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MODULE STRUCTURE ON EFFECT ALGEBRAS

Abstract

In this paper, by considering the notions of effect algebra and product effect alge-

bra, we define the concept of effect module. Then we investigate some properties

of effect modules, and we present some examples on them. Finally, we introduce

some topologies on effect modules.
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1. Introduction

In 1994, Foulis and Bennett [16] introduced the concept of effect algebras
with a partially defined addition “+” in order to axiomatize some quantum
measurements. They are additive counterparts to D-posets introduced by
Kôpka and Chovanec (1994), where the subtraction of comparable elements
is a primary notion. They met interest of mathematicians physicits while
they give a common base for algebraic as well as fuzzy set properties of
the system ε(H) of all effects of a Hilbert space H, i.e., of all Hermitian
operators A on H such that O ≤ A ≤ I, where O and I are the null and
the identity operators on H. In many cases, effect algebras are intervals
in unital po-groups, e.g., ε(H) is the interval in the po-group β(H) of all
Hermitian operators on H; this group is of great importance for physics.

Effect algebras generalize many examples of quantum structures, like
Boolean algebras, orthomodular lattices or posets, orthoalgebras, MV -
algebras and etc. We recall that MV -algebras are algebraic counterparts
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of the many-valued reasoning, and they appeared in mathematics under
many different names, situations and motivations. Even in the theory of
effect algebras, they were defined in an equivalent way as phi-symmetric
effect algebras [1]. The monograph [2, 11] can serve as a basic source of
information about effect algebras. Product effect algebras, were introduced
by Anatolij Dvurecenskij [12]. He proved every product effect algebra with
the Riesz decomposition property (RDP ) is an interval in an Abelian uni-
tal interpolation po-ring, and he showed that the category of product effect
algebras with the RDP is categorically equivalent with the category of uni-
tal Abelian interpolation po-rings. Recently, some researchers worked on
modular structures (see, for instance, [3, 4, 9, 10, 17]). Effect modules have
been introduced in theoretical physics in the mid-1990 for quantum prob-
ability. These structures are effect algebras with a scalar multiplication,
with scalars from [0, 1], i.e., an effect module M is an effect algebra with
an action [0, 1] ×M −→ M that it is an special case. In this paper, we
try to present more complete definition than the previous definition. We
define effect modules on product effect algebras as an extension of effect
algebras.

In the study of effect algebras (or more general, quantum structures) as
carriers of states and probability measures, an important tool is the study
of topologies on them. In fact, algebra and topology, the two fundamen-
tal domains of mathematics, play complementary roles. Topology studies
continuity and convergence, and it provides a general framework to study
the concept of a limit. Algebra studies all kinds of operations and pro-
vides a basis for algorithms and calculations. Because of this difference in
nature, algebra and topology to have a strong tendency to develop indepen-
dently, not in direct contact with each other. However, in applications, in
higher level domains of mathematics, such as functional analysis, dynami-
cal systems, representation theory and others, topology and algebra come
in contact most naturally. Recently, many mathematicians have studied
properties of some algebraic structures endowed with a topology (see, for
instance, [5, 6, 7, 15, 18]). We have studied and try to introduce some
topologies on effect modules. In fact, we wish to open new fields to anyone
that is interested to studying and development of effect algebras and effect
modules.
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2. Preliminaries

In this section, we review some definitions and related lemmas and theorems
that we use in the next sections.

Definition 2.1 ([16]). An effect algebra is a partial algebra E = (E; +, 0, 1)
with a partially defined operation “ + ” and two constant elements 0 and
1 such that, for all a, b, c ∈ E,

(E1) Commutative Law: if a + b is defined in E, then b + a is defined
in E, and in such the case a+ b = b+ a;

(E2) Associative Law: if a+(b+c) and b+c are defined in E, then a+b
and (a + b) + c are defined in E, and in such the case a + (b + c) =
(a+ b) + c;

(E3) Orthocomplementation Law: for any a ∈ E, there exists a unique
element a′ ∈ E such that a+ a′ = 1;

(E4) Zero-Unit Law: if a+ 1 is defined in E, then a = 0.

The algebraic structure (E; +, 0) is called an extended effect algebra if

(GE1) E is a partial commutative monoid;

(GE2) x+ z = x+ y implies z = y;

(GE3) x+ y = 0 implies x = y = 0, for every x, y, z ∈ E (see [11]).

Let E be an effect algebra. If we define a ≤ b if and only if there exists an
element c ∈ E such that a + c = b, then ≤ is a partial ordering, and we
write c := b − a. A nonempty subset I of E is said to be an ideal of E if
the following conditions are satisfied: (Id1) If x ∈ I and y ≤ x, then y ∈ I,
(Id2) if x− y ∈ I and y ∈ I, then x ∈ I, for any x, y ∈ E. Recall that a set
Q ⊆ E is called a sub-effect algebra of the effect algebra E, if 1 ∈ Q and
if out of elements a, b, c ∈ E with a+ b = c two are in Q, then a, b, c ∈ Q.
Let F be another effect algebra. A mapping h : E −→ F is said to be a
homomorphism of effect algebras (or E-homomorphism) if h(1) = 1 and
h(a+ b) = h(a) + h(b), for any a, b ∈ E whenever a+ b is defined in E.

We say E fulfills the strong Riesz Decomposition Property, (RDP2) for
short, if a1, a2, b1, b2 ∈ P such that a1 + a2 = b1 + b2, then there are
d1, d2, d3, d4 ∈ P such that (i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1,
d2 + d4 = b2, and (ii) d2 ∧ d3 = 0 (see [13]).
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Definition 2.2 ([12]). A product on effect algebra E = (E; +, 0, 1) is any
total binary operation “.” on E such that for all a, b, c ∈ E, the following
holds:
If a+ b is defined in E, then a.c+ b.c and c.a+ c.b exist in E and

(a+ b).c = a.c+ b.c, c.(a+ b) = c.a+ c.b.

Now, an effect algebra E with a product “.” is called a product effect
algebra.

The product “.” on E is associative if (a.b).c = a.(b.c), for every
a, b, c ∈ E.

A mapping h : E −→ F is said to be a homomorphism of product effect
algebras (or P -homomorphism) if h ia an E-homomorphism and h(a.b) =
h(a).h(b), for every a, b ∈ P .

Proposition 2.3 ([16]). The following properties hold for any effect alge-
bra E:

(i) a′′ = a,

(ii) 1′ = 0 and 0′ = 1,

(iii) 0 ≤ a ≤ 1,

(iv) a+ 0 = a,

(v) a+ b = 0⇒ a = b = 0,

(vi) a ≤ a+ b,

(vii) a ≤ b⇒ b′ ≤ a′,

(viii) b− a = (a+ b′)′,

(ix) a+ b′ = (b− a)′,

(x) a = a− 0,

(xi) a− a = 0,

(xii) a′ = 1− a and a = 1− a′, for every a, b ∈ E.

Definition 2.4 ([8]). An MV-algebra is a structure M = (M,⊕,′ , 0) of
type (2, 1, 0) that satisfies the following axioms:

(MV 1) (M,⊕, 0) is an Abelian monoid,
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(MV 2) (a′)′ = a,

(MV 3) 0′ ⊕ a = 0′,

(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a.

An l-group is an algebra (G,+,−, 0,∨,∧), where the following proper-
ties hold:

(a) (G,+,−, 0) is a group,

(b) (G,∨,∧) is a lattice,

(c) x ≤ y implies that b+ x+ a ≤ b+ y + a, for any x, y, a, b ∈ G.

A strong unit u > 0 is a positive element with property that for any g ∈ G
there exits n ∈ ω such that g ≤ nu. The Abelian l-groups with a strong
unit will be simply called lu-groups.

The category whose objects are MV -algebras and whose homomor-
phisms are MV -homomorphisms is denoted by MV. The category whose
objects are pairs (G, u), where G is an Abelian l-group and u is a strong unit
of G and whose homomorphisms are l-group homomorphisms is denoted
by Ug. The functor that establishes the categorical equivalence between
MV and Ug is

Γ : Ug −→ MV,

where Γ(G, u) = [0, u]G, for every lu-group (G, u) and Γ(h) = h|[0,u], for
every lu-group homomorphism h. The above results allows us to consider
an MV -algebra, when necessary, as an interval in the positive cone of an
l-group.

Definition 2.5 ([9]). A product MV -algebra (or PMV -algebra, for short)
is a structure A = (A,⊕, .,′ , 0), where (A,⊕,′ , 0) is an MV -algebra and “.”
is a binary associative operation on A such that the following property is
satisfied: if x + y is defined, then x.z + y.z and z.x + z.y are defined and
(x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every x, y, z ∈ A, where
“ + ” is the partial addition on A.

Let A = (A,⊕, .,′ , 0) be a PMV -algebra, M = (M,⊕,′ , 0) be an MV -
algebra and the operation Φ : A ×M −→ M be defined by Φ(a, x) =: ax,
which satisfies the following axioms:

(AM1) If x+y is defined in M , then ax+ay is defined in M and a(x+y) =
ax+ ay,
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(AM2) If a+b is defined in A, then ax+bx is defined in M and (a+b)x =
ax+ bx,

(AM3) (a.b)x = a(bx), for every a, b ∈ A and x, y ∈M .

Then M is called a (left) MV -module over A or briefly an A-module.
We say that M is a unitary MV -module if A has a unity for the product

and

(AM4) 1Ax = x, for every x ∈M .

3. Effect modules

In this section, we present the definition of an effect module in effect alge-
bras and state some results on them.

Definition 3.1. Let P = (P ; +, ., 0, 1) be a product effect algebra and
E = (E; +, 0, 1) be an effect algebra. Then we say that E is an effect module
over P or P -module if there is an external operation ϕ : P ×E −→ E, with
ϕ(a, x) =: ax such that for any x, y ∈ E and a, b ∈ P , the following
properties hold:

(PE1) If a+ b is defined, then ax+ bx is defined and (a+ b)x = ax+ bx.

(PE2) If x+y is defined, then ax+ay is defined and a(x+y) = ax+ay.

(PE3) (a.b)x = a(bx).

Moreover, if ϕ(1, x) = 1x = x, for every x ∈ E, then E is called a
unitary P -module.

Example 3.2.

(i) Let P be a product effect algebra and E be an effect algebra. If we
define ϕ(a, x) = 0, for any a ∈ P and x ∈ E, then E becomes a
P -module.

(ii) Consider the real unit interval [0, 1]. Let x⊕y = min{x+y, 1}, for all
x, y ∈ [0, 1]. Then ([0, 1],⊕, 0, 1) is an effect algebra, where “ + ” and
“− ” are the ordinary operations in R. Moreover, consider ab = a.b,
for every a, b ∈ [0, 1], where “.” is the ordinary operation in R. Then
[0, 1] is a [0, 1]-module.
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(iii) Let E = {0, 1, 2, 3} and the operation “+” is defined on P as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 − 3 −
2 2 3 − −
3 3 − − −

Then (E; +, 0, 3) is an effect algebra. If we define operation “.” by

. 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

then P = (E; +, ., 0, 3) is a product effect algebra. Consider φ(a, x) =
a.x, for every a, x ∈ E. Then E is a P -module.

(iv) Let L = {0, x, 1}, P = {0, 1} and operations + and +′ is defined on
L and P , respectively, as follows:

+ 0 x 1
0 0 x 1
x x 1 −
1 1 − −

+′ 0 1
0 0 1
1 1 −

Then (L; +, 0, 1) is an effect algebra and (P ; +′, ., 0, 1) is a product
effect algebra, where “.” is the ordinary operation in R. Consider
E = L × L. Then (E;⊕, (0, 0), (1, 1)) is an effect algebra, where
(e1, e2)⊕ (b1, b2) = (e1 + b1, e2 + b2), for every e1, e2, b1, b2 ∈ L. Now,
for any a ∈ P and (e1, e2) ∈ E, we consider ϕ(a, (e1, e2)) = (ae1, ae2),
where for every e ∈ L,

ae =

{
0 a = 0
e a = 1

Then E is a P -module.

Lemma 3.3. Every associative product effect algebra (P,+, ., 0, 1) is a P -
module.
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Proof: If we define φ(a, b) = a.b, for every a, b ∈ P , then it is easy to see
that P is a P -module.

Proposition 3.4. Let E be an effect algebra such that for every a, b ∈ E,
a′ + (b+ a′)′ = b′ + (a+ b′)′. Then E can become an E-module.

Proof: If we define a.b = (a ∗ b)′, where a ∗ b = a′ + (b + a′)′, then in a
straightforward way, E is an associative product effect algebra and so by
Lemma 3.3, E is an E-module.

Note. Let E = (E; +, 0, 1) be an effect algebra. Then for any a, b ∈ E,
a ≤ b′ if and only if a+ b is defined in E.

Lemma 3.5. Let E = (E; +, 0, 1) be an effect algebra. Then the set of

End(E) = {f : E → E : f is an E-homomorphism}

is a product effect algebra.

Proof: We consider f + g : E → E, by (f + g)(x) = f(x) + g(x), where
f(x) + g(x) is defined in E and (f + g)(x) = 0, where f(x) + g(x) is not
defined in E. Also, we consider f ◦ g : E → E, by (f ◦ g)(x) = f(g(x)).
Let x + y be defined in E. Since f, g are E-homomorphism, f(x) + f(y)
and g(x) + g(y) are defined and so it is easy to see that f + g and f ◦ g
are E-homomorphism. Thus, it is routine to see that (End(E),+, ◦, I, O)
is an effect algebra, where I : E → E and O : E → E are identity E-
homomorphism and zero E-homomorphism, respectively.

Theorem 3.6. Let E = (E; +, 0, 1) be an effect algebra and P be a product
effect algebra. Then E is a unitary P -module if and only if there exists a
P -homomorphism ϕ : P → End(E).

Proof: Let E be a unitary P -module with module multiplication ψ :
P × E → E, by ψ(a, x) = ax, for every a ∈ P and x ∈ E. By Lemma
3.5, End(E) is a product effect algebra. We consider the function ϕ : P →
End(E), by a→ ϕ(a), where ϕ(a) : E → E is defined by ϕ(a)(x) = ax, for
every a ∈ P and x ∈ E. We show that ϕ is a homomorphism of product
effect algebras. Let a+ b be defined in P , for any a, b ∈ P . Then we have

ϕ(a+ b)(x) = (a+ b)x = ax+ bx = ϕ(a)(x) + ϕ(b)(x) = (ϕ(a) + ϕ(b))(x)

for every x ∈ E. It results that ϕ(a + b) = ϕ(a) + ϕ(b). Now, for every
a, b ∈ P , since
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ϕ(a.b)(x) = (a.b)x = a(bx) = a(ϕ(b)(x)) = ϕ(a)(ϕ(b)(x)) = (ϕ(a)◦ϕ(b))(x)

for every x ∈ E, we have ϕ(a.b) = ϕ(a) ◦ϕ(b). Also, ϕ(1)(x) = 1x = x, for
every x ∈ E and so ϕ(1) = I.
Conversely, let there is a P -homomorphism ϕ : P → End(E). We define
ψ : P ×E → E, by ψ(a, x) = ax = ϕ(a)(x), for every a ∈ P and x ∈ E. It
is easy to see that ψ is well defined.

(PE1) Let a + b be defined in P . Then a ≤ b′ and so ax ≤ b′x. We
must show that ax + bx is defined in E. The first, we show that
b′x ≤ (bx)′. Since x ≤ x, hence x′ + x is defined and so

b(x+ x′) = ψ(b)(x′ + x) = ψ(b)(x′) + ψ(b)(x) = bx′ + bx

Then
bx′ + bx = b(x+ x′) = b1 ≤ 1 = (bx)′ + bx

and so b′x ≤ (bx)′. Thus, ax ≤ b′x ≤ (bx)′ and so ax+ bx is defined.
Hence, it is easy to see that (a+ b)x = ax+ bx.

(PE2) Let x+y be defined in E. Similar to (PE1), we can show that
a(x+ y) = ax+ ay.

(PE3) Let a, b ∈ P and x ∈ E. Then

(a.b)x = ψ(a.b)(x) = (ψ(a) ◦ ψ(b))(x) = ψ(a)(ψ(b)(x)) = ψ(a)(bx)

= a(bx)

Moreover, 1x = ψ(1)(x) = x, for every x ∈ E. Therefore, E is a
unitary P -module.

Theorem 3.7.

(i) Every MV -module can be transformed into an effect module.

(ii) Every effect module satisfying (RDP2) can be transformed into an
MV -module.

Proof:

(i) Let M be an A-module, where A is a PMV -algebra. We can consider
M = Γ(G, u), where G is an Abelian l-group and u is a strong unit
of G. Define “ + ” to be a partial operation on M that is defined
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for elements a, b ∈ M if and only if a ≤ b′, and in that case let
a+ b := a⊕ b. Then (M,+, 0, 1) is an effect algebra. Similarly, A can
be transformed into a product effect algebra. Now, by MV -module
multiplication, M will be an effect module.

(ii) Let E be a P -module satisfying (RDP2). By ([14], Theorem 8.8), E
and P are MV -algebras. If we consider a•b = a.b, for every a, b ∈ P ,
where “.” is the product operation in P , then P is a PMV -algebra.
Now, by effect module multiplication, E can be transformed into an
MV -module.

In the rest of this paper, we let P be a product effect algebra and E be
an effect algebra, unless otherwise specified. Also, if we are not sure that
a+ b is defined in effect algebra E, then we denote a⊕ b instead of a+ b,
for any a, b ∈ E.

4. Some topologies on effect modules

In this section, we introduce five topologies on effect modules.

Definition 4.1. Let E be a P -module. Then ∅ 6= I ⊆ E is called a
submodule of E if it satisfies the following conditions, for every a ∈ P and
x, y ∈ E:

(I1) If x, y ∈ I and x+ y is defined in E, then x+ y ∈ I.

(I2) If x ≤ y and y ∈ I, then x ∈ I.

(I3) If x ∈ I, then ax ∈ I.

I ⊆ E is called a W -submodule (weak submodule) of E if it satisfying (I3).
I ⊆ E is called an E-ideal of E if it satisfying (I1) and (I2).

We denote by SbP (E) and WSbP (E), respectively, the set of all sub-
modules of P -module E and the set of all W -submodules of P -module E.

Example 4.2.

(i) For every effect module E, {0} and E are trivial submodules of E.

(ii) In Example 3.2 (iii), I = {0, 1} and J = {0, 2} are submodules of E.

(iii) Every submodule of E is a W -submodule ( an E-ideal) of E.
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For every subset I of E, we denote

UI = {ϕ(a, x) : a ∈ (I : E) or x ∈ I},

where (I : E) = {x ∈ P : xE ⊆ I}.

Proposition 4.3. Let E be a P -module. Then

(i) If I ⊆ J , then (I : E) ⊆ (J : E), where I, J be subsets of E.

(ii)
⋂
i∈I(Ji : E) = (

⋂
i∈I Ji : E), where Ji is a subset of E, for every i ∈

I.

(iii) If I is a submodule of E, then (I : E) is an ideal of P .

If I is a W -submodule of P as P -module, where P is an associative product
effect algebra, then

(iv) I ⊆ (I : P ).

(v) (v) (I : P )P ⊆ I.

Proof: The proof is easy.

Theorem 4.4. Let E be a unitary P -module and a.a = a, for every a ∈ P .
Then Γ = {UI : I ∈WSbP (E)} is a topology on E.

Proof: Let E be a P -module, a.a = a, for every a ∈ P and I, J ∈
WSbP (E). First we prove that:

(i) U∅ = ∅ and UE = E.

(ii) UI ∩ UJ = UI∩J .

(iii) UI ∪ UJ = UI∪J .

The proof of (i) is clear. For the proof of (ii), since I∩J ⊆ I and I∩J ⊆ J ,
it is easy to see that UI∩J ⊆ UI ∩UJ . Let φ(a, x) ∈ UI ∩UJ . Then ax ∈ UI
and ax ∈ UJ . It results that a ∈ (I : E) or x ∈ I and a ∈ (J : E) or x ∈ J .
There are four possible cases:

(1) If a ∈ (I : E) and a ∈ (J : E), then it is easy to see that a ∈ (I∩J : E)
and so φ(a, x) = ax ∈ UI∩J .

(2) If x ∈ I and x ∈ J , then x ∈ I ∩ J and so ax ∈ UI∩J .
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(3) Let a ∈ (I : E) and x ∈ J . Then aE ⊆ I and so ax ∈ I. Since J is a
W -submodule of E, ax ∈ J , too. Hence φ(a, x) = ax ∈ I ∩ J and so
a(ax) = φ(a, ax) ∈ UI∩J . It results that by (PE3),

φ(a, x) = ax = (a.a)x = a(ax) ∈ UI∩J

(4) If x ∈ I and a ∈ (J : E), then similar to (3), we have ax ∈ UI∩J .
Therefore, UI ∩ UJ ⊆ UI∩J .

(iii) Since I ⊆ I∪J and J ⊆ I∪J , it is easy to show that UI∪UJ ⊆ UI∪J .
Let φ(a, x) ∈ UI∪J . Then a ∈ (I ∪ J : E) or x ∈ I ∪ J . If a ∈ (I ∪ J : E),
then aE ⊆ I ∪ J and so ax ∈ I ∪ J . Thus, ax ∈ I or ax ∈ J and so
ax = a(ax) ∈ UI or ax = a(ax) ∈ UJ . It follows that ax ∈ UI ∪ UJ . Now,
let x ∈ I ∪J . Then x ∈ I or x ∈ J . It results that ax ∈ UI or ax ∈ UJ and
so ax ∈ UI ∪ UJ . Hence UI ∪ UJ = UI∪J .

Therefore, by (i), (ii) and (iii), we obtain that Γ is a topology on E.

Next, we present definition of linear submodules of an effect module
and introduce another topology on E.

Definition 4.5. Let I be an E-ideal of E. Then I is called a linear E-ideal
of E if I is also a total order set.

Example 4.6. In Example 4.2 (ii), I and J are linear E-ideals of E.

For every subset I of E, we denote

LI = {(x, y) ∈ E × E : x+ y is defined and ∃c ∈ I that x+ c = y

or ∃d ∈ I that y + d = x}.

Let L,K ⊆ E × E such that x + y be defined in them, for every x, y in
them. Then we denote

L−1 = {(y, x) : (x, y) ∈ L} , L(y) = {x : (y, x) ∈ L, for every y ∈ E}

and

L ◦K = {(x, z) : ∃y ∈ E such that (x, y) ∈ L and (y, z) ∈ K}.
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Lemma 4.7. Let I and J be subsets of E.

(i) If I ⊆ J , then LI ⊆ LJ .

If E is an extended effect algebra and I, J are E-ideals of E, then

(ii) LI ∩ LJ = LI∩J .

(iii) LI ∪ LJ ⊆ LI ◦ LJ .

If E is an extended effect algebra and I, J are linear E-ideals of E, then

(iv) I ∩ J is a linear E-ideal of E;

(v) LI ◦ LI = LI .

Proof:

(i) The proof is clear.

(ii) Let (x, y) ∈ LI ∩ LJ . Then (x, y) ∈ LI and (x, y) ∈ LJ and so
(x + c1 = y or y + d1 = x) and (x + c2 = y or y + d2 = x), for
c1, d1 ∈ I and c2, d2 ∈ J . There are four possible cases:

Case (1): Let x+ c1 = y and x+ c2 = y. Then x+ c1 = x+ c2. Since
“ + ” is cancellative, we have c1 = c2 ∈ I ∩ J and so (x, y) ∈ LI∩J .

Case (2): Let x+ c1 = y and y + d2 = x. Then x ≤ y and y ≤ x and
so x = y. It means that c1 = d2 = 0 ∈ I ∩ J and so (x, y) ∈ LI∩J .

Case (3): Let y + d1 = x and y + d2 = x. The proof of this case is
similar to the case (1).

Case (4): Let y + d1 = x and x + c2 = y. The proof of this case is
similar to the case (2). Hence LI ∩ LJ ⊆ LI∩J . It is easy to show
that LI∩J ⊆ LI ∩ LJ . Therefore, LI ∩ LJ = LI∩J .

(iii) Let (x, y) ∈ LI∪LJ . Then (x, y) ∈ LI or (x, y) ∈ LJ . Let (x, y) ∈ LI .
Since (y, y) ∈ L{0} ⊆ LJ , we have (x, y) ∈ LI ◦ LJ . Similarly, if
(x, y) ∈ LJ , then (x, y) ∈ LI ◦ LJ . Thus, LI ∪ LJ ⊆ LI ◦ LJ .

(iv) The proof is clear.

(v) Let (x, z) ∈ LI ◦ LI . Then there is y ∈ E such that (x, y) ∈ LI and
(y, z) ∈ LI . Thus, (x + c1 = y or y + d1 = x) and (x + c2 = z or
z + d2 = y), for c1, d1, c2, d2 ∈ I. There are four possible cases:
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(1) Let x + c1 = y and y + c2 = z. Then x + c1 + c2 = z. Since
c1 + c2 ∈ I, we have (x, z) ∈ LI .

(2) Let x + c1 = y and z + d2 = y. Since I is a linear set, we
have c1 ≤ d2 or d2 ≤ c1. If c1 ≤ d2, then there is e ∈ E such
that c1 + e = d2, thus e ≤ d2 ∈ I, so e ∈ I. Also, we have
z + c1 + e = x + c1. So z + e = x and so (z, x) ∈ LI . Then
(x, z) ∈ (LI)

−1 = LI .

(3) Let y+d1 = x and y+c2 = z. Then similar to (2), we can prove
that (x, z) ∈ (LI)

−1 = LI .

(4) y + d1 = x and z + d2 = y. Similar to (1), we prove that
LI ◦ LI ⊆ LI .
On the other hand, by (iii), it is clear that LI ⊆ LI ◦LI . There-
fore, LI ◦ LI = LI .

Theorem 4.8. Let E be an extended effect algebra, I be a family of all
linear E-ideals of E, K0 = {LI : I ∈ I} and

K = {V ⊆ E × E : x+ y is defined for every (x, y) ∈ V
and ∃LI ∈ K0 such that LI ⊆ V }.

Then

(1) If V ∈ K, then V −1 ∈ K.

(2) For every V ∈ K, there is L ∈ K0 such that L ◦ L ⊆ V .

(3) For every V,L ∈ K, we have L ∩ V ∈ K.

(4) If L ∈ K and L ⊆ V ⊆ E × E such that for any (x, y) ∈ V , x+ y is
defined, then V ∈ K.

Proof: By Lemma 4.7, the result can obtain immediately.

Corollary 4.9. Consider the set K in Theorem 4.8 and T = {LI(x) : I ∈
I, x ∈ E}. Then

(i) K is a base of a topology of E × E.

(ii) T is a base of a topology of E.
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Proof:

(i) We should proof that (1) E × E =
⋃
V ∈K V ; (2) for any V1, V2 ∈ K

and x ∈ V1 ∩ V2, there exists V ∈ K such that x ∈ V ⊆ V1 ∩ V2.

(1) Let (x, y) ∈ E×E. Then we can consider V = LI(x)×LI(y) =
{(a, b) : (x, a) ∈ LI(x) and (y, b) ∈ LI(y)}. Since (x, x) ∈
LI(x) and (y, y) ∈ LI(y), we have (x, y) ∈ V and so E × E ⊆⋃
V ∈K V . Hence E × E =

⋃
V ∈K V .

(2) Let V1, V2 ∈ K and x ∈ V1 ∩ V2. Then by Theorem 4.8 (3), we
have V1 ∩ V2 ∈ K and so we consider V = V1 ∩ V2. Therefore,
K is a base of a topology of E × E.

(ii) Similar to proof (i), we should prove that E =
⋃
x∈E LI(x) and there

exists V ∈ T with similar condition (2) in proof (i). Let x ∈ E.
Since x = x + 0, we have x ∈ LI(x). Then E ⊆

⋃
x∈E LI(x) and so

E =
⋃
x∈E LI(x). Also, for LI(x), LI(y) ∈ T and x ∈ LI(x) ∩ LI(y),

by Lemma 4.7 (ii), we have LI∩J = LI(x)∩LI(y) and so we consider
V = LI(x) ∩ LI(y). Therefore, T is a base of a topology of E.

In following, we present definition of effect topological modules and we
give a general example about them.

Definition 4.10. Let E be a P -module. If f : E × E −→ E (defined by
f(e, e′) = e+ e′, for every e, e′ ∈ E, where E×E is multiplicative topology
in E) and µx : E −→ E (defined by µx(e) = xe, for every e ∈ E and x ∈ P )
are continuous under some topology τ , then (E, τ) is called a topological
effect module.

Example 4.11. Let E be a P -module and {En : En ⊇ En+1, n ∈ N} be a
decreasing sequence of proper submodules of E. Then it is routine to see
that the collection

τ = {V ⊆ E : ∀v ∈ V ∃n ∈ N such that v + En ⊆ V },

where V + En = {v + e : v + e is defined in E} forms a topology on E.
Also, Bτ = {x + En : x ∈ E, n ∈ N} forms a base for τ . Now, we show
that the addition “ + ” and the effect module multiplication are continuous
under topology τ . Consider f : E × E −→ E defined by f(e, e′) = e + e′,
for e, e′ ∈ E and a basic open set e + En ∈ Bτ . If f−1(e + En) = ∅, then
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result holds trivially. If f−1(e + En) 6= ∅, then it is easy to prove that
f−1(e+En) is open and so f is continuous. Finally, it is easy to show that
the mapping µx : E −→ E defined by µx(e) = xe is continuous, for every
x ∈ P . Therefore, τ force E to be a topological effect module.

Next, we present definition of prime submodules in effect modules and
we present two topology on them.

Definition 4.12. Let E be a P -module and I be a proper submodule of
E. Then I is called a prime submodule of E if it satisfies in the following
condition:

If ax ∈ I, then a ∈ (I : E) or x ∈ I, for any a ∈ P and x ∈ E.

The set of all prime submodules of E is denoted by SpecP (E).

Example 4.13. In Example 3.2 (iii), I = {0, 1} and J = {0, 2} are prime
submodules of E and {0} is not a prime submodule of E. Note that
SpecP (E) = {I, J}.

Definition 4.14. Let E be a P -module and T (E) = {V(I) : I ∈ SbP (E)},
where V(I) = {P ∈ SpecP (E) : I ⊆ P}. If T (E) is closed under finite
union, then E is called a Top P -module.

Example 4.15.

(i) If E is a P -module and SpecP (E) = ∅, then E is a Top P -module.

(ii) By Example 4.13, SpecP (E)={I, J} and T (E)={∅,{I},{J},{I, J}}.
It is easy to see that E is a Top P -module.

(iii) By Example 3.2 (iv), It is easy to see that I = {(0, 0)}, J = {(0, 0),
(0, x), (0, 1)} and K = {(0, 0), (x, 0), (1, 0)} are prime submodules of
E. We have V(I) = {I}, V(J) = {J} and V(K) = {K}. It is routine
to see that E is not a Top P -module.

Proposition 4.16. Let E be a Top P -module. Then T (E) satisfies the
axioms for closed sets in a topological space.

Proof: Clearly, V(E) = ∅ and V({0}) = SpecP (E). It is enough to
show that

⋂
i∈I V(Ii) = V(

∨
i∈I Ii), where

∨
i∈I Ii = Sup{Ii : i ∈ I}. Let

P ∈
⋂
i∈I V(Ii). Then P ∈ V(Ii) and so Ii ⊆ P , for every i ∈ I. Hence∨

i∈I Ii ⊆ P and so P ∈ V(
∨
i∈I Ii). Thus

⋂
i∈I V(Ii) ⊆ V(

∨
i∈I Ii). On
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the other hand, we have V(
∨
i∈I Ii) ⊆

⋂
i∈I V(Ii). Therefore,

⋂
i∈I V(Ii) =

V(
∨
i∈I Ii).

Remark 4.17. Let E be a Top P -module. Then By Proposition 4.16, TE =
{V(I)c : I ∈ SbP (E)} is a topology on SpecP (E).

Definition 4.18. Let E be a P -module and K be a submodule of E. If
K is an intersection of some prime submodules of E, then K is called a
semiprime submodule of E.

Definition 4.19. Let E and F be two effect algebras. A mapping f :
E −→ F is said to be a P -homomorphism if (i) f is a homomorphism; (ii)
f(ax) = af(x), for any a ∈ P and x ∈ E. If f is one to one (onto), then f
is called a P -monomorphism (P -epimorphism) and if f is onto and one to
one, then f is called a P -isomorphism.

Lemma 4.20.

(i) E is a Top P -module if and only if for every prime submodule K of
E, N ∩ L ⊆ K implies that N ⊆ K or L ⊆ K (∗), where N,L are
semiprime submodules of E.

(ii) Let E and F be two P -modules, f : E −→ F be a P -isomorphism
and G be a prime submodule of F satisfying (∗). Then f−1(G) is a
prime submodule of E satisfying (∗).

Proof:

(i) Let K be a prime submodule of E, N and L be semiprime submodules
of K such that N ∩ L ⊆ K. Since E is a Top P -module, there
exists a submodule J of E such that V(N) ∪ V(L) = V(J). Since
N is a semiprime submodule of E, N =

⋂
i∈I Pi, where {Pi}i∈I is a

family of prime submodules of E. Then Pi ∈ V(N), for any i ∈ I.
Since V(N) ⊆ V(J), we have Pi ∈ V(J). Hence J ⊆ N and J ⊆ L
and so J ⊆ N ∩ L. It follows that V(N ∩ L) ⊆ V(J). Now, we
have V(N) ∪ V(L) ⊆ V(N ∩ L) ⊆ V(J) = V(N) ∪ V(L) and so
V(N)∪V(L) = V(N ∩L). It means that K ∈ V(N) or K ∈ V(L) and
so N ⊆ K or L ⊆ K. The proof of converse is routine.

(ii) The proof is routine.
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Theorem 4.21. Let E and F be two P -modules and f : E −→ F be a
P -isomorphism. If TF is a topology on SpecP (F ), then T −1E = {V (N)c :
N ∈ SpecP (E)} is a topology on SpecP (E), where

V (I) = {f−1(K) : K ∈ SpecP (F ) and f(I) ⊆ K},

for every I ⊆ F .

Proof: Since TF is a topology on SpecP (F ), T (F ) is closed under finite
union and so by Lemma 4.20 (i), N∩L ⊆ K implies that N ⊆ K or L ⊆ K,
for every prime submodule K of F , where N,L are semiprime submodules
of F . We claim that T −1(E) = {V (N) : N ∈ SpecP (E)} is closed under
finite unions. By Lemma 4.20 (ii), f−1(K) is a prime submodule of E, for
every K ∈ SpecP (F ). The first, we prove that f(G) ∈ SpecP (F ), for every
G ∈ SpecP (E). Let x, y ∈ f(G) and x + y be defined in F . Clearly, there
are m,n ∈ G such that x = f(m), y = f(n) and f(m) + f(n) is defined in
F . Since f−1 is a P -homomorphism and f(m) + f(n) is defined in F , we
result that f−1(f(m)) + f−1(f(n)) is defined in E and so m+ n is defined
in E. It means that

x+ y = f(m) + f(n) = f(m+ n) ∈ f(G).

Now, let x ≤ y and y ∈ f(G), for any x, y ∈ F . Then there are m ∈ G
and n ∈ E such that x = f(m) and y = f(n). Since f(m) ≤ f(n),
there is f(r) = c ∈ F such that f(m) + f(r) = f(n), for r ∈ E and so
f(m+r) = f(n). Hence m+r = n and so m ≤ n ∈ G. It means that m ∈ G
and so x = f(m) ∈ G. Thus, f(G) is a submodule of F . It is routine to
show that f(G) is a prime submodule of F , for every G ∈ SpecP (E). Then
f(N) =

⋂
G∈SpecP (E) f(G) and f(L) =

⋂
G′∈SpecP (E) f(G′) are semiprime

submodules of F . Hence by Lemma 4.20, N ∩ L ⊆ f−1(G) implies that
N ⊆ f−1(G) or L ⊆ f−1(G). Now, it is routine to see that V (N)∪V (L) =
V (N∩L), for every semiprime submodules of E and so by a straightforward
way, we conclud that T −1(E) is closed under finite unions. Therefore,

T −1E = {V (N)c : N ∈ SpecP (E)}

is a topology on SpecP (E).

In following, we present topology on SpecP (E) that is coarser than TE .
Let E be a P -module, N be a submodule of E and J ⊆ P . Then we denote:
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W (N) = {P ∈ SpecP (E) : (N : E) ⊆ (P : E)},
ΥE = {W (N)c : N ∈ SbP (E)}
JE = {x∈E :x≤a1x1 + · · ·+ anxn, s.t. ∃a1 · · · , an∈J, x1, · · · , xn∈E :

a1x1 + · · ·+ anxn is defined in E}

Lemma 4.22. Let E be a P -module and N be a submodule of E. Then
a.b ∈ (N : E), for every a ∈ P and b ∈ (N : E).

Proof: Let a ∈ P and b ∈ (N : E). Then bE ⊆ N and so be ∈ N , for
every e ∈ N . Hence (a.b)e = a(be) ∈ N and so a.b ∈ (N : E).

Theorem 4.23. Let E be a P -module. Then ΥE is a topology on SpecP (E).

Proof: It is clear that W (N) = ∅ and W ({0}) = SpecP (E). It is routine
to see that W (N) ∪W (M) = W (N ∩M), for every N,M ∈ SbP (E). We
show that

⋂
i∈IW (Ni) = W (JE), where J =

∨
i∈I(Ni : E). The first, we

prove that JE is a submodule of E. Let a, b ∈ JE and a+ b is defined in
E. Then

a ≤ a1x1 + · · ·+ anxn and b ≤ b1y1 + · · ·+ bmym

where a1x1 + · · ·+ anxn and b1y1 + · · ·+ bmym are defined in E, for some
a1, · · · , an, b1, · · · , bm ∈ J and x1, · · · , xn, y1, · · · , ym ∈ E. So

a+ b ≤ a1x1 + · · ·+ anxn + b1y1 + · · ·+ bmym

If a1x1 + · · ·+ anxn + b1y1 + · · ·+ bmym is not defined in E, then we can
rewrite it by new ai’s and bi’s such that is defined in E (since a+b is defined
in E, it is possible). Thus, I1 is true. Note that (I2) is clear. Now, let e ∈ P
and a ∈ JE. Then a ≤ a1x1+· · ·+anxn, where a1x1+· · ·+anxn is defined,
for any a1, · · · , an ∈ J and x1, · · · , xn ∈ E. Since a ≤ a1x1 + · · · + anxn,
there is c ∈ E such that a + c = a1x1 + · · · + anxn and so by (PE2) and
(PE3),

ea+ ec = (e.a1)x1 + · · ·+ (e.an)xn

It means that ea ≤ (e.a1)x1 + · · · + (e.an)xn, where by Lemma 4.22,
(e.a1), · · · , (e.an) ∈ J and so ea ∈ JE. Hence JE is a submodule of
E. Now, it is routine to see that

⋂
i∈IW (Ni) = W (JE). Therefore, ΥE

satisfies the axioms of topology defined by open sets.
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Example 4.24.

(i) In Example 3.2 (iii), we have SpecP (E) = {I, J}. Then W (I) = {I},
W (J) = {J}, W (∅) = SpecP (E) and W (E) = {∅}. Then ΥE =
{∅, {I}, {J}, {I, J}} is topology on SpecP (E).

(ii) In Example 4.15 (iii), we have SpecP (E) = {I, J, K}. Then
W (E) = ∅,

W (I) = W (J) = W (K) = SpecP (E) , ΥE = {∅, SpecP (E)}.

Therefore, ΥE is topology on SpecP (E).

5. Conclusion

Effect algebras generalize many examples of quantum structures, like
Boolean algebras, orthomodular lattices or posets, orthoalgebras, MV -
algebras, etc. Recently, module structures have been defined over some
algebraic structures, and some researches have been interested in this topic.
We presented definition of effect modules. Next researchers can study free
effect modules, projective (injective) modules and many of the other con-
cepts of modules. In the study of effect algebras (or more general, quantum
structures) as carriers of states and probability measures, an important tool
is the study of topologies on them. Also, the studying of certain topological
properties of algebraic structures characterize also their certain algebraic
properties. We studied and introduced some topologies on effect modules.
We wish that the obtained results can encourage us to continue this long
way. In fact, we hope that we could open new fields to anyone that is
interested to studying and development of modules.
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[14] A. Dvurečenskij, T. Vetterlein, Pseudo effect algebras. II. Group represe-

tation, International Journal of Theoretical Physics, vol. 40 (2001),

pp. 703–726, DOI: http://dx.doi.org/10.1023/A:1004144832348.

http://dx.doi.org/10.7508/ijmsi.2015.02.004
http://dx.doi.org/10.3233/IFS-162128
http://dx.doi.org/10.3233/IFS-162128
http://dx.doi.org/10.1007/s00500-012-0852-2
http://dx.doi.org/10.7508/ijmsi.2011.01.006
http://dx.doi.org/10.7508/ijmsi.2011.01.006
http://dx.doi.org/10.1016/j.fss.2014.11.014
http://dx.doi.org/10.1016/j.fss.2014.11.014
http://dx.doi.org/10.1016/S0021-8693(03)00332-6
http://dx.doi.org/10.1016/S0021-8693(03)00332-6
http://dx.doi.org/10.1080/00927872.2011.610074
http://dx.doi.org/10.1023/A:1021017905403
http://dx.doi.org/10.1023/A:1021017905403
http://dx.doi.org/10.1007/s10701-011-9537-4
http://dx.doi.org/10.1007/s10701-011-9537-4
http://dx.doi.org/10.1023/A:1004144832348


290 Simin Saidi Goraghani, Rajab Ali Borzooei

[15] F. Forouzesh, E. Eslami, A. B. Saeid, Spectral topology on MV -modules,

New Mathematics and Natural Computation, vol. 11(1) (2015),

pp. 13–33, DOI: http://dx.doi.org/10.1142/S1793005715500027.

[16] D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics,

Foundations of Physics, vol. 24(10) (1994), pp. 1331–1352, DOI: http:

//dx.doi.org/10.1007/BF02283036.

[17] S. S. Goraghani, R. A. Borzooei, Results on Prime Ideals in PMV -algebras

and MV -modules, Italian Journal of Pure and Applied Mathematics,

vol. 37 (2017), pp. 183–196.

[18] M. R. Rakhshani, R. A. Borzooei, G. R. Rezaei, On topological effect al-

gebras, Italian Journal of Pure and Applied Mathematics, vol. 39

(2018), pp. 312–325.

Simin Saidi Goraghani

Farhangian University
Department of Mathematics
Tehran, Iran

e-mail: siminsaidi@yahoo.com

Rajab Ali Borzooei

Shahid Beheshti University
Department of Mathematics
Tehran, Iran

e-mail: borzooei@sbu.ac.ir

http://dx.doi.org/10.1142/S1793005715500027
http://dx.doi.org/10.1007/BF02283036
http://dx.doi.org/10.1007/BF02283036
siminsaidi@yahoo.com
borzooei@sbu.ac.ir

	Introduction
	Preliminaries
	Effect modules
	Some topologies on effect modules
	 Conclusion

