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Abstract

In [1] J.-Y. Béziau formulated a logic called Z. Béziau’s idea was generalized

independently in [6] and [7]. A family of logics to which Z belongs is denoted in [7]

by K. In particular, it has been shown in [6] and [7] that there is a correspondence

between normal modal logics and logics from the class K. Similar, but only partial

results has been obtained also for regular logics (see [8] and [9]).

In (Došen, [2]) a logic N has been investigated in the language with negation,

implication, conjunction and disjunction by axioms of positive intuitionistic logic,

the right-to-left part of the second de Morgan law, and the rules of modus po-

nens and contraposition. From the semantical point of view the negation used by

Došen is the modal operator of impossibility. It is known this operator is a char-

acteristic of the modal interpretation of intuitionistic negation (see [3, p. 300]).

In the present paper we consider an extension of N denoted by N+. We will

prove that every extension of N+ that is closed under the same rules as N+,

corresponds to a regular logic being an extension of the regular deontic logic D21

∗The authors of this work benefited from support provided by Polish National Science
Centre (NCN), grant number 2016/23/B/HS1/00344.

The authors also thank the anonymous referee of the journal BSL for his/her valuable
comments on the earlier version of the paper.

1Notice that ‘D2’ has nothing to do with notation for Jaśkowski’s logic D2. D2 was
introduced by Lemmon ([4]).
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(see [4] and [13]). The proved correspondence allows to obtain from soundness-

completeness result for any given regular logic containing D2, similar adequacy

theorem for the respective extension of the logic N+.

Keywords: non-classical negation, modalized negation, impossibility, cor-

respondence, regular modal logics, the smallest regular deontic logic D2

Introduction

The main feature of the logic Z relies on understanding of negation as “it

is not necessary” ([1]). While defining this logic, Béziau used modal logic

S5. It appears that logics with “it is not necessary” or equivalently “it

is possible that not” as the negation can be used to express any normal

modal logic ([6, 7]). However this could not be repeated in a unified way

in the case of regular logics ([8, 9]). Thus, in [10], next to “it is possible

that not” the impossibility operator was also used to obtain more general

result on the mentioned expressibility, but this time of some regular logics.

For discussion of various negations in the context of the natural language

one can consult [12]. Having in mind that the neighborhood semantics

can be used in particular for characterisation of regular logics it is worth to

mention that in [12, ch. 5] a framework by means of neighborhood semantics

meant for analysis of various negative modalities is given.

In ([2]) a logic N has been investigated in the language with negation,

implication, conjunction and disjunction by axioms of positive intuitionistic

logic, the right-to-left part of the second de Morgan law, and the rules of

modus ponens and contraposition. From the semantical point of view the

negation used in the formulation of N is a modal operator of impossibility.

In the present paper we strengthen observations given in [10] using only

impossibility connective. The smallest logic N+ that we are using here, is

an extension of the mentioned logic N. The new translations presented in

the current paper allow directly for obtaining an extension of N+ from any

regular extension of the deontic logic D2.

1. Logics corresponding to regular extensions of D2

In the object language we can consider two negations: ∼̇ (it is necessary

that) and ∼ (it is possible that not).
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Definition 1. Let For∼̇∼ be the set of all propositional formulas in the lan-

guage with connectives {∼̇,∼,∧,∨,→} and the set of propositional vari-

ables Var.

Let us recall a class of logics considered in [10]:

Definition 2. Let R∼̇∼ be the class of all logics that are non-trivial subsets

of For∼̇∼, containing the full positive classical logic in the language {∧, ∨,
→}, including the following formulas:

∼̇ p ∧ ∼̇ q → ∼̇(p ∨ q), (dM2∼̇←)

∼ p → (∼̇(p → ∼̇(q → q)) → ∼̇(q → q)) (df∼→)

(∼̇(p → ∼̇(q → q)) → ∼̇(q → q)) → ∼ p (df∼←)

∼̇ p → ∼ p (D∼̇∼)

((p → ∼̇(q → q)) → ∼̇(q → q)) → p (dneg)

and closed under modus ponens, (CONTR∼̇):

⊢ A → B

⊢ ∼̇B → ∼̇A
(CONTR∼̇)

and any substitution.

Remark 1. If we would put:

⊥a ≔ ∼̇(a → a) (1.1)

¬aA ≔ A → ⊥a (1.2)

we obtain respectively the following forms of formulas (df∼→), (df∼←), and

(dneg):

∼ p → ¬q ∼̇ ¬qp

¬q ∼̇ ¬qp → ∼ p

¬q¬qp → p

However, one should keep in mind that the above abbreviations are

absent in the considered object language and should be only treated as

shortcuts and a certain facilitation in reading formulas.

Let ForM denote the set of all modal formulas in the language with

{¬,∧, ∨, →,�}. A regular logic is a set L ⊆ ForM, such that L contains

all classical tautologies, (K) ∈ L
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�(p → q) → (�p → �q) (K)

and L is closed under modus ponens, substitution and the monotonicity

rule (MON):
⊢ A → B

⊢ �A → �B
(MON)

D2 (see [4]) is the smallest regular logic containing the axiom (D):

�p → ¬�¬p (D)

The intended meaning of ∼̇ and ∼ is �¬ and ♦¬, respectively. In [10]

a correspondence between elements of R∼̇∼ and regular extensions D2 was

investigated. In the present paper we consider a simplified version of the

class R∼̇∼, with logics in the language with ∼̇ as the only negation. Let

For∼̇ denote the obtained, reduced language.

Definition 3 (Counterparts of extensions of D2). Let R∼̇ be the class of

all logics being subsets of For∼̇, containing the full positive classical logic

CL+ in the language {∧, ∨, →}, including the formulas (dM2∼̇←) and (dn):
(

(p → ⊥p) → ⊥p

)

→ p (dn)

and closed under modus ponens, (CONTR∼̇) and any substitution.

Let us denote by N+ the smallest logic in R∼̇

The fact that A → B ∈ S and B → A ∈ S is denoted as: A ↔ B ∈ S.

Fact 1. The following formulas belong to every logic in R∼̇

p → ((p → ⊥q) → r) (DS∼̇)
(

(p → ⊥q) → ⊥r

)

↔ p (dn↔)

∼̇(p → ⊥q) → (∼̇ p → ⊥q) (D∼̇)

Proof: The case of (DS∼̇). By positive logic we have

p → ((p → ⊥q) → ⊥q) (1.3)

⊥r →
(

(r → ⊥r) → ⊥r

)

(1.4)

but due to (CONTR∼̇) applied to (r → r) → (q → q), we have ∼̇(q → q) →
∼̇(r → r), i.e. ⊥q → ⊥r, so by (dn), (1.4) and again using CL+

⊥q → r (1.5)

Thus, the required thesis follows from (1.3) and (1.5) by CL+.
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The case of (dn↔). Right to left implication is just a special case of

(DS∼̇).

Left to right implication follows again by application of (CONTR∼̇) to

(q → q) → (p → p) and (p → p) → (r → r), and next (dn) and CL+.

The case of (D∼̇). By CL+ and substitution we have (p → ⊥q) ∨ p,
so also (q → q) → (p → ⊥q) ∨ p. Using (CONTR∼̇) we have: ∼̇((p →
⊥q) ∨ p) → ⊥q. Thus by (dM2∼̇←) and CL+ we get (D∼̇).

Remark 2. Using both abbreviations given in Remark 1 we can respectively

write (dn), (DS∼̇), (dn↔) and (D∼̇) as follows:

¬p¬pp → p

p → (¬qp → r)

¬r¬qp ↔ p

∼̇ ¬qp → ¬q ∼̇ p

2. Modalising and un-modalising translations

We will use the following translation as “modalisation”:

Definition 4. Let −m : For∼̇ −→ ForM be a function satisfying for any

a ∈ Var, A,B ∈ ForM the following conditions:

1. (a)m = a,

2. (∼̇A)m =

{

�((B)m) if A = ¬aB for some B ∈ For∼̇ and a ∈ Var,

�¬((A)m) otherwise,

3. (A §B)m = (Am §Bm), for § ∈ {∧,∨},

4. (A → B)m =

{

¬(A)m if B = ⊥a for some a ∈ Var,

Am → Bm otherwise.

We will need translations that will be surjective. It is a modified version

of translations used in [7, 10]:

Definition 5. Let −u∼̇ : ForM −→ For∼̇ be a function satisfying for any

a ∈ Var and A,B ∈ For the following conditions:

1. (a)u∼̇ = a,

2. (¬A)u∼̇ = ¬p((A)
u∼̇),

3. (A§B)u∼̇ = ((A)u∼̇)§((B)u∼̇), for § ∈ {∧,∨,→},
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4. (�A)u∼̇ =

{

∼̇((B)u∼̇) if A = ¬B, for some B ∈ ForM,

∼̇ ¬p((A)
u∼̇) otherwise.

Fact 2. For any A ∈ ForM, a ∈ Var and any regular logic S containing
D2 we have that (A → �¬(a → a)) ↔ ¬A ∈ S.

Lemma 1. For any A ∈ For∼̇, D ∈ ForM we have:

((A)m)u∼̇ ↔ A ∈ N+ (2.1)

((D)u∼̇)m ↔ D ∈ D2 (2.2)

Proof: The case of a variable is obvious for both conditions.

The case of (2.1). For the case of negation consider a formula of the

form ∼̇A. Assume that A = ¬aB for some B ∈ For∼̇ and a ∈ Var. We

have: ((∼̇A)m)u∼̇ = (�((B)m))u∼̇. We consider two cases: either (B)m is of

the form of negation, or not.

The first case means that B = C → ⊥b, for some C ∈ For∼̇ and b ∈
Var. Then (�((B)m))u∼̇ = (�¬((C)m))u∼̇ = ∼̇((C)m)u∼̇. But by inductive

hypothesis and the rule (CONTR∼̇) we have: ∼̇((C)m)u∼̇ ↔ ∼̇C. But by

(dn↔) given in Fact 1 and (CONTR∼̇), ∼̇C ↔ ∼̇((C → ⊥b) → ⊥a) and

the right-hand side formula of the last equivalence is just the formula ∼̇A.

In the second case one can see that: (�((B)m))u∼̇ = ∼̇(((B)m)u∼̇ →
⊥p). By the inductive hypothesis, positive logic and (CONTR∼̇) we have:

∼̇(((B)m)u∼̇ → ⊥p) ↔ ∼̇(B → ⊥a). But the formula on the right-hand side

of the last equivalence is the formula ∼̇A.
Assume that A is not of the form of ¬aB. By definitions and inductive

hypothesis: ((∼̇A)m)u∼̇ = (�¬((A)m))u∼̇ = ∼̇((A)m)u∼̇ ↔ ∼̇A.

For the case of implication of the form (A → ⊥a), we have: ((A →
⊥a)

m)u∼̇ = (¬((A)m))u∼̇ = (((A)m)u∼̇ → ⊥p) ↔ (A → ⊥p). Finally, (A →
⊥p) ↔ (A → ⊥a) ∈ N+.

For the other case of a formula of the form A → B, assume that B
is not of the form of ⊥a, where a would be a variable. We have ((A →
B)m)u∼̇ = ((A)m → (B)m)u∼̇ = ((A)m)u∼̇ → ((B)m)u∼̇ ↔ (A → B). The

cases of ∧ and ∨ are being proved analogously to this case.

For (2.2), consider the case of negation. We see that ((¬A)u∼̇)m =

((A)u∼̇ → ⊥p)
m = ¬((A)u∼̇)m ↔ ¬A, where the last equivalence holds by

inductive hypothesis and extensionality.
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Now, let us consider implication of the form A → B. We have two

cases: the first that (B)u∼̇ equals ⊥a for some a, and the second that it

does not. The first case means that B equals �¬(a → a) for some variable

a. We have: ((A → �¬(a → a))u∼̇)m = ((A)u∼̇ → (�¬(a → a))u∼̇)m =

((A)u∼̇ → ⊥a)
m = ¬(((A)u∼̇)m).

By the inductive hypothesis, using extensionality for regular logics and

Fact 2 we have ¬((A)u∼̇)m ↔ ¬A and ¬A ↔ (A → �¬(a → a)) ∈ D2.

If (B)u∼̇ is not of the form ⊥a that is B does not equal �¬(a → a), the
proof goes as follows: ((A → B)u∼̇)m = ((A)u∼̇ → (B)u∼̇)m = ((A)u∼̇)m →
((B)u∼̇)m. And by inductive hypothesis and positive logic p(((A)u∼̇)m →
((B)u∼̇)m) ↔ (A → B)q ∈ S. The cases of ∧ and ∨ are also being proved

straightforward.

Lemma 2. For any a1, . . . , an ∈ Var, A, C1,. . . , C1 ∈ ForM and B,C
D1,. . . , D1 ∈ For∼̇

1. (A(a1/C1, . . . , an/Cn))
u∼̇↔(A)u∼̇(a1/(C1)

u∼̇, . . . , an/(Cn)
u∼̇) ∈ N+

2. If B↔C ∈ N+, then B(a1/D1, . . . , an/Dn) ↔ C(a1/D1, . . . , an/Dn) ∈
N+.

Proof: 1. The proof goes by induction on the complexity of a formula.

For a ∈ Var assume that a = ai for some 1 6 i 6 n. We have (a(a1/(C1),

. . . , an/(Cn)))
u∼̇ = (Ci)

u∼̇ = ((ai)
u∼̇)(ai/Ci)

u∼̇ = (a)u∼̇(a1/(C1)
u∼̇, . . . ,

an/(Cn)
u∼̇).

Assume that the thesis holds for formulas B and C. The case of nega-

tion:

((¬B)(a1/C1, . . . , an/Cn))
u∼̇ = (¬(B(a1/C1, . . . , an/Cn)))

u∼̇ =

((B(a1/C1, . . . , an/Cn))
u∼̇ → ⊥p)

ind. hyp. and CL
+

↔

(((B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)) → ⊥p) ↔
(

((B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)) →

⊥p(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)
)

↔

((B)u∼̇ → ⊥p)(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇) =

(¬B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)
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The case of implication (cases of ∧ and ∨ are being proved similarly):

((B → C)(a1/(C1), . . . , an/(Cn)))
u∼̇ =

((B(a1/(C1), . . . , an/(Cn))) → (C(a1/(C1), . . . , an/(Cn))))
u∼̇ ↔

(B(a1/(C1), . . . , an/(Cn)))
u∼̇ → (C(a1/(C1), . . . , an/(Cn)))

u∼̇ ind. hyp. and CL
+

↔

((B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)) →

→ ((C)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇))

((B)u∼̇ → (C)u∼̇)(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇) =

(B → C)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)

For the case of necessity assume first that B is of the form of negation ¬D:

((�B)(a1/(C1), . . . , an/(Cn)))
u∼̇ = ((�¬D)(a1/(C1), . . . , an/(Cn)))

u∼̇ =

(�¬(D(a1/(C1), . . . , an/(Cn))))
u∼̇ =

∼̇(D(a1/(C1), . . . , an/(Cn)))
u∼̇ ind. hyp. and (CONTR∼̇)

↔

∼̇((D)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)) =

(∼̇((D)u∼̇))(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)
def. of u∼̇

=

(�¬D)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇) =

(�B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)

And finally let B be not of the form of negation, so also (�(B(a1/(C1),

. . . , an/(Cn)))) is not of the form of negation. Thus, we have:

((�B)(a1/(C1), . . . , an/(Cn)))
u∼̇ = (�(B(a1/(C1), . . . , an/(Cn))))

u∼̇ =

∼̇((B(a1/(C1), . . . , an/(Cn)))
u∼̇ → ⊥p)

ind. hyp. and (CONTR∼̇)
↔

∼̇(((B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)) → ⊥p) ↔

∼̇
(

((B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)) →

→ ⊥p(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)
)

↔
(

∼̇((B)u∼̇ → ⊥p)
)

(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇) =

(�B)u∼̇(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇)

2. Follows by the fact that N+ is closed under substitution and stan-

dardly, that every substitution by definition is an automorphism on the set

of formulas with respect to →.
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Lemma 3. For any a1, . . . , an ∈ Var, A, C1,. . . , C1 ∈ For∼̇ and B,C
D1,. . . , D1 ∈ ForM

1. (A(a1/C1, . . . , an/Cn))
m ↔ (A)m(a1/(C1)

m, . . . , an/(Cn)
m) ∈ D2

2. If B ↔ C ∈ D2, then B(a1/D1, . . . , an/Dn) ↔ C(a1/D1, . . . , an/Dn)

belongs to D2.

Proof: The point 2 is a standard fact. The proof of 1 goes by induction

on the complexity of a formula A. For a variable assume that a = ai; we
have

(a(a1/C1, . . . , an/Cn))
m = (Ci)

m = (ai)
m(ai/(C1)

m)

(a)m(a1/(C1)
m, . . . , an/(Cn)

m)

Assume that the inductive thesis holds for any formula of the complexity

not exceeding complexities of given formulas B and C.

The case of negation. Assume that B = ¬aD.

(∼̇B(a1/C1, . . . , an/Cn))
m = (∼̇(B(a1/C1, . . . , an/Cn)))

m

If a 6∈ {a1, . . . , an}, then (∼̇(B(a1/C1, . . . , an/Cn)))
m =

(

∼̇(D(a1/C1, . . . , an/Cn) → ⊥a)
)

m

=

�(D(a1/C1, . . . , an/Cn))
m
ind. hyp. and extensionality

↔

�((D)m(a1/(C1)
m, . . . , an/(Cn)

m)) =

(�(D)m)(a1/(C1)
m, . . . , an/(Cn)

m) = (∼̇B)m(a1/(C1)
m, . . . , an/(Cn)

m)

If a ∈ {a1, . . . , an} say a = ai, but Ci is a variable we act similarly as

above. If a = ai and Ci is not a variable, while applying function (−)m for

the formula ∼̇B we have to use the second variant.

(∼̇(B(a1/C1, . . . , an/Cn)))
m =

�¬
(

(D → ⊥a)(a1/C1, . . . , an/Cn)
)

m ind. hyp. and extensionality
↔

�¬
(

(D → ⊥a)
m(a1/(C1)

m, . . . , an/(Cn)
m)
)

↔

�¬¬((D)m(a1/(C1)
m, . . . , an/(Cn)

m)) ↔

(�(D)m)(a1/(C1)
m, . . . , an/(Cn)

m) = (∼̇B)m(a1/(C1)
m, . . . , an/(Cn)

m)

Assume that B is not of the form of ¬aD.
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((∼̇B)(a1/C1, . . . , an/Cn))
m = (∼̇(B(a1/C1, . . . , an/Cn)))

m =

�¬
(

B(a1/C1, . . . , an/Cn)
)

m ind. hyp.
↔

�¬((B)m(a1/(C1)
m, . . . , an/(Cn)

m)) ↔

(�¬(B)m)(a1/(C1)
m, . . . , an/(Cn)

m) ↔ (∼̇B)m(a1/(C1)
m, . . . , an/(Cn)

m)

The case of implication — consider the formula B → C. Assume that

C = ⊥a

((B → C)(a1/C1, . . . , an/Cn))
m =

((B(a1/C1, . . . , an/Cn)) → (C(a1/C1, . . . , an/Cn)))
m

If a 6∈ {a1, . . . , an}

((B(a1/C1, . . . , an/Cn)) → (C(a1/C1, . . . , an/Cn)))
m =

((B(a1/C1, . . . , an/Cn)) → ⊥a)
m =

¬(B(a1/C1, . . . , an/Cn))
m
ind. hyp.

↔ ¬((B)m(a1/(C1)
m, . . . , an/(Cn)

m)) =

(¬(B)m)(a1/(C1)
m, . . . , an/(Cn)

m) = (B → C)m(a1/(C1)
m, . . . , an/(Cn)

m)

If a ∈ {a1, . . . , an} and respective substituted formula, let say Ci, is

not a variable, then:

((B(a1/C1, . . . , an/Cn)) → (C(a1/C1, . . . , an/Cn)))
m =

(B(a1/C1, . . . , an/Cn))
m → (C(a1/C1, . . . , an/Cn))

m
ind. hyp.

↔

((B)m(a1/(C1)
m, . . . , an/(Cn)

m)) → ((C)m(a1/(C1)
m, . . . , an/(Cn)

m)) =

((B)m(a1/(C1)
m, . . . , an/(Cn)

m)) → �¬((Ci)
m → (Ci)

m)
Fact 2 and substitution

↔

(¬(B)m)(a1/(C1)
m, . . . , an/(Cn)

m) = (B → C)m(a1/(C1)
m, . . . , an/(Cn)

m)

Assume that C is not of the form of ⊥a (cases of ∧ and ∨ are being proved

similarly):

((B → C)(a1/(C1), . . . , an/(Cn)))
m =

((B(a1/(C1), . . . , an/(Cn))) → (C(a1/(C1), . . . , an/(Cn))))
m ↔

(B(a1/(C1), . . . , an/(Cn)))
m → (C(a1/(C1), . . . , an/(Cn)))

m
ind. hyp.

↔

((B)m(a1/(C1)
m, . . . , an/(Cn)

m)) → ((C)m(a1/(C1)
m, . . . , an/(Cn)

m)) ↔

((B)m → (C)m)(a1/(C1)
m, . . . , an/(Cn)

m) =

(B → C)m(a1/(C1)
m, . . . , an/(Cn)

m)
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3. Semantical correspondence

Let us recall notions used in [8].

Definition 6. 1. A relational frame (in short a frame) is a triple 〈W,R,

N〉 consisting of a nonempty set W , a binary relation R on W , and

a subset N of W . Elements of W , N , and W\N are called worlds,
normal worlds, and non-normal worlds2, respectively, while R is an

accessibility relation.

2. A valuation is any function v : Var −→ 2W .

3. A model is a quadruple 〈W,R,N, v〉, where 〈W,R,N〉 is a frame and

v is a valuation. We say that 〈W,R,N, v〉 is based on the frame

〈W,R,N〉.

We are using a reduct of the language with two negations (considered

in [10]), so also validity and truth are meant accordingly. To keep the paper

self-contained we recall these definitions.

Definition 7. A formula A is true in a world w ∈ W under a valuation v
(notation: w �v A) iff

1. if A is a propositional variable,

w �v A ⇐⇒ w ∈ v(A).

2. if A has the form ∼̇B, for some formula B, then

for w ∈ N :

w �v ∼̇B ⇐⇒ for every world w′ such that wRw′, it is not the case

that w′ �v B (w′ 6�v B for short);

for w ∈ W\N : w 6�v ∼̇B,

3. if A is of the form B ∧ C, for some formulas B and C, then

w �v B ∧ C ⇐⇒ w �v B and w �v C,

4. if A is of the form B ∨ C, for some formulas B and C, then

w �v B ∨ C ⇐⇒ w �v B or w �v C,

5. if A is of the form B → C, for some formulas B and C, then

w �v B → C ⇐⇒ w 6�v B or w �v C.

Definition 8. 1. A formula A is true in a model M = 〈W,R,N, v〉
(notation M �R A) iff w �v A, for each w ∈ W .

2Since there are frames for which N = W , the considered class can be naturally
treated as a superclass of the class of frames in the sense of [7].
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2. A formula A is valid in a frame 〈W,R,N〉 iff it is true in all models

based on 〈W,R,N〉.

For the notion of a model given in the point 3 of Definition 6 one can

apply notions of truth and validity used for standard modal regular logics.

Truth of a modal formula A in a world w by a valuation v will be denoted

as usually: w �v A. Let us only recall the case for �:

1. if A has the form �B, for some formula B, then

for w ∈ N : w �v �B ⇐⇒ ∀w′∈R(w)w
′
�v B;

for w ∈ W\N : w 6�v �B.

The other cases are classical. We refer to seriality, but it is easily seen that

for the case of considered logics one can equivalently use (SerN).

∀w∈N∃u∈W (wRu) (SerN)

Lemma 4. For any model 〈W,R,N, v〉 with serial accessibility relation, any
w ∈ W , A ∈ For∼̇ and B ∈ ForM

w �v A iff w �v (A)m

w �v B iff w �v (B)u∼̇

Proof: In both cases the proof goes by induction on the complexity of

a formula. Since the case of variables is obvious, for the first equivalence

assume that the thesis holds for any world in W and any formula of the

complexity smaller then the complexity of a given formula A. We will

consider the case of ∼̇ and →. Other cases are straightforward.

Assume that A = ∼̇B, for some B ∈ For∼̇. Let us consider a world

w0 ∈ W\N . We have w0 6�v ∼̇B. On the other hand by definition of (−)m

we have that either (∼̇B)m = �(C)m if B = C → ⊥a for some C ∈ For∼̇

and a ∈ Var, or (∼̇B)m = �¬(B)m otherwise. In both cases we have

w0 6�v (∼̇B)m. So the equivalence holds.

Now assume, that w0 ∈ N . Let w0 �v ∼̇B. Thus, for any w′ ∈ R(w0):

w′ 6�v B. By the inductive hypothesis for any w′ ∈ R(w0): w′ 6�v (B)m,

thus w0 �v �¬((B)m). If (∼̇B)m = �¬((B)m) the implication has been

proved, otherwise B = C → ⊥a for some formula C and a variable a, in
this case (∼̇B)m = �((C)m). We see that (B)m = (C → ⊥a)

m = ¬((C)m),

thus w0 �v �¬¬((C)m), so also w0 �v �((C)m) i.e., w0 �v (∼̇B)m.

For the reverse direction assume that w0 �v (∼̇B)m. If B = ¬aC for

some formula C and a variable a, then (∼̇B)m = �((C)m), i.e. for every
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world w′ accessible by R from w0: w′ �v (C)m, so by inductive hypothesis

w′ �v C for every such world. Since R is serial we also have w′ 6�v ⊥a,

thus w′ 6�v C → ⊥a for every w′ ∈ R(w0), hence w0 �v ∼̇(C → ⊥a), i.e.,

w0 �v ∼̇B. If B is not of the form ¬aC, where C ∈ For∼̇ and a ∈ Var,

then (∼̇B)m = �¬((B)m). So for every world w′ accessible by R from w0:

w′ 6�v (B)m and by inductive hypothesis w′ 6�v B, i.e. w0 �v ∼̇B.

For the functor of implication consider only the case of a formula of

the form B → ⊥a assuming that w0 �v B → ⊥a for a given w0 ∈ W . Since

R is serial (what is relevant if w0 ∈ N) and due to definition of validity in

non-normal worlds we have w 6�v ⊥a for every w ∈ W , so w0 6�v B. By

inductive hypothesis w0 6�v (B)m, so w0 �v ¬((B)m) and by definition of

(−)m, w0 �v (B → ⊥a)
m.

For the reverse implication assume that w0 �v (B → ⊥a)
m i.e. w0 �v

¬((B)m), so w0 6�v ((B)m). By inductive hypothesis w0 6�v B, that is w0 �v

B → ⊥a.

The case if B → C where C is not of the form ⊥a and the cases of ∧
and ∨ can be proved straightforward in both directions.

Assume that the second equivalence holds for any world in W and for

every formula of the complexity smaller then the complexity of a given

formula A. We will consider the cases of ¬, � and →. Other cases are

straightforward. For the case of negation assume that A = ¬B. Due

to seriality we know that for any world w it holds that w 6�v ⊥p and

w 6�v �¬(p → p). The following holds: w �v ¬B iff w 6�v B iff (w 6�v

B or w �v �¬(p → p)) iff (w 6�v (B)u∼̇ or w �v ⊥p) iff w �v ((B)u∼̇ →
⊥p) iff w �v (¬B)u∼̇.

Assume that A is of the form �¬B then: w �v �¬B iff ∀w′∈R(w)w
′ �v

¬B iff ∀w′∈R(w)w
′ 6�v B iff ∀w′∈R(w)w

′ 6�v (B)u∼̇ iff w �v ∼̇((B)u∼̇) iff w �v
(�¬B)u∼̇.

Assume that A is of the form �B but B is not a negation.

w �v �B iff ∀w′∈R(w)w
′
�v B iff ∀w′∈R(w)(w

′
�v B and w′ 6�v �¬(p → p))

iff ∀w′∈R(w)(w
′
�v (B)u∼̇ and w′ 6�v ⊥p)

iff ∀w′∈R(w)w
′ 6�v ((B)u∼̇ → ⊥p)

iff w �v ∼̇((B)u∼̇ → ⊥p) iff w �v (�B)u∼̇

Consider the case A = B → C.
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w �v B → C iff (w 6�v B or w �v C) iff (w 6�v (B)u∼̇ or w �v (C)u∼̇) iff

w �v (B)u∼̇ → (C)u∼̇ iff w �v (B → C)u∼̇

The cases of ∧ and ∨ can be also proved straightforward.

4. Surjectivity of the translations

Below, we will show that both considered translations are surjective.

Lemma 5. For any A ∈ ForM, there is A′ ∈ For∼̇ such that (A′)m = A.

Proof: The proof goes by induction A. For any a ∈ Var, we have (a)m = a.
For the inductive step let us assume that for formulas B and C there

are formulas B′ and C ′ such that (B′)m = B and (C ′)m = C.

We have

1. ¬B = ¬((B′)m) = (B′ → ⊥p)
m

2. (B §C) = ((B′)m §(C ′)m) = ((B′ §C ′))m for § ∈ {∧,∨}

3. Consider the case of C = �¬(a → a):
(

B′ → ∼̇
(

((a → a) → ⊥a) → ⊥a

))

m

=

(B′)m →
(

∼̇
(

((a → a) → ⊥a) → ⊥a

))

m

=

B → �(((a → a) → ⊥a)
m) = (B → �¬(a → a)) = (B → C)

The case that C is not of the form �¬(a → a):

(B → C) = ((B′)m → (C ′)m) = (B′ → C ′)m

4. �B = �((B′)m) = (∼̇(B′ → ⊥a))
m

Lemma 6. For any A ∈ For∼̇, there is A′ ∈ ForM such that (A′)u∼̇ = A.

Proof: The proof goes by induction a formula A. For any a ∈ Var, we

have (a)u∼̇ = a.
For the inductive step let us assume that for B and C ∈ For∼̇ there are

B′ and C ′ ∈ ForM such that (B′)u∼̇ = B and (C ′)u∼̇ = C.

We have

1. ∼̇B = ∼̇((B′)u∼̇) = (�¬B′)u∼̇

2. (B §C) = ((B′)u∼̇ §(C ′)u∼̇) = ((B′ §C ′))u∼̇ for § ∈ {∧,∨,→}

Using transitivity of implication and (CONTR∼̇) we obtain:
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Lemma 7. For any logic L ∈ R∼̇, L is closed on the rule (CONTR∼̇ 2):

A → B

∼̇(A → ⊥p) → ∼̇(B → ⊥p)
(CONTR∼̇ 2)

Lemma 8. For any logic S ∈ R∼̇, the image [S]m of S under (−)m is a
regular logic containing D2.

Proof: First observe that full positive classical logic CL+ is contained

in [S]m since [CL+]m = CL+. The following proofs, show that the whole

propositional classical logic can be obtained. Consider

(p → q) → ((p → (q → ⊥p)) → (p → ⊥p)) (♮)

It is a substitution of (p → q) → ((p → (q → r)) → (p → r)) ∈ CL+, so

(♮) ∈ S, but (♮)
m

= (p → q) → ((p → ¬q) → ¬p)
Besides, p → (¬p → q) ∈ [S]m, by (DS∼̇) and ¬¬p → p ∈ [S]m, by (dn):

(

((p → ⊥q) → ⊥q) → p
)

m

= ¬(p → ⊥q)
m → p = ¬¬p → p.

Now we show that the set [S]m is closed under the monotonicity rule.

Assume that A → B ∈ [S]m. This means that there are formulas A′ and B′

such that (A′ → B′)m = A → B, (A′)m = A, (B′)m = B, and A′ → B′ ∈ S.

By (CONTR∼̇ 2) we have that also ∼̇(A′ → ⊥p) → ∼̇(B′ → ⊥p) ∈ S.

By the definition of (−)m we obtain that �((A′)m) → �((B′)m) ∈ [S]m, i.e.

�A → �B ∈ [S]m.

For the axiom (K): by CL+ and substitution we see that
(

((p →

q) ∧ p) → ⊥p

)

→
(

((p → q) → ⊥p) ∨ (p → ⊥p)
)

belongs to S, as well as

∼̇
(

((p → q) → ⊥p)∨ (p → ⊥p)
)

→ ∼̇
(

((p → q)∧ p) → ⊥p

)

by (CONTR∼̇).

Now, we know that (p → q) ∧ p → q ∈ CL+. By (CONTR∼̇ 2) we have

∼̇(((p → q) ∧ p) → ⊥p) → ∼̇(q → ⊥p). Thus, using CL+, (CONTR∼̇),

(dM2∼̇←), by transitivity of → and the law of exportation we get ∼̇((p →
q) → ⊥p) → (∼̇(p → ⊥p) → ∼̇(q → ⊥p)) as a thesis of S. But by Definition

4 the result of the application of (−)m to the last formula gives the axiom

(K).

For axiom (D) consider (D∼̇): ∼̇(p → ⊥p) → (∼̇ p → ⊥p). We see that

(∼̇(p → ⊥p) → (∼̇ p → ⊥p))
m = �p → ¬�¬p.

Now we prove that [S]m is closed under substitution. Assume that

A ∈ [S]m. Let us consider s(A) a result of substitution of modal formulas

C1, . . . , Cn respectively for variables a1,. . . , an in the formula A, i.e.,

A(a1/C1, . . . , an/Cn) = s(A). By the definition of image, there is A′ ∈ S
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such that (A′)m = A. For every 1 6 i 6 n let us consider (Ci)
u∼̇ and the

formula (A′(a1/(C1)
u∼̇, . . . , an/(Cn)

u∼̇))m.

By Lemma 5 there is B′ ∈ For∼̇ such that (B′)m = s(A). Thus, by

Lemmas 1 and 2 the following equivalences hold on the basis of N+:

B′ ↔ ((B′)m)u∼̇ = (A(a1/C1, . . . , an/Cn))
u∼̇ ↔ ((A)u∼̇(a1/(C1)

u∼̇, . . . ,

an/(Cn)
u∼̇) = ((A′)m)u∼̇(a1/(C1)

u∼̇, . . . , an/(Cn)
u∼̇) ↔ A′(a1/(C1)

u∼̇, . . . ,

an/(Cn)
u∼̇). But A′(a1/(C1)

u∼̇, . . . , an/(Cn)
u∼̇) ∈ S, since A′ ∈ S and S

is closed under substitution, so also B′ ∈ S and finally s(A) ∈ [S]m.

Finally let us consider the case of modus ponens. Assume that A,A →
B ∈ [S]m. By the definition of image, there are A′, C ′ ∈ S such that

(A′)m = A and (C ′)m = A → B. By the definition of (−)m we can see

that C ′ = D → B′ for D,B′ ∈ For∼̇ such that (D)m = A and (B′)m = B.

Although (−)m is not injective, but we have ((A′)m)u∼̇ = (A)u∼̇ and (A)u∼̇ =

((D)m)u∼̇, thus by (2.1) given in Lemma 1 we have A′ ↔ D ∈ N+ ⊆ S,

thus since C ′ = D → B′ ∈ S, also A′ → B′ ∈ S and due to the fact that S

is a logic, B′ ∈ S, hence B ∈ [S]m.

Lemma 9. For any regular logic S containing D2, the image [S]u∼̇ of S
under (−)u∼̇ belongs to R∼̇.

Proof: First observe that full positive classical logic CL+ is contained in

[S]u∼̇ since [CL+]u∼̇ = CL+.

Now we will show that (dM2∼̇←) ∈ [S]u∼̇. First, let us recall that �¬p∧
�¬q → �¬(p ∨ q) is a thesis of any regular logic. Besides (�¬p ∧ �¬q →
�¬(p∨ q))u∼̇ = (�¬p∧�¬q)u∼̇ → (�¬(p∨ q))u∼̇ = (�¬p)u∼̇ ∧ (�¬q)u∼̇ →
(∼̇(p ∨ q)) = ∼̇ p ∧ ∼̇ q → ∼̇(p ∨ q).

(dn) ∈ [S]u∼̇: first one can see that
((

(p → �¬(p → p)) → �¬(p →

p)
)

→ p
)

belongs to D2. Moreover, we have:
((

(p → �¬(p → p)) →

�¬(p → p)
)

→ p
)

u∼̇
=

(

(p → ⊥p) → ⊥p

)

→ p.
For (CONTR∼̇) assume that A → B ∈ [S]u∼̇. This means that there

is C ∈ ForM that belongs to S, for which (C)u∼̇ = A → B. Analysing the

definition of (−)u∼̇ we see, we have two cases: first C = ¬D, (D)u∼̇ = A
and ⊥p = B, and second C = (D → E), (D)u∼̇ = A, and (E)u∼̇ = B.

For the first case, sine ¬D ∈ S, so ¬�¬(p → p) → ¬D ∈ S and

also �¬�¬(p → p) → �¬D ∈ S. This means that (�¬�¬(p → p) →
�¬D)u∼̇ ∈ [S]u∼̇, but (�¬�¬(p → p) → �¬D)u∼̇ = ∼̇⊥p → ∼̇((D)u∼̇) =

∼̇B → ∼̇A ∈ [S]u∼̇.
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For the second case, by contraposition and monotonicity we have:

�¬E → �¬D ∈ S, but again (�¬E → �¬D)u∼̇ = (�¬E)u∼̇ → (�¬D)u∼̇ =

∼̇((E)u∼̇) → ∼̇((D)u∼̇) = ∼̇B → ∼̇A ∈ [S]u∼̇.

The case of modus ponens. Assume that A,A → B ∈ [S]u∼̇. It means

that there are A′, C ′ ∈ S, such that (A′)u∼̇ = A and (C ′)u∼̇ = A → B.

Again we have two cases: the first C ′ = ¬D, (D)u∼̇ = A and ⊥p = B, the

second C ′ = (D → E), (D)u∼̇ = A and (E)u∼̇ = B.

In the first case we have (D)u∼̇ = (A′)u∼̇, so ((D)u∼̇)m = ((A′)u∼̇)m, by
Lemma 1, (2.2), we see that D ↔ ((D)u∼̇)m ∈ S, and ((A′)u∼̇)m ↔ A′ ∈ S,

so (D ↔ A′) ∈ S and D ∈ S, but by Duns Scotus law S equals ForM, in

particular �¬(p → p) ∈ S, so also ⊥p ∈ [S]u∼̇.

For the second case we again have (D)u∼̇ = (A′)u∼̇, so ((D)u∼̇)m =

((A′)u∼̇)m ∈ S and by (2.2) from Lemma 1 and transitivity of→ we conclude

that (D ↔ A′) ∈ S. Hence by modus ponens D ∈ S and E ∈ S, thus

(E)u∼̇ = B ∈ [S]u∼̇.

Now we prove that [S]u∼̇ is closed under substitution. Assume that A ∈
[S]u∼̇. Let us consider s(A) a result of substitution of formulas C1,. . . , Cn ∈
For∼̇ for variables a1,. . . , an in the formula A, i.e., A(a1/C1, . . . , an/Cn) =

s(A). By the definition of image, there is A′ ∈ S such that (A′)u∼̇ =

A. For any 1 6 i 6 n let us consider formulas (Ci)
m and (A′(a1/(C1)

m,

. . . , an/(Cn)
m))u∼̇. Observe, that by Lemma 6 there is a formula B′ ∈

ForM such that (B′)u∼̇ = s(A). Thus, by Lemmas 1 and 3 we have B′ ↔
((B′)u∼̇)m = (A(a1/C1, . . . , an/Cn))

m ↔ (A)m(a1/(C1)
m,. . . , an/(Cn)

m) =

((A′)u∼̇)m(a1/(C1)
m, . . . , an/(Cn)

m) ↔ A′(a1/(C1)
m,. . . , an/(Cn)

m). The

last formula belongs to S, since A′ ∈ S and S is closed under substitution,

so also B′ ∈ S. Hence (B′)u∼̇ ∈ [S]u∼̇, in other words s(A) ∈ [S]u∼̇.

Corollary 1. 1. [N+]m = D2,

2. [D2]u∼̇ = N+.

Proof: For the first equation: by Lemma 8, [N+]m is a regular logic and

D2 ⊆ [N+]m. Assume that A ∈ [N+]m, i.e., there is B ∈ N+, such that

(B)m = A. Since by Lemma 9, N+ ⊆ [D2]u∼̇, there is C ∈ D2, such that

(C)u∼̇ = B. So ((C)u∼̇)m = (B)m = A and due to Lemma 1, ((C)u∼̇)m ∈ D2,

thus A ∈ D2.

For the second equation, we see that by Lemma 9, [D2]u∼̇ ∈ R∼̇, so
N+ ⊆ [D2]u∼̇. Assume that A ∈ [D2]u∼̇, i.e., there is B ∈ D2, such that

(B)u∼̇ = A. Since by Lemma 8, D2 ⊆ [N+]m, there is C ∈ N+, such that
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(C)m = B, so ((C)m)u∼̇ = (B)u∼̇ = A and by Lemma 1, ((C)m)u∼̇ ∈ N+,

thus A ∈ N+.

5. The main correspondence result

Theorem 1. For any regular logic S containing D2, if S is complete
(sound) with respect to a class of models X, [S]u∼̇ is complete (sound)
with respect to the class X.

Proof: Assume that D2 ⊆ S and that S is a regular logic complete

(sound) with respect to a class of models X.

For completeness let A ∈ For∼̇. Assume that for any model 〈W , R, N ,

v〉 ∈ X, and every w ∈ W , w �v A. By Lemma 4 for any 〈W,R,N, v〉 ∈ X
and w ∈ W , w �v (A)m. By assumed completeness (A)m ∈ S. Hence,

((A)m)u∼̇ ∈ [S]u∼̇. By Lemma 9, [S]u∼̇ is a logic and [S]u∼̇ ∈ R∼̇, so by

Lemma 1, (((A)m)u∼̇ ↔ A) ∈ N+ ⊆ [S]u∼̇. Thus A ∈ [S]u∼̇.

Now we consider the case of soundness. Let A ∈ [S]u∼̇. By the defini-

tion of image, there is B ∈ S, such that (B)u∼̇ = A. By the assumed sound-

ness for S, we have that for any 〈W,R,N, v〉 ∈ X, and any w ∈ W , w �v B,

by Lemma 4 for any 〈W,R,N, v〉 ∈ X and w ∈ W , w �v (B)u∼̇ = A.

We also obtain:

Theorem 2. For any logic S ∈ R∼̇ if S is complete (sound) with respect to
a class of models X, [S]m is complete (sound) with respect to the class X.

Proof: Assume that S ∈ R∼̇ and that S is complete (sound) with respect

to a class of models X.

For the case of completeness let B ∈ ForM. Assume that for any model

〈W,R,N, v〉 ∈ X, and every w ∈ W , w �v B. By Lemma 4 for any

〈W,R,N, v〉 ∈ X and w ∈ W , w �v (B)u∼̇. By assumed completeness,

(B)u∼̇ ∈ S. Hence, ((B)u∼̇)m ∈ [S]m. By Lemma 8, [S]m is a regular logic

and D2 ⊆ [S]m, so by Lemma 1 (((B)u∼̇)m ↔ B) ∈ D2 ⊆ [S]m. Thus

B ∈ [S]m.

For soundness, let B ∈ [S]m. By the definition of image, there is A ∈ S,

such that (A)m = B. By the assumed soundness for S, we have that for

any 〈W,R,N, v〉 ∈ X, and any w ∈ W , w �v A. By Lemma 4, for any

〈W,R,N, v〉 ∈ X and w ∈ W , w �v (A)m = B.
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5.1. Examples of completeness results

Let us recall notation for the following formulas and logics:

�p → p (T)

�p → ��p (4)

�(p → p) (N)

Definition 9. 1. E2 is the smallest regular logic containing (T).

2. E4 is the smallest regular logic containing (T) and (4).

3. S4 is the smallest regular (equivalently normal) logic containing (T),

(4) and (N).

Each of the above logics contains D2. Thus, using completeness result

for these logics (see e.g. [11, 13]) and Theorem 1 we directly obtain:

Corollary 2. 1. The logic N+ is sound and complete with respect to
the class of models based on frames with serial accessibility relation
(or equivalently fulfilling the condition (SerN)).

2. The logic [E2]u∼̇ is sound and complete with respect to models based
on frames 〈W,R,N〉 with accessibility relation fulfilling the condition:

∀w∈NwRw (RefN)

3. The logic [E4]u∼̇ is sound and complete with respect to the class of
models based on frames 〈W,R,N〉 such that R fulfills the conditions
(RefN), ∀w∈NR(w) ⊆ N and ∀w,v∈N∀u∈W

(

wRv & vRu ⇒ wRu)
)

.

4. The logic [S4]u∼̇ is sound and complete with respect to models based
on frames such that N = W , where R is reflexive and transitive.
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