EMPIRICAL NEGATION, CO-NEGATION AND THE CONTRAPOSITION RULE I: SEMANTICAL INVESTIGATIONS

Abstract

We investigate the relationship between M. De’s empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan’s $C \omega C$.

Keywords: Empirical negation, co-negation, Beth semantics, Kripke semantics, intuitionism.

1. Introduction

The philosophy of Intuitionism has long acknowledged that there is more to negation than the customary, reduction to absurdity. Brouwer [1] has already introduced the notion of apartness as a positive version of inequality, such that from two apart objects (e.g. points, sequences) one can learn not only they are unequal, but also how much or where they are different. (cf. [19, pp.319–320]). He also introduced the notion of weak counterexample, in which a statement is reduced to a constructively unacceptable principle, to conclude we cannot expect to prove the statement [17].
Another type of negation was discussed in the dialogue of Heyting [8, pp. 17–19]. In it mathematical negation characterised by reduction to absurdity is distinguished from factual negation, which concerns the present state of our knowledge. In the dialogue it is emphasised that only the former type of negation has a part in mathematics, on the ground that the latter does not have the form of a mathematical assertion, i.e. assertion of a mental construction. Nevertheless it remains the case that factual negation has a place in his theoretical framework.

One formalisation of logic with this “negation at the present stage of knowledge” was given by De [3] and axiomatised by De and Omori [4], under the name of empirical negation. The central idea of IPC^\sim is semantic: the Kripke semantics of IPC^\sim is taken to be rooted, with the root being understood as representing the present moment. Then the empirical negation $\sim A$ is defined to be forced at a world, if A is not forced at the root.

Yet another type of negation in the intuitionistic framework is co-negation introduced by Rauszer [12, 13]. Seen from Kripke semantics, a co-negation $\sim A$ is forced at a world, if there is a preceding world in which A is not forced. This is dual to the forcing of intuitionistic negation $\neg A$, which requires A not being forced at all succeeding nodes. Co-negation was originally defined in terms of co-implication, but the co-negative fragment was extracted by Priest [11], to define a logic named daC.

In both empirical and co-negation, the semantic formulation arguably gives a more fundamental motivation than the syntactic formulation. In particular, in case of empirical negation, it is of essential importance that a Kripke frame can be understood as giving the progression of growth of knowledge. It may be noted, however, that Kripke semantics is not the only semantics to give this kind of picture. Beth semantics is another semantics whose frames represent the growth of knowledge. It then appears a natural question to ask, whether the same forcing condition of empirical/co-negation gives rise to the same logic. That is to say, whether IPC^\sim and daC will be sound and complete with respect to Beth semantics. Indeed, for co-implication, a similar question was asked by Restall [14]. There it was found out that one needs to alter the forcing condition to get a complete semantics.

In this paper, we shall observe that another logic called TCC_ω, introduced by Gordienko [7], becomes sound and complete with respect to Beth models with the forcing conditions of empirical and co-negation (which turn out
to coincide). This is of significant interest for those who advocate empirical or co- negation from a semantic motivation, as it will provide a choice in the logic to which they should adhere.

This is followed by another observation about the axiomatisation of \(\text{IPC}^\sim \) and \(\text{daC} \), which employ the disjunctive syllogism rule \([\text{RP}]\). In contrast, the axiomatisation of of \(\text{TCC}_\omega \) and a related system \(\text{CC}_\omega \) of Sylvan [15], which is a subsystem of the other three, use the contraposition rule \([\text{RC}]\). We shall observe that this difference in rules can be eliminated, by replacing \([\text{RP}]\) with \([\text{RC}]\) and an additional axiom. This will give a completeness proof of \(\text{daC} \) with respect to the semantics of \(\text{CC}_\omega \), and thus the semantics of Došen [5]. It will also provide a more unified viewpoint of the logics related to \(\text{CC}_\omega \) as defined by extra axioms with no change in rules.

We shall continue our investigation proof-theoretically in a sequel. In the second paper, using the obtained frame properties we shall formulate labelled sequent calculi for the logics considered so far (\(\text{CC}_\omega \), \(\text{daC} \), \(\text{TCC}_\omega \) and \(\text{IPC}^\sim \)). We shall prove the admissibility of structural rules including cut, and then show the correspondence with Hilbert-style calculi.

2. Preliminaries

We shall employ the following notations (taken from [17]) for sequences and related notions.

- \(\alpha, \beta, \ldots \): infinite sequences of the form \(\langle b_1, b_2, \ldots \rangle \) of natural numbers.
- \(\langle \rangle \): the empty sequence.
- \(b, b', \ldots \): finite sequences of the form \(\langle b_1, \ldots, b_n \rangle \) of natural numbers.
- \(b \ast b' \): \(b \) concatenated with \(b' \).
- \(lh(b) \): the length of \(b \).
- \(b \preceq b' \): \(b \ast b'' = b' \) for some \(b'' \).
- \(b \prec b' \): \(b \preceq b' \) and \(b \neq b' \).
- \(\bar{\alpha}n \): \(\alpha \)'s initial segment up to the \(n \)th element.
- \(\alpha \in b \): \(b \) is \(\alpha \)'s initial segment.

We define a tree to be a set \(T \) of finite sequences of natural number such that \(\langle \rangle \in T \), \(b \in T \lor b \notin T \) and \(b \in T \land b' \prec b \rightarrow b' \in T \). We call each finite
sequence in T a node and \emptyset the root. A successor of a node b is a node of the form $b \ast \langle x \rangle$. By leaves of T, we mean the nodes of T which do not have a successor, i.e. nodes b such that $\neg \exists x (b \ast \langle x \rangle) \in T$. A spread then is a tree whose nodes always have a successor, i.e. $\forall b \in T \exists x (b \ast \langle x \rangle) \in T$.

A clarification: whilst $\langle b, b, \ldots \rangle$ denotes an infinite sequence consisting just of bs, $\langle b, \ldots, b \rangle$ denotes a finite sequence consisting just of bs.

3. Empirical negation in Kripke Semantics

Let us use the following notations for metavariables.

- p, q, r, \ldots for propositional variables.
- A, B, C, \ldots for formulae.

In this paper, we shall consider the following propositional language

$$\mathcal{L} := p \mid (A \land B) \mid (A \lor B) \mid (A \to B) \mid \sim A.$$ Parentheses will be omitted if there is no fear of ambiguity. We shall use the convention $A \leftrightarrow B := (A \to B) \land (B \to A)$.

To begin with, we look at the Kripke semantics for the intuitionistic logic with empirical negation IPC^\sim given in [4]. Recall that a reflexive, anti-symmetric and transitive ordering is called a partial order.

Definition 3.1 (Kripke model for IPC^\sim). A Kripke Frame \mathcal{F}_\sim^K for IPC^\sim is a partially ordered set (W, \leq) with a root $r \in W$ such that $r \leq w$ for all $w \in W$. We shall call each $w \in W$ a world. A Kripke model \mathcal{M}_\sim^K for IPC^\sim is a pair $(\mathcal{F}_\sim^K, \mathcal{V})$, where \mathcal{V} is a mapping that assigns a set of worlds $\mathcal{V}(p) \subseteq W$ to each propositional variable p. We assume \mathcal{V} to be monotone, viz. $w \in \mathcal{V}(p)$ and $w' \geq w$ implies $w' \in \mathcal{V}(p)$. To denote a model, we shall use both \mathcal{M}_\sim^K and $(\mathcal{F}_\sim^K, \mathcal{V})$ interchangeably. Similar remarks apply to different notions of model in the later sections.

Given \mathcal{M}_\sim^K, the forcing (or valuation) of a formula in a world, denoted $\mathcal{M}_\sim^K, w \Vdash_K A$, is inductively defined as follows.
\[M, w \models_K p \iff w \in \mathcal{V}(p). \]
\[M, w \models_K A \land B \iff M, w \models_K A \text{ and } M, w \models_K B. \]
\[M, w \models_K A \lor B \iff M, w \models_K A \text{ or } M, w \models_K B. \]
\[M, w \models_K A \to B \iff \text{for all } w' \geq w, \text{ if } M, w' \models_K A, \text{ then } M, w' \models_K B. \]
\[M, w \models_K \neg A \iff M, r \not\models_K A. \]

We shall occasionally avoid denoting models explicitly when it is apparent from the context. If \(M, w \models_K A \) for all \(w \in W \), we write \(M \models_K A \) and say \(A \) is valid in \(M \). For a set of formulae \(\Gamma \), if \(M \models_K C \) for all \(C \in \Gamma \) implies \(M \models_K A \), then we write \(\Gamma \vdash_K A \) and say \(A \) is a consequence of \(\Gamma \). If \(\Gamma \) is empty, we simply write \(\vdash_K A \) and say \(A \) is valid (in \(\text{IPC}^- \)).

A Hilbert-style proof system for \(\text{IPC}^- \) is established in [4], which we identify here with the logic itself for convenience, and denote it simply as \(\text{IPC}^- \). We shall apply the same convention to other logics in later sections.

Definition 3.2 (\(\text{IPC}^- \)).
The logic \(\text{IPC}^- \) is defined by the following axiom schemata and rules.

Axioms

[Ax1] \[A \to (B \to A) \]

[Ax2] \[(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \]

[Ax3] \[(A \land B) \to A \]

[Ax4] \[(A \land B) \to B \]

[Ax5] \[(C \to A) \to ((C \to B) \to (C \to (A \land B))) \]

[Ax6] \[A \to (A \lor B) \]

[Ax7] \[B \to (A \lor B) \]

[Ax8] \[(A \to C) \to ((B \to C) \to ((A \lor B) \to C)) \]

[Ax9] \[A \lor \neg A \]

[Ax10] \[\neg A \to (\neg \neg A \to B) \]

Rules

[MP] \[\frac{A \quad A \to B}{B} \]

[RP] \[\frac{A \lor B}{\neg A \to B} \]
We followed [4] in the labelling of the axioms and the rules. A proof (or deduction/derivation) of A from a (possibly infinite) set of formulae Γ (which we denote by $\Gamma \vdash \sim A$) in IPC^\sim is a finite tree with the number of branching at each node less than or equal two, and whose nodes are labelled by formulae of L such that

- The formulae in the leaves are either instances of axioms, or from a specified finite subset Γ' of Γ.
- Each formula in non-leaf nodes is obtained from the formulae in the successor nodes by an application of a rule.
- The root of the tree is A.

Then it has been shown by De and Omori that IPC^\sim is sound and complete with the Kripke semantics.

Theorem 3.3 (Kripke completeness of IPC^\sim). $\Gamma \vdash \sim A \iff \Gamma \models \K A$.

Proof: Cf. [4].

4. Empirical negation in Beth Semantics

4.1. Beth semantics and IPC^\sim

Let us turn our attention to Beth models in this section. Our formalisation will be based on that of [16, 18]. If we apply to the forcing of \sim the same criterion as to the Kripke semantics above, then we obtain the following semantics.

Definition 4.1 (Beth model). A *Beth frame* \mathcal{F}_B is a pair (\mathcal{W}, \preceq) that defines a spread. Then a *Beth model* \mathcal{M}_B is a pair $(\mathcal{F}_B, \mathcal{V})$, where \mathcal{V} is an assignment of propositional variables to the nodes such that:

$b \in \mathcal{V}(p) \iff \forall \alpha \in b \exists m (\bar{\alpha}m \in \mathcal{V}(p))$. [covering]

(The left-to-right direction is trivial, and it is straightforward to see that a covering assignment is monotone.)

The forcing relation $\models_B A$ for a Beth model is defined by the following clauses.
\(M_B, b \Vdash_B p \iff b \in \mathcal{V}(p) \).
\(M_B, b \Vdash_B A \land B \iff M_B, b \Vdash_B A \text{ and } M_B, b \Vdash_B B \).
\(M_B, b \Vdash_B A \lor B \iff \forall \alpha \in b \exists n (M_B, \bar{\alpha}n \Vdash_B A \text{ or } M_B, \bar{\alpha}n \Vdash_B B) \).
\(M_B, b \Vdash_B A \rightarrow B \iff \text{ for all } b' \geq b, \text{ if } M_B, b' \Vdash_B A, \text{ then } M_B, b' \Vdash_B B \).
\(M_B, b \Vdash_B \neg A \iff M_B, \langle \rangle \nvdash_B A \).

Proposition 4.2.

(i) \(b \Vdash_B A \text{ if and only if } \forall \alpha \in b \exists n (\bar{\alpha}n \Vdash_B A) \). (covering property)

(ii) \(b' \succeq b \text{ and } b \Vdash_B A \text{ implies } b' \Vdash_B A \). (monotonicity)

Proof: We prove (i) by induction on the complexity of formulae. If \(b \Vdash_B A \), then trivially \(\forall \alpha \in b \exists n (\bar{\alpha}n \Vdash_B A) \). For the converse direction, we show by induction on the complexity of \(A \). Because (i) holds in Beth models for intuitionistic logic, it suffices to check the case where \(A \equiv \neg B \). If \(\forall \alpha \in b \exists n (\bar{\alpha}n \Vdash_B \neg B) \), then by definition \(\forall \alpha \in b \exists n (\langle \rangle \nvdash_B B) \); i.e. \(\langle \rangle \nvdash_B B \). Thus by definition again, \(b \Vdash_B \neg B \).

(ii) is an immediate consequence of (i).

How does this semantics relate to \(\text{IPC}^\sim \)? In considering this question, we first look at how to embed Kripke models into Beth models, in accordance with the method outlined in [18].

Given a Kripke model \(M_K = (W_K, \leq, \mathcal{V}_K) \) for \(\text{IPC}^\sim \), we construct a corresponding Beth model \(M_B = (W_B, \preceq, \mathcal{V}_B) \) with the following stipulations.

- \(W_B \) is the set of finite nondecreasing sequences of worlds (i.e. each \(w \) in a sequence is followed by \(w' \) s.t. \(w \preceq w' \)) from the root \(r \) in \((W_K, \leq) \) with length \(> 0 \).

- \(\preceq \) is defined accordingly.

- \(\langle w_0, \ldots, w_n \rangle \in \mathcal{V}_B(p) \text{ if and only if } w_n \in \mathcal{V}_K(p) \).

The resulting \(W_B \) is a spread, because the reflexivity of \(\preceq \) assures that \(\langle w_0, \ldots, w_n \rangle \in W_B \) implies \(\langle w_0, \ldots, w_n, w_n \rangle \in W_B \). Note that \(w_0 \) is always the root \(r \) in \(M_K \), and \(\langle w_0 \rangle \) is the root of \(M_B \). The latter slightly differs from our definition of Beth model: we can fit the model to the definition if we reinterpret the sequences as mere labels for the tree, and the actual
tree is constructed in such a way that \(\langle w_0 \rangle \) is the label for the node \(\langle \rangle \), \(\langle w_0, w_1, \ldots, w_n \rangle \) is the label for the node \(\langle w_1, \ldots, w_n \rangle \). We can also adopt a different embedding, which we shall see later.

For any Kripke model, because we can concatenate the same element indefinitely many times, we can also consider infinite nondecreasing sequences of worlds. This fact will be used in the next lemma.

Lemma 4.3 (embeddability of Kripke models for \(\mathbf{IPC}^\sim \)).

(i) \(M_B \) is indeed a Beth model.

(ii) \(M^K \models_K A \) if and only \(M_B \models_B A \).

Proof: For (i), we need to check that \(V_B \) is a covering assignment. If \(\forall \alpha \in \langle w_0, \ldots, w_n \rangle \exists m (\bar{\alpha}m \in V_B(p)) \), then in particular, \(\alpha_0 := \langle w_0, \ldots, w_n \rangle \ast \langle w_n, w_n, \ldots \rangle \in \langle w_0, \ldots, w_n \rangle \). So there is an \(m \) such that \(\bar{\alpha}0m \in V_B(p) \).

Let \(Q \) be the class of Beth models obtained by the above embedding. We shall denote Beth validity with respect to \(Q \) as \(\models_Q \).

Theorem 4.4 (Beth completeness of \(\mathbf{IPC}^\sim \) with respect to \(Q \)). \(\Gamma \vdash \sim A \) if and only if \(\Gamma \models_Q A \).

Proof: Because of Theorem 3.3, \(\Gamma \vdash \sim A \) if and only if \(\Gamma \models_K A \). Also by the preceding lemma, \(\Gamma \models_K A \) if and only if \(\Gamma \models_Q A \).

4.2. Beth Semantics and TCC\(_\omega\)

The above theorem shows that \(\mathbf{IPC}^\sim \) is sound and complete with respect to a certain class of Beth models. The question remains, however, of whether it is sound and complete with respect to all Beth models. A problem lies in the soundness direction, of the validity of \([\text{RP}]\). In a Beth model, it is possible that a disjunction is forced at a world whilst neither of the disjuncts is.
This is contrastable with an admissible [4] rule \(\text{RC} \) of IPC\(^-\). Given any Beth model and assuming \(A \to B \) is valid, if \(\sim B \) is forced at a node \(b' \geq b \) given an arbitrary \(b \), then \(\langle \rangle \) does not force \(B \), so \(\langle \rangle \) cannot force \(A \) either; thus we can conclude \(b' \) forces \(\sim A \) and so \(b \) forces \(\sim B \to \sim A \), i.e. \(\sim B \to \sim A \) is valid.

This admissibility of [RC] in Beth models motivates us to consider a variant of IPC\(^-\) in which [RP] is replaced with [RC]. As already mentioned in [4], such a logic is known under the name TCC\(_\omega\), formulated by Gordienko in [7].

Definition 4.5 (TCC\(_\omega\)). TCC\(_\omega\) is defined by axioms [Ax1] to [Ax10], and rules [MP] and \(\text{RC} \) \(A \to B \) \(\sim B \to \sim A \).

We shall denote the provability in TCC\(_\omega\) by \(\vdash_T \). We shall prove the soundness and completeness of TCC\(_\omega\) with respect to all Beth models.

Again we want to embed Kripke models into Beth models; but as we see below, the Kripke models for TCC\(_\omega\) are not necessarily rooted. So we shall embed models in a slightly different way.

Definition 4.6 (Kripke model for TCC\(_\omega\)). A Kripke Frame \(F_K^t = (W, \leq) \) for TCC\(_\omega\) is a non-empty partially ordered set. A Kripke model \(M_K^t \) for TCC\(_\omega\) is a pair \((F_K^t, V) \), where \(V \) is a monotone mapping that assigns a set of worlds \(V(p) \subseteq W \) for each propositional variable \(p \).

Given \(M_K^t \), The forcing of a formula in a world, denoted \(M_K^t, w \models_{Kt} A \), is inductively defined as follows.

\[
\begin{align*}
M_K^t, w \models_{Kt} p & \iff w \in V(p). \\
M_K^t, w \models_{Kt} A \land B & \iff M_K^t, w \models_{Kt} A \text{ and } M_K^t, w \models_{Kt} B. \\
M_K^t, w \models_{Kt} A \lor B & \iff M_K^t, w \models_{Kt} A \text{ or } M_K^t, w \models_{Kt} B. \\
M_K^t, w \models_{Kt} A \rightarrow B & \iff \text{for all } w' \geq w, \text{ if } M_K^t, w' \models_{Kt} A, \text{ then } M_K^t, w' \models_{Kt} B. \\
M_K^t, w \models_{Kt} \sim A & \iff M_K^t, w' \not\models_{Kt} A \text{ for some } w'.
\end{align*}
\]

Theorem 4.7 (Kripke completeness for TCC\(_\omega\)). \(\vdash_T A \) if and only if \(\models_{Kt} A \).

Proof: Cf. [7]

Given a Kripke model \(M_K^t = (W_K, \leq, V_K) \) for TCC\(_\omega\), we construct a corresponding Beth model \(M_B = (W_B, \leq, V_B) \) with the following stipulation.
• W_B is the set of finite nondecreasing sequences in (W_K, \leq) of length ≥ 0.

• \leq is defined accordingly.

• Define an auxiliary valuation $V_B(p)$ s.t. $\langle w_0, \ldots, w_n \rangle \in V_B(p)$ if and only if $w_n \in V_K(p)$.

• Then $V_B(p) = V_B(p) \cup \{\langle \rangle\}$ if $V_K(p) = W_K$; otherwise $V_B(p) = \bar{V}_B(p)$.

Lemma 4.8 (embeddability of Kripke models for \mathbf{TCC}_ω).

(i) M_B is indeed a Beth model.

(ii) $M_B \vDash Kt A$ if and only if $M_K \vDash B A$.

Proof: In the following, we shall occasionally write $\langle b_0, \ldots, b_{-1} \rangle$ to mean $\langle \rangle$. (This is purely a conventional notation to simplify the exposition, and should not be confused with the notation in the definition of $\bar{V}_B(p)$, in which n cannot be -1.)

(i) We need to show that the assignment is covering. Suppose $\langle b_0, \ldots, b_n \rangle \in V_B(p)$. If $n = -1$, then $\langle \rangle \in V_B(p)$. So by definition of V_B, $w \in V_K(p)$ for all $w \in W_K$. Hence for each $\alpha = \langle w, \ldots \rangle \in \langle \rangle$, $\langle w \rangle \in V_B(p)$; so $\exists m(\bar{\alpha}m \in V_B(p))$. If $n > -1$, then $\langle b_0, \ldots, b_n \rangle \in V_B(p)$ immediately implies $\forall \alpha \in \langle b_0, \ldots, b_n \rangle \exists m(\bar{\alpha}m \in V_B(p))$.

Conversely, suppose $\forall \alpha \in \langle b_0, \ldots, b_n \rangle \exists m(\bar{\alpha}m \in V_B(p))$. If $n = -1$, then for any $w \in W_K$, $\langle w, w, \ldots \rangle \in \langle \rangle$. By our supposition, either $\langle \rangle \in V_B(p)$ or $\langle w, w, \ldots \rangle \in V_B(p)$. In both cases, $w \in V_K(p)$.

Hence $W_K = V_K(p)$. Thus $\langle \rangle \in V_B(p)$, as required. If $n > -1$, then $\langle b_0, \ldots, b_n \rangle \in \langle b_0, \ldots, b_n \rangle$. So either $\langle \rangle \in V_B(p)$, $\langle b_0, \ldots, b_n \rangle \in V_B(p)$ for $i < n$, or $\langle b_0, \ldots, b_n, b_n, \ldots \rangle \in V_B(p)$. In the first case, $b_n \in V_K(p)$. In the second case, $b_i \in V_K(p)$, so by the monotonicity of V_K, $b_n \in V_K$. In the last case, $b_n \in V_K(p)$. So in any case, $\langle b_0, \ldots, b_n \rangle \in V_B(p)$.

(ii) It suffices to show:

(a) $\langle \rangle \vDash_B A$ if and only if $M_K \vDash B A$.

(b) $\langle b_0, \ldots, b_n \rangle \vDash_B A$ if and only if $b_n \vDash_K A$. (where $n > -1$)

We prove these by simultaneous induction on the complexity of A.
If $A \equiv p$, then 1. and 2. follow by definition.

If $A \equiv A_1 \land A_2$, then for 1. $\langle \rangle \models_B A_1 \land A_2$ if and only if $\langle \rangle \models_B A_1$ and $\langle \rangle \models_B A_2$ by I.H. this is equivalent to $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1$ and $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_2$, which in turn is equivalent to $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1 \land A_2$. For 2., $\langle b_0, \ldots, b_n \rangle \models_B A_1 \land A_2$ if and only if $\langle b_0, \ldots, b_n \rangle \models_B A_1$ and $\langle b_0, \ldots, b_n \rangle \models_B A_2$. By I.H. this is equivalent to $b_n \models_{\mathcal{K}_1} A_1$ and $b_n \models_{\mathcal{K}_1} A_2$, in turn is equivalent to $b_n \models_{\mathcal{K}_1} A_1 \land A_2$.

If $A \equiv A_1 \lor A_2$, then for 1., $\langle \rangle \models_B A_1 \lor A_2$ if and only if $\forall \alpha \in \langle \rangle \exists m(\alpha m \models_B A_1$ or $\bar{\alpha} m \models_B A_2)$. For each $w \in W_{\mathcal{K}}$, $\langle w, w, \ldots \rangle \in \langle \rangle$, so either $\langle \rangle \models_B A_1$, $\langle \rangle \models_B A_2$, $\langle w, \ldots, w \rangle \models_B A_1$ or $\langle w, \ldots, w \rangle \models_B A_2$.

If one of the former two cases holds, then by I.H. $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1$, for one of $i \in \{1, 2\}$; so $w \models_{\mathcal{K}_1} A_1 \lor A_2$. If one of the latter two cases hold, then by I.H. $w \models_{\mathcal{K}_1} A_1$ for one of $i \in \{1, 2\}$; so $w \models_{\mathcal{K}_1} A_1 \lor A_2$. Hence we conclude $w \models_{\mathcal{K}_1} A_1 \lor A_2$ for all $w \in W_{\mathcal{K}}$, i.e. $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1 \lor A_2$. For the reverse direction, assume $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1 \lor A_2$ and let $\alpha = \langle w, \ldots \rangle \in \langle \rangle$. Then since $w \models_{\mathcal{K}_1} A_1$ or $w \models_{\mathcal{K}_1} A_2$, $\langle w \rangle \models_B A_1$ or $\langle w \rangle \models_B A_2$ by I.H.. Thus $\forall \alpha \in \langle \rangle \exists m(\alpha m \models_B A_1$ or $\bar{\alpha} m \models_B A_2)$. Hence $\langle \rangle \models_B A_1 \lor A_2$.

For 2. If $\langle b_0, \ldots, b_n \rangle \models_B A_1 \lor A_2$, then for all $\alpha \in \langle b_0, \ldots, b_n \rangle$ there exists m s.t. $\alpha m \models_B A_1$ or $\bar{\alpha} m \models_B A_2$. As $\langle b_0, \ldots, b_n, b_0, \ldots, b_n \rangle \in \langle b_0, \ldots, b_n \rangle$, we have, for $i \in \{1, 2\}$, either $\langle \rangle \models_B A_i$, $\langle b_0, \ldots, b_i \rangle \models_B A_i$ for $l \leq n$, or $\langle b_0, \ldots, b_i, b_{i+1}, \ldots, b_n \rangle \models_B A_i$. In each case $b_n \models_{\mathcal{K}_1} A_1$ by I.H.; so $b_n \models_{\mathcal{K}_1} A_1 \lor A_2$. Conversely, if $b_n \models_{\mathcal{K}_1} A_1 \lor A_2$, then $b_n \models_{\mathcal{K}_1} A_1$ or $b_n \models_{\mathcal{K}_1} A_2$. So by I.H. $\langle b_0, \ldots, b_n \rangle \models_B A_1$ or $\langle b_0, \ldots, b_n \rangle \models_B A_2$. Hence immediately $\forall \alpha \in \langle b_0, \ldots, b_n \rangle \exists m(\alpha m \models_B A_1$ or $\bar{\alpha} m \models_B A_2)$, i.e. $\langle b_0, \ldots, b_n \rangle \models_B A_1 \lor A_2$.

If $A \equiv A_1 \rightarrow A_2$, then for 1., suppose $\langle \rangle \models_B A_1 \rightarrow A_2$. Let $w \in W_{\mathcal{K}}$ and $w' \geq w$. If $w' \models_{\mathcal{K}_1} A_1$, then $\langle w' \rangle \models_B A_1$ by I.H.. So $\langle w' \rangle \models_B A_2$ and thus $w' \models_{\mathcal{K}_1} A_2$. Consequently $w \models_{\mathcal{K}_1} A_1 \rightarrow A_2$. Conversely, suppose $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1 \rightarrow A_2$. Let $\langle b_0, \ldots, b_n \rangle \models_B A_1$. If $n = -1$, then by I.H. $M'_{\mathcal{K}_1} \models_{\mathcal{K}_1} A_1 \rightarrow A_2$. Hence $\langle b_0, \ldots, b_n \rangle \models_B A_2$ again by I.H.. If $n > -1$, then $b_n \models_{\mathcal{K}_1} A_1$, so $b_n \models_{\mathcal{K}_1} A_2$. Hence $\langle b_0, \ldots, b_n \rangle \models_B A_2$. Thus $\langle \rangle \models_B A_1 \rightarrow A_2$.

For 2., suppose \(\langle b_0, \ldots, b_n \rangle \models_B A_1 \to A_2 \) and let \(b_{n'} \geq b_n \). If \(b_{n'} \models_{Kt} A_1 \), then by I.H. \(\langle b_0, \ldots, b_n, b_{n'} \rangle \models_B A_1 \); so \(\langle b_0, \ldots, b_n, b_{n'} \rangle \models_B A_2 \). Thus \(b_{n'} \models_{Kt} A_2 \). Hence \(b_n \models_{Kt} A_1 \to A_2 \). Conversely, suppose \(b_n \models_{Kt} A_1 \to A_2 \). Assume \(\langle b_0, \ldots, b_n, b_{n'} \rangle \models_B A_1 \). Then \(b_n \leq b_{n'} \) and \(b_{n'} \models_{Kt} A_1 \). So \(b_{n'} \models_{Kt} A_2 \). Thus \(\langle b_0, \ldots, b_n, b_{n'} \rangle \models_B A_2 \). Therefore \(\langle b_0, \ldots, b_n \rangle \models_B A_1 \to A_2 \).

If \(A \equiv \sim A_1 \), then for 1., suppose \(\langle \rangle \models_B \sim A_1 \). Then \(\langle \rangle \not\models_B A_1 \). So \(M^*_K \not\models_{Kt} A_1 \) by I.H.. Hence \(w \not\models_{Kt} A_1 \) for some \(w \in W_K \). Thus \(u \models_{Kt} \sim A \) for all \(u \in W_K \). Thus \(M^*_K \models_{Kt} \sim A \). Conversely, suppose \(M^*_K \models_{Kt} \sim A \). Take \(w \in W_K \). Then \(w \models_{Kt} \sim A \), so \(u \not\models_{Kt} A \) for some \(u \in W_K \). Hence \(M^*_K \not\models_{Kt} A \), so \(\langle \rangle \not\models_B A \) by I.H.. Therefore \(\langle \rangle \models_B \sim A \).

For 2., suppose \(\langle b_0, \ldots, b_n \rangle \models_B \sim A \). Then \(\langle \rangle \not\models_B A \). So \(M^*_K \not\models_{Kt} A \). Hence for some \(w \in W_K \), \(w \not\models_{Kt} A \). Therefore \(b_n \models_{Kt} \sim A \). Conversely, if \(b_n \models_{Kt} \sim A \), then \(w \not\models_{Kt} A \) for some \(w \in W_K \). By I.H. \(\langle w \rangle \not\models_B A \). Thus \(\langle \rangle \not\models_B A \). Therefore \(\langle b_0, \ldots, b_n \rangle \models_B \sim A \).

Theorem 4.9 (soundness and weak completeness of \(\mathbf{TCC}_\omega \) with Beth semantics). \(\models A \) if and only if \(\models_B A \).

Proof: We first show the soundness by induction on the depth of deductions. We check \([Ax9],[Ax10] \) and \([RC]\). Let \(M_B = (W_B, \leq, V_B) \) be a Beth model. By monotonicity, it suffices to check the root. For \([Ax9]\), either \(\langle \rangle \models_B A \) or \(\langle \rangle \not\models_B A \). If the latter, \(\langle \rangle \not\models_B \sim A \). So in either case, \(\langle \rangle \models_B A \lor \sim A \). For \([Ax10]\), if \(b \models_B \sim A \) for \(b \succeq \langle \rangle \), then if \(b' \models_B \sim \sim A \) for \(b' \geq b \), then \(\langle \rangle \not\models_B A \) and \(\langle \rangle \not\models_B A \). But the former implies \(\langle \rangle \models_B A \), a contradiction. Therefore \(b' \models_B B \); so \(\langle \rangle \models_B \sim A \to (\sim \sim A \to B) \). For \([RC]\), by I.H., \(\models_B A \to B \) and in particular, \(M_B \models_B A \to B \). If for \(b \succeq \langle \rangle \) we have \(b \models_B \sim B \), then \(\langle \rangle \not\models_B B \). Now if \(\langle \rangle \not\models_B A \), then as \(\langle \rangle \not\models_B A \to B \), \(\langle \rangle \not\models_B B \), a contradiction. Thus \(\langle \rangle \not\models_B A \); hence \(b \models_B \sim A \). So \(\langle \rangle \not\models_B \sim B \to \sim A \).

The completeness follows from the previous lemma and the Kripke completeness of \(\mathbf{TCC}_\omega \) [7, Theorem 4.5].

4.3. Classical Logic and \(\mathbf{TCC}_\omega \)

The fact that Kripke and Beth semantics differ on the forcing of disjunction is well-reflected in the following translation of classical logic (CPC) into \(\mathbf{TCC}_\omega \).
Definition 4.10 (CPC). CPC is defined by Axioms [Ax1]-[Ax9] and \(\sim A \rightarrow (A \rightarrow B) \) ([Ax10']), plus the rule [MP].

We denote the derivability in CPC by \(\vdash_{CL} \).

Definition 4.11 (\((\cdot)^t \)). We inductively define \((\cdot)^t \) to be a mapping between formulae in \(L \).

\[
\begin{align*}
p^t & \equiv p \\
(A \land B)^t & \equiv A^t \land B^t \\
(A \lor B)^t & \equiv \sim\sim A^t \lor \sim\sim B^t \\
(A \rightarrow B)^t & \equiv \sim\sim A^t \rightarrow \sim\sim B^t \\
(\sim A)^t & \equiv \sim A^t.
\end{align*}
\]

Beth-semantically speaking, \((\cdot)^t \) restricts our attention to the root world, when it comes to disjunction and implication. This is related to the connection between empirical negation (of IPC\(\sim\)) and classical negation, as observed in [3] and [4]. A new point for TCC\(\omega \) is that the restriction applies not only to implication but also to disjunction. This corresponds to the fact that in Beth semantics, both disjunction and implication look at other worlds, whereas in Kripke semantics, only the latter does so.

In the following, we make a heavy use of easily checkable equivalences in Beth semantics.

- \(b \models_B \sim\sim A \iff (\cdot) \models_B A.\)
- \(b \models_B \sim\sim A \lor \sim\sim B \iff (\cdot) \models_B A \text{ or } (\cdot) \models_B B.\)
- \(b \models_B \sim\sim A \rightarrow \sim\sim B \iff (\cdot) \models_B A \text{ implies } (\cdot) \models_B B.\)

Let us use the notation \(\Gamma^t := \{B^t : B \in \Gamma\} \). We shall henceforth abbreviate \(\sim\sim A \) as \(\approx A \). Metalinguistic ‘implies’ (\(\Rightarrow \)) should not be confused with \(\rightarrow \) in the proof below.

Proposition 4.12 (faithful embedding of CPC into TCC\(\omega \)). \(\Gamma \vdash_{CL} A \) if and only if \(\Gamma^t \vdash (\cdot) A^t \).

Proof: The left-to-right direction is shown by induction on the depth of deductions. If \(A \) is an assumption, then correspondingly \(A^t \in \Gamma^t \).
If \(A \) is an axiom, we exemplify by the case for the axiom \((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C)) \). \((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C))\) is

\[
\approx(\approx A^t \rightarrow \approx C^t) \rightarrow \approx(\approx(\approx B^t \rightarrow \approx C^t) \rightarrow \approx(\approx(\approx A^t \lor \approx B^t) \rightarrow \approx C^t)).
\]

Using Beth completeness, it is sufficient to show,

\[
b \vdash (\approx A^t \rightarrow \approx C^t) \rightarrow \approx(\approx(\approx B^t \rightarrow \approx C^t) \rightarrow \approx(\approx(\approx A^t \lor \approx B^t) \rightarrow \approx C^t)).
\]

holds for any \(b \) in an arbitrary Beth model. This is equivalent to

\[
\langle \rangle \vdash (\approx A^t \rightarrow \approx C^t)
\]

implies \(\langle \rangle \vdash (\approx(\approx B^t \rightarrow \approx C^t) \rightarrow \approx(\approx(\approx A^t \lor \approx B^t) \rightarrow \approx C^t)) \)

by one of the above equivalences; this is further equivalent to

\[
\langle \rangle \vdash A^t \Rightarrow \langle \rangle \vdash C^t
\]

implies \(\langle \rangle \vdash B^t \Rightarrow (\langle \rangle \vdash \approx B^t \Rightarrow \approx C^t) \Rightarrow (\langle \rangle \vdash (\approx A^t \lor \approx B^t) \Rightarrow \approx C^t) \)

and to

\[
\langle \rangle \vdash A^t \Rightarrow (\langle \rangle \vdash \approx B^t \Rightarrow (\langle \rangle \vdash \approx(\approx A^t \lor \approx B^t) \Rightarrow \approx C^t))
\]

implies \((\langle \rangle \vdash A^t \Rightarrow (\langle \rangle \vdash \approx B^t \Rightarrow (\langle \rangle \vdash \approx(\approx A^t \lor \approx B^t) \Rightarrow \approx C^t)) \)

and this holds. Here, if it were the case that \((A \lor B)^t \equiv (A^t \lor B^t)\), then we would get \(\langle \rangle \vdash A^t \lor B^t \) instead of \(\langle \rangle \vdash (\approx A^t \lor \approx B^t) \), and the formula fails to hold.

If the deduction ends with an application of [MP] \begin{align*}
\frac{B}{A} \quad \text{then by I.H., } \Gamma^t \vdash B^t \text{ and } \Gamma^t \vdash \sim \sim B^t \rightarrow \sim \sim A^t. \end{align*}
In [4, Lemma 2.8] the rule \begin{align*}
\frac{\sim \sim A}{A} \quad \text{[RD]} \end{align*}
is shown to be derivable from [RC] in \(\text{IPC}^- \). The proof appeals to [RP] only non-essentially (it is used to derive \(\sim \sim A \rightarrow A \), which is obtainable from [Ax9] and [Ax10], and \(\text{RD} \) is also derivable in \(\text{TCC}_\omega \)). Thus we obtain \(\Gamma^t \vdash \sim \sim B^t \). So by [MP], \(\Gamma^t \vdash \sim \sim A^t \); hence \(\Gamma^t \vdash \sim \sim A^t \) by double negation elimination.
The right-to-left direction follows from the easily noticeable equivalence that $\vdash_{CL} A \leftrightarrow A^t$. \hfill \Box

Before moving on, we shall mention that there exists another reading of the negation in the Beth semantics for TCC_ω. Because the models are rooted, for any b, $\exists b' \leq b (b' \not\in A) \iff \langle \rangle \not\in A$. From this viewpoint the negation of TCC_ω can be understood as co-negation as well. For Kripke semantics, the logic of co-negation is the logic daC of Priest [11]. A Hilbert-style axiomatisation of daC was first formulated by Castiglioni et al. [2]. This axiomatisation is obtained from that of IPC^\sim by removing [Ax10]. If we further replace [RP] with [RC], and add an axiom $\sim\sim A \rightarrow A$ (a theorem of daC), we obtain the logic CC_ω of Sylvan [15]. Note CC_ω can be strengthened to TCC_ω by adding [Ax10] and dropping $\sim\sim A \rightarrow A$, which becomes redundant.

5. Eliminating [RP]

The last section made clear that the negations of IPC^\sim and TCC_ω are characterised by the same valuation, but with respect to different semantics: Kripke and Beth. We may understand them as representing different types of experience, and thus different empirical negations. We can make an analogous remark for co-negation. This case is perhaps more interesting, for TCC_ω and daC are not comparable [10]. In any case, these curious effects of “same forcing-condition in two similar semantics” encourage a further analysis.

Proof-theoretically, however, there is an obstacle in comparing the logics, in that TCC_ω and CC_ω employ the rule [RC], whereas daC and IPC^\sim employ the stronger [RP].

We would like, therefore, to have a new axiomatisation of IPC^\sim and daC with [RC], rather than [RP]. We can expect such conversion would allow us to analyse and understand the logics from a more unified perspective.

We shall start such an attempt with IPC^\sim, using a provable formula of IPC^\sim, $(\sim A \land \sim B) \rightarrow \sim(A \lor B)$ [4, Proposition 2.14].

Proposition 5.1. The addition of $(\sim A \land \sim B) \rightarrow \sim(A \lor B)$ to TCC_ω derives [RP].
Proof: In TCC\(\omega\), assuming \((A \lor B)\) we can derive \(\sim\sim(A \lor B)\) by [RD]. So we have \(\sim B \rightarrow (\sim A \rightarrow \sim\sim(A \lor B))\). Also we infer from \(\sim B \rightarrow (\sim A \rightarrow (\sim A \land \sim B))\) and \((\sim A \land \sim B) \rightarrow \sim(A \lor B)\) that \(\sim B \rightarrow (\sim A \rightarrow \sim(A \lor B))\). Thus \(\sim B \rightarrow (\sim A \rightarrow (\sim(A \lor B) \land \sim\sim(A \lor B)))\). Also by [Ax10], \(\sim(A \lor B) \rightarrow (\sim\sim(A \lor B) \rightarrow B)\). Combine the two and we obtain \(\sim B \rightarrow (\sim(A \rightarrow B))\). Then as \(B \rightarrow (\sim A \rightarrow B)\) follows from [Ax1], and \(B \lor \sim B\) follows from [Ax9], we conclude \(\sim A \rightarrow B\).

Hence we have obtained an alternative axiomatisation of \(\text{IPC}^{\sim}\) with [RC].

It is stated in [4] that TCC\(\omega\) is a strict subsystem of \(\text{IPC}^{\sim}\), but no specific example is shown. As a side remark, we can use \((\sim A \land \sim B) \rightarrow \sim(A \lor B)\) to observe the following.

Proposition 5.2. \((\sim A \land \sim B) \rightarrow \sim(A \lor B)\) is underivable in TCC\(\omega\).

Proof: We prove it via Beth completeness. Let \(F_B = (W, \preceq)\) be the set of finite binary sequences ordered by the initial segment relation. Let \(M_B = (F_B, V)\) be a model such that \(b \in V(p) \iff \langle 0 \rangle \preceq b\) and \(b \in V(q) \iff \langle 1 \rangle \preceq b\). Then it is straightforward to see that this assignment is covering: e.g. if \(\forall \alpha \in b \exists m (\overline{\alpha m} \models_B p)\), then clearly \(\langle 0 \rangle \preceq b\). Now \(M_B, \langle \rangle \not\models_B p\) and \(M_B, \langle \rangle \not\models_B q\), so \(M_B, \langle \rangle \models_B \sim p \land \sim q\); but since \(\forall \alpha \in \langle \rangle (\bar{\alpha}1 \models_B p \lor \bar{\alpha}1 \models_B q)\), we have \(M_B, \langle \rangle \models_B \sim (p \lor q)\). Therefore \(M_B, \langle \rangle \not\models_B (\sim p \land \sim q) \rightarrow \sim(p \lor q)\).

Corollary 5.3 (failure of soundness for \(\text{IPC}^{\sim}\) with all Beth models).
\(\vdash \sim A \not\models_B A\).

Proof: Otherwise \(\vdash \sim A \models_B A \iff \vdash A\), which is absurd.

Ferguson [6, Theorem 2.3] gives the frame property of \((\sim A \land \sim B) \rightarrow \sim(A \lor B)\) with respect to daC. We just mention a quite similar observation can be made for the Kripke models for CC\(\omega\).

Definition 5.4 (Semantics of CC\(\omega\)). A Kripke frame \(F_K\) for CC\(\omega\) is a triple \((W, \preceq, S)\), where \(S \subset W \times W\) is a reflexive and symmetric (accessibility) relation such that \(u \preceq v\) and \(uSw\) implies \(vSw\), i.e. \(S\) is upward.
closed. A Kripke model \mathcal{M}_K^c for CC_ω is defined as usual, except for the forcing condition ($\models K_e$) of negation, which is

$$\mathcal{M}_K^c, w \models K_e A \iff \mathcal{M}_K^c, w' \not\models K_e A$$ for some w' such that wSw'.

Note if $S = W \times W$, then a CC_ω-frame (model) is a TCC_ω-frame (model) \cite{7}. Indeed, what is shown in \cite{7} is that TCC_ω is sound and complete with the class of CC_ω-frames where S is transitive, and in particular the frames with $S = W \times W$ is sufficient for this. We shall occasionally denote uSv also by $vS^{-1}u$. As S is symmetric in CC_ω, this distinction is not quite necessary. This however clarifies appeals to symmetry in proofs, which becomes significant in a broader context.

Proposition 5.5. Let \mathcal{F}_K^c be a CC_ω-frame. Then the following conditions are equivalent:

(i) $\mathcal{F}_K^c \models K_e (\sim A \land \sim B) \rightarrow (\sim (A \lor B))$ for all A, B.

(ii) \mathcal{F}_K^c satisfies $\forall u, v, w (uSv \text{ and } uSw \implies \exists x S^{-1} u (v \geq x \text{ and } w \geq x))$.

Proof: We shall first see (i) implies (ii). Suppose $uSv \text{ and } uSw$. Let $\mathcal{V}(p) = \{x : v \not\leq x\}$ and $\mathcal{V}(q) = \{x : w \not\leq x\}$. Now if $w \in \mathcal{V}(p)$ and $x' \geq x$, then $v \geq x'$ implies $v \geq x$, a contradiction. So $v \not\leq x'$, and thus $x' \in \mathcal{V}(p)$. Hence $\mathcal{V}(p)$ is upward closed. Similarly $\mathcal{V}(q)$ is upward closed. Now since $v \geq v$ and $w \geq w$, $v \not\models K_e p$ and $w \not\models K_e q$. So $u \models K_e \sim p \land \sim q$. Hence by assumption $u \models K_e \sim (p \lor q)$. So there is an $xS^{-1}u$ such that $x \not\models K_e p$ (i.e. $v \geq x$) and $x \not\models K_e q$ (i.e. $w \geq x$), as we desired.

Next we shall see (ii) implies (i). Assume \mathcal{F}_K^c satisfies (ii) and \mathcal{V}, u_0 be arbitrary. If $\mathcal{F}_K^c, \mathcal{V}, u_0 \models K_e \sim A \land \sim B$ for $u \geq u_0$, then there are $vS^{-1}u$ and $wS^{-1}u$ such that $v \not\models K_e A$ and $w \not\models K_e B$. By (ii), there is $xS^{-1}u$ such that $v \geq x$ and $w \geq x$. Now $x \not\models K_e A \lor B$. Hence $u \models K_e \sim (A \lor B)$. So $(\mathcal{F}_K^c, \mathcal{V}, u_0 \models K_e (\sim A \land \sim B) \rightarrow (\sim (A \lor B)))$. Since w and \mathcal{V} are arbitrary, $\mathcal{F}_K^c \models K_e (\sim A \land \sim B) \rightarrow (\sim (A \lor B))$.

Given a Kripke frame for IPC^\sim, we can regard it as a frame of TCC_ω with $S = W \times W$; i.e. there is an embedding. Then it is immediately seen that such a frame satisfies the above condition, because it is rooted. This means the class of Kripke frames for TCC_ω satisfying the above condition is complete with respect to IPC^\sim, for if a formula is validated by each such frame, then it must be validated by each frame of IPC^\sim.

Next we consider \(\text{daC} \). The formula \(\sim A \land \sim B \rightarrow \sim (A \lor B) \) used for IPC\(\sim \) cannot be used for \(\text{daC} \), because it is not a theorem of \(\text{daC} \) [9, Table 3]. We instead have to look at another formula \(\sim (\sim (A \lor B) \lor A) \rightarrow B \).

Proposition 5.6. \(\text{CC}_\omega + \sim (\sim (A \lor B) \lor A) \rightarrow B = \text{daC} \).

Proof: It has been observed in [9, Theorem 3.13] that \(\sim (\sim (A \lor B) \lor A) \rightarrow B \) is a theorem of \(\text{daC} \). So we only have to check \([\text{RP}]\) is admissible in \(\text{CC}_\omega + \sim (\sim (A \lor B) \lor A) \rightarrow B \). We first note \(\frac{A}{\sim A \rightarrow B} \) is derivable in \(\text{CC}_\omega \) by the same argument as in [10, Theorem 4.3]. Assuming \(A \lor B \) is derivable, from this we see \(\sim (A \lor B) \rightarrow A \) is derivable. By \([\text{Ax8}]\), we infer \(\sim (\sim (A \lor B) \lor A) \rightarrow B \). On the other hand, \(\sim (\sim (A \lor B) \lor A) \rightarrow B \) is the added axiom. Thus we conclude \(\sim A \rightarrow B \).

\(\sim (\sim (A \lor B) \lor A) \rightarrow B \) is used in [9, theorem 3.13] to establish that \(\text{daC} \) strictly contains another logic \(\text{daC'} \), axiomatised by replacing \([\text{RP}]\) with a weaker rule \(\frac{A \lor \sim B}{\sim A \rightarrow \sim B} \) [wRP]. We shall note [wRP] in \(\text{daC'} \) is similarly reducible to an axiom \(\sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B \).

Proposition 5.7. \(\text{CC}_\omega + \sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B = \text{daC}' \)

Proof: It has been observed in [10, Lemma 3.2] that \(\sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B \) is a theorem of \(\text{daC'} \). So we only have to check [wRP] is admissible in \(\text{CC}_\omega + \sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B \). This is proved as in the previous proposition, except that we infer \(\sim A \rightarrow \sim (\sim (A \lor \sim B) \lor A) \) and \(\sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B \) to conclude \(\sim A \rightarrow \sim B \).

Next, we turn our attention to the semantic side. Our goal will be to establish a connection between the Kripke semantics of \(\text{CC}_\omega \) and \(\text{daC} \). For this we shall first consider the frame condition for \(\sim (\sim (A \lor B) \lor A) \rightarrow \sim B \).

Proposition 5.8. Let \(\mathcal{F}_K^c \) be a \(\text{CC}_\omega \)-frame. Then the following conditions are equivalent:

(i) \(\mathcal{F}_K^c \models_{KC} \sim (\sim (A \lor B) \lor A) \rightarrow B \) for all \(A, B \).

(ii) \(\mathcal{F}_K^c \) satisfies \(\forall u, v (uSv \rightarrow \exists w S^{-1}v (w \leq u \text{ and } w \leq v)) \).

Proof: We shall first see (i) implies (ii). We shall show the contrapositive. So suppose for some \(u \) and \(v \), \(uSv \) holds but \(\neg \exists w S^{-1}v (w \leq u \text{ and } w \leq \)
v). Choose \(\mathcal{V} \) s.t. \(\mathcal{V}(p) = \{ w : w \not\in v \} \) and \(\mathcal{V}(q) = \{ w : w \not\in u \} \). It is straightforward to see \(\mathcal{V}(p) \) and \(\mathcal{V}(q) \) are upward closed. Now since \(\forall wS^{-1}v(w \not\in u \text{ or } w \not\in v) \), we have \(\forall wS^{-1}v(w \Vdash_{\mathcal{K}_c} p \text{ or } w \Vdash_{\mathcal{K}_c} q) \). So \(v \not\Vdash_{\mathcal{K}_c} (p \lor q) \). In addition, \(v \leq v \) means \(v \not\Vdash_{\mathcal{K}_c} p \). Thus \(u \not\Vdash_{\mathcal{K}_c} \sim((p \lor q) \lor p) \). On the other hand, \(u \leq u \) implies \(u \not\Vdash_{\mathcal{K}_c} q \). Thus \(u \not\Vdash_{\mathcal{K}_c} \sim((p \lor q) \lor p) \rightarrow q \). Therefore \(\mathcal{F}^c_{\mathcal{K}} \not\Vdash_{\mathcal{K}_c} \sim((p \lor q) \lor p) \rightarrow q \).

Next we shall see (ii) implies (i). Assume \(\forall u, v(uSv \rightarrow \exists wS^{-1}v(w \leq u \text{ and } w \leq v)) \). Let \(\mathcal{V} \) and \(u \) be arbitrary, and for \(v \geq u \), suppose \((\mathcal{F}^c_{\mathcal{K}}, \mathcal{V}), v \Vdash_{\mathcal{K}_c} \sim((A \lor B) \lor A) \). Then for some \(wS^{-1}v \), \(w \not\Vdash_{\mathcal{K}_c} (A \lor B) \lor A \). Thus \(w \not\Vdash_{\mathcal{K}_c} A \lor B \). Now by assumption, from \(vSv \) we infer \(\exists yS^{-1}w(y \leq v \text{ and } y \leq w) \). From our observation above, we know \(y \Vdash_{\mathcal{K}_c} A \lor B \). If \(y \Vdash_{\mathcal{K}_c} A \), then \(y \leq u \) implies \(w \Vdash_{\mathcal{K}_c} A \), a contradiction. Thus \((\mathcal{F}^c_{\mathcal{K}}, \mathcal{V}), u \Vdash_{\mathcal{K}_c} \sim((A \lor B) \lor A) \rightarrow B \). Since \(\mathcal{V} \) and \(u \) are arbitrary, \(\mathcal{F}^c_{\mathcal{K}} \not\Vdash_{\mathcal{K}_c} \sim((A \lor B) \lor A) \rightarrow B \).

Note that in the proof no appeal is made to neither the reflexivity nor symmetry of \(S \). Thus we see the correspondence holds for a weaker setting of one of Došen’s systems in [5, p.81–83] (under what he calls condensed frames). It has the same forcing condition, but the accessibility relation there is not assumed to be reflexive nor symmetric.

With the frame condition at hand, we can now translate back and forth the frames of \(\text{CC}_w \) and \(\text{daC} \).

Definition 5.9 (semantics of \(\text{daC} \)). A Kripke frame \(\mathcal{F}^d_{\mathcal{K}} \) for \(\text{daC} \) is a pair \((W, \leq)\), and a Kripke model \(\mathcal{M}^d_{\mathcal{K}} \) for \(\text{daC} \) is defined as usual, except for the forcing condition (\(\Vdash_{\mathcal{K}_d} \)) of negation, which is

\[
\mathcal{M}^d_{\mathcal{K}}, w \Vdash_{\mathcal{K}_d} A \iff \mathcal{M}^d_{\mathcal{K}}, w' \not\Vdash_{\mathcal{K}_d} A \text{ for some } w' \leq w.
\]

Proposition 5.10.

(i) Let \(\mathcal{F}^c_{\mathcal{K}} = (W, \leq, S) \) be a frame of \(\text{CC}_w \) satisfying \(\forall u, v(uSv \rightarrow \exists wS^{-1}v(w \leq u \text{ and } w \leq v)) \). Define \(\Phi(\mathcal{F}^c_{\mathcal{K}}) = (W, \leq) \). Then for any \(\mathcal{V} \) and \(w \), \((\mathcal{F}^c_{\mathcal{K}}, \mathcal{V}), w \Vdash_{\mathcal{K}_c} A \iff (\Phi(\mathcal{F}^c_{\mathcal{K}}), \mathcal{V}), w \Vdash_{\mathcal{K}_d} A \).

(ii) Let \(\mathcal{F}^d_{\mathcal{K}} \) be a frame of \(\text{daC} \). Define \(S = \{(u, v) : \exists w(w \leq u \text{ and } w \leq v)\} \), and \(\Psi(\mathcal{F}^d_{\mathcal{K}}) = (W, \leq, S) \). Then for any \(\mathcal{V} \) and \(w \), \((\mathcal{F}^d_{\mathcal{K}}, \mathcal{V}), w \Vdash_{\mathcal{K}_d} A \iff (\Psi(\mathcal{F}^d_{\mathcal{K}}), \mathcal{V}), w \Vdash_{\mathcal{K}_c} A \).

(iii) \(\Psi = \Phi^{-1} \) for the above \(\Phi \) and \(\Psi \).
Note the S defined in (ii) is well-defined: it is easy to check it is reflexive, symmetric and satisfies $\forall u, v (uSw \rightarrow \exists wS^{-1}v (w \leq u \text{ and } w \leq v))$.

Proof: In (i) and (ii), we only have to consider the case for negation.

For (i), if $(F^c_K, V), w \models_{K_c} \sim A$, then for some $w' S^{-1} w$, $(F^c_K, V), w' \not\models_{K_c} A$. By the frame condition, there is $x S^{-1} w$ such that $x \leq w$ and $x \leq w'$. Because of the latter, $(F^c_K, V), x \not\models_{K_c} A$. By I.H., $(\Phi(F^c_K), V), w \models_{K_c} \sim A$. For the converse direction, if $(\Phi(F^c_K), V), w \models_{K_c} \sim A$ then for some $w' \leq w$, $(\Phi(F^c_K), V), w' \not\models_{K_c} A$. By I.H., $(F^c_K, V), w' \not\models_{K_c} A$. Since $w \leq w'$, $(\Phi(F^c_K), V), w \models_{K_c} \sim A$. Now as $w' \leq w$ and $w' Sw'$, wSw'. So $(\Psi(F^c_K), V), w \not\models_{K_c} \sim A$. For the converse direction, if $(\Psi(F^c_K), V), w \not\models_{K_c} \sim A$, then for some $w' S^{-1} w$, $(\Psi(F^c_K), V), w' \not\models_{K_c} A$. Thus there is an x such that $x \leq w$ and $x \leq w'$. We have $(\Psi(F^c_K), V), x \not\models_{K_c} A$ by the latter. By I.H., $(F^c_K, V), x \not\models_{K_c} A$. Therefore $(F^c_K, V), w \not\models_{K_c} \sim A$.

For (iii), it is immediate to see that $\Phi(\Psi(F^c_K)) = F^d_K$, as the mappings do not alter (W_i, \leq). As for $\Psi(\Phi(F^c_K)) = F^c_K$, we need to check the original S in F^c_K and the defined S' in $\Psi(\Phi(F^c_K))$. It is easy from the frame condition that $S \subseteq S'$. Further, if $\exists x (x \leq w \text{ and } x \leq w')$, then xSw' by reflexivity, symmetry and upward closure of S. Thus again by upward closure of S, $wSWw'$; so $S \supseteq S'$.

This allows us to conclude the following completeness of daC with respect to the frames of CC$_\omega$: let us denote the derivability in daC by \(\vdash_d \).

Corollary 5.11. \(\vdash_d A \) if and only if $F^d_K \models_{K_c} A$ for all F^c_K satisfying $\forall u, v (uSw \rightarrow \exists wS^{-1}v (w \leq u \text{ and } w \leq v))$.

Proof: The last proposition established a bijection of frames agreeing in forcing. Thus the statement follows from the completeness of daC with respect to its models [11].

We now look at the frame condition for $\sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B$.

Proposition 5.12. Let F be a CC$_\omega$-frame. Then the following conditions are equivalent.

(i) $F \models_{K_c} \sim (\sim (A \lor \sim B) \lor A) \rightarrow \sim B$ for all A, B.
We have looked at a family of logics related to IPC. Conclusion systems treated in this paper. developed in the sequel, where we formulate labelled sequent calculi for the symmetry of Empirical Negation, Co-negation and the Contraposition Rule I. . .

To see (ii) implies (i), let \(v \geq u \) for arbitrary and assume \(v \models_{KC} \sim(A \lor \sim B) \lor A \). We want to show \(u \models_{KC} \sim(A \lor \sim B) \lor A \). By definition, \(\exists w S^{-1} v(w \not\models_{KC} \sim(A \lor \sim B) \lor A) \). So \(\forall x S^{-1} w(x \models_{KC} A \lor \sim B) \lor A \). By the frame condition, there is \(x S^{-1} w \) such that \(x \leq w \) and \(\forall y(xS y \rightarrow vS y) \). From (*) we infer \(x \models_{KC} A \) or \(x \models_{KC} \sim B \). If the former, then \(w \models_{KC} A \), a contradiction. So \(x \models_{KC} \sim B \). But then for some \(y S^{-1} x, y \not\models_{KC} B \). Thus \(vS y \) by the frame condition. So \(v \models_{KC} \sim B \). Hence \(u \models_{KC} \sim(A \lor \sim B) \lor A \rightarrow \sim B \). Since \(u \) is arbitrary, \(\models_{KC} \sim(A \lor \sim B) \lor A \rightarrow \sim B \).

Note that contrary to the last case, in this proof we appealed to the symmetry of \(S \) in \(CC_{\omega} \).

6. Conclusion

We have looked at a family of logics related to \(IPC^\sim \). In the fourth section we observed how Kripke and Beth semantics respectively reflected the (empirical) negations of \(IPC^\sim \) and \(TCC_{\omega} \), and a translation of classical logic into the latter which highlights the difference. In the fifth section, we clarified how we can eliminate the rule \([RP]\) in \(IPC^\sim \) and \(daC \), and how we can capture the latter logic in the setting of \(CC_{\omega} \). This result is further developed in the sequel, where we formulate labelled sequent calculi for the systems treated in this paper.
Acknowledgements This research was supported by the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks). The author is indebted to Hitoshi Omori and Giulio Fellin for their suggestion to look at empirical negation and co-negation, respectfully. He also thanks Hajime Ishihara, Takako Nemoto and Keita Yokoyama for their encouragement and many valuable suggestions during the production of this paper. Lastly, he thanks the anonymous reviewer for the helpful comments and suggestions.

References

Empirical Negation, Co-negation and the Contraposition Rule I.

Satoru Niki
Japan Advanced Institute of Science and Technology
School of Information Science
923-1292, 1-1 Asahidai, Nomi
Ishikawa, Japan
e-mail: satorunikijaist.ac.jp