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Abstract

We provide simple algebraic proofs of two important facts, due to Zakharyaschev

and Esakia, about Grzegorczyk algebras.
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1. Introduction

Let us consider the modal formula

grz = 2(2(p → 2p) → p) → p.

Let GRZ be the normal extension of S4 modal logic axiomatized by grz
[11]. Let INT be the intuitionistic logic. The importance of GRZ follows
from the fact that it is a largest normal extension of S4 into which INT
embeds via the Gödel-Tarski translation. In fact much more is true. The
celebrated Blok-Esakia theorem states that there is one to one correspon-
dence between the extensions of INT and the normal extensions of GRZ.
Moreover, this correspondence is given, in some strict sense, by the Gödel-
Tarski translation [6, 15, 18].

This paper grew out of work on algebraic approach to the Blok-Esakia
theorem for universal classes [17]. Grzegorczyk algebras play a prominent
role there. They form a variety which gives an algebraic semantics for GRZ.
Here we presents new, simple and purely algebraic proofs of two important
fact about them. The first, proved by Zakharyaschev in [19], states that an
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interior algebra is a Grzegorczyk algebra iff its dual descriptive frame is not
subreducible to a two element cluster (Theorem 2.4). The second result is
due to Esakia [8]. It characterizes the free Boolean extensions of Heyting
algebras as those interior algebras which do not admit a stable homomor-
phism onto a four element simple interior algebra (the dual algebra of a
two element cluster) (Theorem 3.2). This fact was proved with the use of
Esakia duality for interior algebras. The free Boolean extensions of Heyting
algebras generate the variety of Grzegorczyk algebras. They are the key
objects in the algebraic proof of the Blok-Esakia theorem [3, 17, 18].

2. Induced stable homomorphisms

We assume that the reader is familiar with basic properties of Boolean
algebras [10]. An interior algebra (aka closure algebra and topological
Boolean algebra) is a Boolean algebra endowed with an additional unary
operation 2 such that for all its elements a, b we have 2(a∧ b) = 2a∧2b,
21 = 1 and 22a = 2a 6 a. Let 3a = ¬2¬a. An element a of an interior
algebra M is open if 2a = a and closed if a = 3a. For an interior algebra
there is one to one correspondence between its congruences and its open
filters, i.e., Boolean filters closed under 2 operation. It is given by θ 7→ 1/θ
and F 7→ θF , where (a, b) ∈ θF iff a ↔ b ∈ F (here θ is a congruence and
F is an open filter). For an interior algebra, an element b belongs to the
open filter generated by a iff 2a 6 b. It follows that an interior algebra
is subdirectly irreducible iff it has a largest non-top open element. And
an interior algebra is simple iff it has exactly two open elements 0 and 1.
A simple four-element interior algebra will be denoted by S2.

An interior algebra M is a Grzegorczyk algebra if it satisfies

2(2(a → 2a) → a) 6 a (Grz)

for every a ∈ M [8]. Note that in every modal algebra satisfying the
reflexivity condition 2x 6 x we have 2(a → 2a) 6 a → 2a. Hence also
a− 2a 6 ¬2(a → 2a). Thus

a ∨ ¬2(a → 2a) = 2a ∨ (a− 2a) ∨ ¬2(a → 2a) = 2a ∨ ¬2(a → 2a).

It follows that an interior algebra is a Grzegorczyk algebra iff

2(2(a → 2a) → 2a) 6 2a (Grz2)

holds for every a ∈ M (this alternative axiomatization may be found in
[3]).
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Let us recall the notion of stable homomorphisms. Let M and N be
interior algebras. We say that a mapping f : M → N is a stable homomor-

phism from M into N if it is a Boolean homomorphism and

f(2a) 6 2f(a)

holds for every a ∈ M . In such a case, we write f : M →s N. The reader
may consult e.g. [2, 9] for the importance of stable homomorphisms in
modal logic (in [9] they are called continuous morphism). Note that a
stable homomorphism does not need to be a homomorphism. For instance
S2 does not admit a homomorphism onto a two-element interior algebra,
but it admits such stable homomorphisms.

Lemma 2.1. Let M be an interior algebra and S be a simple interior alge-

bra. Then the mapping f : M → S is a stable homomorphism if and only if

it is a Boolean homomorphism and for every a ∈ M we have f(2a) ∈ {0, 1}.

Proof: Assume that f is a stable homomorphism. By the definition,
f is a Boolean homomorphism. Moreover, if f(2a) < 1 then f(2a) =
f(22a) 6 2f(2a) = 0. For the opposite implication assume that f is a
Boolean homomorphism and f(2a) = {0, 1}. If f(2a) = 0 then, clearly,
f(2a) 6 2f(a). If f(2a) = 1 then, since 2a 6 a, f(a) = 1, and so
f(2a) = 1 = 2f(a).

We say that a (stable) homomorphism f from M into N is principal

if the Boolean filter f−1(1) is principal. This means that there is d ∈ M
such that f(a) = 1 iff d 6 a and f(a) = 0 iff a 6 ¬d for all a ∈ M . Let
f : M →s N be a surjective principal stable homomorphism and assume
that the filter f−1(1) is generated by d. Then for every a ∈ M we have
f(a) = f(a ∨ ¬d), and hence the inequality

f(2(a ∨ ¬d)) 6 2f(a)

holds. Let us say that f is induced if we have the equality

2f(a) = f(2(a ∨ ¬d))

for all a ∈ M . Note that then

3f(a) = f(3(a ∧ d)).

With every element d ∈ M we may associate an induced surjective stable
homomorphism fd : M →s Md such that f−1

d (1) is a filter generated by d.
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Here fd is essentially unique, i.e., it is unique up to isomorphism of Md.
(We may also define it in a more explicit way. E.g., let the carrier Md be
{a ∈ M | a 6 d}, the join, the meet of a, b and the 0 in Md be the same
as in M, the 1 in Md be d, the negation of a in Md be given by ¬a ∧ d,
and the box of a be given by 2(a∨¬d)∧ d. Then fd(a) = a∧ d. In [1] the
algebra Md is called the relativisation of M to d.)

The following lemma is generally known. The reason why we provide
the proof here is to emphasize the condition (3).

Lemma 2.2. Let M be an interior algebras. Then the following conditions

are equivalent:

1. M is a McKinsey algebra, i.e., M |= ∀x 23x 6 32x,

2. M |= ∀x 2x = 0 ⇒ 23x = 0,

3. M |= ∀x 23(x− 2x) = 0,

4. M does not admit a (principal) homomorphism onto N such that

S2 6 N.

Proof:

(1)⇒(2) Assume that in M we have 2a = 0. Then 32a = 30 = 0, and by
(1), 23a = 0.
(2)⇒(3) Let a ∈ M . By the monotonicity of the 2 operation, 2(a−2a) 6
2a. By the reflexivity, 2(a−2a) 6 a−2a. Hence 2(a−2a) = 0, and by
(2), 23(a− 2a) = 0.
∼(4)⇒∼(3) Let h : M → N be a surjective homomorphism and a ∈ M
be such that h(a) is a (co)atom in S2. Then h(2a) = 2h(a) = 0 and
h(a − 2a) = h(a). Hence h(23(a − 2a)) = 23h(a) = 21 = 1. It follows
that 23(a− 2a) 6= 0.
∼(1)⇒∼(4) Assume that 23a 66 32a for some a ∈ M . Let F be the
(open) filter of M generated by 23a∧23¬a. The assumption guaranties
that F is proper, i.e., F 6= M . In M/F we have 3a/F = 1 and 3¬a/F = 1.
Hence the subalgebra of M/F generated by a/F is isomorphic to S2. (At
this point the transitivity of M is used.)

Lemma 2.3. Let M be an interior algebra and a, d ∈ M . Then in M we

have 2(2(a → ¬d) → ¬d) 6 ¬d if and only if in Md we have 23fd(a) = 0.
In particular, M satisfies (Grz2) for a if and only if in M

¬2a we have

23f
¬2a(a) = 0.
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Proof: By the definition of fd, we have

23fd(a) =fd(2(3(a ∧ d) ∨ ¬d))

=fd(2(2(a → ¬d) → ¬d)).

Thus
23fd(a) = 0 iff 2(2(a → ¬d) → ¬d) 6 ¬d.

We obtain the second statement by substituting d = ¬2a.

The equivalence (1)⇔(4) in the following theorem was obtained by Za-
kharyaschev in [19, Example 5] (see [5, Proposition 9.3] for the full proof).
It is expressed there in the dual language (in the sense of [5, Theorem 8.24])
with the use of general frames and subreductions.

Theorem 2.4. Let M be an interior algebra. Then the following conditions

are equivalent:

1. M is a Grzegorczyk algebra,

2. for every closed d ∈ M , Md is a McKinsey algebra,

3. for every d ∈ M , Md is a McKinsey algebra.

4. there is no induced stable homomorphism f : M →s N such that S2 6

N.

5. there is no surjective principal stable homomorphism f : M →s N

such that S2 6 N.

Proof: The implications (5)⇒(4) and (3)⇒(2) are obvious.
∼(3)⇒∼(4) Assume that Md is not a McKinsey algebra for some d ∈
M . Then, by Lemma 2.2 (the implication (4)⇒(1)), there is a principal
surjective homomorphism h : Md → N such that S2 6 N. Then h ◦ fd is
an induced stable homomorphism onto N.
∼(1)⇒∼(2) Assume that (Grz2) fails for a in M . By Lemma 2.3, in M

¬2a

we have 23f
¬2a(a) > 0. But, since 2a 6 a, in M

¬2a we also have

2f
¬2a(a) = f

¬2a(2(a ∨ 2a)) = f
¬2a(2a) = 0.

Thus, by Lemma 2.2 (the implication (1)⇒(2)), M
¬2a is not a McKinsey

algebra.
∼(5)⇒∼(1) Let f : M →s N be a surjective principal stable homomor-
phism f : M → N such that S2 6 N. Let d be a generator of the Boolean
filter f−1(1). Let c be a (co)atom in S2 and b ∈ M be such that f(b) = c.
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Put a = b ∨ ¬d. Then f(a) = f(b) ∨ ¬f(p) = c. Let us show that (Grz)
fails for a. Since f is a stable homomorphism, f(2a) 6 2f(a) = 0. Thus
f(a → 2a) = f(a) → 0 = ¬f(a) = ¬c. Similarly f(2(a → 2a)) = 0.
Hence, 2(a → 2a) 6 ¬d < a, and thus 2(2(a → 2a) → a) = 1 66 a.
(Note that 2(a → 2a) 6 2a and 2(2(a → 2a) → 2a) = 1 66 2a. Hence
clearly (Grz2) also fails for a.)

3. Free Boolean extensions of Heyting algebras

The connection of Heyting algebras with interior algebras is given by the
following McKinsey-Tarski theorem [14, Section 1] (see also [3, Chapter
1], [4, Theorem 2.2] and [13, Section 3]). Recall that open elements of an
interior algebra M form the Heyting algebra O(M) with the order structure
inherited from M.

Theorem 3.1. For every Heyting algebra H there is an interior algebra

B(H) such that

1. OB(H) = H;

2. for every interior algebra M, if H 6 O(M), then B(H) is isomorphic

to the subalgebra of M generated by H.

The algebra B(H) is called the free Boolean extension of H. Note that
Theorem 3.1 immediately yields that an interior algebra is isomorphic to a
free Boolean extension of a Heyting algebra iff it is generated by its open
elements.

Esakia developed duality theory for interior algebras [7, 8]. In partic-
ular, he provided a characterization of free Boolean extensions of Heyting
algebras. It says that an interior algebra is isomorphic to a free Boolean
extension of a Heyting algebras if and only if its dual Esakia space has
no non-trivial clusters [8, Theorem 12.7]. In algebraic terms it may be
formulated as follows.

Theorem 3.2. An interior algebra is isomorphic to a free Boolean exten-

sion of a Heyting algebra if and only if it does not admit a stable homo-

morphism onto S2.

The proof will follow from some known extensions of the prime filter
theorem for Boolean algebras.
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Lemma 3.3. Let C and D be Boolean algebras, D be a subalgebra of C and

U be an ultrafilter of D. Then there exists an ultrafilter W of C such that

W ∩D = U .

Proof: Let F = {c ∈ C | (∃d ∈ U) d 6 c}. Then F is a proper filter of C.
By the prime filter theorem, there exists an ultrafilter W of C extending
F . Then W ∩D is an ultrafilter of D extending U . By the maximality of
U (as a proper filter of D), we have W ∩D = U .

The following less obvious lemma may be found, as a harder exercise,
in [10, Exercise 15 in Chapter 20]. Its proof may be found in [12]. We
provide a more direct one. (Actually, the formulation in [12] is slightly
stronger. Our proof yields also this extension.) It also clarifies that it is
enough to assume prime filter theorem for Boolean algebras and the full
strength of the axiom of choice is not needed here.

Lemma 3.4. Let B be a proper Boolean subalgebra of A. Then there are

two distinct ultrafilters U1 and U2 of A such that U1 ∩B = U2 ∩B.

Proof: It is convenient to formulate the proof with the use of homomor-
phisms. Recall that ultrafilters of Boolean algebras are exactly preimages
of 1 for homomorphisms onto a two-element Boolean algebra 2.

Let e ∈ A−B. Let G1 and G2 be two different proper filters of A such
that e ∈ G1, ¬e ∈ G2 and

G1 ∩B = G2 ∩B = G.

For instance, we may take

G1 ={a1 ∧ a2 ∈ A | e 6 a1 and (∃b ∈ B)¬e < b 6 a2},

G2 ={a1 ∧ a2 ∈ A | (∃b ∈ B) e < b 6 a1 and ¬e 6 a2}.

Since e and ¬e do not belong to B and B is closed under the ∧ operation,
such defined G1 and G2 are indeed filters of A. Moreover, e ∈ G1, ¬e ∈ G2.
Furthermore, if a1 > e and a2 > ¬e, then a1 ∧ a2 > 0. This shows that
G1 is proper. Similarly we infer that G2 is proper. Also it is the case that
G1 ∩ B = G2 ∩ B. Indeed, if e 6 a1, ¬e < b ∈ B, b 6 a2 and a1 ∧ a2 ∈ B
then (a1∧a2)∨¬b = (a1∨¬b)∧ (a2∨¬b) = a1∧1 = a1, and hence a1 ∈ B.
This shows that G1 ∩B ⊆ G2. Similarly, one may show that G2 ∩B ⊆ G1.

Let l : B → A be the embedding. Let us also define fi : A → A/Gi; a 7→
a/Gi, and f : B → B/G; b → b/G. Since Gi∩B = G, the homomorphisms
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ki : B/G → A/Gi; b/G → b/Gi are well defined and injective. We have
the following commutative diagrams.

A/Gi

�

B/G
ki

oo

A

fi

OO

B

f

OO

l
oo

By the prime filter theorem, there exists a homomorphism g : B/G → 2.
By Lemma 3.3, there are surjective homomorphisms gi : A/Gi → 2 such
that g = gi ◦ ki. Let

Ui = (gi ◦ fi)
−1(1).

Since Gi ⊆ Ui, we have e ∈ U1 and ¬e ∈ U2. This yields that U1 6= U2.
Furthermore, we have

(g ◦ f)−1(1) = (gi ◦ ki ◦ f)−1(1) = (gi ◦ fi ◦ l)
−1(1) = Ui ∩B.

Thus U1 ∩B = U2 ∩B.
The proof is illustrated by the following “kite” diagram (the commuting

fragments are marked by �).

�

2

�

A/G1

g1

::

B/G

g

OO

k1

oo

k2

// A/G2

g2

dd

�

B

f

OO

�

A
��

l

f1

ZZ

f2

DD

Proof of Theorem 3.2: Let M be an interior algebra and N be its sub-
algebra generated by all open elements in M.

Assume first that N is a proper subalgebra of M. Let A and B be
Boolean reducts of M and N respectively. Let U1 and U2 be ultrafilters
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from Lemma 3.4. Let S be the simple interior algebras (only with 0 and
1 open) with the Boolean reduct A/U1 ×A/U2. Then S is isomorphic to
S2. Let f : A → S be given by a 7→ (a/U1, a/U2). Then f is a surjective
Boolean homomorphism. Moreover, since U1∩N = U2∩N , f(N) = {0, 1}.
Thus, by Lemma 2.1, f is a stable homomorphism from M onto S.

Now assume that M is generated by its open elements, i.e., M = N.
Then M is also Boolean generated by its open elements. Let f be any
stable homomorphism from M into S2. By Lemma 2.1, for every a ∈ M
we have f(2a) ∈ {0, 1}. Since f preserves Boolean operations and {0, 1}
is closed under Boolean operations, f maps M onto {0, 1}. Thus f is not
surjective.

Example 3.5. There is a Grzegorczyk algebra that admits a stable homo-
morphism onto S2. Let us recall the following simple example M. The
carrier M is the power set of the set N of natural numbers. The Boolean
operations are the set theoretic operations. Let

2a =

{
1 if a = 1

{0, . . . , k − 1} if a 6= 1 and k = min¬a
.

Note that M is the dual algebra for the modal frame (N,>) in the Jónsson-
Tarski duality. It is known that M is a Grzegorczyk algebra: The condition
(Grz) holds for open a. So assume that a is not open. Then a − 2a 6= 0
and the computation shows that

2(a → 2a) → a = N− {k, . . . , l},

where k = min¬a and l + 1 = min(a− 2a). This yields (Grz) for a.
Let F be the Boolean filter of all cofinite subsets of N. Let S be the

simple interior algebra with the Boolean reduct obtained by dividing the
Boolean reduct of M by F , and only two open elements 0 and 1. Then
f : a 7→ a/F is a stable homomorphism from M onto S. Moreover, since
S is infinite, it admits a stable homomorphism onto S2. Thus M admits a
stable homomorphism onto S2.

Example 3.6. There exists an interior algebra M which is not a Grze-
gorczyk algebra and which has no principal stable homomorphism f onto
any simple interior algebra with more than two elements. As the Boolean
reduct of M we take the Boolean algebra of all subsets of N and as the
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collection of open elements in M we take {ak | k ∈ N} ∪ {∅}, where
ak = {k, k + 1, . . .}. The algebra M is the dual algebra for the modal
frame (N,6) in the Jónsson-Tarski duality. In order to see that M is not
a Grzegorczyk algebra, take a ∈ M such that a and ¬a are both infinite.
Then a generates a subalgebra of M which is isomorphic to S2.

Now let f : M → S be any surjective principal stable homomorphism
onto a simple interior algebras. Assume that the filter f−1(1) is generated
by d. Then there is k ∈ N such that f(ak) = 0. Indeed, by Lemma 2.1, if it
is not the case, then f(ak) = 1 for all k. But it would yield that d 6 ak for
all k, and hence d = 0. This is a condradiction with the fact that S, as a
simple algebra, has at least two elements. Let l = min{k ∈ N | f(ak) = 0}.
Since a0 = 1, l > 1. We have that f(al−1) = 1. Hence

d 6 al−1 and al 6 ¬d.

This gives that d 6 {l − 1} and, since f is surjective, S has at most two
elements.
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