Bulletin of the Section of Logic
Volume 47/4 (2018), pp. 283-298
http://dx.doi.org/10.18778/0138-0680.47.4.04
S. Saidi Goraghani and R. A. Borzooei

ON INJECTIVE MV-MODULES

Abstract

In this paper, by considering the notion of $M V$-module, which is the structure that naturally correspond to $l u$-modules over $l u$-rings, we study injective $M V$-modules and we investigate some conditions for constructing injective $M V$ modules. Then we define the notions of essential A-homomorphisms and essential extension of A-homomorphisms, where A is a product $M V$-algebra, and we get some of there properties. Finally, we prove that a maximal essential extension of any A-ideal of an injective $M V$-module is an injective A-module, too.

Keywords: ($M V, P M V$)-algebra, $M V$-module, injective $M V$-module, essential extension.

Mathematical Subject Classification (2010): 06D35, 06F99, 16D80.

1. Introduction

$M V$-algebras were defined by C.C. Chang [2] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: $C N$-algebras, Wajsberg algebras, bounded commutative $B C K$-algebras and bricks. It is discovered that $M V$-algebras are naturally related to the Murray-von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finite-dimensional C^{*}-algebras. They are also naturally related to Ulam's searching games with lies. $M V$-algebras admit a natural lattice reduct and hence a natural order structure. Many important properties can be derived from the fact, established by Chang that nontrivial
$M V$-algebras are subdirect products of $M V$-chains, that is, totally ordered $M V$-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an $M V$-algebra. The categorical equivalence between $M V$-algebras and $l u$-groups leads to the problem of defining a product operation on $M V$-algebras, in order to obtain structures corresponding to l-rings. A product $M V$-algebra (or $P M V$-algebra, for short) is an $M V$ algebra which has an associative binary operation ".". It satisfies an extra property which will be explained in Preliminaries. During the last years, $P M V$-algebras were considered and their equivalence with a certain class of l-rings with strong unit was proved. It seems quite natural to introduce modules over such algebras, generalizing the divisible $M V$-algebras and the $M V$-algebras obtained from Riesz spaces and to prove natural equivalence theorems. Hence, the notion of $M V$-modules was introduced as an action of a $P M V$-algebra over an $M V$-algebra by A. Di Nola [5]. Recently, some reasearchers worked on $M V$-modules (see $[1,10,7]$. For example, in $2016, \mathrm{R}$. A. Borzooei and S. Saidi Goraghani introduced free $M V$-modules. Since $M V$-modules are in their infancy, stating and opening of any subject in this field can be useful.

Now, in this paper, we present the definition of injective $M V$-modules and obtain some interesting results on them. Also, we define the notions of essential A-homomorphisms and essential extension of A-homomorphisms, where A is a $P M V$-algebra. Finally, we prove that every maximal essential extension of an A-ideal in injective A-module I is injective if it was included in I. In fact, we open new fields to anyone that is interested to studying and development of $M V$-modules.

2. Preliminaries

In this section, we review some definitions and related lemmas and theorems that we use in the next sections.
DEfinition 2.1. [3] An $M V$-algebra is a structure $M=\left(M, \oplus,{ }^{\prime}, 0\right)$ of type $(2,1,0)$ such that:
(MV1) $(M, \oplus, 0)$ is an Abelian monoid,
(MV2) $\left(a^{\prime}\right)^{\prime}=a$,
(MV3) $0^{\prime} \oplus a=0^{\prime}$,
$(M V 4)\left(a^{\prime} \oplus b\right)^{\prime} \oplus b=\left(b^{\prime} \oplus a\right)^{\prime} \oplus a$,
If we define the constant $1=0^{\prime}$ and operations \odot and \ominus by $a \odot b=\left(a^{\prime} \oplus b^{\prime}\right)^{\prime}$,
$a \ominus b=a \odot b^{\prime}$, then
$(M V 5)(a \oplus b)=\left(a^{\prime} \odot b^{\prime}\right)^{\prime}$,
$(M V 6) x \oplus 1=1$,
$(M V 7)(a \ominus b) \oplus b=(b \ominus a) \oplus a$,
$(M V 8) a \oplus a^{\prime}=1$,
for every $a, b \in M$.
Now, let $M=\left(M, \oplus{ }^{\prime}{ }^{\prime}, 0\right)$ be an $M V$-algebra. It is clear that $(M, \odot, 1)$ is an Abelian monoid. If we define auxiliary operations \vee and \wedge on M by $a \vee b=\left(a \odot b^{\prime}\right) \oplus b$ and $a \wedge b=a \odot\left(a^{\prime} \oplus b\right)$, for every $a, b \in M$, then $(M, \vee, \wedge, 0)$ is a bounded distributive lattice. An $M V$-algebra M is a Boolean algebra if and only if the operation " \oplus " is idempotent, that is $x \oplus x=x$, for every $x \in M$.

A subalgebra of an $M V$-algebra M is a subset S of M containing the zero element of M, closed under the operation of M and equipped with the restriction to S of these operations. In an $M V$-algebra M, the following conditions are equivalent: (i) $a^{\prime} \oplus b=1$, (ii) $a \odot b^{\prime}=0$, (iii) $b=a \oplus(b \ominus a)$, (iv) $\exists c \in M$ such that $a \oplus c=b$, for every $a, b, c \in M$. For any two elements a, b of the $M V$-algebra $M, a \leq b$ if and only if a, b satisfy the above equivalent conditions $(i)-(i v)$. An ideal of $M V$-algebra M is a subset I of M, satisfying the following conditions: $(I 1): 0 \in I,(I 2): x \leq y$ and $y \in I$ imply $x \in I,(I 3): x \oplus y \in I$, for every $x, y \in I$.

In an $M V$-algebra M, the distance function $d: M \times M \rightarrow M$ is defined by $d(x, y)=(x \ominus y) \oplus(y \ominus x)$ which satisfies $(i): d(x, y)=0$ if and only if $x=y,(i i): d(x, y)=d(y, x),(i i i): d(x, z) \leq d(x, y) \oplus d(y, z),(i v)$: $d(x, y)=d\left(x^{\prime}, y^{\prime}\right),(v): d(x \oplus z, y \oplus t) \leq d(x, y) \oplus d(z, t)$, for every $x, y, z, t \in$ M.

Let I be an ideal of $M V$-algebra M. We denote $x \sim y\left(x \equiv_{I} y\right)$ if and only if $d(x, y) \in I$, for every $x, y \in M$. So \sim is a congruence relation on M. Denote the equivalence class containing x by $\frac{x}{I}$ and $\frac{M}{I}=\left\{\frac{x}{I}: x \in M\right\}$. Then $\left(\frac{M}{I}, \oplus,^{\prime}, \frac{0}{I}\right)$ is an $M V$-algebra, where $\left(\frac{x}{I}\right)^{\prime}=\frac{x^{\prime}}{I}$ and $\frac{x}{I} \oplus \frac{y}{I}=\frac{x \oplus y}{I}$, for all $x, y \in M$.

Let M and K be two $M V$-algebras. A mapping $f: M \rightarrow K$ is called an MV-homomorphism if $(H 1): f(0)=0,(H 2): f(x \oplus y)=f(x) \oplus f(y)$ and (H3): $f\left(x^{\prime}\right)=(f(x))^{\prime}$, for every $x, y \in M$. If f is one to one (onto), then f is called an $M V$-monomorphism ($M V$-epimorphism) and if f is onto and one to one, then f is called an $M V$-isomorphism.

Lemma 2.2. [3] In every MV-algebra M, the natural order " \leq " has the following properties:
(i) $x \leq y$ if and only if $y^{\prime} \leq x^{\prime}$,
(ii) if $x \leq y$, then $x \oplus z \leq y \oplus z$, for every $z \in M$.

Lemma 2.3. [3] Let M and N be two $M V$-algebras and $f: M \rightarrow N$ be an MV-homomorphism. Then the following properties hold:
(i) For each ideal J of N, the set

$$
f^{-1}(J)=\{x \in M: f(x) \in J\}
$$

is an ideal of A. Hence, $\operatorname{Ker}(f)=f^{-1}(\{0\})$ is an ideal of M,
(ii) $f(x) \leq f(y)$ if and only if $x \ominus y \in \operatorname{Ker}(f)$,
(iii) f is injective if and only if $\operatorname{Ker}(f)=\{0\}$.

Definition 2.4. [4] A product MV-algebra (or PMV-algebra, for short) is a structure $A=\left(A, \oplus, .,{ }^{\prime}, 0\right)$, where $\left(A, \oplus,{ }^{\prime}, 0\right)$ is an MV-algebra and "." is a binary associative operation on A such that the following property is satisfied: if $x+y$ is defined, then $x . z+y . z$ and $z . x+z . y$ are defined and $(x+y) . z=x . z+y . z, z .(x+y)=z . x+z . y$, for every $x, y, z \in A$, where " + " is the partial addition on A. A unit of PMV-algebra A is an element $e \in A$ such that $e . x=x . e=x$, for every $x \in A$. If A has a unit, then $e=1$. A PMV-homomorphism is an MV-homomorphism which also commutes with the product operation.
Lemma 2.5. [4] Let A be a PMV-algebra. Then $a \leq b$ implies that $a . c \leq b . c$ and $c . a \leq c . b$, for every $a, b, c \in A$.
Definition 2.6. [5] Let $A=\left(A, \oplus, .,^{\prime}, 0\right)$ be a $P M V$-algebra, $M=\left(M, \oplus,{ }^{\prime}, 0\right)$ be an $M V$-algebra and the operation $\Phi: A \times M \longrightarrow M$ be defined by $\Phi(a, x)=a x$, which satisfies the following axioms:
(AM1) if $x+y$ is defined in M, then $a x+a y$ is defined in M and $a(x+y)=$ $a x+a y$,
(AM2) if $a+b$ is defined in A, then $a x+b x$ is defined in M and $(a+b) x=$ $a x+b x$,
(AM3) (a.b) $x=a(b x)$, for every $a, b \in A$ and $x, y \in M$.
Then M is called a (left) $M V$-module over A or briefly an A-module. We say that M is a unitary $M V$-module if A has a unit and (AM4) $1_{A} x=x$, for every $x \in M$.
Corollary 2.7. [7] Let M be a unitary A-module. If $N \subseteq M$ is a nonempty set, then we have:

$$
\begin{array}{r}
(N]=\left\{x \in M: x \leq \alpha_{1} x_{1} \oplus \alpha_{2} x_{2} \oplus \cdots \oplus \alpha_{n} x_{n}, \text { for some } x_{1}, \cdots, x_{n} \in N,\right. \\
\left.\alpha_{1}, \cdots, \alpha_{n} \in A\right\} .
\end{array}
$$

In particular, for $a \in M,(a]=\{x \in M: x \leq n(\alpha a)$, for some integer $n \geq$ 0 and $\alpha \in A\}$.
Lemma 2.8. [5] Let A be a PMV-algebra and M be an A-module. Then
(a) $0 x=0, a 0=0$
(b) ($n a) x=a(n x)$, for any $n \in N$,
(c) $a x^{\prime} \leq(a x)^{\prime}$,
(d) $a^{\prime} x \leq(a x)^{\prime}$,
(e) $(a x)^{\prime}=a^{\prime} x+(1 x)^{\prime}$,
(f) $x \leq y$ implies $a x \leq a y$,
(g) $a \leq b$ implies $a x \leq b x$,
(h) $a(x \oplus y) \leq a x \oplus a y$,
(i) $d(a x, a y) \leq a d(x, y)$,
(j) if $x \equiv_{I} y$, then $a x \equiv_{I}$ ay, where I is an ideal of A,
(k) if M is a unitary $M V$-module, then $(a x)^{\prime}=a^{\prime} x+x^{\prime}$, for every $a, b \in A$ and $x, y \in M$.
Definition 2.9. [5] Let A be a $P M V$-algebra and M_{1}, M_{2} be two A modules. A map $f: M_{1} \rightarrow M_{2}$ is called an A-module homomorphism (or A-homomorphism, for short) if f is an $M V$-homomorphism and (H4): $f(a x)=a f(x)$, for every $x \in M_{1}$ and $a \in A$.
Definition 2.10. [5] Let A be a $P M V$-algebra and M be an A-module.
Then an ideal $N \subseteq M$ is called an A-ideal of M if (I4): ax $\in N$, for every $a \in A$ and $x \in N$.
Definition 2.11. [10] Let M be a unitary A-module and there exists $k \in \mathbb{N}$ such that $\sum_{i=1}^{n} a_{i}^{\prime} m_{i} \leq\left(\sum_{i=1}^{n} a_{i} m_{i}\right)^{\prime}$, for every $1 \leq n \leq k, a_{i} \in A$ and $m_{i} \in M$. Then M is called an A_{k}-module. If $\sum_{i=1}^{n} a_{i}^{\prime} m_{i} \leq\left(\sum_{i=1}^{n} a_{i} m_{i}\right)^{\prime}$, for every $n \in \mathbb{N}$, then M is called an $A_{\mathbb{N}}$-module.
Lemma 2.12. [10] In PMV-algebra $A,(\alpha \oplus \beta) a \leq \alpha m \oplus \beta a$, for every $\alpha, \beta, a \in A$.

3. Injective $M V$-modules

In the follows, let A be a $P M V$-algebra and M be an $M V$-algebra unless otherewise specified.

In this section, we present the definition of injective $M V$-modules and we give some properties about them.
Definition 3.1. [8] Let M be an A-module. M is called an injective A module if for every $m \in M$ and $0 \neq a \in A$, there exists $c \in M$ such that $a c=m$.
Example 3.2. Consider the real unit interval $[0,1]$. Let $x \oplus y=\min \{x+$ $y, 1\}$ and $x^{\prime}=1-x$, for all $x, y \in[0,1]$. Then $\left([0,1], \oplus,^{\prime}, 0\right)$ is an $M V$ algebra, where " + " and " - " are the ordinary operations in \mathbb{R}. Also, the rational numbers in $[0,1]$ and for each integer $n \geq 2$, the n-element set

$$
L_{n}=\left\{0, \frac{1}{n-1}, \cdots, \frac{n-2}{n-1}, 1\right\}
$$

yield examples of subalgebras of $[0,1]$ (See [3]). Now, by using this example, we get some injective $M V$-modules.
(i) Consider $a b=a . b$, for every $a, b \in L_{2}$, where "." is ordinary operation in \mathbb{R}. Then $\left(L_{2}, \oplus, .,^{\prime}, 0\right)$ is a PMV-algebra and L_{2} as L_{2}-module is an injective L_{2}-module.
(ii) $[0,1]$ as L_{2}-module is an injective L_{2}-module.
(iii) Consider $a . b=\max \{a, b\}$, for every $a, b \in L_{3}$. Then it is routine to show that $\left(L_{3}, \oplus,{ }^{\prime}, ., 0\right)$ is a PMV-algebra and by cosidering $a b=a . b$, we have L_{3} is a L_{3}-module. Moreover, L_{3} is an injective L_{3}-module.
Definition 3.3. Let I be an ideal of M and $a \in I$. If every $b \in I$ can be showed as $b=x a$, for some $x \in A$, then we say I is an $M V$-principle ideal of M, and we write $I=\prec a \succ$.
Example 3.4. Let $A=\{0,1,2,3\}$ and the operations " \oplus " and "." be defined on A as follows:

\oplus	0	1	2	3
0	0	1	2	3
1	1	1	2	3
2	2	2	2	3
3	3	3	3	3

.	0	1	2	3
0	0	0	0	0
1	0	1	1	1
2	0	1	2	2
3	0	1	2	3

Consider $0^{\prime}=3,1^{\prime}=2,2^{\prime}=1$ and $3^{\prime}=0$. Then it is easy to show that $\left(A, \oplus,{ }^{\prime}, ., 0\right)$ is a $P M V$-algebra. Also $I=\{0,1,2\}$ and $J=\{0,1\}$ are ideals of A. Since $1=1.2,2=2.2, I=\prec 2 \succ$ is an $M V$-principle ideal of A. Also, $J=\prec 1 \succ$ is an $M V$-principle ideal of A.

Proposition 3.5. Let M be an A_{2}-module, where M is a boolean algebra. Then $I=\{x a: x \in A\}$ is an $M V$-principle ideal of M, for every $a \in M$.
Proof: It is clear that $0 \in I$. Let $x a, y a \in I$, for any $x, y \in A$. Since $x \leq x \oplus y$ and $y \leq x \oplus y$, by Lemma $2.8(f)$, we have $a x \leq a(x \oplus y)$ and $a y \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$. So by Lemma 2.2(ii), we have $a x \oplus a y \leq a(x \oplus y) \oplus a y$ and $a(x \oplus y) \oplus a y \leq a(x \oplus y) \oplus a(x \oplus y)=a(x \oplus y)$. Hence, $a x \oplus a y \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$. Now, by Lemma 2.12, $a x \oplus a y=a(x \oplus y)$ and so $a x \oplus a y \in I$. Let $t \leq x . a \in I$, for $t \in M$. Then $1 . t^{\prime} \oplus x . a=1$ and so $\left(t^{\prime} \oplus a\right)^{\prime} \oplus x^{\prime} a=0$. It results that $\left(t^{\prime} \oplus a\right)^{\prime}=0$ and so $t^{\prime} \oplus a=1$. Hence we have
$t=t \wedge x a=\left(t^{\prime} \oplus\left(t^{\prime} \oplus x a\right)^{\prime}\right)^{\prime}=\left(t^{\prime} \oplus\left(t^{\prime} \oplus a\right)^{\prime} \oplus x^{\prime} a\right)^{\prime}=\left(t^{\prime} \oplus x^{\prime} a\right)^{\prime}=\left(t^{\prime} \oplus a\right)^{\prime} \oplus x a=x a$.
It means that $t \in I$. Therefore, I is an ideal of M.
Note. We can consider A as A_{2}-module. Then in proposition $3.5, I=$ $\{x . a: x \in A\}$ is an $M V$-principle ideal of A.
Definition 3.6. [10] Let M_{1} and M_{2} be two A-modules. Then the map $f: M_{1} \rightarrow M_{2}$ is called an A^{\prime}-homomorphism if and only if it satisfies in $(H 1),(H 3),(H 4)$ and
$\left(H^{\prime} 2\right):$ if $x+y$ is defined in M_{1}, then $h(x+y)=h(x \oplus y)=h(x) \oplus h(y)$, for every $x, y \in M_{1}$, where " + " is the partial addition on M_{1}. If h is one to one (onto), then h is called an A^{\prime}-monomorphism (epimorphism). If h is onto and one to one, then h is called an A^{\prime}-isomorphism and we write $M_{1} \cong M_{2}$.
THEOREM 3.7. Let all ideals of A be $M V$-principle and M be an injective A-module. Then for every A-module C and every A^{\prime}-homomorphism $\alpha: C \longrightarrow M$ and A^{\prime}-monomorphism $\mu: C \longrightarrow B$, there is an A homomorphism $\beta: B \longrightarrow M$ such that the diagram

is commutative, that is $\beta \mu=\alpha$.
Proof: Let M be an injective A-module, $\mu: D \longrightarrow B$ be an A^{\prime}-monomorphism and $\alpha: D \longrightarrow M$ be an A-homomorphism, for $M V$-algebras D
and B. With out lost of generality, let D be an A-ideal of B (because μ is an A-monomorphism). Consider

$$
\Omega=\left\{\left(D_{j}, \alpha_{j}\right): D \subseteq D_{j} \subseteq B, \alpha_{j}: D_{j} \longrightarrow M,\left.\alpha_{j}\right|_{D}=\alpha\right\} .
$$

Then by Zorn's lemma, Ω has a maximal element $\left(D_{m}, \alpha_{m}\right)$. We claim that $D_{m}=B$. If $D_{m} \neq B$, then $D_{m} \varsubsetneqq B$ and so there is $b \in B$ such that $b \notin D$. Let $I=\left\{a \in A: a b \in D_{m}\right\}$. Since $0 \in I$, we have $I \neq \emptyset$. We show that I is an ideal of A. Let $a_{1}, a_{2} \in I$. Then $a_{1} b, a_{2} b \in D_{m}$. By Lemma 2.12, $\left(a_{1} \oplus a_{2}\right) b \leq a_{1} b \oplus a_{2} b \in D_{m}$ and so $a_{1} \oplus a_{2} \in I$. Now, let $t \leq a \in I$, for some $t \in A$. Then by Lemma $2.8(g), t b \leq a b \in D_{m}$ and so $t b \in D_{m}$. It means that $t \in I$. Hence I is an ideal of A and so there is $a_{0} \in A$ such that $I=\prec a_{0} \succ$. If $a_{0}=0$, then we consider an arbitrary element $c \in M$. If $a_{0} \neq 0$, then we consider $a_{0} b \in D_{m}$ and so $m=\alpha_{m}\left(a_{0} b\right) \in M$. Since M is an injective A-module, there is $c \in M$ such that $m=\alpha_{m}\left(a_{0} b\right)=a_{0} c$. Now, let $D_{M}=\left\{a_{m} \oplus t b: t \in A, a_{m} \in D_{m}\right\}$. Since $b \notin D_{m}$, we have $D_{m} \subset D_{M}$. We define $\alpha_{M}: D_{M} \longrightarrow M$ by
$\alpha_{M}\left(a_{m} \oplus t b\right)= \begin{cases}\alpha_{m}\left(a_{m}\right)+t c, & \text { if } \alpha_{m}\left(a_{m}\right)+t c, a_{m}+t b \text { are defined } \\ 0, & \text { otherwise }\end{cases}$
The first, we show that α_{M} is well defined. It is sufficient that we show $\alpha_{m}(t b)=t c$. Since $t b \in D_{m}$, we have $t \in I$ and since $I=\prec a_{0} \succ$, there is $z \in A$ such that $t=z a_{0}$ and so

$$
\alpha_{m}(t b)=\alpha_{m}\left(z a_{0} b\right)=z \alpha_{m}\left(a_{0} b\right)=z a_{0} c=t c
$$

The proof of $(H 1)$ is clear. If $a_{m 1}+t_{1} b+a_{m 2}+t_{2} b$ is defined, then

$$
\begin{aligned}
\left.\alpha_{M}\left(a_{m_{1}} \oplus t_{1} b\right) \oplus\left(a_{m_{2}} \oplus t_{2} b\right)\right) & =\alpha_{M}\left(a_{m_{1}} \oplus a_{m_{2}} \oplus t_{1} b \oplus t_{2} b\right) \\
& =\alpha_{M}\left(a_{m 1}+a_{m 2}+t_{1} b+t_{2} b\right) \\
& =\alpha_{M}\left(a_{m 1}+a_{m 2}+\left(t_{1}+t_{2}\right) b\right) \\
& =\alpha_{m}\left(a_{m 1}+a_{m 2}\right)+\left(t_{1}+t_{2}\right) c \\
& =\alpha_{m}\left(a_{m 1}\right)+t_{1} c \oplus \alpha_{m}\left(a_{m 2}\right)+t_{2} c \\
& =\alpha_{M}\left(a_{m 1}\right) \oplus \alpha_{M}\left(a_{m 2}\right)
\end{aligned}
$$

and so (H2)' is true, for any $a_{m 1} \oplus t_{1} b, a_{m 2} \oplus t_{2} b \in D_{M}$. By definition of α_{m}, for every $a_{m} \oplus t b \in D_{M}$, we have

$$
\begin{aligned}
\left(\alpha_{M}\left(a_{m} \oplus t b\right)\right)^{\prime} & =\left(\alpha_{m}\left(a_{m}\right) \oplus t c\right)^{\prime} \\
& =\left(\alpha_{m}\left(a_{m}\right) \oplus \alpha_{m}(t b)\right)^{\prime} \\
& =\left(\alpha_{m}\left(a_{m} \oplus t b\right)\right)^{\prime} \\
& \left.=\alpha_{m}\left(\left(a_{m}\right) \oplus t b\right)^{\prime}\right) \\
& \left.=\alpha_{m}\left(\left(a_{m}\right) \oplus t b\right)^{\prime}\right) \oplus 0 \\
& \left.\left.=\alpha_{M}\left(\left(a_{m}\right) \oplus t b\right)^{\prime} \oplus 0\right)=\alpha_{M}\left(\left(a_{m}\right) \oplus t b\right)^{\prime}\right)
\end{aligned}
$$

and so (H3) is true. Now, for every $a \in A$ and $a_{m} \oplus t b \in D_{M}$, we have

$$
\begin{aligned}
\left(\alpha_{M}\left(a\left(a_{m} \oplus t b\right)\right)\right. & =\alpha_{M}\left(a a_{m} \oplus(a . t) b\right) \\
& =\alpha_{m}\left(a a_{m}\right) \oplus(a . t) c \\
& =a \alpha_{m}\left(a_{m}\right) \oplus a(t c) \\
& =a\left(\alpha_{m}\left(a_{m}\right) \oplus t c\right) \\
& =a \alpha_{M}\left(a_{m} \oplus t b\right)
\end{aligned}
$$

and so $(H 4)$ is true. Hence α_{M} is an A^{\prime}-homomorphism and so $\left(D_{m}, \alpha_{m}\right) \nsupseteq$ $\left(D_{M}, \alpha_{M}\right)$, which is a contradiction, by maximality of $\left(D_{m}, \alpha_{m}\right)$. Therefore, $D_{m}=B$.

Example 3.8. $[0,1]$ as L_{2}-module satisfies in the conditions of Theorem 3.7. THEOREM 3.9. Every non cyclic L_{2}-module can be embeded in an injective L_{2}-module.

Proof: Let M be a non cyclic L_{2}-module. It is clear that $M \neq 0$ and so there is $0 \neq a \in M$. Consider A-ideal ($a]$ of M. We define $\alpha:(a] \longrightarrow[0,1]$ by $\alpha(x)=m \frac{p}{q}$, where $\frac{p}{q} \in[0,1]$ and by using of Corollary 2.7,

$$
m=\min \left\{n \mid x \leq n(\beta a), \text { for some integer } n \geq 0 \text { and } \beta \in L_{2}\right\}
$$

It is easy to see that α is well defined. We show that α is an $M V$ homomorphism. Since $\alpha(0)=0,(H 1)$ is true. Let $x_{1}, x_{2} \in(a]$. Then $m_{1}=\min \left\{n: x_{1} \leq n(\beta a)\right.$, for some integer $n \geq 0$ and $\left.\beta \in L_{2}\right\}$ and $m_{2}=\min \left\{n: x_{2} \leq n(\beta a)\right.$, for some integer $n \geq 0$ and $\left.\beta \in L_{2}\right\}$. Let $m=m_{1}+m_{2}$ and q be the smallest common multiple of m, m_{1} and m_{2}. Then
$\alpha\left(x_{1} \oplus x_{2}\right)=m \frac{p}{q}=\left(m_{1}+m_{2}\right) \frac{p}{q}=m_{1} \frac{p}{q}+m_{2} \frac{p}{q}=\alpha\left(x_{1}\right)+\alpha\left(x_{2}\right)=\alpha\left(x_{1}\right) \oplus \alpha\left(x_{2}\right)$
and so (H2) is true. Now, let $\frac{s}{g} \in[0,1]$ and $x \in(a]$. Since $x \leq n(\beta a)$, for some integer $n \geq 0$ and $\beta \in L_{2}$, by Lemma $2.8(b)$ and (f), we have $\frac{s}{g} x \leq \frac{s}{g}(n(\beta a))=\left(n \frac{s}{g}\right)(\beta a)$ and so $m=k \frac{s}{g}$, where

$$
k=\min \left\{n \left\lvert\, \frac{s}{g} x \leq n\left(\frac{s}{g}\right)(\beta a)\right., \text { for some integer } n \geq 0 \text { and } \beta \in L_{2}\right\}
$$

Hence $\alpha\left(\frac{s}{g} x\right)=m \frac{p_{1}}{q_{1}}=k \frac{s}{g} \frac{p_{1}}{q_{1}}$, where $q_{1} \mid k$. On the other hand, $\frac{s}{g} \alpha(x)=$ $\frac{s}{g} k \frac{p_{1}}{q_{1}}$ and so $(H 4)$ is true. Since M is not cyclic, $1 \notin(a]$ and so $x^{\prime} \notin$ (a], for every $x \in(a]$. It means that $(H 3)$ is true. Hence α is an $M V$ homomorphism. If we consider the inclusion map $\mu:(a] \longrightarrow M$, then by Example 3.8 and Theorem 3.7, the following diagram

is commutative, that is $\beta \mu=\alpha$. It is routine to see that β is an A monomorphism. Hence M is embeded in an injective L_{2}-module.
Open Problem. Under what suitable an A-module can be embeded in an injective A-module?
Theorem 3.10. Let A be unital, $a . b=b$ implies that $a=1$, for every $a, b \in$ A and for every A-module C, every A^{\prime}-homomorphism $\alpha: C \longrightarrow M$ and A^{\prime}-monomorphism $\mu: C \longrightarrow B$ there is an A-homomorphism $\beta: B \longrightarrow M$ such that the diagram

is commutative, that is $\beta \mu=\alpha$. Then M is an injective A-module.
Proof: Let for every A-module C and every A^{\prime}-homomorphism $\alpha: C \longrightarrow$ M and A^{\prime}-monomorphism $\mu: C \longrightarrow B$ there is an A-homomorphism β : $B \longrightarrow M$ such that $\beta \mu=\alpha$. Also, let $m \in M$ and $0 \neq a \in A$. Consider $\alpha: A \longrightarrow M$ by $\alpha(1)=m($ or $\alpha(t)=t m)$ and $\mu: A \longrightarrow A$ by $\mu(1)=a$
(or $\mu(t)=t a$), for every $t \in A$. It is easy to see that α and μ are A^{\prime} homomorphism. Let $x \in k e r \mu$. Then $\mu(x)=x a=0$ and so $x^{\prime} a \oplus a^{\prime}=$ 1. It means that $a \leq x^{\prime} a \leq a$ and so $x^{\prime} a=a$. Hence $x^{\prime}=1$ and so $x=0$. It results that $\operatorname{ker} \mu=\{0\}$ and so by Lemma 2.3 (ii), μ is an A^{\prime}-monomorphism. Then by hypothesis, there is an A-homomorphism β : $A \longrightarrow M$ such that $\beta \mu=\alpha$. Since A is an A-module, we have

$$
m=\alpha(1)=\beta \mu(1)=\beta(\mu(1))=\beta(a)=\beta(a 1)=a \beta(1) .
$$

Now, consider $c=\beta(1)$ and so M is an injective A-module.
Example 3.11. The example 3.4 satisfies in the condition : a.b $=b$ implies that $a=1$, for every $a, b \in A$ (note that $1_{A}=3$).
Lemma 3.12. Every A^{\prime}-homomorphism $f: I \longrightarrow Q$ extends to an A^{\prime} homomorphism $F: A \longrightarrow Q$, for any ideal I of A if and only if for every A^{\prime} homomorphisms $f: M \longrightarrow N$ and $g: M \longrightarrow Q$, there is A-homomorphism $\varphi: N \longrightarrow Q$ such that the diagram

is commutative, that is $\varphi f=g$.
Proof: (\Rightarrow) Let $\Omega=\left\{(C, \phi): M \subseteq C \subseteq N, \phi: C \longrightarrow Q,\left.\phi\right|_{M}=g\right\}$. A routine application of Zorn's lemma shows that Ω has a maximal element (D, φ). We show that $D=N$ and therefore φ would be required extension of g. Let $n \in N$. Then by the proof of Theorem 3.7, $I_{n}=\{a \in A: a n \in D\}$ is an ideal of A. Define $\alpha: I_{n} \longrightarrow Q$ by $\alpha(a)=\varphi(a n)$. Note that
$\alpha\left(a^{\prime}\right)=\varphi\left(a^{\prime} n\right)=\left(\varphi\left(a n+n^{\prime}\right)\right)^{\prime}=\left(\varphi(a n)+\varphi\left(n^{\prime}\right)\right)^{\prime}=\left(\alpha(a)+(\alpha(1))^{\prime}\right)^{\prime}=(\alpha(a))^{\prime}$.
Hence $\left(H^{\prime}\right)$ is true. The proof of $(H 1),(H 3)$ and $(H 4)$ are routine. Then α is an A^{\prime}-homomorphism and so α extends to A^{\prime}-homomorphism $\beta: I_{n} \longrightarrow$ Q. Define $\varphi^{\prime}: D \oplus A n \longrightarrow Q$ by $\varphi^{\prime}(d \oplus a n)=\varphi(d) \oplus \beta(a)$, for every $d \in D$ and $a \in A$. Since $\beta(a)=\alpha(a)=\varphi(a n)$, for every $a \in I_{n}$ and $\beta(a)=\phi(a n)$, for every $a \in I_{n}$, we conclude that φ^{\prime} is well defined. It is routine to see that φ^{\prime} is an A^{\prime}-homomorphism. Since $(D, \varphi) \leq\left(D \oplus A n, \varphi^{\prime}\right)$, by maximality (D, φ), we have $D=D \oplus A n$ and so $D=N$.
(\Leftarrow) The proof is clear.

Theorem 3.13. Let A be unital, all ideals of A be principle and a.b=1 implies that $a=1$, for every $a, b \in A$. Then M is an injective A-module. Proof: Let I be an ideal of A and $f: I=\prec a \succ \longrightarrow M$ be an A^{\prime} homomorphism. Define $F: A \longrightarrow M$ by $F(x)=f(x . a)$. It is clear that F is well defined. We show that F is an A^{\prime}-homomorphism. The proofs of $\left(H_{1}\right)$ and $\left(H_{2}^{\prime}\right)$ are routine. We have

$$
\begin{aligned}
F\left(x^{\prime}\right) & =f\left(x^{\prime} \cdot a\right)=\left(f\left(x \cdot a+a^{\prime}\right)\right)^{\prime}=\left(f(x \cdot a)+f\left(a^{\prime}\right)\right)^{\prime}= \\
& =\left(F(x)+(f(a))^{\prime}\right)^{\prime}=\left(F(x)+(F(1))^{\prime}\right)^{\prime}=(F(x))^{\prime}
\end{aligned}
$$

Therefore, F is an A^{\prime}-homomorphism and so by Lemma 3.12 and Theorem $3.10, M$ is an injective A-module.

4. Essential extensions

In this section, we define the notions of essential A-homomorphisms and essential extension of an A-homomorphism, where A is a $P M V$-algebra and we obtain more results on them. Then by these notions, we obtain some results on injective $M V$-modules.
DEFINITION 4.1. Let $\mu: M \longrightarrow B$ be an A^{\prime}-monomorphism such that $\mu(M) \cap H \neq\{0\}$, for every no zero A-ideal H of B. Then μ is called an essential A-homomorphism. In special case, if M is an A-ideal of B (μ is inclusion map), then B is called an essential extension of μ.
Proposition 4.2. [9] Let A be a $P M V$-algebra. Then $\sum_{i=1}^{n} A$ is a $P M V$ algebra.
Example 4.3. By Proposition 4.2, $A \oplus A$ is an $M V$-algebra. If operation $\bullet: A \times(A \oplus A) \longrightarrow(A \oplus A)$ is defined by $a \bullet(b, c)=(a . b, a . c)$, for every $a, b, c \in A$, then it is easy to show that $A \oplus A$ is an A-module. consider $A=L_{2}$ and $\phi: A \oplus A \longrightarrow L_{4}$, where $\phi(1,0)=\frac{1}{3}, \phi(0,1)=\frac{2}{3}, \phi(0,0)=0$ and $\phi(1,1)=1$. Then it is clear that ϕ is well defined. It is easy to show that ϕ is an A^{\prime}-homomorphism. Since $\phi\left(L_{2} \oplus L_{2}\right)=L_{4}, \phi$ is an essential A-homomorphisms.
Theorem 4.4. Let M be an A-module and B be an A-ideal of M. Then M is an essential extension of B if and only if for every $0 \neq b \in M$, there exist $a \in A$ and $c \in B$ such that $c \leq n(a b)$, for some integer n.
Proof: (\Rightarrow) Let M be an essential extension of B and $0 \neq b \in M$. Then $H=(b]$ is a non zero A-ideal of M and so $B \cap H \neq\{0\}$. It results that there
exists $0 \neq c \in M \cap H$. Since $c \in H$, there is $a \in A$ such that $c \leq n(a b)$, for some integer n.
(\Leftarrow) Let for every $0 \neq b \in M$, there exists $a \in A$ and $c \in B$ such that $c \leq n(a b)$, for some integer n. Also, let H be a non zero A-ideal of M. Then there is $0 \neq b \in H$ such that $c \leq n(a b) \in H$ and so $c \in H$. Hence $B \cap H \neq\{0\}$ and so B is an essential extension of B.
Proposition 4.5. Let M be an A-module and B be a non zero A-ideal of M. Then there is a maximal essential extension E of B such that $B \subseteq$ $E \subseteq M$.
Proof: Let
$K=\left\{C_{i} \mid C_{i}\right.$ is an A-ideal of M that is an essential extension of $\left.B\right\}$
Since $B \in K, K \neq 0$. For every chain $\left\{C_{i}\right\}_{i \in I}$ of elements of $K, C=$ $\bigcup_{i \in I} C_{i}$ is an A-ideal of M. Now, let $b \in B$. Since C_{i} is an essential extension of B, there are $a \in A$ and $c \in C_{i}$ such that $c \leq n(a b)$, for every $i \in I$ and for some integer n. Hence, for every $b \in B$, there are $a \in A$ and $c \in C$ such that $c \leq n(a b)$ and so by Theorem 4.4, C is an essential extension of B. Now, by Zorn's Lemma, K has a maximal elements as E that is essential extension of B inclusion in M.

In the follow, we will show that every maximal essential extension of an A-ideal of injective A-module I is injective if it was included in I. The first we prove the following lemma that we call the short five lemma and its corollaries in $M V$-modules:
Definition 4.6. Let $\left\{M_{i}\right\}_{i \in I}$ be a family of A-modules and $\left\{f_{i}: M_{i} \rightarrow\right.$ $\left.M_{i+1}: i \in I\right\}$ be a family of A-module homomorphism. Then

$$
\cdots \rightarrow M_{i-1} \xrightarrow{\mathrm{f}_{\mathrm{i}}-1} M_{i} \xrightarrow{\mathrm{f}_{\mathrm{i}}} M_{i+1} \rightarrow \cdots
$$

is exact if $\operatorname{Im} f_{i}=\operatorname{Kerf}_{i+1}$, for every $i \in I$. In special case,

$$
0 \rightarrow M_{1} \xrightarrow{\mathrm{f}_{1}} M_{2} \xrightarrow{\mathrm{~g}_{7}} M_{3} \rightarrow 0
$$

is called a short exact sequence.
Example 4.7. (i) Let M be an A-module and N be an A-ideal of M. Then

$$
0 \rightarrow N \stackrel{\subsetneq}{\rightrightarrows} M \xrightarrow{\pi} \frac{M}{N} \rightarrow 0
$$

is a short exact sequence.
(ii) Let $f: M_{1} \rightarrow M_{2}$ be an A-module homomorphism. Then

$$
0 \rightarrow \operatorname{Kerf} \stackrel{\subsetneq}{\rightrightarrows} M_{1} \xrightarrow{\pi} \frac{M_{1}}{\operatorname{Kerf}} \rightarrow 0
$$

is a short exact sequence.
Lemma 4.8. (i) Let

$$
0 \rightarrow A_{1} \xrightarrow{\mathrm{f}_{1}} B_{1} \xrightarrow{\mathrm{~g}_{7}} C_{1} \rightarrow 0
$$

and

$$
0 \rightarrow A_{2} \xrightarrow{\mathrm{f}_{2}} B_{2} \xrightarrow{\mathrm{~g}_{2}} C_{2} \rightarrow 0
$$

be two exact sequences of A-modules, $\alpha: A_{1} \rightarrow A_{2}$ and $\gamma: C_{1} \rightarrow C_{2}$ be A-isomorphism, $\beta: B_{1} \rightarrow B_{2}$ be an A-homomorphism, $\beta \circ f_{1}=f_{2} \circ \alpha$ and $\gamma \circ g_{1}=g_{2} \circ \beta$. Then β is an A-isomorphism.
(ii) For the short exact sequence

$$
0 \rightarrow A_{1} \xrightarrow{\mathrm{f}} B \xrightarrow{\mathrm{~g}} A_{2} \rightarrow 0
$$

of A-modules, if there is an A-homomorphism $k: B \rightarrow A_{1}$ such that $k f=I$ (I is identity map), then $B \simeq A_{1} \oplus A_{2}$, where $A_{1} \oplus A_{2}=\left\{a_{1} \oplus a_{2}: a_{1} \in\right.$ $\left.A_{1}, a_{2} \in A_{2}\right\}$ (we say $0 \rightarrow A_{1} \rightarrow^{\mathrm{f}} B \rightarrow^{\mathrm{g}} A_{2} \rightarrow 0$ is split exact).
(iii) If J is a unitary A-module, then J is an injective A-module if and only if every short exact sequence

$$
0 \rightarrow J \rightarrow T \rightarrow B \rightarrow 0
$$

of A-modules is split exact.
Proof: (i) It is routine to see that β is an A-monomorphism. We show that β is an A-epimorphism. Consider arbitrary element $x \in B_{2}$. Then $g_{2}(x) \in C_{2}$ and so there is $z \in C_{1}$ such that $\gamma(z)=g_{2}(x)$. Since g_{1} is an A epimorphism, there is $b_{1} \in B_{1}$ such that $g_{1}\left(b_{1}\right)=z$ and so $\gamma g_{1}\left(b_{1}\right)=g_{2}(x)$. It results that $g_{2} \beta\left(b_{1}\right)=g_{2}(x)$ and so by Lemma 2.3, $\beta\left(b_{1}\right) \ominus x \in \operatorname{Kerg}_{2}=$ $I m g f_{2}$. Hence there is $a \in A_{2}$ such that $f_{2}(a)=\beta\left(b_{1}\right) \ominus x$. Since $a \in A_{2}$, there is $d \in A_{1}$ such that $\alpha(d)=a$ and so $f_{2} \alpha(d)=\beta\left(b_{1}\right) \ominus x$. It results that $\beta\left(f_{1}(d)\right)=\beta\left(b_{1}\right) \ominus x$. Now, let $y=b_{1} \ominus f_{1}(d)$. Then

$$
\begin{aligned}
& \beta(y)=\beta\left(\left(b_{1}^{\prime} \oplus f_{1}(d)\right)^{\prime}\right)=\left(\beta\left(b_{1}^{\prime} \oplus f_{1}(d)\right)\right)^{\prime}=\left(\beta\left(b_{1}^{\prime}\right) \oplus \beta\left(f_{1}(d)\right)\right)^{\prime}= \\
& \left(\beta\left(b_{1}^{\prime}\right) \oplus \beta\left(b_{1}\right) \ominus x\right)^{\prime}=(1 \ominus x)^{\prime}=x .
\end{aligned}
$$

Therefore, β is an A-epimorphism and so β is an A-isomorphism. (ii), (iii) The proofs are routine.

Theorem 4.9. Let I be an injective A-module, B be an A-ideal of I and E be a maximal essential extension of B such that $E \subseteq I$. Then E is an injective A-module.
Proof: Let

$$
D=\{H: H \text { is an } A-\text { ideal of } I, H \cap E=\{0\}\}
$$

Since $\{0\} \in D$, we have $D \neq \emptyset$. By Zorn's Lemma, D has maximal element H^{\prime}. Then $H^{\prime} \cap E=\{0\}$. Now, consider the mapping $\pi: I \longrightarrow \frac{I}{H^{\prime}}$. If $\delta=\left.\pi\right|_{E}$, then δ is an A-monomorphism. We show that δ is an essential monomorphism. Consider A-ideal $\frac{K}{H^{\prime}}$ of $\frac{I}{H^{\prime}}$, where $H^{\prime} \subset K$ (It is not possible $K=H^{\prime}$). Then there is $0 \neq b \in K \cap E$ and $b \notin H^{\prime}$ and so $\delta(b)=\frac{b}{H^{\prime}} \neq \frac{0}{H^{\prime}}$. It means that $\delta(E) \cap \frac{K}{H^{\prime}} \neq\{0\}$ and so δ is an essential extension of E. Since E can not accept any essential A-monomorphism except trivial A-monomorphism, $\delta: E \longrightarrow \frac{I}{E^{\prime}}$ is an A-isomorphism. Now, consider the exact sequence

$$
0 \rightarrow H^{\prime} \xlongequal{\subsetneq} I \xrightarrow{\delta^{-1} \pi} E \rightarrow 0
$$

If $f: E \longrightarrow I$ be conclusion mapping, then $\delta^{-1} \pi f(a)=\delta^{-1} \pi(a)=$ $\delta^{-1}\left(\frac{a}{H^{\prime}}\right)=a$, for every $a \in I$. Hence $\delta^{-1} \pi f=I_{E}$ and so by Lemma 4.8 (iii), the above sequence is a split exact sequence. It results that $I \simeq E \oplus H^{\prime}$. Since I is an injective A-module, E is an injective A-module, too.

5. Conclusion

The categorical equivalence between $M V$-algebras and $l u$-groups leads to the problem of defining a product operation on $M V$-algebras, in order to obtain structures corresponding to l-rings. In fact, by defining $M V$ modules, $M V$-algebras were extended. Hence, $M V$-modules are fundamental notions in algebra. IN 2016, free $M V$-modules were defined [10]. We introduced injective $M V$-modules and obtained some essential properties in this field. The obtained results encourage us to continue this long way. It seems that one can introduces notion of projective $M V$-module and obtain the relationship between free $M V$-modules and projective (or injective) $M V$-modules. In fact, there are many questions in this field that should be verified.

References

[1] R. A. Borzooei, S. Saidi Goraghani, Free MV-modules, Journal of Intelligent and Fuzzy System 31(1) (2016), pp. 151-161.
[2] C. C. Chang, Algebraic analysis of many-valued logic, Transactions of the American Mathematical Society 88 (1958), pp. 467-490.
[3] R. Cignoli, I. M. L. D' Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic, Dordrecht, (2000).
[4] A. Di Nola, A. Dvurecenskij, Product MV-algebras, Multiple-Valued Logics 6 (2001), pp. 193-215.
[5] A. Di Nola, P. Flondor, I. Leustean, MV-modules, Journal of Algebra 267 (2003), pp. 21-40.
[6] A. Dvurecenskij, On Partial addition in Pseudo MV-algebras, Proceedings of the Fourth International Symposium on Economic Informatics (1999), pp. 952-960.
[7] F. Forouzesh, E. Eslami, A. Borumand Saeid, On Prime A-ideals in MVmodules, University Politechnica of Bucharest Scientific Bulletine 76 (2014), pp. 181-198.
[8] S. Saidi Goraghani, R. A. Borzooei, Injective MV-modules, Presented at 6 th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), (2018), Kerman, Iran.
[9] S. Saidi Goraghani, R. A. Borzooei, Prime --Ideals and Fuzzy Prime --Ideals in PMV-algebras, Annals of Fuzzy Mathematics and Informatics 12(4) (2016), pp. 527-538.
[10] S. Saidi Goraghani, R. A. Borzooei, Results on Prime Ideals in PMValgebras and MV-modules, Italian Journal of Pure and Applied Mathematics 37 (2017), pp. 183-196.

Department of Mathematics, Farhangian University,
Kerman, Iran
e-mail: siminsaidi@yahoo.com
Department of Mathematics, Shahid Beheshti University, Tehran, Iran e-mail: borzooei@sbu.ac.ir

