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PSEUDO-BCH SEMILATTICES

Abstract

In this paper we study pseudo-BCH algebras which are semilattices or lattices

with respect to the natural relation6; we call them pseudo-BCH join-semilattices,

pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove

that the class of all pseudo-BCH join-semilattices is a variety and show that it

is weakly regular, arithmetical at 1, and congruence distributive. In addition,

we obtain the systems of identities defininig pseudo-BCH meet-semilattices and

pseudo-BCH lattices.

Keywords : (pseudo-)BCK/BCI/BCH algebra, pseudo-BCH join (meet)-
semilattice, weakly regular, arithmetical at 1.

2010 Mathematics Subject Classification: 03G25, 06A12, 06F35

1. Introduction

In 1966, Imai and Iséki ([8, 11]) introduced BCK and BCI algebras as alge-
bras connected to certain kinds of logics. In 1983, Hu and Li ([7]) defined
BCH algebras. It is known that BCK and BCI algebras are contained in the
class of BCH algebras. In [9, 10], Iorgulescu introduced many interesting
generalizations of BCI or of BCK algebras.

In 2001, Georgescu and Iorgulescu ([6]) defined pseudo-BCK algebras
as an extension of BCK algebras. In 2008, Dudek and Jun ([2]) intro-
duced pseudo-BCI algebras as a natural generalization of BCI algebras
and of pseudo-BCK algebras. These algebras have also connections with
other algebras of logic such as pseudo-MV algebras and pseudo-BL algebras
defined by Georgescu and Iorgulescu in [4] and [5], respectively. Recently,
Walendziak ([14]) introduced pseudo-BCH algebras as an extension of BCH
algebras.
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In [13], Kühr investigated pseudo-BCK algebras whose underlying posets
are semilattices. In this paper we study pseudo-BCH join-semilattices,
that is. pseudo-BCH algebras which are join-semilattices with respect to
the natural relation 6. We prove that the class of all pseudo-BCH join-
semilattices is a variety and show that it is weakly regular, arithmetical at
1, and congruence distributive. In addition, we obtain the systems of iden-
tities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.

2. Preliminaries

We recall that an algebra (X;→, 1) of type (2, 0) is called a BCH algebra

if it satisfies the following axioms:

(BCH-1) x→ x = 1;
(BCH-2) x→ (y → z) = y → (x→ z);
(BCH-3) x→ y = y → x = 1 =⇒ x = y.

A BCI algebra is a BCH algebra (X;→, 1) satisfying the identity

(BCI) (y → z) → ((z → x) → (y → x)) = 1.

A BCK algebra is a BCI algebra (X;→, 1) such that x→ 1 = 1 for all
x ∈ X.

A pseudo-BCI algebra ([2]) is a structure (X;≤,→, , 1), where ≤ is
a binary relation on the set X, → and  are binary operations on X and
1 is an element of X, verifying the axioms:

(pBCI-1) y → z ≤ (z → x) (y → x), y  z ≤ (z  x) → (y  x);
(pBCI-2) x ≤ (x y) → y, x ≤ (x→ y) y;
(pBCI-3) x ≤ x;
(pBCI-4) x ≤ y, y ≤ x =⇒ x = y;
(pBCI-5) x ≤ y ⇐⇒ x→ y = 1 ⇐⇒ x y = 1.

A pseudo-BCI-algebra (X;≤,→, , 1) is called a pseudo-BCK algebra

if it satisfies the identities

(pBCK) x→ 1 = x 1 = 1.

Definition 2.1. ([14]) A (dual) pseudo-BCH algebra is an algebra X =
(X;→, , 1) of type (2, 2, 0) satisfying the axioms:

(pBCH-1) x→ x = x x = 1;
(pBCH-2) x→ (y  z) = y  (x→ z);
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(pBCH-3) x→ y = y  x = 1 =⇒ x = y;
(pBCH-4) x→ y = 1 ⇐⇒ x y = 1.

Remark 2.2. Observe that if (X;→, 1) is a BCH algebra, then letting

x→ y := x y, produces a pseudo-BCH algebra (X;→, , 1). Therefore,

every BCH algebra is a pseudo-BCH algebra in a natural way. It is easy

to see that if (X;→, , 1) is a pseudo-BCH algebra, then (X; ,→, 1) is

also a pseudo-BCH algebra. From Proposition 3.2 of [2] we conclude that

if (X;≤,→, , 1) is a pseudo-BCI algebra, then (X;→, , 1) is a pseudo-

BCH algebra.

In any pseudo-BCH algebra we can define a natural relation 6 by
putting

x 6 y ⇐⇒ x→ y = 1 ⇐⇒ x y = 1.

It is easy to see that 6 is reflexive and anti-symmetric but it is not transitive
in general (see Example 2.3 below). We note that in pseudo-BCK/BCI
algebras the relation 6 is a partial order.

Example 2.3. Let X = {a, b, c, d, e, f, 1}. We define the binary operations

→ and  on X as follows

→ a b c d e f 1
a 1 b b d e f 1
b a 1 c d e f 1
c 1 1 1 d e f 1
d a b c 1 1 f 1
e a b c e 1 1 1
f a b c d e 1 1
1 a b c d e f 1

and

 a b c d e f 1
a 1 b c d e f 1
b a 1 a d e f 1
c 1 1 1 d e f 1
d a b c 1 1 f 1
e a b c e 1 1 1
f a b c d e 1 1
1 a b c d e f 1

Then X = (X;→, , 1) is a pseudo-BCH algebra (see Example 2.6 of [15]).

We have d 6 e and e 6 f but d 
 f , and therefore 6 is not transitive.

Proposition 2.4. ([14]) Every pseudo-BCH algebra X satisfies, for all
x, y ∈ X, the following conditions:

(i) 1 → x = 1 x = x,
(ii) x 6 (x y) → y, and x 6 (x→ y) y.
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Proposition 2.5. ([14]) Let X be a pseudo-BCH algebra. Then X is a

pseudo-BCI algebra if and only if it verifies the following implication: for

all x, y, z ∈ X,

x 6 y =⇒ (z → x 6 z → y, z  x 6 z  y). (2.1)

3. Pseudo-BCH semilattices

Generalizing the notion of a pseudo-BCK semilattice (see [13]) we define
pseudo-BCH join-semilattices.

Definition 3.1. We say that an algebra (X;∨,→, , 1) is a pseudo-BCH

join-semilattice if (X;∨) is a join-semilattice, (X;→, , 1) is a pseudo-

BCH-algebra and x ∨ y = y ⇐⇒ x→ y = 1 for all x, y ∈ X.

Example 3.2. Let X = {a, b, c, 1}. We define the binary operations →
and  on X as follows:

→ a b c 1
a 1 b b 1
b 1 1 b 1
c 1 1 1 1
1 a b c 1

and

 a b c 1
a 1 b c 1
b 1 1 a 1
c 1 1 1 1
1 a b c 1

It is easy to check that (X;→, , 1) is a pseudo-BCH algebra. Since X
is a join-semilattice with respect to ∨ (under 6), we conclude that X =
(X;∨,→, , 1) is a pseudo-BCH join-semilattice; it is even a chain with

c < b < a < 1.

Example 3.3. Let X = ({a, b, c, d, e, f, 1};→, , 1) be the pseudo-BCH

algebra from Example 2.3. Since the relation 6 is not transitive, X is not

a join-semilattice with respect to 6. Therefore it is not a pseudo-BCH

join-semilattice.

Proposition 3.4. Let (X;∨,→, , 1) be a pseudo-BCH join-semilattice.

The following properties hold (for all x, y, z ∈ X):

(a1) x ∨ y = y ∨ x,
(a2) (x ∨ y) ∨ z = x ∨ (y ∨ z),
(a3) x→ (y  z) = y  (x→ z),
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(a4) 1 → x = 1 x = x,
(a5) x→ (x ∨ y) = x (x ∨ y) = 1,
(a6) ((x y) → y) ∨ x = (x y) → y,
(a7) ((x→ y) y) ∨ x = (x→ y) y.

Proof: (a1)–(a3) and (a5) are obvious. By Proposition 2.4 (i) we get (a4).
Identities (a6) and (a7) follow from Proposition 2.4 (ii).

Proposition 3.5. Let (X;∨,→, , 1) be an algebra of type (2, 2, 2, 0) sat-
isfying (a1)–(a7). Define 6 on X by

x 6 y ⇐⇒ x ∨ y = y.

Then, for all x, y, z ∈ X, we have:

(1) x 6 y and y 6 x imply x = y,
(2) x 6 y and y 6 z imply x 6 z,
(3) x 6 y ⇐⇒ x→ y = 1,
(4) x 6 y ⇐⇒ x y = 1,
(5) x ∨ 1 = 1 ∨ x = 1 (that is, x 6 1),
(6) x→ 1 = x 1 = 1,
(7) x→ x = x x = 1 (that is, x 6 x).

Proof: Statements (1) and (2) follow from (a1) and (a2), respectively.
To prove (3), let x, y ∈ X and x ∨ y = y. Applying (a5), we get

x→ y = 1.
Conversely, suppose that x→ y = 1. Hence (x→ y) y = 1 y = y

by (a4). From (a7) we see that x ∨ y = y, that is, x 6 y.
(4) The proof of (4) is similar to that of (3).
(5) Applying (a5) and (a4), we obtain 1 = 1 → (1 ∨ x) = 1 ∨ x. This

clearly forces (5).
(6) By (5), x 6 1. Using (3) and (4), we get (6).
(7) We have

1 = ((1 x) → x) ∨ 1 [by (5)]
= (1 x) → x [by (a6)]
= x→ x. [by (a4)]

Similarly, x x = 1.

Combining Propositions 3.4 and 3.5 we get
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Theorem 3.6. An algebra (X;∨,→, , 1) of type (2, 2, 2, 0) is a pseudo-

BCH join-semilattice if and only if it satisfies the identities (a1)–(a7).

From Proposition 3.5 (6) we have

Corollary 3.7. Every pseudo-BCH join-semilattice verifies (pBCK).

Let us denote by J the class of all pseudo-BCH join-semilattices.

Remark 3.8. The class J is a variety. Therefore J is closed under the

formation of homomorphic images, subalgebras, and direct products.

The disjont union of BCK algebras was introduced by Iséki and Tanaka
in [12] and next generalized to BCH algebras ([3]) and pseudo-BCH algebras
([15]). Below we extend this concept to the case of pseudo-BCH join-
semilattices.

Let T be any set and, for each t ∈ T , let Xt = (Xt;∨t,→t, t, 1) be
a pseudo-BCH join-semilattice. Suppose that Xs ∩Xt = {1} for s, t ∈ T ,
s 6= t. Set X =

⋃
t∈T

Xt and define the binary operations ∨,→ and  on
X via

x ∨ y =

{
x ∨t y if x, y ∈ Xt, t ∈ T ,
0 if x ∈ Xs, y ∈ Xt, s, t ∈ T , s 6= t.

x→ y =

{
x→t y if x, y ∈ Xt, t ∈ T ,
x if x ∈ Xs, y ∈ Xt, s, t ∈ T , s 6= t.

and

x y =

{
x t y if x, y ∈ Xt, t ∈ T ,
x if x ∈ Xs, y ∈ Xt, s, t ∈ T , s 6= t.

It is easily seen that X = (X;∨,→, , 1) is a pseudo-BCH join-semilattice;
it will be called the disjont union of (Xt)t∈T .

Example 3.9. Let X1 = X, where X = ({a, b, c, 1};∨,→, , 1) is the

pseudo-BCH join-semilattice from Example 3.2. Consider the set X2 =
{d, e, f, 1} with the operations →2 and ∨2 defined by the following tables:

→2 d e f 1
d 1 e d 1
e d 1 f 1
f 1 1 1 1
1 d e f 1

and

∨2 d e f 1
d d 1 d 1
e 1 e e 1
f d e f 1
1 1 1 1 1
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Let  2 := →2. Routine calculations show that X2 = (X2;∨2,→2, 2, 1)
is a (pseudo)-BCH join-semilattice. Let X ′ = {a, b, c, d, e, f, 1}. We define

the binary operations →′ and  ′ on X ′ as follows

→′ a b c d e f 1
a 1 b b d e f 1
b 1 1 b d e f 1
c 1 1 1 d e f 1
d a b c 1 e d 1
e a b c d 1 f 1
f a b c 1 1 1 1
1 a b c d e f 1

and

 ′ a b c d e f 1
a 1 b c d e f 1
b 1 1 a d e f 1
c 1 1 1 d e f 1
d a b c 1 e d 1
e a b c d 1 f 1
f a b c 1 1 1 1
1 a b c d e f 1

It is clear that X′ = (X ′;∨′,→′, ′, 1), where the operation ∨′ is illustrated

in Figure 1, is the disjont union of X1 and X2.
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Figure 1

Proposition 3.10. Let X = (X;∨,→, , 1) be a pseudo-BCH join-semilattice.

Then the following statements are equivalent:
(i) X is a pseudo-BCK join-semilattice.

(ii) X satisfies (2.1) for all x, y, z ∈ X.

Proof: Follows immediately from Proposition 2.5 and Corollary 3.7.

Proposition 3.11. Let X = (X;∨,→, , 1) be a pseudo-BCH join-semilattice

satisfying the following implication: for all x, y, z ∈ X,

x 6 y =⇒ (y → x) x = (y  x) → x = y. (3.1)

Then X is a pseudo-BCK join-semilattice.
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Proof: Let x, y, z ∈ X and x 6 y. By (pBCH-2), (pBCH-1) and (pBCK),

(z → x) → (z → y) = (z → x) → (z → ((y → x) x))
= (y → x) ((z → x) → (z → x))
= (y → x) 1
= 1.

Then z → x 6 z → y. Similarly, z  x 6 z  y. From Proposition 3.10
we see that X is a pseudo-BCK join-semilattice.

Remark 3.12. The converse of Proposition 3.11 is false. Indeed, let X

be the pseudo-BCH join-semilattice from Example 3.2. It is easy to check

that X satisfies implication (2.1), and therefore it is a pseudo-BCK join-

semilattice. However, (3.1) does not hold in X, because we have c < a and

(a c) → c = 1.

Definition 3.13. An algebra (X;∧,→, , 1) is called a pseudo-BCH meet-

semilattice if (X;∧) is a meet-semilattice, (X;→, , 1) is a pseudo-BCH

algebra, and x ∧ y = x⇐⇒ x→ y = 1 for all x, y ∈ X.

Denote by M the class of all pseudo-BCH meet-semilattices.

Proposition 3.14. An algebra X = (X;∧,→, , 1) of type (2, 2, 2, 0) is a

pseudo-BCH meet-semilattice if and only if it satisfies the following iden-

tities:

(b1) x ∧ x = x,
(b2) x ∧ y = y ∧ x,
(b3) x ∧ (y ∧ z) = (x ∧ y) ∧ z,
(b4) x→ (y  z) = y  (x→ z),
(b5) 1 → x = 1 x = x,
(b6) (x ∧ y) → y = 1 = (x ∧ y) y,
(b7) x ∧ ((x y) → y) = x = x ∧ ((x→ y) y).

Proof: Obviously, every pseudo-BCH meet-semilattice satisfies the ax-
ioms (b1)–(b7).

Conversely, let (b1)–(b7) hold in X. Clearly, (X;∧) is a meet-semilattice.
Define 6 on X by

x 6 y ⇐⇒ x = x ∧ y.

Observe that
x 6 y ⇐⇒ x→ y = 1 ⇐⇒ x y = 1 (3.2)
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for all x, y ∈ X. Let x 6 y, that is, x ∧ y = x. By (b6), x → y = 1 and
x y = 1. Suppose now that x→ y = 1. Applying (b7) and (b5), we get

x = x ∧ ((x→ y) y) = x ∧ (1 y) = x ∧ y.

Hence x 6 y. Similarly, if x y = 1, then x 6 y. Thus (3.2) holds. There-
fore, we deduce that (X;→, , 1) is a pseudo-BCH algebra, and finally that
(X;∧,→, , 1) is a pseudo-BCH meet-semilattice.

Corollary 3.15. The class M is a variety.

Definition 3.16. An algebra (X;∨,∧,→, , 1) is called a pseudo-BCH

lattice if (X;∨,∧) is a lattice, (X;→, , 1) is a pseudo-BCH algebra, and

x→ y = 1 ⇐⇒ x ∨ y = y ⇐⇒ x ∧ y = x for all x, y ∈ X.

Denote by L the class of all pseudo-BCH lattices.

Example 3.17. Let X = {a, b, c, d, 1}. Define binary operations → and  

on X by the following tables:

→ a b c d 1
a 1 b b b 1
b a 1 a d 1
c 1 1 1 b 1
d 1 1 1 1 1
1 a b c d 1

 a b c d 1
a 1 b b d 1
b a 1 a a 1
c 1 1 1 a 1
d 1 1 1 1 1
1 a b c d 1

By routine calculation, X = (X;→, , 1) is a pseudo-BCH algebra. We

shall represent the set X and the binary relation 6 by the following Hasse

diagram:
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Therefore, (X;∨,∧,→, , 1) is a pseudo-BCH lattice.

Remark 3.18. The class L is a variety that is axiomatized by the defin-

ing identities of lattices and by the identities (a3)–(a7) or by (b4)–(b7),

respectively.

Now we recall several universal algebraic notions (see e. g. [1]). We
will denote by ConA the congruence lattice of an algebra A. For θ ∈ ConA
and x ∈ A, let x/θ denote the equivalence class of x modulo θ. An algebra
A with a constant 1 is called:

• weakly regular (at 1) if 1/θ = 1/φ implies θ = φ, for all θ, φ ∈ ConA;

• permutable at 1 if 1/(θ ◦ φ) = 1/(φ ◦ θ) for all θ, φ ∈ ConA;

• distributive at 1 if 1/θ ∩ (φ∨ψ) = 1/(θ ∩ φ)∨ (θ ∩ψ) for all θ, φ, ψ ∈
ConA;

• arithmetical at 1 if it is both permutable at 1 and distributive at 1.

Let V be a variety of algebras with a constant 1. We say that V is
weakly regular (resp., permutable at 1, distributive at 1, and arithmetical

at 1) if every algebra A ∈ V is weakly regular (resp., permutable at 1,
distributive at 1, and arithmetical at 1). It is known that a variety V is
weakly regular if and only if there exist binary terms t1, . . . , tn for some
n ∈ N such that

t1(x, y) = · · · = tn(x, y) = 1 ⇐⇒ x = y. (3.3)

A variety is arithmetical at 1 if and only if there exists a binary term
t satisfying t(x, x) = t(1, x) = 1 and t(x, 1) = x. A variety V is congruence
distributive if ConA is a distributive lattice for every A ∈ V.

Theorem 3.19. The variety J , M and L are weakly regular. Moreover,

J and L are arithmetical at 1 and congruence distributive.

Proof: J , M and L are weakly regular since the terms t1(x, y) = x→ y
and t2(x, y) = y  x satisfy (3.3) for n = 2.

Let X be a pseudo-BCH join-semilattice and t(x, y) = y → x. Clearly,
t(x, x) = 1 and t(x, 1) = x. By Corollary 3.7, X satisfies (pBCK), and hence
t(1, x) = 1. Then X is arithmetical at 1, and consequently distributive at 1.

Let θ, φ, ψ ∈ ConX. By distributivity at 1, 1/θ ∩ (φ ∨ ψ) = 1/(θ ∩ φ) ∨
(θ ∩ ψ). From weak regularity we obtain θ ∩ (φ ∨ ψ) = (θ ∩ φ) ∨ (θ ∩ ψ).
Therefore ConX is a distributive lattice.
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Thus pseudo-BCH join-semilattices (and hence pseudo-BCH lattices)
are arithmetical at 1 and congruence distributive.
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[11] K. Iséki, An algebra related with a propositional culculus, Proceedings of

the Japan Academy 42 (1966), pp. 26–29.
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