr

D
(L))′.

Example 3.25. Let (E,D) be a D-approximation space where E be the
equality algebra as in Example 3.13 and D = {u, 1} be a filter of E. If
L = {u, 0}, then L′ = {0, 1}. Thus appr

D
(L′) = {0} and appr

D
(L) = {0},

and so (appr
D
(L))′ = {1}. Hence appr

D
(L′) ⊈ (appr

D
(L))′.

Proposition 3.26. Let (E,D) be a D-approximation space and L be a
nonempty subset of E. Then
(i) R(E) ∩ apprD(L′) ⊆ (apprD(L′′))′,
(ii) R(E) ∩ apprD((L ∩R(E))′) ⊆ (apprD(L))′,
where R(E) := {x ∈ E | x′′ = x}.

Proof: (i) Let z ∈ R(E) ∩ apprD(L′). Then z′′ = z and D[z] ∩ L′ ̸= ∅,
which imply that there exists x ∈ L such that D[x′] = D[z]. Hence

D[z′] ∩ L′′ = D[x′′] ∩ L′′ ̸= ∅,

i.e., z′ ∈ apprD(L′′). Therefore z ∈ (apprD(L′′))
′
.

(ii) Let u ∈ R(E) ∩ apprD((L ∩ R(E))′). Then u′′ = u and D[u] ∩ (L ∩
R(E))′ ̸= ∅. It follows that there exists x ∈ L ∩ R(E) such that D[u] =
D[x′] and x′′ = x. Hence

D[u′] ∩ L = D[x′′] ∩ L = D[x] ∩ L ̸= ∅,

and so u′ ∈ apprD(L), i.e., u ∈ (apprD(L))
′
. Therefore

R(E) ∩ apprD((L ∩R(E))′) ⊆ (apprD(L))′.

Lemma 3.27. If E is a bounded equality algebra, then the set

E(E) := {x ∈ E | x′ = 0},

is a filter of E.
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Proof: Obviously 1 ∈ E(E). Let x, y ∈ E such that x ∈ E(E) and
x → y ∈ E(E). Then x′ = 0 and (x → y)′ = 0. Since y ≤ y′′, by
Proposition 2.2(x), we get x → y ≤ x → y′′ = y′ → x′. Hence

y′ = y′′′ = (y′ → 0)′ = (y′ → x′)′ ≤ (x → y)′ = 0

and so y′ = 0, that is, y ∈ E(E). Therefore E(E) is a filter of E.

Proposition 3.28. Let (E,D) be a D-approximation space and L be a
nonempty subset of E. Then

D ⊆ apprD(E(E)) ⊆ {y ∈ E | y′′ ∈ D}. (3.1)

Proof: Using Lemma 3.27 and Theorem 3.21(i), we getD ⊆ apprD(E(E)).
Let x ∈ apprD(E(E)). Then D[x] ∩ E(E) ̸= ∅ and so there exists u ∈ D[x]
such that u′ = 0. Thus u ∼ x ∈ D. By (E2) and (E7), u ∼ x ≤ (x ∼ 0) ∼
(u ∼ 0) = x′ ∼ u′ and D is a filter of E, we have x′ ∼ u′ ∈ D. Thus by
(E2), x′′ = 0 ∼ x′ = u′ ∼ x′ ∈ D. Therefore apprD(E(E)) ⊆ {y ∈ E | y′′ ∈
D}.

We provide conditions for a nonempty subset to be definable.

Theorem 3.29. Let (E,D) be a D-approximation space. Then a nonempty
subset L of E is definable with respect to D if and only if appr

D
(L) = L

or apprD(L) = L.

Proof: Assume that L is definable with respect toD. Then L ⊆ apprD(L)
= appr

D
(L) ⊆ L and so

apprD(L) = appr
D
(L) = L.

Conversely, suppose that appr
D
(L) = L or apprD(L) = L. For the case

appr
D
(L) = L, let x ∈ apprD(L). Then D[x] ∩ L ̸= ∅ which implies that

D[x] = D[z] for some z ∈ L. It follows from appr
D
(L) = L that D[x] =

D[z] ⊆ L. Hence x ∈ L, and therefore apprD(L) ⊆ L. Consequently,
apprD(L) = L. Suppose that apprD(L) = L. For any x ∈ L let z ∈ D[x].
Then D[z] ∩ L = D[x] ∩ L ̸= ∅ and so z ∈ apprD(L) = L. This shows
that D[x] ⊆ L, that is, x ∈ appr

D
(L). Hence L ⊆ appr

D
(L), and so

appr
D
(L) = L. Therefore L is definable with respect to D.
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4. Conclusions and future works

In this paper the notion of the lower and the upper approximations are in-
troduced on equality algebras and some properties of them are investigated.
Moreover, the relation among the lower and the upper approximations with
an interior operator and a closure operator are investigated. Also, the con-
ditions for a nonempty subset to be definable are provided. Also, due to the
importance of this subject in the field of decision making, we decided to in-
troduce these concepts on equality algebras in order to introduce concepts
related to rough soft and soft rough equality algebras and fuzzification of
them in the future. Moreover, in the future further study is possible in the
direction of roughness with different types of filters and ideals in equality
algebras.
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