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Abstract

Modal pseudocomplemented De Morgan algebras (or mpM-algebras) were inves-
tigated in A. V. Figallo, N. Oliva, A. Ziliani, Modal pseudocomplemented De
Morgan algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica
53, 1 (2014), pp. 65-79, and they constitute a proper subvariety of the variety of
pseudocomplemented De Morgan algebras satisfying 2 A(~xz)* = (~ (zA(~x)"))"
studied by H. Sankappanavar in 1987. In this paper the study of these algebras is
continued. More precisely, new characterizations of mpM-congruences are shown.
In particular, one of them is determined by taking into account an implication
operation which is defined on these algebras as weak implication. In addition,
the finite mpM-algebras were considered and a factorization theorem of them is
given. Finally, the structure of the free finitely generated mpM-algebras is ob-
tained and a formula to compute its cardinal number in terms of the number of
the free generators is established. For characterization of the finitely-generated
free De Morgan algebras, free Boole-De Morgan algebras and free De Morgan
quasilattices see: [16, 17, 18].

Keywords: Pseudocomplemented De Morgan algebras, congruences, free
algebras.

Introduction

In 1949, P. Ribenboim ([19]) showed that the class of distributive p-algebras,
whose study began V. Glivenko in [9], constitutes a variety. More precisely,
he proved that distributive p-algebras are bounded distributive lattices with
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an additional unary operation * which satisfies the following identities: (R1)
zA(xANy) =z Ay*, (R2) x A0* =z and (R3) 0** = 0.

A particular case of distributive p-algebras are pseudocomplemented De
Morgan algebras which A. Romanowska ([20]) called pM-algebras. Recall
that an algebra (L, A,V,~,*,0,1) of type (2,2,1,1,0,0) is called a pM-
algebra if (L,A,V,~,0,1) is a De Morgan algebra ([12]) (see also [1, 3])
and (L, A,V,*,0,1) is a distributive p-algebra. Let us observe that in this
definition there are not any relationship between the operators ~ and *.

In 1978, A. Monteiro introduced tetravalent modal algebras as a gener-
alization of three-valued Lukasiewicz algebras ([3]) by omitting the identity
V(xz Ay) = Vo A Vy and they have been studied by different authors (see
[5, 6, 8, 13, 14]). On the other hand, in order to find the maximal subclass
of pseudocomplemented De Morgan algebras which admit a structure of
tetravalent modal algebra, in [6] the subvariety of pM-algebras which sat-
isfies: (tm) 2V ~x < zV a* was introduced and they called them modal
pseudocomplemented De Morgan algebras (or mpM-algebras).

Besides, it is worth mentioning that this new class of algebras consti-
tutes a proper subvariety of the variety 1, of all pseudocomplemented De
Morgan algebras satisfying the identity: = A (~2)* = (~ (z A (~ 2)*))*,
studied by H. Sankappanavar in [22].

Furthermore, in [7] we described a topological duality for mpM-algebras
and we characterized the congruences on these algebras by means of special
subsets of their associated space. Taking into account these results we ob-
tained the subdirectly irreducible mpM-algebras, we determined the prin-
cipal congruences and we showed that mpM-algebras constitute a discrim-
inator variety. Moreover, we described the ternary and the dual ternary
discriminator polynomials.

In order to continue the study of mpM-algebras, in this paper our aim
is focus on determining the free modal pseudocomplemented De Morgan
algebras. Here is a summary of our main results. In section 1, we briefly
describe the results needed throughout this article. In section 2, we char-
acterize the congruences on these algebras in two different ways. One of
them by considering the notion of A-filter and the other by means of the
deductive systems associated with a new implication operation which we
called weak implication. In section 3, we study the finite mpM-algebras
and the main result is Theorem 3.5 which shows a factorization of these
algebras. In section 4, which is the core of this paper we determine the free
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mpM-algebras with a finite set of free generators and show a formula to ob-
tain its cardinal number in terms of the numbers of its generators. Finally,
these results allow us to check again that the varieties of mpM-algebras
and tetravalent modal algebras do not coincide.

1. Preliminaries

We refer the reader to the bibliography listed here as [2, 4, 12] for specific
details of the many basic notions and results of universal algebra including
distributive lattices, De Morgan algebras and distributive p-algebras con-
sidered in this paper. On the other hand, we will take into account some of
the results of mpM-algebras obtained in [7] which will be usefull in what
follows. More precisely, recall that:

A modal pseudocomplemented De Morgan algebra (or mpM-algebra)
is a pseudocomplemented De Morgan algebra (A, A, V,~,*,0,1) which sa-
tisfies:

(TM) 2V ~x < Vaz*, where a <bif and only if a = a A b.

In what follows we will denote these algebras by its underlying set and
we will indicate with mpM the variety of mpM-algebras.

Now, we will summarize the most important properties of these alge-
bras which we need throughout this work.

(TM1) Let A € mpM. Then it hold:
(
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(TM2) The subdirectly irreducible mpM-algebras are, up to isomorphism,
the algebras described below ([7]):
(i) Ay ={0,1}, where 0 <1, ~0=0*=1,~1=1* =0,
(ii) Ay ={0,¢,1}, where 0 < ¢ <1, ~c=¢, ¢* =0, ~0=0" =1,
~ 1 = 1* = O7
(i) A3 ={0,a,b,1} wherea £b,b £ aand 0<a,b< 1, ~b=a*=
b,~a=b"=a,~0=0"=1,~1=1*=0.
(TM3) mpM is locally finite, semisimple, residually small and residually
finite ([7, Theorem 4.3]).

2. Congruences. A-filters and weak deductive systems

Our next task is to describe the congruence lattice of mpM-algebras by
means of certain subsets of the algebra differently to the one given in [7].
In order to do so, we need some previous notions.

Let A be an mpM-algebra. The operations ~ and * allow us to intro-
duce a new unary operator A by means of the formula: Az = (~2x)* A z.

LEMMA 2.1. Let A € mpM. Then the following properties are satisfied:
(T1) A0=0,A1=1, (T2) Az <z,

(T3) x <y implies Ax < Ay, (T4)  ~ Az isthe Boolean comple-
ment of Az,

(T5) (~Ax)* = Ax, (T6) (~Ax)* = A(~x)*,

(T7) ALz = Az, (T8) (Ax)* =~Aux,

(T9) A ~Az=~Auz, (T10) Az Ay)=Azx A Ay,
(T11) =z € AA iff x = Az, (T12) AA is a subalgebra of A,
(T13) ~axAAlAz=0, (T14) av~Azx =1,

(T15) A(AzVy)=A~AxzV Ay, (T16) A(~AzVy)=~AzV Ay.

ProoF: We will only prove that (T4), (T5), (T7), (T10) and (T15) hold.

(T4) Dan ~Dx = (~x)* NaA ~((~z)" ANz) = (~x)* Ax A (~ (~
)V ~x) = ((~x)* AeA ~(~2)*) V ((~x)* AzA ~z) and so, by (ml5)
and (ml) we have that AzA ~ Az = 0. Furthermore, ~ Az V Az =~
(AxA ~Ax) =~0=1.
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(T5) By virtue of (T4), we have that ~ Az A Az = 0. On the other
hand, let k € A be such that kA ~Ax = 0. Hence, Az = (AxVE)A(AxV ~
Ax) = Az V k. Therefore, k < Az which completes the proof.

(T7) AAz = (~((~x)* Ax))* A(~a)* ANe = (~(~z)*V ~x)* A(~
) Na = (~(~z)*)* A(~z)* Az. Then, by (ml17), (T6) and (T5) we have
that AAx = (~(~z)*)* A (~a)* = A(~ax)* = Ax.

)

(TlO) From (T 5), (m7), (T2) and (m6) it follows that Ax ANADy = (~
Ax)* N (~ Dy)* = (~ Dav ~ Ay)* = (~ (Ax A Dy))" < (~ (z Ay))”.
Hence, Az ANy < (~(zAy))* A(z A y) A(x Ay). The other inequality
follows immediately.

(T15) From (T4) we have that x = 2V 0 = z V (AyA ~ Ay) =
(x V Ay) A (v ~ Ay). From this statement and (T10) it follows (1)
Az = ANV AY)AA(zV ~Ay). On the other hand, from (T2) we conclude
that AzV ~ Ay < 2V ~ Ay and so, by (T12) and (T11) we have that
AxV ~ Ay < A(xV ~Ay). Hence, (AzV ~Ay) AN Az V Ay) < ANV ~
AY)AA(zV Ay) and by (1) we infer that (AzV ~Ay) AA(xV Ay) < Az.
Therefore, (AzV ~Ay) A A(xV Ay)V Ay < Az VvV Ay and so, we get that
Az vV Ay) < Az VvV Ay. Besides, it is simple to verify that Az V Ay <
ANz V Ay).

Our next task is to determine the mpM-congruences taking into ac-
count the operator A introduced above. For this purpose we will start by
defining the notion of A-filter.

DEFINITION 2.2. A filter F' of an mpM -algebra A is a A-filter of A, if it
satisfies that the hypothesis x € F imply Ax € F.

We will denote by F(A) the set of all A-filters of A.

As a direct consequence of Definition 2.2 it follows that {1} and A
are A-filters of A. Furthermore, the intersection of a non-empty family of
A-filters of A is a A-filter of A.

From now on, if H is a non-empty subset of A, we will denote by F(H)
and Fa (H) the filter and the A-filter of A generated by H respectively. If
H = {a}, we will write F(a) and Fa(a) instead of F({a}) and Fa({a})
respectively and they are called the principal filter and the principal A-
filter generated by a.

PROPOSITION 2.3. Let A€ mpM, HC A and a € A. Then it hold:
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(i) FA(H) = F(AH), where F(X) is the filter generated by X C A,
(ii) Fa(a) = F(Aa),
(iii) FA(HU{a}) =F(HU{Aa}), if H is a N-filter of A.

ProOOF: (i) F(AH) is a A-filter of A. Indeed, if 2 € F(AH), then there
exists Ahy, Aho,..., Ah, € A(H) such that Ahy A AhoA ..., ADh, < x
and so by (T3), (T10) and (T7) we have that Ahy A AhaA ..., ADh, <
Az. Therefore, Ax € F(AH). Besides, from (T2) it follows that H C
F(AH). On the other hand, if T is a A-filter of A such that H C T,
then AH C T and taking into account that 7T is a filter we have that
F(AH) C T, hence the proof is completed.

(ii) It is a direct consequence of (i) by considering H = {a}.

(iil) It is routine.

From now on, we will denote by C'on(A) the congruence lattice of A and
by A/R the quotient algebra of A by R. Besides, for z € A the equivalence
class of x modulo R will be denoted by |z|g.

In Theorem 2.4 the relationship between the congruences and the
A-filters of an mpM-algebra is determined.

THEOREM 2.4. Let A € mpM. Then the following statements hold:

(i) Con(A) ={R(F): F € F(A)}, where R(F) = {(x,y) € Ax A : there
exists f € F such that x AN f =y A f}.

(ii) The lattices Con(A) and F(A) are isomorphic considering the appli-
cations © — Fg and F — R(F), which are inverse to one another.

ProOOF: (i) Firstly, we will show that R(F') € Con(A). In order to do this
we will only prove that R(F') is compatible with ~and *. Let (z,y) € R(F).
Then, there is f € F such that (1) z A f =y A f. Thus, (2) Af € F and
so, we have that (~aV ~ fYANAf = (~yV ~ f) AAf. From this last
assertion and (T13) we get that ~x A Af =~y A Af. Hence, by (2) we
obtain that (~x,~y) € R(F). On the other hand, by (1) we have that
(@A) =(yAf) andso, fA(zAf)" = fA(yAf)*. From this statement
and A6 we infer that fAz* = fAy*. Hence, (z*,y*) € R(F'). Furthermore,
it is straightforward that |1|zmy = F.
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On the other hand, if ©® € Con(A) then Fg = |1|g is a A-filter of A.
Indeed, let € |1]g. Hence, ((~2x)*,1) € © and so, ((~z)* Az,1) € ©.
This last statement implies that Az € |1]e.

Suppose now that (x,y) € R(|1|le). Then, there exists f € |1l|e such
that « A f = y A f. Since (f,1) € O, we have that (z A f,z2) € © and
(yAf,y) € ©. Hence, (z,y) € © and so, R(|1]e) € ©. The other inclusion is
a consequence of the fact that (z,y) € © implies that f = A((~AzVy)A(~
DAy NV x) A (~ A~V ~y)V ~z) A (~ A~V ~y)V ~y)) € |l|le and
sANf=yANf.

(ii) Tt is routine.

It is worth mentioning that Theorem 2.4 allows us to obtain a new
characterization of simple mpM-algebras as Proposition 2.5 shows.

PrROPOSITION 2.5. Let A € mpM. Then the following conditions are
equivalent:

(i) AA={0,1},

(ii) A is a simple algebra.

PRrOOF: (i) = (ii) Suppose that there is a proper A-filter F' of A and let
z € F, x # 1. Since Ax € FNAA, from the hypothesis we have that
Az =1 or Ax = 0. Hence, we infer that x = 1 or F' = A, but both of
them are contradictions.

(ii) = (i) Let « € A be such that 0 < x < 1. Then, by Proposition 2.3
we have that F(Az) is a proper A-filter of A and so, by Theorem 2.4 we
conclude that A is not a simple mpM-algebra which is a contradiction.

From now until the end of this section, our attention is focused on giving
another characterization of the mpM-congruences. In order to do so, we
define an implication operation on them, which we called weak implication,
as follows:

r—y=~AxVy.

PROPOSITION 2.6. The weak implication — satisfies the following proper-
ties:
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(W1) 1—az=uz,

(W2) z—1=1,

(W3) z—ua=1,

(W4) - (y—a)=1,

(W5) - (y—2)=y— (x— 2),
(W6) z—=(y—2)=@—y —(x—z2),
(W7) x <y implies z+— 1 <z vy,
(W8)  x <y implies x —y =1,

(W9) ((a—y) —a)—ax=1,

(W10) 2z (z—y)=x vy,

(W11) y< zw—y,

(W12) x <y implies y— z < x+> z,
(W13) (zVy)—z<(zw—2)A(y— 2),
(W1l4) 2= (yVz)=(z—y)V(r— 2),
(WI5) @0 (5 (2 Ay) =1,

(W16) z = (zAy) =z +— vy,

(W17) Az A(z—vy) =Lz Ay,

(W18) «+ Az = 1.

ProOOF: We will only prove (W6), (W8), (W9), (W13) and (W15).

(W6) From (T16) and (T4) we have that (z — y) — (z — 2) =~
AN~ Dz VYNV ~ Az NV z =~ (~AxV Ay ~ Az V z = (AxA ~Ay)V ~
Az Vz=~AxV ~AyVz=1x— (y— 2).

(W8) From the hypothesis and (T3) we obtain that ~ Ay <~ Awz.
Hence, ~Ay Vy <~AzVy and so, by (T14) we conclude the proof.

(W9) Observe that (z — y) = & =~ (~(~(~2)"V ~xVy)*V((~
) AXA ~y)Va =~ (~(~(~x)*V ~aVy)) Ve =~ ((~x)*AxA ~y))* V.
On the other hand, by (m6) and (m3) it follows that ~ ((~ z)* A A ~
y)* <~ (~x)* < z. Hence, ~((~x)* A xA ~y)* < x which implies that
(x — y) — x =z and so, by (W3) the proof is completed.

(W13) By (T3) we have that Az, Ay < A(xVy) and so, ~ A(xVy)Vz <
~AxNVzy ~AN(axVy)Vz <~AyVz. Hence, ~A(xVy)Vz < (~AxVz)A(~
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Ay V z) and therefore, (x Vy) — 2 < (x — 2) A (y = 2).

(W15) z = (y = (z Ay)) =~ LzV ~ Ay V(xAy) =~ (Az A
Ay) V (z A y). Hence, taking into account (T10) and (T14) we get that
= (y—= (xAy)=~A@Ay)V(zAy) =1.

DEFINITION 2.7. A subset D of an mpM-algebra A is a weak deductive

system of A (w.d.s.), if it satisfies that 1 € D and the hyphotesis x € D
and z—y € D imply y € D.

We will denote by D(A) the set of all w.d.s. of A.

In Proposition 2.8 the relationship between the notions of A-filters and
weak deductive systems in mpM-algebras is determined.

PROPOSITION 2.8. Let A € mpM and D C A. Then the following condi-
tions are equivalent:

(i) D is a A-filter of A,
(ii)) D is a w.d.s. of A.

PRrROOF: (i) = (ii) Let x, z — y € D. Then, from the hypothesis we have
that Az, Az A (z — y) € D. Hence, by (W17) we deduce that Az Ay € D
and taking into account that Az Ay < y, we conclude that y € D.

(ii) = (i) Let «,y € D. Then from (W15) we have that z — (y —
(x Ay)) =1 € D. Thus, from the hypothesis we infer that z Ay € D. On
the other hand, if z,y € A are such that x € D and = < y, then by (W8)
we obtain that © — y € D and so, y € D. Besides, if z € D by (W18) we
conclude that Ax € D.

Proposition 2.9 will play an important role in order to obtain the de-
sired characterization of the mpM-congruences by means of weak deductive
systems.

PROPOSITION 2.9. Let A € mpM and let F be a /\-filter of A. Then the
following conditions are equivalent:

(i) there exists f € F such that x A f =y A f,

(i) z—yelF,y—ael, ~aANy) »~yelF, ~(zAy) >~z €F.

PRrROOF: (i) = (ii): From the hypothesis, (W16) and Proposicién 2.8 we
have that  — (x A f) =z — (yA f) € F. Furthermore, by (W7) it follows
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that z +— (y A f) < 2 — y. Hence, from these assertions we conclude that
z +— y € F. Similarly we have that y — z € F.

On the other hand, from the hypothesis we infer that (~ (z A y)V ~
FYADF = (~gV ~f) AAF. Hence, ((~ (@ Ay) ADF)V (~fA L) A (~
N =~y ANAHV(~FAANS)) A (~f)* and so, by (ml) it follows that
~(@AY)ADNFA(~ ) =~y ANADfA(~f). Thus, taking into account
that Af < (~ f)* we have that ~ (z Ay) AAf =~y AAf. From this
last assertion and (W16) we obtain that ~ (z A y) — (~y AAf) =~
(xAy) = (~(@xAy) ANAf) =~(x ANy) — Af. Then, bearing in mind that
Af € F and that ~(x Ay) = (~y AAf) <~ (xz Ay) —~y we conclude
that ~ (x A y) =~y € F. A similar reasoning allows us to assert that
~(x Ay) =~z € F and so, the proof is completed.

(ii) = (i): From the hypothesis and taking into account that F' is a
A-filter of A we have that f = A((x = y) A (y = ) A(~(x Ay) =~
) A (~(x Ay) —~y)) € F. Furthermore, it holds that x A f =y A f.

As a direct consequence of Proposition 2.8, Proposition 2.9 and Theo-
rem 2.4 we have Theorem 2.10.

THEOREM 2.10. Let A € mpM . Then the following statements hold:
(i) Con(A) = {R(D) : D € D(A)}, where R(D) = {(z,y) € Ax A :
z—=yeD y—saxeD, ~(xAy)—»~y €D, ~(xANy)—~zx € D}.
(ii) The lattices Con(A) and D(A) are isomorphic considering the ap-

plications © —— Dg and D —— R(D), which are inverse to one
another.

3. Finite mpM-algebras

The algebras which is of our concern now, are finite mpM-algebras. The
main result of this section is Theorem 3.5 which provides us a factorization
of these algebras. On the other hand, taking into account Proposition 2.3
we obtain Lemma 3.1 and Lemma 3.2 which are fundamental tools to prove
Theorem 3.5.

LEMMA 3.1. Let A be a finite mpM -algebra and F C A. Then the following
conditions are equivalent:

(i) F is a A-filter of A,

(i) there is a € A such that F = F(Aa).
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PROOF: (i) = (ii): From the hypothesis and taking into account that A
is a finite algebra, there is a € A such that F' = F(a). Hence, Aa € F.
From these assertions and (T2) we conclude that Aa = a. Therefore,
F =F(Aa).

(ii) = (i): Tt is a direct consequence of Proposition 2.3.

Let A € mpM. A maximal A-filter of A is a A-filter which is maximal
in the poset of proper A-filters of A.

LEMMA 3.2. Let A be a finite non-trivial mpM -algebra and a € A. Then
the following conditions are equivalent:

(i) F(Aa) is a mazimal N-filter of A,
(ii) Aa is an atom of AA.

PROOF: (i) = (ii): From the hypothesis we have that Aa # 0. Suppose
now that there is z € AA such that 0 < z < Aa. From this assertion
we have that F(Aa) C F(z) # A. Furthermore, by Lemma 3.1, F(x) is
a A-filter of A. But since F(Aa) is a maximal A- filter of A we conclude
that F(Aa) = F(x). Therefore, Aa = x.

(ii) = (i): From Lemma 3.1 it follows that F(Aa) is a A-filter of A.
Suppose now, that there is a A-filter T' of A such that F(Aa) C T # A.
Taking into account that A is a finite algebra, by Proposition 2.3 we have
that there is @ € A such that T'= F(Ax). Therefore, 0 < Az < Aaq, but
since Aa is an atom of AA we conclude that Aa = Az. These statements
imply that F'(Aa) is a maximal A-filter of A.

From now on, if X is a non-empty subset of A we will denote by |X|
the cardinal number of X. Furthermore, if A,B € mpM, we will write
A ~ B if there is an isomorphism from A to B.

Next corollary is a direct consequence of Lemma 3.2.

COROLLARY 3.3. Let A be a non-trivial finite mpM-algebra.  Then,
IM(A)| = |AL(A(A))|, where M(A) denotes the set of all mazimal of /-
filters of A.

REMARK 3.4. Bearing in mind a well-known result of A. Monteiro ([15]),
from (W1), (W4), (W6) and (W9), we conclude that all proper A-filter
of an mpM -algebra A is the intersection of maximal N-filters of A. This
assertion implies that {1} is the intersection of all maximal N-filters of A.
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Theorem 3.5 will give us the announced factorization of the finite mpM-
algebras.

THEOREM 3.5. Let A be a non-trivial finite mpM -algebra. Then A ~

[T A/F(Aa;), where {Aa;bi<i<n is the set of all the atoms of AA.
i=1

PROOF: Let h : A — H A/F(Aa;) be the function defined by h(z) =

(1 (), -, qu(x)), Where qZ A — A/F(Aaq;) is the natural epimorphism
for each i, 1 < i < n. From Lemma 3.2, Proposition 2.8 and Remark 3.4 we
infer that h is a monomorphism Hence, it only remains to prove that A is

onto. Let y = (y1,...,yn) € H A/F(Aa;). Since g; is onto for each i, 1 <

i < n, we have that there is xz 6 A such that ¢;(z;) = y;. Let us consider

’n
T = \/ (x; A Aay). Furthermore, taking into account Proposition 2.5 and

the fact that ¢;(Aa;) € A(A/F(Aa;)), we conclude that ¢;(Aa;) € {0, 1}
If g;(Aa;) = 1, whenever j # i, then Aa; € F(Aa;) and so, Aa; < Aay,
which contradicts the fact that Aai is an atom of AA. Thus, ¢;(Aa;) =0
for all j 7é i and ¢;(Aa;) = 1. From these assertions we conclude that

g(z) = V (g (2:)) A qj(Dai)) = qj(zj) = y; for all j, 1 < j < n and so,
h(z) = y ThlS completes the proof.

PROPOSITION 3.6. Let A be a finite mpM -algebra, b € A, and [0,b] = {z €
A:0<ax<b}. Ifbe ANA, b#0, then it hold:

(i) ([0,0],A,V,—,1,0,b) is an mpM-algebra, where —x =~ x A'b and
le=a* Ab, for all z € [0,0],
(i) L/F(b) ~[0,0b].

PRrooOF: (i) It is straightforward.

(ii) Let hy : A/F(b) — [0,b] be defined by hy(T) = « Ab. Hence,
hy is a well-defined bijection. Furthermore, hy is an mpM-homomorphism.
Indeed, taking into account that b € A A is a Boolean element, we have that
—hp(ZT) = —(z AD) =~ (z AD)Ab = (~z Ab)V (~bAD) =~z ANb= hy(~T).
On the other hand, from (m11) we infer that [h(Z) = (zAb)*Ab=a*Ab=
h(Z*). The proof of the remaining properties is routine.
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Theorem 3.5 and Proposition 3.6 imply the following useful result.
COROLLARY 3.7. Let A be a non-trivial finite mpM -algebra. If {Na;}1<i<n
is the set of all the atoms of ANA, then A ~ 10, Aa;].

i=1

4. Free mpM-algebras

In this section, which is the core of this paper our aim is focused on de-
termine the structure of the free finitely generated mpM-algebras and a
formula to calculate its cardinal number in terms of the number of the free
generators.

In what follows, we will denoted by £(c) the free mpM-algebra with a
set G of free generators such that |G| = ¢, where ¢ is a cardinal number,
0 < ¢ < w. The notion of free mpM-algebras is defined in the usual way and
since mpM-algebras are equationally definable, for any cardinal number c,
¢ > 0, the free algebra L(c) exists and it is unique up to isomorphism ([4]).
Bearing in mind (TM2), (TM3) and well-known results of universal algebra
we conclude that

(1) L(n) = AWMl x A, M2l 5 4,1 Ms]

where A;, 1 <17 < 3, are the non-isomorphic simple mpM-algebras, M; =
{M € M(L(n)) : L(n)/M ~ A;}, and M(L(n)) is the set of all maximal
deductive systems of L£(n).

Let A, A’ € mpM. From now on we will denote by Epi(A, A’) and
Aut(A) the set of all epimorphisms from A to A’ and the set of all auto-
morphisms of A, respectively.

Next, we are going to compute |M;|, 1 < j < 3. Thus, we have
|Epi(£(n), A))|
| Aut(A;)]

PRrROOF: Let o : Epi(L(n), A;) — M, be the function defined by a(h) =
ker(h) [4, Definition 6.7]. Hence, « is onto. Indeed, for each M € M;
suppose that f = vy o qar, where ¢ps is the natural map and ~y,; is the
mpM-isomorphism from L£(n)/M in A;. Thus, f € Epi(L(n),A;) and
ker(f) = M. Consequently a(f) = M. Furthermore, if M € M, and

LeEMMA 4.1. |[M,| = ,1<5<3.
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a(h) = M, then a™'(M) = {goh : g € Aut(A;)}. Therefore, |M;] -
|Aut(A;)| = |Epi(L(n), A;)| and thus we conclude the proof.

In what follows if A € mpM and G C A we will denote by [G] the

mpM-subalgebra of A generated by G. Now, let F*(G,A;) ={f: G —
A; [f(G)] =A4,},1<j<3. Then, we have
LEMMA 4.2. |Epi(L(n), A;)| = |F*(G,Aj)], 1 <j <3.
PRrROOF: Let 3 : Epi(L(n),A;) — F*(G, A;) be the function defined by
B(h) = h/G, where h/G is the restriction of h to G. It is simple to verify
that § is injective. Moreover, for each f € F*(G, A;) there is a unique
homomorphism hy : £(n) — A; which extends f. Besides, hy(L(n)) =
hy([G]) = [f(G)] = A;. Therefore, S is onto.

On the other hand, it is simple to verify that |Aut(A;)| = |Aut(A42)| =
1. Hence, as a direct consequence of Lemma 4.1 and Lemma 4.2 we conclude

COROLLARY 4.3. (i) M| =2",
(i) |Ma| = 3" — 2"
LEMMA 4.4. [M3|=2""1(2" —1).

PrROOF: From Lemma 4.1, Lemma 4.2 and taking into account that | Aut(As)|
= 2, we infer that

Furthermore, since A; is the unique subalgebra of Az we have that |F*(G, As)|
=4"— 2"=2"(2" — 1). Thus, the proof is completed.
From (I) and the above results we have shown

THEOREM 4.5. Let L(n) be the free mpM -algebra with n free generators.
Then its cardinality is given by the following formula:

|£(n>| _ 22n « 33n_2n % 4277,71(2%_1).
EXAMPLE 4.6. By Theorem 4.5 we have that forn =1
|L(1)| =2* x 3 x4 =48

and its Hasse diagram is the one indicated in the figure:
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5. Final Remark

It is worth mentioning that, following a different reasoning that the one
used in [7, Remark 3.1], the results established in Section 4 allow us to assert
that mpM and the variety of tetravalent modal algebras do not coincide.
Indeed, I. Loureiro ([14]) determined the free tetravalent modal algebra
Ta(n) with n free generators and she proved that its cardinal number is

o [Ta(1)]=22" x 33" 2" x 42" 12" H)=8",

Hence, if n = 1, |T4(n)| = 12 and its Hasse diagram is the one indicated
bellow:
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