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A SYNTACTIC APPROACH TO CLOSURE OPERATION

Abstract

In the paper, tracing the traditional Hilbert-style syntactic account of logics,

a syntactic characteristic of a closure operation defined on a complete lattice

follows. The approach is based on observation that the role of rule of inference

for a given consequence operation may be played by an ordinary binary relation

on the complete lattice on which the closure operation is defined.
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0. Preliminaries

The paper deals mainly with closure operations defined on a complete lat-
tice. Given a complete lattice (A,≤), any mapping C : A −→ A such
that for each a ∈ A, a ≤ C(a), C(C(a)) ≤ C(a) and C is monotone:
a ≤ b ⇒ C(a) ≤ C(b), is called a closure operation defined on (A,≤).
Any subset B ⊆ A is said to be a closure system of the lattice (A,≤), if
for each X ⊆ B, infA X ∈ B. Given a closure operation C on (A,≤), the
set of all its fixed points called closed elements: {a ∈ A : a = C(a)}, is a
closure system of (A,≤). Conversely, given a closure system B of (A,≤),
the map C : A −→ A defined by C(a) = infA{x ∈ B : a ≤ x}, is a
closure operation on (A,≤). The closure system B is just the set of all
its closed elements. On the other hand, the closure system of all closed
elements of a given closure operation C defines, in that way, just the op-
eration C. Thus, there is a one to one correspondence between the class
of all closure operations and of all closure systems of (A,≤) (in fact, it is
a dual isomorphism between the respective complete lattices of all closure
operations and closure systems). Any closure system B of (A,≤) forms a
complete lattice with respect to the order ≤ such that infB X = infA X and



220 Marek Nowak

supB X = C(supA X), for each X ⊆ B, where C is the closure operation
corresponding to closure system B. Given a subset X of A, there exists
the least closure system B of (A,≤) such that X ⊆ B. It is called a closure
system generated by X and shall be denoted by [X]. It is simply the inter-
section of all the closure systems of (A,≤) containing X and is of the form:
[X] = {infA Y : Y ⊆ X}. The closure operation C corresponding to closure
system [X] is expressed by C(a) = infA{x ∈ X : a ≤ x}, any a ∈ A. Any
closure system B of a complete lattice (℘(L),⊆) of all subsets of a given
set L is usually called a closure system over L. The corresponding closure
operation C : ℘(L) −→ ℘(L) assigns to each X ⊆ L the smallest element
of B containing X : C(X) =

⋂

{Y ∈ B : X ⊆ Y }.
An interior operation, an interior system and open element are the dual

concepts with respect to closure ones.

Some elements of the theory of Galois connections shall be used in the
paper. The general theory is to be found for example in [1], [2], [4]. Given
the posets (A,≤A), (B,≤B), any pair of mappings f : A −→ B, g : B −→
A such that for each a ∈ A, b ∈ B : b ≤B f(a) iff a ≤A g(b), is called
an antimonotone Galois connection for those posets. Equivalently, such a
Galois connection (f, g) fulfils the following conditions: a ≤A g(f(a)), b ≤B

f(g(b)) for any a ∈ A, b ∈ B and f, g are antimonotone. Given Galois
connection (f, g) for the posets (A,≤A), (B,≤B), the ranges f [A], g[B] of
the mappings f and g are the sets of all closed elements with respect to
the following closure operations C2, C1, respectively: for each a ∈ A, b ∈
B, C2(b) = f(g(b)), C1(a) = g(f(a)). Since for each a ∈ g[B], b ∈ f [A] :
g(f(a)) = a, f(g(b)) = b and moreover, for any a1, a2 ∈ g[B] : a1 ≤A a2
iff f(a2) ≤B f(a1), so the complete lattices (g[B],≤A), (f [A],≤B) are
dually isomorphic (with f being a dual isomorphism).

Especially important is so-called archetypal Galois connection (cf. for
example, [3]). Having the sets A,B and a binary relation ρ ⊆ A × B, an
archetypal antimonotone Galois connection (f, g) is defined for the com-
plete lattices (℘(A),⊆), (℘(B),⊆) in the following way. For any X ⊆ A
and b ∈ B, b ∈ f(X) iff ∀a ∈ X aρb. On the other hand, for each Y ⊆ B
and a ∈ A, a ∈ g(Y ) iff ∀b ∈ Y aρb.

In turn, a pair f : A −→ B, g : B −→ A such that for each a ∈
A, b ∈ B : b ≤B f(a) iff g(b) ≤A a, is called a monotone Ga-
lois connection or a residuated pair of mappings for the posets (A,≤A),
(B,≤B). Equivalently, a monotone Galois connection (f, g) fulfils the fol-
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lowing conditions: g(f(a)) ≤A a, b ≤B f(g(b)) for any a ∈ A, b ∈ B and
f, g are monotone functions. Given a residuated pair (f, g) for the posets
(A,≤A), (B,≤B), the ranges f [A], g[B] are, respectively, the sets of all
closed and open elements with respect to the following closure and interior
operations C, I : for each a ∈ A, b ∈ B, C(b) = f(g(b)), I (a) = g(f(a)).
Since for each a ∈ g[B], b ∈ f [A] : g(f(a)) = a, f(g(b)) = b and, moreover,
for any a1, a2 ∈ g[B] : a1 ≤A a2 iff f(a1) ≤B f(a2), so the complete lat-
tices (g[B],≤A), (f [A],≤B) are isomorphic (with f being an isomorphism).

1. Introduction

Let us go along the lines of the traditional syntactic Hilbert-style approach
to consequence operation (cf. for example [6], [7]). Let L be a set of
formulas of a given formal language and R be a set of rules of inference for
L. Each rule of inference for L is a binary relation r ⊆ ℘(L) × L. Usually
some additional conditions are put on a binary relation r to make it a rule
of inference, for example of the form: a set Y is finite whenever (Y, a) ∈ r.
However, it is convenient for our purposes to treat a rule of inference quite
generally, as an arbitrary binary relation defined on the sets ℘(L), L. Now,
such a set R of rules uniquely determines the family C of all subsets of L
which are closed on every rule r ∈ R. A set X ⊆ L is closed on a rule r
iff for any (Y, a) ∈ r, a ∈ X whenever Y ⊆ X. The family C is a closure
system over L which in turn uniquely determines the closure operation
C : ℘(L) −→ ℘(L) called a consequence operation determined by the set of
rules R. That is, given an X ⊆ L, C(X) is the least subset of L containing
X and closed on each rule r ∈ R. Notice that for any X ⊆ L and any set
R of rules of inference, X is closed on each rule r ∈ R iff X is closed on
one rule:

⋃

R. So instead of determining a consequence operation by a set
of rules, a single rule of inference suffices: any rule of inference r uniquely
determines a closure system Cr of all sets closed on r:

(1) X ∈ Cr iff for all (Y, a) ∈ r (Y ⊆ X ⇒ a ∈ X).

The consequence operation determined by the rule r is of the form: given
X ⊆ L, Cr(X) is the least element of the closure system Cr containing X.

In turn, a closure operation C : ℘(L) −→ ℘(L) or the corresponding
closure system C determine a rule of inference rC : (Y, a) ∈ rC iff ∀X ∈
C (Y ⊆ X ⇒ a ∈ X) iff a ∈ C(Y ). Moreover, for any family B of sets
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of formulas, the relation rB defined by

(2) (Y, a) ∈ rB iff for any X ∈ B (Y ⊆ X ⇒ a ∈ X),

coincides with rC , where C is the consequence operation determined by the
closure system [B]. So one can distinguish a pair of mappings:

(3) ℘(℘(L) × L) ∋ r 7−→ Cr ∈ ℘(℘(L)), ℘(℘(L)) ∋ B 7−→ rB ∈
℘(℘(L) × L),

defined by (1) and (2). As it is easily seen, this pair of mappings is an
archetypal Galois connection defined by a binary relation S ⊆ (℘(L) ×
L) × ℘(L) : ((Y, a), X) ∈ S iff (Y ⊆ X ⇒ a ∈ X). Here our point of
interest is not the Galois connection but another pair of mappings:

(4) ℘(℘(L) × L) ∋ r 7−→ Cr ∈ Cons(L), Cons(L) ∋ C 7−→ rC ∈
℘(℘(L) × L),

joining two complete lattices, (℘(℘(L) × L),⊆), (Cons(L),≤), of all rules
of inference for L and of all consequence operations of L, respectively. The
first mapping is a composition of two antimonotone mappings, r 7−→ Cr
defined by (1) and Cr 7−→ Cr. The second one is a composition of the
antimonotone maps: C 7−→ C and C 7−→ rC defined by (2) (naturally,
rC = rC). So both mappings are monotone:

for any rules r1, r2, r1 ⊆ r2 ⇒ Cr1 ≤ Cr2 ,

for any consequence operations C1, C2, C1 ≤ C2 ⇒ rC1
⊆ rC2

.

Moreover, the following two facts are important. One of them is quite ob-
vious, as it follows from the very definition of the consequence Cr. Another
needs a proof.

For any rule of inference r for L, r ⊆ rCr
, that is, r is a valid rule

of Cr.

Given any consequence operation C on L, CrC = C, (in equivalent
form: any subset X of L is closed on the rule rC iff X = C(X)).

Proof. Given an X ⊆ L and a consequence C on L, the set C(X) contains
X and is closed on the rule rC . Now, let Z ⊆ L contain X and be closed
on rC . Suppose that a ∈ C(X). Then (X, a) ∈ rC thus a ∈ Z. In this way,



A Syntactic Approach to Closure Operation 223

C(X) ⊆ Z, that is, C(X) is the least set containing X and closed on rC ,
which means that C(X) = CrC (X). �

All four facts given above mean that the considered pair of mappings
from (4), C 7−→ rC , r 7−→ Cr, is a residuated pair. In this way, taking the
fourth fact into account – namely, that the set of all open elements with
respect to the interior operation induced by that residuated pair is just the
set of all consequence operations on L – one may state that

the complete lattice (Cons(L),≤) of all consequence operations defined
on a language L is isomorphic to the complete lattice (Relcons(L),⊆) of
all rules of inference r for L such that r = rCr

. The mapping C 7−→ rC is
that isomorphism.

It is not difficult to establish the conditions distinguishing the set
Relcons(L) as a subset of ℘(℘(L) × L):

for any rule of inference r for L, r = rCr
iff r is a so-called conse-

quence relation on L, that is, the following conditions are satisfied for each
X,Y ⊆ L and a ∈ L:

(r1) a ∈ X ⇒ (X, a) ∈ r,
(r2) X ⊆ Y & (X, a) ∈ r ⇒ (Y, a) ∈ r,
(r3) ({b ∈ L : (X, b) ∈ r}, a) ∈ r ⇒ (X, a) ∈ r.

Proof. (⇒): It is obvious that for any consequence C, the relation rC
fulfils conditions (r1)-(r3).

(⇐): Consider any r ⊆ ℘(L) × L satisfying (r1)-(r3). It is enough to
show the inclusion rCr

⊆ r, i.e., the implication a ∈ Cr(X) ⇒ (X, a) ∈ r,
for any X ⊆ L and a ∈ L. So assume that a ∈ Cr(X). Now let us prove
that the set {b ∈ L : (X, b) ∈ r} is closed on r. To this aim suppose that
(Y, d) ∈ r and Y ⊆ {b ∈ L : (X, b) ∈ r}. Hence and from (r2) it follows that
({b ∈ L : (X, b) ∈ r}, d) ∈ r. Therefore from (r3), (X, d) ∈ r, which means
that d ∈ {b ∈ L : (X, b) ∈ r}. Furthermore, X ⊆ {b ∈ L : (X, b) ∈ r}
due to (r1). In this way, Cr(X) ⊆ {b ∈ L : (X, b) ∈ r} by definition of Cr.
Finally, (X, a) ∈ r due to the assumption. �

As one may see, we have arrived at a completely trivial point: identify-
ing a consequence operation with a consequence relation. Just the syntactic
approach without any restrictions put on the concept of rule of inference
yields such a trivial effect.
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The purpose of the paper is to provide a similar syntactic approach to
any closure operation defined on any complete lattice. It is clear that in
such a case one cannot apply the concept of ordinary rule of inference, some
counterpart of such a rule is needed. When the complete lattice (℘(L),⊆)
of all subsets of the set of all formulas is considered, we propose to treat
any binary relation r ⊆ ℘(L) × ℘(L) as such a counterpart. Then a closed
set B ⊆ L on r may be defined as such that satisfies the condition: for any
(X,Y ) ∈ r, X ⊆ B ⇒ Y ⊆ B. The family Br of all sets closed on r, that
is, the family defined analogously as Cr in (1) by

(1’) B ∈ Br iff for all (X,Y ) ∈ r (X ⊆ B ⇒ Y ⊆ B),

forms a closure system over L, determining the closure operation, say, Cr by
Cr(X) =

⋂

{B ∈ Br : X ⊆ B}. This is just a non-trivial syntactic approach
to closure operations defined on the lattice (℘(L),⊆). On the other hand,
having any family B of sets of formulas (not necessary a closure system
over L), one may define a binary relation (a “rule of inference”) on ℘(L),
similarly as in (2), by

(2’) (X,Y ) ∈ rB iff for any B ∈ B (X ⊆ B ⇒ Y ⊆ B).

The pair of mappings

(3’) ℘(L)2 ∋ r 7−→ Br ∈ ℘(℘(L)), ℘(℘(L)) ∋ B 7−→ rB ∈ ℘(L)2,

now playing the role of (3), is an archetypal Galois connection determined
by the ternary relation R ⊆ ℘(L)3 : (X,Y,B) ∈ R iff (X ⊆ B ⇒ Y ⊆ B).

Moreover, the relation rB defined in (2’), may be treated, on the one
hand, as a counterpart of the greatest valid rule of inference of the conse-
quence C determined by the closure system [B]:

(5) (X,Y ) ∈ rB iff Y ⊆
⋂

{B ∈ B : X ⊆ B} iff Y ⊆ C(X).

On the other hand, it may be conceived as a multiply-conclusion conse-
quence relation of a special type. Here one may find an analogy to the
concept of multiply-conclusion consequence relation ⊢B introduced in [5] in
the following way. Given a family B ⊆ ℘(L), for any X,Y ⊆ L,

(6) X ⊢B Y iff for any B ∈ B (X ⊆ B ⇒ Y ∩B 6= ∅).

In [8] it was proved that when a family B ⊆ ℘(L) is a closure system over
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L, the consequence relation ⊢B defined by (6) may be expressed by

(7) X ⊢B Y iff Y ∩ C(X) 6= ∅,

where C is the consequence operation determined by the closure system
B. (7) means that given a set of premises, some of the conclusions of the
relation ⊢B are ordinary conclusions of consequence operation associated
with the relation. So the relation ⊢B has a disjunctive character. While
according to (5), given a set of premises X, each of the conclusions of rB is
a conclusion of the consequence associated with rB. This means that the
multiply-conclusion consequence relation rB has a conjunctive character.

Now, adhering to the standard syntactic approach to consequence op-
eration presented above, we can consider the following residuated pair of
mappings being a counterpart of (4):

(4’) ℘(℘(L)2) ∋ r 7−→ Cr ∈ Cons(L), Cons(L) ∋ C 7−→ rC ∈
℘(℘(L)2),

where Cr is determined by the closure system Br defined in (1’), and rC
coincides with the relation rB defined in (2’) or (5), by the closure system
B of all fixed points of the closure operation C. We are interested in a
counterpart of the set of consequence relations Relcons(L). However, we
shall consider a more general case: the counterpart of this residuated pair
defined on any complete lattice (in place of the lattice (℘(L),⊆)). In order
to find a counterpart of consequence relation from Relcons(L), we shall
proceed in three steps. First, we are going to provide a simple connection
between all unary operations defined on a given complete lattice and binary
relations of some kind defined on that lattice. Next, the connection will be
confined to the set of all closure operations defined on that lattice. Finally,
we shall be able to present a proper syntactic account of closure operations.

2. On some correspondence between binary relations

and unary operations defined on complete lattice

Let (A,≤) be any complete lattice. Given a binary relation r defined on
the set A, including the lattice ordering ≤, and an element x ∈ A, let us
put [x)r, (x]r for the sets {y ∈ A : (x, y) ∈ r}, {y ∈ A : (y, x) ∈ r},
respectively. Let us consider the class Relfun ⊆ ℘(A2) of all the binary
relations defined on A fulfilling the following condition
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(fun) ∀x ∈ A ∃z ∈ A, [x)r = (z]≤.

Notice the following obvious connection.

Fact 1. For any complete lattice (A,≤) and any binary relation r defined
on A, condition (fun) is equivalent to

(fun’) ∀x ∈ A, [x)r = (sup[x)r]≤.

It is evident that for any mapping c : A −→ A, binary relation rc ⊆ A2

defined by (x, y) ∈ rc iff y ≤ c(x), satisfies the condition (fun) since, here,
for any x ∈ A, [x)rc = (c(x)]≤. Conversely, given a binary relation r ∈
Relfun, let us consider a mapping cr : A −→ A defined by cr(x) = sup[x)r.
Now take into account the complete lattice (AA,≤) of all the mappings
from A to A ordered by ≤ defined by c1 ≤ c2 iff c1(x) ≤ c2(x) for each
x ∈ A.

Proposition 2. The complete lattices (AA,≤), (Relfun,⊆), are isomor-
phic. The mapping c 7−→ rc is the required isomorphism and the map
r 7−→ cr is the inverse one.

Proof. First, notice that given an arbitrary mapping c : A −→ A, crc =
c. To show this fact, observe that for an x ∈ A, crc(x) = sup[x)rc =
sup(c(x)]≤ = c(x). Moreover, given any binary relation r ∈ Relfun we
have rcr = r since for any x, y ∈ A, (x, y) ∈ rcr iff y ≤ cr(x) iff
y ≤ sup[x)r iff (x, y) ∈ r, due to Fact 1 and (fun’). Thus the mapping
c 7−→ rc is a bijection from AA onto Relfun. It remains to show that for
any c1, c2 ∈ AA, c1 ≤ c2 iff rc1 ⊆ rc2 .

(⇒): Suppose that c1 ≤ c2 and let (x, y) ∈ rc1 . Then y ≤ c1(x) ≤
c2(x), which implies (x, y) ∈ rc2 .

(⇐): Assume that rc1 ⊆ rc2 and let x ∈ A. From definition of rc2 , it
follows that c1(x) ≤ c2(x) iff (x, c1(x)) ∈ rc2 . Analogously, c1(x) ≤ c1(x)
iff (x, c1(x)) ∈ rc1 . Hence (x, c1(x)) ∈ rc1 , so taking the assumption into
account we have (x, c1(x)) ∈ rc2 . Therefore, c1(x) ≤ c2(x). �

In the complete lattice (Relfun,⊆) for any nonempty family R ⊆
Relfun we have inf R =

⋂

R and inf ∅ = A2. To show it, notice that inf R
corresponds by the isomorphism to inf{cr : r ∈ R} in the complete lattice
(AA,≤), that is, (x, y) ∈ inf R iff y ≤ c(x), where c = inf{cr : r ∈ R}.
So we have (x, y) ∈ inf R iff y ≤ (inf{cr : r ∈ R})(x) iff y ≤ inf{cr(x) :
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r ∈ R} iff for each r ∈ R, y ≤ cr(x) iff for each r ∈ R, (x, y) ∈ r iff
(x, y) ∈

⋂

R.

3. Correspondence between binary relations

and closure operations

Now we confine ourselves to some classes of the mappings from AA and the
corresponding families of binary relations. First, let us consider the class
Ex(A) of all mappings c : A −→ A satisfying the expansion condition:
x ≤ c(x) for any x ∈ A. As it is well-known, the poset (Ex(A),≤) is a
complete sublattice of the complete lattice (AA,≤).

Fact 3. The correspondence Ex(A) ∋ c 7−→ rc is an isomorphism of the
complete lattices (Ex(A),≤) and (Reflfun,⊆) of all reflexive relations on
A fulfilling condition (fun).

Proof. Let us restrict the isomorphism AA ∋ c 7−→ rc to the class Ex(A).
When c ∈ Ex(A), rc is obviously reflexive on A. On the other hand,
if r ∈ Relfun is reflexive, for a given x ∈ A, x ≤ sup[x)r. Hence the
corresponding map cr fulfils the condition: x ≤ cr(x) for all x ∈ A. �

Now let Mon(A) be the class of all monotone mappings from A to
A. As for Ex(A), the poset (Mon(A),≤) is a complete sublattice of the
complete lattice (AA,≤). Moreover, let Relmon

fun be the class of all binary
relations satisfying the conditions (fun) and

(mon) (x, z) ∈ r & x ≤ y ⇒ (y, z) ∈ r, for all x, y, z ∈ A.

or equivalently,

(mon’) x ≤ y ⇒ [x)r ⊆ [y)r, for all x, y ∈ A.

Fact 4. The correspondence Mon(A) ∋ c 7−→ rc is an isomorphism of the
complete lattices (Mon(A),≤) and (Relmon

fun ,⊆).

Proof. Let us restrict the isomorphism AA ∋ c 7−→ rc to the class
Mon(A). Suppose that a map c : A −→ A satisfies the condition: x ≤
y ⇒ c(x) ≤ c(y), for all x, y ∈ A. Then, obviously, the relation rc
fulfils condition (mon). Conversely, when a given r ∈ Relfun satisfies
(mon’), the map cr is monotone: suppose x ≤ y; then obviously by (mon’),
sup[x)r ≤ sup[y)r so cr(x) ≤ cr(y). �
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Now, let us consider the class RT (A) of all monotone mappings c :
A −→ A such that for any x ∈ A, c(c(x)) ≤ c(x). RT (A) does not form a
complete sublattice of (AA,≤), however, for any its subclass C the infimum
of C in the complete lattice (AA,≤) belongs to RT (A). In this way, one
can consider (RT (A),≤) as a complete lattice.

Fact 5. The correspondence RT (A) ∋ c 7−→ rc is an isomorphism of the
complete lattices (RT (A),≤) and (Transmon

fun ,⊆) of all transitive relations
r from Relfun satisfying (mon).

Proof. The proof goes analogously to the proofs of Facts 3 and 4. Having
restricted the isomorphism to the domain RT (A), let us check whether
given c ∈ RT (A), rc is transitive. Suppose that (x, y), (y, z) ∈ rc. Then
y ≤ c(x) and z ≤ c(y). So c(y) ≤ c(c(x)) ≤ c(x), thus z ≤ c(x), which
means that (x, z) ∈ rc. Moreover, rc satisfies (mon) (cf. the proof of Fact
4). Therefore, rc ∈ Transmon

fun . Conversely, suppose that r ∈ Transmon
fun .

Then the map cr is monotone due to the proof of Fact 4. Furthermore,
we have (x, sup[x)r) ∈ r from (fun’). Now we show that [sup[x)r)r ⊆
[x)r. To this aim suppose that (sup[x)r, y) ∈ r. Then, from transitivity
of r, it follows that (x, y) ∈ r. From just proved inclusion we have that
sup[sup[x)r)r ≤ sup[x)r, which means that cr(cr(x)) ≤ cr(x). Finally,
cr ∈ RT (A). �

Now we can consider the complete lattice (Cl(A),≤) of all closure op-
erations defined on (A,≤). Obviously, Cl(A) = Ex(A)∩RT (A). Consider
also the class QOrdmon

fun = Reflfun∩Transmon
fun of all quasiorders (reflexive

and transitive relations) r defined on A satisfying two conditions: (fun) and
(mon). The following corollary follows immediately from Facts 3 and 5 .

Corollary 6. The correspondence c 7−→ rc, where for any x, y ∈ A,
(x, y) ∈ rc iff y ≤ c(x), is an isomorphism of the lattices (Cl(A),≤) and
(QOrdmon

fun ,⊆). The correspondence r 7−→ cr, where for each x ∈ A, c(x) =
sup[x)r, is the inverse isomorphism of the lattices.

It turns out that class QOrdmon
fun can be defined in a much simpler way.

In order to do it, first let us notice two simple facts.

Fact 7. For any transitive relation r on A, the conjuction of the conditions
(mon) and reflexivity is equivalent to the inclusion ≤∼ ⊆ r, where ≤∼ is
the converse of the lattice order ≤.
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Proof. Assume that r is transitive on A.
(⇒): Suppose that (mon) is satisfied by r and r is reflexive. Let (x, y) ∈

≤∼, that is, y ≤ x. Since (y, y) ∈ r, from (mon) it follows that (x, y) ∈ r.
Therefore, ≤∼ ⊆ r.

(⇐): Assume that ≤∼ ⊆ r and let (x, z) ∈ r, and x ≤ y. Then
(y, x) ∈ ≤∼. Consequently, (y, x) ∈ r by the assumption. Then (y, z) ∈ r
due to transitivity of r. Thus condition (mon) holds true. Obviously r is
reflexive since ≤ is reflexive. �

Fact 8. For any quasiorder r on A satisfying (mon), the condition (fun)
is equivalent to the following one: for each x ∈ A, sup[x)r ∈ [x)r.

Proof. Let r be any quasiorder satisfying (mon). The proof in the direc-
tion (⇒) follows immediately due to (fun’).

(⇐): Assume that for each x ∈ A, sup[x)r ∈ [x)r. Take any x ∈ A. We
are going to show that [x)r = (sup[x)r]≤, actually that (sup[x)r]≤ ⊆ [x)r
since the converse inclusion always holds. So suppose that y ≤ sup[x)r.
Since (y, y) ∈ r so from (mon), we have (sup[x)r, y) ∈ r. From the assump-
tion it follows that (x, sup[x)r) ∈ r. Therefore, (x, y) ∈ r due to transitivity
of r. �

Due to Facts 7, 8 the simple characteristic of QOrdmon
fun follows.

Corollary 9. QOrdmon
fun is the class of all transitive relations r on A such

that ≤∼ ⊆ r and for each x ∈ A, sup[x)r ∈ [x)r.

The class is a proper subclass of all quasiorders greater than ≤∼ with
respect to inclusion. Let us provide some examples.

Consider the complete lattice (〈0, 1〉,≤) of all real numbers from the
interval 〈0, 1〉. Then the relation r = 〈0, 1〉2 − {(x, 1) : x ∈ 〈0, 1〉 − {1}}
is a quasiorder on the set 〈0, 1〉 such that ≤∼ ⊆ r, however, it does not
satisfy condition (fun) since sup[0)r = 1 6∈ [0)r. Here, for any x ∈ 〈0, 1〉 −
{1}, [x)r = 〈0, 1〉 − {1} and [1)r = 〈0, 1〉.

Consider also the Boolean 4-element lattice (A,≤), where A = {0, a, b, 1}
and the relation r = A2 − {(0, 1), (a, 1), (b, 1)}. Then r is a quasiorder on
A such that ≤∼ ⊆ r, however, sup[0)r = 1 6∈ [0)r since [0)r = [a)r = [b)r =
{0, a, b} and [1)r = A.
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4. Syntactic characteristic of closure operations

Let (A,≤) be any complete lattice and r ⊆ A2 any binary relation defined
on A. We say that an element b ∈ A is closed on the relation r iff for any
(x, y) ∈ r, x ≤ b ⇒ y ≤ b.

Fact 10. For any r ⊆ A2 the set Br ⊆ A of all closed elements on r is a
closure system of the lattice (A,≤).

Proof. Let B ⊆ Br. We show that inf B is closed on r. So let (x, y) ∈ r
and x ≤ inf B. Then for each b ∈ B, x ≤ b. It means that for each
b ∈ B, y ≤ b since each element from B is closed on r. Thus, y ≤ inf B. �

Let G : ℘(A2) −→ Cl(A) be a mapping assigning to each relation
r ⊆ A2 the closure operation determined by the closure system Br, that is,
for any r ⊆ A2, and any x ∈ A, G(r)(x) = inf{b ∈ Br : x ≤ b}. Conversely,
let F : Cl(A) −→ ℘(A2) be a map assigning to each closure operation c
the relation rc defined by (x, y) ∈ rc iff y ≤ c(x). In this way we reach a
generalization of (4’).

Proposition 11. (F,G) is a residuated pair of mappings for the complete
lattices (Cl(A),≤), (℘(A2),⊆) such that for any c ∈ Cl(A), G(F (c)) = c.

Proof. Let r1, r2 ⊆ A2 and r1 ⊆ r2. Then Br2 ⊆ Br1 . In result, given
an x ∈ A, {b ∈ Br2 : x ≤ b} ⊆ {b ∈ Br1 : x ≤ b}. Hence inf{b ∈ Br1 :
x ≤ b} ≤ inf{b ∈ Br2 : x ≤ b}, that is, G(r1)(x) ≤ G(r2)(x); therefore
G(r1) ≤ G(r2), which means that G is monotone. Similarly, when for
given c1, c2 ∈ Cl(A), c1 ≤ c2, we have that (x, y) ∈ F (c1) is equivalent to
y ≤ c1(x), for any x, y ∈ A. At the same time, y ≤ c1(x) implies y ≤ c2(x)
and y ≤ c2(x) is equivalent to (x, y) ∈ F (c2). So F (c1) ⊆ F (c2) and thus
F is also monotone. Now we show that for any r ⊆ A2, r ⊆ F (G(r)).
So let (x, y) ∈ r. Then from the definition of the closure system Br it
follows immediately that y ≤ inf{b ∈ Br : x ≤ b} that is, y ≤ G(r)(x),
which means that (x, y) ∈ F (G(r)). In order to show that for any closure
operation c of the lattice (A,≤), G(F (c)) = c, we prove that – given
c ∈ Cl(A) and an x ∈ A – inf{b ∈ BF (c) : x ≤ b} = c(x). First, notice that
for any b ∈ A, b ∈ BF (c) iff for any z, y ∈ A (y ≤ c(z) & z ≤ b ⇒ y ≤ b).
Obviously, for arbitrary y, z ∈ A, the condition y ≤ c(z) & z ≤ c(x) ⇒ y ≤
c(x) holds. Moreover, x ≤ c(x). Therefore, we have c(x) ∈ {b ∈ BF (c) :
x ≤ b}. Consequently, inf{b ∈ BF (c) : x ≤ b} ≤ c(x). In order to show
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the converse inequality, take any b ∈ BF (c) such that x ≤ b. Then we have
that for any z, y ∈ A (y ≤ c(z) & z ≤ b ⇒ y ≤ b). So c(x) and x replace
y, z, respectively, yielding c(x) ≤ c(x) & x ≤ b ⇒ c(x) ≤ b. From this it
follows that c(x) ≤ b, so c(x) is a lower bound of the set {b ∈ BF (c) : x ≤ b}
in the lattice (A,≤); hence c(x) ≤ inf{b ∈ BF (c) : x ≤ b}. �

From Proposition 11 it follows that the mapping F is an isomorphism
of the complete lattice (Cl(A),≤) (of all open elements with respect to
interior operation F ◦G) to the complete lattice of all closed elements with
respect to closure operation G ◦ F defined on (℘(A2),⊆). So the latter
lattice is just a generalized counterpart of the lattice (Relcons(L),⊆) we
have searched for. It coincides with the range of F ordered by inclusion.
According to Corollary 6, the map F is an isomorphism of the lattices
(Cl(A),≤) and (QOrdmon

fun ,⊆). Obviously, QOrdmon
fun ⊆ ℘(A2). So we

have that the complete lattice (QOrdmon
fun ,⊆) plays the role of the lattice

(Relcons(L),⊆). One may check this result proving the fact that the re-
striction of the mapping G to the set QOrdmon

fun coincides with the inverse
isomorphism from Corollary 6.

Proposition 12. For any binary relation r ∈ QOrdmon
fun and any x ∈ A,

G(r)(x) = sup[x)r, that is, G(r) = cr.

Proof. Suppose that r ∈ QOrdmon
fun and let x ∈ A. We simply show that

the element sup[x)r is the greatest lower bound of the set {b ∈ Br : x ≤ b}.
So at first take any b ∈ Br such that x ≤ b. Then for any z ∈ A ((x, z) ∈
r & x ≤ b ⇒ z ≤ b). Now, take any y ∈ [x)r, that is (x, y) ∈ r.
So we obtain y ≤ b. In this way, sup[x)r ≤ b since y has been chosen
arbitrarily. However, this means that sup[x)r is a lower bound of the set
{b ∈ Br : x ≤ b} in the lattice (A,≤). Now assume that a u ∈ A is such a
lower bound, i.e., the following holds: ∀b ∈ Br (x ≤ b ⇒ u ≤ b). Thus, in
order to show that u ≤ sup[x)r, it is sufficient to prove that sup[x)r ∈ Br

and x ≤ sup[x)r. Notice that x ≤ sup[x)r follows from reflexivity of r
while sup[x)r ∈ Br follows from transitivity of r and conditions (mon) and
(fun). To show the latter, suppose that (y, z) ∈ r and y ≤ sup[x)r. Then
(sup[x)r, z) ∈ r from (mon), moreover, (x, sup[x)r) ∈ r from (fun). Thus,
(x, z) ∈ r from transitivity of r, so z ∈ [x)r and, finally, z ≤ sup[x)r. �

In this way, our proposal of syntactic account of consequence operation
defined on a lattice (℘(L),⊆), consists in replacing a consequence relation



232 Marek Nowak

defined by conditions (r1)-(r3) with a transitive relation ⊢ ⊆ ℘(L) × ℘(L)
such that for any X,Y ⊆ L, Y ⊆ X ⇒ X ⊢ Y and X ⊢

⋃

[X)r, where
[X)r = {Z ⊆ L : X ⊢ Z} (comp. Corollary 9). Then, having a relation
of this kind, the corresponding consequence operation C : ℘(L) −→ ℘(L)
is defined by C(X) =

⋃

[X)r. Conversely, starting from a consequence
operation C, the corresponding relation ⊢ on ℘(L) is defined by X ⊢ Y iff
Y ⊆ C(X).
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