Bulletin of the Section of Logic Volume 47/1 (2018), pp. 1–14 http://dx.doi.org/10.18778/0138-0680.47.1.01

Young Bae Jun, Seok-Zun Song* and Hashem Bordbar

INT-SOFT IDEALS OF PSEUDO MV-ALGEBRAS

Abstract

The notion of (implicative) int-soft ideal in a pseudo MV-algebra is introduced, and related properties are investigated. Conditions for a soft set to be an int-soft ideal are provided. Characterizations of (implicative) int-soft ideal are considered. The extension property for implicative int-soft ideal is established.

Keywords: int-soft ideal, implicative int-soft ideal.

2010 Mathematics Subject Classification. 06F35, 03G25, 06D72

1. Introduction

MV-algebras have been introduced by Chang to prove the completeness theorem for the infinite-valued propositional calculus developed by Lukasiewicz. As a non-commutative generalization of MV-algebras, the pseudo MValgebra has been introduced by Georgescu et al. [13] and Rachunek [19], respectively. Walendziak [20] studied (implicative) ideals in pseudo MValgebras. A soft set theory is introduced by Molodtsov [18], and Çağman et al. [9] provided new definitions and various results on soft set theory. Jun et al. [14], [2], [3] have discussed soft set theory in residuated lattices. Jun and Park [17], Bordbar [1], [4], [5], [6], [7] and [8] studied applications of soft sets in ideal theory of BCK/BCI-algebras. Jun et al. [15, 16] introduced the notion of intersectional soft sets, and considered its applications to BCK/BCI-algebras.

In this paper, we introduce the notion of (implicative) int-soft ideal in a pseudo MV-algebra, and investigate the related properties. We provide

^{*}Corresponding author.

conditions for a soft set to be an int-soft ideal. We consider characterizations of (implicative) int-soft ideal and establish the extension property for implicative int-soft ideal.

2. Preliminaries

Let $\mathcal{M} := (M, \oplus, \bar{}, \bar{}, 0, 1)$ be an algebra of type (2, 1, 1, 0, 0). We set a new binary operation \odot on M via $x \odot y = (y^- \oplus x^-)^{\sim}$ for all $x, y \in M$. We will write $x \oplus y \odot z$ instead of $x \oplus (y \odot z)$, that is, the operation " \odot " is prior to the operation " \oplus ".

A pseudo MV-algebra is an algebra $\mathcal{M} := (M, \oplus, \bar{}, \sim, 0, 1)$ of type (2, 1, 1, 0, 0) such that

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z, \tag{2.1}$$

$$x \oplus 0 = 0 \oplus x = x, \tag{2.2}$$

$$x \oplus 1 = 1 \oplus x = x, \tag{2.3}$$

$$1^{\sim} = 0, \ 1^{-} = 0,$$
 (2.4)

$$(x^- \oplus y^-)^{\sim} = (x^{\sim} \oplus y^{\sim})^-, \qquad (2.5)$$

$$x \oplus x^{\sim} \odot y = y \oplus y^{\sim} \odot x = x \odot y^{-} \oplus y = y \odot x^{-} \oplus x, \quad (2.6)$$

$$x \odot (x^- \oplus y) = (x \oplus y^{\sim}) \odot y, \qquad (2.7)$$

$$(x^{-})^{\sim} = x \tag{2.8}$$

for all $x, y, z \in M$. If we define

$$(\forall x, y \in M) \left(x \le y \iff x^- \oplus y = 1 \right), \tag{2.9}$$

then \leq is a partial order such that M is a bounded distributive lattice with the join $x \lor y$ and the meet $x \land y$ given by

$$x \lor y = x \oplus x^{\sim} \odot y = x \odot y^{-} \oplus y, \qquad (2.10)$$

$$x \wedge y = x \odot (x^- \oplus y) = (x \oplus y^{\sim}) \odot y, \qquad (2.11)$$

respectively.

For any pseudo MV-algebra \mathcal{M} , the following properties are valid (see [13]).

$$x \odot y \le x \land y \le x \lor y \le x \oplus y, \tag{2.12}$$

$$(x \lor y)^- = x^- \land y^-, \tag{2.13}$$

$$x \le y \ \Rightarrow \ z \odot x \le z \odot y, \ x \odot z \le y \odot z, \tag{2.14}$$

$$z \oplus (x \wedge y) = (z \oplus x) \wedge (z \oplus y), \qquad (2.15)$$

$$z \odot (x \oplus y) \le z \odot x \oplus y, \tag{2.16}$$

$$(x^{\sim})^{-} = x,$$
 (2.17)

$$x \odot 1 = x = 1 \odot x, \tag{2.18}$$

$$x \oplus x^{\sim} = 1 = x^{-} \oplus x, \tag{2.19}$$

$$x \odot x^- = 0 = x^- \odot x, \tag{2.20}$$

for all $x, y, z \in M$.

A subset I of a pseudo MV-algebra \mathcal{M} is called an *ideal* of \mathcal{M} (see [20]) if it satisfies:

$$0 \in I, \tag{2.21}$$

$$(\forall x, y \in M) (x, y \in I \implies x \oplus y \in I), \qquad (2.22)$$

$$(\forall x, y \in M) (x \in I, y \le x \Rightarrow y \in I).$$
(2.23)

An ideal I of a pseudo MV-algebra \mathcal{M} is said to be *implicative* (see [20]) if it satisfies:

$$(\forall x, y, z \in M) (x \odot y \odot z \in I, z^{\sim} \odot y \in I \Rightarrow x \odot y \in I).$$
(2.24)

A soft set theory is introduced by Molodtsov [18]. Çağman et al. [9] provided new definitions and various results on soft set theory.

Let $\mathcal{P}(U)$ denote the power set of an initial universe set U and $A \subseteq E$ where E is a set of parameters.

A soft set (\tilde{f}, A) over U in E (see [9, 18]) is defined to be a set of ordered pairs

$$(\tilde{f}, A) := \left\{ \left(x, \tilde{f}(x)\right) : x \in E, \ \tilde{f}(x) \in \mathcal{P}(U) \right\},\$$

where $\tilde{f}: E \to \mathcal{P}(\underline{U})$ such that $\tilde{f}(x) = \emptyset$ if $x \notin A$.

The function \tilde{f} is called an approximate function of the soft set (\tilde{f}, A) . For a soft set (\tilde{f}, A) over U in E, the set $(\tilde{f}, A)_{\gamma} = \left\{ x \in A \mid \gamma \subseteq \tilde{f}(x) \right\}$ is called the γ -inclusive set of (\tilde{f}, A) . Assume that E has a binary operation \hookrightarrow . For any non-empty subset A of E, a soft set (\tilde{f}, A) over U in E is said to be *intersectional* over U (see [15, 16]) if its approximate function \tilde{f} satisfies:

$$(\forall x, y \in A) \left(x \hookrightarrow y \in A \Rightarrow \tilde{f}(x) \cap \tilde{f}(y) \subseteq \tilde{f}(x \hookrightarrow y) \right).$$
(2.25)

3. Int-soft ideals

In what follows, we take a pseudo MV-algebra \mathcal{M} as a set of parameters. DEFINITION 3.1. A soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} is called an *int-soft ideal* of \mathcal{M} if the following conditions hold

$$(\forall x, y \in M) \left(\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \right), \tag{3.1}$$

$$(\forall x, y \in M) \left(y \le x \Rightarrow \tilde{f}(y) \supseteq \tilde{f}(x) \right).$$
(3.2)

It is easily seen that (3.2) implies

$$(\forall x \in M) \left(\tilde{f}(0) \supseteq \tilde{f}(x) \right).$$
(3.3)

EXAMPLE 3.2. Let $M = \{(1, y) \in \mathbb{R}^2 \mid y \ge 0\} \cup \{(2, y) \in \mathbb{R}^2 \mid y \le 0\}$. For any $(a, b), (c, d) \in M$, we define operations \oplus , - and \sim as follows:

$$(a,b) \oplus (c,d) = \begin{cases} (1,b+d) & \text{if } a = c = 1, \\ (2,ad+b) & \text{if } ac = 2 \text{ and } ad + b \le 0, \\ (2,0) & \text{otherwise,} \end{cases}$$
$$(a,b)^{-} = \left(\frac{2}{a}, -\frac{2b}{a}\right) \text{ and } (a,b)^{\sim} = \left(\frac{2}{a}, -\frac{b}{a}\right).$$

Then $\mathcal{M} := (M, \oplus, \bar{}, \bar{}, 0, \mathbf{1})$ is a pseudo MV-algebra where $\mathbf{0} = (1, 0)$ and $\mathbf{1} = (2, 0)$ (see [11]). Let $A = \{(1, y) \in \mathbb{R}^2 \mid y > 0\}$ and $B = \{(2, y) \in \mathbb{R}^2 \mid y < 0\}$. Define a soft set (\tilde{f}, M) over $U = \mathbb{R}$ in \mathcal{M} by

$$\tilde{f}: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 3\mathbb{R} & \text{if } x = \mathbf{0}, \\ 3\mathbb{Z} & \text{if } x \in A, \\ 3\mathbb{N} & \text{if } x \in B \cup \{\mathbf{1}\}. \end{cases}$$

It is easily checked that (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .

EXAMPLE 3.3. For an ideal A of a pseudo MV-algebra \mathcal{M} , let (\tilde{f}_A, M) be a soft set over $U = \mathbb{Z}$ in \mathcal{M} given as follows:

$$\tilde{f}_A: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 2\mathbb{Z} & \text{if } x \in A, \\ 4\mathbb{N} & \text{otherwise.} \end{cases}$$

Then $\left(\tilde{f}_A, M\right)$ is an int-soft ideal of \mathcal{M} .

PROPOSITION 3.4. For any int-soft ideal (\tilde{f}, M) of a pseudo MV-algebra \mathcal{M} , we have the following properties.

- (1) $\tilde{f}(x \odot y) \supseteq \tilde{f}(x) \cap \tilde{f}(y),$
- (2) $\tilde{f}(x \wedge y) \supseteq \tilde{f}(x) \cap \tilde{f}(y),$
- (3) $\tilde{f}(x \oplus y) = \tilde{f}(x) \cap \tilde{f}(y)$

for all $x, y \in M$.

PROOF: Note that $x \odot y \le x \land y \le x \lor y \le x \oplus y$ for all $x, y \in M$. Using (3.1) and (3.2), we have

$$\tilde{f}(x \odot y) \supseteq \tilde{f}(x \land y) \supseteq \tilde{f}(x \lor y) \supseteq \tilde{f}(x \lor y) \supseteq \tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y).$$

Since $x \leq x \lor y \leq x \oplus y$ and $y \leq x \lor y \leq x \oplus y$ for all $x, y \in M$, it follows from (3.2) that $\tilde{f}(x \oplus y) \subseteq \tilde{f}(x)$ and $\tilde{f}(x \oplus y) \subseteq \tilde{f}(y)$. Hence $\tilde{f}(x \oplus y) \subseteq \tilde{f}(x) \cap \tilde{f}(y)$. This completes the proof.

THEOREM 3.5. Let (\tilde{f}, M) be a soft set over U in a pseudo MV-algebra \mathcal{M} . Then (\tilde{f}, M) is an int-soft ideal of \mathcal{M} if and only if it satisfies (3.1) and

$$(\forall x, y \in M) \left(\tilde{f}(x \wedge y) \supseteq \tilde{f}(x) \right).$$
 (3.4)

PROOF: Let (\tilde{f}, M) be an int-soft ideal of \mathcal{M} and let $x, y \in M$. Since $x \wedge y \leq x$, it follows from (3.2) that $\tilde{f}(x \wedge y) \supseteq \tilde{f}(x)$. Suppose that (\tilde{f}, M) satisfies (3.1) and (3.4). Let $x, y \in M$ be such that $y \leq x$. Then $x \wedge y = y$, and so $\tilde{f}(y) = \tilde{f}(x \wedge y) \supseteq \tilde{f}(x)$ by (3.4). Therefore (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .

PROPOSITION 3.6. Every int-soft ideal (\tilde{f}, M) of a pseudo MV-algebra \mathcal{M} satisfies the following inclusion.

$$(\forall x, y \in M) \left(\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(x^{\sim} \odot y) \right).$$
(3.5)

PROOF: Note that $y \leq x \lor y = x \oplus x^{\sim} \odot y$ for all $x, y \in M$. Using (3.1) and (3.2) imply that $\tilde{f}(y) \supseteq \tilde{f}(x \oplus x^{\sim} \odot y) \supseteq \tilde{f}(x) \cap \tilde{f}(x^{\sim} \odot y)$ for all $x, y \in M$.

PROPOSITION 3.7. Every int-soft ideal (\tilde{f}, M) of a pseudo MV-algebra \mathcal{M} satisfies the following inclusion.

$$(\forall x, y \in M) \left(\tilde{f}(x \odot y) \supseteq \tilde{f}(x \odot y \odot y) \cap \tilde{f}(y \land y^{\sim}) \right).$$
(3.6)

PROOF: Using (2.18), (2.19) and (2.16), we have $x \odot y = (x \odot y) \odot 1 = (x \odot y) \odot (y \oplus y^{\sim}) \le (x \odot y) \odot y \oplus y^{\sim}$ for all $x, y \in M$. It follows from (2.15) that

$$egin{aligned} &x\odot y \leq y\wedge (x\odot y\odot y\oplus y^{\sim})\ &\leq (x\odot y\odot y\oplus y)\wedge (x\odot y\odot y\oplus y^{\sim})\ &= x\odot y\odot y\oplus (y\wedge y^{\sim}). \end{aligned}$$

Using (3.2) and (3.1), we conclude that $\tilde{f}(x \odot y) \supseteq \tilde{f}(x \odot y \odot y \oplus (y \land y^{\sim})) \supseteq \tilde{f}(x \odot y \odot y) \cap \tilde{f}(y \land y^{\sim})$ for all $x, y \in M$.

PROPOSITION 3.8. Let (\tilde{f}, M) be a soft set over U in a pseudo MV-algebra \mathcal{M} satisfying two conditions (3.3) and (3.5). Then (\tilde{f}, M) satisfies (3.2) and

$$(\forall x, y \in M) \left(\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(y \odot x^{-}) \right).$$
(3.7)

PROOF: Let $x, y \in M$ be such that $y \leq x$. Using (2.14) and (2.20), we get $x^{\sim} \odot y \leq x^{\sim} \odot x = 0$ and thus $x^{\sim} \odot y = 0$. It follows from (3.3) and (3.5) that

$$\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(x^{\sim} \odot y) = \tilde{f}(x) \cap \tilde{f}(0) = \tilde{f}(x).$$
(3.8)

Hence (3.2) is valid. Since

$$(y \odot x^{-})^{\sim} \odot (y \odot x^{-} \oplus x) \leq (y \odot x^{-})^{\sim} \odot (y \odot x^{-}) \oplus x = 0 \oplus x = x$$
(3.9)

for all $x, y \in M$, we have $\tilde{f}(x) \subseteq \tilde{f}((y \odot x^{-})^{\sim} \odot (y \odot x^{-} \oplus x))$ by (3.2). Now since

$$x^{\sim} \odot y \le x \oplus x^{\sim} \odot y = y \odot x^{-} \oplus x \tag{3.10}$$

for all $x, y \in M$, we get $\tilde{f}(x^{\sim} \odot y) \supseteq \tilde{f}(y \odot x^{-} \oplus x)$ by (3.2), and so

$$\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(x^{\sim} \odot y) \supseteq \tilde{f}(x) \cap \tilde{f}(y \odot x^{-} \oplus x)
\supseteq \tilde{f}(x) \cap \left(\tilde{f}(y \odot x^{-}) \cap \tilde{f}((y \odot x^{-})^{\sim} \odot (y \odot x^{-} \oplus x))\right)
\supseteq \tilde{f}(x) \cap \left(\tilde{f}(y \odot x^{-}) \cap \tilde{f}(x)\right) = \tilde{f}(x) \cap \tilde{f}(y \odot x^{-})$$
(3.11)

for all $x, y \in M$.

We provide conditions for a soft set to be an int-soft ideal.

PROPOSITION 3.9. If a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} satisfies two conditions (3.3) and (3.7), then it is an int-soft ideal of \mathcal{M} .

PROOF: Let $x, y \in M$ be such that $y \leq x$. Then $y \odot x^- \leq x \odot x^- = 0$ by (2.14) and (2.20), and so $y \odot x^- = 0$. It follows from (3.3) and (3.7) that

$$\tilde{f}(y) \supseteq \tilde{f}(x) \cap \tilde{f}(y \odot x^{-}) = \tilde{f}(x) \cap \tilde{f}(0) = \tilde{f}(x).$$
(3.12)

Note that $(x \oplus y) \odot y^- = (x \oplus (y^-)^{\sim}) \odot y^- = x \land y^- \le x$ for all $x, y \in M$. Hence

$$\tilde{f}(x \oplus y) \supseteq \tilde{f}(y) \cap \tilde{f}((x \oplus y) \odot y^{-}) \supseteq \tilde{f}(y) \cap \tilde{f}(x).$$
(3.13)

Therefore (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .

Combining Propositions 3.6, 3.8 and 3.9, we have the following characterization of an int-soft ideal of a pseudo MV-algebra.

THEOREM 3.10. For a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , the following are equivalent.

- (1) (\tilde{f}, M) is an int-soft ideal of \mathcal{M} .
- (2) (\tilde{f}, M) satisfies the conditions (3.3) and (3.5).
- (3) (\tilde{f}, M) satisfies the conditions (3.3) and (3.7).

THEOREM 3.11. Let (\tilde{f}, M) be a soft set over U in a pseudo MV-algebra \mathcal{M} that satisfies (3.3) and

$$(\forall x, y, z \in M) \left(\tilde{f}(x \odot y) \supseteq \tilde{f}(x \odot y \odot z) \cap \tilde{f}(z^{\sim} \odot y) \right).$$
(3.14)

Then (\tilde{f}, M) is an int-soft ideal of \mathcal{M} , and satisfies the following conditions:

$$(\forall x, y \in M) \left(\tilde{f}(x \odot y) = \tilde{f}(x \odot y \odot y) \right), \qquad (3.15)$$

$$(\forall x \in M)(\forall n \in \mathbb{N})(\tilde{f}(x) = \tilde{f}(x^n))$$
(3.16)

where $x^{n} = x^{n-1} \odot x = x \odot x^{n-1}$ and $x^{0} = 1$.

PROOF: Taking x = y, y = 1 and $z = x^{-}$ in (3.14) and using (2.8) and (2.18), we have

$$\tilde{f}(y) = \tilde{f}(y \odot 1) \supseteq \tilde{f}(y \odot 1 \odot x^{-}) \cap \tilde{f}((x^{-})^{\sim} \odot 1) = \tilde{f}(y \odot x^{-}) \cap \tilde{f}(x).$$
(3.17)

It follows from Theorem 3.10 that (\tilde{f}, M) is an int-soft ideal of \mathcal{M} . If we put z = y in (3.14) and use (2.20) and (3.3), then

$$\tilde{f}(x \odot y) \supseteq \tilde{f}(x \odot y \odot y) \cap \tilde{f}(y^{\sim} \odot y) = \tilde{f}(x \odot y \odot y) \cap \tilde{f}(0) = \tilde{f}(x \odot y \odot y).$$
(3.18)

 \square

Since $x \odot y \odot y \le x \odot y$ for all $x, y \in M$, we get $\tilde{f}(x \odot y \odot y) \supseteq \tilde{f}(x \odot y)$ by (3.2). Therefore (3.15) is valid. If n = 1, then (3.16) is clearly true. If we take x = 1 and y = x in (3.15), then

$$\tilde{f}(x) = \tilde{f}(1 \odot x) = \tilde{f}(1 \odot x \odot x) = \tilde{f}(x^2).$$

Now assume that (3.16) is valid for every positive integer k > 2. Then

$$\tilde{f}(x^{k+1}) = \tilde{f}(x^{k-1} \odot x \odot x) = \tilde{f}(x^{k-1} \odot x) = \tilde{f}(x^k) = \tilde{f}(x).$$

The mathematical induction shows that (3.16) is valid for every positive integer n.

LEMMA 3.12. For any soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , the condition (3.14) is equivalent to the following condition.

$$(\forall x, y, z \in M) \left(\tilde{f}(x \odot y) \supseteq \tilde{f}(x \odot y \odot z^{-}) \cap \tilde{f}(z \odot y) \right).$$
(3.19)

PROOF: Taking z^- instead of z in (3.14) induces (3.19). If we take z^{\sim} instead of z in (3.19) and use (2.17), then we have the condition (3.14). \Box

For any soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , consider the set

$$M_{\tilde{f}} := \{ x \in M \mid \tilde{f}(x) = \tilde{f}(0) \}.$$

THEOREM 3.13. If (\tilde{f}, M) is an int-soft ideal of a pseudo MV-algebra \mathcal{M} , then the set $M_{\tilde{f}}$ is an ideal of \mathcal{M} .

PROOF: Obviously, $0 \in M_{\tilde{f}}$. Let $x, y \in M_{\tilde{f}}$. Then $\tilde{f}(x) = \tilde{f}(0) = \tilde{f}(y)$, and so

$$\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) = \tilde{f}(0)$$

by (3.1). Combining this with (3.3) induces $\tilde{f}(x \oplus y) = \tilde{f}(0)$, that is, $x \oplus y \in M_{\tilde{f}}$. Let $x, y \in M$ be such that $x \in M_{\tilde{f}}$ and $y \leq x$. Then $\tilde{f}(y) \supseteq \tilde{f}(x) = \tilde{f}(0)$ by (3.2), and thus $\tilde{f}(y) = \tilde{f}(0)$ by (3.3). Hence $y \in M_{\tilde{f}}$. Therefore $M_{\tilde{f}}$ is an ideal of \mathcal{M} .

The converse of Theorem 3.13 is not true in general as seen in the following example:

EXAMPLE 3.14. Let $\mathcal{M} := (M, \oplus, \bar{}, \bar{}, \mathbf{0}, \mathbf{1})$ be a pseudo MV-algebra in Example 3.2. Define a soft set (\tilde{f}, M) over $U = \mathbb{N}$ in \mathcal{M} by

$$\tilde{f}: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 4\mathbb{N} & \text{if } x = \mathbf{0}, \\ 2\mathbb{N} & \text{if } x \neq \mathbf{0}. \end{cases}$$

Then $M_{\tilde{f}} = \{\mathbf{0}\}$ is an ideal of \mathcal{M} but (\tilde{f}, M) is not an int-soft ideal of \mathcal{M} .

PROPOSITION 3.15. Let (\tilde{f}, M) and (\tilde{g}, M) be soft sets over U in a pseudo MV-algebra \mathcal{M} such that $(\tilde{f}, M) \subseteq (\tilde{g}, M)$, that is, $\tilde{f}(x) \subseteq \tilde{g}(x)$ for all $x \in M$, and $\tilde{f}(0) = \tilde{g}(0)$. If (\tilde{g}, M) satisfies the condition (3.3), then $M_{\tilde{f}} \subseteq M_{\tilde{g}}$.

PROOF: Let $x \in M_{\tilde{f}}$. Then $\tilde{g}(0) = \tilde{f}(0) = \tilde{f}(x) \subseteq \tilde{g}(x)$, which implies from (3.3) that $\tilde{g}(x) = \tilde{g}(0)$. Hence $x \in M_{\tilde{g}}$ and $M_{\tilde{f}} \subseteq M_{\tilde{g}}$.

COROLLARY 3.16. Let (\tilde{f}, M) and (\tilde{g}, M) be soft sets over U in a pseudo MV-algebra \mathcal{M} such that $(\tilde{f}, M) \subseteq (\tilde{g}, M)$, that is, $\tilde{f}(x) \subseteq \tilde{g}(x)$ for all $x \in M$, and $\tilde{f}(0) = \tilde{g}(0)$. If (\tilde{g}, M) is an int-soft ideal of \mathcal{M} , then $M_{\tilde{f}} \subseteq M_{\tilde{g}}$.

PROPOSITION 3.17. If (\tilde{f}, M) is an int-soft ideal of a pseudo MV-algebra \mathcal{M} , then the set

$$P\left(M_{\tilde{f}}\right) := \{x \in M \mid \tilde{f}(x) \neq \emptyset\}$$

is an ideal of \mathcal{M} when it is non-empty.

PROOF: Assume that $P\left(M_{\tilde{f}}\right) \neq \emptyset$. Obviously, $0 \in P\left(M_{\tilde{f}}\right)$. Let $x, y \in P\left(M_{\tilde{f}}\right)$. Then $\tilde{f}(x) \neq \emptyset \neq \tilde{f}(y)$, and so $\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \neq \emptyset$ by (3.1), that is, $x \oplus y \in P\left(M_{\tilde{f}}\right)$. Let $x, y \in M$ be such that $x \in P\left(M_{\tilde{f}}\right)$ and $y \leq x$. Then $\tilde{f}(y) \supseteq \tilde{f}(x) \neq \emptyset$ by (3.2), and thus $y \in P\left(M_{\tilde{f}}\right)$. Therefore, $P\left(M_{\tilde{f}}\right)$ is an ideal of \mathcal{M} .

DEFINITION 3.18. An int-soft ideal (\tilde{f}, M) of a pseudo MV-algebra \mathcal{M} is said to be *implicative* if it satisfies the condition (3.14).

EXAMPLE 3.19. For an implicative ideal A of a pseudo MV-algebra \mathcal{M} , let (\tilde{f}_A, M) be a soft set over $U = \mathbb{R}$ in \mathcal{M} given as follows:

$$\tilde{f}_A: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 3\mathbb{R} & \text{if } x \in A, \\ 6\mathbb{Z} & \text{otherwise.} \end{cases}$$

Then $\left(\tilde{f}_A, M\right)$ is an implicative int-soft ideal of \mathcal{M} .

We consider characterizations of implicative int-soft ideals.

THEOREM 3.20. For an int-soft ideal (\tilde{f}, M) of a pseudo MV-algebra \mathcal{M} , the following are equivalent

(1)
$$(f, M)$$
 is implicative.
(2) $(\forall x, y \in M) \left(\tilde{f}(x \odot y) = \tilde{f}(x \odot y \odot y) \right)$.
(3) $(\forall x \in M) \left(x^2 = 0 \Rightarrow \tilde{f}(x) = \tilde{f}(0) \right)$.
(4) $(\forall x \in M) \left(\tilde{f}(x \land x^-) = \tilde{f}(0) \right)$.
(5) $(\forall x \in M) \left(\tilde{f}(x \land x^\sim) = \tilde{f}(0) \right)$.

PROOF: (1) \Rightarrow (2) follows from Theorem 3.11. Assume that $x^2 = 0$ for all $x \in M$. Taking x = 1 and y = x in (2) and using (2.18) induces

$$\tilde{f}(x) = \tilde{f}(1 \odot x) = \tilde{f}(1 \odot x \odot x) = \tilde{f}(x^2) = \tilde{f}(0).$$

Suppose that the condition (3) is valid. Since

$$(x \wedge x^{-})^{2} = (x \wedge x^{-}) \odot (x \wedge x^{-}) \le x \odot x^{-} = 0$$

by (2.14) and (2.20), we have $(x \wedge x^{-})^{2} = 0$, and so $\tilde{f}(x \wedge x^{-}) = \tilde{f}(0)$ by (3). Since $x \wedge x^{\sim} = x^{\sim} \wedge x = x^{\sim} \wedge (x^{\sim})^{-}$ for all $x \in M$, it follows from (4) that $\tilde{f}(x \wedge x^{\sim}) = \tilde{f}(0)$ for all $x \in M$. Finally, assume that the condition (5) holds. By Proposition 3.7, (5) and (3.3), we have

$$\widetilde{f}(x \odot y) \supseteq \widetilde{f}(x \odot y \odot y) \cap \widetilde{f}(y \land y^{\sim})
= \widetilde{f}(x \odot y \odot y) \cap \widetilde{f}(0) = \widetilde{f}(x \odot y \odot y)$$
(3.20)

for all $x, y \in M$. Note that

$$x \odot y \odot y \le x \odot y \odot (z \lor y) = x \odot y \odot (z \oplus z^{\sim} \odot y) \le x \odot y \odot z \oplus z^{\sim} \odot y$$

for all $x, y, z \in M$ by (2.14) and (2.16). It follows from (3.20), (3.2) and (3.1) that

$$\tilde{f}(x \odot y) \supseteq \tilde{f}(x \odot y \odot y) \supseteq \tilde{f}(x \odot y \odot z) \supseteq \tilde{f}(x \odot y \odot z \oplus z^{\sim} \odot y) \supseteq \tilde{f}(x \odot y \odot z) \cap \tilde{f}(z^{\sim} \odot y)$$

for all $x, y, z \in M$. Therefore, (\tilde{f}, M) is an implicative int-soft ideal of \mathcal{M} .

Theorem 3.20 is used in providing an example of implicative int-soft ideal.

EXAMPLE 3.21. Let $\mathcal{M} := (M, \oplus, \bar{}, \bar{}, \mathbf{0}, \mathbf{1})$ be a pseudo MV-algebra in Example 3.2. Define a soft set (\tilde{f}, M) over $U = \mathbb{R}$ in \mathcal{M} by

Int-Soft Ideals of Pseudo MV-Algebras

$$\tilde{f}: M \to \mathcal{P}(U), \ x \mapsto \begin{cases} 3\mathbb{R} & \text{if } x \in A \cup \{\mathbf{0}\}, \\ 3\mathbb{N} & \text{if } x \in B \cup \{\mathbf{1}\} \end{cases}$$

where $A = \{(1, y) \in \mathbb{R}^2 \mid y > 0\}$ and $B = \{(2, y) \in \mathbb{R}^2 \mid y < 0\}$. It is easy to verify that (\tilde{f}, M) is an int-soft ideal of \mathcal{M} . Note that $x \wedge x^- \in A \cup \{\mathbf{0}\}$ for all $x \in M$. Hence $\tilde{f}(x \wedge x^-) = 3\mathbb{R} = \tilde{f}(\mathbf{0})$, and so (\tilde{f}, M) is an implicative int-soft ideal of \mathcal{M} by Theorem 3.20.

THEOREM 3.22. For a soft set (\tilde{f}, M) over U in a pseudo MV-algebra \mathcal{M} , the following are equivalent.

- (1) (\tilde{f}, M) is an implicative int-soft ideal of \mathcal{M} .
- (2) The non-empty γ -inclusive set $(\tilde{f}, M)_{\gamma}$ is an implicative ideal of \mathcal{M} for all $\gamma \in \mathcal{P}(U)$.

PROOF: Suppose that (\tilde{f}, M) is an implicative int-soft ideal of \mathcal{M} . Let $\gamma \in \mathcal{P}(U)$ be such that $(\tilde{f}, M)_{\gamma} \neq \emptyset$. Then there exists $x \in (\tilde{f}, M)_{\gamma}$, and so $\tilde{f}(x) \supseteq \gamma$. It follows from (3.3) that $\tilde{f}(0) \supseteq \tilde{f}(x) \supseteq \gamma$. Hence $0 \in (\tilde{f}, M)_{\gamma}$. Let $x, y \in (\tilde{f}, M)_{\gamma}$ for $x, y \in M$. Then $\tilde{f}(x) \supseteq \gamma$ and $\tilde{f}(y) \supseteq \gamma$, which implies from (3.1) that $\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \supseteq \gamma$. Thus $x \oplus y \in (\tilde{f}, M)_{\gamma}$. Let $x, y \in M$ be such that $x \in (\tilde{f}, M)_{\gamma}$ and $y \leq x$. Then $\tilde{f}(y) \supseteq \tilde{f}(x) \supseteq \gamma$ by (3.2), and so $y \in (\tilde{f}, M)_{\gamma}$. Hence $(\tilde{f}, M)_{\gamma}$ is an ideal of \mathcal{M} . Let $x, y, z \in M$ be such that $x \odot y \odot z \in (\tilde{f}, M)_{\gamma}$ and $z^{\sim} \odot y \in (\tilde{f}, M)_{\gamma}$. Then $\tilde{f}(x \odot y \odot z) \supseteq \gamma$ and $\tilde{f}(z^{\sim} \odot y) \supseteq \gamma$. It follows from (3.14) that

$$\tilde{f}(x\odot y)\supseteq \tilde{f}(x\odot y\odot z)\cap \tilde{f}(z^{\sim}\odot y)\supseteq \gamma$$

and so that $x \odot y \in (\tilde{f}, M)_{\gamma}$. Therefore, $(\tilde{f}, M)_{\gamma}$ is an implicative ideal of \mathcal{M} .

Conversely, assume that the non-empty γ -inclusive set $(\tilde{f}, M)_{\gamma}$ is an implicative ideal of \mathcal{M} for all $\gamma \in \mathcal{P}(U)$. For any $x \in M$, let $\tilde{f}(x) = \gamma$. Then $x \in (\tilde{f}, M)_{\gamma}$. Since $(\tilde{f}, M)_{\gamma}$ is an ideal of \mathcal{M} , we have $0 \in (\tilde{f}, M)_{\gamma}$ and so $\tilde{f}(0) \supseteq \gamma = \tilde{f}(x)$. For any $x, y \in M$, let $\tilde{f}(x) \cap \tilde{f}(y) = \gamma$. Then $x, y \in (\tilde{f}, M)_{\gamma}$, and so $x \oplus y \in (\tilde{f}, M)_{\gamma}$ by (2.22). Hence $\tilde{f}(x \oplus y) \supseteq \gamma = \tilde{f}(x) \cap \tilde{f}(y)$. Let $x, y \in M$ be such that $y \leq x$ and $\tilde{f}(x) = \gamma$. Then $x \in (\tilde{f}, M)_{\gamma}$, and so $y \in (\tilde{f}, M)_{\gamma}$ by (2.23). Thus $\tilde{f}(y) \supseteq \gamma = \tilde{f}(x)$. Hence (\tilde{f}, M) is an int-soft ideal of \mathcal{M} . For any $x, y, z \in M$, let $\tilde{f}(x \odot y \odot z) \cap \tilde{f}(z^{\sim} \odot y) = \gamma$. Then $x \odot y \odot z \in (\tilde{f}, M)_{\gamma}$ and $z^{\sim} \odot y \in (\tilde{f}, M)_{\gamma}$. It follows from (2.24) that $x \odot y \in (\tilde{f}, M)_{\gamma}$ and so that $\tilde{f}(x \odot y) \supseteq \gamma$. Therefore, (\tilde{f}, M) is an implicative int-soft ideal of \mathcal{M} .

LEMMA 3.23 ([20]). An ideal I of a pseudo MV-algebra \mathcal{M} is implicative if and only if the following assertion is valid.

$$(\forall x \in M) (x \wedge x^{\sim} \in I).$$

THEOREM 3.24. If (\tilde{f}, M) is an implicative int-soft ideal of a pseudo MValgebra \mathcal{M} , then the set

$$M_a := \{ x \in M \mid \tilde{f}(x) \supseteq \tilde{f}(a) \}$$

is an implicative ideal of \mathcal{M} for all $a \in M$.

PROOF: Since $\tilde{f}(0) \supseteq \tilde{f}(x)$ for all $x \in M$, we have $0 \in M_a$. Let $x, y \in M$ be such that $x \in M_a$ and $y \in M_a$. Then $\tilde{f}(x) \supseteq \tilde{f}(a)$ and $\tilde{f}(y) \supseteq \tilde{f}(a)$. It follows from (3.1) that $\tilde{f}(x \oplus y) \supseteq \tilde{f}(x) \cap \tilde{f}(y) \supseteq \tilde{f}(a)$ and so that $x \oplus y \in M_a$. Let $x, y \in M$ be such that $y \leq x$ and $x \in M_a$. Then $\tilde{f}(y) \supseteq \tilde{f}(x) \supseteq \tilde{f}(a)$ by (3.2), and so $y \in M_a$. Thus M_a is an ideal of \mathcal{M} . Note from Theorem 3.20 and (3.3) that $\tilde{f}(x \wedge x^{\sim}) = \tilde{f}(0) \supseteq \tilde{f}(x)$ for all $x \in M$. Hence $x \wedge x^{\sim} \in M_a$. Therefore, M_a is an implicative ideal of \mathcal{M} by Lemma 3.23.

COROLLARY 3.25. If (\tilde{f}, M) is an implicative int-soft ideal of a pseudo MV-algebra \mathcal{M} , then the set $M_{\tilde{f}}$ is an implicative ideal of \mathcal{M} .

PROOF: Since $\tilde{f}(0) \supseteq \tilde{f}(x)$ for all $x \in \mathcal{M}$, we have $M_{\tilde{f}} = M_0$ which is an implicative ideal of \mathcal{M} .

THEOREM 3.26. If (\tilde{f}, M) is an implicative int-soft ideal of a pseudo MValgebra \mathcal{M} , then the set

$$P\left(M_{\tilde{f}}\right) := \{x \in M \mid \tilde{f}(x) \neq \emptyset\}$$

is an implicative ideal of \mathcal{M} when it is non-empty.

PROOF: Suppose that (\tilde{f}, M) is an implicative int-soft ideal of a pseudo MV-algebra \mathcal{M} . If $P\left(M_{\tilde{f}}\right)$ is non-empty, then it is an ideal of \mathcal{M} by Proposition 3.17. Let $x, y, z \in M$ be such that $x \odot y \odot z \in P\left(M_{\tilde{f}}\right)$ and $z^{\sim} \odot y \in P\left(M_{\tilde{f}}\right)$. Then $\tilde{f}(x \odot y \odot z) \neq \emptyset$ and $\tilde{f}(z^{\sim} \odot y) \neq \emptyset$. It follows from (3.14) that

 $\tilde{f}(x\odot y)\supseteq \tilde{f}(x\odot y\odot z)\cap \tilde{f}(z^{\sim}\odot y)\neq \emptyset$

and so that $\tilde{f}(x \odot y) \neq \emptyset$, that is, $x \odot y \in P\left(M_{\tilde{f}}\right)$. Therefore, $P\left(M_{\tilde{f}}\right)$ is an implicative ideal of \mathcal{M} .

THEOREM 3.27. (Extension property for implicative int-soft ideal) Let (\tilde{f}, M) and (\tilde{g}, M) be int-soft ideals of a pseudo MV-algebra \mathcal{M} such that $(\tilde{f}, M) \subseteq (\tilde{g}, M)$, that is, $\tilde{f}(x) \subseteq \tilde{g}(x)$ for all $x \in M$, and $\tilde{f}(0) = \tilde{g}(0)$. If (\tilde{f}, M) is an implicative int-soft ideal of \mathcal{M} , then so is (\tilde{g}, M) .

PROOF: Assume that $x^2 = 0$ for any $x \in M$. Then

$$\tilde{g}(x) \supseteq \tilde{f}(x) = \tilde{f}(0) = \tilde{g}(0)$$

by the assumption and Theorem 3.20. Since $\tilde{g}(0) \supseteq \tilde{g}(x)$ for all $x \in M$, it follows that $\tilde{g}(x) = \tilde{g}(0)$ for all $x \in M$ with $x^2 = 0$. By Theorem 3.20, we conclude that (\tilde{g}, M) is an implicative int-soft ideal of \mathcal{M} .

Acknowledgments This study was funded by the Iranian National Science Foundation (Grant No. 96008529).

References

- H. Bordbar, S. S. Ahn, M. M. Zahedi and Y. B. Jun, Semiring structures based on meet and plus ideals in lower BCK-semilattices, Journal of Computational Analysis and Applications, Vol. 23, No. 5 (2017), pp. 945–954.
- [2] H. Bordbar, R. A. Borzooei, Y. B. Jun, Uni-soft commutative ideals and closed uni-soft ideals in BCI-algebras, New Mathematics and Natural Computation, Vol. 14, No. 2 (2018), pp. 235–247.
- [3] H. Bordbar, H. Harizavi and Y. B. Jun, Uni-soft ideals in coresiduated lattices, Sigma Journal of Engineering and Natural Sciences, Vol. 9, No. 1 (2018), pp. 69–75.
- [4] H. Bordbar, M. Novak, I. Cristea, Properties of reduced meet ideals in lower BCK-semilattices, APLIMAT 2018, pp. 97–109.
- [5] H. Bordbar and M. M. Zahedi, A Finite type Closure Operations on BCKalgebras, Applied Mathematics & Information Sciences Letters, Vol. 4, No. 2 (2016), pp. 1–9.
- [6] H. Bordbar and M. M. Zahedi, Semi-prime Closure Operations on BCKalgebra, Communications of the Korean Mathematical Society Vol. 30, No. 4 (2015), pp. 385–402.
- [7] H. Bordbar, M. M. Zahedi, S. S. Ahn and Y. B. Jun, Weak closure operations on ideals of BCK-algebras, Journal of Computational Analysis and Applications, Vol. 23, No. 2 (2017), pp. 51–64.
- [8] H. Bordbar, M. M. Zahedi and Y. B. Jun, *Relative annihilators in lower BCK-semilattices*, Mathematical Sciences Letters, Vol. 6, No. 2 (2017), pp. 1–7.

- [9] N. Çağman, F. Çitak and S. Enginoğlu, Soft set theory and uni-int decision making, European Journal of Operational Research 207 (2010), pp. 848–855.
- [10] A. Dvurečenskij, On pseudo MV-algebras, Soft Computing 5 (2001), pp. 347–354.
- [11] A. Dvurečenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), pp. 301–327.
- [12] G. Dymek, Fuzzy maximal ideals of pseudo MV-algebras, Commentationes Mathematicae (Prace Matematyczne) Vol. 47, No. 1 (2007), pp. 31–46.
- [13] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multiple-Valued Logic Vol. 6, No. 1-2 (2001), pp. 95–135.
- [14] Y. B. Jun, S. S. Ahn and K. J. Lee, *Classes of int-soft filters in residuated lattices*, **The Scientific World Journal**, Vol. 2014, Article ID 595160, 12 pp.
- [15] Y. B. Jun, K. J. Lee and M. S. Kang, Intersectional soft sets and applications to BCK/BCI-algebras, Communications of the Korean Mathematical Society Vol. 28, No. 1 (2013), pp. 11–24.
- [16] Y. B. Jun, K. J. Lee and E. H. Roh, Intersectional soft BCK/BCI-ideals, Annals of Fuzzy Mathematics and Informatics, Vol. 4, No. 1 (2012), pp. 1–7.
- [17] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Information Sciences 178 (2008), pp. 2466–2475.
- [18] D. Molodtsov, Soft set theory First results, Computers & Mathematics with Applications 37 (1999), pp. 19–31.
- [19] J. Rachunek, A non-commutative generalization of MV-algebras, Czechoslovak Mathematical Journal, Vol. 52(127), No. 2 (2002), pp. 255–273.
- [20] A. Walendziak, On implicative ideals of pseudo MV-algebras, Scientiae Mathematicae Japonicae, Vol. 62, No. 2 (2005), pp. 281–287.

Department of Mathematics Education Gyeongsang National University, Jinju 52828, Korea e-mail: skywine@gmail.com

Department of Mathematics Jeju National University, Jeju 690-756, Korea e-mail: szsong@jejunu.ac.kr

Department of Mathematics Shahid Beheshti University, Tehran, Iran e-mail: bordbar.amirh@gmail.com