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Abstract

The only maximal extension of the logic of relevant entailment E is the classical
logic CL. A logic L ⊆ [E, CL] called pre-maximal if and only if L is a coatom
in the interval [E, CL]. We present two denumerable infinite sequences of pre-
maximal extensions of the logic E. Note that for the relevant logic R there exist
exactly three pre-maximal logics, i.e. coatoms in the interval [R, CL].
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1. Preliminaries

Let FOR be the set of all the propositional formulae built up from the
propositional variables p, q, r, p1 . . . using the connectives ¬,∧,∨ and →.
The first information about the logic of relevant entailment E can be found
in [8]. The logic E is defined as a subset of the set FOR. E consists of
formulae provable using the following list of axiom schemes:

E1 φ→ φ,
E2 (φ→ ψ)→ ((ψ → χ)→ φ→ χ)),
E3 ((φ→ φ)→ ψ)→ ψ,
E4 (φ→ (φ→ ψ))→ (φ→ ψ),
E5 φ ∧ ψ → φ,
E6 φ ∧ ψ → ψ,
E7 (φ→ ψ) ∧ (φ→ χ)→ (φ→ ψ ∧ χ),
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E8 φ→ φ ∨ ψ,
E9 ψ → φ ∨ ψ,
E10 (φ→ ψ) ∧ (χ→ ψ)→ (φ ∨ χ→ ψ),
E11 (φ ∧ (ψ ∨ χ))→ ((φ ∧ ψ) ∨ χ),
E12 (φ→ ¬ψ)→ (ψ → ¬φ),
E13 ¬¬φ→ φ.

by application of the rule of modus ponens (MP : φ → ψ, φ / ψ) and the
rule of adjunction (AD : φ, ψ / φ ∧ ψ).

The definitions of proof and the metalogical are standard one.

There exists an equivalent version of the logic E with the same set of
axioms, based on the substitution rule.

If we extend the logic E by adding the axiom

φ→ ((φ→ ψ)→ ψ),

then we obtain the well known relevant logic R.

The logic R and the structure of extensions of the logic R is rather
well understood, (see A. R. Anderson, N. D. Belnap [2], W. Dziobiak [6],
J. M. Font, G. Rodriguez [5], R. K. Meyer [10], L. L. Maksimowa [7],[8],
K. Świrydowicz [11], [12]).

However, the logic E has not been fully described. One of the basic
properties that have been proved is the lack of algebraizability (W.J. Blok
and D.L. Pigozzi [4]). Moreover, the logic E is not structurally complete
(see J.M. Dunn, R.M. Meyer [10]). There also exists method of proving
theorems of E introduced by F.Fitch [13].

In addition, it has been shown that there exists exactly three pre-
maximal extension of the logic R, i.e. extensions for which the only exten-
sion is the classical logic (see K. Świrydowicz). In the following manuscript
we show that there exists infinitely many pre-maximal extensions of the
logic E.
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1.1. Syntactical matters

Lemma 1. The formulae listed below are theses of E:
(t1) (p→ q)→ ((r → s)→ ((s→ p)→ (r → q))),
(t2) (p→ q) ∧ (r → s)→ ((p ∧ r)→ (q ∧ s)),
(t3) (p→ q) ∧ (r → s)→ ((p ∨ r)→ (q ∨ s)),
(t4) (p→ q)→ (¬q → ¬p),
(t5) (p ∧ (p→ q))→ q,
(t6) (p→ ¬¬p),
(t7) ((p ∧ q) ∨ (p ∧ r))↔ (p ∧ (q ∨ r)), where ↔ denotes two implications

Proof: Use the Fitch-style proofs. �

Lemma 2. Let φ(p1, . . . , pn) be a formula constructed using variables p1, . . . , pn.
Then
`E φ(p1, . . . , pn) ⇐⇒ `E (p1 → p1) ∧ . . . ∧ (pn → pn)→ φ(p1, . . . , pn)

Next we can prove the following lemma
Lemma 3. `E φ ⇐⇒ `E (φ1 → φ1) ∧ . . . ∧ (φn → φn)→ φ
for some subformulae φ1, . . . , φn of the formula φ. In particular,

`E (φ→ ψ) ⇐⇒ `E (φ→ φ)→ (φ→ ψ)

1.2. Algebraic matters

Definition 4. An Algebra A= 〈A,∧,∨,→,¬〉 is called an E-algebra, if
〈A,∧,∨〉 is a distributive lattice and the following conditions are satisfied
for all x, y, z ∈ A:

(e1) (x→ y) ≤ ((y → z)→ (x→ z)),
(e2) ((x→ x)→ y) ≤ y,
(e3) (x→ (x→ y)) ≤ (x→ y),
(e4) (x→ y) ∧ (v → s) ≤ ((x ∧ v)→ (y ∧ s)),
(e5) (x→ y) ∧ (v → s) ≤ ((x ∨ v)→ (y ∨ s)),
(e6) (x→ ¬y) ≤ (y → ¬x),
(e7) x = ¬¬x.

In the expressions above, ≤ denotes partial order of the lattice 〈A,∧,∨〉).
The lattice 〈A,∧,∨〉 of the algebra A is called lattice of this E-algebra.
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Definition 5. A pair 〈A,∇A〉 is called an E-matrix, if A is an E-algebra,
and ∇A ⊆ A satisfies the condition

x ∈ ∇A ⇐⇒ (x1 → x1) ∧ . . . ∧ (xn → xn) ≤ x,
for some (x1 → x1), . . . , (xn → xn). The set ∇A is called a set of the
designated elements of the algebra A.

Lemma 6. The set ∇A is a filter on A.

Definition 7. Let A be an E-algebra. The logic L(A) generated by
the matrix 〈A,∇A〉 is the set of the formulae which satisfy the following
condition:

φ ∈ L(A) ⇐⇒ ∀h:FOR→A (h(φ) ∈ ∇A),
where h : FOR→ A is homomorphism.

Definition 8. If h(φ) ∈ ∇A for any homomorphism h : FOR→ A, then
φ is called an 〈A,∇A〉-tautology or simply A-tautology.

Theorem 9. (Completeness of E)
`E φ⇐⇒ h(φ) ∈ ∇A

for any E-algebra A, and for any homomorphism h : FOR → A, where
∇A is the set of designated elements of A.

Proof: (⇒) Induction on the length of a proof of φ in E.
(⇐) Construction of the Lindenbaum algebra of E (LindE). �

Recall that the Lindenbaum algebra for the logic E LindE is con-
structed of the set FOR by the equivalence relation defined by:

ψ ∼ φ ⇐⇒ `E ψ → φ ∧ `E φ→ ψ.
The partial order ≤ is defined by φ/∼ ≤ ψ/∼ ⇐⇒ `E (φ→ ψ).

LindE is an E-algebra; in particular:

(∗) φ/∼ ≤ ψ/∼ ⇐⇒ (φ/∼ → ψ/∼) ∈ ∇LindE , ie.

(∗∗) x ≤ y ⇐⇒ (x→ y) ∈ ∇LindE

We point out that the equivalences (∗) and (∗∗) do not need to hold in
each E-algebra.
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Finally, we have
Corollary 10. Let `E (φ→ ψ). Then for each E-algebra A and for each
h : FOR→ A the following inequality holds

h(φ) ≤ h(ψ).

Thus, each E-theorem in the form φ → ψ generates an inequality in
each E-algebra.

For a given algebra A the filter ∇A is uniquely defined. Hence, now
we show how to differentiate between E-algebras and E-matrices.

Lemma 11. Let A be an E-algebra and ∇A = {x ∈ A : ∃tk(tk ≤ x)}, where
tk =

∧
1<i<k(xi → xi) for some elements ai ∈A and let ∇A ⊆ ∇. Then

the relation θ(∇) defined by the equivalence

(x ≡ y)θ(∇) ⇐⇒ ((x→ y), (y → x) ∈ ∇)

is a congruence relation on A.

Lemma 12. Let θ be a congruence relation on the E-algebra A. Then the
set ∇(θ) = {x : ∃y(y ∈ ∇A) ∧ (x ≡θ y)} is a filter and ∇A ⊆ ∇(θ).
Proof: Easy. (cf. Definition 4) �

Let F(∇A) = {∇ : ∇ is a filter and ∇A ⊆ ∇}. If A is an R-algebra,
then the lattices Con(A) and F(∇A) are isomorphic. However, if A is an
E-algebra, then Con(A) and F(∇A) do not have to be isomorphic (see
W.J. Blok and D. Pigozzi) [4].

Definition 13. An algebra A is called a simple algebra, if Con(A) contains
exactly two elements.

By Corollary 10 and the definition of E-algebra (refdef:1) we get the
following useful lemma.
Lemma 14. The following inequalities hold in each E-algebra:

(1) x ∧ (x→ y) ≤ y,
(2) (¬x→ x) ≤ x,
(3) (x→ ((y1 → y2)→ z)) ≤ ((y1 → y2)→ (x→ z)).
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Lemma 15. Moreover, we have additional useful implications and inequal-
ities:

(i) x ∈ ∇ =⇒ x→ y ≤ y,
(ii) Let y → y = a. Then (x→ y) ≤ a→ (x→ y).

Lemma 16. Let A satisfy the inequality ((x → x) → (y → z)) ≤ (y →
((x→ x)→ z)). Then the following conditions are equivalent

(′) x ≤ y ⇐⇒ (x→ y) ∈ ∇A.
(′′) (x→ x) ≤ (y → z) ⇐⇒ y ≤ ((x→ x)→ z).

Corollary 17. If A satisfies the inequality (x → x) → (y → z) ≤ (y →
((x → x) → z)), then A satisfies (x1 → x2) → ((y1 → y2) → z) ≤ ((y1 →
y2)→ ((x1 → x2)→ z)).

2. Two infinite sequences of algebras

2.1. Introductory remarks

In this section we present the construction of two infinite sequences of
E-algebras whose lattices are chains. For convenience, we us horizontal
notation for chains (i.e., chains are written in a number like-line fashion).

Since all the E-algebras considered below are based on finite chains,
hence these algebras have a smallest element (denoted by 0) and a great-
est element (denoted by 1). Moreover, we use a, to denote an atom in all
E-algebras. In addition, ∇ = [a) = {x : a ≤ x}.

Lemma 18. The following equalities hold in E-algebras:

1→ 1 = 1, 0→ x = 1, 1→ 0 = 0, 0→ 1 = 1.

If E-algebra A is a chain, ∇A = [a) and a is an atom, then x → 0 =
0, x 6= 0, ifx ∈ ∇A.

Since we examine only E-algebras based on chains and ∇A = [a), where
a is an atom, hence the equality x→ 0 holds for all x in A.
Lemma 19. The algebra 2 is a subalgebra of each nontrivial E-algebra.
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2.2. Construction of An-algebras

A0-algebras

Let us consider the following lattice:

0 a ¬a 1

If the lattice of an E-algebra is a 4-elements chain the (operation ¬ is
obvious here), then the operation→ must be defined as the following table
shows

→ 0 a ¬a 1
0 1 1 1 1
a 0 a 1
¬a 0 0 a 1
1 0 0 0 1

We observe a ≤ ¬a, thus (a → ¬a) ∈ ∇, ie. (a → ¬a) ∈ [a), i.e.
a ≤ a → ¬a. By the other hand, by the Clavius law a → ¬a ≤ ¬a. Sum-
ming it up, a ≤ (a→ ¬a) ≤ ¬a.

We conclude that the function → for a → ¬a can be defined in the
following three ways:
1. a→ ¬a = a
2. a→ ¬a = ¬a
3. a→ ¬a 6= a, a→ ¬a 6= ¬a, i.e. a→ ¬a is a new element different from
a,¬a.

If we assume that a → ¬a = a or a → ¬a = ¬a, then we get two
distinct E-algebras and the function → can be defined as in the following
→-tables:

→ 0 a ¬a 1
0 1 1 1 1
a 0 a a 1
¬a 0 0 a 1
1 0 0 0 1

→ 0 a ¬a 1
0 1 1 1 1
a 0 a ¬a 1
¬a 0 0 a 1
1 0 0 0 1

We encourage the reader to prove that the function→ satisfies the inequal-
ities which define E-algebras.
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A1-algebras

Let a → ¬a 6= a and a → ¬a 6= ¬a; let (a → ¬a) := a1. Assume that
a1 ≤ ¬a1 or ¬a1 ≤ a1, so we have two 6-elements chains. Thus there exists
two possibilities:

1.

0 a ¬a1 a1 ¬a 1

2.

0 a a1 ¬a1 ¬a 1

We observe that if we assume that a1 → a1 = a1, then the algebrahas
its own subalgebra that is different from 2. Therefore, we assume that
a1 → a1 = a. Moreover, we determine the values for some of the elements
in →-table independently of the ordering of a1 and ¬a1.

1. We observe that a ≤ a → a1 ≤ a1. By the syllogism, a → ¬a ≤
(¬a→ ¬a)→ (a→ ¬a), thus a1 ≤ a→ a1. Hence a→ a1 = a1

2. Similarly, a ≤ a → ¬a1 ≤ ¬a1. By the syllogism, a → ¬a1 ≤
(¬a1 → ¬a) → (a → ¬a), thus a → ¬a1 ≤ a1 → a1 so a → ¬a1 ≤ a.
Therefore a→ ¬a1 = a

3. Assume that ¬a1 ≤ a1 (the first chain). It is clear that a ≤ ¬a1 →
a1 ≤ a1. By (ii) in Lemma 15 ¬a1 → a1 ≤ a → (¬a1 → a1). If we
take elements between a and a1, then we obtain that ¬a1 → a1 = a or
¬a1 → a1 = a1, because other cases lead to a contradiction.

Remark. Assume now that a1 ≤ ¬a1. Thus a ≤ a1 → ¬a1. By the
syllogism, a1 → ¬a1 ≤ (¬a1 → ¬a) → (a1 → ¬a) and we obtain a1 →
¬a1 ≤ a1 → a, i.e. a1 → ¬a1 ≤ 0, which is a contradiction. We conclude
that algebra does not exist.

As a consequence of the reasoning presented above, only the first chain
in which ¬a1 ≤ a1 can be the basis of our 6-element algebras.

We use A1 to denote the algebras based on our 6-element chain. For
simplicity of notation, we omit the first and the last lines and the first and
the last column in this →-tables (cf. Lemma 18).

We infer that →-tables for A1-algebras:
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→ a ¬a1 a1 ¬a
a a a a1 a1
¬a1 0 a a a1
a1 0 0 a a
¬a 0 0 0 a

→ a ¬a1 a1 ¬a
a a a a1 a1
¬a1 0 a a1 a1
a1 0 0 a a
¬a 0 0 0 a

We use A1,a to denote the algebra in which ¬a1 → a1 = a; in A1,a1 ,
¬a1 → a1 = a1.

The Reader can check that these A1-algebras are E-algebras.

The algebras A1,a and A1,a1 are called A1-algebras.

A2-algebras

We have a ≤ ¬a1 → a1 ≤ a1. Assume that ¬a1 → a1 6= a and
¬a1 → a1 6= a1. Let us consider a new element ¬a1 → a1 := a2. Hence
we consider an 8-elements chain in which ¬a2 ≤ a2 (the case a2 ≤ ¬a2 is
impossible):

0 a ¬a1 ¬a2 a2 a1 ¬a 1

We observe that a ≤ ¬a1 → a2 ≤ a2. By (ii) in Lemma 15, ¬a1 →
a2 ≤ a→ (¬a1 → a2). Therefore, we have two possibilities: ¬a1 → a2 = a
or ¬a1 → a2 = a2.

As a result, we define two A2-algebras based on our 8-elements lattice
(cf. the picture above). In the first algebra, A2,a we have ¬a1 → a2 = a
and in the second algebra A2,a2 we have ¬a1 → a2 = a2.

→ a ¬a1 ¬a2 a2 a1 ¬a
a a a a a2 a1 a1
¬a1 0 a a a a2 a1
¬a2 0 0 a a a a2
a2 0 0 0 a a a
a1 0 0 0 0 a a
¬a 0 0 0 0 0 a

→ a ¬a1 ¬a2 a2 a1 ¬a
a a a a a2 a1 a1
¬a1 0 a a a2 a2 a1
¬a2 0 0 a a a2 a2
a2 0 0 0 a a a
a1 0 0 0 0 a a
¬a 0 0 0 0 0 a
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An-Algebras

So far, we only considered chains have with even numbers of elements.
In addition, each chain has a smallest element and a greatest element, and
it has an element a and an element ¬a. The remaining elements are of the
form ak and ¬ak. Thus all our chains have 2+2+2k elements. If our chain
has 2 + 2 + 2k, then the algebra generated by this chain will be denoted by
Ak, for example, algebras A3 have 2 + 2 + 2 · 3 elements.

Let us generalize the procedure of defining operation → for An-chains.

Let us consider the An-chain. In fact the algebra An is an ’extension’
of the algebra An−1, i.e. the values of the operation → on the elements of
An and on the elements of An−1 are exactly the same with the exception
of the element ¬a1 → an−1 and its negation; ¬a1 → an−1 in An equals a
or an−1, but equals an in An. We obtain

1. ¬a1 → an−1 = a in An−1,a

2. ¬a1 → an−1 = an−1 in An−1,an−1

3. ¬a1 → an−1 = an in An.

In other words, in the algebra An the element ¬a1 → an−1 = an differs
from a and an−1. Thus we must consider An-chain where ¬an ≤ an (the
case an ≤ ¬an is impossible):

0 a ¬a1 ¬a2 ¬a3

. . .
¬an an

. . .
a3 a2 a1 ¬a 1

In fact there are two An-algebras, i.e. the first, An,a, in which ¬a1 →
an = a :
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→ a ¬a1 ¬a2 . . . ¬an−1 ¬an an an−1 . . . a2 a1 ¬a
a a a a . . . a a an an−1 . . . a2 a1 a1
¬a1 0 a a . . . a a a an . . . a3 a2 a1
¬a2 0 0 a . . . a a a a . . . a a3 a2

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
¬an−1 0 0 0 . . . a a a a . . . a an an−1
¬an 0 0 0 . . . 0 a a a . . . a a an
an 0 0 0 . . . 0 0 a a . . . a a a
an−1 0 0 0 . . . 0 0 0 a . . . a a a

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
a2 0 0 0 . . . 0 0 0 0 . . . a a a
a1 0 0 0 . . . 0 0 0 0 . . . 0 a a
¬a 0 0 0 . . . 0 0 0 0 . . . 0 0 a

and the second, An,an , in which ¬a1 → an = an :

→ a ¬a1 ¬a2 . . . ¬an−1 ¬an an an−1 . . . a2 a1 ¬a
a a a a . . . a a an an−1 . . . a2 a1 a1
¬a1 0 a a . . . a a an an . . . a3 a2 a1
¬a2 0 0 a . . . a a a a . . . a a3 a2

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
¬an−1 0 0 0 . . . a a a a . . . a an an−1
¬an 0 0 0 . . . 0 a a a . . . a an an
an 0 0 0 . . . 0 0 a a . . . a a a
an−1 0 0 0 . . . 0 0 0 a . . . a a a

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
a2 0 0 0 . . . 0 0 0 0 . . . a a a
a1 0 0 0 . . . 0 0 0 0 . . . 0 a a
¬a 0 0 0 . . . 0 0 0 0 . . . 0 0 a

An+1-algebras

The construction of the algebras An+1 is very similar. As in the case
of An-algebras, we observe that → can satisfy the conditions:
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1. ¬a1 → an+1 = a

2. ¬a1 → an+1 = an+1

3. ¬a1 → an+1 6= a and ¬a1 → an+1 6= an+1

Hence, we obtain the following An+1-chain (the case an+1 ≤ ¬an+1 is
impossible):

0 a ¬a1 ¬a2 ¬a3

. . .
¬an ¬an+1an+1 an

. . .
a3 a2 a1 ¬a 1

Thus we have two An+1-algebras, i.e. the first, An+1,a, in which ¬a1 →
an+1 = a :

→ a ¬a1 ¬a2 . . . ¬an ¬an+1 an+1 an . . . a2 a1 ¬a
a a a a . . . a a an+1 an−1 . . . a2 a1 a1
¬a1 0 a a . . . a a a an+1 . . . a3 a2 a1
¬a2 0 0 a . . . a a a a . . . a a3 a2

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
¬an 0 0 0 . . . a a a a . . . a an+1 an−1
¬an+1 0 0 0 . . . 0 a a a . . . a a an+1
an+1 0 0 0 . . . 0 0 a a . . . a a a
an 0 0 0 . . . 0 0 0 a . . . a a a
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

a2 0 0 0 . . . 0 0 0 0 . . . a a a
a1 0 0 0 . . . 0 0 0 0 . . . 0 a a
¬a 0 0 0 . . . 0 0 0 0 . . . 0 0 a

and the second, An+1,an+1 , in which ¬a1 → an+1 = an+1 :
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→ a ¬a1 ¬a2 . . . ¬an ¬an+1 an+1 an . . . a2 a1 ¬a
a a a a . . . a a an+1 an−1 . . . a2 a1 a1
¬a1 0 a a . . . a a an+1 an+1 . . . a3 a2 a1
¬a2 0 0 a . . . a a a a . . . a a3 a2

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
¬an 0 0 0 . . . a a a a . . . a an+1 an−1
¬an+1 0 0 0 . . . 0 a a a . . . a an+1 an+1
an+1 0 0 0 . . . 0 0 a a . . . a a a
an 0 0 0 . . . 0 0 0 a . . . a a a
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

a2 0 0 0 . . . 0 0 0 0 . . . a a a
a1 0 0 0 . . . 0 0 0 0 . . . 0 a a
¬a 0 0 0 . . . 0 0 0 0 . . . 0 0 a

3. Fundamental theorem

Proposition. Each An-algebra is an E-algebra.
We point out that we have two infinite sequences of algebras, i.e. a

sequence An,a and the sequence An,an . In addition, none of these algebras
have a proper subalgebra with the exception of the two-element subalgebra.

Each of these algebras is generated by the element a. Moreover, none
of An-algebras have a non-trivial homomorphic image.

It entails the following theorem:

Theorem 20. There exists two infinite sequences of finite simple E-algebras
such that the only proper subalgebra is 2.

Corollary 21. The interval [E,2] has infinitely many coatoms.

Remark. Note that for the logic RM there exist one pre-maximal exten-
sion and for the logic R there exist three pre-maximal extensions.
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4. Another example of infinite sequences of E-algebras

Let us consider the following lattice

0 a ¬a1

¬a2

a2

a1 ¬a 1

and an algebra based on this lattice. Of course, in this algebra the elements
a2 and ¬a2 are not comparable. If we define the operation → as in An-
algebras, then we get an E-algebra.

In general, for the following lattice

0 ¬a ¬a1 ¬a2 ¬a3

. . .
¬an

¬an+1

an+1

an

. . .
a3 a2 a1 ¬a 1

if we define the operation→ as for the An-algebras, then we obtain an
E-algebra.
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