
Bulletin of the Section of Logic
Volume 47/4 (2018), pp. 233–263

http://dx.doi.org/10.18778/0138-0680.47.4.02

Marcin  Lyczak and Andrzej Pietruszczak

ON THE DEFINABILITY OF LEŚNIEWSKI’S COPULA ‘IS’
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Abstract

We formulate a certain subtheory of Ishimoto’s [1] quantifier-free fragment of
Leśniewski’s ontology, and show that Ishimoto’s theory can be reconstructed in
it. Using an epimorphism theorem we prove that our theory is complete with
respect to a suitable set-theoretic interpretation. Furthermore, we introduce
the name constant 1 (which corresponds to the universal name ‘object’) and we
prove its adequacy with respect to the set-theoretic interpretation (again using
an epimorphism theorem). Ishimoto’s theory enriched by the constant 1 is also
reconstructed in our formalism with into which 1 has been introduced. Finally we
examine for both our theories their quantifier extensions and their connections
with Leśniewski’s classical quantified ontology.

Keywords: Leśniewski’s ontology, elementary ontology, quantifier-free frag-
ment of ontology, copula ‘is’, calculus of names, ontology-like theories, sub-
theories of Leśniewski’s ontology.

Introduction

The first part of this paper (sections 1–5) is an introduction to first-order
and quantifier-free theories with Leśniewski’s copula ‘is’ (‘ε’). Some of
these theories also have the name constant 1 (which corresponds to the
universal name ‘object’). We present various connections between these
theories and their semantic investigation in the following standard set-
theoretic interpretation of ‘is’ and ‘object’ (in an arbitrary family F of
sets):
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X εεεF Y ⇐⇒ X is a singleton and X ⊆ Y,
111F =

⋃
F .

Notice that quantifier-free theories can be treated as pure (i.e., quantifier-
free) calculi of names, in which individual variables are schematic letters
for general names and specific symbols are appropriate logical constants.

In Section 6 we formulate a subtheory of the quantifier-free fragment
ontology presented by Ishimoto in [1]. Using an epimorphism theorem we
show that this subtheory is complete in the following set-theoretic seman-
tics for ‘is’ (in an arbitrary family F of sets):

X εεε???F Y ⇐⇒ ∅ 6= X ( Y or both X is a singleton and X = Y .

We reconstruct Ishimoto’s theory in this subtheory. (Notice that X εεεF Y
iff X εεε???F X and X εεε???F Y .) We also put in place conditions that suffice for us
to obtain Leśniewski’s elementary ontology on the basis of our subtheory.

In Section 7 we introduce into our formalism the constant ‘1’ and prove
its completeness again using an epimorphism theorem. Ishimoto’s theory
enriched by ‘1’ is also reconstructed in our subtheory with 1. We examine
the connections both theories have with Leśniewski’s first-order ontology.

In Section 8 we study the possibility of defining the predicate designated
by our subtheory (i.e., for the relation εεε???F ) in the quantifier-free ontology
and the first-order ontology.

1. Open first-order theories vs pure calculi of names

Let L be a first-order language. A formula of L is said to be open iff it does
not contain any quantifiers (i.e., if it does not contain any bound individual
variables). Let Lo be the language of open formulas in L (i.e., the alphabet
of Lo obtained from the alphabet of L by omitting quantifiers and bound
individual variables). If F denotes the set of all formulas of L then F o

denotes the set of all open formulas in L.
Notice that all open theses of any first-order theory we can treated as

universal. Thus, any open thesis ϕ(x1, . . . , xn) is equivalent to the closed
thesis ∀x1 . . . ∀xn ϕ(x1, . . . , xn).

By a quantifier-free theory we understand any theory which for some
first-order language L satisfies the following three conditions:
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1. it is built from the set F o of open formulas of L,
2. the set of its theses includes the set of formulas from F o which are

instances of classical tautologies,
3. the set of its theses is closed under modus ponens and the rule of sub-

stitution for free individual variables.
Remark 1.1. Quantifier-free theories understood in the above way can be
treated as pure (i.e., quantifier-free) calculi of names, in which individual
variables are schematic letters for general names and specific symbols are
appropriate logical constants. Of course, when we examine pure calculi of
names, we can replace individual variables ‘x’, ‘y’, ‘z’, etc., with appropriate
schematic name letters, e.g.: ‘S’, ‘P’, ‘M’, etc. (cf. [3, pp. 11–22] and [4,
pp. 5–6]). 2

Remark 1.2. Models for pure calculi of names are ordered pairs of the form
〈U, d〉, where U is any set (a universe) and d is a function of denotation
from Var into 2U , i.e., for any variable x we assign a subset of U which is
treated as a reference of x (cf. [3, pp. 25–27] and [4, pp. 6–7]). 2

In both cases where T is a first-order theory or T is a quantifier-free
theory, the set of all theses of T will be denoted by Th(T ).

Let T be a first-order theory built in a set of formulas F . By a
quantifier-free fragment of T we understand a quantifier-free theory whose
theses are all these and only those open formulas of F o which are theses
of T . Formally, a quantifier-free theory N is a propositional quantifier-free
fragment of a first-order theory T iff Th(N) = F o ∩ Th(T ). Obviously,
T may not have a quantifier-free fragment, but if it has a such fragment,
it is only one.

A first-order theory T is said to be open iff all specific axioms of T are
open formulas. In this case, let T o be a quantifier-free theory built in F o

and having the same specific axioms as T . It is known that (cf., e.g., [6,
p. 329]):
Theorem 1.1. For any open first-order theory T , the quantifier-free theory
T o is the quantifier-free fragment of T , i.e., Th(T o) = F o ∩ Th(T ).

2. Two elementary Leśniewskian ontologies

Leśniewski’s original ontology investigated the copula ‘is’ represented by
the sign ‘ε’. This theory is creative in the following sense: it has a creative
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language and creative definitions (see, e.g., [7, 8, 5]). The only axiom of
Leśniewski’s ontology is the following formula:

x ε y ↔ ∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u) ∧ ∀z(z ε x→ z ε y) (λ)

To avoid creativity in ontology, it is studied as a first-order theory (see,
e.g., [2, 7, 5]).

2.1. The theory Λ

Let Lε be a first-order language (without equality) with exactly one specific
constant – the binary predicate ‘ε’. Moreover, let Forε be the set of all
formulas of Lε and Foro

ε be the set of all open formulas from Forε.
In [10, 5], the first-order theory in the set Forε based only on axiom (λ)

is examined. We denote this theory by ‘Λ’. Directly from the axiom we
obtain:
Fact 2.1. The following formulas are theses of Λ:

x ε x ↔ ∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u) ($)
x ε y → x ε x (ε1)

x ε y ∧ y ε z → x ε z (ε2)
x ε y ∧ y ε y → y ε x (ε3)
x ε y ∧ y ε z → y ε x (ε4)

Fact 2.2. 1. From (ε4) we obtain (ε3). From (ε1) and (ε3) we obtain (ε4).
2. From (ε1)–(ε3) we obtain the “→” part of (λ):

x ε y → ∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u) ∧ ∀z(z ε x→ z ε y) (→λ)

3. From (ε3) and (ε2) we obtain the “→” part of ($):

x ε x → ∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u) (→$)

4. The converse implications:

∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u)→ x ε x (←$)
∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u) ∧ ∀z(z ε x→ z ε y)→ x ε y (←λ)

we do not obtain from (ε1)–(ε4).
Proof: Ad 4. In the Lε-structure A = 〈UA, εA〉, where UA := {0, 1} and
εA := {〈0, 0〉, 〈0, 1〉}, formulas (ε1)–(ε4) are true, but (←$) is not true. 2
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It is easy to see that directly from (←$) we obtain (←λ). Thus,
Fact 2.3. The sets {(ε1), (ε2), (ε3), (←$)} and {(ε1), (ε2), (ε4), (←$)} create
other axiomatizations of Λ. So we have:

Th(Λ) = Th((ε1)+(ε2)+(ε3)+(←$))
= Th((ε1)+(ε2)+(ε4)+(←$)).

2.2. The theory EO

In [2] Iwanuś examined the first-order theory which he called the elementary
ontology and which he denoted by ‘EO’. The theory is based on (λ) and
the following two axioms:

∀x∃y∀z(z ε y ↔ z ε z ∧ ¬ z ε x)
∀x, y∃z∀u(u ε z ↔ u ε x ∧ u ε y)

Jwanuś proved that these three axioms are enough to obtain a whole ele-
mentary ontology, i.e., for any formula ϕ in which the variable ‘y’ is not
free we obtain the following thesis (see [2, Theorem 1.1a]):

∃y∀z(z ε y ↔ z ε z ∧ ϕ) (?)

Moreover, for any variable x which is different from the variable ‘y’ and
any formula ϕ in which ‘y’ is not free we obtain the following thesis (see,
e.g., [5]):

∃y∀z(z ε y ↔ z ε x ∧ ϕ)

So in EO we can introduce the definitions of name-forming functors and
name constants constructed in the way Leśniewski wanted:

∀z(z ε f(x1, ..., xn)↔ z ε x ∧ ϕf), for x ∈ {z, x1, . . . , xn} (df f )
∀z(z ε n↔ z ε z ∧ ϕn) (df n )

where ‘z’, ‘x1’, . . . , ‘xn’ may be the only free variables in ϕf and ‘z’ may
be the only free variable in ϕn (cf. [2, 5]). Formulas ϕf and ϕn may be
instances of classical tautologies. Then we can omit them and from (df n )
in the language Lε1 with the constants ‘ε’ and the name constant ‘1’ we
obtain the following definition of ‘1’:

x ε 1↔ x ε x (df 1)

Thus, in the theory EO we can define the constant ‘1’, which in Leśniewski’s
theory represents the universal general name ‘object’.
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It is known that Λ is a proper subtheory of EO, i.e.,

Th(Λ) ( Th(EO).

For example, the following thesis of EO:

∃y∀z(z ε y ↔ z ε z) (??)

is not a thesis of Λ. So (df 1) cannot be a definition in Λ.
Theories EO and Λ have, however, the same open theses (see Theo-

rem 4.4), i.e.,
Foro

ε ∩ Th(EO) = Foro
ε ∩ Th(Λ).

2.3. Set-theoretic interpretations

In this paper we will only consider first-order languages that have one
or both of the binary predicates ‘ε’ and ‘ε∗’ and a possible name con-
stant ‘1’. For any first-order language L, any interpretation of L (for short:
L-structure) is an relational structure with a universe UA in which a binary
predicate π is interpreted as a binary relation πA in UA and, optionally,
the constant 1’ is interpreted as a member of UA. For any L-structure A,
let Ver(A) be the set of all formulas of L which are true in A.

A L-structure A is epimorphic to a L-structure B iff there is a mapping
f from UA onto UB such that for any predicate π of L and arbitrary
a, b ∈ UA we have: 〈a, b〉 ∈ πA iff 〈f(a), f(b)〉 ∈ πB; and, optionally,
f(1A) = 1B. It is well known that if a L-structure A is epimorphic to a
L-structure B then Ver(A) = Ver(B).

Special L-structures are set-theoretic L-structures in which UA is any
non-empty family F of sets and for any binary predicate π, the relation πA
is determined in F by a set-theoretic formula Φπ(X,Y ). This relation will
be denoted by πππF .

For ‘ε’ the formula Φε(X,Y ) has the following form:1

X is a singleton and X ⊆ Y .

That is, we put:

εεεF :=
{
〈X,Y 〉 ∈ F2 : Φε(X,Y )

}
. (df εεεF )

Optionally, if L has the constant ‘1’, then for any non-empty family F of
sets we put 111F :=

⋃
F .

1For the predicate ‘ε∗’ the formula Φε∗ (X, Y ) will be given on p. 250.
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We say that a non-empty family F of sets is an s-family iff {p} ∈ F ,
for any p ∈

⋃
F . We say that a field F of sets is an s-field iff it is a s-

family. A special L-structure with a universe F is s-special (resp. p-special;
sf-special) iff F is an s-family (resp. a power set; an s-field).

2.4. Epimorphism theorems for Λ and EO

In [10] the following theorem is proved:2

Theorem 2.4 ([10]). An Lε-structure is a model of Λ iff it is epimorphic
to an s-special Lε-structure.

Thus, we obtain:
Theorem 2.5 ([10]). ϕ ∈ Th(Λ) iff ϕ is true in any s-special Lε-structure.

Proof: “⇒” Obvious. “⇐” Let ϕ be true in any s-special Lε-structure
and let A be an arbitrary model of Λ. In virtue of Theorem 2.4, A is
epimorphic to a s-special Lε-structure B; so we have Ver(A) = Ver(B).
But ϕ ∈ Ver(B), by the assumption. Hence ϕ ∈ Ver(A). So ϕ is true in all
models of Λ. Thus, ϕ ∈ Th(Λ), by Gödel’s completeness theorem. 2

In [2, Theorem 3.II] it is proved that:
Theorem 2.6 ([2]). ϕ ∈ Th(EO) iff ϕ is true in any p-special Lε-structure.

Although Theorem 2.6 holds, not every model of EO is epimorphic to
a p-special Lε-structure. But in [5] the following theorem is proved:
Theorem 2.7 ([5]). An Lε-structure is a model of EO iff it is epimorphic
to an sf-special Lε-structure.

Thus, we obtain (as Theorem 2.5):
Theorem 2.8. ϕ ∈ Th(EO) iff ϕ is true in any sf-special Lε-structure.

Because every sf-special Lε-structure with set-theoretic operations ∪,
∩ and − is an atomic Boolean algebra, Theorem 2.8 is a semantical proof
the fact that the theory EO is definitionally equivalent to the first-order
theory of atomic Boolean algebras (see [5, Section 9]). A syntactic proof
of this fact has been presented in [2, Theorem 2.I].

2For the proof see also the proof of Theorem 3.3 and footnote 3.
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3. Theories EO and Λ with the name constant ‘1’

3.1. The theory EO+(df 1)

We wrote that we can define in the theory EO the name constant ‘1’ by
(df 1). Obviously, we must extend the language Lε to Lε1 and add to
EO the definition (df 1). Let us denote by EO+(df 1) this conservative
extension of EO in the set Forε1 of formulas. Since (df 1) is true in all
special structures, from Theorem 2.6 we obtain:
Corollary 3.1. 1. An Lε1-structure is a model of EO+(df 1) iff it is

epimorphic to an sf-special Lε1-structure.
2. ϕ ∈ Th(EO+(df 1)) iff ϕ is true in any sf-special Lε1-structure.

3.2. The theory Λ1

As we mentioned on page 238, the formula (df 1) cannot be a definition
in Λ. So if we want to consider the constant ‘1’ in Λ, we must introduce
it with a specific axiom. This axiom can be the following formula:

x ε x→ x ε 1 (ε11)

Let Λ1 be the first-order theory in Forε1 having formulas (λ) and (ε11) as
specific axioms.
Fact 3.2. Formula (df 1) and the following ones are theses of Λ1:

x ε y → x ε 1 (cε11)
x ε 1→ x ε x (cε12)

x ε 1 ↔ ∃z z ε x ∧ ∀z∀u(z ε x ∧ u ε x→ z ε u) ($1)
1 ε x→ x ε x (ε12)

Proof: For (cε11): We use (ε11) and (ε1). For (cε12): We use (ε1). For
(df 1): We use (ε11) and (cε12). For ($1): We use ($) and (df 1).

For (ε12): By (λ) and (df 1), we obtain:

1 ε x ↔ ∃z z ε 1 ∧ ∀z, u(z ε 1 ∧ u ε 1→ z ε u) ∧ ∀z(z ε 1→ z ε x)
↔ ∃z z ε 1 ∧ ∀z, u(z ε z ∧ u ε u→ z ε u) ∧ ∀z(z ε z → z ε x)

But, by (ε1), we obtain:

∀z, u(z ε z ∧ u ε u→ z ε u) → ∀z, u(z ε x ∧ u ε x→ z ε u)
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Therefore we also obtain the following thesis of Λ1:

1 ε x → ∃z z ε x ∧ ∀z, u(z ε x ∧ u ε x→ z ε u)

Hence, by ($), we obtain (ε12). 2

3.3. An epimorphism theorem for Λ1

Theorem 3.3. An Lε1-structure is a model of Λ1 iff it is epimorphic to
an s-special Lε1-structure.
Proof: “⇒” Let A = 〈UA, εA, 1A〉 be a model of Λ1.

We defined the following relation on UA:

a ≡ b iff either a = b, or both a εA b and b εA a.

By (ε2), ≡ is an equivalence relation and it is a congruence on A, i.e., if
a1 ≡ a2 and b1 ≡ b2, then: a1 εA b1 iff a2 εA b2. We denote the equivalence
class of a by [a]. Of course, if a 6εA a then [a] = {a}. We put UA/≡ := {[a] :
a ∈ UA} and define the following function f : UA → 2UA/≡ ,

f(a) :=
{

[c] ∈ 2UA/≡ : c εA a
}
.

Firstly, we prove that for all a, b ∈ UA,

if a εA b then f(a) = {[a]}.

Suppose that a εA b. Then, by (ε1), we have a εA a; and so {[a]} ⊆ f(a).
On the other hand, if [c] ∈ f(a) then c εA a. So a εA c, by (ε4). Therefore,
a ≡ c and so [c] = [a]. Hence f(a) ⊆ {[a]}.

We put F := {f(a) : a ∈ UA}. Of course, 〈F ,εεεF ,111F 〉 is a special Lε1-
structure. We show that it is an s-special, i.e., F is an s-family. Assume
that p ∈

⋃
F , i.e., p ∈ f(a), for some a ∈ UA. Then p = [c] for some c ∈ UA

such that c εA a. Hence c εA c; and so f(c) := {[c]}. Therefore {p} ∈ F .
Secondly, we prove that for all a, b ∈ UA:

a εA b iff f(a) εεεF f(b).

Suppose that aεAb. Then f(a) = {[a]} ⊆ f(b). So f(a)εεεF f(b). Conversely,
let f(a) εεεF f(b), i.e., f(a) is a singleton and f(a) ⊆ f(b). Then for some
c0 ∈ UA we have f(a) = {[c0]} and [c0] ∈ f(b). Since A is a model of (λ),
for the proof of a εA b is suffices to show that: (i) c εA a, for some c ∈ UA;
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(ii) for all c, d ∈ UA, if cεAa and dεAa, then cεAd; and (iii) for any c ∈ UA,
if c εA a then c εA b. For (i): c0 εA a, since f(a) = {[c0]}. For (ii): Suppose
that c εA a and d εA a. Then [c], [d] ∈ f(a), c εA c and [c] = [d] = [c0]. So
c εA d. For (iii): Suppose that c εA a. Then [c] ∈ f(a). So f(a) = {[c]},
since f(a) is a singleton. Hence [c] ∈ f(b); and so c εA b. Thus, we obtain,
if f(a) εεεF f(b) then a εA b.3

Finally, we show that f(1A) =
⋃
F =: 111F . Indeed, for any a ∈ UA

we have f(a) ⊆ f(1A). If [c] ∈ f(a) then c εA a. Hence c εA c, by (ε1).
Therefore c εA 1A, by (ε11). So [c] ∈ f(1A). Thus, f(1A) ⊆

⋃
F ⊆ f(1A).

“⇐” Obvious. 2

Thus, we obtain (as Theorem 2.5):
Theorem 3.4. For any ϕ ∈ Forε1, ϕ is a thesis of Λ1 iff ϕ is true in any
s-special Lε1-structure.

4. The quantifier-free fragment of EO

Let us describe the quantifier-free fragment of elementary ontology EO in
Ishimoto’s version from [1].

4.1. The open theory E

Following Ishimoto, we consider an open first-order theory built in Lε and
having (ε1)–(ε3) as specific axioms. We denote this theory by ‘E’. Since
from (ε1) and (ε3) we obtain (ε4) and from (ε4) we obtain (ε3), the formulas
(ε1), (ε2) and (ε4) create an another axiomatization of the theory E. Notice
that (→λ) and (→$) are theses of E, but (←λ) and (←$) are not.

4.2. E versus Λ and EO

By facts 2.1 and 2.2(4), we obtain:

Th(E) ( Th(Λ). (4.1)

However, by Fact 2.3, we obtain:
Th(Λ) = Th(E+(←$)), (4.2)

Th(EO) = Th(E+(←$)+(?)). (4.3)
3Note that the part of the above proof which does not apply to the constant ‘1’ is

the proof of Theorem 2.4.
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4.3. The quantifier-free theory Eo

Let Eo be the quantifier-free theory built in Foro
ε and having the same

specific axioms as E. Directly from Theorem 1.1 we obtain:
Corollary 4.1. The quantifier-free theory Eo is the quantifier-free frag-
ment of the open theory E, i.e., Th(Eo) = Foro

ε ∩ Th(E).
Remark 4.1. In connection with Remark 1.1, the quantifier-free theory Eo

can be treated as a pure calculus of names with one logical constant ‘ε’
(cf. [3, pp. 26–27 and 96–97] and [4, pp. 6–7 and 24–25]).

Moreover, in connection with Remark 1.2 and (df εεεF ), models for the
pure calculus of names Eo are ordered pairs of the form 〈U, d〉, where U
is any set, d : Var → 2U and the logical constant ‘ε’ has the following
interpretation:

‘x ε y’ is true in 〈U, d〉 iff d(x) is a singleton and d(x) ⊆ d(y). 2

4.4. An epimorphism theorem for E

In [10] and [5] we have, respectively, proofs of “(a)⇔ (b)” and “(a)⇔ (c)”
parts of the following theorem:
Theorem 4.2.For any Lε-structure the following conditions are equivalent:
(a) it is a model of E,
(b) it is epimorphic to a special Lε-structure,
(c) it is epimorphic to a special Lε-structure whose universe is a family of

non-empty sets.4

Hence we obtain (as Theorem 2.5):
Theorem 4.3. For any ϕ ∈ Forε the following conditions are equivalent:
(a) ϕ is a thesis of E,
(b) ϕ is true in any special Lε-structure,
(c) ϕ is true in any special Lε-structure whose universe is a family of

non-empty sets.
Remark 4.2. In connection with the above theorem, Corollary (4.1) and
Remark 4.1, an open formula from Foro

ε is a thesis of a pure calculus of
names Eo iff it is true in any model 〈U, d〉, i.e., it is a tautology in the
given semantics. Moreover, we also obtain that an open formula ϕ from
Foro

ε is a thesis of a pure calculus of names Eo iff ϕ is true in any model

4See the proof of Theorem 5.8 and footnote 7.
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〈U, d〉 in which we have d(x) 6= ∅ for any variable x, i.e., ϕ is a traditional
tautology in the given semantics.5 2

4.5. Eo is the quantifier-free fragment of elementary ontology

From theorems 2.6 and 4.3 we obtain:
Theorem 4.4. Th(Eo) = Foro

ε ∩Th(E) = Foro
ε ∩Th(Λ) = Foro

ε ∩Th(EO).
So Eo is the quantifier-free fragment of E, Λ and EO.

Moreover, for any first-order theory T , if Th(E) ⊆ Th(T ) ⊆ Th(EO)
then Eo is the quantifier-free fragment of T .
Proof: First, Th(Eo) = Foro

ε ∩Th(E) ⊆ Foro
ε ∩Th(Λ) ⊆ Foro

ε ∩Th(EO).
Second, let ϕ ∈ Foro

ε ∩ Th(EO) and 〈F ,εεεF 〉 be any special Lε-structure.
Notice that F ⊆ 2∪F and for all X,Y ∈ F we have: X εεεF Y iff X εεε2∪FY .
So 〈F ,εεεF 〉 is a substructure of the p-special Lε-structure 〈2F ,εεε2∪F 〉. By
Theorem 2.6, ϕ is true in 〈2F ,εεε2∪F 〉. Hence ϕ is true in 〈F ,εεεF 〉, since ϕ is
open. Therefore ϕ ∈ Th(E), by Theorem 4.3. 2

5. The theory E with the name constant ‘1’

5.1. The open theory E1

Since the formula (??) is not a thesis of E, if we want to consider the
constant 1 in E, we must introduce it with specific axioms. These axioms
can be the open formulas (ε11) and (ε12). So let E1 be the open first-order
theory in Forε1 having the formulas (ε1)–(ε3), (ε11) and (ε12) as specific
axioms.
Fact 5.1. Axioms (ε11) and (ε12) are independent in E.
Proof: The Lε1-structure A = 〈UA, εA, 1A〉, where UA := {1, 2}, εA :=
{〈1, 1〉, 〈1, 2〉} and 1A := 1, is a model of E and (ε11) in which (ε12) is not
true. Moreover, the Lε1-structure A = 〈UA, εA, 1A〉, where UA := {0, 1},
εA := {〈0, 0〉} and 1A := 1, is a model of E and (ε12) in which (ε11) is not
true. 2

5In [3, pp. 96–97] and [4, pp. 24–25] these results were shown using Henkin’s method
with the maximal consistent sets in Eo.
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Fact 5.2. The formulas (cε12) and the “→” part of ($1)

x ε 1 → ∃z z ε x ∧ ∀z∀u(z ε x ∧ u ε x→ z ε u) (→$1)

are theses of E in the language Lε1.
Proof: For (cε12): We use (ε1) and the substitute [y/1]. For (→$1): Since
(→$) is a thesis of E, we use (cε12). 2

Fact 5.3. The formulas (cε11), and (df 1) are theses of E1.6

Proof: For (cε11): We use (ε11) and (ε1). For (df 1): We use (ε11) and
(cε12), by Fact 5.2. 2

5.2. The quantifier-free theory E1o

Let E1o be the quantifier-free theory built in Foro
ε1 and having the same

specific axioms as E1. Directly from Theorem 1.1 we obtain:
Corollary 5.4. E1o is the quantifier-free fragment of E1.
Remark 5.1. The quantifier-free theory E1o can be treated as a pure cal-
culus of names with the logical constants ‘ε’ and ‘1’ (cf. [3, pp. 96–97]).

In connection with remarks 4.1 and 5.1, models for the pure calculus
of names E1o are ordered pairs of the form 〈U, d〉, where U is any set and
d : Var → 2U such that d(1) = U . The logical constant ‘ε’ has the same
interpretation as in Remark 4.1 (cf. [5, pp. 26–27 and 96–97]). 2

5.3. E1 versus Λ1

First, notice that:
Fact 5.5. The “←” part of ($1), i.e. the following formula

∃z z ε x ∧ ∀z∀u(z ε x ∧ u ε x→ z ε u) → x ε 1 (←$1)

as well as the formula (←$), are not theses of E1.
Proof: The Lε1-structure A = 〈UA, εA, 1A〉, where UA := {0, 1}, εA :=
{〈0, 0〉, 〈0, 1〉} and 1A := 1, is a model of E1 in which (←$1) is not true,
since 1A 6εA 1A. 2

6However, (df 1) is not the definition of ‘1’ in E.
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Thus, by facts 3.2 and 5.5, we obtain:
Fact 5.6. Λ1 is a proper extension of E1, i.e., we have:

Th(E1) ( Th(Λ1).

Let E+(←$1) be the the first-order theory which is built in Forε1 and
which is a non-conservative extension of E by one specific axiom (←$1).
Theorem 5.7. The three theories Λ1, E+(←$1) and E+(←$)+(ε11) are
equivalent, i.e.,

Th(E+(←$1)) = Th(Λ1) = Th(E+(←$)+(ε11)).

Proof: Firstly, Th(E+(←$1)) ⊆ Th(Λ1), since Th(E1) ⊆ Th(Λ1) and
(←$1) ∈ Th(Λ1), by Fact 3.2. Secondly, by (4.2), we have:

Th(Λ1) := Th(Λ+(ε11)) = Th(E+(←$)+(ε11)).

Moreover, from (→$) and (←$1) we obtain (ε11); from (cε12) and (←$1) we
obtain (←$). Hence Th(E+(←$)+(ε11)) ⊆ Th(E+(←$1)). 2

5.4. An epimorphism theorem for E1

Theorem 5.8. An Lε1-structure is a model of E1 iff it is epimorphic to a
special Lε1-structure.
Proof: “⇒” Let A = 〈UA, εA, 1A〉 be a model of E1. We consider two
cases.

The first case: 1A εA 1A. We define the function f : UA → {∅, {UA}},

f(a) :=
{
∅ there is no c such that c εA a
{UA} otherwise

We put F := {f(a) : a ∈ UA} and we show that f is an epimorphism from
A onto 〈F ,εεεF ,111F 〉. In fact, notice that f(1A) = {UA} =

⋃
F =: 111F .

Moreover, we show that for all a, b ∈ UA:

a εA b iff f(a) εεεF f(b).

Suppose that a εA b. Then a εA a, by (ε1). Hence f(a) = {UA} = f(b);
and so f(a) εεεF f(b). Conversely, suppose that f(a) εεεF f(b), i.e., f(a) is a
singleton and f(a) ⊆ f(b). Then f(a) = {UA} = f(b). Hence for some
c1, c2 we have c1 εA a and c2 εA b. For i = 1, 2, by (ε1), ci εA ci; and so
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ci εA 1A, by (ε11). Therefore, 1A εA ci, by (ε3) and the assumption. Hence
1A εA a and 1A εA b, by (ε2). Hence a εA a, by (ε12). Hence a εA 1A, by
(ε11). Thus, a εA b, by (ε2).

The second case: 1A 6εA 1A. We defined the following relation on UA:

a ≡ b iff either a = b, or both a εA b and b εA a.

By (ε2), ≡ is an equivalence relation and it is a congruence on A, i.e., if
a1 ≡ a2 and b1 ≡ b2, then: a1 εA b1 iff a2 εA b2. We denote the equivalence
class of a by [a]. Of course, if a 6εA a then [a] = {a}. We put UA/≡ := {[a] :
a ∈ UA} and define the following function f : UA → 2UA/≡ ,

f(a) :=
{
{[a]} if a εA a
{[c] : c εA a} ∪ {{∅}, ∅} otherwise

We put F := {f(a) : a ∈ UA} and we show that f is an epimorphism from
A onto 〈F ,εεεF ,111F 〉.

Firstly, we show that for all a, b ∈ UA:

a εA b iff [a] ∈ f(b). (†)

Suppose that a εA b. If b 6εA b then [a] ∈ f(b). If b εA b then f(b) := {[b]}
and b εA a, by (ε3). Hence a ≡ b, [a] = [b]; and so [a] ∈ f(b). Conversely,
suppose that [a] ∈ f(b). If b 6εA b then a εA b, since [a] /∈ {{∅}, ∅}. If b εA b
then f(b) = {[a]}; and so a ≡ b. Hence a εA b.

Secondly, we prove that for all a, b ∈ UA:

a εA b iff f(a) εεεF f(b).

Suppose that a εA b. Then a εA a, by (ε1). Hence, by (†), we have f(a) :=
{[a]} ⊆ f(b), i.e., f(a) εεεF f(b). Conversely, let f(a) εεεF f(b), i.e., f(a) is a
singleton and f(a) ⊆ f(b). Then a εA a and so f(a) = {[a]} ⊆ f(b). Hence
[a] ∈ f(b); and so a εA b, by (†).7

Finally, we show that f(1A) =
⋃
F =: 111F . This is due to the fact

that f(a) ⊆ f(1A), for any a ∈ UA. Indeed, if {{∅}, ∅} ⊆ f(a), then
{{∅}, ∅} ⊆ f(1A), since 1A 6εA 1A. If [c] ∈ f(a) then c εA a, by (†). Hence
cεA c, by (ε1). Therefore cεA 1A, by (ε11). So [c] ∈ f(1A). Thus, we obtain
f(1A) ⊆

⋃
F ⊆ f(1A).

“⇐” Obvious. 2

7Note that the part of the above proof which does not apply to the constant ‘1’ is
the proof of “(a) ⇒ (c)” in Theorem 4.2.
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Thus, we obtain (as Theorem 4.3):
Theorem 5.9. For any ϕ ∈ Forε1: ϕ ∈ Th(E1) iff ϕ is true in any special
Lε1-structure.
Remark 5.2. In connection with the above theorem and Remark 5.1, an
open formula from Foro

ε1 is a thesis of a pure calculus of names E1o iff it is
true in any model 〈U, d〉, i.e., it is a tautology in the given semantics.8 2

5.5. E1o is the quantifier-free fragment of Λ1 and EO+(df 1)

From theorems 5.9 and 2.6 we obtain:
Theorem 5.10. Th(E1o) = Foro

ε1 ∩ Th(E1) = Foro
ε1 ∩ Th(Λ1) = Foro

ε1 ∩
Th(EO+(df 1)). So E1o is the quantifier-free fragment of the first-order
theories E1, Λ1 and EO+(df 1).
Proof: First, Th(E1o) = Foro

ε1 ∩ Th(E1) ⊆ Foro
ε1 ∩ Th(Λ1) ⊆ Foro

ε1 ∩
Th(EO+(df 1)). Second, let ϕ ∈ Foro

ε ∩Th(EO+(df 1)) and 〈F ,εεεF ,111F 〉 be
any special Lε1-structure. Notice that

⋃
F =

⋃
2∪F , F ⊆ 2∪F , 111F = 1112∪F

and for all X,Y ∈ F we have: X εεεF Y iff X εεε 2∪FY . So 〈F ,εεεF ,111F 〉 is a sub-
structure of the p-special Lε1-structure 〈2F ,εεε2∪F ,1112∪F 〉. By Theorem 2.6,
ϕ is true in 〈2F ,εεε2∪F ,1112∪F 〉. Hence ϕ is also true in 〈F ,εεεF ,111F 〉, since ϕ is
open. Therefore ϕ ∈ Th(E1), by Theorem 5.9.

Finally, Foro
ε1 ∩Th(EO+(df 1)) = Th(E1o) = Foro

ε1 ∩Th(E1) ⊆ Foro
ε1 ∩

Th(Λ1) ⊆ Foro
ε1 ∩ Th(EO+(df 1)). 2

6. A reconstruction of E in one of its subtheories

6.1. The open theory E∗ in the language Lε

Let E∗ be the open first-order theory in the language Lε with two specific
axioms (ε2) and (ε3).
Fact 6.1. E∗ is a proper subtheory of E, i.e., Th(E∗) ( Th(E).
Proof: First, Th(E∗) ⊆ Th(E). Second, we have Th(E) * Th(E∗). To
show it we take a structure 〈N, <〉, where N is the set of natural numbers
and the interpretation of predicate ‘ε’ is the relation <. The formulas (ε2)
and (ε3) are true in 〈N, <〉, but (ε4) and (ε1) are not true. 2

8In [3, pp. 96–97] these results were shown using Henkin’s method with the maximal
consistent sets in E1o.



On the Definability of Leśniewski’s Copula ‘is’ . . . 249

We will prove that in the theory E∗ we can reconstruct the theory E.
Between E and E∗ we define the following transformation tr : Forε → Forε.
The function tr fulfils the following conditions for all x,y ∈ Var and all
ϕ,ψ ∈ Forε:

tr(x ε y) = px ε y ∧ x ε xq,
tr(¬ ϕ) = p¬ tr(ϕ)q,
tr(ϕ ◦ ψ) = ptr(ϕ) ◦ tr(ψ)q, for ◦ ∈ {∧,∨,→,↔},
tr(Qx ϕ) = pQx tr(ϕ)q, for Q ∈ {∀,∃}.

We obtain the following:
Fact 6.2. For any ϕ ∈ Forε: ϕ ∈ Th(E) iff tr(ϕ) ∈ Th(E∗).
Proof: “⇒” tr(ε1) gives: x ε y ∧ x ε x→ x ε x∧ x ε x. So it is an instance
of a classical tautology. tr(ε2) gives: xεy∧xεx∧y εz∧y εy → xεz∧xεx.
So it belongs to Th(E∗), by (ε2) and classical propositional logic. tr(ε4)
gives: x ε y ∧ x ε x ∧ y ε z ∧ y ε y → y ε x ∧ y ε y. So it belongs to Th(E∗),
by (ε3) and classical propositional logic.

“⇐” By (ε1) and the rule of substitution for free individual variables,
for all variables x and y, the equivalence px ε y ↔ tr(x ε y)q is a thesis
of E. Hence for any ϕ ∈ Forε: ϕ ∈ Th(E) iff tr(ϕ) ∈ Th(E). Thus, since
E∗ is a subtheory of E, if tr(ϕ) ∈ Th(E∗), then ϕ ∈ Th(E). 2

6.2. The open theory E∗ in the language Lε∗

For better readability, we will analyse theory E∗ in another language Lε∗ ,
where we change the predicate ‘ε’ to ‘ε∗’. So in place of axioms (ε2) and
(ε3) we take their Lε∗ -counterparts:

x ε∗ y ∧ y ε∗ z → x ε∗ z (ε∗1)
x ε∗ y ∧ y ε∗ y → y ε∗ x (ε∗2)

Notice that directly from (ε∗1) we obtain the following thesis of E∗:

x ε∗ y ∧ y ε∗ x→ x ε∗ x ∧ y ε∗ y (cε∗1)

Moreover, by (ε∗2) and (ε∗1), we obtain the Lε∗ -counterpart of (→$):

x ε∗ x → ∃z z ε∗ x ∧ ∀z, u(z ε∗ x ∧ u ε∗ x→ z ε∗ u) (→$ε∗)
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6.3. Defining the predicate ‘ε’ by ‘ε∗’

We extend the language Lε∗ to the language Lεε∗ by adding the predicate
‘ε’. In Lεε∗ let E∗+(df ε) be a definitional extension of the theory E∗ by
adding the following definition:

x ε y ↔ x ε∗ x ∧ x ε∗ y (df ε)

So we obtain:
x ε x ↔ x ε∗ x (%)

6.4. The quantifier-free theories E∗o and (E∗+(df ε))o

Let E∗o and (E∗+(df ε))o be the quantifier-free theories built, respec-
tively, in Foro

ε∗ and Foro
εε∗ and having the same specific axioms as E∗ and

E∗+(df ε). Directly from Theorem 1.1 we obtain:
Corollary 6.3. E∗o and (E∗+(df ε))o are quantifier-free fragments of
E∗ and E∗+(df ε), respectively.
Remark 6.1. The quantifier-free theories E∗o and (E∗+(df ε))o can be
treated as pure calculi of names with one logical constant ‘ε∗’ and two
logical constant ‘ε∗’ and ‘ε’, respectively (cf. [3, pp. 54–55] and [4, p. 8]).
2

6.5. Epimorphism theorems for E∗ and E∗+(df ε)

For ‘ε∗’ the formula Φε∗(X,Y ) (see p. 238) has the following form:

either ∅ 6= X ( Y or both X is a singleton and X = Y .

That is, we put:
εεε???F :=

{
〈X,Y 〉 ∈ F2 : Φε∗(X,Y )

}
. (df εεε???F )

Fact 6.4. In any special Lε∗-structure, the predicate ‘ε’ defined by (df ε)
is interpreted by the relation εεεF defined by (df εεεF ). So (df ε) is true in any
special Lεε∗-structure 〈F ,εεεF ,εεε???F 〉.
Proof: Suppose that F is a non-empty family of sets and R ⊆ F2 is an
interpretation of the predicate ‘ε’ defined by (df ε). We show that R = εεεF .
For all X,Y ∈ F we obtain: X R Y iff X εεε???F Y and X εεε???F X iff both either
∅ 6= X ( Y or there is a p ∈

⋃
F such that X = {p} = Y , and there

is a q ∈
⋃
F such that X = {q} iff either both ∅ 6= X ( Y and there

is a q ∈
⋃
F such that X = {q}, or both there is a p ∈

⋃
F such that
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X = {p} = Y and there is a q ∈
⋃
F such that X = {q} iff either there

is a p ∈
⋃
F such that X = {p} ( Y or there is a p ∈

⋃
F such that

X = {p} = Y iff there is a p ∈
⋃
F such that X = {p} ⊆ Y iff X εεεF Y . 2

Remark 6.2. In connection with remarks 1.2, 4.1 and 6.1, models for the
pure calculi of names E∗o and (E∗+(df ε))o are ordered pairs of the form
〈U, d〉, where U is any set and d : Var → 2U . The logical constant ‘ε∗’ has
the following interpretation:

‘x ε∗ y’ is true in 〈U, d〉 iff either ∅ 6= d(x) ⊆ d(y)
or both d(x) = d(y) and d(x) is a singleton.

The logical constant ‘ε’ is interpreted as in Remark 4.1. 2

Theorem 6.5. For any Lε∗-structure (resp. Lεε∗-structure) the following
conditions are equivalent:
(a) it is a model of E∗ (resp. E∗+(df ε)),
(b) it is epimorphic to a special Lε∗-structure (resp. Lεε∗-structure),
(c) it is epimorphic to a special Lε∗-structure (resp. Lεε∗-structure) whose

universe is a family of non-empty sets.
Proof: “(c)⇒ (b)” Obvious.

“(b) ⇒ (a)” Let 〈F ,εεεF ,εεε???F 〉 be an arbitrary special Lεε∗ -structure.
Then, by Fact 6.4, (df ε) is true in 〈F ,εεεF ,εεε???F 〉. We show that both axioms
of E∗ are true in 〈F ,εεε???F 〉. Consequently, in virtue of Fact 6.4, all axioms of
E∗+(df ε) will be true in every epimorphic structure with 〈F ,εεεF ,εεε???F 〉.

For (ε∗1): We take an arbitrary valuation v such that v(x) = X, v(y) =
Y and v(z) = Z. Assume that X εεε???F Y and Y εεε???F Z. Then both either
∅ 6= X ( Y or there is a p ∈

⋃
F such that X = {p} = Y , and either

∅ 6= Y ( Z or there is a q ∈
⋃
F such that Y = {q} = Z. So we have the

following cases:
(i) ∅ 6= X ( Y and ∅ 6= Y ( Z; so ∅ 6= X ( Z;

(ii) ∅ 6= Y ( Z and there is a p ∈
⋃
F such that X = {p} = Y ; so there

is a p ∈
⋃
F such that X = {p} ( Z;

(iii) there is a p ∈
⋃
F such that X = {a} = Y and there is a q ∈

⋃
F

such that Y = {q} = Z; so there is a p ∈
⋃
F such that X = {p} = Z.

Thus, X εεε???F Z. (The following case cannot obtain: ∅ 6= X ( Y and there is
a q ∈

⋃
F such that Y = {q} = Z.)

For (ε∗2): We take an arbitrary valuation v such that v(x) = X and
v(y) = Y . Assume that X εεε???F Y and Y εεε???F Y . Then both either ∅ 6= X ( Y
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or there is a p ∈
⋃
F such that X = {p} = Y , and there is a q ∈

⋃
F such

that Y = {q}. So we have: there is a p ∈
⋃
F such that X = {p} = Y

and there is a q ∈
⋃
F such that Y = {q}. So there is a p ∈

⋃
F such

that X = {p} = Y . Thus, Y εεε???F X. (The following case cannot obtain:
∅ 6= X ( Y and there is a b ∈

⋃
F such that Y = {b}.)

“(a) ⇒ (c)” For the theory E∗. Let A = 〈UA, εA〉 be a model of E∗.
We define the following relation on UA:

a ∼ b iff either a = b, or both a ε∗A b and b ε∗A a.

By (ε∗1), ∼ is an equivalence relation and it is a congruence on A, i.e., if
a1 ∼ a2 and b1 ∼ b2, then: a1 ε

∗
A b1 iff a2 ε

∗
A b2. We denote the equivalence

class of a by [a]. Notice that, by (ε∗1), for any a ∈ UA we have:

if a 6ε∗A a then [a] = {a}. (†)

Let UA/∼ := {[a] : a ∈ UA} and we define the function f : UA → 2UA/∼ ,

f(a) :=
{
{[a]} if a ε∗A a
{[c] : c ε∗A a} ∪ {[a], ∅} otherwise

We put F := {f(a) : a ∈ UA}. We show that f is an epimorphism from A
onto 〈F ,εεε???F 〉.

We prove that for all a, b ∈ UA:

a ε∗A b iff f(a) εεε???F f(b). (‡)

Suppose that a ε∗A b. We consider three possibilities.
1) bε∗A b. Then bε∗A a, by (ε∗2). So a ∼ b and [a] = [b]. Moreover, aε∗A a,

by (ε∗1). So f(a) = {[a]} = {[b]} = f(b). Thus, f(a) εεε???F f(b).
2) a ε∗A a and b 6ε∗A b. Then [b] ∈ f(b), f(a) = {[a]} and [a] ∈ f(b).

Moreover, [b] /∈ f(a), since a � b by (ε∗1). Thus, ∅ 6= f(a) ( f(b); and so
f(a) εεε???F f(b).

3) a 6ε∗Aa and b 6ε∗Ab. Then a 6= b, [a] ∈ f(a), [a] ∈ f(b) and [b] ∈ f(b). By
(†), we have [a] = {a} 6= {b} = [b]. Moreover, b 6ε∗A a, by (ε∗1); and so a � b.
Therefore, [b] /∈ f(a). If [c] ∈ f(a), then either c ε∗A a or c = a. So c ε∗A b,
by (ε∗1) and the assumption. Hence [c] ∈ f(b). Thus, ∅ 6= f(a) ( f(b); and
so f(a) εεε???F f(b).

Conversely, let f(a) εεε???F f(b), i.e., either (i) ∅ 6= f(a) ( f(b) or (ii)
both f(a) is a singleton and f(a) = f(b). In the case (i) we have: a 6= b,
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[a] ∈ f(a) and b 6ε∗A b. So a � b, by (cε∗1) and the assumption. Moreover,
[a] ∈ f(b) and so a ε∗A b, since [a] 6= [b]. In the case (ii) we have: a ε∗A a,
b ε∗A b and {[a]} = f(a) = f(b) = {[b]}. So [a] = [b], i.e., a ∼ b. Hence
either a = b, or both a ε∗A b and b ε∗A a. In both cases, we get: a ε∗A b.

For the theory E∗+(df ε). Let A = 〈UA, εA, ε
∗
A〉 be a model of E∗+

(df ε). As for E∗ we construct the family F and the epimorphism f . Then
for all a, b ∈ UA we have: a εA b iff a ε∗A a and a ε∗A b iff f(a) εεε???F f(a) and
f(a) εεε???F f(b) iff f(a) εεεF f(b) (by Fact 6.4). 2

Thus, we obtain (as Theorem 2.5):
Theorem 6.6. For any ϕ ∈ Forε∗ (resp. ϕ ∈ Forεε∗) the following condi-
tions are equivalent:
(a) ϕ is a thesis of E∗ (resp. E∗+(df ε)),
(b) ϕ is true in any special Lε∗-structure (resp. Lεε∗-structure),
(c) ϕ is true in any special Lε∗-structure (resp. Lεε∗-structure) whose uni-

verse is a family of non-empty sets.
Remark 6.3. In connection with the above theorem, remarks 6.1 and 6.2,
an open formula from Foro

ε∗ (resp. Foro
εε∗) is a thesis of a pure calculus of

names E∗o (resp. (E∗+(df ε))o) iff it is true in any model 〈U, d〉, i.e., it is
a tautology in the given semantics. 2

6.6. A reconstruction of E in E∗

It is easy to see that (ε1)–(ε4) are theses of E∗+(df ε). Thus, we obtain
that E∗+(df ε) is a proper extension of E, i.e.,

Th(E) ( Th(E∗+(df ε)). (6.1)

However, in the light of theorems 4.3 and 6.6, the theories E and E∗+(df ε)
have the same theses from the language Lε, i.e., we obtain:

Th(E) = Forε ∩ Th(E∗+(df ε)). (6.2)

6.7. Reconstructions of Λ and EO in some extensions of E∗

If we use the language Lεε∗ then we can extend theories in Lε∗ using formulas
from Lε. Let us recall that the formula (←$) is not a thesis of E. So, by
(6.2), it is not a thesis of E∗+(df ε).
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In virtue of (4.2) and (6.1), we obtain that E∗+(df ε) is a proper
extension of Λ. Moreover, in virtue of (4.3) and (6.1), we obtain that
E∗+(df ε)+(?) is a proper extension of EO. That is,

Th(Λ) ( Th(E∗+(df ε)+(←$)), (6.3)
Th(EO) ( Th(E∗+(df ε)+(←$)+(?)). (6.4)

However, in the light of theorems 2.5 and 6.6, the theories Λ and E∗+
(df ε)+(←$) have the same theses from the language Lε, i.e., we obtain:

Th(Λ) = Forε ∩ Th(E∗+(df ε)+(←$)).
In fact, by theorems 2.5 and 6.6, all theses of E∗+(df ε)+(←$) are true in
all s-special Lεε∗ -structures. So if ϕ belongs to Forε∩Th(E∗+(df ε)+(←$)),
then it is true in all s-special Lε-structures. Hence, by Theorem 2.5, ϕ is a
thesis of Λ.

Moreover, in the light of theorems 2.6 (or 2.8) and 6.6, the theories EO
and E∗+(df ε)+(←$)+(?) have the same theses from the language Lε, i.e.:

Th(EO) = Forε ∩ Th(E∗+(df ε)+(←$)+(?)).
In fact, by theorems 2.6 and 6.6, all theses of E∗+(df ε)+(←$) are true in
all p-special Lεε∗ -structures. So if ϕ belongs to Forε∩Th(E∗+(df ε)+(←$)),
then it is true in all p-special Lε-structures. Hence, by Theorem 2.6, ϕ is
a thesis of EO.

7. The theory E∗ with the name constant ‘1’

7.1. The theory E∗1

Let E∗1 be a non-conservative extension of the theory E∗ which is an open
first-order theory built in Forε1 and has the following specific axioms:

x ε∗ y → x ε∗ 1 (ε∗11)
1 ε∗ x→ x ε∗ x (ε∗12)

y ε∗ x ∧ z ε∗ 1 ∧ ¬ z ε∗ x → x ε∗ 1 (ε∗13)
Notice that (ε∗13) is logically equivalent to:

∃u u ε∗ x ∧ ∃u(u ε∗ 1 ∧ ¬ u ε∗ x) → x ε∗ 1

From (ε∗11) we obtain the Lε∗1-counterpart of (ε11), i.e.,
x ε∗ x→ x ε∗ 1

But the implication ‘x ε∗ 1→ x ε∗ x’, and so the Lε∗1-counterpart of (df 1),
i.e., ‘x ε∗ 1 ↔ x ε∗ x’, are not theses of E∗1. In fact, the Lε∗1-structure
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A = 〈UA, ε
∗
A, 1A〉, where UA := {0, 1}, ε∗A := {〈0, 1〉} and 1A := 1, is a

model of E∗1 in which ‘x ε∗ 1→ x ε∗ x’ is not true.
Axiom (ε∗11) is the Lε∗1-counterpart of ‘x ε y → x ε 1’ belonging to

Th(E1). Axiom (ε∗12) is the Lε∗1-counterpart of axiom (ε12) of E1. How-
ever, we show that the Lε1-counterpart of (ε∗13) is not a thesis of E1.
Fact 7.1. The axioms of E∗1 are independent.

Proof: Firstly note that both Lε∗1-structures from Fact 5.1 are models
of (ε∗13). So (ε∗12) does not follow form (ε∗11) and (ε∗13); and (ε∗11)
does not follow from (ε∗12) and (ε∗13). Secondly, the Lε∗1-structure A =
〈UA, ε

∗
A, 1A〉, where UA := {0, 1, 2, 3}, ε∗A := {〈0, 3〉, 〈1, 3〉, 〈1, 2〉} and 1A :=

3 is a model of E∗ and the formulas (ε∗11) and (ε∗12). But any valuation
v for which v(x) = 2, v(y) = 1 and v(z) = 0 does not satisfy (ε∗13). 2

We will get similarly:
Corollary 7.2. The Lε1-counterpart of (ε∗13) is not a thesis of E1.

Proof: The Lε∗1-structure A = 〈UA, εA, 1A〉, where UA := {0, 1, 2, 3},
εA := {〈0, 0〉, 〈1, 1〉, 〈0, 3〉, 〈1, 3〉, 〈1, 2〉} and 1A := 3 is a model of E1. But
any valuation v for which v(x) = 2, v(y) = 1 and v(z) = 0 does not satisfy
the Lε-counterpart of (ε∗13). 2 Now, notice that:

Fact 7.3. All axioms of E∗1 are true in all special Lε∗1 structures.

Proof: Let F be any non-empty family of sets.
For (ε∗11): We take an arbitrary valuation v such that v(x) = X and

v(y) = Y . Assume that Xεεε???F Y . Then either ∅ 6= X ( Y or there is p ∈
⋃
F

such that X = {p} = Y . Of course, X,Y ⊆
⋃
F =: 111F . If

⋃
F = {p} then

X = {p} = 111F . If
⋃
F is not a singleton then X ( 111F . So in both cases

we have X εεε???F 111F .
For (ε∗12): We take an arbitrary valuation v such that v(x) = X.

Assume that 111F εεε???F X. Then there is a p ∈
⋃
F such that 111F = {p} = X.

So we have X εεε???F X.
For (ε∗13): We take an arbitrary valuation v such that v(x) = X.

Assume that for some Y0, Z0 ∈ F we have Y0 εεε
???
F X, Z0 εεε

???
F 111F and Z0 6εεε???F X.

We consider three cases.
(a) 111F is a singleton. Then X = 111F , since ∅ 6= X ⊆ 111F . So X εεε???F 111F .
(b) X is a singleton and 111F is not. Then ∅ 6= X ( 111F . So X εεε???F 111F .
(c) X is not a singleton. Then 111F is not a singleton and ∅ 6= Y0 ( X.

Moreover, ∅ 6= Z0 ( 111F and either Z0 = X or Z0 * X. So either ∅ 6= Z0 =
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X ( 111F or both ∅ 6= Z0 ( 111F and Z0 * X. So in both cases X 6= 111F .
Thus, ∅ 6= X ( 111F , i.e., X εεε???F 111F . 2

7.2. The quantifier-free theories E∗1o and (E∗1+(df ε))o

Let E∗1o and (E∗1+(df ε))o be quantifier-free theories in Foro
ε1 and Foro

εε∗1

having the same specific axioms as E∗1 and E∗1o+(df ε), respectively.
Directly from Theorem 1.1 we obtain:
Corollary 7.4. E∗1o is the quantifier-free fragment of E∗1. Moreover,
(E∗1+(df ε))o is the quantifier-free fragment of E∗1+(df ε).
Remark 7.1. The quantifier-free theory E∗1o can be treated as a pure
calculus of names with logical constants ‘ε∗’ and ‘1’.

The quantifier-free theory (E∗1+(df ε))o can be treated as a pure cal-
culus of names with logical constants ‘ε’, ‘ε∗’ and ‘1’. 2

7.3. Epimorphism theorems for E∗1 and E∗1+(df ε)

Theorem 7.5. An Lε∗1-structure is a model of E∗1 (resp. E∗1+(df ε)) iff
it is epimorphic to a special Lε∗1-structure (resp. Lεε∗1-structure).
Proof: “⇒” For the theory E∗1. Let A = 〈UA, ε

∗
A, 1A〉 be a model of E∗1.

We consider three cases.
The first case: there is no c such that c ε∗A 1A. Then, by (ε∗11), for

all a, b ∈ UA we have a 6ε∗A b. We define the function f : UA → {∅} by
f(a) := ∅, for any a ∈ UA. Moreover, we put F := {f(a) : a ∈ UA} = {∅}.
Of course, f(1A) = {∅} =

⋃
F =: 111F and for all a, b ∈ UA we have: a ε∗A b

iff f(a) εεε???F f(b). So f is an epimorphism from A onto 〈F ,εεεF ,111F 〉.
The second case: 1A ε∗A 1A. We define the function f : UA → {∅, {∅}},

f(a) :=
{
{∅} if a ε∗A a
∅ otherwise

and we put F := {f(a) : a ∈ UA} ⊆ {∅, {∅}}. Of course, f(1A) = {∅} =⋃
F =: 111F . Moreover, we show that for all a, b ∈ UA we have:

a ε∗A b iff f(a) εεε???F f(b).

Suppose that a ε∗A b. Then a ε∗A 1, by (ε∗11). Hence 1 ε∗A a, by (ε∗2), since
1A ε∗A 1A. Hence 1 ε∗A b, by (ε∗1). Therefore a ε∗A a and b ε∗A b, by (ε∗12).
Therefore f(a) = {∅} = f(b); and so f(a)εεε???F f(b). Conversely, suppose that
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f(a) εεε???F f(b). Then f(a) = {∅} = f(b). Hence a ε∗A a and b ε∗A b. So a ε∗A 1
and b ε∗A 1, by (ε∗1). Hence 1 ε∗A b, by (ε∗2), since 1A ε∗A 1A. Hence a ε∗A b,
by (ε∗1).

Thus, in this case f is an epimorphism from A onto 〈F ,εεεF ,111F 〉.
The third case: there is a c such that c ε∗A 1A and 1A 6εA 1A. As in the

“(a)⇒ (c)” part of the proof of Theorem 6.5, we defined the congruence ∼.
Moreover, we define the function f : UA → 2UA/∼ ,

f(a) :=


∅ if a 6ε∗A 1A and there is no c such that c ε∗A a

{[c] : c ε∗A a} ∪ {∅} a 6ε∗A 1A and for some c we have c ε∗A a
{[a]} if a ε∗A a (and a ε∗A 1A)
{[c] : c ε∗A a} ∪ {[a], ∅} if a 6ε∗A a and a ε∗A 1A

So f(1A) := {[c] : c ε∗A 1A} ∪ {∅}. We put F := {f(a) : a ∈ UA}.
We must show that f(1A) =

⋃
F =: 111F . This is due to the fact that

f(a) ⊆ f(1A), for any a ∈ UA. Firstly, ∅ ∈ f(1A). Secondly, if a ε∗A a,
then f(a) := {[a]} and a ε∗A 1A, by (ε∗11). Hence [a] ∈ f(1A); and so
f(a) ⊆ f(1A). Thirdly, if a 6ε∗A a and [c] ∈ f(a), then either c ε∗A a or both
c = a and a ε∗A 1A. In both cases c ε∗A 1A. Thus, f(a) ⊆ f(1A).

Therefore, we obtain f(1A) ⊆
⋃
F ⊆ f(1A).

Now we show that for all a, b ∈ UA:

a ε∗A b iff f(a) εεε???F f(b).

Suppose that a ε∗A b. Then a ε∗A 1A, by (ε∗11). Hence f(a) 6= ∅ and a 6= 1A,
by the assumption. We consider five possibilities.

(1) b ε∗A b. Then b ε∗A a, by (ε∗2). Moreover, a ε∗A a, by (ε∗1). Hence, by
(ε∗1), a ∼ b; so [a] = [b] and f(a) = {[a]} = {[b]} = f(b).

(2) a ε∗A a and b 6ε∗A 1A (and so b 6ε∗A b). Then f(a) = {[a]}, [a] 6= [b];
and so ∅ 6= f(a) ( f(b) := {[c] : c ε∗A b} ∪ {∅}.

(3) b 6ε∗A b, a ε∗A a and b ε∗A 1A. Then f(a) = {[a]}, [a] 6= [b], [b] /∈ f(a);
and so ∅ 6= f(a) ( f(b) := {[c] : c ε∗A b} ∪ {[b], ∅}.

(4) a 6ε∗A a and b 6ε∗A 1A (and so b 6ε∗A b). Then b 6ε∗A a, by (ε∗1) and the
assumption. So [a] 6= [b]. Moreover, f(a) := {[c] : c ε∗A a} ∪ {[a], ∅} and
f(b) := {[c] : c ε∗A b} ∪ {∅}. Therefore, ∅ 6= f(a) ( f(b).

(5) a 6ε∗A a and b ε∗A 1A and b 6ε∗A b. Then b 6ε∗A a, by (ε∗1) and the
assumption. So [a] 6= [b]. Moreover, f(a) := {[c] : c ε∗A a} ∪ {[a], ∅} and
f(b) := {[c] : cε∗Ab}∪{[b], ∅}. Hence [b] /∈ f(a). Therefore, ∅ 6= f(a) ( f(b).

Thus, in all five cases we have f(a) εεε???F f(b).
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Conversely, let f(a)εεε???F f(b), i.e., either (1) both f(a) is a singleton and
f(a) = f(b), or (2) ∅ 6= f(a) ( f(b). Then, in both cases, for some c0 we
have c0 ε

∗
A a. Hence c0 ε

∗
A 1A.

(1) Then f(a) = {[a]} = {[b]} = f(b). Hence a ε∗A b.
(2) We consider the following cases.
(2a) a ε∗A a. Then ∅ 6= f(a) := {[a]} ( f(b) 6= {[b]}. Hence b 6ε∗A b; and

so a � b, i.e., [a] 6= [b]. Hence a ε∗A b.
(2b) a 6ε∗A a. We show that a ε∗A 1A. (It is also when a ε∗A a.)
Indeed, suppose that a 6ε∗A 1A, i.e., ∅ 6= f(a) := {[c] : c ε∗A a} ∪ {∅}.

But we have ∅ 6= f(a) ( f(b) ⊆ f(1A). Hence ∅ 6= f(a) ( f(1A). So
∅ 6= {[c] : c ε∗A a} ∪ {∅} ( {[c] : c ε∗A 1A} ∪ {∅}. So there is c1 ∈ UA such
that c1 ε∗A 1A and c1 6ε∗A a. Moreover, since we have c0 ε∗A a, by (ε∗13), we
obtain a contradiction: a ε∗A 1A.

Therefore ∅ 6= {[c] : c ε∗A a} ∪ {[a], ∅} ( f(b). Hence [a] ∈ f(b). In the
case where b 6ε∗A 1A we have a ε∗A b. In the case where b ε∗A 1A either a ε∗A b
or [a] = [b]; and so also a ε∗A b.

For the theory E∗1+(df ε). As for the theory E∗+(df ε) in the proof
of Theorem 6.5.

“⇐” By Theorem 6.5 and Fact 7.3. 2

Thus, we obtain (as Theorem 2.5):
Theorem 7.6. For any ϕ ∈ Forε∗1 (resp. ϕ ∈ Forεε∗1): ϕ is a thesis of
E∗1 (resp. E∗1+(df ε)) iff ϕ is true in any special Lε∗1-structure (resp.
Lεε∗1-structure).
Remark 7.2. In connection with the above theorem, an open formula from
Foro

ε∗1 (resp. Foro
εε∗1) is a thesis of a pure calculus of names E∗1o (resp.

(E∗1+(df ε))o) iff it is true in any model 〈U, d〉. 2

7.4. A reconstruction of E1 in E∗1

In Lεε∗1 we can build definitional extensions of two theories E∗+(ε∗11)+
(ε∗12) and E∗1 by adding the definition (df ε). Notice that
Fact 7.7. Th(E1) ( Th(E∗+(ε∗11)+(ε∗12)+(df ε)) ( Th(E∗1+(df ε)).
So the theory E∗1+(df ε) is a proper extension of E1.
Proof: Firstly, (ε1)–(ε3) are theses of E∗+(df ε). Secondly, from (ε∗11)
and (df ε) we obtain (ε11), and from (ε∗12) and (df ε) we obtain (ε12).
Thirdly, by Fact 7.1, the formula (ε∗13) is not a thesis of E∗+(ε∗11)+(ε∗12).
So it is not a thesis of E∗+(ε∗11)+(ε∗12)+(df ε). 2
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However, in the light of theorems 5.9 and 7.6, the theories E1 and
E∗1+(df ε) have the same theses from the language Lε1, i.e., we obtain:

Forε1 ∩ Th(E∗1+(df ε)) = Th(E1). (7.1)

7.5. A reconstruction of Λ1 in some extension of E∗

If we use the language Lεε∗1 then we can extend theories in Lε∗1 using
formulas from Lε1. Let us remind that the formula (←$1) is not a thesis of
E1. So, by (7.1), it is not a thesis of E∗1+(df ε). Moreover, notice that:
Fact 7.8. All of (ε∗11)–(ε∗13) do not belong to Th(E∗+(df ε)+(←$1)).
Proof: The Lεε∗1-structure A = 〈UA, εA, ε

∗
A, 1A〉, where UA := {1, 2},

ε∗A := ∅, ε∗A := {〈1, 2〉} and 1A := 1, is a model of E∗+(df ε∗)+(←$1) in
which (ε∗11) and (ε∗12) are not true.

Moreover, Lεε∗1-structure A = 〈UA, εA, ε
∗
A, 1A〉, where UA := {0, 1, 2,

3}, ε∗A := ∅, ε∗A := {〈0, 1〉, 〈1, 2〉} and 1A := 1, is a model of E∗+(df ε∗)+
(←$1) in which (ε∗13) is not true. 2

In virtue of (6.1) and Theorem 5.7, we obtain that E∗+(df ε)+(←$1)
is a proper extension of Λ1, i.e.,

Th(Λ1) ( Th(E∗+(df ε)+(←$1)). (7.2)

However, in the light of theorems 3.4 and 7.6, the theories Λ1 and E∗+
(df ε)+(←$1) have the same theses from the language Lε1, i.e., we obtain:

Th(Λ1) = Forε1 ∩ Th(E∗+(df ε)+(←$1)). (7.3)

In fact, by theorems 3.4 and 7.6, all theses of E∗+(df ε)+(←$1) are true in
all s-special Lεε∗1-structures. So if ϕ belongs to Forε1∩Th(E∗+(df ε)+(←$)),
then it is true in all s-special Lε1-structures. Hence, by Theorem 3.4, ϕ is
a thesis of Λ.

8. Defining the predicate ‘ε∗’ by ‘ε’

As the definition of ‘ε∗’ by ‘ε’ we adopt the following non-open formula:

x ε∗ y ↔ (x ε y ∧ y ε x) ∨
(∃u u ε x ∧ ∀u(u ε x→ u ε y) ∧ ¬∀u(u ε y → u ε x))

(df ε∗)
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8.1. The definition (df ε∗) in the theory E

Let E+(df ε∗) be a definitional extension of E by adding (df ε∗). We prove:
Fact 8.1. The theory E+(df ε∗) is a proper extension of E∗.
Proof: For (ε∗1): Directly by (df ε∗) we obtain:
x ε∗ y ∧ y ε∗ z ↔ ((∃uu ε x ∧ ∀u(u ε x→ u ε y) ∧ ∃u(u ε y ∧ ¬ u ε x)) ∨

(x ε y ∧ y ε x)) ∧ ((∃uu ε y ∧ ∀u(u ε y → u ε z) ∧
∃u(u ε z ∧ ¬ u ε y)) ∨ (y ε z ∧ z ε y))

Hence, by (ε2), we have:
xε∗y∧yε∗ z → (xεz∧zεx)∨(∃uuεx∧∀u(uεx→ uεz)∧∃u(uεz∧¬uεx))
For (ε∗2): Directly by (df ε∗) we obtain:
x ε∗ y ∧ y ε∗ y ↔ ((∃uu ε x ∧ ∀u(u ε x→ u ε y) ∧ ¬∀u(u ε y → u ε x)) ∨

(x ε y ∧ y ε x)) ∧ y ε y
↔ (∃uu ε x ∧ ∀u(u ε x→ u ε y) ∧

¬∀u(u ε y → u ε x) ∧ y ε y) ∨ (x ε y ∧ y ε x ∧ y ε y)
However, the first component of the above disjunction is contradictory. In
fact, if y ε y and for some u1 we have u1 ε x, then also u1 ε y. So, by (ε3),
y ε u1. So, by (ε2), we obtain: ∀u(u ε y → u ε x). Thus, we obtain the
following (the first one by (ε1); the second one by (df ε∗)):

x ε∗ y ∧ y ε∗ y ↔ y ε x ∧ x ε y ∧ y ε y ↔ y ε x ∧ x ε y

x ε y ∧ y ε x → y ε∗ x

So we also have ‘x ε∗ y ∧ y ε∗ y → y ε∗ x’. 2

Notice that directly from (df ε∗) we obtain the formula (%). However,
Fact 8.2. The implication ‘x ε y → x ε∗ y’ is not a thesis of E+(df ε∗).9
Hence we obtain:

(df ε) /∈ Th(E+(df ε∗))
Th(E∗+(df ε)) * Th(E+(df ε∗)).

Proof: The Lεε∗ -structure A = 〈UA, εA, ε
∗
A〉, where UA := {0, 1}, εA :=

{〈0, 0〉, 〈0, 1〉} and ε∗A := {〈0, 0〉} is a model of E+(df ε∗) in which ‘x ε y →
x ε∗ y’ is not true. So also (df ε) is not true in the model. 2

9But the implications ‘x ε x → x ε∗ x’ and ‘x ε∗ x ∧ x ε∗ y → x ε y’ are theses of
E+(df ε∗).
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We obtain:
Fact 8.3. (df ε∗) /∈ Th(EO+(df ε)+(ε∗1)+(ε∗2)). So (df ε∗) /∈ Th(E∗+
(df ε)+(←$1)).
Proof: The Lεε∗ -structure A = 〈UA, εA, ε

∗
A〉, where UA := {0, 1} and

ε∗A := {〈0, 1〉} and ε∗A = ∅, is a model of EO and formulas (df ε), (ε∗1)
and (ε∗2). We have 0 ε∗A 1, but the substitution [x/0, y/1] does not satisfy
the right-side of the equivalence (df ε∗). 2

Thus, although Th(E) ( Th(E∗+(df ε)), we have:

Th(E+(df ε∗)) * Th(E∗+(df ε)).

8.2. The definition (df ε∗) in the theories Λ and Λ1

First we notice:
Fact 8.4. In any s-special Lε-structure, the predicate ‘ε∗’ defined by (df ε∗)
is interpreted by the relation εεε???F defined by (df εεε???F ). So (df ε∗) is true in
any s-special Lεε∗-structure 〈F ,εεεF ,εεε???F 〉.
Proof: Suppose that F is a non-empty s-family of sets and R ⊆ F2 is
an interpretation of the predicate ‘ε∗’ defined by (df ε∗). We show that
R = εεε???F . For all X,Y ∈ F we obtain: X R Y iff either (i) both X εεεF Y and
Y εεεF X, or (ii) both for some X1 ∈ F we have X1 εεεF X and for all Z ∈ F :
if Z εεεF X then Z εεεF Y , and for some X2 ∈ F we have X2εεεF Y and X2 6εεεF X.

In the case (i): X is a singleton and X = Y . So we have X εεε???F Y .
In the case (ii): (a) for some singleton X1 ∈ F we have X1 ⊆ X; (b)

for any singleton Z ∈ F such that Z ⊆ X we have Z ⊆ Y ; (c) for some
singleton X2 ∈ F we have X2 ⊆ Y and X2 * X. By (a), X 6= ∅. By (b)
X ⊆ Y , since F is an s-family of sets. By (c), X * Y . So we have X εεε???F Y .

Conversely, if X εεε???F Y then either case (i) or case (ii) holds. 2

In virtue of Theorem 2.4 and Fact 8.4, for the theory Λ+(df ε∗) we get:
Theorem 8.5. An Lεε∗-structure is a model of Λ+(df ε∗) iff it is epimor-
phic to an s-special Lεε∗-structure.

Hence we can prove (as Theorem 2.5):
Theorem 8.6. ϕ belongs to Th(Λ+(df ε∗)) iff ϕ is true in any s-special
Lεε∗-structure.

Thus, in virtue of Fact 8.3 and theorems 6.6 and 8.6 we get:
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Fact 8.7. Th(E∗+(df ε)) ( Th(Λ+(df ε∗)) and Th(E∗+(df ε)+(←$1)) (
Th(Λ1+(df ε∗))
Proof: Suppose that ϕ is a thesis of E∗+(df ε). Then, in virtue of Theo-
rem 6.6, ϕ is true in all special Lεε∗ -structures. So ϕ is true in all s-special
Lεε∗ -structures. Hence ϕ ∈ Th(Λ+(df ε∗)), by Theorem 8.6.10

Moreover, we use Fact 3.2. 2

Finally, we prove that:
Fact 8.8. Th(E∗+(df ε)+(df ε∗)+(←$1)) = Th(Λ1+(df ε∗)).
Proof: Firstly, by (7.2), we have Th(Λ1+(df ε∗)) ⊆ Th(E∗+(df ε)+(←$1)
+(df ε∗)). Secondly, by Fact 8.7, we have Th(E∗+(df ε)+(←$1)) ⊆ Th(Λ1
+(df ε∗)). 2
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