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Abstract

We characterize the non-trivial substructural logics having the variable sharing
property as well as its strong version. To this end, we find the algebraic counter-
parts over varieties of these logical properties.
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1. Introduction

The aim of this note is to fill a gap in Chapter 5 of the, by now, classical
reference [4], where the authors deal with a number of logical properties of
substructural logics such as the disjunction property, versions of Robinson
property, Craig interpolation property, variable separation properties, etc.
and their algebraic equivalents on varieties of algebras (following works
such as [6, 7, 8, 11, 5] and [10] among others). One property in particular
is mentioned without providing an algebraic characterization, namely, the
variable sharing property (to be defined below). As far as we know, such
characterization was not known. Moreover, we provide algebraic counter-
parts to what is called the strong variable sharing property in [2].

The variable sharing property was first introduced in [1] (pp. 32-33)
and it has become since then a folklore necessary (though not sufficient)
requirement for any formal system of relevant logic. The philosophical
motivation behind it is quite natural: for an implication to be relevant the
antecedent better have something in common with the consequent (a recent
place where related issues have been studied is [12]). A solid survey where
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this and many other topics in relevant logic are discussed is [3]. A recent
place where logics satisfying the requirement have been studied is [9].

These pages grew up from attending [2], where the basic criterion for
“relevance” in a given logic was discussed.

2. Preliminaries

Our focus will be extensions of the so called “full Lambek calculus” (in sym-
bols, FL). We will be interested in adding absurdity and truth constants
1 and T to our calculi as well. The language of these logics is specified as
follows, starting with a collection of propositional variables PROP:

pu=p| LITIL]O| /¢ | ond|dvi]d\Y o1,
where p € PROP. We may write ¢ - ¢ as ¢1).

The full Lambek calculus does not have 1, T, so we can give the fol-
lowing Hilbert-style presentation of FL ([4], p. 127):
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Extending FL with T, L can be done by adding axioms ¢\ T as well as
1\¢. Also, when we add the exchange axiom ¢¥\1)¢ we obtain a system
called FL..

Notation in this paper will be very much as in [4], except that given an
algebra A, we use dom(A) to denote the domain of A, that is, the universe
of the algebra.

An FL-algebra is a structure (A, A, v,-,\,/,1,0) such that:

e (A,-,1)is a monoid (i.e., - is associative and 1 is a unit with respect
to -)

o (A, A, V) is a lattice (i.e., the operations A, v are commutative, mu-
tually absorptive and associative -idempotency is a corollary)

e 0 is some distinguished element of A.

e The residuation law holds: zy < z iff y < 2\z iff x < z/y (where, as
usual, z <y iff x =z A y).

A bounded FL-algebra is obtained from an FL-algebra by adding a
top element T and a bottom element L (in fact adding a bottom element
suffices for T to be defined). We can observe by Lemma 3.6 from [4], that, in
fact, every FL-algebra is a subalgebra of a bounded one, hence FL (which is
complete with respect to FL-algebras) is complete with respect to bounded
FL-algebras. An FL. algebra is an FL-algebra where the multiplication
operation - is commutative.

An example of a bounded FL-algebra is the interval [0, 1] where - is
multiplication on the reals, v and A are max and min respectively, z\y =
y/r =max{y € [0,1] :xy < z},whilel=T=1and 0 =1 = 1.

Given a logic L, the symbol V(L) denotes the variety corresponding to
L. By a substructural logic we will mean a calculus extending FL.

Given a set of propositional variables X, by Fm(X) we denote the
set of formulas which can be built from X. Finally. given a collection of
formulas Fm(Y") based on a list of propositional variables Y and a logic L,
by Fm(Y) / =i, we denote the standard Lindenbaum algebra of L.
DEFINITION 1. (VSP) Let L be some substructural logic. We say that L
has the variable sharing property if given two formulas ¢ and ¢ where no
constants appear, 1, p\ only if Var(¢) n Var(y) # &.

The next property appears in [2] in a different form where the conjunc-

tion involved is the additive A as opposed to the multiplicative - . We will
split these two properties.
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DEFINITION 2. (SVSP with respect to multiplication) Let L be some sub-
structural logic. We say that L has the strong variable sharing property if
given formulas ¢, and x such that 1, ¢\x and Var(vy) n Var({¢, x}) =
O, we have that 1, o\ x.

DEFINITION 3. (SV.SP") Let L be some substructural logic. We say that L
has the strong variable sharing property”™ if given formulas ¢, and x such

that -1 (¢ A Y)\x and Var(y) n Var({¢, x}) = &, we have that 1, ¢\x.

The next property is studied on p. 286 of [4].

DEFINITION 4. (SDPRP) Let L be some substructural logic. We say that L
has the strong deductive pseudo-relevance property if given sets of formulas
O, U and {x} such that ®,¥ 1, x and Var(®) n Var(¥ v {x}) = &, we
have that if ® tfy, L then ¥ by, x.

Logics with VSP include all systems contained in the relevant logic R,
including FL, FL. and many extensions (Corollary 5.15 from [4]). A non-
trivial example of a system without the variable sharing property is the
relevant logic RM.

3. The results

In this section we present our little theorems.

THEOREM 1. For any substructural logic L different from the trivial logic,
the following are equivalent:

(i) L has VSP.

(i) For any cardinals k, A\ < u there are A, B, C € V(L) such that A, B <
C, A, B and C are k-generated by A € dom(A), A-generated by B <
dom(B) and p-generated by C S dom(C) respectively. Moreover, if
a € dom(A), b e dom(B) and a <c b, then there is D € V(L) such
that D € A, B and D is generated by generators in A n B appearing
in both polynomials a and b.



Variable Sharing in Substructural Logics: an Algebraic Characterization 111

PROOF: (i) = (i7): Consider collections of propositional variables PROP;
and PROP, of cardinalities k and A respectively. Let PROP3 be constructed
from PROP; U PROPy by possibly adding some new variables to ensure that
|PROP3| = p and put C = Fm(PROP3)/ =1, A = Fm(PROP;)/ =g, and
B = Fm(PROPy)/ =y,. By construction of the Lindenbaum algebra we
know that {[p] : p € PROP3} has cardinality p (for otherwise, some p,q €
PROP3 would have to collapse according to L, which would make any two
formulas equivalent in L, and hence L would be the trivial logic), and
that this set generates the algebra C. Similarly for {[p] : p € PROP;},
{[p] : p € PROP2}, K, A\, A and B. Also, we clearly have that A,B € C.
Now if @ € dom(A), b € dom(B) and a <¢ b this means that a = [¢],
b = [¢] for some ¢ € Fm(PROP;), ¢ € Fm(PROP;) and in fact 1, ¢\1). But
our assumption that the VSP holds implies that Var(¢) n Var(y) # &, so
we can form Fm(Var(¢) n Var(¢y))/ =L as our required D. It is easy to see
that D € A,B. Note that D is generated by {[p] : p € Var(¢) n Var(y)},
which in turn is a subset of {[p] : p € PROP1} n {[p] : p € PROP3}

(#i) = (i): Suppose that 1, ¢\p. Recall that this implies that given
any homomorphism h from the term algebra under consideration into E €
V(L), h(¢) <g (¥). In particular, using (ii), pick A,B, C generated by
sufficiently large sets such that we can find a homomorphism A from the
term algebra into C such that h(¢) € A and h(y) € B, propositional
variables are assigned generators and no different propositional variables
get assigned the same image. But then from our assumption that (ii)
holds, we must have D € V(L) such that D € A, B and D is generated by
generators in A n B appearing in both h(¢) and h(1)). But then since h is a
homomorphism that assigned different generators to different propositional
variables we must have that Var(¢) n Var(y) # & because h(¢) and h())

have generators in common.
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THEOREM 2. For any substructural logic L different from the trivial logic,
the following are equivalent:

(i) L has SV SP with respect to multiplication.

(i) For any non-degenerate A,B € V(L), there are Cy, Cq,C such that
Cy,C1 € C and surjective homomorphisms hg : Cy — A and
hi : C1 — B. Moreover, for any a,c € dom(Cq) and b € dom(Cy)
we have that if ab <c ¢ then a <¢ c¢. In a picture,

AN

Cy Co

hy ho 3

B A
PROOF: (i) = (ii): We consider disjoint sets of variables PROP, PROP;
big enough such that there will be surjective homomorphisms f
Fm(PROPy)) — A and f; : Fm(PROP;) — B (for definiteness, we
name every element of the respective algebra by a propositional variable).
Now consider the quotient algebras Fm(PROPy)/ =g, Fm(PROP;)/ =1C
Fm(PROPy U PROP,)/ =p,. By our assumption that SVSP™ holds, obviously
Fm(PROP, U PROP,)/ =, satisfies that for any a,c € Fm(PROP;)/ =1, and
b e Fm(PROP;)/ =1, we have that if ab < ¢ in Fm(PROPy UPR0OP;)/ =y, then
a < ¢ in Fm(PROPy U PROP, )/ =p,. All that is left is to define surjective ho-
momorphisms ho : Fm(PROPy)/ =1,— A and h; : Fm(PROP, )/ =1,— B.
Simply let h;([¢]) = fi(¢) (1 = 1,2).

(71) = (7): Suppose that Fr ¢\x, Var(y) n Var({¢, x}) = &, and
that, moreover, £y, ¢\x. The latter means that we have some A € V(L)
such that there is a homomorphism fy : Fm(Var({¢, x})) — A such that
fo(®) €a fo(x). We also can find some non-degenerate algebra B and
homomorphism f; : Fm(Var({¢})) — B —the value of hy(¢) will be of
little importance. Take Cgy, Cq, C such that Cy,C; € C and surjective
homomorphisms hg : Cg — A and h; : C; — B. Next we construct
f3 : Fm(Var({¢}) u Var({¢, x})) — C as follows. First, define:

1) = some d € dom(Cy) s.t. ho(d) = fo(p) if p € Var({¢, x})
s some d € dom(Cy) s.t. hi(d) = fi(p) if p € Var({y}).
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Now just extend f5 to a homomorphism f3 : Fm(Var({¢}) u

Var({¢,x})) — C. Note that, by assumption, we must have that

f3(0) fs(¥) <c f3(x). But then, since (ii) has been supposed to hold,

we have that f3(¢) <c f3(x), so, in fact, f3(¢) <c, f3(x), but by con-

struction, we would have that also fo ¢) <a fo(x), a contradiction.
Similarly, we can observe that the following holds.

THEOREM 3. For any substructural logic L different from the trivial logic,
the following are equivalent:

(i) L has SVSP".

(ii) For any non-degenerate A,B € V(L), there are Cy, C1,C such that
Cy,C1 € C and surjective homomorphisms hg : Cy — A and
hi : C; — B. Moreover, for any a,c € dom(Cq) and b € dom(Cy)
we have that if a A b <c ¢ then a <¢c c.

PROPOSITION 4. For any substructural logic Li extending FL, with L, dif-

ferent from the trivial logic, SV 'SP with respect to multiplication implies
VSP.

PrOOF: We modify a proof provided in [2] for a somewhat different con-
text. Assume that 1, ¢\¢ and Var(¢) n Var(¢) = . Take new proposi-
tional variables p and ¢. Now, since obviously p\p 1 ¢\v, we may con-
clude, by the local deduction theorem for FL that there is formula 6 with
variables in {p} such that -, O\(¢\v)) and p\p 1 6. Then +r, ¢d\tp and
by SVSP’, we have that 1, 6\v. Hence, ¥\ L 1, 6\ L. Therefore, we have
that ¥\ L, ¢\q L 0\L. By the local deduction theorem, we have formulas
00,01 with Var(dp) € Var(y)) and Var(d1) € Var(q) such that ¥\ L g, do,
q\q Fr 01 such that 1, dp\(61\(A\L)). But then also +r, 100\(6\L), so
FrL d001\(0\L). By an application of SVSP", 1, ;\(/\l). Hence, we can
conclude that Fp, L, which is a contradiction.

Now, the argument in [2], shows that, in fact, SVSP” implies VSP
when we can define in our logic L a negation — such that all the following
holds for arbitrary ¢, v, 0:

(i) = (ﬁ\(ﬁ only if b, *1[)\—'(;5.
(i) For no ¢, both 1, ¢ and 1, —¢.

i)

(ii) Modus ponens for \ is an admisible rule.
i)
)

(i) FL P\o.
() If br, P\t then 1, ¢ A O\2).
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PROPOSITION 5. For any substructural logic Li extending FL, with L, dif-
ferent from the trivial logic, SV SP with respect to multiplication implies
SDPRP.

PRrROOF: Suppose that Var(I')nVar(Zu{¢}) # &, T, X L ¢ and T g, L.
By the local deduction theorem for FL (Corollary 2.15 from [4]) there are
formulas v and o such that I' 1, v, ¥ 1, o, Var(y) € Var(I'), Var(o) €
Var(¥) and i, o\(7\¥). So, in fact, 1, yo\v, and applying SVSP’, we
must have that Fr, o\v, which in turn means that ¥ -, ¢ as desired.

As a corollary to this proposition we see that the property described
in the characterization of SVSP" implies a version of the joint embedding
property on subdirectly irreducible bounded FL. algebras according to
Theorem 5.56 from [4].

4. Conclusion

We have provided algebraic characterizations for both the variable sharing
property and strong variable sharing properties. A line of further research
would be to actually apply the characterizations to establish the properties
for particular logics, however, it seems like the more traditional method of
using matrices is easier in practice (see [9]).
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