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Abstract

This article is an extended promenade strolling along the winding roads of iden-

tity, equality, nameability and completeness, looking for places where they con-

verge.

We have distinguished between identity and equality; the first is a binary

relation between objects while the second is a symbolic relation between terms.

Owing to the central role the notion of identity plays in logic, you can be inter-

ested either in how to define it using other logical concepts or in the opposite

scheme. In the first case, one investigates what kind of logic is required. In the

second case, one is interested in the definition of the other logical concepts (con-

nectives and quantifiers) in terms of the identity relation, using also abstraction.

The present paper investigates whether identity can be introduced by def-

inition arriving to the conclusion that only in full higher-order logic a reliable

definition of identity is possible. However, the definition needs the standard

semantics and we know that with this semantics completeness is lost.

We have also studied the relationship of equality with comprehension and

extensionality and pointed out the relevant role played by these two axioms in

Henkin’s completeness method. We finish our paper with a section devoted to

general semantics, where the role played by the nameable hierarchy of types is

the key in Henkin’s completeness method.
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1. Introduction

Identity as a logical primitive is the title of an expository paper published

in 1975 by Henkin in Philosophia [9], in a volume entirely devoted to iden-

tity. Identity is analyzed from a variety of perspectives, including some

where modalities, agents, descriptions, intentionality, etc. are taken into

consideration. At the start Henkin declares: “By the relation of identity

we mean that binary relation which holds between any object and itself,

and which fails to hold between any two distinct objects.”1 Identity is a

global relation on the mathematical universe; usually we are not interested

in the whole identity relation but in a subset of it, namely, the diagonal of

the Cartesian product of a particular domain, say A. We can refer to it

with IdA = {〈x,x〉 | x ∈ A}.
By equality we mean a symbolic relation between terms which is re-

flexive, transitive and symmetric.

Due to the central role the notion of identity plays in logic, we are inter-

ested either in how to define it using other logical concepts; in particular,

what kind of logic is required.

2. First-order Logic

Our first-order languages contain a set (possibly empty) of individual con-

stants, CONST, a set (possibly empty) of functional symbols, FUNC, and
a set (possibly empty) of relational symbols, REL. The language also in-

cludes logical symbols. The structures used to interpret them have this

form:

A =
〈

A,
〈

cA
〉

c∈CONST
,
〈

fA
〉

f∈FUNC
,
〈

RA
〉

R∈REL

〉

and =A is not listed here.

It is rather obvious that among the possible relations on A there are

three categories: some relations are listed in the structure—those that have

proper names in the language—, others are definable using the language,

and finally, when the universe is infinite, there are relations that are unde-

finable in the structure using the formal language. As an easy example of

the last category, let us take the standard structure of natural numbers,

N = 〈N, 0, σ,+, •〉

1In [9], p. 31.
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and enumerate the countable set of definable subsets of N, say X0,X1, . . . ,
Xn, . . . If we take the set

Y = {n | n 6∈ Xn}

we shortly realize that it cannot be definable. The reason being that in

case it were, Y = Xm and we then arrive to the contradiction m ∈ Xm iff

m 6∈ Xm.

In fact, the same argument applies for any logic with a countable vo-

cabulary because the set of formulas is countable while the set of elements

in ℘N is uncountable.

2.1. Identity and Equality in FOL

Now we wonder about the identity relation. Is it definable? In first-order

logic we usually take the equality symbol = as primitive and stipulate that

the expression τ = t is true under the interpretation I = 〈A, g〉 when the

two terms denote the same object, I(τ) = I(t),2 that is, when 〈I(τ), I(t)〉 ∈
IdA. Therefore, the identity relation has a proper name in the language,

even though =A is not listed in the structure.

We do not include the binary relation of identity, as we do with the

denotation of other predicate symbols, the reason being that the denotation

of the equality symbol in any structure is always identity on the structure’s

domain and it could be understood as a logical constant.

This semantic stipulation must be complemented with axioms and rules

so that in the calculus one can derive the usual laws of reflexivity, symmetry

and transitivity as logical theorems. Very often we take reflexivity and

equals substitution as primitive inference rules:3

REF
→֒ τ = τ

ES
Ω →֒ ϕ τ

x

Ω, τ = t →֒ ϕ t
x

2As you see, we are being loose as we are using = for both, the equality symbol
between terms, as in τ = t, and the identity relation between objetcs, as in I(τ) = I(t).
One way out of this confusion is to use different notations, one for the equality (the
symbol in the object language) and another for identity (metalanguage). We prefer to
use just “=” for both.

3This is the option taken in [13] where we defined a sequent calculus.
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and derive from them the rest of properties. Among these derivable prop-

erties are these two:

∀x1...xny1...yn(
∧

i∈{1,...,n}

xi = yi → (ϕ(x1...xn) → ϕ(y1...yn)))

∀x1...xny1...yn(
∧

i∈{1,...,n}

xi = yi → (τ(x1...xn) = τ(y1...yn)))

However, all these axioms alone are not enough to determine the pre-

cise nature of the interpretation of the equality symbol. These two schemes

guarantee that equality will help to define a congruence relation with re-

spect to all the definable relations. Reflexivity, symmetry and transitivity

state that equality obeys the rules of an equivalence relation. We know

that an equivalence relation does not need to be genuine identity and that

is why we explicitly adopt the convention that the equality sign is to be

interpreted as genuine identity.

2.1.1. The language of identity

We can even have a first order language whose only predicate symbol is

equality, the language of identity. This language is used to talk about the

Identity structure, a structure with little “structure” since it has the form

A = 〈A〉, where only the universe of discourse needs to be specified. What

can be expressed in such an exiguous language? For finite structures we

can express the cardinality of the domain using

λn := ∃x1...xn
∧

i6=j xi 6= xj i, j ∈ {1, ..., n}

µn := ∀x1...xn+1

∨

i6=j xi = xj i, j ∈ {1, ..., n+ 1}

the first one is saying that there are at least n elements in the domain

and the second, that there are at most n elements. A shorter equivalent

formula for λn is

λ∗n := ∀x1...xn−1∃xn
∧

i

xn 6= xi i ∈ {1, ..., n− 1}

Can we express that the universe has a finite but undetermined number of

elements? The answer is no. Even though infinity can be axiomatized by

the infinite set of λn sentences, we know that neither finiteness nor infinity



Identity, Equality, Nameability and Completeness 173

are finitely axiomatizable in FOL due to the fact that the logic is compact.

The easy argument to show that infinity is not axiomatizable is that in

case it were we had Λ |= ϕ (where Λ = {λn | n ≥ 1} and ϕ stands for the

formalization of infinity). By compactness there should be a finite subset

of Λ, say Γ, such that Γ |= ϕ and this is not possible as finite subsets of Λ

have always finite models.

Another interesting logical theorem we can prove is that the universe is

non empty, ∃x(x = x). This theorem is no longer so when we shift to free-

logic where empty universes are allowed and terms might denote outside

the domain of quantification.

2.1.2. Why identity is needed

Why do we want a language with equality? It is well known that “in any

consistent first-order theory (without identity) possessing infinitely many

non-logical constants, where such a definition is manifestly impossible, the

addition of an identity symbol as a new primitive, with the usual axioms

for identity, can never introduce inconsistency.”4

For pure logical investigations it makes sense to work with Equality free
first-order languages, but when we want to include function symbols, equal-

ity (interpreted as identity) is necessary. Using equality we can formulate

that “there exist a unique x such that ϕ(x)” by the formula

∃x(ϕ(x) ∧ ∀y(ϕ(y) → x = y))

or

∃x(∀y(ϕ(y) ↔ x = y))

that can be abbreviated as ∃1xϕ(x).
The unique existence is compulsory when willing to expand a language

with new function symbols by explicit definitions ; i.e., when we have two

languages L and L+ such that L ⊆ L+, and f is an n−ary function symbol

in the language L+ introduced by

∀xy(f(x) = y ↔ ψ(xy))

In this case we need to prove the admissibility condition of the explicit

definition, namely the formula

4In [9], p. 31
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∀x∃1yψ(xy)

A way of referring to a particular individual in FOL is to use individ-

ual constants, another way is by means of descriptions. These are closely

related to the concept of identity since descriptions can be understood as

a way to isolate and identify objects by means of certain expressions. How

can we deal with descriptions? With the help of equality the descriptor

operator ιxϕ could be introduced using a contextual definition

ψ(ιxϕ) ↔Df ∃x(∀y(ϕ(y) ↔ x = y) ∧ ψ(x)) (2.1)

but this equality symbol needs to be actual identity. Moreover, this iota
operator cannot be given an explicit definition in FOL. This solution is

in accordance with Russell’s theory of descriptions and can be seen as a

translation into classical logic.

The solution which is more in accordance with Frege’s view is to include

ιxϕ as a new term, for any formula ϕ and variable x. It is clear that

we want that under the interpretation I = 〈A, g〉 this term denotes the

unique element satisfying ϕ; that is, I(ιxϕ) is the unique x ∈ A such that

Ixx(ϕ) = T . The problem is that I(ιxϕ) is not defined if there isn’t exactly

one individual satisfying ϕ. If there is not such individual, or if there are

more than one, the above stipulation does not say how ιxϕ should be

interpreted. The ‘solution’ is to include a special nil entity in the domain

as denotation of the iota term when the uniqueness condition fails, that is

I(ιxϕ) is the unique x ∈ A s.t. Ixx(ϕ) = T if there is such thing;

otherwise it is the nil individual.

In case we also stipulate that I(ψ(ιxϕ)) = F for all iota terms inter-

preted as the nil entity, the formula 2.1 is a theorem.

We wonder if the last stipulation is in strict accordance with Frege’s

view as he argues that the reference of a sentence is a truth-value, but

admits the possibility that there be sentences that lack a referent:

sentences which contain proper names without referents will

be of this kind. The sentence “Odysseus was set ashore at

Ithaca while sound asleep” obviously has a sense. But since it

is doubtful whether the name “Odysseus,” occurring therein,

has a referent, it is also doubtful whether the whole sentence

has one. ([4], p. 32).
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2.2. Equality-free First-order Logic

Why do we take identity as a logical primitive concept in first order logic?

Given an Equality free first-order language L and a L-structure A, is there

a formula ϕ(x, y) defining identity in the structure’s universe?, i.e., such

that

IdA = {〈x,y〉 ∈ A ||=A ϕ [xy/xy]}

This is equivalent to the demand that the L-formula ϕ(x, y) is such that

|=〈A,=〉 ∀xy(x = y ↔ ϕ(x, y))

where the new structure is the extension of A with the identity as inter-

pretation of the new equality symbol.

Does the formula work for any L−structure B?
The answer is negative, even in the best scenario where we only have

a finite set of non-logical predicate constants. Of course, for particular

cases there could be such a defining formula, as we will see in the following

example using a language with only two predicate symbols. In the lan-

guage L that only contains the unary predicate constant R and the binary

predicate constant T formula

(Rx↔ Ry) ∧ ∀z(Txz ↔ Tyz) ∧ ∀z(Tzx↔ Tzy)

is a good candidate as the formula expresses that x and y cannot be distin-

guished in our formal language. But we can give two L-structures with the

same domain A, one where the formula defines IdA and another where it

defines something else. Take the structure A =
〈

{1, 2, 3} , TA, RA
〉

, where

RA = {1} and TA = {〈2, 3〉}:

IdA={〈x,y〉∈A ||=A (Rx↔Ry)∧∀z(Txz↔Tyz)∧∀z(Tzx↔Tzy) [xy/xy]}

The other example is the structure A∗ =
〈

{1, 2, 3} , TA∗

, RA∗
〉

, with

RA∗

= {1, 2, 3} and TA∗

= ∅ where the formula defines A × A, not

IdA.

In case the formula were used to give an explicit definition of equality

∀xy(x = y ↔Df (Rx↔ Ry) ∧ ∀z(Txz ↔ Tyz) ∧ ∀z(Tzx↔ Tzy))

we see that the binary predicate introduced by the formula obeys the usual

rules for equality and expresses the indiscernibility principle in equality free

first-order logic. The principle is saying that two objects are identical when
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there is no property able to distinguish them. The formula is the nearest

we can come up with in first-order logic to formalize Leibniz’s principle of
indiscernibles in the language L.

In 2012, at the 8th Scandinavian Logic Symposium we presented some

of these ideas in a talk entitled: All identicals are equal, but some equals
are more equal than others.

2.3. Quinean structures and indiscernibility

The interplay between identity and equality in first-order logic is studied

by Ketland [11] in more detail. In the first place, for a particular structure

A, Ketland investigates whether IdA is first-order definable in a language

L without equality. Structures equipped with such a defining formula are

called Quinean structures. On the other hand, as far as equality is con-

cerned, a generalization of the first-order definition of equality introduced

in our previous example is what he called first-order indiscernibility for-
mula. For every n−ary predicate constant P in L, he introduces the formula

x ≈P y by the following n−ary conjunction

∀z1(Pxz1↔Pyz1)∧∀z2(Pz1xz3...zn↔Pz1yz3...zn)∧...∧∀zn(Pznx↔Pzny)

where zi is the sequence z1 . . . zi−1zi+1 . . . zn for each i ∈ {1, . . . , n}.
In case language L contains just a finite set of predicates, say P1, ..., Pm,

the conjunction of all these x ≈Pi
y is the so named indiscernibility formula,

x ≈ y; namely, the formula

x ≈ y =
∧

{x ≈Pi
y | Pi is a primitive symbol of L}

Finally, he introduces what he called Leibniz formulas as a way to encode

the basic properties of equality we added to the calculus of FOL (reflex-

ivity of equality REF and equals substitution ES). These formulas have

no particular shape, but are characterized by their behavior in particular

structures. A formula ϕ(xy) is a Leibniz formula for a structure A in case

(1) |=A ∀xϕ(xx) and

(2) |=A ∀xy(ϕ(xy) → ∀z(ψ(xz) → ψ(yz))

A Leibniz formula defines an equivalent relation and any formula able

to define identity in a structure is a Leibniz formula.5 For languages with

5These lemmas are proved in page 175 of [11].
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only a finite number of predicates, Leibniz formulas and indiscernibility

formulas are obviously related since both are semantically equivalent. In

page 176 of [11], Ketland proves that for any Leibniz formula ϕ(xy) and

any structure A
|=A ∀x(ϕ(xy) ↔ x ≈ y)

Let ≈A be the binary relation defined by x ≈ y in the structure A, the

indiscernibility relation. This relation is an equivalence relation and one can

build the quotient structure A/ ≈A and prove that this one is a Quinean

structure which is elementary equivalent to A.

3. Higher-order logic with standard semantics

Higher-order logic (HOL) in general, and second-order logic in particular,

have been victims of strong criticism, often putting their status as “logic”

into question. We are not going to quote Quine, as many logicians do.

We just try to concentrate on several issues related to identity, equality,

nameability and completeness. Of course, the weakness of its computability

power in contrast with the strength of its expressiveness are going to appear

all along this section.

3.1. Equality, Comprehension and Extensionality in SOL

What characterizes second-order logic (SOL) is that quantification is no

longer restricted to individuals, since we can quantify also over sets and

relations. Let us recall that the standard semantics is being determined by

structures

A = 〈A, 〈An〉n≥1, 〈C
A〉C∈OPER.CONS〉

where A 6= ∅, An = ℘(An) and the CA are either elements of A or

functions, sets and relations on A.

In second-order logic with standard semantics equality is no longer

introduced as a primitive logical concept as we can define it using Leibniz’s

principle by

∀xy(x = y ↔Df ∀X(Xx→ Xy))

We do not need reflexivity of equality and equals substitution as primitive

inference rules, since they are already derived rules. The formula ∀X(Xx→
Xy) can be used as well to define identity for individuals as the relation
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defined by it is “genuine” identity in any standard second-order structure.

The reason being that in the domain of unary relations (used to interpret

unary predicate variables in standard models) all the possible relations are

included and so are all the singletons. It could also be defined by the

formula

∀Y 2(∀z Y 2zz → Y 2xy)

because the least reflexive relation is the identity, which we have in the

domain of binary relations in any standard structure.

The two formulas are syntactically equivalent as well, since one can

prove this theorem in the second-order calculus

⊢SOL ∀xy(∀X(Xx↔ Xy) ↔ ∀Y (∀zY zz → Y xy))

We can say that in standard second-order logic indiscernibility and identity

collapses and equality is a defined concept whose interpretation is identity.

As in FOL, among the possible relations on A (i.e., the set-theoretical

relations) there are at least three categories: some relations are listed in

the structure, others are definable using the language, and finally, when the

universe is infinite, there are relations that are undefinable in the structure

using the formal language. In [12], pp. 40–47, we also distinguish between

first and second-order relations and the notion of parametrically definable
relation is introduced. In comparison with FOL, the status of definable

sets and relations in SOL-structures improves. We have a formula saying

that they all exist, the comprehension schema

∃Xn∀x1...xn(X
nx1...xn ↔ ϕ)

and this formula is a relevant theorem of SOL. For instance, we can pos-

tulate the existence of the identity relation between individuals

∃X2∀xy(X2xy ↔ ∀X(Xx↔ Xy))

As you will see in section 4, one of the nicest characteristic of higher-

order logic is the role played by the definable sets and relations whose

existence is a must.

What about identity between sets and relations? Is there any formula

ϕ to define this binary relation Id℘An? This identity relation is not a first-

order relation but a proper second-order one, and in many second-order
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languages second-order equality is neither introduced as a primitive logical

symbol nor defined using the rest of the symbols in SOL.
We wonder if these identities for relations are parametrically definable,

like membership and the power set of a given set are

∈
1
= {〈x,Y〉 ∈ A× ℘A ||=A Y x [xY/xY]}

℘Y = {X ∈ ℘A ||=A ∀z(Xz → Y z)[XY/XY]}

Can we use Leibniz’s principle to introduce the identity for relations?

The answer is negative, since to follow Leibniz’s pattern we would need to

quantify over third-order variables.

∀XnY n(Xn = Y n ↔Df ∀Z(n)(Z(n)Xn ↔ Z(n)Y n))

Arguably, the extensionality principle could be used to introduce equal-

ity by definition

∀XnY n(Xn = Y n ↔Df ∀x1...xn(X
nx1...xn ↔ Y nx1...xn))

3.2. Type theory

The natural place where these concepts are easily introduced is Type The-
ory. To start with, we define the type symbols, which are going to be used

as subscripts: (1) 0 and ι are the basic ones and (2) If α, β are type symbols

so is (αβ).
The types are structured in a hierarchy that has the following as basic

types: (1) Dι is a non-empty set, the domain of of individuals, (2) D0 is

the domain of truth values (these values are reduced to T and F ). The

other domains are constructed from the basic types as follows: if Dα and

Dβ have already been constructed, we define D(αβ) as the domain formed

by all the functions from Dβ to Dα.
6

To talk about this hierarchy, Church’s formal language of [3] is intro-

duced in Henkin’s 1950 paper [6]. In this language one has variables of all

possible types and only four logical constants: N(00) for negation, A((00)0)

for disjunction, Π(0(0α)) is the universal predicate used for quantification

and ι(α(0α)) is the descriptor operator. In this language we also have the

lambda abstractor operator λ as improper symbol.

6Nowadays we use the reverse notation, D(αβ) contains all the functions from Dα

to D
β
.
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The binary equality predicate is introduced as abbreviation:

Q((0α)α) for (λxα(λyα(f0α) ((f0αxα) ⊃ (f0αyα)))) (3.1)

where ⊃ is the conditional connective, defined as usual with negation and

disjunction, and (f0α) is the universal quantification. The universal quan-

tification is introduced here as

(aα)B0 for Π(0(0α))(λaαB0)

The following abbreviation is also introduced to facilitate the reading:

(Aα = Bα) for ((Q((0α)α)Aα)(Bα))

The definition 3.1 of equality, Q((0α)α), follows Leibniz’s pattern and it

covers all types. Moreover, as in the second-order case, with standard

semantics the formula defines the actual identity relation, in the present

case for each type α.
Henkin’s calculus is also close to Church’s. Some of the axioms where

equality is involved are Extensionality

x0 ≡ y0 ⊃ x0 = y0

(xβ)(fαβxβ ⊃ gαβxβ) ⊃ fαβ = gαβ

and Choice
f0αxα ⊃ f0α(ι(α(0α))f0α)

Among the rules of inference, several replacement/substitution rules are

the most relevant. Comprehension is not an axiom, but a theorem that

can be derived using substitution.

Several years later, in [7], Henkin introduces a calculus where some of

the substitution rules are simplified and the comprehension axiom is added.

As explained in [14] this paper is partially responsible of the translation

methodology proposed in [12] and is briefly explained in section 4.3 of the

present paper.

3.3. Incompleteness and expressiveness

In the theory of types equality for all types can be introduced by the

above formula (3.1), and the interpretation in standard structures is actual

identity. In SOL the definability of equality as identity is restricted to

individual terms.
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Second-order logic is as well a powerful language where properties like

being countable (and uncountable) are finitely axiomatizable; the contin-

uum hypothesis and the generalized continuum hypothesis are other ex-

amples.7 Among the negative results associated to the expressiveness are

the failure of: (1) Compactness, (2) Löwenheim-Skolem theorem and (3)

Completeness (both weak and strong). It is well known that expressive-

ness and computability power are not independent variables; in a complete

logic, computability and expressiveness are in equilibrium.

Gödel solved the completeness issue positively for first-order logic and

negatively for any logical system able to contain arithmetic. SOL, with the

usual standard semantics, is able to express arithmetic and hence could

only be incomplete. A good example of what we are saying is the sentence

ϕ := 1P ∧ 2P ∧ 3P → γ

where 1P∧2P∧3P is the conjunction of Peano axioms and γ is Gödel’s self-

referent sentence stating its own unprovability. All these sentences are true

in the structure of natural numbers. A well known result is the categoricity

of these Peano axioms. Therefore, the sentence ϕ is valid but unprovable

in any SOL calculus. Moreover, the incompleteness phenomenon could not

be solved by adding ϕ as an axiom, since we can always find another valid

and unprovable sentence.

In [12], pp. 96–114, you can find another proof of incompleteness of

SOL. The proof uses the fact that the generalized continuum hypothesis

is expressible in SOL by a formula ϕGCH . The results of Gödel and Co-

hen that give the validity of the formula in one set-theoretical environment

and also the contrary result in another, are taken into consideration. Be-

ing different environments, the validity of ϕGCH in one environment and

the validity of ϕGCH in the other is not problematic. But, assuming com-

pleteness, we can show that ϕGCH must be valid and invalid in the same

environment. The substance of the proof rest on the unbalanced relation

between ⊢ ϕGCH and |= ϕGCH .

No need to say that the incompleteness phenomenon also embraces

Type Theory (TT ), since the expressive power of TT surpasses that of

SOL.

7These and other examples can be found in the section More about the expressive
power of standard SOL in [12], pp. 47–60.



182 Maŕıa Manzano and Manuel Crescencio Moreno

4. Higher-order logic with general semantics

HOL with standard semantics has an extraordinary expressive power but

poor logical properties, and when you want to retain logical properties,

such as completeness of the calculus, you need to introduce non-standard

semantics.

Henkin [6] showed that if the formulas were interpreted in a less rigid

way, accepting structures that did not necessarily have to contain all the

relations, but at least did contain the definable ones, one can prove strong

completeness; all the consequences of a set of hypotheses are provable in

the calculus using these hypothesis. The valid formulas with this new se-

mantics, called general semantics, form a recursively enumerable set. This

set coincides with the set of sentences generated by the calculus rules as

logical theorems. Henkin justifies this new semantics as a way of sorting

the provable from the unprovable: “we can pick out from among them

those which are provable by introducing certain non-classical notions of

validity.”8

The paper Changing a Semantics: Opportunism or Courage?, [1], by

Andreka, van Benthem, Bezhanishvili and Németi gives a systematic view

of general models in mathematical and philosophical terms. Is this move

merely an ad hoc device? We do not believe so, as often we want to quantify

over the relevant properties and they do not coincide with all the set-

theoretical possible ones. As we have already pointed out, it is a fact that

in case we start with a countable infinite set as the universe of individuals

Dι, in the universe of subsets of the universe of individuals there will be

objects with a name and without one, because with a countable infinite

universe of individuals the set of subsets is uncountable, but the sets with

a name are only countable. As we will see in section 4.3, Henkin’s interest

in the nameable types constituted the origin of his completeness proof.

To quantify over the properties we can control with our language seems

reasonable, it could be understood as “a critical look at unwarranted ‘set-

theoretic imperialism’ and unquestioning acceptance of set-theoretic struc-

tures without a cost-benefit analysis.”9

This change of semantics shall be associated with a nominalist position
that came after focussing on the elements of the full hierarchy of types that

8In [9], p. 40.
9In [1], p. 333.
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are definable with lambda abstraction. Henkin himself affirms in Some
Notes on Nominalism, [8]: “In fact, such an interpretation is implicit in a

recent paper10 discussing the problem of the completeness of the higher-

order functional calculi.” (p. 22). It is not so clear for us whether this

philosophy was only an inspired afterthought or the driving force of his

completeness theorem.

4.1. Frames and general structures for SOL

The first step to the definition of general semantics is to consider struc-

tures, which might be called frames, where the n-ary predicate variables

run over subsets of ℘(An), we do not force them to take values in the whole

power set. Thus, frames are similar to standard structures, with the only

exception of the relational universes

A = 〈A, 〈An〉n≥1, 〈C
A〉C∈OPER.CONS〉

where A 6= ∅ and An ⊆ ℘(An), for each n. Clearly, as widening the class

of models, the set of valid formulas will decrease and some of the former

standard validities are no longer so in frames; in particular, comprehension

axiom

∃Xn∀x1...xn(X
nx1...xn ↔ ϕ)

—which is one of the characteristic axioms (or theorems) of SOL— might

fail. That is why in general models we want the universes to be closed

under definability.

4.1.1. Synthesis

Let us synthesize the whole idea involved in this change of semantics. We

have S.S, the class of standard structures and the set of validities in this

class |=S.S and we know that there is no complete calculus for |=S.S . On

the other hand, we have certain rules (and/or axioms) which are sound,

which correspond to a calculus which is an extension of the first-order

one obtained by adding new rules to deal with the new quantifiers, call

10The paper he refers to is [6], Completeness in the theory of types.
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it SOL−. We extend this SOL− calculus to a suitable one for SOL, just
adding comprehension

COMP
→֒ ∃Xn∀x1...xn(Xnx1...xn ↔ ϕ)

(for any formula whereXn is not free). So we get the set of logical theorems

in both calculi: ⊢SOL and ⊢SOL− . Since ⊢SOL is a proper subset of |=S.S

we widen the class of structures to reduce the set of validities so defining

structures in a wider sense (which we call frames) and general structures.

They produce two new classes of validities, |=F and |=G.S . Since

S.S ⊆ G.S ⊆ F

we have

|=F⊆ |=G.S⊆ |=S.S

and it happens (not by chance) that they are exactly the sets ⊢SOL− (of log-

ical theorems of the extension of first-order logic with new quantifiers) and

⊢SOL(of logical theorems of second-order logic). That is, |=F= ⊢SOL−and

|=G.S= ⊢SOL. Therefore, both logics are complete with respect to the

appropriate semantics.

4.1.2. The little mermaid

At the present time it is obvious that you have to choose between expressive

power or complete calculus; in the latter case, the old shadow of Skolem’s

paradox is back and we get non-standard models of arithmetic, as Henkin

explains at the end of his 1950 paper: “The Peano axioms are generally

thought to characterize the number-sequence fully in the sense that they

form a categorical axiom set any two models for which are isomorphic. As

Skolem points out, however, this condition obtains only if ‘set’ is interpreted

with its standard meaning.”11

In The Little Mermaid, [15], we ended the paper, devoted to second-

order logic, saying:

It is clear that you cannot have both: expressive power plus

good logical properties. You cannot be a mermaid and have an

immortal soul. [...] And the little mermaid got two beautiful

11In [6], p. 89.
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legs (with a lot of pain, as you might know). But even in stories

everything has a price; you know, the poor little mermaid lost

her voice. (p. 107).

4.1.3. Indiscernibility is no longer identity

How this semantic change affects definability of identity? Clearly, while

widening the class of models, the set of valid formulas decreases and some

of the former standard validities are no longer so in non-standard models.

This is good because the unprovable sentence ϕ := 1P ∧ 2P ∧ 3P → γ is

in the set of validities in standard structures, |=S.S , but not in the set of

validities in general structures, |=G.S or frames, |=F . Unfortunately, this

is also the case of the proposed definitions for equality for individuals. The

first formula

∀X(Xx↔ Xy)

is equivalent to

∀Y (∀zY zz → Y xy)

in a standard model, and even in a general model but not in frames.

What would happen if we jacked around with semantics in Equality-free
SOL switching to frames or general models, but retaining the definition of

equality (for individuals) as indiscernibility?

Well, we are back to the situation we encountered in Equality-free
FOL which lacks equality defined as a primitive logical concept denoting

identity. We can fashion a frame A and an interpretation

I = 〈A,g〉 such that I(x = y) = T but I(x) 6=I(y)

For example, the structure A where A = {1, 2, 3} and A1 = {∅, A}.
Within non-standard structures, the Leibniz’s principle defines an equiv-

alence relation of indiscernibility but it could be different from identity.

Therefore, if you want the prototypical identity as interpretation of the

equality symbol, you should either have it as primitive, or define the con-

cept of non-standard normal structure as well. All we have said should

serve to warn you that the possibility of defining identity is lost as long as

there is no guarantee of having all possible sets as denotation, specifically,

all the singletons. As we will see later, comprehension and extensionality

should work together in a context where the interpretation of equality is

identity.
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As we already said, the extensionality principle could be used to intro-

duce equality by definition

∀XnY n(Xn = Y n ↔Df ∀x1...xn(X
nx1...xn ↔ Y nx1...xn))

If we do, the formula Πn = Ψn should be understood as

∀x1...xn(Π
nx1...xn ↔ Ψnx1...xn)

but this statement alone does not guarantee that the denotation of Πn

and Ψn are extensionally the same. Being just a definition of equality, the

formula stops working as an extensionality principle, it does not work as a

mechanism to avoid non-extensional models.

Formula

∀x1...xn(X
nx1...xn ↔ Y nx1...xn)

defines an equivalent relation among n-ary relations of a given model and

the binary relation defined by

{〈X,Y〉 ∈ ℘An × ℘An ||=A ∀x1...xn(X
nx1...xn ↔ Y nx1...xn) [X

nY n/XY]}

has the same problem, it could be different from identity.

In section 4.2 we take equality as a primitive concept and the exten-

sionality principle

∀XnY n(Xn = Y n ↔ ∀x1...xn(X
nx1...xn ↔ Y nx1...xn))

acts as an axiom avoiding non-extensional models.

4.2. SOL with equality as primitive

In [12], Maŕıa Manzano proposes to take identity as a logical primitive for

both, individuals and sets and relations, and to use it to interpret equality

of terms and predicates. Axioms of Comprehension and Extensionality are

added

EXT
→֒ ∀XnY n(Xn = Y n ↔ ∀x1...xn(Xnx1...xn ↔ Y nx1...xn))

The combination of the two axioms allows the derivation of the uniqueness

existence

⊢SOL ∃1Xn∀x1...xn(X
nx1...xn ↔ ϕ)
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What is the relevance of this theorem? Well, having Extensionality and

Comprehension in a logic where the identity is primitive, allows a “conser-

vative” extension of the language with a lambda abstraction operator with

predicates of this form λx1...xnϕ interpreted as

ℑ(λx1...xnϕ) = {〈x1...xn〉 ||=A ϕ [x1...xn/x1...xn]}

Written in lambda notation, comprehension is now

∀x1...xn(〈λz1...znϕ〉x1...xn ↔ ϕ)

In [12], another calculus for SOL is introduced, the so called λ-SOL.
In this calculus identity and lambda are primitives. The new λ rules are

Introducing Abstraction in the Consequent

IAC
Ω →֒ ϕ τ1...τn

x1...xn

Ω →֒ λx1...xnϕτ1...τn

and Introducing Abstraction in the Antecedent

IAA
Ω ϕ τ1...τn

x1...xn

→֒ ψ

Ω λx1...xnϕτ1...τn →֒ ψ

In this calculus we can prove as a theorem the comprehension schema

⊢λ−C2
∃Xn∀x1...xn(X

nx1...xn ↔ ϕ)

Another interesting theorem is the following equivalence

⊢λ−C2
∀xϕ↔ λxϕ = λx x = x

saying that individual quantification can be expressed with lambda and

equality using the formula saying that the predicates λxϕ and λx x = x
are equal; namely, that the predicate λxϕ is universal as all individuals

satisfy λxϕ.

Nevertheless, in non-classical logic we might want non extensional gen-

eral models where predicates are not identified with their set-theoretical

extensions. This is rather convenient in intensional logic when we want to

distinguish predicates from their extensions in set theory. In that case the

axiom of extensionality should be dropped.
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4.3. General models for TT

As in the previous case for SOL, frames and general structures are hier-

archies of types where D(αβ) is some class of functions defined over Dβ

with values in Dα. The requirement for a frame to be a general model is

that “for each assignment ϕ and wff Aα of type α, the value Vϕ(Aα) given

by the rules (i), (ii) and (iii) is an element of Dα. Since this definition

is impredicative, it is not immediate clear that any non-standard models

exist.”12

With this remark Henkin opens the door to better definitions. An-

drews’ proposal in [2] is to force the interpretation of equality to be iden-

tity. In [12], page 197, an algebraic definition is given for relational general

structures, and also there, equality is identity.

4.3.1. Andrews improved definition

Andrews showed in General Models and Extensionality, [2], pp. 395–397,

that there is a non-standard general model, according to the previous def-

inition, in which the axiom of extensionality fails and so the soundness

of the calculus fails too. The completeness proof remains unaltered. The

reason is that “the sets in this model are so sparse that the denotation of

the defined equality formula Q0αα is not the actual equality relation.”13

The solution he offers to solve the problem is to guarantee that we have all

the singletons in D0α. In this way, the Leibniz definition of equality gives

identity. In order to obtain that, he forces D0αα to contain identity. Let

us quote Andrews:

We suggest that the definition of general models in [6] should

be modified by adding the following requirement:

(a0) For each α, D0αα contains the identity relation q0αα
on Dα (and hence D0α contains the unit set q0ααxα for each

xα ∈ Dα.

[...]

Moreover, the model constructed in the proof of Theorem 1 of

[6] actually satisfies (a0), since it can be seen that Φ([Q0αα]) =

q0αα (in the notation of that proof). Thus Theorem 2 of [6]

12See [6], p. 84. The items (i), (ii) and (iii) constitute the definition by induction of
the interpretation Vϕ(Aα) of any expression Aα.

13In [1], p. 70.
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becomes correct under the new definition of general model. ([2],

p. 397).

4.3.2. Nameability and completeness

Henkin wrote in 1996 a very interesting paper, [10], telling us the process

that led him into his discovery of completeness for TT with the new se-

mantics. We like to recall that such a discovery is strongly rooted on the

already mentioned categories of nameable sets and relations that appear

in the standard hierarchy, and that both identity and descriptions, play

important roles. Henkin said: “I was specially attracted by the neatness

and shortness of the formula expressing the axiom of choice. [...] I decided

to try to see just which objects of the hierarchy of types did have names

in T .”14

The nameable types

Dn
a = {f ∈ Da | there is a Fa ∈ cwff such that V (Fa) = f}

(where V stands for the interpretation of the formal language in the hier-

archy of types) form a proper subset of the standard hierarchy and Henkin

wanted to know if this restricted class itself formed a hierarchy.

We observe that any element of Dn
ab is a function that maps

Dn
b to Dn

a , so the set of all domains Dn
a itself forms a hierarchy

of types. Looking at it, I thought I should make it a little neater

by “trimming the fat” from each function in any domain Dn
ab.

By this I meant that each element of Dn
ab has Db, rather than

Dn
b , as its domain, so I thought I should replace each element

f of Dn
ab by f∗ the restriction of f to Dn

b , and then work with

the resulting sets, say Dn∗
ab , to get a neater representation of the

hierarchy of nameable functions.15

There was, however, a problem with this idea: What if the

hierarchy contracted under the proposed reduction of the do-

mains of functions? In other words, could there be distinct

14See [10], p. 146.
15Of course D

n

0
= D0 and D

n

1
= D1, so we may as well set D

n∗
0

= D0 and D
n∗
1

= D1

too.
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functions f and g in some Dn
(αβ) such that f∗ = g∗? ([10],

p. 149).

The answer was NO, the proof involves the axiom of choice.16 It is also

remarkable that to identify objects named by bothMα and Nα he made use

of a criterion based on the calculus, namely, the fact that ⊢ (Mα = Nα).

The construction seemed to work smoothly, with the only exception of the

universe of truth values, D0. He then realized that to reduce the universe

of objects named by propositions (the truth values) to only two, the set

of axioms had to be expanded until it constituted a maximal consistent

set, say Γ. Two cwffs Mα and Nα of type α will be called equivalent iff

Γ ⊢Mα = Nα.

This maximal consistent set gives Henkin the clue for the whole process.

On page 86 of [6], Henkin says:

We now define by induction on α a frame of domains {Dα},
and simultaneously a one-one mapping Φ of equivalent classes

onto the domains Dα such that Φ([Aα]) is in Dα.

D0 is the set of two truth values and Φ([A0]) is T or F according

as A0 or ∼ A0 is in Γ

[...]

Dι is simply the set of equivalence classes [Aι] of all cffs of type

ι. And Φ([Aι]) is [Aι]

[...]

Now suppose that Dα and Dβ have been defined, as well as the

value of Φ for all equivalence classes of formulas of type α and β
and that every element of Dα, or Dβ , is the value of Φ for some

[Aα], or [Bβ ] respectively. Define Φ([Aαβ ]) to be the function

whose value, for the element Φ([Bβ ]) of Dβ is Φ([AαβBβ ]).

The equivalent classes mentioned in the above quote came as a result

of a ‘subjective’ but extremely ‘consistent’ equality relation, that of being

‘equals at the eyes of our oracle Γ’, this maximal consistent set whose model

is built by using the very detailed description it offers.

In order to prove that Φ is a function on equivalent classes and does

not depend on the particular representative chosen, Henkin uses choice and

extensionality, and both axioms are also related to identity. In particular,

he uses this theorem

16An explanation is given in [14], p. 155.
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⊢ Aαβ(ι(β(0β))(λxβ(∼ (Aαβxβ = A′
αβxβ))))

= A′
αβ(ι(β(0β))(λxβ(∼ (Aαβxβ = A′

αβxβ)))) ⊃ .Aαβ = A′
αβ

We might wonder what the elements of Dι are, as far as we do not have

individual constants in this language. The selector operators ιβ(0β) acting
on expressions of the appropriate type, say X0β , produce elements of any

type β; identity is again present, of course!

Being Γ a maximal consistent set, it is not difficult to prove that the

interpretation of any expression is the value of its equivalent class under

function Φ:

Lemma 4.1. For every φ and Bβ we have Vφ(Bβ) = Φ([Bφ
β ])

Using this construction Henkin was able to achieve his completeness

result.

Theorem 4.2. If Λ is any consistent set of cwffs (sentences), there is a
general model (in which each domain Dα of M is denumerable) with respect
to which Λ is satisfiable.

To prove this theorem, the set Λ is extended to a maximal consistent

set Γ which serves both as an oracle and as building blocks for the model.

A similar procedure can be applied for SOL and FOL to obtain com-

pleteness. In any case, the completeness result rests upon what can be

described and built from a detailed description made in the formal lan-

guage. Such a description is provided by the sentences in the maximal

consistent set. In particular, the universes of SOL should include all of sets

and relations that the comprehension axiom affirms to exist.

4.3.3. The completeness of FOL

In his 1996 paper, [10], Henkin states that he obtained the proof of com-

pleteness of first-order logic readapting the argument found for the theory

of types. It was clear that to do this he had to get rid of the axiom of

choice; as we have already explained, this axiom plays a relevant role in

the construction of the hierarchy:

But when I wrote down details of the proof [...], I saw that

the axiom of choice is needed there in a more general way [...]

to show that whenever we have a wff M such that ⊢ (∃xb)M0,

then we also have ⊢ (λxbM0)(ιb(0b)(λxbM0)). The fact that this
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condition holds is a direct consequence of having Axiom Schema

11b [...], that schema is trivially equivalent to (∃xbf0bxb) ⊃
f0b(ιb(0b)f0b)

It did not take me very long to notice that in fact, the form

of the wff following (λxbM0) played no role in the completeness

proof; it is only necessary to have some cwff Nb such that ⊢
(λxbM0)Nb holds if ⊢ (∃xb)M0 holds. ([10], p. 152).

That is why he extends the consistent set Λ not just to a maximal

consistent set, but to one containing witnesses.

ii) If a formula of the form (∃x)A is in Γω then Γω also

contains a formula A′ obtained from the wff A by substituting

some constant uij for each free occurrence of the variable x.
([5], p. 163).

The model is built using the set Γω as oracle. The natural restriction to

definable predicates proved to be useful in this case as well. The universe of

the model is the set of constants modulo the equivalence relation of equality

according to Γω standards. The relation symbols are interpreted as n−ary

relations on this universe, according to what our oracle declares.

4.3.4. SOL and MSL: completeness via translation

Somehow, frames are just a particular kind of many-sorted models and

the SOL language a kind of special many-sorted logic (MSL).17 This idea

materializes via translation of SOL into MSL, afterwards the translation

is exploited to get metalogical results; for instance, completeness of SOL
(both weak and strong) with general semantics is transferred from com-

pleteness of MSL. Therefore, we do not need to follow the whole procedure

to prove completeness for SOL, we just prove completeness for MSL.
What is the difference between a many-sorted structure and a second-

order one? The only one is that in SOL the domains are no longer inde-

pendent sets, since they are sets and relations over the individuals domain.

That is why we add a membership relation to the many sorted structures

when we want them to serve as models for SOL. The syntactical transla-

tion from SOL to MSL leaves every formula the same except the atomic

formulas Xnx1...xn that are translated as εx1...xnX
n.

17In [12], pp. 277–290 you can find a detailed development of this idea.
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The final result, as proved in [12], is strong completeness via translation

Π |=G.S ϕ ⇐⇒ Trans(Π) ∪∆ |= Trans(ϕ) (*)

m (**)

Π ⊢SOL ϕ ⇐⇒ Trans(Π) ∪∆ ⊢MSL Trans(ϕ) (***)

the set ∆ axiomatizes in MSL what characterizes SOL. Arrow (**) is just

completeness and soundness ofMSL. Arrow (*) is theMain theorem. Arrow

(***) is easy because we added in ∆ the required axioms. And it should

not be surprising that in ∆ we have comprehension, extensionality and

disjoint universes, all of them axioms where identity and nameability are

involved.

4.3.5. Comprehension versus substitution

Henkin published Banishing the Rule of Substitution for Functional Vari-
ables, [7], in 1953, whose main result is the introduction of substitution free

calculi for classical logics to replace Church’s.

The first one is only a calculus for FOL. Henkin mentions that the

natural extension of this calculus to the second order case, which he calls

F ∗ —namely, extending the quantifier rules to deal with the new predicate

variables— is not a sound and complete one.

That is why Henkin proposed the calculus F ∗∗ whose advantage over

the Church’s calculus is that it takes comprehension schema as an axiom,

so avoiding the troublesome rule of substitution in the problematic cases:

F ∗∗ is obtained from F ∗ by adding the axiom schema

(iv) (∃c)(a1)...(an)(c(a1, ..., an) ≡ B),
where B is any wff, a1, ..., an are any distinct individual

variables, and c is any n-adic functional variable not occurring

freely in B. ([7], p. 203).

There is another idea, appearing explicitly in [7], which is also useful:

This observation suggests in a natural way consideration of

certain subsystems of F ∗∗ containing F ∗, which can be defined

by weakening axiom schema (iv). (pp. 206–207).

In [12], some of the ideas of these two Henkin’s papers [6] and [7],

produce a treatment of completeness via translation into MSL. The central
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idea is as simple as that: if we weaken comprehension (for instance, for

first-order formulas, or for translations of dynamic or modal formulas, or

any other recursive set), then we obtain a calculus between F ∗ and F ∗∗.

And one should find a semantics for the logic thus defined. Of course, this

class of structures is placed between F and GS. The new logic, call it XL,
will also be complete.

As Maŕıa Manzano said in [14]:

However, I do not wish to be misleading. In his 1950 paper we

do not find translations of formulas or the overt appearance of a

many-sorted calculus. Regarding higher-order logic, something

close to a many-sorted calculus was introduced in the paper of

1953, but many-sorted logic was still not mentioned and neither

were translations between logical systems. (p. 270).
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Semantics: Opprtunism or Courage?, [in:] The Life and Work of Leon

Henkin. Essays on His Contributions, Springer Basil, (2014), pp. 307–

338.

[2] P. B. Andrews, General models and Extensionality, The Journal of Sym-

bolic Logic 37/2 (1972), pp. 395–397.

[3] A. Church, A formulation of the simple theory of types, The Journal of

Symbolic Logic 5/2 (1940), pp. 56–68.
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