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Abstract

We prove that there is infinitely many tabular modal logics extending KB.Alt(2)

which have interpolation.
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1. Introduction

There is a huge literature on interpolation in modal logics, see [1], pp. 443–
470. The best known is the result by Maksimova [6] who showed that there
is finitely many normal extensions of S4 enjoying interpolation. Despite
this, little is known about interpolation in intransitive modal logics (that
are not extensions of S4). We try to fill the gap. We prove that there exists
infinitely many logics without interpolation both in NEXT (KTB.42) and
NEXT (KTB.Alt(3)) see [4], [5] appropriately.

In this paper we study some normal extensions of the modal logic
KB := K ⊕ B, where B := p → �♦p. The logic KB is complete with
respect to the class of symmetric Kripke frames.

The paper is a continuations of [4] and [5] concerning the interpolation
in NEXT (KTB). In [4] an infinite family of logics without interpolation
is described. The logics studied there are weakly transitive and belong to
NEXT (KTB.42). In [5] some, mostly negative, results concerning inter-
polation for intransitive logics are included. The logics considered there
are characterized by reflexive, symmetric and linear Kripke frames. We
considered extensions of KTB.Alt(3) := K⊕ T ⊕B ⊕ alt3, with

T := �p→ p

alt3 := �p ∨�(p→ q) ∨�((p ∧ q)→ r) ∨�((p ∧ q ∧ r)→ s).

http://dx.doi.org/10.18778/0138-0680.47.3.02


160 Zofia Kostrzycka

The axiom (alt3) is a special case of a more general (altn), n ≥ 1:

altn := �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ pn)→ pn+1).

It is proven in [5] that the logic KTB.Alt(3) does not have interpola-
tion and it has only two normal extensions having this property. These are
the following: L(◦) = Triv and L(◦−−◦) – logics determined by one-point
or two-point cluster, appropriately. One may notice that the situation is
analogous to that of S5, see [1], p. 463.

In this paper we contrast the negative results from [5] for
NEXT (KTB.Alt(3)) with positive ones for NEXT (KB.Alt(2)). The
common feature of the Kripke frames for both the families is their linear-
ity. However, in the former case the appropriate Kripke frames are chains
of reflexive points, whereas in the latter one, they are chains of (possibly)
irreflexive points.

2. Preliminaries

Let us recall the basic definitions. The symbol V ar(α) means the set of all
propositional variables in the formula α.

Definition 1. A logic L has the Craig interpolation property (CIP) if for
every implication α → β in L, there exists a formula γ (interpolant for
α→ β in L) such that

α→ γ ∈ L and γ → β ∈ L

and V ar(γ) ⊆ V ar(α) ∩ V ar(β).

Definition 2. A logic L has interpolation for deducibility (IPD) if for any
α and β the condition α `L β implies that there exists a formula γ such
that

α `L γ and γ `L β

and V ar(γ) ⊆ V ar(α) ∩ V ar(β).

It is well known that (CIP) together with (MP) and deduction theorem
implies (IPD). It is known that K, T, K4 and S4 have (CIP), see Gab-
bay [3]. Also the logics from NEXT (S4) are well recognized as regards
interpolation (see [6], also [1], pp. 462–463). In particular, S5 has (CIP).
The last fact can be proven by applying a very general method of construc-
tion of inseparable tableaux (see i.e. [1], pp. 446–449). The same method
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can be applied in the case of KTB and KB. Therefore, without getting
into details, we conclude that both the logics KTB and KB have (CIP).
The method of construction of inseparable tableaux is not applicable for
the logics KTB.Alt(n) and KB.Alt(n), n ≥ 2. In [5] it is proven that
KTB.Alt(3) does not have (CIP).

In the next section we shall look for tabular logics from
NEXT (KB.Alt(2)) having (IPD) or (CIP). Our approach is purely se-
mantic. We shall consider logics determined by classes of Kripke frames K.
Formally, the logic determined by a class K is defined as follows:

L(K) := {α ∈ Form : F |= α for each F ∈ K} .

Note that the class K may consist of one frame only. Hereafter symmet-
ric Kripke frames will be called KB-frames. Symmetric and linear Kripke
frames are said to be KB.Alt(2)-frames.

The properties (CIP) and (IPD) have an appropriate algebraic char-
acterization, (see [6], [2]). The symbol V (L) denotes the variety of modal
algebras characterizing the logic L. From [6] the following equivalence is
known for any logic L ∈ NEXT (K): L possesses (CIP) iff V (L) has the
superamalgamation property. In [2] it is shown that L possesses (IPD) iff
V (L) has the amalgamation property.

By theory of duality between Kripke frames and modal algebras, amal-
gamation and superamalgamation properties are transformed into appro-
priate properties for classes K of Kripke frames. We need to recall the
notion of p-morphism, first.

Definition 3. Let F1 := 〈W1, R1〉 and F2 := 〈W2, R2〉 be Kripke frames.
A map f : W1 → W2 is a p-morphism from F1 to F2, if it satisfies the
following conditions:

(p1) f maps W1 onto W2,

(p2) for all x, y ∈W1, xR1y implies f(x)R2f(y),

(p3) for each x ∈W1 and for each a ∈W2, if f(x)R2a then

there exists y ∈W1 such that xR1y and f(y) = a.

It is said also that the frame F1 is reducible to F2 or that the frame F2 is

a p-morphic reduct of F1.

The next lemma is a folklore in logic:
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Lemma 1. Let F1, F2 be Kripke frames. If there exists a p-morphism from
F1 to F2 then L(F1) ⊆ L(F2).

For some special Kripke frames Lemma 1 may be strengthened to an
equivalence. The Jónsson’s lemma, the congruence extension property of
modal algebras, finiteness and simplicity of the dual algebra for F1 are
exploited. The proof is analogous to the one from [7]. We get as follows:

Lemma 2. Let F1, F2 be finite and connected KB-frames. Then L(F1) ⊆
L(F2) iff there exists a p-morphism from F1 onto F2.

Then we get the amalgamation property for class of frames (APK)

Definition 4. For any F0, F1 and F2 in class K and for any p-morphism
f1 : F1 → F0 and f2 : F2 → F0 there exist F in K and p-morphisms
g1 : F→ F1 and g2 : F→ F2 such that f1 ◦ g1 = f2 ◦ g2. See Figure 1.

Superamalgamation property for frames except (APK) requires the ad-
ditional condition (SAPK):

∀x∈F1∀y∈F2 [f1(x) = f2(y) ⇒ ∃z∈Fg1(z) = x ∧ g2(z) = y].

F1

F0 F

F2

f1 g1

g2f2

Fig. 1.

Dealing with logics determined by classes of finite frames we have the
following equivalence.

Theorem 1. Let L ∈ NEXT (KB), L be determined by a class K of finite
Kripke frames and K be closed under p-morphisms. For the logic L the
following is equivalent:
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• L possesses (CIP),

• K has the superamalgamation property (SAPK).

Theorem 2. Let L ∈ NEXT (KB), L be determined by a class K of finite
Kripke frames and K be closed under p-morphisms. For the logic L the
following is equivalent:

• L possesses (IPD),

• K has the amalgamation property (APK).

3. Interpolation for tabular logics from
NEXT (KB.Alt(2))

Let us recall that there are only two extensions of KTB.Alt(3) with the
interpolation property. In contrast, we shall prove that there is infinitely
many tabular logics in NEXT (KB.Alt(2)) with interpolation. Let us
remind that the logic KB.Alt(2) is determined by the class of symmetric
Kripke frames (we allow irreflexivity) where each point sees at most two
points (including itself). Hence if x is irreflexive, then it may see two
distinct points; if it is reflexive then it can see only one distinct point.
The Kripke frames for KB.Alt(2) may be chains (possibly infinite) with
irreflexive inside points. See Figure 2 where eight-point KB.Alt(2)-frames
are presented.

Fig. 2.

In the class of KB.Alt(2)-frames we shall distinguish finite chain frames
with one of the end point being reflexive. We call them almost irreflexive
chains. Formally:
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Definition 5. The almost irreflexive chain frame Chm is defined as fol-
lows: Chm := 〈{1, 2, ...,m}, R〉, m ≥ 1 and

R := {(i, j), i, j = 1, 2, ..., n, |i− j| = 1} ∪ {(1, 1)}.

On may see that Ch1 = ◦.
Below, we shall describe the p-morphisms between almost irreflexive

chain frames {Chm,m ≥ 1}.
Lemma 3. There is a unique p-morphism from Ch3m−1 onto Chm for any
m ≥ 1.

Proof: Let Chm = 〈{1, 2, ...,m}, R〉 and Ch3m−1 = 〈{1, 2, ..., 3m− 1}, S〉.
Point 1 is the only reflexive point in both Chm and Ch3m−1. We define:

f(1) = 1 , f(2) = 2, f(3) = 3, ... f(m) = m ,

f(m+ 1) = m− 1, f(m+ 2) = m− 2, ... f(2m− 1) = 1

f(2m) = 1, f(2m+ 1) = 2, f(2m+ 2) = 3, ... f(3m− 1) = m .

One may easily see that f is indeed a p-morphism from Ch3m−1 onto
Chm. For m = 3 the p-morphism f is presented in Figure 3.

We shall explain why the p-morphism f is a unique one. First, from
the condition (p2) of Definition 3 we know that the reflexive point 1 from
Ch3m−1 must be mapped onto 1 from Chm.

Second, we prove that any function f gluing two neighboring irreflexive
points in Ch3m−1 and mapping them onto some irreflexive point from Chm
is not a p-morphism. Suppose, on the contrary, that iSi+ 1 for 1 < i ≤
3m − 4, m ≥ 2 and f(i) = f(i+ 1) = j, j 6= 1. Then we get jRj and
it is a contradiction. Let us notice that gluing two neighboring irreflexive
points by a p-morphism causes reflexivity of the point they are mapped
onto. Similarly, one may prove that any function gluing more than two
neighboring points in Ch3m−1 and mapping them onto any point from Chm
is not a p-morphism.

Then we see that the p-morphism from Ch3m−1 onto Chm has to start
at 1 and then has to move along Ch3m−1 with a short (1-step) stop at the
final point m and a long (2-step) stop at 1 and further until m. The point
m is the final point of the whole journey.
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Fig. 3.

One may notice that the frame Ch3m−1 is the minimal almost irreflexive
chain frame which can be non-trivially reducible onto Chm, m ≥ 1.

We may generalize the above lemma by proving the existence of a
suitable p-morphism from Chm+(2m−1)k onto Chm, for k ≥ 1. Then the
frame with m+ (2m−1)k points is folded k-times. See Figure 4 for m = 3.

Lemma 4. There is a unique p-morphism from Chm+(2m−1)k onto Chm for
any m, k ≥ 1.

Proof: Obvious.
The above lemma may be strengthened to the following equivalence.

Theorem 3. Let n ≥ 2. Then Chn is reducible onto F iff F = Chm for
some k ≥ 0 and m ≥ 1 such that n = m+ (2m− 1)k.

Proof: (⇐) See Lemma 4.
(⇒)

Case 1. F = ◦. It means that F = Ch1. It is easy to observe that any
almost irreflexive frame Chn is reducible onto Ch1. Each natural number n
can be written as n := 1 + k, k ≥ 0.
Case 2. F 6= ◦. Let us observe that F as a reduct of some Chn, n ≥ 2 must
be a KB.Alt(2)-frame. It is because any p-morphism can not move out
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outside the class of KB.Alt(2)-frames. We shall prove that F is an almost
irreflexive chain frame.

Let Chn = 〈{x1, x2, ..., xn}, R〉 with x1 being the reflexive point and
n ≥ 3. From the condition (p2) of Definition 3 we see that x1 must be
mapped onto a reflexive point. Then F has to include at least one reflexive
point (and it must be the end point). Let F = 〈{y1, y2, ..., ym}, S〉 and point
y1 is reflexive. Because F 6= ◦ then m ≥ 2. We show that the point ym must
be irreflexive. Suppose, on the contrary, that ym for m ≥ 2 is a reflexive
point, f(x1) = y1, and f(xn) = ym. Then f(xn)Sym and from (p3) of
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Definition 3 we need another point, say xk in Chn such that xkRxn to map
it onto ym. Hence k = n − 1 and f(xn−1) = ym. Further we have two
possibilities for the point xn−2: f(xn−2) = ym−1 or f(xn−2) = ym. But in
both these cases we get f(xn)Sym−1 and it means that there should exist an
element xsRxn such that f(xs) = ym−1. So, we must take s = n− 1. This
leads to a contradiction because we have already defined: f(xn−1) = ym.
Analogously, one may prove that the irreflexive point xn from Chn can not
be mapped onto the reflexive point y1 from F. Hence, indeed F = Chm for
some m < n.

Further, we shall prove the existence of k ≥ 0 and m ≥ 1 such that
n = m+ (2m− 1)k.

Defining the needed p-morphism we have to map x1 onto y1. Then the
mapping goes further along the Chm, turn over at ym. Then we need m−1
points ym+1, ..., y2m−1 to reach again the point x1. Because it is reflexive
then we map onto it two consecutive points x2m−1 and x2m. The mapping
can not stop at this point, we need again m−1 points to reach the point ym
in Chm. So, we see that in such a case n = m+(m−1)+1+(m−1) = 3m−1.
But if n > 3m − 1 then the whole journey repeats and we need another
(m−1)+1+(m−1) points. We would get n = 3m−1+(m−1)+1+(m−1) =
5m− 2 and we see that after two ‘full turns’ k = 2 and n = m+ (2m− 1)2.
If n > m+ (2m− 1)2 we have to continue the mapping and so on.

Depending on the number k of ‘full turns’ we need m+(2m−1)k points
in the larger frame.

Let P := {n ∈ N : ∃p≥3 n = p+1
2 & p− prime}.

Lemma 5. There is infinitely many distinct logics in NEXT (KB.Alt(2))
which are L(Chn), n ∈ P.

Proof: Let us take the sequence p1, p2, ... of the consecutive prime num-
bers larger than 2 and consider the following almost irreducible frames
Ch2, Ch3, Ch4, Ch6, Ch7, Ch9, Ch10, Ch12... , indexed with numbers from
P. We shall prove that each of them is reducible onto ◦, only. Suppose, on
the contrary, that there is some Ch p+1

2
reducible onto some Chm, m ≥ 2

(see Theorem 3). We get that there must exist k ≥ 1 such that it holds:
p+1
2 = m+ (2m− 1)k. After simple calculation we get:

p+ 1 = 2m+ (2m− 1)2k ,

p = 2m− 1 + (2m− 1)2k ,

p = (2m− 1)(2k + 1) .
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But in the last line we get a contradiction since p is a prime number. From
the above and from Lemma 2 we conclude that L(Chn) 6⊂ L(Chm) and
L(Chm) 6⊂ L(Chn) for n 6= m, n,m ∈ P.

Corollary 1. If n ∈ P then there is no other reduct of Chn than Ch1 = ◦.
Let us go back to the interpolation property. We are ready to prove:

Theorem 4. All the logics L(Chn) with n ∈ P have (IPD).

Proof: The logic L(Chn) with n ∈ P is determined by the the class con-
sisting of one almost irreflexive chain frame. After closing this class un-
der p-morphisms we add the one point frame ◦. Suppose we take as F1

and F2 the frame Chn (twice) and as F0 the frame ◦. The p-morphisms
f1 : F1 → F0 and f2 : F2 → F0 glue all the points into ◦. As F we have
to again take Chn. The p-morphisms g1 : F → F1 and g2 : F → F2 are
isomorphisms. Since F0 = ◦ then obviously f1 ◦ g1 = f2 ◦ g2.

One may notice that other choices from {Chn, ◦}, n ∈ P for Fi, i :=
0, 1, 2 lead to the same equalities. We see that in all these cases the classes
of frames have (APK), hence the logics determined by them have (IPD),
(see Theorem 2).

One may easily see that the logics L(Chn) with n ∈ P do not have
(CIP). From Lemma 5 and Theorem 4 we get:

Corollary 2. There is infinitely many tabular logics with (IPD) in
NEXT (KB.Alt(2)).

One may ask question about interpolation of the other logics than
L(Chn) with n ∈ P. They are the following: L(Ch5), L(Ch8), L(Ch11),... .
The answer is a positive one.

Lemma 6. The logics L(Chn) with n ∈ N \ P have (IPD).

Proof: Let n ∈ N \ P and let Chn ∈ K. First, we closed K under
p-morphisms. From Theorem 3 we know that if Chn is reducible then
n = m+ (2m− 1)k for some k ≥ 0 and m ≥ 1. The reduct of Chn is then
the frame Chm. Because n ∈ N \ P then m ≥ 2.

Case 1. Suppose that there is not another m′ ≥ 2 such that n =
m′ + (2m′ − 1)k′ for some k′ ≥ 0 (and m′ ≥ 2). Then K = {Chn, Chm, ◦}.
For any choices of frames from K for F1, F2, F0 and F (APK) holds.

Such a situation takes place, i.e. for Ch5 which is reducible onto Ch2.
In turn Ch2 is reducible only onto ◦.
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Case 2. Suppose that there are another pair of numbers k′ ≥ 0 and
m′ ≥ 1 such that n = m′ + (2m′ − 1)k′ (m′ 6= m, m′ ≥ 2) and Chn is
reducible also onto the frame Chm′ .

Sub-case 2a. Suppose that the common reduct of Chm and Chm′ is
only Ch1 = ◦. Then K = {Chn, Chm,Chm′ , ◦}. To show that (APK) holds
we have to choose as the frames F1 and F2 some frames from K. The less
trivial choice is: F1 = Chm and F2 = Chm′ . Then obviously F0 = ◦. Then,
we have to select: F = Chn. Because F0 = ◦ then (APK) holds. For other
choices (APK) holds as well.

Such a situation takes place, i.e. for Ch8 which is reducible onto Ch3
and Ch2. In turn Ch3 and Ch2 are both reducible only onto ◦.

Sub-case 2b. Suppose that the common reduct of Chm and Chm′ is
some Chk, k 6= 1. Again the less trivial choice is: F1 = Chm, F2 = Chm′

and F0 = Chk. Then we select: F = Chn. We denote the existing reductions
as follows:

f1 : Chm → Chk, f2 : Chm′ → Chk,

g1 : Chn → Chm, g2 : Chn → Chm′ ,

and all the functions: f1, f2, g1, g2 are unique. Then their superpositions
f1 ◦ g1 and f2 ◦ g2 are unique and f1 ◦ g1 = f2 ◦ g2. For other choices of
frames (APK) holds as well.

Such a situation takes place, i.e. for Ch53 which is reducible onto Ch8
and Ch11. In turn Ch8 and Ch11 are both reducible only onto Ch2.

We allow here that k = m or k = m′. The example is the following:
n = 14, m = 5, m′ = k = 2. Then f2 is isomorphism.
Corollary 3. All the logics L(Chn) with n ∈ N have (IPD).

We proved that there exist countably infinitely many logics with (IPD)
in NEXT (KB.Alt(2)). It is quite opposite than in NEXT (KTB.Alt(3))
where there are only two logics with interpolation.

It seems that reflexivity of Kripke frames negatively affects the amal-
gamation property (and hence interpolation for the determined logics).

The following problems are left open:

Problem 1. Whether the logic KB.Alt(2) has interpolation?

Problem 2. Is there a tabular logic (different from L(◦) or L(◦ − −◦))
with interpolation in NEXT (KTB.Alt(n)) with n ≥ 4?
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