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EQUALITY LOGIC

Abstract

In this paper, we introduce and study a corresponding logic to equality-algebras

and obtain some basic properties of this logic. We prove the soundness and com-

pleteness of this logic based on equality-algebras and local deduction theorem.

We show that this logic is regularly algebraizable with respect to the variety of

equality-algebras but it is not Fregean. Then we introduce the concept of (prelin-

ear) equality4-algebras and investigate some related properties. Also, we study

4-deductive systems of equality4-algebras. In particular, we prove that every

prelinear equality4-algebra is a subdirect product of linearly ordered equality4-

algebras. Finally, we construct prelinear equality4 logic and prove the soundness

and strong completeness of this logic respect to prelinear equality4-algebras.

Keywords: Many-valued logic, equality logic, completness, prelinear equality4-

algebra, prelinear equality4 logic.

1. Introduction

Novák introduced the concept of EQ-algebras in [17] as candidates for a
possible algebraic semantics of fuzzy-type theory (see [16]). These algebras
are meet semilattices endowed with two additional binary operations: fuzzy
equality and multiplication. Implication is derived from the fuzzy equality
and it is not a residuation with respect to multiplication. Consequently,
EQ-algebras is a generalization of residuated lattices in the sense that each
residuated lattice is an EQ-algebra but not vice-versa.
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Dyba and Novák introduced EQ-logic in [9] as a specific formal logic in
which the basic connective is fuzzy equality and the implication is derived
from the fuzzy equality. They formulated the basic EQ-logic and proved
the completeness of this logic. Also, see [19, 10, 11].

Recently, Dyba and et all in [8], introduced and studied the prelinear
EQ4-algebras and the corresponding propositional EQ4-logic.

As Jenei mentioned in [13], if the product operation in EQ-algebras
is replaced by another binary operation smaller or equal than the origi-
nal (viewed as a two-place function) we still obtain an EQ-algebra. This
fact might make it difficult to obtain certain algebraic results. For this
reason, Jenei introduced a new structure in [13], called equality-algebra,
to find something similar to EQ-algebras but without a product. The
equality-algebras have two binary operations meet and equivalence, and
a constant 1. Jenei proved the term equivalence of the closed algebras
to BCK-meet-semilattices. In [23], F. Zebardast and et all studied and
proved that there are relations among equality algebras and some of other
logical algebras such as residuated lattice, MTL-algebra, BL-algebra, MV-
algebra, Hertz-algebra, Heyting-algebra, Boolean-algebra, EQ-algebra and
hoop-algebra. Some types of filters of equality algebras are introduced in
[3]. Since then many researchers have worked on this area (see [4, 6, 14, 12]).

In this paper, we will show that equality-algebras are semantics of fuzzy-
type theory. In the next section, we review some notions which are needed
in the sequel. In section 3, the corresponding equality logic is constructed
and some related properties are proved. Also, the soundness and complete-
ness of this logic are proved. We prove that this logic is regularly alge-
braizable with respect to the variety of the equality-algebras. In section 4,
we investigate (prelinear) equality4-algebras and 4-deductive systems on
equality4-algebras. We obtain some related results. Finally in section 5,
we introduce prelinear equality4 logic and prove strong completeness.

2. Preliminaries

In this section, we recall the basic definitions and some known results about
equality-algebras that we need in the rest of the paper.

Definition 2.1 ([13]). An equality-algebra is an algebra A = (A,∧,∼, 1)
of the type (2, 2, 0) such that satisfies the following axioms for all x, y, z ∈
A:
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(E1) (A,∧, 1) is a meet-semilattice with top element 1,

(E2) x ∼ y = y ∼ x,

(E3) x ∼ x = 1,

(E4) x ∼ 1 = x,

(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y,

(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z),

(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).
The operation ∧ is called meet (infimum) and∼ is an equality operation.

We write x ≤ y (and y ≥ x) iff x∧ y = x. Define the following two derived
operations, the implication and the equivalence operation of the equality-
algebra A by

(I) x→ y = x ∼ (x ∧ y),

(II) x↔ y = (x→ y) ∧ (y → x).

An equality-algebra A = (A,∧,∼, 1) is bounded if there exists an element
0 ∈ A such that 0 ≤ x, for all x ∈ A.

Proposition 2.2 ([13]). Let A = (A,∧,∼, 1) be an equality-algebra and
consider

(E5a) x ∼ (x ∧ y ∧ z) ≤ x ∼ (x ∧ y),

(E5a’) x→ (y ∧ z) ≤ x→ y,

Then (E5) is equivalent to (E5a), which in turn is equivalent to (E5a’).

Definition 2.3 ([23]). Let A = (A,∧,∼, 1) be an equality-algebra.

(1) Then A is called prelinear, if 1 is the unique upper bound of the set
{x→ y, y → x} for all x, y ∈ A.

(2) A lattice equality-algebra is an equality-algebra which is a lattice.

Theorem 2.4 ([8]). Any prelinear equality -algebra is a distributive lattice.
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Proposition 2.5 ([13, 23]). Let A = (A,∧,∼, 1) be an equality-algebra.
Then the following hold for all x, y, z ∈ A:

(1) x ∼ y ≤ x↔ y ≤ x→ y,

(2) x ≤ (x ∼ y) ∼ y,

(3) x ∼ y = 1 iff x = y,

(4) x→ y = 1 iff x ≤ y,

(5) x→ y = 1 and y → x = 1 implies x = y,

(6) 1→ x = x, x→ 1 = 1and x→ x = 1,

(7) x ≤ y → x,

(8) x ≤ (x→ y)→ y,

(9) x→ y ≤ (y → z)→ (x→ z),

(10) x ≤ y → z iff y ≤ x→ z,

(11) x→ (y → z) = y → (x→ z),

(12) x↔ x = 1, 1↔ x = x,

(13) x ≤ y implies x↔ y = y → x = y ∼ x,

(14) x ≤ y implies x ≤ x ∼ y,

(15) x ≤ y implies that z → x ≤ z → y and y → z ≤ x→ z,

(16) ifA is a lattice equality-algebra, then (x∨y)→ z = (x→ z)∧(y → z),

(17) if A is a prelinear equality-algebra, then x ∼ y = (x→ y) ∧ (y → x).

Definition 2.6 ([13]). Let A = (A,∧,∼, 1) be an equality-algebra and
F be a subset of A. Then F is called a deductive system of A if for all
x, y ∈ A,

(i) 1 ∈ F ,

(ii) if x ∈ F and x ≤ y, then y ∈ F ,

(iii) if x ∈ F and x ∼ y ∈ F , then y ∈ F .
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Proposition 2.7 ([13]). Let A = (A,∧,∼, 1) be an equality-algebra and
F be a subset of A. Then F is a deductive system of A if and only if

(i) 1 ∈ F ,

(ii) if x ∈ F and x→ y ∈ F , then y ∈ F .

A deductive system F of an equality-algebra A = (A,∧,∼, 1) is called a
proper deductive system if F 6= A. If A is a bounded equality-algebra, then
a deductive system is proper if and only if it does not contain 0 (see [3]).

Definition 2.8 ([13]). An equivalence relation θ on an equality-algebra
A = (A,∧,∼, 1) is called congruence, if (x, z), (y, w) ∈ θ, then (x ∼ y,
z ∼ w), (x ∧ y, z ∧ w) ∈ θ.

Proposition 2.9 ([6, 13]). Let F be a deductive system of an equality-
algebra A = (A,∧,∼, 1). Define the relation θ−→

F
and θF as follows:

(x, y) ∈ θ−→
F

iff {x→ y, y → x} ⊆ F

and
(x, y) ∈ θF iff x ∼ y ∈ F,

then θ−→
F

and θF are congruence and θ−→
F

= θF .

Proposition 2.10 ([6, 13]). Let F be a deductive system of an equality-
algebra A = (A,∧,∼, 1) and A/θF = {[x] : x ∈ A}, where [x] = {y ∈ A :
(x, y) ∈ θF }. Then A/θF = (A/θF ,∧,∼, 1) is an equality-algebra, where
for every x, y ∈ A, 1 := [1], [x] ∧ [y] := [x ∧ y] and [x] ∼ [y] := [x ∼ y].

Definition 2.11 ([3]). A proper deductive system F of an equality-algebra
A = (A,∧,∼, 1) is called a prime deductive system if x → y ∈ F or
y → x ∈ F for all x, y ∈ A.

Theorem 2.12 ([3]). Let F be a proper deductive system of prelinear equa-
lity-algebra A = (A,∧,∼, 1). Then the following statements are equivalent:

(i) F is a prime deductive system,

(ii) for each x, y ∈ A, if x ∨ y ∈ F , then x ∈ F or y ∈ F ,

(iii) A/θF is a chain.
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Definition 2.13 ([21]). Let A = (A,∧,∼, 1) be an equality-algebra. The
mapping τ : A→ A is called a very true operator, if it satisfies the following
conditions:

(V 1) τ(1) = 1,

(V 2) τ(x) ≤ x,

(V 3) τ(x) ≤ τ(τ(x)),

(V 4) τ(x ∼ y) ≤ τ(x) ∼ τ(y),

(V 5) τ(x ∧ y) = τ(x) ∧ τ(y).

3. Equality logic

In this section, we introduce and study a propositional equality logic and
we obtain some its properties.

Definition 3.1.

(i) The language of propositional equality logic EL has propositional
variables p, q, r,... binary connectives u, ≡ and a truth (logical)
constant >.

(ii) Formulas of EL are defined in the following way: each propositional
variable is a formula, > is a formula and if ϕ, ψ are formulas, then ϕu
ψ (conjunction) and ϕ ≡ ψ are formulas. Implication and equivalence
connectives are defined as the following short:

ϕ⇒ ψ := (ϕ u ψ) ≡ ϕ, ϕ⇔ ψ := (ϕ⇒ ψ) u (ψ ⇒ ϕ).

The set of all formulas of EL is denoted by F .

(iii) The following formulas are axioms of EL:

(EL1) ϕ u ϕ ≡ ϕ,

(EL2) ϕ u ψ ≡ ψ u ϕ,

(EL3) (ϕ u ψ) u χ ≡ ϕ u (ψ u χ),

(EL4) ϕ u > ≡ ϕ,

(EL5) (ϕ ≡ >) ≡ ϕ,

(EL6) (ϕ ≡ ψ) ≡ (ψ ≡ ϕ),
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(EL7) ((ϕ u ψ u χ) ≡ ϕ)⇒ ((ϕ u ψ) ≡ ϕ),

(EL8) (ϕ ≡ ψ)⇒ (ϕ u χ ≡ ψ u χ),

(EL9) (ϕ ≡ ψ)⇒ ((ϕ ≡ χ) ≡ (ψ ≡ χ)).

(iv) The inference rules are :

(EA) from ψ and ϕ ≡ ψ, we infer ϕ,

(MP) from ϕ and ϕ⇒ ψ, we infer ψ.

The rule (EA) is the equanimity rule (cf. [18]) and (MP) is the modus
ponens rule for formulas.

Definition 3.2. Let A = (A,∧,∼, 1) be an equality-algebra. An A-
evaluation of formulas is a mapping e : F → A, defined as follows:

(1) e(>) = 1,

(2) e(ϕ u ψ) = e(ϕ) ∧ e(ψ),

(3) e(ϕ ≡ ψ) = e(ϕ) ∼ e(ψ),

for all formulas ϕ,ψ ∈ F . A formula ϕ is a A-tautology if e(ϕ) = 1 for
each A- evaluation e : F → A.

Lemma 3.3. All axioms of EL are A-tautologies for all equality-algebra
A = (A,∧,∼, 1).

Proof: Suppose that A = (A,∧,∼, 1) is an arbitrary equality-algebra and
e : F → A is an arbitrary A-evaluation.

(EL1) By (E1) and (E2), we have e(ϕ u ϕ ≡ ϕ) = e(ϕ u ϕ) ∼ e(ϕ) =
(e(ϕ) ∧ e(ϕ)) ∼ e(ϕ) = e(ϕ) ∼ e(ϕ) = 1.

(EL2) Using (E1) and (E3), e(ϕ u > ≡ ϕ) = e(ϕ u >) ∼ e(ϕ) = (e(ϕ) ∧
e(>)) ∼ e(ϕ) = (e(ϕ) ∧ 1) ∼ e(ϕ) = e(ϕ) ∼ e(ϕ) = 1 by (A2).

Similarly, we can prove the (EL3)–(EL9).

Lemma 3.4. The inference rules of propositional equality logic EL sound
in the following sense: Let e : F → A be an A-evaluation where A is an
equality-algebra:

(1) if ϕ and ϕ ≡ ψ are A-tautology, then ψ is also A-tautology,

(2) if ϕ and ϕ⇒ ψ are A-tautology, then ψ is also A-tautology.
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Proof:

(1) Suppose that e(ϕ) = 1 and e(ϕ ≡ ψ) = 1. Then 1 = e(ψ) ∼ 1 = e(ψ)
by (E4).

Similarly, we can prove (2).

Theorem 3.5 (Soundness). The propositional equality logic EL is sound.

Proof: It follows from Lemma 3.3 and Lemma 3.4.

A proof in propositional equality logic EL is a sequence ϕ1, . . . , ϕn of
formulas such that each ϕi either is an axiom of EL or follows from some
preceding ϕj , ϕk(j, k < i) by inference rules. A formula is provable (nota-
tion ` ϕ ) if it is the least member a proof in propositional equality logic
EL. By Theorem 3.5, each provable formula in propositional equality logic
EL is A-tautology for all equality-algebra A.

A theory over propositional equality logic EL is any subset Γ ⊆ F . A
proof in a theory Γ is a sequence ϕ1, . . . , ϕn of formulas whose each member
is either an axiom EL or a member of Γ (spacial axiom) or follows from
some preceding members of the sequence using the inference rules. Γ ` ϕ
means that ϕ is provable in Γ, that is the last member of a proof in Γ. An
A-evaluation e is a model of Γ, if e(ϕ) = 1 for each ϕ ∈ Γ. If Γ = {ϕ},
then we write ϕ ` ψ instead of {ϕ} ` ψ.

In the following, we will verify provability of several formulas in propo-
sitional equality logic EL.

Proposition 3.6. Let ϕ,ψ, χ ∈ F be formulas. EL proves the following
properties of equality:

(1) ` ϕ ≡ ϕ,

(2) ϕ ` ϕ ≡ >,

(3) ϕ ≡ > ` ϕ,

(4) ϕ ≡ ψ ` ψ ≡ ϕ,

(5) ϕ u ψ ≡ χ ` ψ u ϕ ≡ χ,

(6) ϕ ≡ ψ ` (ϕ ≡ χ) ≡ (ψ ≡ χ),

(7) {ϕ ≡ ψ,ψ ≡ χ} ` ϕ ≡ χ,
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(8) ϕ ≡ ψ ` (χ ≡ ϕ) ≡ (χ ≡ ψ),

(9) ϕ ≡ ψ ` (χ u ϕ) ≡ (χ u ψ),

(10) {ψ,ψ ≡ ϕ} ` ϕ.

Proof:

(1) We have ` (ϕ u ϕ ≡ ϕ) ⇒ ((ϕ u ϕ ≡ ϕ) ≡ (ϕ ≡ ϕ)) by (EL9).
Applying (EL1) and (MP), we get ` (ϕ u ϕ ≡ ϕ) ≡ (ϕ ≡ ϕ). Using
(EL1) and (EA), we obtain ` ϕ ≡ ϕ.

(2) By (EL6), we have ` ((ϕ ≡ >) ≡ ϕ) ≡ (ϕ ≡ (ϕ ≡ >)). Applying
(EL5) and then (EA), we obtain ` ϕ ≡ (ϕ ≡ >). Using assumption
and (EA), we get the result.

(3) It follows from (EL5), assumption and (EA).

(4) By assumption, (EL6) and (EA), we obtain the result.

(5) Using (EL9), we have ` (ϕuψ ≡ ψuϕ)⇒ ((ϕuψ ≡ χ) ≡ (ψuϕ ≡ χ)).
Applying (EL2) and (MP), we get ` (ϕuψ ≡ χ) ≡ (ψuϕ ≡ χ). Using
assumption and (EA), we have ϕ u ψ ≡ χ ` ψ u ϕ ≡ χ.

(6) It is immediate consequence of (EL9).

(7) We have ϕ ≡ ψ ` (ϕ ≡ χ) ≡ (ψ ≡ χ) by assumption and part (6).
Using part (4), we get ϕ ≡ ψ ` (ψ ≡ χ) ≡ (ϕ ≡ χ). By assumption
and (EA), we get the result.

(8) By assumption, part (4) and then part (6), we have ϕ ≡ ψ ` (ψ ≡
χ) ≡ (ϕ ≡ χ). Since we have ` ((ψ ≡ χ) ≡ (ϕ ≡ χ))⇒ (((ψ ≡ χ) ≡
(χ ≡ ψ)) ≡ ((ϕ ≡ χ) ≡ (χ ≡ ψ))) by (EL9), then ` ((ψ ≡ χ) ≡
(χ ≡ ψ)) ≡ ((ϕ ≡ χ) ≡ (χ ≡ ψ)) by (MP). Using (EL6), we have
` (ψ ≡ χ) ≡ (χ ≡ ψ). So by (EA), we get ` (ϕ ≡ χ) ≡ (χ ≡ ψ).
Applying (EL9) ` ((ϕ ≡ χ) ≡ (χ ≡ ϕ)) ⇒ (((ϕ ≡ χ) ≡ (χ ≡ ψ)) ≡
((χ ≡ ϕ) ≡ (χ ≡ ψ))). By (EL6) ` (ϕ ≡ χ) ≡ (χ ≡ ϕ) and (MP), we
get ` ((ϕ ≡ χ) ≡ (χ ≡ ψ)) ≡ ((χ ≡ ϕ) ≡ (χ ≡ ψ)). Hence by (EA),
we obtain ϕ ≡ ψ ` (χ ≡ ϕ) ≡ (χ ≡ ψ).

(9) It follows from (EL8), (EL2) and part (8).

(10) Using assumptions, part (4) and (EA), we get result.
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Proposition 3.7. Let ϕ,ϕ1, ψ, ψ1, χ, χ1 ∈ F be formulas. EL proves the
following:

(1) {ϕ u ψ ≡ χ, ϕ ≡ ϕ1} ` ϕ1 u ψ ≡ χ,

(2) {(ϕ ≡ ψ) ≡ χ, ϕ ≡ ϕ1} ` (ϕ1 ≡ ψ) ≡ χ,

(3) {ϕ⇒ (ψ ≡ χ), ψ ≡ ψ1} ` ϕ⇒ (ψ1 ≡ χ),

(4) {ϕ⇒ (ψ ≡ χ), χ ≡ χ1} ` ϕ⇒ (ψ ≡ χ1),

(5) {ϕ⇒ ψ,ϕ ≡ ϕ1} ` ϕ1 ⇒ ψ,

(6) {ϕ⇒ (ψ ≡ χ), ψ} ` ϕ⇒ χ,

(7) {ϕ,ψ} ` ϕ u ψ,

(8) ϕ ≡ ψ ` ϕ⇒ ψ,

(9) {(ϕ ≡ ψ)⇒ χ, ϕ ≡ ϕ1} ` (ϕ1 ≡ ψ)⇒ χ.

Proof:

(1) Suppose that Γ = {ϕ u ψ,ϕ ≡ ϕ1}. By assumption Γ ` ϕ ≡ ϕ1,
(EL8) and (MP), we obtain Γ ` (ϕ u ψ) ≡ (ϕ1 u ψ). Using (EL9),
` ((ϕ u ψ) ≡ (ϕ1 u ψ)) ⇒ ((ϕ u ψ ≡ χ) ≡ (ϕ1 u ψ ≡ χ)) and (MP),
we have Γ ` (ϕ u ψ ≡ χ) ≡ (ϕ1 u ψ ≡ χ). Applying assumption
Γ ` ϕ u ψ ≡ χ and (EA), we get the result.

(2) Let Γ = {(ϕ ≡ ψ) ≡ χ, ϕ ≡ ϕ1}. Using assumption Γ ` ϕ ≡
ϕ1, (EL9) and (MP), we have Γ ` (ϕ ≡ ψ) ≡ (ϕ1 ≡ ψ). Since
` ((ϕ ≡ ψ) ≡ (ϕ1 ≡ ψ)) ≡ ((ϕ ≡ ψ) ≡ χ) ≡ ((ϕ1 ≡ ψ) ≡ χ))
by (EL9), then Γ ` (ϕ ≡ ψ) ≡ χ) ≡ ((ϕ1 ≡ ψ) ≡ χ). Applying
assumption Γ ` (ϕ ≡ ψ) ≡ χ and (EA), we have Γ ` ((ϕ1 ≡ ψ) ≡ χ).

(3) Suppose that Γ = {ϕ ⇒ (ψ ≡ χ), ψ ≡ ψ1}. Since Γ ` ψ ≡ ψ1,
then Γ ` (ψ ≡ χ) ≡ (ψ1 ≡ χ) by Proposition 3.6 part (6). We have
Γ ` (ϕu (ψ ≡ χ)) ≡ ϕ by assumption. Hence Γ ` (ϕu (ψ1 ≡ χ)) ≡ ϕ
by part (1), that is Γ ` ϕ⇒ (ψ1 ≡ χ).

(4) Let Γ = {ϕ ⇒ (ψ ≡ χ), χ ≡ χ1}. By assumption Γ ` χ ≡ χ1

and Proposition 3.6 part (8) we get Γ ` (ψ ≡ χ) ≡ (ψ ≡ χ1).
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Applying part (1) and assumption Γ ` (ϕ u (ψ ≡ χ)) ≡ ϕ, we obtain
Γ ` (ϕ u (ψ ≡ χ1)) ≡ ϕ. Hence Γ ` ϕ⇒ (ψ ≡ χ1).

(5) It follows from assumptions and part (1).

(6) Suppose that Γ = {ϕ ⇒ (ψ ≡ χ), ψ}. By assumption Γ ` ψ and
Proposition 3.6 part (2), we obtain Γ ` ψ ≡ >. Using Proposition 3.6
part (6), we get Γ ` (ψ ≡ χ) ≡ (> ≡ χ). By Proposition 3.6
part (9) and (MP), we have Γ ` ϕ u (ψ ≡ χ) ≡ ϕ u (> ≡ χ).
Applying (EL5) and part (1), we obtain Γ ` ϕ u (ψ ≡ χ) ≡ ϕ u χ.
Thus ` ϕ u χ ≡ ϕ u (ψ ≡ χ) by Proposition 3.6 part (4). Using
assumption Γ ` ϕ u (ψ ≡ χ) ≡ ϕ and Proposition 3.6 part (7), we
have Γ ` ϕ u χ ≡ ϕ, that is Γ ` ϕ⇒ χ.

(7) Let Γ = {ϕ,ψ}. By assumption Γ ` ϕ, Proposition 3.6 part (2),
(EL8) and (EA), we have Γ ` (ϕ u ψ) ≡ (> u ψ). By assumption
Γ ` ψ, (EL4) and (EA), we get Γ ` ψ u >. Thus Γ ` > u ψ by
Proposition 3.6 part (4). By Proposition 3.6 part (10), we get result.

(8) By assumption and Proposition 3.6 part (9), we have ϕ ≡ ψ ` (ϕ u
ϕ) ≡ (ϕ u ψ). Since Γ ` ((ϕ u ϕ) ≡ (ϕ u ψ)) ⇒ ((ϕ u ϕ) ≡ ϕ) ≡
(ϕ u ψ) ≡ ϕ)) by (EL9), then Γ ` ((ϕ u ϕ) ≡ ϕ) ≡ ((ϕ u ψ) ≡ ϕ).
Applying (EL1) and (EA), we have Γ ` (ϕ u ψ) ≡ ϕ, that is (6)
ϕ ≡ ψ ` ϕ⇒ ψ.

(9) Suppose that Γ = {(ϕ ≡ ψ) ⇒ χ, ϕ ≡ ϕ1}. By assumption Γ ` ϕ ≡
ϕ1 and Proposition 3.6 part (6), we have ` (ϕ ≡ ψ) ≡ (ϕ1 ≡ ψ).
Applying (EL8), we obtain Γ ` ((ϕ ≡ ψ) u χ) ≡ ((ϕ1 ≡ ψ) u χ).
Thus Γ ` ((ϕ1 ≡ ψ) u χ) ≡ ((ϕ ≡ ψ) u χ) by Proposition 3.6 part
(4). Also, using assumption Γ ` ((ϕ ≡ ψ) u χ) ≡ (ϕ ≡ ψ) and twice
Proposition 3.6 part (7), we get Γ ` ((ϕ1 ≡ ψ)u χ) ≡ (ϕ1 ≡ ψ), that
is Γ ` (ϕ1 ≡ ψ)⇒ χ.

Proposition 3.8. Let ϕ,ψ, χ ∈ F be formulas. EL proves the following
properties of implication:

(1) ` ϕ⇒ ϕ,

(2) ` (> ⇒ ϕ) ≡ ϕ,

(3) ` (ϕ⇒ ψ)⇒ ((ϕ u χ)⇒ ψ),
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(4) ` ϕ⇒ (ψ ⇒ ϕ),

(5) ` ϕ⇒ (ϕ ≡ >),

(6) ` (ϕ u ψ)⇒ ϕ, ` (ϕ u ψ)⇒ ψ,

(7) {ϕ⇒ ψ,ψ ⇒ χ} ` ϕ⇒ χ,

(8) ` (ϕ⇒ ψ)⇒ ((ϕ u χ)⇒ ψ).

Proof:

(1) It follows from (EL1).

(2) The proof is straightforward by (EL5), (EL4) and Proposition 3.7
part (1).

(3) We have ` ((ϕuψ) ≡ ϕ)⇒ (((ϕuψ)uχ) ≡ (ϕuχ)) by (EL8). Using
(EL2), (EL3) and Proposition 3.7 part (2), we obtain ` ((ϕ u ψ) ≡
ϕ)⇒ (((ϕ u χ) u ψ) ≡ (ϕ u χ)). Hence ` (ϕ⇒ ψ)⇒ ((ϕ u χ)⇒ ψ)
by definition ⇒.

(4) We have ` (> ⇒ ϕ)⇒ ((>uψ)⇒ ϕ) by part (3). Since ` (> ⇒ ϕ) ≡
ϕ by part (2), then ` ϕ⇒ ((>uψ)⇒ ϕ) by Proposition 3.7 part (5).
By definition implication, ` ϕ ⇒ (((> u ψ) u ϕ) ≡ (> u ψ)). Using
(EL4) and Proposition 3.7 part (4), we obtain ` ϕ⇒ (((>uψ)uϕ) ≡
ψ). Applying (EL4), (EL8) and (MP), we have ` ((> u ψ) u ϕ) ≡
(ψ u ϕ). Hence ` ϕ ⇒ (((ψ u ϕ) ≡ ψ) by Proposition 3.7 part (3),
that is ` ϕ⇒ (ψ ⇒ ϕ).

(5) Applying (EL5), (EL8), we have ` (ϕu(ϕ ≡ >)) ≡ (ϕuϕ). By (EL1)
and Proposition 3.6 part (7), we get ` (ϕ u (ϕ ≡ >)) ≡ ϕ. Hence
` ϕ⇒ (ϕ ≡ >).

(6) By (EL9), We have ` (((ϕuϕ)uψ) ≡ (ϕu(ϕuψ)))⇒ (((ϕuϕ)uψ ≡
(ϕ u ψ)) ≡ (ϕ u (ϕ u ψ) ≡ (ϕ u ψ))). Using (EL3) and (MP), we
get ` ((ϕ u ϕ) u ψ ≡ (ϕ u ψ)) ≡ (ϕ u (ϕ u ψ) ≡ (ϕ u ψ)). We
have ` (ϕ u ϕ) u ψ ≡ (ϕ u ψ) by (EL1), (EL8) and (MP). Thus
` ϕ u (ϕ u ψ) ≡ (ϕ u ψ) by (EA). Hence ` (ϕ u ψ)⇒ ϕ by definition
of implication.
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(7) By assumptions, definition of implication and Proposition 3.6 part
(4), we have ` (ψuϕ) ≡ ϕ and ` ψ ≡ (ψuχ). Using Proposition 3.7
part (1), we obtain ` ((ψ uχ)uϕ) ≡ ϕ. By Proposition 3.6 part (5),
` ϕ u (ψ u χ) ≡ ϕ. Hence we get the result by (EL7) and (MP).

(8) It follows from (EL8) and definition ⇒.

In the following, we will use the standard Lindenbaum Tarski technique
to show that propositional equality logic EL.

Lemma 3.9. Let ϕ1, ϕ2, ψ1, ψ2 ∈ F be formulas. EL proves the following
properties:

(1) {ϕ1 ≡ ψ1, ϕ2 ≡ ψ2} ` (ϕ1 u ϕ2) ≡ (ψ1 u ψ2),

(2) {ϕ1 ≡ ψ1, ϕ2 ≡ ψ2} ` (ϕ1 ≡ ϕ2) ≡ (ψ1 ≡ ψ2).

Proof: Suppose that Γ = {ϕ1 ≡ ψ1, ϕ2 ≡ ψ2}.

(1) By assumption Γ ` ϕ1 ≡ ψ1, (EL8) and (MP), we have Γ ` (ϕ1 u
ϕ2) ≡ (ψ1uϕ2). By Proposition 3.6 part (9) we obtan Γ ` (ψ1uϕ2) ≡
(ψ1 u ψ2). By Proposition 3.6 part (7), we get Γ ` (ϕ1 u ϕ2) ≡
(ψ1 u ψ2).

(2) Using assumption Γ ` ϕ1 ≡ ψ1, (EL9) and (MP), we have Γ ` (ϕ1 ≡
ϕ2) ≡ (ψ1 ≡ ϕ2). Applying assumption Γ ` ϕ2 ≡ ψ2, Proposition 3.6
part (8) and (MP), we obtain Γ ` (ψ1 ≡ ϕ2) ≡ (ψ1 ≡ ψ2). Therefore
Γ ` (ϕ1 ≡ ϕ2) ≡ (ψ1 ≡ ψ2) by Proposition 3.6 part (7).

Proposition 3.10. Let Γ be a theory over the propositional equality logic
EL. Put ϕ ≈Γ ψ iff Γ ` ϕ ≡ ψ. Then ≈Γ is an equivalence relation on F .

Proof: It follows from Proposition 3.6 part (1), part (4) and part (7) that
≈Γ is an equivalence on relation on F .

Let Γ be a theory over the propositional equality logic EL. Denote MΓ =
{[ϕ]Γ : ϕ ∈ F} where [ϕ]Γ = {ψ ∈ F|ϕ ≈Γ ψ}. Finally, we define

[ϕ]Γ ∧ [ψ]Γ = [ϕ u ψ]Γ,

[ϕ]Γ ∼ [ψ]Γ = [ϕ ≡ ψ]Γ,

1 = [>]Γ.
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Proposition 3.11. The algebraMΓ = (MΓ,∧,∼, 1) is an equality-algebra.

Proof: By Lemma 3.9, we know that the operations ∧ and ∼ are well
defined. By (EL1)–(EL4), we can see that (MΓ,∧,∼, 1) i a meet-semilattice
with top element 1. Now, we will show that [ϕ]Γ ≤ [ψ]Γ iff T ` ϕ ⇒ ψ.
Suppose that Γ ` ϕ ⇒ ψ. Then Γ ` (ϕ u ψ) ≡ ϕ. So [ϕ]Γ ∧ [ψ]Γ = [ϕ]Γ.
Hence [ϕ]Γ ≤ [ψ]Γ. Similarly, we can prove if [ϕ]Γ ≤ [ψ]Γ, then Γ ` ϕ⇒ ψ.
The proof of (EL5)–(EL9) is straightforward.

Theorem 3.12 (Completeness). The propositional equality logic EL is com-
plete, i.e. the following are equivalent:

(i) ` ϕ,

(ii) for every equality-algebra A = (A,∧,∼, 1), ϕ is an A-tautology.

Proof: (i)⇒ (ii) follows from Theorem 3.5. Conversely, for every theory Γ
of the propositional equality logic EL, MΓ = (MT ,∧,∼, 1) is an equality-
algebra. Let Γ to be the set of all axioms of EL. Thus ϕ is an MΓ-
tautology by assumption. Consider the mapping e defined by e(p) = [p]Γ
for all propositional variables p. Then e is a M-evaluation from F to the
equality-algebraM. By Definition 3.2, e(ϕ) = [1]Γ. Then [ϕ]Γ = [1]Γ, that
is Γ ` ϕ ≡ >. Hence ` ϕ.

Now, we will show the locally deduction theorem for the propositional
equality logic EL. For this, we need the following proposition.

For convenience, we shall abbreviate the formulas ϕ ≡ (· · · ≡ (ϕ ≡
ψ) · · · ) and ϕ ⇒ (· · · ⇒ (ϕ ⇒ ψ) · · · ) by ϕ ≡n ψ and ϕ ⇒n ψ, n ∈ N0

indicating the number of occurrences of ϕ.

Proposition 3.13. Let ϕ,ψ, χ ∈ F be formulas. EL proves the following:

(1) ϕ⇒ ψ ` (χ⇒ ϕ)⇒ (χ⇒ ψ),

(2) ϕ⇒ ψ ` (ψ ⇒ χ)⇒ (ϕ⇒ χ),

(3) ` ϕ⇒ [(ψ ≡ ϕ) ≡ ψ],

(4) ` (ϕ ≡ ψ)⇒ (ϕ⇒ ψ),

(5) ` ϕ⇒ ((ϕ⇒ ψ)⇒ ψ),

(6) ` (ϕ⇒ ψ)⇒ [(ψ ⇒ χ)⇒ (ϕ⇒ χ)],

(7) ` (χ⇒ (ϕ⇒ ψ))⇒ (ϕ⇒ (χ⇒ ψ)),
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(8) ` (ϕ⇒n (ψ ⇒ χ))⇒ (ψ ⇒ (ϕ⇒n χ)),

(9) ` (ϕ⇒ ψ)⇒ ((ψ ⇒ ϕ)⇒ (ϕ ≡ ψ)),

(10) {ϕ⇒ χ, ϕ⇒ ψ} ` ϕ⇒ (ψ u χ),

(11) ` (ϕ ≡ ψ)⇒ ((ϕ⇒ ψ) u (ψ ⇒ ϕ)).

Proof:

(1) Let Γ = {ϕ ⇒ ψ}. Applying (EL7) and definition ⇒, we obtain
` ((ϕ u ψ u χ) ≡ χ) ⇒ (χ ⇒ ψ). By assumption, (EL8) and (MP),
we get Γ ` (ϕuψ uχ) ≡ ϕuχ. By Proposition 3.7 part (9), we have
Γ ` ((ϕ u χ) ≡ χ)⇒ (χ⇒ ψ), that is Γ ` (χ⇒ ϕ)⇒ (χ⇒ ψ).

(2) Let Γ = {ϕ⇒ ψ}. We have ` ((ψuχ) ≡ ψ)⇒ ((ϕu(ψuχ)) ≡ (ϕuψ))
by (EL8)and Γ ` (ϕ u ψ) ≡ ϕ by assumption. Using Proposition 3.7
part (4), we get Γ ` ((ψuχ) ≡ ψ)⇒ ((ϕuψuχ) ≡ ϕ). By (EL7) and
Proposition 3.8 part (7), we obtain Γ ` ((ψuχ) ≡ ψ)⇒ ((ϕuχ) ≡ ϕ).
Hence Γ ` (ψ ⇒ χ)⇒ (ϕ⇒ χ).

(3) We have ` (ϕ ≡ >)⇒ ((ϕ ≡ ψ) ≡ (> ≡ ψ)) and ` (ψ ≡ >) ≡ ψ) by
(EL9) and (EL5) respectively. Therefore ` (ϕ ≡ >)⇒ ((ψ ≡ ϕ) ≡ ψ)
by Proposition 3.7 part (4). Again by (EL5) and Proposition 3.7 part
(5), we get ` ϕ⇒ [(ψ ≡ ϕ) ≡ ψ].

(4) Applying (EL8), (EL1) and Proposition 3.7 part (4), we have ` (ϕ ≡
ψ)⇒ ((ϕ u ψ) ≡ ψ), that is ` (ϕ ≡ ψ)⇒ (ϕ⇒ ψ).

(5) By part (3) and definition ⇒, we have ` ϕ ⇒ ((ϕ ⇒ ψ) ≡ (ϕ u ψ)).
By part (4) and Proposition 3.8 part (7), we get ` ϕ⇒ ((ϕ⇒ ψ)⇒
(ϕ u ψ)). By Proposition 3.8 part (6) and then part (1), we obtain
` ((ϕ ⇒ ψ) ⇒ (ϕ u ψ)) ⇒ ((ϕ ⇒ ψ) ⇒ ψ). Using Proposition 3.8
part (7), we obtain the result.

(6) By (EL8) and part (2), we have ` [((ϕ u ψ) ≡ (ϕ u ψ u χ)) ⇒ (ϕ ≡
(ϕuψuχ))]⇒ [(ψuχ) ≡ ψ)⇒ (ϕ ≡ (ϕuψuχ))]. By (EL7) and part
(1), we have ` [((ψuχ) ≡ ψ)⇒ (ϕ ≡ (ϕuψuχ))]⇒ [((ψuχ) ≡ ψ)⇒
((ϕ u χ) ≡ χ)]. By (EL9), we have ` ((ϕ u ψ) ≡ ϕ) ⇒ [((ϕ u ψ) ≡
(ϕ u ψ u χ)) ⇒ ((ϕ u ψ u χ)) ≡ ϕ]. Using Proposition 3.8 part (7)
twice, we obtain ` ((ϕuψ) ≡ ϕ)⇒ [((ψ uχ) ≡ ψ)⇒ ((ϕuχ) ≡ χ)].
Hence ` (ϕ⇒ ψ)⇒ [(ψ ⇒ χ)⇒ (ϕ⇒ χ)].
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(7) By part (7), we have ` (χ ⇒ (ϕ ⇒ ψ)) ⇒ [((ϕ ⇒ ψ) ⇒ ψ) ⇒ (χ ⇒
ψ)]. By part (5) and then part (2), we have ` [((ϕ ⇒ ψ) ⇒ ψ) ⇒
(χ ⇒ ψ)] ⇒ [ϕ ⇒ (χ ⇒ ψ)]. Using Proposition 3.8 part (6), we
obtain the result.

(8) It can be proved by part (7) and induction.

(9) It follows from (EL9) and part (4).

(10) Let Γ = {ϕ ⇒ χ, ϕ ⇒ ψ}. By assumption Γ ` ϕ ⇒ χ, (EL8)
and (MP), we get Γ ` ((ϕ u χ) u ψ) ≡ (ϕ u ψ). Using assumption
Γ ` ϕ⇒ ψ and (EL9), we obtain the result.

(11) It follows from part (4) and part (10).

Theorem 3.14 (Local Deduction Theorem). Let Γ be a theory over the
propositional equality logic EL and ϕ, ψ be formulas. Then Γ ∪ {ϕ} ` ψ if
and only if Γ ` ϕ⇒n ψ where n ∈ N0.

Proof: Suppose that Γ ∪ {ϕ} ` ψ. We will prove it by induction on the
number of formulas on the sequence of deduction of ψ from Γ ∪ {ϕ}. Let
χ1, χ2, . . . , χk be a corresponding Γ ∪ {ϕ}-proof of ψ. We should consider
four cases:

Case 1: ψ is an axiom of EL or ψ ∈ Γ. By Proposition 3.8 part (4) and
(MP), we obtain Γ ` ϕ⇒ ψ.

Case 2: ψ is ϕ. By Proposition 3.8 part (1), we have Γ ` ϕ⇒ ϕ.

Case 3: ψ is obtained from two pervious formulas on the corresponding
Γ ∪ {ϕ}-proof of ψ by an application (MP). These two formulas must
have the form χi and χi ⇒ ψ where 1 < i < k. By the induction
hypothesis, there exist n,m ∈ N0 such that T ` ϕ ⇒n χi and Γ `
ϕ⇒m (χi ⇒ ψ).
By Proposition 3.13 part (8) and (MP), we get Γ ` χi ⇒ (ϕ ⇒m χ).
Using Proposition 3.13 part (1), we have Γ ` (ϕ ⇒n χi) ⇒ (ϕ ⇒n

(ϕ ⇒m ψ)). Applying (MP), we obtain Γ ` ϕ ⇒n (ϕ ⇒m ψ). Hence
Γ ` ϕ⇒n+m ψ.

Case 4: ψ results by (EA) from pervious member χi and χi ≡ ψ (1 < i < k)
of the corresponding Γ∪{ϕ}-proof of ψ. Thus Γ∪{ϕ} ` χi and T∪{ϕ} `
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χi ≡ ψ. By Proposition 3.7 part (8), we have Γ ∪ {ϕ} ` χi ⇒ ψ. As
Case 3 above, we can show that Γ ` ϕ⇒n+m ψ.

Conversely, suppose that Γ ` ϕ ⇒n ψ for n > 1. Then Γ ` ϕ ⇒ (ϕ ⇒n−1

ψ). Thus Γ∪{ϕ} ` ϕ⇒n−1 ψ. Replacing this, we obtain Γ∪{ϕ} ` ϕ⇒ ψ.
Hence Γ ∪ {ϕ} ` ψ.

Remark. The deduction theorem in the form of Γ∪{ϕ} ` ψ if and only if Γ `
ϕ⇒ ψ does not hold in the propositional equality logic EL. Suppose that it
holds and ϕ ∈ F be arbitrary formula. Then {ϕ,ϕ⇒ (ϕ⇒ ψ)} ` ϕ. Hence
` (ϕ ⇒ (ϕ ⇒ ψ)) ⇒ (ϕ ⇒ ψ). Therefore (ϕ ⇒ (ϕ ⇒ ψ)) ⇒ (ϕ ⇒ ψ) is
an A-tautology for every equality-algebra A = (A,∃,∀) by Theorem 3.12.
Now, consider equality-algebra in Example 4.7 and define e(ϕ) = a and
e(ψ) = b. Then (e(ϕ) → (e(ϕ) → e(ψ))) → (e(ϕ) → e(ψ)) = 1 → d = d
which is a contradiction.

In the following, we will show that the propositional equality logic EL
algebraizable with respect to the variety of equality-algebras in the sense
of [1] (Also see [2]).

Theorem 3.15. The propositional equality logic EL is algebraizable with
the defining equation ϕ = > and the equivalence formulas {ϕ ≡ ψ}.

Proof: Suppose that ϕ∆ψ = {ϕ ≡ ψ}, δ(ϕ) = ϕ and ε(ϕ) = >. By the
intrinsic characterization given by Blok and Pigozzi [1, Theorem 4.7], it is
sufficient to check that the following conditions hold for all formulas:

(1) ` ϕ∆ϕ,

(2) ϕ∆ψ ` ψ∆ϕ,

(3) ϕ∆ψ,ψ∆χ ` ϕ∆χ,

(4) ϕ1∆ψ1, ϕ2∆ψ2 ` (ϕ1 u ϕ2)∆(ψ1 u ψ2),

(5) ϕ1∆ψ1, ϕ2∆ψ2 ` (ϕ1 ≡ ϕ2)∆(ψ1 ≡ ψ2),

(6) ϕ a` δ(ϕ)∆ε(ϕ).

Now, we will prove them as follows:

(1) Since ϕ∆ϕ = {ϕ ≡ ϕ}, then ` ϕ∆ϕ by Proposition 3.6 part (1).
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(2) By Proposition 3.6 part (4), ϕ ≡ ψ ` ψ ≡ ϕ. Hence ϕ∆ψ ` ψ∆ϕ.

(3) It follows from Proposition 3.6 part (7).

(4) and (5) We obtain them by Lemma 3.9.

(6) Applying Proposition 3.6 part (2) and part (3), we have ϕ a` ϕ ≡ >.
Hence ϕ a` δ(ϕ)∆ε(ϕ).

Theorem 3.16. The propositional equality logic EL is algebraizable with
respect to the variety of equality-algebras, with equivalence formulas {ϕ ≡
ψ} and defining equation ϕ = >.

Proof: Let Alg∗EL be the algebraic semantics of the propositional equal-
ity logic EL. By Theorem 3.15, it exists and we can take {ϕ ≡ ψ} for the
equivalence formulas, and δ(p) = p, ε(p) = > for the defining equation. By
[1, Theorem 2.17], the variety Alg∗EL is axiomatized as follows:

(1) (x ∧ x) ∼ x = 1.

(2) (x ∧ y) ∼ (y ∧ x) = 1,

(3) ((x ∧ y) ∧ z) ∼ (x ∧ (y ∧ z)) = 1.

(4) ((x ∧ 1) ∼ x) = 1,

(5) (x ∼ 1) ∼ x = 1,

(6) (x ∼ y) ∼ (y ∼ x) = 1,

(7) ((x ∧ y ∧ z) ∼ x)→ ((x ∧ y) ∼ x) = 1,

(8) (x ∼ y)→ ((x ∧ z) ∼ (y ∧ z)) = 1,

(9) (x ∼ y)→ ((x ∼ z) ∼ (y ∼ z)) = 1,

(10) x = 1 and x ∼ y = 1 imply y = 1,

(11) x = 1 and x→ y = 1 imply y = 1,

(12) x ∼ y = 1 imply x = y.

It is obvious that every equality-algebra satisfies (1)–(12). Hence the vari-
ety of equality-algebras is included in Alg∗EL. Conversely, let
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A = (A,∧,∼, 1) be an algebra belonging to Alg∗EL. Then (A,∧, 1) is a
meet-semilattice with top element 1 by part (1)–(5) and part (12).
(E5) follows from part (7) and Proposition 2.2. It is clear that A satis-
fies the other conditions of Definition 2.1.

Therefore We conclude that Alg∗EL is precisely the variety of all
equality-algebras.

In 1990, Skolem semilattices were defined by Büchi and Owens (see [5]).
Let x, y be arbitrary elements of a meet-semilattice (S,∧, 1) with the great-
est element 1. If the largest element of the set {z ∈ S : a∧x = b∧x} exists,
then it is called the symmetric relative pseudo-complement (the symmetric
RPC) of x and y, and is denoted by x↔s y. If the the symmetric RPC ex-
ists for every pair of elements x, y, then the enriched structure (S,∧,↔s, 1)
is called a Skolem semilattice.

The class of Skolem semilattices is a strongly point-regular and forms a
Hilbertian variety and hence Fregean. Skolem semilattices form the alge-
braic semantics of the conjunctive-equivalential fragment of intuitionistic
logic ([7]).

Proposition 3.17. The Skolem semilattices form a proper subvariety of
the variety of the equality algebras.

Proof: Let x, y be arbitrary elements of the Skolem semilattice
(S,∧,↔s, 1). We define x ∼ y := x ↔s y.Then (E2)–(E4) hold by
parts (1)–(3) of Theorem 6.5.2 in [7]. The proof of (E5) and (E6) is
easy. Let t ∈ S such that t ∧ x = t ∧ x. By part of (4) of Theo-
rem 6.5.2 in [7], we have t ∧ (x ↔s z) = t ∧ ((x ∧ t) ↔s z). Thus
t ∧ (x ∼ z) = t ∧ ((x ∧ t) ∼ z) = t ∧ ((y ∧ t) ∼ z) = t ∧ (y ∼ z). We
obtain t ≤ sup{w ∈ S : w ∧ (x ∼ z) = w ∧ (x ∼ z)} = (x ∼ z) ∼ (y ∼ z).
Then (E7) hold. Hence (S,∧,∼, 1) is an equality algebra. It follows that
Skolem semilattices form a subvariety of the variety of the equality alge-
bras. This inclusion is proper, because the logic determined by Skolem
semilattice admits the standard deduction theorem while the logic deter-
mined by equality algebras admits merely a local deduction theorem by
Theorem 3.14.

Corollary 3.18. The propositional equality logic EL with respect to the
variety of equality-algebras is regularly algebraizable but it is not Fregean.

Proof: Let E(ϕ,ψ) := {ϕ ≡ ψ}. Then E(ϕ,ψ) is a (finite) system of
equivalence sentences for EL and the G-rule determined by E is valid in
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EL. Thus EL is finitely regularly algebraizable. By Corollary 6.5.11 in [7]
and Theorem 3.15, we conclude that EL is not Fregean.

In 1966, famous Polish logician Roman Suszko create a new logical
calculus called by him Non-Fregean Logic (see [20]). He introduced the
identity connective to metalogic and, relying on Wittgenstein’s writings, he
has initiated systematic investigations of deductive systems endowed with
identity. By the above corollary, the equality algebras are the algebraic
counterparts of a strengthening of the pure Suszko logic with identity and
additionally equipped with the connective that possesses the properties of
conjunction.

4. Equality4-algebras

In this section, the concept of (prelinear) equality4-algebra is introduced
and some related properties are investigated.

Definition 4.1. An equality4-algebra is an algebra (A,∧,∼,4, 0, 1) of
type (2, 2, 1, 0, 0) where (A,∧,∼, 0, 1) is a bounded equality-algebra ex-
panded by a unary operation 4 : A→ A satisfying the following:

(41) 41 = 1,

(42) 4x ≤ x,

(43) 4x ≤ 44x,

(44) 4(x ∼ y) ≤ 4x ∼ 4y,

(45) 4(x ∧ y) = 4x ∧4y,

(46) if x ∨ y and 4x ∨4y exist, then 4(x ∨ y) ≤ 4x ∨4y,

(47) 4x∨¬4x = 1, that is 1 is unique upper bound of the set {4x,¬4x}
in A.

Example 4.2.

(1) Let (A,∧,∼, 0, 1) be a bounded equality-algebra. Define 4 : A→ A
by 41 = 1 and 4x = 0 for any x < 0. Then (A,∧,∼,4, 0, 1) is an
equality4-algebra.

(2) Let A = {0, a, b, c, d, 1} be a lattice in Fig. 1. Consider the operations
∼ and → given by the following tables:



Equality Logic 311

∼ 0 a b c d 1
0 1 d c b a 0
a d 1 a d c a
b c a 1 0 d b
c b d 0 1 a c
d a c d a 1 d
1 1 1 1 1 1 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

1

c a

d b

0

Figure 1

Then A = (A,∧,∼, 0, 1) is a bounded equality-algebra ([22]). Define
the unary operation 4 on A as 40 = 4d = 0, 4a = 4b = b, 4c = c
and 41 = 1. Then (A,∧,∼,4, 0, 1) is an equality4-algebra.

Remark 4.3. It is obvious that every equality4-algebra is a true equality al-
gebra. But the converse may not be true in general. Consider the following
example:

Example 4.4. Let A = {0, a, b, 1} be a chain such that 0 < a < b < 1.
Consider the operations ∼ and → given by the following tables:

∼ 0 a b 1
0 1 a a 0
a 1 1 a a
b 1 1 1 b
1 1 1 1 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then A = (A,∧,∼, 0, 1) is a bounded equality-algebra ([8]). Define the
unary operation τ on A as follows:

τ(0) = 0, τ(a) = τ(b) = a and τ(1) = 1.
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Then τ is a very true operation on A ([21]). Since τ(a) ∨ ¬τ(a) = a 6= 1,
then τ is not (A,∧,∼, τ, 0, 1) is not an equality4-algebra.

Proposition 4.5. Let (A,∧,∼,4, 0, 1) be an equality4-algebra. Then the
following properties hold, for all x, y, z ∈ A:

(1) 4x = 1 if and only if x = 1,

(2) x ≤ y implies 4x ≤ 4y,

(3) 44x = 4x,

(4) 4x ≤ y if and only if 4x ≤ 4y,

(5) Im(4) = Fix(4) where Fix(4) = {x ∈ A : 4x = x},

(6) if 4 is surjective, then 4 = IdA,

(7) Ker(4) = {1}, where Ker(4) = {x ∈ A : 4x = 1},

(8) Ker(4) is a deductive system of A,

(9) 4(x→ y) ≤ 4x→4y,

(10) if x ∨ y and 4x ∨4y exist, then 4(x ∨ y) = 4x ∨4y.

Proof: Since every equality4-algebra is a very true equality-algebra, then
part (1)–(9) follow from Proposition in [21]. (10) follows from (46) and
part (2).

Definition 4.6. A prelinear equality4-algebra is an equality4-algebra
(A,∧,∼,4, 0, 1) satisfies the following: for all x, y, z ∈ A
(48) 4(x→ y)→ z ≤ (4(y → x)→ z)→ z.

Example 4.7.

(1) An equality4-algebra in Example 4.2 part (2) is a prelinear equality4-
algebra.

(2) Let A = {0, a, b, c, d, 1} be a lattice in Fig. 2. Consider the operations
∼ and → given by the following tables:
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∼ 0 a b c d 1
0 1 d d d c 0
a d 1 c d c a
b d c 1 d c b
c d d d 1 d c
d c c c d 1 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b d d 1 1 1 1
c d d d 1 1 1
d c c c d 1 1
1 0 a b c d 1

1

d

c

a b

0

Figure 2

Then A = (A,∧,∼, 0, 1) is a bounded equality-algebra ([22]). Define
the unary operation 4 on A as 40 = 4a = 4b = 4c = 4d = 0
and 41 = 1. Then (A,∧,∼,4, 0, 1) is an equality4-algebra but it is
not a prelinear equality4-algebra because 4(a → b) → c = 1 6≤ c =
(4(b→ y)→ c)→ c.

(3) Let (A,∧,∼, 0, 1) be a prelinear bounded equality-algebra. Define
4 : A → A by 41 = 1 and 4x = 0 for any x < 0. Then (A,∧,∼
,4, 0, 1) is a prelinear equality4-algebra.

The proof of the following proposition is similar to Lemma 8 in [8].

Proposition 4.8. Let 4 be a unary operation on a bounded equality-
algebra A = (A,∧,∼, 0, 1) such that satisfies (41), (42), (48) and

(49) 4(x→ y) ≤ 4x→4y.
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Then, we have

(1) 4(x→ y) ∨4(y → x) = 1,

(2) if x ≤ y, then 4x ≤ 4y,

(3) (x→ y) ∨ (y → x) = 1.

(4) 4(x ∧ y) = 4x ∧4y,

(5) if x ∨ y and 4x ∨4y exist, then 4(x ∨ y) = 4x ∨4y,

(6) 4(x ∼ y) ≤ 4x ∼ 4y.

Proof:

(1) Suppose that u is an upper bound of the set {4(x→ y),4(y → x)}.
By (48), Proposition 2.5 part (15) and part (6), we get 1 = (x →
y)→ u ≤ ((x→ y)→ u)→ u = 1→ u = u. Hence u = 1.

(2) It follows from Proposition 2.5 part (4), (49) and (41).

(3) Suppose that u is an upper bound of the set {x → y, y → x}. Then
4(x → y) ≤ 4u and 4(y → x) ≤ 4u by part (2). By part (1), we
obtain 4u = 1. Hence u = 1 by (42).

(4) By part (2), we have 4(x ∧ y) ≤ 4x ∧ 4y. On the other hand,
by Proposition 2.5 part (17), (49) and Proposition 2.5 part (16)
1 = 4(x → y) ∨ 4(y → x) = 4(x → (x ∧ y)) ∨ 4(y → (x ∧ y)) ≤
(4x→4(x∧y))∨ (4y →4(x∧y)) = (4x∧4y)→4(x∧y). Thus
(4x ∧4y) ≤ 4(x ∧ y).

(5) By part (2), we have 4x ∨ 4y ≤ 4(x ∨ y). On the other hand, by
part (4), (49), Proposition 2.5 part (15) and part (16), we obtain

4(x ∨ y) = 4(((x→ y)→ y) ∧ ((y → x)→ x))

≤ ((4(x→ y)→4y) ∧ (4(y → x)→4x))

≤ ((4(x→ y)→ (4x ∨4y)) ∧ (4(y → x)→ (4x ∨4y))

≤ (4(x→ y) ∨4(y → x))→ (4x ∨4y) = (4x ∨4y).

(6) It follows from Proposition 2.5 part (7),(49), part (4) and part (2).
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Corollary 4.9. Let 4 be a unary operation on bounded equality-algebra
A = (A,∧,∼, 0, 1). Then (A,∧,∼,4, 0, 1) is a prelinear equality4- algebra
if and only if it satisfies, for all x, y, z ∈ A.

(41) 41 = 1,

(42) 4x ≤ x,

(43) 4x ≤ 44x,

(48) 4(x→ y)→ z ≤ (4(y → x)→ z)→ z,

(49) 4(x→ y) ≤ 4x→4y,

(47) 4x∨¬4x = 1, that is 1 is unique upper bound of the set {4x,¬4x}
in A.

Proof: It follows from Proposition 4.5 and Proposition 4.8.

Corollary 4.10. A prelinear equality4-algebra is an equality4-algebra
satisfying the prelinearity. Moreover, it is a distributive lattice.

Proof: It follows from Proposition 4.8 part (3) an Theorem 2.4.

Definition 4.11. A 4-deductive system of an equality4-algebra
(A,∧,∼,4, 0, 1) is a deductive system F of (A,∧,∼, 0, 1) that satisfies for
all x ∈ F , 4x ∈ F .

Example 4.12. Consider the prelinear equality4-algebra (A,∧,∼,4, 0, 1)
in Example 4.2 part (2). It is easy to see that F1 = {c, 1} is a 4-deductive
system of A. Also, F2 = {c, 1} is a deductive system of A but it is not a
4-deductive system.

Let (A,∧,∼,4, 0, 1) be an equality4-algebra and X be a nonempty
subset of A. We denote by 〈X〉4 the 4-deductive system of A generated
by X, that is, 〈X〉4 is the smallest 4-deductive system of A containing X.
If F is a 4-deductive system of A and x 6∈ F , then 〈F, x〉4 := 〈F ∪{x}〉4.

Theorem 4.13. Let X be a nonempty subset of an equality4-algebra
(A,∧,∼,4, 0, 1). Then

(i) 〈X〉4 = {x ∈ A|∃n ∈ N, y1, ..., yn ∈ A 3 4y1 → (4y2 → ...(4yn →
x)...) = 1},
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(ii) If F is a deductive system of A and S ⊆ A, then 〈F ∪ S〉4 = {x ∈
A|∃n ∈ N, s1, ..., sn ∈ S 3 4s1 → (4s2 → ...(4sn → x)...) ∈ F},

(iii) 〈a〉4 = {x ∈ A|∃n ∈ N,4x→n a = 1}.

Proof: The proof is straightforward.

Definition 4.14. Let A4 = (A,∧,∼,4, 0, 1) be an equality4-algebra and
θ be a congruence on an equality-algebra (A,∧,∼, 0, 1). Then θ is called a
4-congruence on A4, if (x, y) ∈ θ, then (4x,4y) ∈ θ, for any x, y ∈ A.

Proposition 4.15. Let A4 = (A,∧,∼,4, 0, 1) be an equality4-algebra
and let F be a 4-deductive system. Put (x, y) ∈ θF iff x ∼ y ∈ F . Then

(i) θF is a 4-congruence and the corresponding quotient algebra
(A/θF )4 = (A/θF ,∧,∼,4, 1) is an equality4-algebra, where for ev-
ery x, y ∈ A, [x] ∧ [y] := [x ∧ y], [x] ∼ [y] := [x ∼ y], 4[x] := [4x]
and 1 := [1].

(ii) (A/θF )4 is linearly ordered iff F is a prime 4-deductive system of
A.

(iii) if A4 is a prelinear equality4-algebra, then (A/θF )4 is a prelinear
equality4-algebra.

Proof: The proof is straightforward.

Let A = (A,∧,∼, 0, 1) be an equality-algebra. For x, y ∈ A and n ∈ N0,
we define x→n y inductively as follows:

x→0 y = y,

x→n y = x→ (x→n−1 y) for n ≥ 1.

The proof of the following lemma is similar to the proof of lemma 3.3 in [15].

Lemma 4.16. Let A4 = (A,∧,∼,4, 0, 1) be an equality4-algebra satisfying
prelinearity and P be a prime 4-deductive system of A. If x →n z ∈ P
and y →m z ∈ P for m,n ∈ N, then (x ∨ y)→r z ∈ P for some r ∈ N.

Proof: Suppose that l = max{n,m}. Then x→l z, y →l z ∈ P . We will
prove by induction on l. For l = 1, we have (x ∨ y)→ z = (x→ z) ∧ (y →
z) ∈ P by Proposition 2.5 part (16). Thus r = 1.
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Now, suppose that the statement holds for all k ∈ N with k ≤ l and
x→l+1 z, y →l+1 z ∈ P . Since

y →l+1 z ≤ x→l (y →l+1 z) = x→l (y → (y →l z))

= y → (x→l (y →l+1 z)),

x→l+1 z ≤ x→l+1 (y →l z) = x→ (x→l (y →l z),

then y → (x →l (y →l+1 z)), x → (x →l (y →l z) ∈ P . Using Proposi-
tion 2.5 part (11) and part (16), we get

x→ (x→l−1 (y →l ((x ∨ y)→ z))) = (x ∨ y)→ ((x→l (y →l z)

= [y → (x→l (y →l+1 z))] ∧ [x→ (x→l (y →l z)] ∈ P. (2.1)

By Proposition 2.5 part (15)

y →l+1 z ≤ y →l+1 ((x ∨ y)→ z)

≤ x→l−1 (y →l+1 ((x ∨ y)→ z))

= y → (x→l−1 (y →l ((x ∨ y)→ z)).

Thus
y → (x→l−1 (y →l ((x ∨ y)→ z)) ∈ P. (2.2)

By Proposition 2.5 part (11) and part (16), (2.1) and (2.2), we get
x→ (x→l−2 (y →l ((x∨y)→2 z))) = (x∨y)→ ((x→l−1 (y →l (x∨y)→
z)) = [y → (x →l−1 (y →l ((x ∨ y) → z))) ∧ x] → [(x →l−1 (y →l−1

((x ∨ y)→ z))] ∈ P. By repeating this, we get

y →l ((x ∨ y)→l+1 z)) ∈ P. (2.3)

by interchanging x, y, we obtain

x→l ((x ∨ y)→l+1 z)) ∈ P. (2.4)

Using induction hypothesi to (2.3) and (2.4), there exists s ∈ N such that
(x∨y)→s+l+1 z = (x∨y)→s ((x∨y)→l+1 z) ∈ P. Hence r = s+l+1.

Proposition 4.17. Let (A,∧,∼,4, 0, 1) be a prelinear equality4-algebra
and let a ∈ A, a 6= 1. Then there is a prime 4-deductive system F on A
not containing a.
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Proof: Suppose that P = {F : F is a proper 4-deductive system and
a 6∈ F}. Then P is a partially set under inclusion relation. Since {1} ∈ P,
then P is a nonempty set. It is easy to see that every chain in P has an
upper bound in P. By Zorn’s Lemma, there exists a maximal element P
in P. Since P ∈ P, then P is a 4-deductive system of A not containing a.
We will prove that P is prime. If P is not prime, then there exist x, y ∈ A
such that x → y, y → x 6∈ P . Since P is strictly contained in 〈P, x → y〉4
and 〈P, y → x〉4, then 〈P, x → y〉4 6∈ P and 〈P, y → x〉4 6∈ P by the
maximality of P . Thus a ∈ 〈P, y → x〉4 and a ∈ 〈P, x→ y〉4. Then there
exist n,m ∈ N such that 4(x → y) →n a ∈ P and 4(y → x) →m a ∈ P
by Theorem 4.13 part (iii). By Lemma 4.16, there exists r ∈ N such that
(4(x→ y)∨4(y → x))→r a ∈ P . By Proposition 4.8 part (1), we obtain
a ∈ P which is a contradiction.

Proposition 4.18. Each prelinear equality4-algebra is a subalgebra of the
direct product of a system of linearly ordered equality4-algebra.

Proof: Suppose that P is the class of all prime 4-deductive systems of
a prelinear equality4-algebra (A,∧,∼,4, 0, 1). Then B =

∏
θ∈P A/θF is a

direct product of linearly ordered equality4- algebra by Proposition 4.15
part (iii). Define f : A → B by f(x) = {x/θF : F ∈ P}. It is easy to
prove that f preserves operations. We will prove that f is one to one.
Suppose that x, y ∈ A such that x 6= y. Then x 6≤ y or y 6≤ x. Suppose
that x 6≤ y. Then x → y 6= 1. By Proposition 4.17, there exists a prime
4-deductive system F such that x→ y 6∈ F . Thus x/θF 6≤ y/θF in A/θF .
So x/θF 6= y/θF in A/θF . Hence f(x) 6= f(y).

5. Prelinear equality4 logic

In this section, we introduce the logic corresponding to prelinear equality4-
algebras and prove that the resulting logic, i.e. propositional prelinear
equality4 logic EL4 is sound and complete with respect to the variety of
prelinear equality4-algebras.

Definition 5.1.

(i) The language of propositional prelinear equality4 logic EL4 is the
language of propositional equality logic EL expanded by the unary
connective ∆ and the truth constant ⊥.
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(ii) Formulas of EL4 are defined in the following way:
each formula of EL is a formula of EL4, ⊥ is a formula and if ϕ is a
formula, then ∆(ϕ) is a formula. Disjunction and negation connec-
tives are defined as the following short:

ϕ t ψ := ((ϕ⇒ ψ)⇒ ψ) u ((ψ ⇒ ϕ)⇒ ϕ), ¬ϕ =: ϕ⇒ ⊥.

The set of all formulas of EL4 is denoted by F4.

(iii) The logical axioms of EL4 consist of the logical axioms of EL plus
the following axioms :

(E10) (ϕ u ⊥) ≡ ⊥,

(E∆1) ∆>,

(E∆2) ∆ϕ⇒ ϕ,

(E∆3) ∆ϕ⇒ ∆∆ϕ,

(E∆4) (∆(ϕ⇒ ψ)⇒ χ)⇒ ((∆(ψ ⇒ ϕ)⇒ χ)⇒ χ),

(E∆5) ∆(ϕ⇒ ψ)⇒ (∆ϕ⇒ ∆ψ),

(E∆6) (∆ϕ⇒ ¬∆ϕ)⇒ ¬∆ϕ,

(E∆7) (¬∆ϕ⇒ ∆ϕ)⇒ ∆ϕ.

(iv) The inference rules of EL4 are (EA), (MP) and generalization (Gen):
from ϕ derive ∆ϕ.

Definition 5.2. Let A4 = (A,∧,∼,4, 0, 1) be a prelinear equality4-
algebra. An A4-evaluation of formulas is a mapping e : F4 → A, defined
as follows:

(1) e(⊥) = 0,

(2) e(>) = 1,

(3) e(∆ϕ) = 4e(ϕ),

(4) e(ϕ u ψ) = e(ϕ) ∧ e(ψ),

(5) e(ϕ ≡ ψ) = e(ϕ) ∼ e(ψ),

for all formulas ϕ,ψ ∈ F4. A formula ϕ is a A4-tautology if e(ϕ) = 1 for
each A4- evaluation e : F4 → A. If an A4-evaluation e satisfies e(ϕ) = 1
for every ϕ in theory Γ, then it is called an A4-model of Γ.

The propositional prelinear equality4 logic EL4 is an extension of the
propositional equality logic EL. Thus every the theorems and inferences of
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EL is valid in EL4. In the following Lemma, we prove properties that we
will use in the strong completeness of EL4.

Lemma 5.3. Let ϕ,ψ, χ ∈ F be formulas. EL4 proves the following prop-
erties:

(1) {∆(ϕ⇒ ψ)⇒ χ,∆(ψ ⇒ ϕ)⇒ χ} ` χ,

(2) {(ϕ⇒ ψ)⇒ χ, (ψ ⇒ ϕ)⇒ χ} ` χ,

(3) ` ((ϕ⇒ ψ) u (ψ ⇒ ϕ))⇒ (ϕ ≡ ψ),

(4) ` ϕ ≡ ψ ` ∆ϕ ≡ ∆ψ,

(5) ` ∆> ≡ >.

Proof:

(i) The results follows from assumptions, (E∆4) and (MP).

(ii) Suppose that Γ = {(ϕ ⇒ ψ) ⇒ χ, (ψ ⇒ ϕ) ⇒ χ}. By assumption,
(Gen), (E∆5) and (MP), we have Γ ` ∆(ϕ ⇒ ψ) ⇒ ∆χ and Γ `
∆(ψ ⇒ ϕ)⇒ ∆χ. Using part (1), we obtain Γ ` χ.

(iii) Using Proposition 3.13 part (9), Proposition 3.8 part (8) and part
(7), we get ` (ϕ ⇒ ψ) ⇒ [((ϕ ⇒ ψ) u (ψ ⇒ ϕ)) ⇒ (ϕ ≡ ψ)],
` (ψ ⇒ ϕ)⇒ [((ϕ⇒ ψ) u (ψ ⇒ ϕ))⇒ (ϕ ≡ ψ)]. Applying part (2),
the result is obtained.

(iv) It is easy to prove by assumption, Proposition 3.13 part (11) , (Gen),
(E∆5), (MP), Proposition 3.7 part (7) and then part (3) and (MP).

(v) Using (EL5), we have ` (∆> ≡ >) ≡ ∆>. By (EL6) and (EA),
we obtain ` ∆> ≡ (∆> ≡ >). Applying (E∆1) and (EA), we have
` ∆> ≡ >.

Proposition 5.4. Let Γ be a theory over the propositional equality logic
EL4. Then algebra MΓ = (MΓ,∧,∼,4, 0, 1) is a prelinear equality4-
algebra where 1 = [>]Γ, 0 = [⊥]Γ, 4[ψ]Γ := [∆(ϕ)]Γ, [ϕ]Γ∧ [ψ]Γ := [ϕuψ]Γ
and [ϕ]Γ ∼ [ψ]Γ := [ϕ ≡ ψ]Γ.

Proof: Let Γ be a theory over the propositional equality logic EL4. Since
Γ be a theory over the propositional equality logic EL,
then (MΓ,∧,∼, 1) is an equality algebra by Proposition 3.11. By (E10),
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(MΓ,∧,∼, 0, 1) is bounded. By Lemma 5.3, 4 is well defined. Using
Lemma 5.3 and Corollary 4.9, it is easy to prove MΓ = (MΓ,∧,∼,4, 0, 1)
is a prelinear equality4- algebra.

Definition 5.5. Let Γ be a theory over the propositional equality logic EL4.

(1) A theory Γ is contradictory if for some ϕ, Γ proves ϕ and Γ proves
¬ϕ. Γ is consistent if it is not contradictory.

(2) Γ is complete if for every pair ϕ and ψ of formulas, then Γ ` ϕ⇒ ψ
or Γ ` ψ ⇒ ϕ.

Lemma 5.6. Let Γ be a theory over the propositional equality logic EL4.

(1) Γ is complete iff the prelinear equality4-algebra MΓ is linearly or-
dered.

(2) If Γ 6` ϕ, then there exists a consistent complete supertheory T ⊆ T ′

such that T ′ 6` ϕ.

Proof:

(1) It is obvious.

(2) It follows similarly with the proof of Proposition 4.17.

Theorem 5.7 (Strong completeness). Let Γ be a theory over EL4 and ϕ
be a formula. Then the following are equivalent:

(i) `EL4 ϕ,

(ii) For each linearly ordered equality4-algebra A and each A-model e of
Γ, e(ϕ) = 1,

(iii) For each prelinear equality4-algebra A and each A-model e of
Γ, e(ϕ) = 1.

Proof:

(i) ⇒ (ii) This is because all axioms of EL4 are true in all A-models of Γ,
axioms of Γ are true in all models of Γ by the definition of a model and
the inference rules of EL4 are sound in the following sense:

(1) If for all prelinear equality4-algebra A and for all A-model e of Γ,
e(ϕ) = 1 and e(ϕ ≡ ψ) = 1, then for all prelinear equality4-algebra
A and for all A-model e of Γ, e(ψ) = 1.
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(2) If for all prelinear equality4-algebra A and for all A-model e of Γ,
e(ϕ) = 1 and e(ϕ⇒ ψ) = 1, then for all prelinear equality4-algebra
A and for all A-model e of Γ, e(ψ) = 1.

(3) If for all prelinear equality4-algebra A and for all A-model e of
Γ, e(ϕ) = 1, then for all prelinear equality4-algebra A and for all
A-model e of Γ, e(∆(ϕ)) = 1.

(ii) ⇒ (i) Suppose that Γ 6` ϕ. Then then there exists a consistent complete
supertheory Γ ⊆ Γ′ such that Γ′ 6` ϕ by Lemma 5.6 part (2). Since Γ′ is
complete, then the prelinear equality4- algebraMΓ is linearly ordered.
For each propositional variable p, define e(ψ) = [ψ]Γ′ . Then we have
an MΓ-model of Γ such that e(ϕ) < 1, which is a contradiction.

(ii) ⇒ (iii) follows from Proposition 4.17.

(iii) ⇒ (ii) is obvious.
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