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Abstract

In this paper, we define the notion of PC-lattice, as a generalization of finite

positive implicative BCK-algebras with condition (S) and bounded commutative

BCK-algebras. We investiate some results for Pc-lattices being a new class of

BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and

we show that if X is a PC-lattice with condition S, then X is an involutory

BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove

that any PC-lattice with condition (S) is a distributive BCK-algebra.
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1. Introduction

A BCK-algebra is an important class of logical algebras introduced by

Y. Imai and K. Iséki in 1966 [8]. This notion originated from two dif-

ferent sources: one of them is based on the set theory, the other is from

the classical and non-classical propositional calculi. Non-classical logic has

become a considerable formal tool for computer science and artificial intel-

ligence to deal with fuzzy information and uncertain information. In the

first half of the nineteenth century, George Boole’s attempts to formalize

propositional logic led to the concept of Boolean algebras. Investigating

the axiomatics of Boolean algebras at the end of the nineteenth century,

Charles S. Peirce and Ernst Schröder found it useful to introduce the con-

cept of a lattice. Dedekind also introduced modularity, a weakened form
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of distributivity. It was Garret Birkhoff’s work in the mid-thirties that

started the general development of lattice theory. In a brilliant series of

papers he demonstrated the importance of lattice theory and showed that

it provides a unifying framework for hitherto unrelated developments in

many mathematical disciplines. In BCK-algebras some important lattices

such as bounded commutative BCK-algebras, involutory BCK-algebras and

bounded implicative BCK-algebras were defined and some of their impor-

tant properties were proved [7, 12, 14]. In order to extend the theory of

bounded BCK-algebras, we introduce the concept of PC-lattices and char-

acterize their properties. We prove that the class of these lattices includes

some currently known subclasses of BCK-lattices such as bounded com-

mutative BCK-algebras(bounded commutative BCK-lattices), finite posi-

tive implicative BCK-algebras with condition (S) and bounded implicative

BCK-algebras (Boolean lattices). We study the relation between involutory

BCK-algebras and PC-lattices, and show that in PC-lattices with condition

(S), commutative BCK-algebras and involutory BCK-algebras coincide. Fi-

nally, we prove that any PC-lattice with condition (S) is distributive and

detect the relations between these BCK-lattices by a figure.

2. Preliminaries

In this section, we give some definations and theorems that will be used in

the next sections.

Definition 2.1. [11] Let X be a set with a binary operation ∗ and a

constant 0. Then (X, ∗, 0) is called a BCK-algebra if it satisfies the following

axioms:

(BCK-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCK-2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCK-3) x ∗ x = 0,

(BCK-4) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(BCK-5) 0 ∗ x = 0.

for all x, y, z ∈ X. A partial order ≤ on X can be defined by x ≤ y if and

only if x ∗ y = 0.

Proposition 2.2. [11] In any BCK-algebra X, the following hold:

(i)(x ∗ y) ∗ z = (x ∗ z) ∗ y,

(ii) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,
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(iii) x ∗ y ≤ x,

(iv) x ∗ y ≤ z ⇔ x ∗ z ≤ y.

for all x, y, z ∈ X.

Definition 2.3. [1, 11, 13, 12] Let X be a BCK-algebra. Then, for all

x, y, z ∈ X:

(i)X is called a positive implicative BCK-algebra if (x∗y)∗z = (x∗z)∗(y∗z),

(ii) X is called an implicative BCK-algebra if x ∗ (y ∗ x) = x,

(iii) X is called a commutative BCK-algebra if x ∗ (x ∗ y) = y ∗ (y ∗ x),

(iv) X is called bounded BCK-algebra, if there exists the greatest element

1 of X, and for any x ∈ X, 1 ∗ x is denoted by Nx,

(v) X is called involutory BCK-algebra, if for all x ∈ X, NNx = x.

Proposition 2.4. [11, 12] Let X be a bounded BCK-algebra. Then, for

all x, y ∈ X:

(i) N1 = 0 and N0 = 1,

(ii) NNx ≤ x that NNx = N(Nx),

(iii) Nx ∗Ny ≤ y ∗ x,

(iv) y ≤ x implies Nx ≤ Ny,

(v) Nx ∗ y = Ny ∗ x,

(vi) NNNx = Nx.

Theorem 2.5. [7] Let X be a bounded BCK-algebra. Then for any x, y ∈
X, the following hold:

(i) X is involutory,

(ii) x ∗ y = Ny ∗Nx,

(iii) x ∗Ny = y ∗Nx,

(iv) x ≤ Ny implies y ≤ Nx.

Theorem 2.6. [11] Every implicative BCK-algebra is a commutative and

positive implicative BCK-algebra.

Definition 2.7. [9, 6] Let X be a BCK-algebra. Then:

(i) X is said to have condition (S) (S), if for any x, y ∈ X, the set A(x, y) =

{t ∈ X : t ∗ x ≤ y} has the greatest element which is denoted by x ◦ y,

(ii) (X, ∗,≤) is called a BCK-lattice, if (X,≤) is a lattice, where ≤ is the

partial BCK-order on X, which has been introduced in Definition 2.1.
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Proposition 2.8. [9] Let X be a BCK-algebras with condition (S). Then,

for all x, y, z ∈ X:

(i) y ≤ x ◦ (y ∗ x),

(ii) (x ◦ z) ∗ (y ◦ z) ≤ x ∗ y,

(iii) (x ∗ y) ∗ z = x ∗ (y ◦ z),

(iv) if x ≤ y, then x ◦ z ≤ y ◦ z,

(v) z ∗ x ≤ y ⇐⇒ z ≤ x ◦ y.

Theorem 2.9. [10] Let X be a BCK-algebra with condition (S). Then, for

all x, y, z ∈ X, the following are equivalent:

(i) X is a positive implicative,

(ii) x ≤ y implies x ◦ y = y,

(iii) x ◦ x = x,

(iv) (x ◦ y) ∗ z = (x ∗ z) ◦ (y ∗ z),

(v) x ◦ y = x ◦ (y ∗ x).

Theorem 2.10. [6, 7, 14] Let X be a BCK-algebra.

(i) If X is a finite positive implicative BCK-algebra with condition (S),

then (X,≤) is a distributive lattice,

(ii) If X is a BCK-algebra with condition (S), then X is positive implicative

if and only if (X,≤) is an upper semilattice with x ∨ y = x ◦ y, for any

x, y ∈ X,

(iii) If X is a bounded commutative BCK-algebra, then BCK-lattice (X,≤)

is a distributive lattice, where x∧ y = y ∗ (y ∗ x) and x∨ y = N(Nx∧Ny).

Theorem 2.11. [7] Let X be an involutory BCK-algebra. Then the follow-

ing are equivalent:

(i) (X,≤) is a lower semilattice,

(ii) (X,≤) is an upper semilattice,

(iii) (X,≤) is a lattice.

Theorem 2.12. [12] Let X be a bounded BCK-algebra. Then:

(i) every commutative BCK-algebra is an involutory BCK-algebra.

(ii) any implicative BCK-algebra is a Boolean lattice (a complemented dis-

tributive lattice).
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Theorem 2.13. [13, 14] Let X be a BCK-algebra. Then, for all x, y, z ∈ X,

the following are equivalent:

(i) X is commutative,

(ii) x ∗ y = x ∗ (y ∗ (y ∗ x)),

(iii) x ∗ (x ∗ y) = y ∗ (y ∗ (x ∗ (x ∗ y))),

(iv) x ≤ y implies x = y ∗ (y ∗ x).

3. PC-lattices

In this scetion, we define the notion of PC-lattice in BCK-algebras, which

is a new class of bounded BCK-algebras.

Definition 3.1. Let (X, ∗,≤) be a BCK-lattice. Then (X, ∗,≤) is called

a PC-lattice, if

(z ∗ x) ∗ (y ∗ x) = z ∗ (x ∨ y) for all x, y, z ∈ X.

Note. In what follows, we show that the class of PC-lattices in-

cludes the finite Positive implicative BCK-algebras with condition (S) and

bounded Commutative BCK-algebras that are two important classes of

BCK-lattices. Hence this class of BCK-lattices is called PC-lattice.

Example 3.2. (i) Let X = {0, a, b, 1} be a chain, where 0 ≤ a ≤ b ≤ 1,

and the operation ∗ on X is defined as follows:

∗ 0 a b 1

0 0 0 0 0

a a 0 0 0

b b b 0 0

1 1 1 1 0

It is easy to check that (X, ∗,≤) is a PC-lattice.

(ii) Let X be an interval [0, 1] of real numbers and binary operation ∗ on

X is defined as a follows:

x ∗ y =

{

0 if x ≤ y

x if x > y

Then it is easy to check that (X, ∗ ≤) is a PC-lattice, where x ∧ y =

min{x, y} and x ∨ y = max{x, y}.
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The following example shows that a BCK-lattice is not a PC-lattice, in

general.

Example 3.3. Let X = {0, a, b, 1} be a chain, that is 0 ≤ a ≤ b ≤ 1, and

the operation ∗ on X is defined as follows:

∗ 0 a b 1

0 0 0 0 0

a a 0 0 0

b b b 0 0

1 1 b a 0

Then it is easy to check that (X, ∗,≤) is a BCK-lattice but it is not a

PC-lattice, since

(1 ∗ a) ∗ (b ∗ a) = b ∗ b = 0 6= a = 1 ∗ b = 1 ∗ (b∨ a).

Theorem 3.4. Let X be a bounded BCK-algebra. Then:

(i) every commutative BCK-algebra is a PC-lattice.

(ii) every finite positive implicative BCK-algebra with condition (S) is a

PC-lattice

Proof: (i) Let X be a commutative BCK-algebra. By Theorem 2.10

(iii), X is a BCK-lattice and by Theorem 2.12 (i), X is an involutory

BCK-algebra. Hence for any x, y, z ∈ X, we have:

(z ∗ x) ∗ (y ∗ x) = (Nx ∗Nz) ∗ (Nx ∗Ny), by Theorem 2.5 (ii)

= (Nx ∗ (Nx ∗Ny)) ∗Nz, by Proposition 2.2(i)

= (Nx ∧Ny) ∗Nz, by Theorem 2.10 (iii)

= NN(Nx ∧Ny) ∗Nz, by Definition 2.3(v)

= z ∗N(Nx ∧Ny), by Theorem 2.5 (ii)

= z ∗ (x ∨ y). by Theorem 2.10 (iii)

Therefore, X is a PC-lattice.

(ii) Let X be a finite positive implicative BCK-algebra with condition (S).

Then by Theorem 2.10 (i), X is a BCK-lattice and so for any x, y, z ∈ X,

(z ∗ x) ∗ (y ∗ x) = z ∗ (x ◦ (y ∗ x)), by Proposition 2.8 (iii)

= z ∗ (x ◦ y), by Theorem 2.9(v)

= z ∗ (x ∨ y). by Theorem 2.10 (ii)

Hence X is a PC-lattice.
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The following example shows that the converse of Theorem 3.4 does

not hold, in general.

Example 3.5. Let X = {0, a, b, 1} be a chain, where 0 ≤ a ≤ b ≤ 1, and

the operation ∗ on X is defined as follows:

∗ 0 a b 1

0 0 0 0 0

a a 0 0 0

b b a 0 0

1 1 1 1 0

It is easy to check that X is a PC-lattice, but it is not a positive implicative

BCK-algebra, since (b ∗ a) ∗ (a ∗ a) = a ∗ 0 = a 6= 0 = a ∗ a = (b ∗ a) ∗ a.
Also X is not a commutative BCK-algebra, since 1 ∗ (1 ∗ a) = 1 ∗ 1 = 0 6=
a = a ∗ 0 = a ∗ (a ∗ 1).

Corollary 3.6. Any bounded implicative BCK-algebra (Boolean lattice)

is a PC-lattice.

Proof: By Theorems 2.6, 2.12(i) and 3.4(i), the proof is clear.

Proposition 3.7. Let X be a PC-lattice. Then for all x, y, z ∈ X:

(x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z)

Proof: Suppose that X is a PC-lattice, and x, y, z ∈ X. Since x ≤ x ∨ y

and y ≤ x ∨ y, by Proposition 2.2 (ii), we have (x ∗ z) ≤ (x ∨ y) ∗ z and

(y ∗ z) ≤ (x∨ y) ∗ z. Therefore, (x ∗ z)∨ (y ∗ z) ≤ (x∨ y) ∗ z. On the other

hand, since X is a PC-lattice, by Definition 3.1 used repeatedly, we have:

[(x ∨ y) ∗ z] ∗ [(x ∗ z) ∨ (y ∗ z)] = [((x ∨ y) ∗ z) ∗ (x ∗ z)] ∗ [(y ∗ z) ∗ (x ∗ z)]

= ((x ∨ y) ∗ (x ∨ z)) ∗ ((y ∗ z) ∗ (x ∗ z))

= ((x ∨ y) ∗ (x ∨ z)) ∗ (y ∗ (x ∨ z))

= (x ∨ y) ∗ ((x ∨ z) ∨ y)

= 0

Hence, (x∨y)∗z ≤ (x∗z)∨(y∗z). Therefore (x∨y)∗z = (x∗z)∨(y∗z).
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Theorem 3.8. Let X be a bounded BCK-algebras.

(i) If X is a finite PC-lattice, then X is a BCK-algebra with condition (S).

(ii) If X is a BCK-algebra with condition (S), then x ∨ y = x ◦ (y ∗ x), for
x, y ∈ X.

Proof: (i) Suppose that (X, ∗,≤) is a finite PC-lattice and x, y ∈ X.

Then the set A(x, y) = {t : t ∗ x ≤ y} is a finite subset of X. Let A(x, y) =

{ti|i ∈ I}, where I = {1, 2, .., n} . Since X is a lattice, there exists z ∈ X

such that
∨

{ti : ti ∗ x ≤ y, i ∈ I} = z. Hence, by Proposition 3.7(ii),

z ∗ x = (
∨

i∈I

ti) ∗ x =
∨

i∈I

(ti ∗ x) ≤
∨

y = y

Therefore, z ∈ A(x, y). It is clear that for every w ∈ A(x, y), w ≤ z, and

so z is the greatest element of the set A(x, y), which is defined by x ◦ y.

Hence every finite PC-lattice is a BCK-algebra with condition (S).

(ii) Suppose that X is a PC-lattice with condition (S). Then for x, y ∈ X,

the set A(x, y ∗ x) has the greatest element. Now, since

((x ∨ y) ∗ x) ∗ (y ∗ x) = (x ∨ y) ∗ (x ∨ y) = 0

we have (x ∨ y) ∗ x ≤ y ∗ x. Hence x ∨ y ∈ A(x, y ∗ x). If t ∈ A(x, y ∗ x),
then t ∗ x ≤ y ∗ x, and so (t ∗ x) ∗ (y ∗ x) = 0. Since X is a PC-lattice,

t ∗ (x ∨ y) = (t ∗ x) ∗ (y ∗ x) = 0 and so t ≤ x ∨ y.

Hence, x∨y is the greatest element of A(x, y∗x), that is x◦(y∗x) = x∨y.

The following example shows that the converse of Theorem 3.8, is not

correct in general.

Example 3.9. Let X = {0, a, b, 1} be a chain, where 0 ≤ a ≤ b ≤ 1, and

the operation ∗ on X is defined as follows:

∗ 0 a b 1

0 0 0 0 0

a a 0 0 0

b b a 0 0

1 1 a a 0

◦ 0 a b 1

0 0 a b 1

a a 1 1 1

b b 1 1 1

1 1 1 1 1

Then X is a BCK-algebra with condition (S), but it is not a PC-lattice.

Since

(1 ∗ a) ∗ (b ∗ a) = a ∗ a = 0 6= a = 1 ∗ b = 1 ∗ (b ∨ a)

Also we have a ◦ (b ∗ a) = a ◦ a = 1 6= a ∨ b = b.
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Theorem 3.10. Let X be a BCK-lattice. Then:

(i) x ∗ (y ∧ z) = (x ∗ y) ∨ (x ∗ z), for x, y, z ∈ X,

(ii) if X is with condition (S), then for x, y, z ∈ X, x◦(y∧z) = (x◦y)∧(x◦z).

Proof: (i) Suppose that X is a BCK-lattice and x, y, z ∈ X. Since y∧z ≤
y and y ∧ z ≤ z, by Proposition 2.2 (ii), we have x ∗ z ≤ x ∗ (y ∧ z) and

x ∗ y ≤ x ∗ (y ∧ z). Hence

(x ∗ y) ∨ (x ∗ z) ≤ x ∗ (y ∧ z)

Now it remains to prove that x ∗ (y ∧ z) ≤ (x ∗ y)∨ (x ∗ z). Since (x ∗ y) ≤
(x ∗ y) ∨ (x ∗ z), by Proposition 2.2(ii), and BCK-2, we have x ∗ ((x ∗ y)∨
(x ∗ z)) ≤ x ∗ (x ∗ y) ≤ y, and similarly we have x ∗ ((x ∗ y) ∨ (x ∗ z)) ≤
x ∗ (x ∗ z) ≤ z. Hence x ∗ ((x ∗ y) ∨ (x ∗ z)) ≤ y ∧ z. By Proposition 2.2

(iv), we conclude that

x ∗ (y ∧ z) ≤ (x ∗ y) ∨ (x ∗ z)

Therefore
x ∗ (y ∧ z) = (x ∗ y) ∨ (x ∗ z)

(ii) Suppose that X is a BCK-lattice with condition (S) and x, y, z ∈ X.

Since y∧ z ≤ y and y∧ z ≤ z, by Proposition 2.8 (iv), we have x◦ (y∧ z) ≤
(x ◦ y) and x ◦ (y ∧ z) ≤ (x ◦ z), and so

x ◦ (y ∧ z) ≤ (x ◦ y) ∧ (x ◦ z)

Now it remains to prove that (x◦y)∧(x◦z) ≤ x◦(y∧z). Since (x◦y)∧(x◦z) ≤
x ◦ y, by Proposition 2.8(v), we have ((x ◦ y)∧ (x ◦ z)) ∗x ≤ y. In the same

way we have ((x ◦ y)∧ (x ◦ z)) ∗ x ≤ z. Hence ((x ◦ y)∧ (x ◦ z)) ∗ x ≤ y ∧ z,

and so
(x ◦ y) ∧ (x ◦ z) ≤ x ◦ (y ∧ z)

Therefore
(x ◦ y) ∧ (x ◦ z) = x ◦ (y ∧ z)

Theorem 3.11. Let X be a PC-lattice with condition (S). Then the fol-

lowing are equivalent:

(i) X is an involutory BCK-algebra,

(ii) X is a commutative BCK-algebra.



42 S. Khosravi Shoar, R. A. Borzooei, R. Moradian, A. Radfar

Proof: (i) ⇒ (ii) Let X be an involutory BCK-algebra and y ≤ x. Since

Ny ∗ Ny = 0 and Nx ∗ Ny = (1 ∗ x) ∗ (1 ∗ y) ≤ y ∗ x = 0, it follows that

(Nx ∗Ny) ∨ (Ny ∗Ny) = 0. Hence:

(Nx ◦ (x ∗ y)) ∗Ny = (Nx ◦ (Ny ∗Nx)) ∗Ny, by Theorem 2.5(ii)

= (Nx ∨Ny) ∗Ny, by Theorem 3.8

= (Nx ∗Ny) ∨ (Ny ∗Ny), by Proposition 3.7(ii)

= 0

Hence,

y ∗ (x ∗ (x ∗ y)) = y ∗ (NNx ∗ (x ∗ y))

= y ∗ ((1 ∗Nx) ∗ (x ∗ y))

= y ∗ (1 ∗ (Nx ◦ (x ∗ y))), by Proposition 2.8(iii)

= NNy ∗N(Nx ◦ (x ∗ y))

≤ (Nx ◦ (x ∗ y)) ∗Ny

= 0

Therefore, y ≤ x∗(x∗y). On the other hand, by BCK-2, we have x∗(x∗y) ≤
y. Consequently, y = x ∗ (x ∗ y). Hence by Theorem 2.13, (X, ∗,≤) is a

commutative BCK-algebra.

(ii) ⇒ (i). The proof holds by Theorem 2.12(i).

Theorem 3.12. Let X be a PC-lattice with condition (S). Then X is a

distributive lattice.

Proof: Suppose that X is a PC-lattice with condition (S). It is clear that

x∨ (y ∧ z) ≤ (x∨ y)∨ (x∨ z), for any x, y, z ∈ X. Now it remains to show

that x ∨ (y ∧ z) ≥ (x ∨ y) ∧ (x ∨ z). Since X satisfies the condition (S), we

have;

x ∨ (y ∧ z) = (y ∧ z) ∨ x = (y ∧ z) ◦ (x ∗ (y ∧ z)), by Theorem 3.8(ii)

= (x ∗ (y ∧ z)) ◦ (y ∧ z)

= ((x ∗ (y ∧ z)) ◦ y) ∧ ((x ∗ (y ∧ z)) ◦ z),

by Proposition 3.7(i)

≥ ((x ∗ y) ◦ y) ∧ ((x ∗ z) ◦ z)

= (x ∨ y) ∧ (x ∨ z), by Theorem 3.8(ii)

Therefore, X is a distributive lattice.
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4. Conclusion

It is well-known that the concept of the lattice theory has an important role

in investigating the structure of a logical system. Also a Boolean lattice,

that is a complemented distributive lattice, has many applications in the

computer science. In order to extend the concept of BCK-algebras, we

have proposed the concepts of PC-lattices. Then we have established the

relationships between these lattices and other currently known lattices in

bounded BCK-algebras and proved that PC-lattices are distributive.

In the following diagram we can see the relation between some kinds

of BCK-lattices in bounded BCK-algebras.
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[10] K. lséki, On positive implicative BCK-algebras with condition (S), Mathe-

matica Japonica 24 (1979), pp. 107–119.
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