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SOME ADDITIONAL AXIOMS FOR T-NORMAL
LOGICS. DEFINING K45, KB4, KD45 AND S5
WITHOUT USING MODAL RULES

Abstract

The paper studies extensions of t-normal logics S0.5° and S0.5 obtained by means
of some axioms of normal logics. We will prove determination theorems for these
extensions by appropriate Kripke-style models. It will allow us to obtain the
determinations of the logics K45, KB4 (= KB5), KD45 and S5 without using
modal rules.
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Introduction

The definition of modal t-normal logics differs from the definition of normal
logics in that we only take the necessity of classical tautologies instead
of the rule of necessitation. The first such logic, S0.5, was defined by
E.J. Lemmon in [3]. The smallest t-normal logic, S0.5°, was studied by
R. Routley in [8]. In [5, 6, 7], we explored various types of t-normal logics
and their location in the lattice of modal logics. The Lemmon’s logic S0.5
is the extension of S0.5° by the following formula:

OpDp (T)
The following formulas are theses of S0.5:

pDOp (Ta)

Op > Op (D)
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This paper studies extensions of t-normal logics $0.5° and S0.5 using axioms
known from normal logics: (D), (T) and the following!

Cp D OCp (4)
O0p 2 Op (44)
p D O0p (B)
OUpDp (Ba)
Op D O0p (5)
OOp > Op (5a)

It is known that dual versions are not needed in normal logics, i.e., formulas
without the lower subscript ‘d’ are sufficient (or vice versa). For t-normal
logics , the dual and non-dual versions of a given formula are independent.

As additional axioms for S0.5° and S0.5, we will also use the following
formulas:

00p 2 OOp (o)

O0p > O0p (Dg)

00p D Op (")

Op D 0O0p (T3)

The names of the above formulas say that we obtain them from (D), (T)

and (Tq4), respectively, through the monotonicity rule and duality used for
normal logics. So (T"),(T3) € KT and (D"),(D) € KD C KT. These
formulas are independent for t-normal logics.

Section 1 provides the necessary facts about modal logic. Following [4],
we write that the normal logics K45, KB4 (= KB5) and KD45 are deter-
mined by the suitable classes of simplified Kripke-style models (which refers
to the known fact that the class of universal Kripke models determines the
logic S5). We end this section with a definition of t-normal modal logics,
distinguishing very weak t-normal logics as those that are not closed under
the replacement of tautological equivalents. We will notice that, unlike for
normal logics, there is a significant difference between t-normal logics that
are built in the set of formulas with two primary modal connectives ‘(1" and
‘0’ and that are built in the set with only the first of them (i.e. ¢ = -0O-).

'In [5, 6, 7] were explored various kinds of t-normal logics with additional axioms
from sets (0P, where @ C S0.5.
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In Section 2, we present a syntactic and semantic analysis of four basic
very weak t-normal logics: $0.5°, S0.5°[D], S0.5°[T4], S0.5. Unlike previous
papers [5, 6, 7], this research will be presented in the set For, i.e., with two
primitive modal connectives: ‘01" and ‘¢’. We will use specific examples to
show the difference that occurs when these logics are built in the set Forg.
Furthermore, following [5], in the Appendix, we will present an analysis of
canonical models and completeness theorems for $0.5°, S0.5°[D], S0.5°[T9]
and S0.5 built-in For with respect to suitable classes of Kripke-style models.
This will also be used in the next section, where we analyze extensions of
these logics with additional axioms.

In Section 3, we explore other t-normal logics with additional axioms,
which we provided on page . For these logics, we give determination the-
orems with respect to the suitable classes of Kripke-style models. Thanks
to this, we find the dependencies between the considered extensions of S0.5
and S0.5°. We also provide what the equivalents of these logics in the set
Forgwould look like.

In [4] for the logics K45, KB4 (= KB5) and KD45 are given the de-
termination theorems by suitable classes of simplified Kripke-style mod-
els. Using these theorems, the determination of the logic S5 by the class
of universal Kripke models, and the facts obtained in Section 3, in Sec-
tion 4 we will prove that K45 = S0.5°[4,44,5,54], KB4 = S0.5°[B,4,44,5,5¢],
KD45 = S0.5°[D,4,44,5,54] and S5 = S0.5°[T,4,44,5,54]. Thus, we will show
that these normal logics are definable without modal rules.

1. Normal and t-normal modal logics

1.1. Formulas, PL-tautologies and modal logics

Formulas. Modal propositional formulas with two modal connectives are
built in the standard way from propositional letters (or atoms) from the
set At == {p, q,p1,D2,Ps,...}), the Boolean propositional connectives ‘—’,
VN, ‘D and ‘=’ (for negation, conjunction, disjunction, and material
implication and equivalence, respectively) the modal connectives ‘00" (‘It is
necessary that’) and ‘¢’ (‘It is possible that’), and brackets. Let For be the
set of all modal propositional formulas.

Often, modal logics are examined in a set Forg of formulas built in a

standard way without using the possibility sign ‘¢’. This sign is just an
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abbreviation for ‘-[J-". Of course, Forg C For. In both case, we put
0P = {0y : p € P} for any subset P of formulas.
Moreover, let For, be the set of all classical propositional formulas built

without modal connectives.

PL-tautologies. Let Taut,, be the set of all tautologies from For,, and PL
be the set of all their instances from For, which we will call PL-tautologies.
Following [1], we say that a formula is propositionally atomic iff it is either
atomic in the ordinary sense (i.e., it belongs to At) or modal (i.e., it has
the form "Op™ or "O¢7). Let PAt be the set of all propositionally atomic
formulas. Moreover, let Val® be the set of all valuations V : For — {0,1}
which preserve classical conditions for Boolean connectives. Of course,
V € Val® iff for some assignment v: PAt — {0,1}, V is the unique extension
of v by classical truth conditions for Boolean connectives. It is obvious:

LEMMA 1.1. For any ¢ € For: ¢ € PL iff V(¢) =1 for any V € Val®.

A subset ¥ of For is PL-consistent iff that there is a V € Val® such that
V[#] = {1}. Moreover, for ¢ € For, we put ¥ [=pr, ¢ iff the set ¥ U {—¢} is
not PL-consistent. We have: ¥ =py, ¢ iff either ¢ € PL or there are n > 0,
U1y, ¥y € Wsuch that " (YA -Ay,) D 9 € PL. So 0 =pr @ iff ¢ € PL.

Modal logics. Following [1, p. 46], we say that a subset L of For is a
modal logic iff L is closed under uniform substitution and the following rule
for all ¥ C For and ¢ € For:?

(RPL) if ¥ C L and ¥ py, ¢, then ¢ € L.

So L is a modal logic iff L includes Taut,, and is closed under substitution
and detachment, i.e., for all ¢,1) € For:

(det) if"pD>9¢" e Land p € L, then ¢ € L.

All members of L are called its theses. We say that L is consistent iff
L # For.
The set PL is the smallest modal logic. So all modal logic include PL.
We say that ¢ is deducible from a subset ¥ in L (written: ¥ Fr ¢) iff
either ¢ € L or there are n > 0, 91, ...,1, € ¥ such that "(¢1 A---Avy,) D
@ '€ L. Notice that:

2In [1], Chellas considers systems of modal logic, which do not have to be closed
under uniform substitution.
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o if ¥ |=pL v then ¥ k1, .

e pc Liff Qbp o iff LEp .
Moreover, we say that formulas ¢ and v are L-equivalent iff both ¢ - ¢
and Y F, p, ie. Tp=1T € L.

For any ¢ C For, let L[®] be the smallest modal logic including L U &.

1.2. Normal modal logics

Definition. A modal logic L is normal iff L contains the formulas:

Op = -0-p (a£0)
O(p 2 q) 2 (Op 2 Og) (K)

and is closed under the rule of necessitation, i.e., for any ¢ € For:
(nec) if ¢ € L then "0y € L.
Any normal logic L includes OPL and is closed under the following rules
for all ¥ C For and ¢, v, x € For:
(rk) if ¥ kr ¢ then OV Fr Op;

(rkq) if ¥, ¢ L o then OU U {OY} Fr Op;

(cgr) ifTp=4" € L, then "Op =0y € L;

(rep) "¢ =97 € L, then "y = x[?//y]”

where x[?//,] is any formula that results from x by replacing zero or more

occurrences of o, in x, by ¥. Hence L is also closed under replacement of
tautological equivalents iff for all x, ¢, € For we have:

(rte) if "p =17 € PL, then "x = x[#//y]”

So the following formulas are theses of any normal logic:

Op =—-0-p (d£00)
O(p 2 9) > (0p > 0q) (Ka)
O(p A gq) = (BpADq) (R)
Olp Vv q) = (OpVOq) (Ra)
Op2q) = (0p > 0q) (Ra)

A modal logic is normal iff it is closed under (cgr) and contains (K) and
OT (for some T € Taut,,).
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Remark 1.2. 1. If we consider a given normal logic in the set Forg, then
(d£f0) is unnecessary because it is just a shortcut on one side of the PL-
tautology ‘—~O-p = —[-p’. Moreover, (df[]) is a shortcut of the thesis
‘Op = -—-0-—p'.

2. For normal logics, it does not matter whether we examine them in
For or their versions in Forg. Namely, assume that for any formula ¢ of For,
the formula ©® from Forg is its copy created by replacing each occurrence
of ¢’ with ‘=[0—". Then ¢ is a thesis of a normal logic L iff ¢©" is its
thesis in the Forg-version denoted by Ly. Moreover, Lo = L N Forg and
Lo C L. O

Selected normal logics. The smallest normal logic is denoted by K.
Other known normal logics are build using (D), (T), (4), (B), (5) and the
following:

0T > (T), (T9)

where T is an arbitrary tautology of propositional classical logic.? Using
the names of the above formulas, to simplify the naming of normal logics,
we write KX ... X, to denote the smallest normal logic containing formulas
(X1), ..., (X,). We put S5 := KT5 and S4 := KT4. Since "0T" € KD, we
have KT = KDTY. Moreover, KT? C K4T? C KB4 = KB5 = K5T? C S5,
KBT? C KB4, S5 = KTB4 = KDB4 = KDB5 = KD5TY, KD C KT C
S4 C S5, KTY C KT ¢ KTB, KB C KTB, K4 C K45 C KB4 and K5 C
K45 C KD45 C S5.

Simplified Kripke-style semantics for K45, KB4, KD45 and S5.
Following [4], for logics K45, KB4 (= KB5) and KD45 —instead of rela-
tional Kripke models — we can use simplified models of the form (W, A, V),
where W is a non-empty set of worlds, A C W (A is a set of common
alternatives to all worlds from W), and V is a waluation as a function
V:For x W — {0,1} which for any = € W gives V(-,z) € Val® and,
moreover, for any ¢ € For we have:

(V)  V(Op,z) =1 iff for each y € A we have V(p,y) = 1;

(Vo) V(Op,z) =1 iff for some y € A we have V(¢,y) = 1.

3The name ‘T% is an abbreviation for ‘quasi-T’, because (T) and (T9) are valid in
all reflexive and quasi-reflexive Kripke frames, respectively. In a given quasi-reflexive
Kripke frame, an accessibility relation R on a set W of worlds satisfies (see [1, p. 92,
Exercise 3.51]): Voew (Iyew © Ry = = Rx).
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We say that a simplified model (W, A, V) is universal (resp. empty, non-
empty) if A =W (resp. A = (), A # 0). Of course, a universal model
(W, W, V) can be simplified to (W, V).* Commonly, such universal models
are applied to S5.

We say that a formula ¢ is true in a model (W, A, V) iff V(p,z) =1
for each z € W. We say that a formula is valid in a class M of models iff
it is true in all models from M. A class M determines a given logic if its
theses are all those and only those formulas valid in M.

The following fact is known:

THEOREM 1.3 ([1]). S5 is determined by the class of all universal models.
Moreover, we have (see [4, Theorem 1.1]):

THEOREM 1.4. 1. K45 is determined by the class of all simplified models.
2. KB4 is determined by the class of empty or universal models.
3. KD45 is determined by the class of non-empty simplified models.

1.3. T-normal modal logics

Definition. Following [5], a modal logic is t-normal iff it includes the set
OTaut,, and contains (d£0), (K). Every t-normal logic also includes CJPL
and contains (df0J), (Ka), (R), (Ra), (R}). All normal logics are t-normal.®
Every modal logic that extends a given t-normal logic is also t-normal.
Let L be a t-normal logic. Using OPL, (), (K4), (R), (Rqa), we obtain:

(pk) if ¥ Epy, ¢ then OF Fp, O
(Pka) if ¥,9 f=py ¢ then O¥ U {09} Fr Op.
(pe) if "o =17 € PL then "Op =0y~ € L;
(peq) if "o =47 € PL then "0 = Q¢ € L.

Remark 1.5. As for normal logics, if we consider a given t-normal logic
in Forg, then (dfQ) is unnecessary (see Remark 1.2(1)). Also (df0J) is a
shortcut of the thesis ‘Clp = ——[-—p’. But, there may be some confusion
regarding the two approaches to t-normal logics. We will show differences
between both approaches in Section 2.4. O

4A universal model (W, A) also corresponds to the following relational model (W,
W x W, V) with the universal relation R = W x W accessibility of worlds.

5The term ‘t-normal’ means that the rule of necessity from normal logics is limited
to PL-tautologies, i.e., we have only OOPL C L instead of the rule (nec).
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Very weak t-normal logics. If a t-normal logic is not closed under
(rte), it will be called very weak t-normal (briefly: vwt-normal). In this
paper, we will deal with such logics.%

2. The first four t-normal logics

2.1. Definitions and basic properties

Following [8], we denote the smallest t-normal logic by S0.5°. Following
[3], by S0.5, we denote the smallest t-normal logic containing (T). We have
S0.5 = S0.5°[T]; so the sign ‘S0.5°” means: S0.5 without (T).

Notice that (T?) is S0.5°-equivalent to each of the following formulas:

Op O (pVvOg)
Og¢ > (OpDp)
(D) > (T)

Formulas (D) and "{T ™ are S0.5°-equivalent. They and (T4) belong to S0.5.
We have $0.5°[D] C 0.5, S0.5°[T¢] C S0.5 and S0.5 = S0.5°[D, T4).

Remark 2.1. Lemmon [3] and Routley [8] investigated S0.5 and S0.5°, re-
spectively, in the set Forg (see Remark 1.5). The such version of S0.5 was
also presented in [2]. Moreover, the versions of $0.5°, S0.5°[D], S0.5°[T9]
and S0.5 in Forg was studied in [5, 6, 7]. O

2.2. Kripke-style semantics for S0.5° and S0.5. Soundness and
completeness

Let w be any object and A be any set. A t-normal Kripke-style model
(briefly: tn-model) is any triple (w, A, V) such that V is a valuation as a
function V': For x ({w} U A) — {0,1} which for any x € AU {w} gives
V(-,z) € Val® and for any ¢ € For we have:

(V&) V(Op,w) =1 iff for each x € A we have V(p,z) = 1;

(V) V(Op,w) = 1iff for some 2 € A we have V(p,z) = 1.

We say that w is a distinguished world, A is a set of alternative worlds

to w and (w, A, V) based on w and A. Moreover, we say that a tn-model
is self-associate (resp. empty, non-empty) iff w € A (resp. A =10, A # ().

1n [5, 6, 7] various kinds of t-normal logics closed under (rte) were studied.
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We say that a formula ¢ is true (resp. false) in a tn-model (w, A, V) iff
V(p,w) =1 (resp. V(p,w) = 0). We say that a formula is valid in a class
M of tn-models (or M-valid) iff it is true in all models from M.

The following lemma shows how tn-models can be constructed:

LEMMA 2.2. Let w be an object, A be a set, v, : At — {0,1} and V, € Val©
for each x € A\{w}. Then there is the unique V : For x (AU{w}) — {0, 1}
such that (w, A, V') is a tn-model.

ProoF: For any o € At we put V(a,w) := v,(a) and for any ¢ € PAt and
xz € A\ {w} we put V(p,x) = Vy(¢). Using truth conditions for Boolean
connectives and (V¥'), (V}"), we uniquely extend V. O

The following facts are also obvious:

Fact 2.3.

1. The rules (RPL) and (det) preserve the truth in each tn-model.

2. All instances of formulas (K) and (dfQ), and all formulas of PLUCOPL
are valid in the class of all tn-models.

Fact 2.4. Let w be any object and A be any set. Then:
1. For any tn-model 9% based on w and A: (D) is true in 97 iff A # ().
2. (T) are true in all tn-models based on w and A iff w € A.
3. (T?) are true in all tn-models based on w and A iff either A = @) or
w e A

THEOREM 2.5 (Soundness).

1. All theses of S0.5° are valid in the class of all tn-models.

2. All theses of S0.5°[D] are valid in the class of all non-empty tn-models.

3. All theses of S0.5°[T%] are valid in the class of all tn-models which
are empty or self-associate.

4. All theses of S0.5 are valid in the class of all self-associate tn-models.

Given the above theorem, we can assume that the classes of models
mentioned in the following items are suitable for the logics S0.5°, S0.5°[D],
S0.5°[T9] and S0.5, respectively. We denote this classes by Mg, zo, Mg 50,
Mg s009) and My, ;. For all models of these classes we can assume that for
all worlds from A \ {w}, all modal propositionally atomic formulas have
arbitrary values.
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Finally, Theorem A.7 in Appendix give the completeness of the logics
S0.5°, S0.5°[D], S0.5°[T?] and SO0.5.

THEOREM 2.6 (Completeness). All formulas valid in the class Mg, 50 (resp.
Mao 500, Mg sopmay, Msys) are theses of S0.5° (resp. S0.5°[D], S0.5°[T9], S0.5).

2.3. Some conclusions
By Fact 2.4 and Theorem 2.5, we get:

Fact 2.7.

1. (T%), (D) and any formula of the form "0¢™ do not belong to S0.5°.
D) and any formula of the form "¢y do not belong to S0.5°[T4].
T?) does not belong to S0.5°[D].

(T) belong neither to S0.5°[T] nor S0.5°[D].
. 80.5° C S0.5°[D] C S0.5 and S0.5° C S0.5°[T9] C S0.5.

(
2. (
3. (
4.
5

Fact 2.8. The following implications are not theses of S0.5:

O0Op D O0-—p O0-—-p D> OOp
O0p D O-0-p O0-0O-p > O0p
COp D D—\O—\p D—\Q—\p D OOp

So 80.5°, S0.5°[D], S0.5°[T9] and S0.5 are not closed under (rte).”

PROOF: It is easy to point out suitable self-associate tn-models in which
the above formulas are false. Hence, by Theorem 2.5(4) and Fact 2.7, S0.5°,
S0.5°[D], S0.5°[T9] and S0.5 are not closed under (rte). O

The theorems below concern modal propositionally atomic formulas.®
THEOREM 2.9. For any L € {S0.5°,50.5°[T%],50.5°[D],S0.5} and ¢ € For:
Oy e L iff ¢<cPL.

ProOF: Firstly, OPL C $0.5°[T9 C $0.5 and OPL C S0.5°[D] C S0.5.
Secondly, let ¢ ¢ PL, w # a, A := {w,a}. Then, by Lemma 1.1, for
some V, € Val® we have that Va(p) = 0. By Lemma 2.2, for V, and any

"In [5, 6, 7], t-normal logics closed under (rte) in versions built-in Forg are examined.
8[7, Facts 3.8 and 3.9] provides these theorems in versions for logics built-in Forg.
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assignment vy, : At — {0, 1} there is a self-associate tn-model (w, A, V') such
that V(Op,w) = 0. Hence "0y ¢ S0.5, by Theorem 2.5(4). Moreover,
we use Fact 2.7. O

THEOREM 2.10. For any L € {S0.5°,50.5°[D|}, ¥ C For and ¢ € For:
Ov bk Op iff ¥ =pL .

PRrROOF: Firstly, by (pk), if ¥ Epr ¢, then OU Fgo50 Oy and it entails
LW Fgpsep) De. Secondly, suppose that ¥ Fpr ¢ and w # a. Then,
by Lemma 1.1, for some V, € Val® we have V,[#] = {1} and V() = 0.
By Lemma 2.2, for V, and any v, : At — {0,1} there is a non-empty
tn-model (w, {a},V) such that V[O¥] = {1} and V(Op,w) = 0. Hence
LW Fgp.50p) L, by Theorem 2.5. O]

Remark 2.11. For S0.5°[T%] and S0.5, the “="-part of Theorem 2.10 does
not hold. Indeed, ‘0000p D Op’ belong to S0.5°[T9 ( C S0.5). Therefore,
U0p Fgp.50e) Up and O0p Fge.5 Op, but T0p Fpr, Op. O]

2.4. Similarities and differences between the two approaches

Versions of t-normal logic built-in the set Forg include Taut,, and OTaut,,,
contain (K) and are closed under (det) and uniform substitutions. All such
versions include PLy (:= PL N Forp) and OPLy. We use the sign ‘¢’ as an
abbreviation for ‘-[0—". As theses of such versions of t-normal logics, we
obtain these formulas whose shortcuts are (d£Q), (df0), (Ka), (Ra), (R})
(see Remark 1.2(1)).

Let us denote by S0.52, the smallest t-normal logic built-in Fory. More-
over, let S0.55 be the smallest t-normal logic built-in Forg containing (T)
(see Remark 2.1). The formulas for which (T4), (D), "OT" and all S0.5°-
equivalents to (T?) are shortcuts belong to S0.54.

Let S0.52[T9] be the smallest t-normal logic built-in Forg containing
(T9). As theses of S0.53[T?], we obtain these formulas whose shortcuts are
S0.5°-equivalents to (T%). Moreover, let S0.52[D] be the smallest t-normal
logic built-in Forp containing ‘Cp D —[—p’, whose shortcut is (D).

Let L € {S0.5°,50.5°D],S0.5°[T%],S0.5}. For Ly we use tn-models,
which we define in the same way as tn-models for L with the only difference
that the set For is replaced by Forg, and we only use (V). We have

() All formulas from Forp true in all tn-models for L are also true in all
tn-models for Lg.
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In [5, Theorem 4.8], an appropriate version of the completeness theorem
for Ly is given.” We can prove:

THEOREM 2.12. Lg = L NFory. So Lo C L.

PRrROOF: It is obvious that Lg C L N Forg. Suppose that ¢ € L N Forg.
We take any tn-models for Lo. By (%) and Theorem 2.5, ¢ is true in this
model. From the completeness theorem for Lg, we obtain that ¢ € Lg. O

From Theorems 2.9, 2.10 and 2.12 we obtain:

COROLLARY 2.13 ([5]). For all ¢ € Forg and ¥ C Forq:
1. For L € {S0.5°,50.5°|D], S0.5°[T%],S0.5}, "0y € Ly iff ¢ € PLg.

2. For L € {S0.5°,50.5°[D]}, OV -1, Oy iff ¥ =pry .

As we mentioned in Remark 1.5, there may be some confusion regarding
the two approaches to these logics. The difference between them is visible
from Fact 2.8. Namely, the implications below are not theses of S0.5 but
even are theses even of S0.57:

O0p > O-0-p O-0-p > O0p

Indeed, in S0.57 the above implications are just shortcuts on one side of
the PL-tautology ‘00-U-p D O-0O-p’. Hence also, ‘0(0¢p = O-O-p)’
belongs to S0.57. However, it does not contradict Corollary 2.13 because,
in 80.57, these three forms are just abbreviations of suitable formulas from
PL5 and OOPLg, respectively.

Finally, note that the following implications are also not theses of S0.5:

O0p D O-0—p O-¢—p D O0p
Indeed, for S0.5g, these formulas are just abbreviations of the following:
U0p o O-—-0-—p U--0-—-p D O0p

which are S0.57-equivalent to ‘O00p D OO-—p’ and ‘O0-—-p D OOp’,
respectively. Fact 2.8 and Theorem 2.12 say that the last formulas are not
theses of S0.52.

91ts proof is an appropriate version of the proof of Theorem A.7.



Some Additional Axioms for T-Normal Logics. . .

3. Other t-normal logics with additional axioms

3.1. Additional axioms

Theorem 2.5(4) shows that none of formulas (D"), (D), (T®), (T3), (4), (44),
(B), (Ba), (5), (54) belongs to S0.5. The formulas listed here are additional
axioms with which we will extend S0.5° and S0.5. It is evident that:

e (D") € S0.5[T"], (T™) € S0.5[B4] and (B) € S0.5°[5];
(D3) € S0.5[T%], (T5) € S0.5[B] and (B4) € S0.5[54];
(T™) € S0.5°[D",44] and (T%) € S0.5°[4,D%[;
(T") € S0.5°[54.D] and (T%) € S0.5°[D,5];
(D")
(D7)

D), (D3) € S0.5°[D,54,T%] and (D"), (D) € S0.5°[D,5,T"];
D"), (D3) € S0.5°[D,5,54].

Further, we will show that there are no other dependencies between addi-
tional axioms.

We are interested in such t-normal logics, which have a given addi-
tional axiom and its dual form. To simplify naming of logics, we will write
S0.5°X;...X,, to denote the smallest t-normal logic containing formulas
(X1), ..., (X,) and their dual forms. Moreover, the notation S0.5.X; ...X,
will indicate the suitable smallest extension of S0.5. For example:

e S0.5°4T™ C S0.5°.4D™ and S0.5.4D™ = S0.5.4T™.

Further, we will show that the following combinations of additional axioms
give normal logics (see Theorem 4.1):

(1) S0.5°45 = K45, S0.5°D45 = KD45 and S0.5°B45 = KB4 (= KB5);
(1) S0.5.45 = S5.

Moreover, we will show that the remaining combinations of additional ax-
ioms give vwt-normal logics (see Fact 3.7).

The following fact and results obtained in Section 2.3 will show differ-
ences between the logics thus obtained and the logics S0.5° and S0.5.

FACT 3.1. For all ¢, € For:
1. (a) If "p =47 € PL then "O0¢ = OOy € S0.5[4].
(b) "0 = O—-0O-p™" € S0.5[4].
2. (a) If "o =97 € PL then "00¢p = 009 € S0.5[44).
(b) "Oyp = O0-0—¢™ € S0.5[44].
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3. (a) "O0p = O-0—¢ " and (b) "00¢ = 0—0O-¢™ belong to S0.5.4.

4. (a) If "p = 97 € PL then "00p = OO € S0.5[5] N S0.5°(D,44,5].
(b) "Op = O—0—¢™ € S0.5[5] N S0.5°[D,44,5].

5. (a) If "p =47 € PL then "00p = 07 € S0.5[54] N S0.5°[D,4,54].
(b) "0 = O-0-¢ ' € S0.5[54] N'S0.5°[D,4,54].

6. (a) "O0p = O-0-¢" and (b) "00¢ = O—0—¢ " belong to S0.5.5
and S0.5°.D45.

7. (a) O(Tq) € S0.5°[5], (b) OJ(T) € S0.5°[54] and (c) (D) € S0.5°5.

PrOOF: Ad 1. (a) By (T), (4), (pe); (b) By (T), (4), (pe), (d£0).
442, (a) By (Ta), (4), (pea). (b) By (Ta), (4a), (peq), (a£0).
Ad 3. (a) By (4), (T) and item 2(b). (b) By (44), (Ta) and item 1(b).
Ad 4. (a) From (T), (5), (peqa) we have: O0p = Op = Oy = OO

Moreover, by (D), (44), (pea), (5): O0p D OO D Op = Oy D TO.
(b) From (T), (5), (pe) we have: {—¢ = 00— = O-—-0—¢. Hence and
(a£0), (d£0) we have: Oy = O—O—p. Moreover, by (D), (44), (5) we have:
00—¢ D 00— D O~ D O0—¢. So we use (df$), (df0) and (pe).

Ad 5. (a) By (T4), (54) and (peq) we have: OOy = Oy = Oy = 0.
Moreover, by (54), (pe), (4), (D): O0p D Op D Oy = OO0y D O0.
(b) From (Tg), (54) and (pe): U-p = O0-¢ = O——O-yp. Hence and
(d£0), (df0) we have: Qp = O-0O-p. Moreover, by (54), (4), (D) we have:
O0=¢ D O-p D O0-¢ D O0-p. So we use (df0), (df0) and (pe).

Ad 6. (a) By (T), (5): O0p = Op. Moreover, by (D), (44), (5), we
have: O0p D 00p D O D TOp. So in both cases we use item 5(b).
(b) By (Ta), (54): OOp = Op. Moreover, by (54), (4), (D), we have:
O0p D Oy D O0p D O0p. So in both cases we use item 4(b).

Ad 7. (a) By (pk), O0p Fz O(p D Op) and O—p Fr O(p O Op) for any
t-normal logic L. Moreover, Op Fgg.50(5) JOp and =Op Fsp50 C—p. Thus,
‘O(p > Op)’ € S0.5°[5].

(b) By (pk), Op Fr O(@p D p) and O-0p +r O(p D p) for any
t-normal logic L. Moreover, =(p tgg 50(s,] (-Cp. Therefore, ‘C0(Cp D p)’
belongs to S0.5°[54].

(c¢) By (pk), O(T),0(Tq) Fr O(D) for any t-normal logic L. So we use
(a) and (b). O
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3.2. Kripke-style semantics for additional axioms. Soundness

To use tn-models for additional axioms, we must assume an appropriate
condition for a given axiom. In a tn-model (w, A, V), every one of these
conditions will apply to any formula ¢:

Feea V(Hp,2) =1 = Jyea V(Op,y) =1, (cD™)
Veea V(Op,2) =1 = Vyea V(Op,y) =1, (cDge)
Joea V(0p,2) =1 = Fyea Vipy) = 1, (cT"p)
Voea V(p,2) =1 = Vyea V(Op,y) =1, (cTap)
Vip,w) =1 = Vyea V(Op,y) =1, (cBp)
V(p,w) =0 = Vyea V(Op,y) =0, (cBay)
vwEA( yeA Vip,y) =1 = V(Oyp, ) )a (CS@)
Voea(V(Op, ) =1 = Vyea V(p,z) = 1), (cBawp)
VzeA( yea Vip,y) =1 = V(p,z) = )7 (c4p)
Voea(V(Op,2) =1 = Jyea Vip,y) =1). (cdap)

Moreover, for (T), (D) and (T%) we use the conditions ‘w € A’, ‘A % () and
‘either w € A or A = (I, respectively.

Remark 3.2. (i) In all self-associate tn-models: (cT™y) entails (cD"p); (cThy)
entails (cD5¢); (cBap) entails (cT™p); (cBy) entails (cThy); (cby) entails
(cByp); (cbayp) entails (cBayp).

(ii) Apart from the above, no other dependencies exist between the
given conditions. O

The following lemma is easy to prove:

LEMMA 3.3. Let x is an additional aziom, ¢ € For and 9 be a tn-model.
We put x¥ = x[p/®]. Then:

x¥ is true in M iff @ satisfies the condition (cxp) in M.

Let @ be a non-empty set of formulas which contains some or all of
the formulas used as additional axioms (including (T), (D) and (T?)). Then
we will call S0.5°[®]-model all those and only those tn-models in which
conditions for all instances of the formulas in @ are satisfied.
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THEOREM 3.4 (Soundness). All theses of S0.5°[®] are valid in the class of
all S0.5°[P]-models.

We will further use the following lemma:
LEMMA 3.5. Let {(4),(44),(5),(54)} C @, (w, A, V) be an S0.5°[®]-model
and W = {w} U A. Then:

1. (W, A, V) is a simplified Kripke-style model.

2. Ifalso (B) € @ then (W, A, V) is an empty or universal Kripke model.

3. If also (D) € @ then (W, A, V) is a non-empty simplified model.

4. If also (T) € @ then (W, V) is a universal Kripke model.
PROOF: Ad 1. Let ¢ € For. By (V%), (c4p) and (c5q¢), for any z € W:
V(Op,z) =1iff V(p,y) =1 for each y € A. By (V"), (c4ayp) and (54), for
any x € W: V(Qp,x) =1iff V(p,y) =1 for some y € A. Thus, (W, A, V)
satisfies conditions (Vo) and (V) from p. .

Ad 2. By item 1, (W, A, V) satisfies (V) and (V). Assume that A # 0.
For (Vo) with A = W: Let ¢ € For. By (cBay), we have:

(i) for any x € A: if V(Op,z) =1 then V(p,w) =1).
Moreover, assume that V(p,w) = 0. Then, by (cBay), V(Op,x) = 0 for
each z € A. So V(Op,zo) = 0 for some xy € A because A # (). Hence
V (B¢, w) =0, by (V). So we obtain:
(i) if V(Op,w) =1 then V(p,w) = 1.
Thus, using (i), (ii), (V') and (Vg), we obtain:
(Vo) for any x € W: V(Op,z) =1 iff Vyew V(p,y) = L.
For (V,) with A = W: Let ¢ € For. By (cBy), we have:
(i") for any z € A: V(p,w) =1=V(Qp,z) = 1.
Moreover, using (ii) and (df0) for =, we obtain:
(it") if V(¢,w) =1 then V(Op,w) = 1.
Thus, using (i), (ii’), (V") and (V;,), we obtain:
(Vo) forany z € W: V(Op,z) =1 iff Jyew V(p,y) = 1.
Ad 3. A # 0, by Fact 2.4(1).

Ad 4. Suppose that (T) € L. Then (D), (B) and (By) belong to L. Hence,
by item 3, A £ (. So (W, V) is a universal Kripke model, by item 2. O
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S5 «=S0.5.45

\

KTB normal logics

KT

S0.5.B4  S0.5.5

S0.5.4D™ = S0.5.4T™ S0.5.B

S0.5.T™ vwt-normal logics
f
S0.5.4  S0.5.D™
S0.5
S0.5° the smallest t-normal logic

Figure 1. The dependencies between the considered extensions of S0.5

3.3. Some conclusions

By constructing appropriate countermodels, by Theorem 3.4, we have the
following facts (cf. Remark 3.2(ii)):

Fact 3.6.
1. (D") ¢ S0.5[D%] and (D3) ¢ S0.5[D"].
(T")(T%) ¢ S0.5.D™.
Neither (B) nor (Bg) belongs to neither S0.5.T™ nor S0.5.4.
(4) ¢ S0.5[44) and (44) ¢ S0.5[4].
(B) ¢ S0.5[B4] and (By) ¢ S0.5[B].
(5) ¢ S0.5[54] and (54) ¢ S0.5[5].
(4), (44) ¢ S0.5.5 and (5), (54) ¢ S0.5.B4.

A

The dependencies between the considered extensions of the logics S0.5
and S0.5° are presented in Figures 1 and 2, respectively.
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55\

S0.5°.D45 = KD45

SA4 KD4 KD5 normal logics
72""""501—,01)151“ 77777777 s35ons
S0. 5° 4Dm vwt-normal logics
SO 5 So. 5° D4 SO 5°.4T™
[
S0.5°.T4 _ S0. 5° SO 5°. 4 So0. 50 Dm S0.5°.T™

SO 5° the smallest t-normal logic

Figure 2. The dependencies between the considered extensions of S0.5°

Also, by constructing appropriate two-element self-associate counter-
models and using Theorem 3.4, we obtain the following fact, which shows
that the logics S0.5.B4 and S0.5.5 (and all others included therein) are not
closed under (rte) (cf. Fact 3.1).

Fact 3.7. 1. The formulas ‘O0p D O0—~—p’, ‘O0——p D OOp’, ‘0Up D
OO0-=p’ and ‘O0-—=p D OOp’ do not belong to $0.5.B4. So ‘CI(Op D
O——p)’ and ‘O(O——p D Op)’ too.

2. The formulas ‘O00p > O0O-—p’, ‘O0-—p D> OOp’, ‘OOp D OO——p’
and ‘00——p D OOp’ do not belong to S0.5.5. So ‘T(Op D O-—p) and
‘0(0--p D Op)’ too.

Moreover, we have (cf. Fact 3.1(3,5):

Fact 3.8. Neither ‘0(0p D —-0O-p)’, ‘O(-0O-p D Op)’, ‘O({@p D =O—p)’
nor ‘0(—=0—p D Op)’ belongs to either S0.5.5 or S0.5.B4.

Remark 3.9. Logics considered here can also be built in the set Forg. Facts
3.8 and 3.8 show the differences between the two approaches. Moreover, we
will show that for versions built in the set Forg, we can omit abbreviations

of (5), (B) and (T%).
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Indeed, (54) is an abbreviation of ‘=00-Op D Op’. From it, by PL and
the substitution p/—p, we have ‘-0O-p D O-O-p’, an abbreviation of (5).
Therefore, this last shortcut belongs to S0.57[54).

(Bg) is an abbreviation of ‘-O0-p D p’. From it, by PL and the sub-
stitution p/—p, we have ‘p D O-0O-p’, an abbreviation of (B). Therefore,
this last shortcut belongs to S0.52[Bg].

(T™) is an abbreviation of ‘-0-Op D> —-O-p’. From it, by PL and
the substitution p/—p, we have ‘O-—p D O-O-p’. Hence, by (pe), we
have ‘Op D O-0O-p, an abbreviation of (T%). Therefore, this last shortcut
belongs to S0.52[T"]. O

3.4. Completeness

Let L be a t-normal logic and (wr, Ar, V) be the canonical model for L
and I' € Maxy, (see Appendix A.2).

LEMMA 3.10. Let x be a formula from (4), (44), (B), (Ba), (5), (5a4), (D®),
(DY), (™), (T%). If L contains x, then any formula ¢ satisfies condition
(exy) in (wr, Ap, V).

PRrROOF: For any ¢ € For, using the definition of canonical models and
Lemmas A.1 and A.5, and conditions (V") and (V") for Vp, we obtain
that ¢ satisfies condition (cx) in (wp, Ap, V). O

Let @ be a non-empty set of formulas which contains some or all of the
formulas used as additional axioms (including (T), (D) and (T%)). We put
L = S0.5°[®]. Let M be the class of all L-models. From Lemmas A.5,
A.6 and 3.10 we have:

Fact 3.11. All canonical models for L belong to M;.
We can show that L is complete with respect to M.
THEOREM 3.12. All formulas valid in the class My are theses of L.

PROOF: Let ¢ be valid in M, and I" € Maxy,. By Fact 3.11, the canonical
model (wpr, Ap, Vp) for L and I" belongs to My. So Vi (p,wr) = 1. Hence
@ € I'. Therefore, ¢ belongs to all L-maximal sets. Hence ¢ € L, by
Lemma A.3(2). O
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4. Determining K45, KB4, KD45 and S5 without
using modal rules

Using Lemma 3.5 and Theorems 1.3, 1.4 and 3.12, we obtain (}) and (1),
i.e., K45, KB4, KD45 and S5 can be defining without using modal rules.

THEOREM 4.1. () and (}) hold.

PROOF: It is obvious that S0.5°45 C K45, S0.5°B45 C KB4 (= KB5),
S0.5°.D45 C KD45 and S0.5.45 C S5. We will show that we also have the
reverse inclusions.

For S5 C S0.5.45: Suppose that ¢ € S5. We will prove that ¢ is valid in
Mg, ;.55 Let (w, A, V) be any S0.5.45-model. Then, by Lemma 3.5, (W, V)
is a universal Kripke model. So, by the assumption and Theorem 1.3,
for any x € W we have V(p,2) = 1. So also V(p,w) = 1; ie., ¢ is
true in (w, A, V). Therefore, ¢ is valid in Mg, ;. Hence ¢ € S0.5.45, by
Theorem 3.12.

Similarly, using Lemma 3.5 and Theorems 1.4 and 3.12, we obtain that
K45 C S0.5°.45, KB4 C S0.5°.B45 and KD45 C S0.5°.D45. O

A. Completeness of S0.5°, S0.5°[D], S0.5°[T¢], S0.5

The results reported here are adapted for S0.5°, S0.5°[D], S0.5°[T¢] and S0.5
built-in For from those obtained in [5] (where these logics are analyzed in
Forp and the broader class of t-regular logics is analyzed).

A.1. Notions and facts concerning maximal consistent sets

Let L be a consistent t-normal logic. A set ¥ is L-consistent iff for some
@ € For we have ¥ ¥, ¢; equivalently in the light of PL, iff ¥ ¥, p A —p.
Every L-consistent set is PL-consistent.

We say that I' is L-maximal iff I' is L-consistent and I" has only L-
inconsistent proper extensions. By changing L to PL, we will obtain the
definition of PL-mazimal sets. Let Maxy and Max,, be the sets of all
L-maximal and PL-maximal sets, respectively.

We will use the following lemmas (which can be proven as in [1]).

LEMMA A.1. Let I' € Maxy. Then L C I' and for all ¢, € For:
1. I'Froiffeel.
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el iffpd I

"oANY1 eI iff both el and € I'.
ToVvyle I iff either p eI’ orp eI
ToD Y el iff either o g I orp €T
Fo=y7 eI iff either p, v € I or o, ¢ I.

Notice that from Lemma A.1(2) we obtain:

A

Fact A.2. Every L-maximal set is PL-maximal.

LEMMA A.3. For all ¥ C For and ¢ € For:
1. Uk piff o e for each I' € Maxy, such that W C I'.
2. peLiffoel foreach I' € Maxy,.

LEMMA A.4. For oll I' € Maxy, and ¢ € For the following conditions are
equivalent:

(a) "Op e

(b) I'tr Oe.

(c) {o:"TOYT e I'} oy, .

(d) ¢ € A for each A € Maxy, such that {¢ :"Oy € I'} C A.

PROOF: “(a) = (d)” It is trivial. “(d) < (c)” By Lemma A.3(1).

“(c) = (b)” Ether ¢ € PL or for some 1, ..., ¢, € {¢p: "0y € I'},
n > 0, we have "(¢1 A -+ A,) D ¢ € PL. But the first case entails
the second case. Hence "(Oyy A--- Ay,) D O™ € L, by (pk). But I
contains each of "Olypy 7, ..., ", ' since OPL C I'. So I' kg, Oep.

“(a) © (b)” By Lemma A.1(1). O

A.2. Canonical models. Completeness

Let L be a t-normal logic and I" € Maxy,. We say that (wr, Ar, Vr) is the
canonical model for L and I iff it satisfies the following conditions:
® Wpr = F,
o Ar = {A € Maxyp,, : Vyperor (O € =1 € A) },
o Vp: For x ({wr} U Ar) — {0,1} is the valuation such that for all
¢ € For and A € {wr}UAr



Andrzej Pietruszczak

1 ifpeA
Vr(p, Q) =
rig.4) {O otherwise
We need the following lemmas to prove the completeness of S0.5°, S0.5°[D],
S0.5°[T9) and S0.5.

LEMMA A.5. (wr, Ap,Vr) is a tn-model.

ProoFr: Thanks to properties of maximal sets (see Lemma A.1), for every
A € {wr} U Ar the assignment Vy(-, A) belongs to Val®. Moreover, we
prove that Vi (-, wr) satisfies (V') and (V") for each ¢ € For.

Firstly, Vp(Op,wp) = 1 iff "0p" € I' iff ¢ € A for each A € Maxy,
such that {¢p € For : "0y € I'} C A (by Lemma A.4) iff ¢ € A for each
Ae Ap iff Vi(p,A) =1 for each A € Ap.

Secondly, since L C I', "Op = -[O—-¢ ' € I'. Hence, by Lemma A.1,
Vr(Op,wp) = 1iff "0 € I'iff "0 ¢ I' iff Vp(—p, A) = 0 for some
Ae Ap iff Vi(p, A) =1 for some A € Ap. O

LEMMA A.6. 1. If L contains (T) then wr € Ar.
2. If L contains (D) then Ar # 0.
3. If L contains (T) then either Ar =0 or wr € Ar.

PrROOF: By Lemma A.1, L C I'. So in any specific case we have:

1. For any ¢ € For, "l D ¢7 € I'. So, if "Iy € I" then ¢ € I', by
Lemma A.1(5). Hence I' € Ap. Moreover, I' € Maxp, by Fact A.2.

2. For any 7 € Taut, we have "7 and "Or D {7 belong to I'. So,
Ot € I', by Lemma A.1(5). Hence V(O7,I") = 1. So, by Lemma A.5, for
some A € Ap we have V (1, A) = 1. Therefore, Ap # 0.

3. For any ¢ € For we have "(D) D (v D ¢)" € I'. Suppose that
Ar # (. Then (D) € I', by Fact 2.4(1) and Lemma A.5. Thus, "y D
1 € I'. Therefore, as in item 1, we can show that I" € Ap. O

For L € {S0.5°,50.5°[D],S0.5°[T%],S0.5}. Let M. be the class of all
L-models. We can show that L is complete with respect to M.

THEOREM A.7 (Completeness). All formulas valid in My are theses of L.

PRroOF: For S0.5°: Suppose that ¢ is valid in Mgy s0 and I' € Maxg, s0. By
Lemma A.5, (wp, Ar, Vi) belongs to Mgy ;0. Thus, Vi (o, wr) = 1. Hence
p € I'. So, we have shown that ¢ belongs to all S0.5°-maximal sets. Hence
¢ € 50.5°, by Lemma A.3(2).
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For L € {S0.5°[D],S0.5°[T],S0.5}: Same as above, taking L instead of

S0.5°. By Lemmas A.5 and A.6, (wr, Ar, Vi) belongs to M. O
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