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A NOTE ON DISTRIBUTIVE TRIPLES

Abstract

Even if a lattice L is not distributive, it is still possible that for particular elements

x, y, z ∈ L it holds (x∨y)∧z = (x∧z)∨(y∧z). If this is the case, we say that the

triple (x, y, z) is distributive. In this note we provide some sufficient conditions

for the distributivity of a given triple.
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Standard lattice-theoretic notions can be found in [3]. Let us recall
basic definitions and facts. If L is a lattice and a, b ∈ L, then the set
[a, b] = {c ∈ L : a 6 c 6 b} is called an interval (in L). Clearly, any interval
is a sublattice of L. If X ⊆ L, then [X] stands for the sublattice generated
by X, i.e., the smallest sublattice of L, which contains the subset X. For
any subset X ⊆ L and for any interval [a, b] we define

[[a, b]]X := [a, b] ∩ [X].

In particular, if X = {x, y, z}, then [[x ∧ y ∧ z, x ∨ y ∨ z]]X = [X].
A lattice L is said to be modular if x 6 z implies (x∨y)∧z = x∨(y∧z),

for all x, y, z ∈ L. Moreover, L is called distributive if (x ∨ y) ∧ z =
(x∧z)∨(y∧z), for all x, y, z ∈ L. The Dedekind–Birkhoff Theorem (cf. [3],
p. 59) states that a lattice L is modular if and only if L does not contain
a sublattice isomorphic to N5 (so-called pentagon), and moreover, and L
is distributive if and only if L does not contain a sublattice isomorphic to
N5 nor M3 (so-called diamond).
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Let L be an arbitrary lattice and x, y, z ∈ L. We say that (x, y, z) is a 
distributive triple, (x, y, z)D in symbols, if (x∨y)∧z = (x∧z)∨(y∧z). Sim-
ilarly, (x, y, z) is called a dually distributive triple, (x, y, z)D∗ in symbols, if 
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) (cf. [7], p. 761). Clearly, L is distributive 
if and only if (x, y, z)D, for all x, y, z. G. Birkhoff proved the following.
Theorem 1 ([1], Theorem II.12). Let L be a modular lattice and X =
{x, y, z} ⊆ L. Then:

(i) [[x ∧ y ∧ z, x ∨ y ∨ z]]X is distributive if and only if (x, y, z)D,

(ii) [[x ∧ y ∧ z, x ∨ y ∨ z]]X is distributive if and only if (x, y, z)D∗.

The Dedekind–Birkhoff Theorem shows that the hypothesis of modu-
larity is necessary as well as sufficient in Theorem 1 (cf. the lattice (a) in
Figure 1).
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Fig. 1. Non-modular lattices satisfying (x, y, z)D or (x, y, z)D∗.

Our result is the following.
Theorem 2. Let L be an arbitrary lattice and X = {x, y, z} ⊆ L. Then:

(i) if [[x ∧ z, x ∨ y ∨ z]]X and [[y ∧ z, x ∨ y ∨ z]]X are distributive, then
(x, y, z)D,

(ii) if [[x ∧ y ∧ z, x ∨ y]]X is distributive, then (x, y, z)D.

Proof: To prove (i), assume that [[x∧ z, x∨y∨ z]]X and [[y∧ z, x∨y∨ z]]X
are distributive sublattices of L. Then

1Note that Birkhoff in [1], p. 37, provides a different definition: a three-element subset
{x, y, z} of a lattice L is a distributive triple if [{x, y, z}] is a distributive sublattice of L.
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z ∧ (x ∨ y) = z ∧
(
x ∨

(
y ∨ (x ∧ z)

))
= (z ∧ x) ∨

(
z ∧

(
y ∨ (x ∧ z)

))
(by the 1st assumption)

= z ∧
(
y ∨ (x ∧ z)

)
= z ∧

(
y ∨

(
(x ∧ z) ∨ (y ∧ z)

))
= (z ∧ y) ∨

(
z ∧

(
(x ∧ z) ∨ (y ∧ z)

))
(by the 2nd assumption)

= (z ∧ y) ∨
(
(x ∧ z) ∨ (y ∧ z)

)
= (z ∧ y) ∨ (x ∧ z),

which completes the proof of (i).
For (ii), we assume that [[x∧ y∧ z, x∨ y]]X is distributive and calculate

as follows:

z ∧ (x ∨ y) =
(
z ∧ (x ∨ y)

)
∧ (x ∨ y)

=
((

z ∧ (x ∨ y)
)
∧ x

)
∨
((

z ∧ (x ∨ y)
)
∧ y

)
(by the assumption)

= (z ∧ x) ∨ (z ∧ y).

�

By the duality principle we obtain

Theorem 3. Let L be an arbitrary lattice and X = {x, y, z} ⊆ L. Then:

(i) if [[x ∧ y ∧ z, x ∨ z]]X and [[x ∧ y ∧ z, y ∨ z]]X are distributive, then
(x, y, z)D∗,

(ii) if [[x ∧ y, x ∨ y ∨ z]]X is distributive, then (x, y, z)D∗.

Remark 1. Lattices (b) and (c) in Figure 1 disprove the converses of
Theorems 2 and 3, respectively.

Remark 2. Theorem 2 allows the conclusion that (x, y, z)D in lattices (d)
and (e) in Figure 1. On the other hand, this fact cannot be justified on the
basis of Theorem 1.

In order to illustrate a possible use of Theorem 2 we will provide an
easy inductive proof of the following
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Theorem 4. Let L be a lattice of finite length. If L is modular but non-
distributive lattice, then L contains a covering diamond, i.e., a diamond
D = {o, a, b, c, i}, such that o ≺ a, b, c ≺ i.

In the literature of lattice theory the preceding theorem is known as
“folklore” (cf. [4], p. 111, or [2], p. 270). This theorem easily follows
from [5] (cf. Theorem 1.4 for the case n = 2), or from [3] (cf. Lemma 8,
p. 247). Note that [6] generalizes the theorem to the class of weakly atomic
lattices.

Proof of Theorem 4: Induction on l(L)—the length of L. If l(L) = 1
or l(L) = 2 the theorem is obvious. For the induction step, assume that
for any modular, non-distributive lattice K if l(K) < n, then K contains a
covering diamond. Moreover, fix a modular, non-distributive lattice L such
that l(L) = n > 3. Then, by Dedekind–Birkhoff Theorem, L contains a
diamond D = {o, a, b, c, i}. If 0 < o or i < 1, then [o, i] satisfies premises of
our induction hypothesis, thus it contains a covering diamond, so L does.
If not, i.e., D = {0, a, b, c, 1}, since l(L) > 3 there exists some intermediate
element x 6∈ D; we may assume without loss of generality that b < x < 1.

Let us observe that a ∧ x > 0, because if not, the set {0, a, x, b, 1}
would be a pentagon. For similar reasons, c ∧ x > 0. Now, consider
intervals [a∧ x, 1] and [c∧ x, 1]. If one of them is non-distributive, then by
the induction hypothesis, it contains a covering diamond, so L does. On
the other hand, if both intervals are distributive, then by Theorem 2, the
triple (a, c, x) is distributive, thus we obtain

(a ∧ x) ∨ (c ∧ x) = (a ∨ c) ∧ x = 1 ∧ x = x.

Moreover, by modularity, we get (a ∧ x) ∨ b = x and (c ∧ x) ∨ b = x,
and obviously (a ∧ x) ∧ (c ∧ x) = (a ∧ x) ∧ b = (c ∧ x) ∧ b = 0, so the
set {0, a ∧ x, b, c ∧ x, x} forms a diamond. Therefore, by the induction
hypothesis, the interval [0, x] contains a covering diamond, and hence L
does. �
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