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Abstract

The concept of multiple-conclusion consequence relation from [8] and [7] is con-
sidered. The closure operation C' assigning to any binary relation r (defined on
the power set of a set of all formulas of a given language) the least multiple-
conclusion consequence relation containing r, is defined on the grounds of a nat-
ural Galois connection. It is shown that the very closure C' is an isomorphism
from the power set algebra of a simple binary relation to the Boolean algebra of
all multiple-conclusion consequence relations.

Keywords: multiple-conclusion consequence relation, closure operation,
Galois connection.

1. Preliminaries

Given a set A, any mapping C : p(A) — p(A) such that for each X,Y C
A X CCX), C(C(X)) CC(X)and Cismonotone: X CY = C(X)C
C(Y), is called a closure operation defined on the power set p(A) of A.
Any subset B C p(A) is said to be a closure system over A (or of the
complete lattice (p(A),C)), if for each X C B, (X € B. Given a closure
operation C on p(A), the set of all its fixed points called closed elements:
Cl(C)={X CA: X =C(X)}, is a closure system over A. Conversely,
given a closure system B over A, the mapping C : p(A) — p(A) defined
by C(X) = ({Y € B: X C Y}, is a closure operation on p(A). The
closure system B is just the set of all its closed elements. On the other
hand, the closure system CI(C) of all closed elements of a given closure
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operation C' defines, in that way, just the operation C. Thus, there is
a one to one correspondence between the class of all closure operations
defined on p(A) and of all closure systems of (p(A4),C), in fact, it is a
dual isomorphism between the respective complete lattices of all closure
operations and closure systems (the poset (C(A), <) of all closure operations
defined on p(A), where Cy < Cy iff C1(X) C Cy(X) for each X C A, forms
a complete lattice such that for any class £ C C(A) its infimum, inf&, is
a closure operation defined on p(A) by (inf £)(X) = N{C(X) : C € &}).
Any closure system B of (p(A),C) forms a complete lattice with respect
to the order C such that inf ¥ = N A& and supX = C(JX), for each
X C B, where C is the closure operation corresponding to closure system
B. Given a family X C p(A), there exists the least closure system B of
(p(A), C) such that X C B. It is called a closure system generated by X and
shall be denoted by [X]. It is simply the intersection of all closure systems
of (p(A),C) containing X and is expressed by [X] = {1V : Y C X}
The closure operation C corresponding to closure system [X] is defined by
CX)={Y eX: X CY}, any X C A

When A is a set of all formulae of a given formal language, a closure
operation C defined on p(A) is called a consequence operation (in the sense
of Tarski).

We shall apply here the standard (called sometimes archetypal) anti-
monotone Galois connection (f,g) defined on the complete lattices
(p(A4),Q), (p(B),<Q) of all subsets of given sets A, B by a binary rela-
tion R € A x B (cf. [3], a general theory is to be found for example in
[1, 2, 4]). That is, f : p(A) — p(B) and g : p(B) — (A) are the
mappings defined for any X C A, a € A, Y C B, b€ B by

be f(X) iff forallz € X, (z,b) € R,
a€g(y) iff forallyeY, (a,y) € R.
The following three facts are useful for our goals.

The compositions fog, go f are closure operations on p(A), ©(B),
respectively.

The set Cl(fog) of all closed sets with respect to closure operation fog is
the counterdomain of map g: {X CA:g(f(X))=X}={g9(Y):Y C B}
and similarly, Cl(go f) ={Y C B: f(g(Y)) =Y} ={f(X) : X C A}.
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The mapping [ restricted to CI(f o g) is a dual isomorphism of the
complete lattices (Cl(fog), C), (Cl(gof), <) as well as the map g restricted
to Cl(go f) is the inverse dual isomorphism.

2. The concept of disjunctive multiple-conclusion con-
sequence relation

This what will be called here a disjunctive consequence relation recalls
the concept of multiple-conclusion entailment or multiple-conclusion con-
sequence relation [7, 8]. In [8, p. 28] the following definition of multiple-
conclusion consequence relation was introduced. Let V be a set of all
formulae of a given language. For any 7 C p(V) a binary relation 7 is
defined on (V) by

(me) XbrY i VT eT (XCT = YNT#0).

We say that = C p(V') x p(V) is a multiple-conclusion consequence relation
iff ="t for some T C (V). Next the authors of [8] prove the theorem
(2.1, p. 30):

A relation &= is a multiple-conclusion consequence relation iff it satisfies
the following conditions for any X, Y C V:

(overlap) XNY #0 = XY,
(dilution) XFY, XCX,YCY = X'FY,
(cutforsets) VSCV (VZCS, XUZFYU(S—-Z)) = X+HY).

Given S CV,thepart VZC S, XUZFYU(S—-Z2)) = XFY of
the condition (cut forsets) is called (cutforS). In turn, (cut for formulae)
denotes the family of all the conditions (cutfor{a}), a € V:

(cutfor{a}) X FY U{a} & XU{a}FY = X}V,

that is, stands to the cut rule of [5] from 1934. In general, granted
(dilution), the conditions (cutforsets) and (cutforV') are equivalent (The-
orem 2.2 in [8], p. 31). Moreover, when a binary relation - C p(V') x p(V)
satisfies not only (dilution) but also is compact, i.e fulfils the condition

(compactness) X B Y = there exist finite subsets X’ C X, Y/ C Y
such that X' - Y’,
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both conditions (cut forsets), (cutforformulae) are equivalent (Theorem
2.9 in [8], p. 37).

The conditions (overlap), (dilution), (cut for formulae), under differ-
ent names, were used to define on finite sets of formulas, the relation of
multiple-conclusion entailment by D. Scott [7].

In [11] it was proved that when a family 7 C p(V) is a closure system
over V, the consequence relation k7 defined by (mc), may be expressed by

(dis) X 7Y iff YNCr(X)#0,

where C7 is the closure operation determined by closure system 7. As it is
seen, given a set of premises X some of conclusions of the consequence re-
lation 4 are conclusions of ordinary consequence operation C7- associated
with the relation. So, one may say that the relation F+ has a disjunc-
tive character. It is worth to notice that in general, for arbitrary family
T C (V) only the implication (<) from right to left holds true, where in
case, C is the closure operation (consequence operation) determined by
the family 7 (that is, by [T] — the least closure system over V containing
T): foraformulac € V, « € C(X) iff foranyT €T, X CT = a€T.

Hereafter the consequence relations F7, T C (V) will be called dis-
junctive. Let DR ={F7:T C p(V)}.

3. Galois connection for disjunctive consequence rela-
tion

Taking into account the very definition of disjunctive consequence relation
from the previous section (cf. (mc)), the following Galois connection (f, g)
should be considered. Put R C p(V)? x p(V) of the form ((X,Y),T) € R
ff XCT = YNT#0. So f:(p(p(V)xplV)),S) — (p(p(V)), <),
g : (p(p(V),Q) — (p(p(V) x p(V)),C) are defined for any relation
r C p(V) x (V) and any family 7 C p(V) by

T e f(r) iff for all X,Y C V such that (X,Y) € r, X C T implies
that YNT #0, any T CV,

(X,Y)eg(T) iff forall T € T, X C T implies that Y N'T # (), any
XY CV.
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In more handy formulation,
(1) Tef(r) f VX, YCV(XCTC-Y = (X,Y)&r),
(2) (X,)Y)eg(T) it VTCV (XCTC-Y = T¢T7),

“_»

where is the operation of complementation in the Boolean algebra of
all subsets of V.

Let us put C = fogand C/ = go f, that is, C is a closure operation
defined on p(p(V) x p(V)) assigning to each binary relation r defined
on p(V) the least relation from DR containing r (the operation C' is the
counterpart of closure introduced in [6, p. 1006, definition 3.1] for Scott’s
multiple-conclusion relations from [7]); in turn C’ is a closure operation
whose closed sets correspond via dual isomorphism f restricted to DR to
disjunctive consequence relations. Using (1) and (2) we obtain that for any
binary relation 7 C (V) x p(V), (X,Y) € C(r) iff (X,Y) € g(f(r)) iff
VITCV(XCTC-Y = T f(r) it VITCVXCTC-Y =
W, ZCV (UCTC—-Z & (U,Z)er)). Finally,

3) (X, Y)eC(r) iff [X,-Y]|C\H{[U,-Z]: (U, Z) € r},

where for any X, Y CV, [X,Y]={U CV : X CU CY}. However, the
equivalence:

4) (X,Y)eC@r) iff VICV (XCTC-Y = T¢fr),

is also interesting since from it one may derive that for any set 77 C V and
any binary relation r C p(V') x p(V),

(5) T e f(r) iff (T,-T) & C(r).

Similarly, for any family 7 C (V) : T € C'(T) iff T € f(g9(T)) iff
VX, Y CV(XCTC-Y =3aI"CVXCT C-Y&T €T)) iff
T € T. In this way, C’ is the identity mapping on o(p(V)) so CI(C") =
Cl(go f) = p(p(V)). On the other hand, CI(C) = Cl(fog) ={g(T): T C
p(V)} ={F7:T C p(V)} = DR. Thus we have the following corollary.

COROLLARY. The mapping f restricted to DR (that is f defined for each
r€DRby f(r)={T CV :(T,-T) &r} due to (5)) is a dual isomorphism
of the complete lattices (DR, C), (p(p(V)),<) and the mapping g is the
imverse dual isomorphism.
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This result, obtained first in [11] without application of Galois connec-
tion, can be strengthened (cf. also [11]) to a dual isomorphism of complete
and atomic Boolean algebras (DR, N, V, —, o, (V)?), (p(p(V)),N, U, —, 0,
©(V)), by equipping the family DR of disjunctive relations with the oper-
ation of Boolean complementation — in such a way that the dual isomor-
phism of complete lattices preserves it : —r = —g(f(r)) = g(p(V)—f(r)) =
g{T CV :(T,-T) € r}). Here for any r1,r2 € DR, 11 V1re = C(r; Urs)
and ko = g(p(V)) = {(X,Y) : X NY # 0} is the least disjunctive relation.

4. Isomorphism theorem for disjunctive consequence
relations

Let us put Rg = {(7,—T) : T C V}. Consider the mapping p : p(Rgy) —
p(p(V)) defined by p(p) ={T CV : (T,-T) € p}. It is obvious that p is a
Boolean and complete isomorphism of Boolean algebras (p(Ro), N, U, —, 0,
Ro), (p(p(V)),N,U,—,0,0(V)). Consider the following composition of
mappings:

9(Ro) 2 p > plp) — (V) —p(p) +— g(p(V)—p(p)) € DR.

The correspondence p(p(V)) 3 T +— (V) — T is obviously a dual
Boolean complete isomorphism from (p(p(V)),N,U, —, 0, p(V)) onto itself.
So the composition p(Rg) 3 p — g(p(V)—p(p)) € DR (one isomorphism
and two dual isomorphisms are here composed) is a complete Boolean iso-
morphism from (p(Ro), N, U, —, 0, Ro) onto (DR, N, V, —,Fo, p(V)?).

Using (2) one may calculate the value of that isomorphism on a p C Ry:
forany X, Y CV, (X,Y) € g(p(V)—p(p)) if [X,-Y]C p(p). Moreover,
from (3) we have

(6) (X,)Y) € Clp) iff [X,-Y] C H[T,T] : (T,-T) € p} iff
(X, =Y] C p(p).

Therefore, for any p C Rg, C(p) = g(p(V) — p(p)). Furthermore, one may
consider the inverse isomorphism as the following composition:

DR>r +— f(r) — (V)= f(r)={T CV :(T,-T) er} (by
(5)) — rNRy.

In this way the following result is proved.
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PROPOSITION. The closure operation C' (assigning to each binary relation
r defined on (V) the least disjunctive relation containing r) restricted
to the power set of Ro = {(T,-T) : T C V} is a Boolean and com-
plete isomorphism from the power set algebra (p(Ro),N,U,—,0,Ro) onto
atomic and complete Boolean algebra (DR,N,V,—, o, 9(V)?) of all dis-
junctive relations defined on the language V. The inverse isomorphism,
say h : DR — p(Ry) is defined by h(r) = r N Ry. In this way, for any
r€ DR and p C Ry, r=C(rNRy) and p=C(p) N Ryp.

5. Some applications

Applying (6) one may show that for any Ty, T» C V such that Ty C Ty and
for any X, Y CV,

(7) (X,Y) e C{(T,-T) : T € [T1,T»]}) iff either X o YV or
TN CXC-YCTs.

In particular, using (7) and Proposition, one may find a form of atoms
in the Boolean algebra (DR, N, V, —, o, p(V)?) of all disjunctive relations.
Let us take any atom {(T,—T)}, T C V, of (p(Ro),N,U, —,0,Ry). Then
the corresponding atom in the Boolean algebra of all disjunctive relations
is of the form:

(8) CH(T,-T)}) =to U {(T, T}

The coatoms of (DR,N,V,—, ko, p(V)?) are much more interesting.
Take any T' C V. Then the corresponding coatom in this Boolean algebra
to the coatom Ry — {(T, —T)} of (p(Ro),N, U, —, 0, Ro) is, due to (6) and
(mc), of the form

(9) (X,Y) € C(Ro—{(T,~T)}) iff [X,~Y]C (V) {T} iff cither
XZT or YNT#0 iff X iy Y.

More figuratively,

(TH;) C(Ro—{(T, -T)}) =ty = U{[({a},0)) - o € TIUU{[(D, {})) :
[OAS s

where for any X,Y C V, [(X,Y)) = {(X",)Y') € p(V)?: X C X' &
Y CY').

The following lemma provides a useful characteristics of coatoms.
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LEMMA. Foranyt € DR andT CV, = =ty iff foreacha eV, (0
{a} iff a€T)and ({a}t0 iff agT).

PRrROOF. Consider any disjunctive relation - and T C V.

(=): By (10).

(«<): Assume that for each « € V, (0 F {a} iff a€T) and ({a} F0
iff o ¢ T). First we show that -y C . So suppose that X ¢y Y, that
is, either X € T or Y NT # (. In the first case, from the assumption it
follows that {a} I () for some o € X so X Y by (dilution). In the second
case, analogously, ) - {a} for some o € Y so X Y. Now notice that 7y
is a coatom in the Boolean algebra of all disjunctive relations, therefore the
inclusion 7y C - implies that by =F or = ©(V)2. Since the relation
©(V)? does not satisfy the assumption we obtain by =+ . O

The coatoms in the Boolean algebra of all disjunctive consequence re-
lations are easily expressible in terms of [7]. In order to show this let us
apply the definition from [7, p. 416], for any disjunctive relation. A rela-
tion - € DR is said to be consistent (complete) iff for any o € V', either
Ot {a} or {a} /0 (for any o € V, either @ - {a} or {a} F (). In this
way, for any - € DR,

(11) F is consistent and complete iff for any o € V, 0 F {a} iff
{a} 0.

FacT. For any - € DR, F is consistent and complete iff for some T C
V, F=Fmy.

ProoF. Consider any disjunctive relation .

(=): Assume that I is consistent and complete. Put T ={a € V : § I-
{a}}. Then from the assumption and (11) it follows that —T = {a € V :
{a} F 0}. In this way, - = 7y due to Lemma.

(<): Immediately from Lemma and (11). O

In the light of this fact, the result of [7] that any multiple-conclusion
consequence relation is an intersection of all consistent and complete re-
lations containing it, becomes absolutely clear. Since for every - € DR,
the identity = = (\{F7y: = C F¢7; } holds. In turn, the latter connection
is an obvious consequence of the following one: p = ({Ro — {(T,-T)} :
(T,-T) ¢ p}, any p C Ry (implying together with Proposition and (9)
that Clp) = N{C(Ro — {(T.~T)}) : p  Ro — {(T,~T)}} = Ny
Clp) € Firy)).
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Notice that the power set p(Rg) is closed on the operation ™~ of taking
the converse relation. Applying (6) for a given p C Ry we have (X,Y) €
Clp™) iff [X,—Y] C p(p™) iff [X,—Y] C{~T:T €p(p)} iff [V,~X] C
p(p) iff (Y, X) € Clp) iff (X,Y) € C(p)™ Hence, C(p~) = C(p)™ s0
the operation ™ is preserved under the isomorphism C' and the set DR is
closed on this operation. Denoting for a given family 7 C p(V), T~ =
{=T : T € T} we have g(T~) = g(T)~ due to (2), that is, in terms of
(me):

(12) Fr~ = F;—.

Given | € DR the relation -~ could be called dual with respect to . For
example, assume that V is the set of all formulas of propositional language
equipped with the standard connectives -, A, V, — and let Val be the set of
all Boolean valuations of the language into {0,1}. Consider the disjunctive
relation F7;,, . determined (according to (mc)) by the family of all maximal
theories of classical propositional logics Tarar = {1y : v € Val}, where for
eachv € Val, T, = {a €V :v(a) = 1} (cf. also [9, p. 242, definition 1]):

Xt Y it VoeVa(XCT, = YNT, #0) iff Vv e Val(v[X] C
{1} = JaeY, v(a) =1).

The dual relation with respect to Fr,,,. is, according to (12), determined
by the family 7,7, = {{a € V : v(a) = 0} : v € Val} (notice that the
consequence operation corresponding to the closure system [7;7,.] over V is
dual in the sense of Wéjcicki [10] with respect to the consequence operation
of classical propositional logic, that is, corresponding to the closure system
[Traz])- One may consider the dual disjunctive relation with respect to
a coatom F¢py, T C V which is the coatom Fy_py (cf. also (10)). In
particular Fy_7,y, v € Val is considered in [9, p. 245, definition 3].
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