PSEUDO-BCH SEMILATTICES

Abstract

In this paper we study pseudo-BCH algebras which are semilattices or lattices with respect to the natural relation \leqslant; we call them pseudo- BCH join-semilattices, pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove that the class of all pseudo- BCH join-semilattices is a variety and show that it is weakly regular, arithmetical at 1, and congruence distributive. In addition, we obtain the systems of identities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.

Keywords: (pseudo-)BCK/BCI/BCH algebra, pseudo-BCH join (meet)semilattice, weakly regular, arithmetical at 1.

2010 Mathematics Subject Classification: 03G25, 06A12, 06F35

1. Introduction

In 1966, Imai and Iséki $([8,11])$ introduced BCK and BCI algebras as algebras connected to certain kinds of logics. In 1983, Hu and Li ([7]) defined BCH algebras. It is known that BCK and BCI algebras are contained in the class of BCH algebras. In [9, 10], Iorgulescu introduced many interesting generalizations of BCI or of BCK algebras.

In 2001, Georgescu and Iorgulescu ([6]) defined pseudo-BCK algebras as an extension of BCK algebras. In 2008, Dudek and Jun ([2]) introduced pseudo-BCI algebras as a natural generalization of BCI algebras and of pseudo-BCK algebras. These algebras have also connections with other algebras of logic such as pseudo-MV algebras and pseudo-BL algebras defined by Georgescu and Iorgulescu in [4] and [5], respectively. Recently, Walendziak ([14]) introduced pseudo-BCH algebras as an extension of BCH algebras.

In [13], Kühr investigated pseudo-BCK algebras whose underlying posets are semilattices. In this paper we study pseudo-BCH join-semilattices, that is. pseudo- BCH algebras which are join-semilattices with respect to the natural relation \leqslant. We prove that the class of all pseudo- BCH joinsemilattices is a variety and show that it is weakly regular, arithmetical at 1 , and congruence distributive. In addition, we obtain the systems of identities defininig pseudo- BCH meet-semilattices and pseudo- BCH lattices.

2. Preliminaries

We recall that an algebra $(X ; \rightarrow, 1)$ of type $(2,0)$ is called a $B C H$ algebra if it satisfies the following axioms:
(BCH-1) $\quad x \rightarrow x=1$;
(BCH-2) $\quad x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$;
(BCH-3) $\quad x \rightarrow y=y \rightarrow x=1 \Longrightarrow x=y$.
A $B C I$ algebra is a BCH algebra $(X ; \rightarrow, 1)$ satisfying the identity
$(\mathrm{BCI}) \quad(y \rightarrow z) \rightarrow((z \rightarrow x) \rightarrow(y \rightarrow x))=1$.
A $B C K$ algebra is a BCI algebra $(X ; \rightarrow, 1)$ such that $x \rightarrow 1=1$ for all $x \in X$.

A pseudo-BCI algebra ([2]) is a structure $(X ; \leq, \rightarrow, \rightsquigarrow, 1)$, where \leq is a binary relation on the set X, \rightarrow and \rightsquigarrow are binary operations on X and 1 is an element of X, verifying the axioms:
(pBCI-1) $\quad y \rightarrow z \leq(z \rightarrow x) \rightsquigarrow(y \rightarrow x), y \rightsquigarrow z \leq(z \rightsquigarrow x) \rightarrow(y \rightsquigarrow x)$;
(pBCI-2) $\quad x \leq(x \rightsquigarrow y) \rightarrow y, \quad x \leq(x \rightarrow y) \rightsquigarrow y ;$
(pBCI-3) $\quad x \leq x$;
(pBCI-4) $\quad x \leq y, y \leq x \Longrightarrow x=y$;
(pBCI-5) $\quad x \leq y \Longleftrightarrow x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1$.
A pseudo-BCI-algebra $(X ; \leq, \rightarrow, \rightsquigarrow, 1)$ is called a pseudo- $B C K$ algebra if it satisfies the identities
(pBCK) $\quad x \rightarrow 1=x \rightsquigarrow 1=1$.
Definition 2.1. ([14]) A (dual) pseudo- $B C H$ algebra is an algebra $\mathfrak{X}=$ $(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$ satisfying the axioms:
($p \mathrm{BCH}-1$) $\quad x \rightarrow x=x \rightsquigarrow x=1$;
$(p B C H-2) \quad x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z) ;$

$$
\begin{array}{ll}
(\text { (pBCH-3) } & x \rightarrow y=y \rightsquigarrow x=1 \Longrightarrow x=y ; \\
(p B C H-4) & x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1 .
\end{array}
$$

Remark 2.2. Observe that if $(X ; \rightarrow, 1)$ is a BCH algebra, then letting $x \rightarrow y:=x \rightsquigarrow y$, produces a pseudo-BCH algebra $(X ; \rightarrow, \rightsquigarrow, 1)$. Therefore, every $B C H$ algebra is a pseudo-BCH algebra in a natural way. It is easy to see that if $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH algebra, then $(X ; \rightsquigarrow, \rightarrow, 1)$ is also a pseudo-BCH algebra. From Proposition 3.2 of [2] we conclude that if $(X ; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCI algebra, then $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudoBCH algebra.

In any pseudo-BCH algebra we can define a natural relation \leqslant by putting

$$
x \leqslant y \Longleftrightarrow x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1 .
$$

It is easy to see that \leqslant is reflexive and anti-symmetric but it is not transitive in general (see Example 2.3 below). We note that in pseudo-BCK/BCI algebras the relation \leqslant is a partial order.

Example 2.3. Let $X=\{a, b, c, d, e, f, 1\}$. We define the binary operations \rightarrow and \rightsquigarrow on X as follows

\rightarrow	a	b	c	d	e	f	1
a	1	b	b	d	e	f	1
b	a	1	c	d	e	f	1
c	1	1	1	d	e	f	1
d	a	b	c	1	1	f	1
e	a	b	c	e	1	1	1
f	a	b	c	d	e	1	1
1	a	b	c	d	e	f	1

\rightsquigarrow	a	b	c	d	e	f	1
a	1	b	c	d	e	f	1
b	a	1	a	d	e	f	1
c	1	1	1	d	e	f	1
d	a	b	c	1	1	f	1
e	a	b	c	e	1	1	1
f	a	b	c	d	e	1	1
1	a	b	c	d	e	f	1

Then $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH algebra (see Example 2.6 of [15]). We have $d \leqslant e$ and $e \leqslant f$ but $d \nless f$, and therefore \leqslant is not transitive.

Proposition 2.4. ([14]) Every pseudo-BCH algebra \mathfrak{X} satisfies, for all $x, y \in X$, the following conditions:
(i) $1 \rightarrow x=1 \rightsquigarrow x=x$,
(ii) $x \leqslant(x \rightsquigarrow y) \rightarrow y$, and $x \leqslant(x \rightarrow y) \rightsquigarrow y$.

Proposition 2.5. ([14]) Let \mathfrak{X} be a pseudo- BCH algebra. Then \mathfrak{X} is a pseudo-BCI algebra if and only if it verifies the following implication: for all $x, y, z \in X$,

$$
\begin{equation*}
x \leqslant y \Longrightarrow(z \rightarrow x \leqslant z \rightarrow y, z \rightsquigarrow x \leqslant z \rightsquigarrow y) . \tag{2.1}
\end{equation*}
$$

3. Pseudo-BCH semilattices

Generalizing the notion of a pseudo-BCK semilattice (see [13]) we define pseudo-BCH join-semilattices.

Definition 3.1. We say that an algebra $(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ is a pseudo- $B C H$ join-semilattice if $(X ; \vee)$ is a join-semilattice, $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH-algebra and $x \vee y=y \Longleftrightarrow x \rightarrow y=1$ for all $x, y \in X$.

Example 3.2. Let $X=\{a, b, c, 1\}$. We define the binary operations \rightarrow and \rightsquigarrow on X as follows:

\rightarrow	a	b	c	1
a	1	b	b	1
b	1	1	b	1
c	1	1	1	1
1	a	b	c	1

\rightsquigarrow	a	b	c	1
a	1	b	c	1
b	1	1	a	1
c	1	1	1	1
1	a	b	c	1

It is easy to check that $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH algebra. Since X is a join-semilattice with respect to \vee (under \leqslant), we conclude that $\mathfrak{X}=$ $(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH join-semilattice; it is even a chain with $c<b<a<1$.

Example 3.3. Let $\mathfrak{X}=(\{a, b, c, d, e, f, 1\} ; \rightarrow, \rightsquigarrow, 1)$ be the pseudo- BCH algebra from Example 2.3. Since the relation $\leqslant i$ not transitive, X is not a join-semilattice with respect to \leqslant. Therefore it is not a pseudo-BCH join-semilattice.

Proposition 3.4. Let $(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCH join-semilattice. The following properties hold (for all $x, y, z \in X$):

$$
\begin{aligned}
& \text { (a1) } \quad x \vee y=y \vee x, \\
& \text { (a2) } \\
& (x \vee y) \vee z=x \vee(y \vee z), \\
& \text { (a3) } \\
& x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z),
\end{aligned}
$$

(a4) $1 \rightarrow x=1 \rightsquigarrow x=x$,
(a5) $\quad x \rightarrow(x \vee y)=x \rightsquigarrow(x \vee y)=1$,
(a6) $\quad((x \rightsquigarrow y) \rightarrow y) \vee x=(x \rightsquigarrow y) \rightarrow y$,
(a7) $\quad((x \rightarrow y) \rightsquigarrow y) \vee x=(x \rightarrow y) \rightsquigarrow y$.
Proof: (a1)-(a3) and (a5) are obvious. By Proposition 2.4 (i) we get (a4). Identities (a6) and (a7) follow from Proposition 2.4 (ii).

Proposition 3.5. Let $(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ be an algebra of type $(2,2,2,0)$ satisfying (a1)-(a7). Define \leqslant on X by

$$
x \leqslant y \Longleftrightarrow x \vee y=y
$$

Then, for all $x, y, z \in X$, we have:
(1) $x \leqslant y$ and $y \leqslant x$ imply $x=y$,
(2) $x \leqslant y$ and $y \leqslant z$ imply $x \leqslant z$,
(3) $x \leqslant y \Longleftrightarrow x \rightarrow y=1$,
(4) $x \leqslant y \Longleftrightarrow x \rightsquigarrow y=1$,
(5) $x \vee 1=1 \vee x=1$ (that is, $x \leqslant 1$),
(6) $x \rightarrow 1=x \rightsquigarrow 1=1$,
(7) $\quad x \rightarrow x=x \rightsquigarrow x=1$ (that is, $x \leqslant x$).

Proof: Statements (1) and (2) follow from (a1) and (a2), respectively.
To prove (3), let $x, y \in X$ and $x \vee y=y$. Applying (a5), we get $x \rightarrow y=1$.

Conversely, suppose that $x \rightarrow y=1$. Hence $(x \rightarrow y) \rightsquigarrow y=1 \rightsquigarrow y=y$ by (a4). From (a7) we see that $x \vee y=y$, that is, $x \leqslant y$.
(4) The proof of (4) is similar to that of (3).
(5) Applying (a5) and (a4), we obtain $1=1 \rightarrow(1 \vee x)=1 \vee x$. This clearly forces (5).
(6) By (5), $x \leqslant 1$. Using (3) and (4), we get (6).
(7) We have

$$
\begin{aligned}
1 & =((1 \rightsquigarrow x) \rightarrow x) \vee 1 & & {[\text { by }(5)] } \\
& =(1 \rightsquigarrow x) \rightarrow x & & {[\text { by (a6) }] } \\
& =x \rightarrow x . & & {[\text { by (a4) }] }
\end{aligned}
$$

Similarly, $x \rightsquigarrow x=1$.
Combining Propositions 3.4 and 3.5 we get

Theorem 3.6. An algebra $(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,2,0)$ is a pseudo$B C H$ join-semilattice if and only if it satisfies the identities (a1)-(a7).

From Proposition 3.5 (6) we have
Corollary 3.7. Every pseudo-BCH join-semilattice verifies ($p B C K$).
Let us denote by \mathcal{J} the class of all pseudo- BCH join-semilattices.
Remark 3.8. The class \mathcal{J} is a variety. Therefore \mathcal{J} is closed under the formation of homomorphic images, subalgebras, and direct products.

The disjont union of BCK algebras was introduced by Iséki and Tanaka in [12] and next generalized to BCH algebras ([3]) and pseudo- BCH algebras ([15]). Below we extend this concept to the case of pseudo-BCH joinsemilattices.

Let T be any set and, for each $t \in T$, let $\mathfrak{X}_{t}=\left(X_{t} ; \vee_{t}, \rightarrow_{t}, \rightsquigarrow_{t}, 1\right)$ be a pseudo-BCH join-semilattice. Suppose that $X_{s} \cap X_{t}=\{1\}$ for $s, t \in T$, $s \neq t$. Set $X=\bigcup_{t \in T} X_{t}$ and define the binary operations \vee, \rightarrow and \rightsquigarrow on X via

$$
\begin{gathered}
x \vee y= \begin{cases}x \vee_{t} y & \text { if } x, y \in X_{t}, t \in T \\
0 & \text { if } x \in X_{s}, y \in X_{t}, s, t \in T, s \neq t\end{cases} \\
x \rightarrow y= \begin{cases}x \rightarrow_{t} y & \text { if } x, y \in X_{t}, t \in T \\
x & \text { if } x \in X_{s}, y \in X_{t}, s, t \in T, s \neq t\end{cases}
\end{gathered}
$$

and

$$
x \rightsquigarrow y= \begin{cases}x \rightsquigarrow_{t} y & \text { if } x, y \in X_{t}, t \in T, \\ x & \text { if } x \in X_{s}, y \in X_{t}, s, t \in T, s \neq t .\end{cases}
$$

It is easily seen that $\mathfrak{X}=(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ is a pseudo- BCH join-semilattice; it will be called the disjont union of $\left(\mathfrak{X}_{t}\right)_{t \in T}$.

Example 3.9. Let $\mathfrak{X}_{1}=\mathfrak{X}$, where $\mathfrak{X}=(\{a, b, c, 1\} ; \vee, \rightarrow, \rightsquigarrow, 1)$ is the pseudo-BCH join-semilattice from Example 3.2. Consider the set $X_{2}=$ $\{d, e, f, 1\}$ with the operations \rightarrow_{2} and \vee_{2} defined by the following tables:

\rightarrow_{2}	d	e	f	1
d	1	e	d	1
e	d	1	f	1
f	1	1	1	1
1	d	e	f	1

\vee_{2}	d	e	f	1
d	d	1	d	1
e	1	e	e	1
f	d	e	f	1
1	1	1	1	1

Let $\rightsquigarrow_{2}:=\rightarrow_{2}$. Routine calculations show that $\mathfrak{X}_{2}=\left(X_{2} ; \vee_{2}, \rightarrow_{2}, \rightsquigarrow_{2}, 1\right)$ is a (pseudo)-BCH join-semilattice. Let $X^{\prime}=\{a, b, c, d, e, f, 1\}$. We define the binary operations \rightarrow^{\prime} and $\rightsquigarrow^{\prime}$ on X^{\prime} as follows

\rightarrow^{\prime}	a	b	c	d	e	f	1
a	1	b	b	d	e	f	1
b	1	1	b	d	e	f	1
c	1	1	1	d	e	f	1
d	a	b	c	1	e	d	1
e	a	b	c	d	1	f	1
f	a	b	c	1	1	1	1
1	a	b	c	d	e	f	1

$\rightsquigarrow^{\prime}$	a	b	c	d	e	f	1
a	1	b	c	d	e	f	1
b	1	1	a	d	e	f	1
c	1	1	1	d	e	f	1
d	a	b	c	1	e	d	1
e	a	b	c	d	1	f	1
f	a	b	c	1	1	1	1
1	a	b	c	d	e	f	1

It is clear that $\mathfrak{X}^{\prime}=\left(X^{\prime} ; \vee^{\prime}, \rightarrow^{\prime}, \rightsquigarrow^{\prime}, 1\right)$, where the operation \vee^{\prime} is illustrated in Figure 1, is the disjont union of \mathfrak{X}_{1} and \mathfrak{X}_{2}.

Figure 1
Proposition 3.10. Let $\mathfrak{X}=(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ be a pseudo- $B C H$ join-semilattice. Then the following statements are equivalent:
(i) \mathfrak{X} is a pseudo-BCK join-semilattice.
(ii) \mathfrak{X} satisfies (2.1) for all $x, y, z \in X$.

Proof: Follows immediately from Proposition 2.5 and Corollary 3.7.
Proposition 3.11. Let $\mathfrak{X}=(X ; \vee, \rightarrow, \rightsquigarrow, 1)$ be a pseudo- $B C H$ join-semilattice satisfying the following implication: for all $x, y, z \in X$,

$$
\begin{equation*}
x \leqslant y \Longrightarrow(y \rightarrow x) \rightsquigarrow x=(y \rightsquigarrow x) \rightarrow x=y . \tag{3.1}
\end{equation*}
$$

Then \mathfrak{X} is a pseudo-BCK join-semilattice.

Proof: Let $x, y, z \in X$ and $x \leqslant y$. By (pBCH-2), (pBCH-1) and (pBCK),

$$
\begin{aligned}
(z \rightarrow x) \rightarrow(z \rightarrow y) & =(z \rightarrow x) \rightarrow(z \rightarrow((y \rightarrow x) \rightsquigarrow x)) \\
& =(y \rightarrow x) \rightsquigarrow((z \rightarrow x) \rightarrow(z \rightarrow x)) \\
& =(y \rightarrow x) \rightsquigarrow 1 \\
& =1 .
\end{aligned}
$$

Then $z \rightarrow x \leqslant z \rightarrow y$. Similarly, $z \rightsquigarrow x \leqslant z \rightsquigarrow y$. From Proposition 3.10 we see that \mathfrak{X} is a pseudo-BCK join-semilattice.

REmark 3.12. The converse of Proposition 3.11 is false. Indeed, let \mathfrak{X} be the pseudo- $B C H$ join-semilattice from Example 3.2. It is easy to check that \mathfrak{X} satisfies implication (2.1), and therefore it is a pseudo- $B C K$ joinsemilattice. However, (3.1) does not hold in \mathfrak{X}, because we have $c<a$ and $(a \rightsquigarrow c) \rightarrow c=1$.

Definition 3.13. An algebra $(X ; \wedge, \rightarrow, \rightsquigarrow, 1)$ is called a pseudo- $B C H$ meetsemilattice if $(X ; \wedge)$ is a meet-semilattice, $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo- $B C H$ algebra, and $x \wedge y=x \Longleftrightarrow x \rightarrow y=1$ for all $x, y \in X$.

Denote by \mathcal{M} the class of all pseudo-BCH meet-semilattices.
Proposition 3.14. An algebra $\mathfrak{X}=(X ; \wedge, \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,2,0)$ is a pseudo-BCH meet-semilattice if and only if it satisfies the following identities:
(b1) $x \wedge x=x$,
(b2) $x \wedge y=y \wedge x$,
(b3) $\quad x \wedge(y \wedge z)=(x \wedge y) \wedge z$,
(b4) $\quad x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z)$,
(b5) $1 \rightarrow x=1 \rightsquigarrow x=x$,
(b6) $\quad(x \wedge y) \rightarrow y=1=(x \wedge y) \rightsquigarrow y$,
(b7) $\quad x \wedge((x \rightsquigarrow y) \rightarrow y)=x=x \wedge((x \rightarrow y) \rightsquigarrow y)$.
Proof: Obviously, every pseudo-BCH meet-semilattice satisfies the axioms (b1)-(b7).

Conversely, let (b1)-(b7) hold in \mathfrak{X}. Clearly, $(X ; \wedge)$ is a meet-semilattice. Define \leqslant on X by

$$
x \leqslant y \Longleftrightarrow x=x \wedge y
$$

Observe that

$$
\begin{equation*}
x \leqslant y \Longleftrightarrow x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1 \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$. Let $x \leqslant y$, that is, $x \wedge y=x$. By (b6), $x \rightarrow y=1$ and $x \rightsquigarrow y=1$. Suppose now that $x \rightarrow y=1$. Applying (b7) and (b5), we get

$$
x=x \wedge((x \rightarrow y) \rightsquigarrow y)=x \wedge(1 \rightsquigarrow y)=x \wedge y .
$$

Hence $x \leqslant y$. Similarly, if $x \rightsquigarrow y=1$, then $x \leqslant y$. Thus (3.2) holds. Therefore, we deduce that $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH algebra, and finally that $(X ; \wedge, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH meet-semilattice.

Corollary 3.15. The class \mathcal{M} is a variety.
Definition 3.16. An algebra $(X ; \vee, \wedge, \rightarrow, \rightsquigarrow, 1)$ is called a pseudo- $B C H$ lattice if $(X ; \vee, \wedge)$ is a lattice, $(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo- $B C H$ algebra, and $x \rightarrow y=1 \Longleftrightarrow x \vee y=y \Longleftrightarrow x \wedge y=x$ for all $x, y \in X$.

Denote by \mathcal{L} the class of all pseudo-BCH lattices.
Example 3.17. Let $X=\{a, b, c, d, 1\}$. Define binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	a	b	c	d	1
a	1	b	b	b	1
b	a	1	a	d	1
c	1	1	1	b	1
d	1	1	1	1	1
1	a	b	c	d	1

\rightsquigarrow	a	b	c	d	1
a	1	b	b	d	1
b	a	1	a	a	1
c	1	1	1	a	1
d	1	1	1	1	1
1	a	b	c	d	1

By routine calculation, $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo- $B C H$ algebra. We shall represent the set X and the binary relation \leqslant by the following Hasse diagram:

Figure 2

Therefore, $(X ; \vee, \wedge, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCH lattice.
REmark 3.18. The class \mathcal{L} is a variety that is axiomatized by the defining identities of lattices and by the identities (a3)-(a7) or by (b4)-(b7), respectively.

Now we recall several universal algebraic notions (see e. g. [1]). We will denote by Con \mathfrak{A} the congruence lattice of an algebra \mathfrak{A}. For $\theta \in$ Con \mathfrak{A} and $x \in A$, let x / θ denote the equivalence class of x modulo θ. An algebra \mathfrak{A} with a constant 1 is called:

- weakly regular (at 1) if $1 / \theta=1 / \phi$ implies $\theta=\phi$, for all $\theta, \phi \in$ Con \mathfrak{A};
- permutable at 1 if $1 /(\theta \circ \phi)=1 /(\phi \circ \theta)$ for all $\theta, \phi \in \operatorname{Con} \mathfrak{A}$;
- distributive at 1 if $1 / \theta \cap(\phi \vee \psi)=1 /(\theta \cap \phi) \vee(\theta \cap \psi)$ for all $\theta, \phi, \psi \in$ Con $;$
- arithmetical at 1 if it is both permutable at 1 and distributive at 1 .

Let \mathcal{V} be a variety of algebras with a constant 1 . We say that \mathcal{V} is weakly regular (resp., permutable at 1, distributive at 1, and arithmetical at 1) if every algebra $\mathfrak{A} \in \mathcal{V}$ is weakly regular (resp., permutable at 1 , distributive at 1 , and arithmetical at 1). It is known that a variety \mathcal{V} is weakly regular if and only if there exist binary terms t_{1}, \ldots, t_{n} for some $n \in \mathbb{N}$ such that

$$
\begin{equation*}
t_{1}(x, y)=\cdots=t_{n}(x, y)=1 \Longleftrightarrow x=y \tag{3.3}
\end{equation*}
$$

A variety is arithmetical at 1 if and only if there exists a binary term t satisfying $t(x, x)=t(1, x)=1$ and $t(x, 1)=x$. A variety \mathcal{V} is congruence distributive if Con \mathfrak{A} is a distributive lattice for every $\mathfrak{A} \in \mathcal{V}$.

Theorem 3.19. The variety \mathcal{J}, \mathcal{M} and \mathcal{L} are weakly regular. Moreover, \mathcal{J} and \mathcal{L} are arithmetical at 1 and congruence distributive.

Proof: \mathcal{J}, \mathcal{M} and \mathcal{L} are weakly regular since the terms $t_{1}(x, y)=x \rightarrow y$ and $t_{2}(x, y)=y \rightsquigarrow x$ satisfy (3.3) for $n=2$.

Let \mathfrak{X} be a pseudo-BCH join-semilattice and $t(x, y)=y \rightarrow x$. Clearly, $t(x, x)=1$ and $t(x, 1)=x$. By Corollary 3.7 , \mathfrak{X} satisfies (pBCK), and hence $t(1, x)=1$. Then \mathfrak{X} is arithmetical at 1 , and consequently distributive at 1 .

Let $\theta, \phi, \psi \in$ Con \mathfrak{X}. By distributivity at $1,1 / \theta \cap(\phi \vee \psi)=1 /(\theta \cap \phi) \vee$ $(\theta \cap \psi)$. From weak regularity we obtain $\theta \cap(\phi \vee \psi)=(\theta \cap \phi) \vee(\theta \cap \psi)$. Therefore Con \mathfrak{X} is a distributive lattice.

Thus pseudo-BCH join-semilattices (and hence pseudo-BCH lattices) are arithmetical at 1 and congruence distributive.

References

[1] I. Chajda, G. Eigenthaler, H. Länger, Congruence classes in universal algebra, Heldermann Verlag, Lemgo 2003.
[2] W. A. Dudek, Y. B. Jun, Pseudo-BCI-algebras, East Asian Mathematical Journal 24 (2008), pp. 187-190.
[3] W. A. Dudek, J. Thomys, On decompositions of BCH-algebras, Mathematica Japonica 35 (1990), pp. 1131-1138.
[4] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, [in:] The Proc. of the Fourth International Symp. on Economic Informatics (Bucharest, Romania, May 1999), pp. 961-968.
[5] G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, [in:] Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, February 2000), pp. 90-92.
[6] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, [in:] Proc. of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), pp. 97-114.
[7] Q. P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), pp. 313-320.
[8] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy 42 (1966), pp. 19-22.
[9] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras Part I, Journal of Multiple-Valued Logic and Soft Computing 27 (2016), pp. 353-406.
[10] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras Part II, Jornal of Multiple-Valued Logic and Soft Computing 27 (2016), pp. 407-456.
[11] K. Iséki, An algebra related with a propositional culculus, Proceedings of the Japan Academy 42 (1966), pp. 26-29.
[12] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebra, Mathematica Japonica 23 (1978), pp. 1-26.
[13] J. Kühr, Pseudo BCK-semilattices, Demonstratio Mathematica 40 (2007), pp. 495-516.
[14] A. Walendziak, Pseudo-BCH-algebras, Discussiones Mathematicae General Algebra and Applications 35 (2015), pp. 1-15.
[15] A. Walendziak, On ideals of pseudo-BCH-algebras,Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica, 70 (2016), pp. 81-91.

Faculty of Sciences, Institute of Mathematics and Physics Siedlce University of Natural Sciences and Humanities ul. 3 Maja 54, 08-110 Siedlce, Poland e-mail: walent@interia.pl

