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Abstract

In this manuscript, we have presented the concept of L−weakly 1-absorbing prime

ideals and L−weakly 1-absorbing prime filters within an ADL. Mainly, we illus-

trate the connections between L−weakly prime ideals (filters) and L−weakly 1-

absorbing prime ideals (filters), as well as between L−weakly 1-absorbing prime

ideals (filters) and L−weakly 2−absorbing ideals (filters). Lastly, we have shown

that both the image and inverse image of L−weakly 1-absorbing prime ideals

(filters) result in L−weakly 1-absorbing prime ideals (filters).
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1. Introduction

The idea of prime ideals(filters) is vital in the study of structure theory of
distributive lattices in general and in particular, that of Boolean algebras.
Badawi [7] introduced the concept of 2-absorbing ideals in commutative
rings, extending the idea of prime ideals from [11]. Chuadhari [9] further
extended 2-absorbing ideals to semi-rings. Badawi and Darani [8] intro-
duced weakly 2-absorbing ideals in commutative rings, a generalization of
weakly prime ideals by Anderson and Smith [6]. Wasakidar and Gaikerad
[24] extended the concepts of 2-absorbing and weakly 2-absorbing ideals
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© Copyright for this edition by the University of Lodz,  Lódź 2024
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to lattices. Natnael TA [23, 2, 1] introduced weakly 2-absorbing ideals
and weakly 2-absorbing filters, along with 1-absorbing prime filters in an
ADL. L.A. Zadeh [25] defined a fuzzy subset of a set X as a function map-
ping elements to real numbers in [0, 1]. Goguen [12] expanded this concept
by using a complete lattice L instead of the valuation set [0, 1], aiming
for a more comprehensive exploration of fuzzy set theory through fuzzy
sets. Darani and Ghasemi [10], as well as Mandal [14], introduced fuzzy
2-absorbing ideals and 2-absorbing fuzzy ideals for commutative rings, re-
spectively, generalizing the concept of fuzzy prime ideals in rings explored
by June [13] and Sharma [18]. Nimbhorkar and Patil [15, 16] introduced
fuzzy weakly 2-absorbing ideals in lattices. In our previous work [20, 21],
we introduced the concepts of fuzzy ideals and filters within an ADL, serv-
ing as the basis for our research. Natnael [5, 2] later expanded on this by
introducing the concept of fuzzy 2-absorbing ideals and filters in an ADL.

In this paper, we have introduced the concept of L−weakly 1A−prime
ideals and filters in an ADL, aiming to extend the idea of L−prime ide-
als and filters in an ADL as presented in [17, 19]. Initially, we define
L−weakly 1A−prime ideals, which are less stringent than L−prime ide-
als. Also, we study on L−weakly 1A−prime filters in an ADL which is
weaker than that L−prime filters. Our main emphasis is on investigating
the connections between L−prime ideals and L−weakly 1A−prime ide-
als, as well as the relationships between L−weakly 1A−prime ideals and
L−2A−ideals. Also, we investigating the connections between L−prime
filters and L−weakly 1A−prime filters, and L−weakly 1A−prime filters
and L−2A−filters. Counter examples are provided to demonstrate that
the converses of these relationships do not hold. Furthermore, we demon-
strate that the direct product of any two L−prime ideals (L−prime fil-
ters) results in an L−weakly 1A−prime ideal(L−weakly 1A−prime fil-
ter) in an ADL. However, it is important to note that the product of
L−weakly 1A−prime ideals(L−weakly 1A−prime filters) may not neces-
sarily yield an L−weakly 1A−prime ideal(L−weakly 1A−prime filter) in
an ADL. Additionally, we establish that both the image and pre-image of
any L−weakly 1A−prime ideals (L−weakly 1A−prime filters) are again
L−weakly 1A−prime ideals(L−weakly 1A−prime filters).
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2. Preliminaries

In this portion, we revisit certain definitions and fundamental findings pri-
marily sourced from [20, 17, 22].

Definition 2.1. An algebra R = (R,∧,∨, 0) of type (2, 2, 0) is referred to
as an ADL if it meets the subsequent conditions for all r, s and t in R.

1. 0 ∧ r = 0

2. r ∨ 0 = r

3. r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t)

4. r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ t)

5. (r ∨ s) ∧ t = (r ∧ t) ∨ (s ∧ t)

6. (r ∨ s) ∧ s = s.

Every distributive lattice with a lower bound is categorized as an ADL.

Example 2.2. For any nonempty set A, it’s possible to transform it into an
ADL that doesn’t constitute a lattice by selecting any element 0 from A
and fixing an arbitrary element u0 ∈ R. For every u, v ∈ R, define ∧ and
∨ on R as follows:

u ∧ v =

{
v if u ̸= u0

u0 if u = u0
and u ∨ v =

{
u if u ̸= u0

v if u = u0

Then (A,∧,∨, u0) is an ADL (called the discrete ADL) with u0 as its
zero element.

Definition 2.3. Consider R = (R,∧,∨, 0) be an ADL. For any r and
s ∈ R, establish r ≤ s if r = r ∧ s (which is equivalent to r ∨ s = s). Then
≤ is a partial order on R with respect to which 0 is the smallest element
in R.

Theorem 2.4. The following conditions are valid for any r, s and t in an
ADL R.

(1) r ∧ 0 = 0 = 0 ∧ r and r ∨ 0 = r = 0 ∨ r

(2) r ∧ r = r = r ∨ r
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(3) r ∧ s ≤ s ≤ s ∨ r

(4) r ∧ s = r iff r ∨ s = s

(5) r ∧ s = s iff r ∨ s = r

(6) (r ∧ s) ∧ t = r ∧ (s ∧ t) (in other words, ∧ is associative)

(7) r ∨ (s ∨ r) = r ∨ s

(8) r ≤ s⇒ r ∧ s = r = s ∧ r
(
iff r ∨ s = s = s ∨ r

)
(9) (r ∧ s) ∧ t = (s ∧ r) ∧ t

(10) (r ∨ s) ∧ t = (s ∨ r) ∧ t

(11) r ∧ s = s ∧ r iff r ∨ s = s ∨ r

(12) r ∧ s = inf{r, s} iff r ∧ s = s ∧ r iff r ∨ s = sup{r, s}.

Definition 2.5. Let R and G be ADLs and form the set R×G = {(r, g) :
r ∈ R and g ∈ G}. For all (r1, g1), (r2, g2) ∈ R × G, define ∧ and ∨ in
R × G by (r1, g1) ∧ (r2, g2) = (r1 ∧ r2, g1 ∧ g2) and (r1, g1) ∨ (r2, g2) =
(r1 ∨ r2, g1 ∨ g2). Then (R × G,∧,∨, 0) is an ADL under the pointwise
operations and 0 = (0, 0) is the zero element in R×G.

Definition 2.6. A non-empty subset, denoted as F in an ADL R is termed
an ideal (filter) in R if it satisfies the conditions: if u and v belong to F ,
then u∨v (u∧v) is also in F , and for every element r in R, the u∧r (r∨u)
is in F .

Definition 2.7. A proper ideal(filter) F in R is a prime ideal (filter) if for
any u and v belongs R, u∧ v (u∨ v) belongs F , then either u belongs F or
v belongs F .

Definition 2.8. Let R and G be ADLs. A mapping k : R → G is called
a homomorphism if the following are satisfied, for any r, s, t ∈ R.
(1). k(r ∧ s ∧ t) = k(r) ∧ k(s) ∧ k(t)
(2). k(r ∨ s ∨ t) = k(r) ∨ k(s) ∨ k(t)
(3). k(0) = 0.
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Definition 2.9. An L−subset Φw is defined as a mapping from R to a
complete lattice L that adheres to the infinite meet distributive law. When
the lattice L is represented by the unit interval [0, 1] of real numbers, these
L−subsets correspond to the conventional notion of L−subsets in R.

Definition 2.10. An L−subset Φw is an L−ideal(filter) in R, if Φw(0) =
1
(
Φw(u) = 1, for any maximal element u in R

)
and Φw(r ∨ s) = Φw(r) ∧

Φw(s)
(
Φw(r ∧ s) = Φw(r) ∧ Φw(s)

)
, for all r and s belongs to R.

Theorem 2.11. Let Φw be an L−ideal and ∅ ̸= F ⊆ R. Then for any r
and s belongs to R, we have the following:

(1) If r ≤ s, then Φw(s) ≤ Φw(r)

(2) If r is an associate with s, then Φw(r) = Φw(s)

(3) Φw(r ∧ s) = Φw(s ∧ r) and Φw(r ∨ s) = Φw(s ∨ r)

(4) If r ∈ ⟨F ], then
n∧

i=1

Φw(xi) ≤ Φw(r), for some x1, x2, ..., xn ∈ F

(5) If r ∈ ⟨s], then Φw(s) ≤ Φw(r)

(6) If u is maximal in R, then Φw(u) ≤ Φw(r)

(7) Φw(u) = Φw(v), for any maximal elements u and v in R.

Theorem 2.12. Let Φw be an L−filter and ∅ ̸= F ⊆ R. Then for any
r, s ∈ R, we have the following.

(1) If r ≤ s, then Φw(r) ≤ Φw(s)

(2) If r ∼ s, then Φw(r) = Φw(s)

(3) Φw(r ∨ s) = Φw(s ∨ r)

(4) If r ∈ [F ⟩, then
n∧

i=1

Φw(xi) ≤ Φw(r), for some x1, x2, ..., xn ∈ F

(5) If r ∈ [s⟩, then Φw(s) ≤ Φw(r).

Definition 2.13. A proper L−ideal(filter) Φw is referred to as a prime
L−ideal(filter) if ψ ∧ η ≤ Φw implies either ψ ≤ Φw or η ≤ Φw, for any
L−ideals(filters) ψ and η in R.

Definition 2.14. A proper L−ideal(filter) Φw is an L−prime ideal(filter)

in R if Φw(r ∧ s)
(
Φw(r ∨ s)

)
equals either Φw(r) or Φw(s), for any r and

s in R.



Natnael Teshale Amare

3. L−weakly 1A−prime ideals

In the subsequent discussion, we present the concepts of L−weakly 1−ab-
sorbing prime ideals in an ADL R and their characterizations. Initially, let
us revisit the definition outlined in [23], indicating that a proper ideal H
in R is a weakly 1−absorbing prime ideal (in short, a weakly 1A−prime
ideal) in R if, for all elements r, s, and t in R such that r ∧ s ∧ t ̸= 0, the
condition r ∧ s ∧ t belonging to H implies either r ∧ s belonging to H or
t belonging to H. Now, we aim to extend this outcome to the realm of
L−weakly 1A−prime ideals as elucidated below.

Definition 3.1. A proper L−ideal Φw in R is referred to as an L−weakly
1A−prime ideal in R if for any elements r,s and t belongs to R such that
r∧s∧ t ̸= 0, the inequality Φw(r∧s∧ t) ≤ Φw(r∧s)∨Φw(t) remains valid.

Example 3.2. LetR = {0, r, s, t} and the chain L consisting of four elements
{0, γ, β, 1}, where 0 < γ < β < 1 and let ∨ and ∧ be binary operations on
R defined by:

∨ 0 r s t
0 0 r s t
r r r r r
s s s s s
t t r s t

∧ 0 r s t
0 0 0 0 0
r 0 r s t
s 0 r s t
t 0 t t t

Define an L−subset Φw in R as follows: Φw(0) = 1, Φw(r) = γ = Φw(s)
and Φw(t) = β. It is evident that Φw is an L−ideal in R. Furthermore, for
any elements r, s and t ∈ R such that r ∧ s ∧ t = t ̸= 0, we observe that
Φw(r ∧ s∧ t) = β = γ ∨ β = Φw(r ∧ s)∨Φw(t). Consequently, Φw qualifies
as an L−weakly 1A−prime ideal in R.

Following that, we define the concept of an L−weakly 1A−prime ideal
with respect to β-cut, where Φw

β = {r ∈ R : β ≤ Φw(r)}.

Theorem 3.3. Let Φw be an L−ideal in R. Then an ideal Φw
β is a weakly

1A−prime ideal in R, for all β ∈ L iff Φw is an L−weakly 1A−prime ideal
in R.

Proof: Assume Φw
β is a weakly 1A−prime ideal, for all β ∈ L. In this case,

for any elements r, s, t ∈ R such that r ∧ s∧ t ̸= 0, it is ensured that either
r∧s ∈ Φw

Φw(r∧s∧t) or t ∈ Φw
Φw(r∧s∧t), leading to Φw(r∧s∧ t) ≤ Φw(r∧s) or
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Φw(t). Consequently, Φw(r∧s∧t) ≤ Φw(r∧s)∨Φw(t). Conversely, if Φw is
an L−weakly 1A−prime ideal, consider r, s, t ∈ R such that r∧ s∧ t ∈ Φw

β ,
for all β ∈ L. This implies β ≤ Φw(r ∧ s ∧ t), which further leads to
β ≤ Φw(r ∧ s) ∨ Φw(t). Consequently, either β ≤ Φw(r ∧ s) or β ≤ Φw(t).
Hence, either r ∧ s ∈ Φw

β or t ∈ Φw
β . Therefore, Φw

β is a weakly 1A−prime
ideal in R.

Corollary 3.4. An ideal P in R is classified as a weakly 1A−prime ideal
in R iff its characteristic set χP is an L−weakly 1A−prime ideal in R.

In the upcoming theorems, we establish the connections between
L−weakly 1A−prime ideals and both L−weakly prime ideals and L−weakly
2A−ideals within the context of an ADL.

Theorem 3.5. Let Φw be an L−ideal in R. Then Φw is an L−weakly
1A−prime ideal in R only if Φw is an L−weakly prime ideal in R.

Proof: Assume Φw is an L−weakly prime ideal in R. For any elements
r, s, t ∈ R such that r ∧ s ∧ t ̸= 0, it follows that Φw(r ∧ s ∧ t) ≤ Φw(r) ∨
Φw(s ∧ t), or Φw(r ∧ s ∧ t) ≤ Φw(r ∧ s) ∨ Φw(t). This establishes the
conclusion.

In the provided example, we demonstrate that every L−weakly
1A−prime ideal in R does not qualify as an L−weakly prime ideals in R.

Example 3.6. LetD = {0, u, v} be a discrete ADL with 0 as its zero element
defined in 2.2 and L = {0, r, s, t, 1} be the lattice represented by the Hasse
diagram given below:

1

sr

t

0

Examine the set D × L = {(y, z) | y ∈ D and z ∈ L}. Then, the structure
(D×L,∧,∨, 0) forms an ADL, employing pointwise operations ∧ and ∨ on
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D × L, where 0 is defined as (0, 0). Consider P = {0, t}. It is evident that
P is an ideal in L. Now define Φw : D × L→ [0, 1] by

Φw(y, z) =


1 if (y, z) = (0, 0)

3/4 if y ̸= 0 and z ∈ P

0 otherwise

for all (y, z) ∈ D × L. Moreover, Φw is identified as an L−ideal. Con-
sequently, Φw qualifies as an L−weakly 1A−prime ideal, while Φw does
not meet the criteria for an L−weakly prime ideal in D × L. This dis-
tinction arises from the fact that Φw((u, r) ∧ (v, s)) = 3/4 ≰ 0 whereas
Φw(u, r) ∨ Φw(v, s) results in 0.

Definition 3.7 ([4]). A proper L−ideal Φw in R is an L−weakly 2A−ideal
in R if for any elements r,s and t ∈ R such that r∧s∧t ̸= 0, Φw(r∧s∧t) ≤
Φw(r ∧ s) ∨ Φw(r ∧ t) ∨ Φw(s ∧ t).

Theorem 3.8. Let Φw be an L−ideal in R. If Φw is an L−weakly
1A−prime ideal in R, then Φw is an L−weakly 2A−ideal in R. The con-
verse of this result is not true.

Proof: Assume Φw is an L−weakly 1A−prime ideal in R. Then for all
r, s, t ∈ R such that r∧ s∧ t ̸= 0, it follows that Φw(r∧ s∧ t) ≤ Φw(r∧ s)∨
Φw(t). By theorem 2.11(1) and (3), we deduce Φw(t) ≤ Φw(t∧s) = Φw(s∧t)
and Φw(t) ≤ Φw(t ∧ r) = Φw(r ∧ t). Consequently, Φw(t) ≤ Φw(s ∧ t) ∨
Φw(r ∧ t). This implies, Φw(r ∧ s ∧ t) ≤ Φw(r ∧ s) ∨Φw(s ∧ t) ∨Φw(r ∧ t).
Hence, Φw qualifies as an L−weakly 2A−ideal in R.

Example 3.9. LetD = {0, u, v} be a discrete ADL with 0 as its zero element
defined in 2.2 and L = {0, a, b, c, d, e, f, 1} be a lattice whose Hasse diagram
is given below. Let Q = {0, b, c, f}. Clearly Q is an ideal in L. Define
L−subset Φw : R→ [0, 1] by

Φw(x, y) =

{
1 if x = 0 and y ∈ Q

1/3 otherwise

for all (x, y) ∈ D × L. It is evident that Φw qualifies as an L−ideal in
R. Consequently, Φw is an L−weakly 2A−ideal in R. However, it does
not meet the criteria for being an L−weakly 1A−prime ideal in D × L, as
illustrated by the instance
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Φw((0, d) ∧ (u, e) ∧ (v, f)) = 1 ≰ 1/3 = Φw((0, d) ∧ (u, e)) ∨ Φw(v, f).

1

d e f

a b c

0

The product of L−subsets Φw and Ψw in R and G respectively is de-
noted by Φw × Ψw and defined by (Φw × Ψw)(a, b) = Φw(a) ∧ Ψw(b), for
all (a, b) ∈ R×G.

Theorem 3.10. Let Φw and Ψw be L−ideals in R and G respectively. If
Φw ×Ψw is an L−weakly 1A−prime ideal of R×G, then Φw and Ψw are
L−weakly 1A−prime ideals in R and G respectively.

Proof: Suppose that Φw ×Ψw is an L−weakly 1A−prime ideal of R×G.
Let r, s, t ∈ R and x, y, z ∈ G such that r ∧ s ∧ t ̸= 0 and x ∧ y ∧ z ̸= 0.
Consider,

Φw(r∧s ∧ t)∧Ψw(x∧y∧z) =(Φw ×Ψw)(r ∧ s ∧ t, x ∧ y ∧ z)
=(Φw ×Ψw)

(
(r, x) ∧ (s, y) ∧ (t, z)

)
≤(Φw ×Ψw)

(
(r, x) ∧ (s, y)

)
∨ (Φw ×Ψw)(t, z)

=
(
Φw(r ∧ s) ∧Ψw(x ∧ y)

)
∨
(
Φw(t) ∧Ψw(z)

)
=
(
Φw(r ∧ s) ∨

(
Φw(t) ∧Ψw(z)

))
∧
(
Ψw(x ∧ y) ∨

(
Φw(t) ∧Ψw(z)

))
=
(
Φw(r ∧ s) ∨ Φw(t)

)
∧
(
Φw(r ∧ s) ∨Ψw(z)

)
∧
(
Ψw(x ∧ y) ∨ Φw(t)

)
∧
(
Ψw(x ∧ y) ∨Ψw(z)

)
≤
(
Φw(r ∧ s) ∨ Φw(t)

)
∧
(
Ψw(x ∧ y) ∨Ψw(z)

)
.
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Hence the result.

The direct product of any two L−weakly 1A−prime ideals in R may
not result in an L−weakly 1A−prime ideal in R; an illustrative example
can be considered.

Example 3.11. Let R = {0, a, b, c, d, e, f, g, h, i, 1} and G = {0, a, b, c, d,
6e, f, g, h, i, j, 1} be the lattice represented by the Hasse diagram respec-
tively given below:

1

h i

f g

c

e

a b d

0

1

h i j

d e f g

a b c

0

Define L−subsets Φw : R → [0, 1] and Ψw : G → [0, 1], respectively
as follows: Φw(0) = Φw(b) = Φw(c) = Φw(g) = 1,Φw(a) = 0.5,Φw(d) =
Φw(e) = Φw(f) = Φw(h) = Φw(i) = Φw(1) = 0 and Ψw(0) = Ψw(a) =
Ψw(b) = 1,Ψw(c) = Ψw(e) = 0.75,Ψw(d) = Ψw(f) = Ψw(g) = Ψw(h) =
Ψw(i) = Ψw(j) = Ψw(1) = 0. Clearly both Φw and Ψw are L−weakly
1A−prime ideals in R and G respectively. However, Φw × Ψw is not
L−weakly 1A−prime ideal in R×G. This is demonstrated by considering,

(Φw ×Ψw)(e ∧ f ∧ g, h ∧ i ∧ j) = (Φw ×Ψw)(0, c)

= Φw(0) ∧Ψw(c)

= 0.75

≰ 0.5

= (Φw×Ψw)(e∧f, h∧i)∨(Φw×Ψw)(g, j).
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Corollary 3.12. Let Φw and Ψw be L−ideals in R and G respectively.
Then Φw is an L−weakly 1A−prime ideal in R if and only if Φw

β = Ψw
β ×G

or Φw
β = R×Ψw

β , for all β ∈ L.

Theorem 3.13. Assume R and G are ADLs, and k : R → G is a lattice
homomorphism. If Ψw represents an L−weakly 1A−prime ideal in G, then
k−1(Ψw) is an L−weakly 1A−prime ideal in R. Additionally, in the case
of k being an epimorphism and Φw being an L−weakly 1A−prime ideal in
R, it follows that k(Φw) is an L−weakly 1A−prime ideal in G.

Proof: Suppose that Ψw is an L−weakly 1A−prime ideal in G and let k
be a lattice homomorphism. Then, for all r, s, t ∈ G such that r∧ s∧ t ̸= 0,

k−1(Ψw)(r ∧ s ∧ t) = Ψw
(
k(r ∧ s ∧ t)

)
= Ψw

(
k(r) ∧ k(s) ∧ k(t)

)
≤ Ψw

(
k(r) ∧ k(s)

)
∨Ψw(k(t))

= Ψw
(
k(r ∧ s)

)
∨Ψw(k(t))

= k−1(Ψw)(r ∧ s) ∨ k−1(Ψw)(t).

Thus k−1(Ψw) is an L−weakly 1A−prime ideal in R. Also, let k be an
isomorphism and suppose that Φw is an L−weakly 1A−prime ideal in R.
Let a, b, c ∈ R such that a ∧ b ∧ c ̸= 0. Now, consider,

k(Φw)(a ∧ b) ∨ k(Φw)(c) =
[ ∨
a∧b∈k−1(x∧y)

Φw(a ∧ b)
]
∨
[ ∨
c∈k−1(z)

Φw(c)
]

≥
[ ∨
a∧b∧c∈k−1(x∧y∧z)

Φw(a ∧ b ∧ c)
]

= k(Φw)(a ∧ b ∧ c).

Thus, k(Φw) is an L−weakly 1A−prime ideal in G.

4. L−weakly 1A-Prime Filters

In the subsequent discussion, we present the concepts of L-weakly 1-absor-
bing prime filters and their characterizations. To begin with, let’s review
the definition provided in [1], stating that a proper filter H in R is a 1-
absorbing prime filter (referred to as a weakly 1A-prime filter) if, for all
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elements r, s, t ∈ R such that r∨ s∨ t ̸= 1, the condition r∨ s∨ t belonging
to H implies either r ∨ s belonging to H or t belonging to H. Now, we
aim to extend this outcome to the realm of L-weakly 1A-prime filters as
elaborated below.

Definition 4.1. A proper L−filter Φw in R is an L−weakly 1A−prime
filter in R when, for any elements r, s and t in R such that r ∨ s ∨ t ̸= 1,
the condition Φw(r ∨ s ∨ t) ≤ Φw(r ∨ s) ∨ Φw(t) is satisfied.

Example 4.2. Let R be an ADL defined in example 3.2 with elements
{0, r, s, t}, and L = [0, 1]. Define an L−subset Φw : R → L as follows:
Φw(0) = 0, Φw(r) = 1,Φw(s) = 3/4 and Φw(t) = 1/2. It is evident
that Φw is an L−filter. Now, consider any elements a, b, c ∈ R such that
a ∨ b ∨ c ̸= 1. Then Φw(a ∨ b ∨ c) ≤ Φw(a ∨ b) ∨ Φw(c). Consequently, Φw

qualifies as an L−weakly 1A−prime filter in R.

Subsequently, we elaborate on the notion of an L−weakly 1A−prime
filter concerning the γ-cut.

Theorem 4.3. Suppose Φw is an L−filter in R. A filter Φw
γ is a weakly

1A−prime filter in R, for all γ ∈ L if and only if Φw qualifies as an
L−weakly 1A−prime filter in R.

Proof: Assume that Φw
γ is a weakly 1A−prime filter for all γ ∈ L. In this

case, for any elements r, s, t ∈ R such that r∨s∨t ̸= 1, it follows that either
r ∨ s is an element of Φw

Φw(r∨s∨t) or t is an element of Φw
Φw(r∨s∨t). This

implies Φw(r ∨ s ∨ t) ≤ Φw(r ∨ s) or Φw(t). Consequently, Φw(r ∨ s ∨ t) ≤
Φw(r ∨ s) ∨Φw(t), leading to the desired result. Conversely, assume Φw is
an L−weakly 1A−prime filter. Consider r, s, t ∈ R such that r ∨ s ∨ t ̸= 1.
If r∨ s∨ t is an element of Φw

γ , then γ ≤ Φw(r∨ s∨ t) ≤ Φw(r∨ s)∨Φw(t),
which implies that either γ ≤ Φw(r∨s) or γ ≤ Φw(t). This, in turn, means
that either r ∨ s ∈ Φw

γ or t ∈ Φw
γ . Therefore, Φw

γ is a weakly 1A−prime
filter in R.

Corollary 4.4. A filter F in R is classified as a weakly 1A−prime filter
in R iff χF is an L−weakly 1A−prime filter in R.

In the following discourse, we clarify the relationships between L−weakly
prime filters and L−weakly 1A−prime filters within an ADL.

Theorem 4.5. Suppose Φw is an L−filter in R. Then Φw is an L−weakly
1A−prime filter in R only if Φw is an L−weakly prime filter in R .
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Proof: It is clear.

In the forthcoming example, we illustrate the presence of L−weakly
1A−prime filters in an ADL R that do not meet the criteria for being
L−weakly prime filters in R.

Example 4.6. Consider the discrete ADL D = {0, u, v} with 0 as its zero el-
ement, as defined in 2.2. Let L = {0, r, s, t, 1} represent the lattice depicted
in the given Hasse diagram:

1

t

r s

0

Consider D × L = {(d, e) | d ∈ D and e ∈ L}. Then, the structure (D ×
L,∧,∨, 0) forms an ADL through point-wise operations ∧ and ∨ on D×L,
where 0 is represented by (0, 0), the zero element in D × L. Define F =
{t, 1}. It is evident that F is a filter in L. Now define Φw : D × L→ [0, 1]
by

Φw(d, e) =


0 if (d, e) = (0, 0)

1 if d ̸= 0 and e ∈ F

0.55 otherwise

for all (d, e) ∈ D×L. Additionally, Φw is an L−filter of D×L. Then Φw
1 =

{(u, t), (v, t), (u, 1), (v, 1)}. Consequently, Φw emerges as an L−weakly
1A−prime filter of D × L. However, Φw does not qualify as an L−weakly
prime filter of D × L, as Φw

1 is a weakly 1A−prime filter of D × L but not
weakly prime filter. This is demonstrated by considering, (u, r), (v, s) in
D×L, where (u, r)∨ (v, s) = (v, t) belongs to Φw

1 implying (u, r) /∈ Φw
1 and

(v, s) /∈ Φw
1 .
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Definition 4.7 ([3]). A proper L−filter Φw in R is an L−weakly 2A−filter
in R if for any elements r,s and t ∈ R such that r∨s∨t ̸= 1, Φw(r∨s∨t) ≤
Φw(r ∨ s) ∨ Φw(r ∨ t) ∨ Φw(s ∨ t).

Theorem 4.8. Suppose Φw is an L−filter in R. If Φw is an L−weakly
1A−prime filter in R, then Φw is an L−weakly 2A−filter in R. The con-
verse of this result is not true.

Proof: Let Φw be an L−weakly 1A−prime filter in R. Then, for all
r, s, t ∈ R such that r ∨ s ∨ t ̸= 1, it holds that Φw(r ∨ s ∨ t) ≤ Φw(r ∨
s) ∨ Φw(t). By utilizing Theorem 2.12(1) and (3), we can deduce that
Φw(t) ≤ Φw(t ∨ s) = Φw(s ∨ t) and Φw(t) = Φw(t ∨ r) = Φw(r ∨ t), given
that t ≤ t∨s and t ≤ t∨r. Consequently, Φw(t) ≤ Φw(r∨t)∨Φw(s∨t). This
leads to the conclusion that Φw(r∨s∨t) ≤ Φw(r∨s)∨Φw(r∨t)∨Φw(s∨t),
thus establishing the desired result.

Example 4.9. LetD = {0, u, v} be a discrete ADL with 0 as its zero element
defined in 2.2 and L = {0, a, b, c, d, e, f, 1} be a lattice whose Hasse diagram
is given below:

1

d e f

a b c

0

Define L−filter Φw : R→ [0, 1] by

Φw(y, z) =


0 if (y, z) = (0, 0)

3/4 if y = u and z = 1

1/2 otherwise

for all (y, z) ∈ D×L. It is evident that Φw qualifies as an L−weakly filter
of D × L. Let H = Φw

3/4 = {(u, 1)}. Notably, H emerges as a filter in
D × L. Consequently, Φw identified as an L−weakly 2A−filter of D × L,
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albeit not L−weakly 1A−prime filter. This is demonstrated by considering
any elements (0, a), (u, c), (v, b) ∈ D×L, where (0, a)∨(u, c)∨(v, b) belongs
to H, implying (0, a) ∨ (u, c) = (u, e) /∈ H and (v, b) /∈ H.

Theorem 4.10. Consider L−weakly filters Φw and Ψw be in R and G,
respectively. If the product Φw × Ψw forms an L−weakly 1A−prime filter
in R×G, then both Φw and Ψw individually constitute L−weakly 1A−prime
filters in R and G, respectively.

Proof: Assume that Φw × Ψw is an L−weakly 1A−prime filter. Take
r, s, t ∈ R and x, y, z ∈ G such that r ∨ s ∨ t ̸= 1 and x ∨ y ∨ z ̸= 1. Then,

Φw(r∨s∨t)∧Ψw(x∨y∨z)=(Φw ×Ψw)(r ∨ s ∨ t, x ∨ y ∨ z)
=(Φw ×Ψw)

(
(r, x) ∨ (s, y) ∨ (t, z)

)
≤(Φw ×Ψw)

(
(r, x) ∨ (s, y)

)
∨ (Φw ×Ψw)(t, z)

=
(
Φw(r ∨ s) ∧Ψw(x ∨ y)

)
∨
(
Φw(t) ∧Ψw(z)

)
=
(
Φw(r ∨ s) ∨

(
Φw(t) ∧Ψw(z)

))
∧
(
Ψw(x ∨ y) ∨

(
Φw(t) ∧Ψw(z)

))
=
(
Φw(r ∨ s) ∨ Φw(t)

)
∧
(
Φw(r ∨ s) ∨Ψw(z)

)
∧
(
Ψw(x ∨ y) ∨ Φw(t)

)
∧
(
Ψw(x ∨ y) ∨Ψw(z)

)
≤
(
Φw(r ∨ s) ∨ Φw(t)

)
∧
(
Ψw(x ∨ y) ∨Ψw(z)

)
.

Hence the result.

The presence of L−weakly 1A−prime filters does not guarantee that
their direct product will be an L−weakly 1A−prime filter. An example
demonstrating this is provided below.

Example 4.11. Let R = {0, a, b, c, d, e, f, g, h, i, 1} and G = {0, a, b, c, d, e,
f, g, h, i, 1} be the lattice represented by the Hasse diagram respectively
given below:

Define L−subsets Φw and Ψw in R and G, respectively such that for
Φw: Φw(0) = Φw(a) = 0, Φw(b) = 1/3, Φw(c) = 0, Φw(d) = Φw(e) =
Φw(g) = 3/5,Φw(f) = 1,Φw(h) = 3/5,Φw(i) = 3/5,Φw(1) = 1 and for
Ψw: Ψw(0) = Ψw(a) = Ψw(b) = 0, Ψw(c) = Ψw(d) = Ψw(e) = Ψw(f) =
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1

g h i

d e f

a b c

0

1

g h i

d e f

c

a b

0

1/2,Ψw(i) = Ψw(g) = Ψw(h) = Ψw(1) = 1. Clearly, both Φw and Ψw are
L−weakly 1A−prime filters in R and G, respectively. However, the direct
product Φw ×Ψw is not L−weakly 1A−prime filter in R×G, as evidenced
by the example where

(Φw×Ψw)(d∨e∨f, d∨e∨f) = (Φw×Ψw)(1, 1)

= 1

≰ 3/5

= (Φw×Ψw)(d∨e, d∨e)∨(Φw×Ψw)(f, f).

Corollary 4.12. Let Φw and Ψw be L−filters in R and G, respectively,
and for all β ∈ L. Then Φw is an L−weakly 1A−prime filter in R if and
only if Φw

β = Ψw
β × G or Φw

β = R × Ψw
β , where Φw

β and Ψw
β are weakly

1A−prime filter in R and G respectively.

Lastly, we explore the homomorphism of L−weakly 1A−prime filters in
ADLs.

Theorem 4.13. Consider ADLs R and G, with a lattice homomorphism
k : R→ G. Then k−1(Ψw) is an L−weakly 1A−prime filter in R only if Ψw

is an L−weakly 1A−prime filter in G. Additionally, if k is an epimorphism
and Φw is an L−weakly 1A−prime filter in R, then k(Φw) is an L−weakly
1A−prime filter in G.



L-Weakly 1-Absorbing Prime Ideals and Filters

Proof: Let k : R → G be a lattice homomorphism. Suppose that Ψw is
an L−weakly 1A−prime filter in G. For all r, s, t ∈ G such that r∨s∨t ̸= 1.
Then

k−1(Ψw)(r ∨ s ∨ t) = Ψw
(
k(r ∨ s ∨ t)

)
= Ψw

(
k(r) ∨ k(s) ∨ k(t)

)
≤ Ψw

(
k(r) ∨ k(s)

)
∨Ψw(k(t))

= Ψw
(
k(r ∨ s)

)
∨Ψw(k(t))

= k−1(Ψw)(r ∨ s) ∨ k−1(Ψw)(t).

Thus k−1(Ψw) is an L−weakly 1A−prime filter in R. Let k be an isomor-
phism and suppose that Φw be an L−weakly 1A−prime filter in R. For all
a, b, c ∈ R such that a ∨ b ∨ c ̸= 1. Now, consider,

k(Φw)(a ∨ b) ∨ k(Φw)(c) =
[ ∨
a∨b∈k−1(x∧y)

Φw(a ∨ b)
]
∨
[ ∨
c∈k−1(z)

Φw(c)
]

≥
[ ∨
a∨b∨c∈k−1(x∧y∧z)

Φw(a ∨ b ∨ c)
]

= k(Φw)(a ∨ b ∨ c).

Thus, g(Φw) is an L−weakly 1A−prime filter in G.

5. Conclusion

This study concentrates on investigating L−weakly 1A−prime ideals and
filters within an ADL, constituting a pivotal aspect of our research. We
delve into the characteristics of these elements, exploring their properties.
Furthermore, we elucidate the connection between L−weakly prime filters
(ideals) and L−weakly 1A−prime filters (ideals) in ADLs. Notably, we
offer examples to illustrate instances where the converse relationship may
not be applicable.
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