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Abstract

In this paper, we study (open) filters and deductive systems of self-distributive

weak Heyting algebras (SDWH-algebras) and obtain some results which deter-

mine the relationship between them. We show that the variety of SDWH-algebras

is not weakly regular and every open filter is the kernel of at least one congruence

relation. Finally, we characterize those SDWH-algebras which are weakly regular

by using some properties involving principal congruence relations.
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1. Introduction

Celani and Jansana introduced the concept of weak Heyting algebras in
2005 ([4]). A WH-algebra is a bounded distributive lattice with a binary
operation → satisfying the properties of the strict implication in the modal
logic K. These algebras are a generalization of Heyting algebras. Alizadeh
and Joharizadeh ([1]) presented an algorithm to construct and count all
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nonisomorphic finite WH-algebras. San Mart́ın ([14]) studied the compat-
ible operations in some subvarieties of the variety of WH-algebras. He
studied Principal congruences in WH-algebras in [15] and characterized
the congruences in weak implicative semi-lattices in [16]. The notion of
multipliers in weak Heyting algebras was defined in [10] and the relations
between multipliers, closure operators, and homomorphisms in weak Heyt-
ing algebras were obtained.

Some of the known subvarieties of the variety WH-algebras are SRL, B,
RWH and TWH. In 1976, years before the definition of WH-algebras, the
subresiduated lattices were defined and studied in a different way by George
Epstein and Alfred Horn [9]. In the mentioned paper the authors proved
that the Lindenbaum-Tarski algebra of the calculus R4 is a subresiduated
lattice. They also introduced several subvarieties of SRL and counterpart
logic.

Another subvariety of WH-algebras is the variety of basic algebras, first
studied by Mohammad Ardeshir and Wim Rutenberg in 1998 ([2]). The
counterpart logic of this variety, also called Basic logic, was first introduced
by Albert Visser in 1981 ([17]) and then by Wim Ruitenberg in 1992 ([14]).

As mentioned in [4], variety RWH corresponds to the logic defined
by the class of reflexive Kripke models, and the variety TWH corresponds
to the logic defined by the class of transitive Kripke models.

These five varieties (WH, SRL, B, RWH and TWH) are Archimedean
varieties with congruence extension properties (CEP), but they are not
locally finite either.

A self-distributive operation is distributive over itself. They have an im-
portant role in mathematics because of their connection with many fields
such as knot theory, algebraic combinatorics, quantum groups ([7]), quan-
dles ([11]) and Hilbert algebra ([8]). Also, self-distributive operations pro-
vide solutions of the Yang–Baxter equation.

Recently, we introduced self-distributive WH-algebras and obtained
some of their properties. SDWH-algebras of orders 3 and orders 4 were
characterized. Finally, we obtained the relation between SDWH-algebras
and known subvarieties of WH-algebras, like TWH-algebras, RWH-algebras,
SRL-algebras and Basic algebras ([13]). The relations between these sub-
varieties of WH-algebra are depicted in Figure 1.

Birkhoff studied the relation between congruence relations and ideals
of lattices in [3]. He proposed in:
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Figure 1. The order of WH subvarieties

Problem 73. Find necessary and sufficient conditions, in order that the
correspondence between the congruence relations and ideals of a lat-
tice be one-to-one.

Historically ideal theory for lattices was developed by Hashimoto ([12]). He
established that there is a one-to-one correspondence between ideals and
congruence relations of a lattice L under which the ideal corresponding to
a congruence relation is a whole congruence class under it if and only if L
is a generalized Boolean algebra. An algebra with a constant 1 is weakly
regular if every two congruence relations coincide whenever they have the
same congruence class containing 1 ([7]). An interesting problem is to find
weakly regular algebras in varieties that are not varieties of weakly regular
algebras (see [5]).

In this paper, we study the (generated) open filters of SDWH-algebras
and prove that the lattice of open filters is a complete Heyting algebras
such that the compact elements are principal open filters. Then the no-
tion of deductive systems of an SDWH-algebra is introduced and the rela-
tions between deductive systems, open filters, and filters of SDWH-algebras
are obtained. It is shown that every open filter is a kernel of at least
one congruence relation on an SDWH-algebra. Moreover, the variety of
SDWH-algebras is not weakly regular. We use the concepts of deductive
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systems and open filters to define two congruence relations on every SDWH-
algebra and obtain the relation between them. Finally, we obtain the neces-
sary and sufficient conditions for which an SDWH-algebra is weakly regular.

2. Preliminaries

In this section, we recall the basic definitions and some properties of weak
Heyting-algebras which we will need in the next sections.

Definition 2.1 ([4]). An algebraH = (H,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0)
is called a weak Heyting algebra (or WH-algebra) if (H,∨,∧, 0, 1) is a
bounded distributive lattice and the following conditions hold for all
x, y, z ∈ H:

(WH1) (x → y) ∧ (x → z) = x → (y ∧ z),

(WH2) (x → z) ∧ (y → z) = (x ∨ y) → z,

(WH3) (x → y) ∧ (y → z) ≤ x → z,

(WH4) x → x = 1.

The following proposition provides some properties of WH-algebras.

Proposition 2.2. ([1, 4]) Let H be a WH-algebra. Then the following
hold for all x, y, z ∈ H:

(W1) if x ≤ y, then y → z ≤ x → z and z → x ≤ z → y,

(W2) if x ≤ y, then x → y = 1,

(W3) if x ≤ y ≤ z, then z → x = (z → y) ∧ (y → x),

(W4) x → y = x → (x ∧ y),

(W5) (x → y) → (y → z) ≤ (x → y) → (x → z).

Definition 2.3 ([4, 13]). Let H be a WH-algebra.

(1) H is a Basic algebra iff satisfies the inequality x ≤ 1 → x (I),

(2) H is a RWH-algebra iff satisfies the inequality x ∧ (x → y) ≤ y
(R),

(3) H is a TWH-algebra iff satisfies the inequality x → y ≤ z → (x →
y) (T),
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(4) H is a subresiduated lattice, or sr-lattice iff satisfies the inequalities
(T) and (R),

(5) H is an SDWH-algebra iff satisfies x → (y → z) = (x → y) →
(x → z) (SD).

Proposition 2.4 ([13]). Let H be a WH-algebra.

(1) H is a Heyting algebra if and only if x = 1 → x, for all x ∈ H,

(2) H is an SDWH-algebra if and only if x → (y → z) = y → (x → z),
for all x, y, z ∈ H.

Proposition 2.5 ([13]). Let H be an SDWH-algebra. Then the following
hold, for all x, y, z ∈ H,

(1) x → (y → x) = 1,

(2) x → (x → y) = 1 → (x → y) = x → (1 → y),

(3) x → (y → (x ∧ y)) = 1,

(4) y → z ≤ x → (y → z),

(5) x → y ≤ (z → x) → (z → y),

(6) x → y ≤ (y → z) → (x → z).

Definition 2.6 ([4]). Let L be a lattice. A non-empty subset F of L is
called a filter of L, if it is satisfies the following conditions, for all x, y ∈ L

(F1) If x, y ∈ F , then x ∧ y ∈ F ,

(F2) If x ∈ F and x ≤ y, then y ∈ F .

A filter F of a WH-algebra H is called an open filter of H, if it is satisfies
the following condition, for all x ∈ H.

(OF) If x ∈ F , then 1 → x ∈ F .

We denote by OF (H) the set of all open filters of H.

Proposition 2.7 ([3]). Let (L,∧,∨, 0, 1) be a bounded distributive lattice.
If ⟨a⟩ is the filter generated by element a ∈ L, we have

(1) ⟨a⟩ = {x ∈ L| a ≤ x },

(2) a ≤ b, then ⟨b⟩ ⊆ ⟨a⟩,
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(3) ⟨a⟩ ∨ ⟨b⟩ = ⟨a ∧ b⟩,

(4) ⟨a⟩ ∩ ⟨b⟩ = ⟨a ∨ b⟩.

Proposition 2.8 ([13, 14]). Let H be an SDWH-algebra. Given an integer
n ≥ 1, we define inductively

□0(x) = x, □1(x) = 1 → x, □n(x) = 1 → (□n−1(x)),

x →0 y = y, x →n y = x → (x →n−1 y).

Then the following hold for all x, y, z ∈ H,

(N1) x →n+1 y = □n(x → y),

(N2) □n(x ∧ y) = □n(x) ∧□n(y),

(N3) n ≤ m implies □n(x) ≤ □m(x),

(N4) □n(x → (y → z)) = □n+1(x → y) → □n+1(x → z).

Let H be WH-algebra and a, b ∈ H. By Φ(a, b), we denote the principal
congruence relation of H generated by (a, b), i.e., the smallest congruence
relation that contains (a, b).

Proposition 2.9 ([16]). LetH be WH-algebra. The binary term is defined

tn(a, b) = (a ↔ b) ∧□(a ↔ b) ∧ · · · ∧□n(a ↔ b),

where a ↔ b = (a → b)∧ (b → a). Then (x, y) ∈ Φ(a, b) if and only if there
exists n ∈ N satisfying:

(C1) x ∧ a ∧ b ∧ tn(a, b) = y ∧ a ∧ b ∧ tn(a, b),

(C2) (x ∨ a ∨ b) ∧ tn(a, b) = (y ∨ a ∨ b) ∧ tn(a, b),

(C3) tn(a, b) ≤ x ↔ y.

Definition 2.10 ([6]). An algebra A with a constant 1 is called weakly
regular iff for each congruence relations θ, ϕ on A, we have θ = ϕ whenever
[1]θ = [1]ϕ.
A variety V is weakly regular if every A ∈ V has this property.
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3. Open filters and deductive systems

In this section, we study the structure of open filters and deductive systems
of SDWH-algebras.

Let S be a non-empty subset of a WH-algebra H. The smallest open
filter of H containing S, (i.e. ∩{F ∈ OF (H)|S ⊆ F}), is called the open fil-
ter generated by S and it will be denoted by ⟨S⟩O. If S = {a}, we write
⟨a⟩O instead of ⟨ {a} ⟩O and it is called principal open filter.

Proposition 3.1. Let H be an SDWH-algebra. Then the following state-
ments are hold, for all a, b ∈ H:

(1) ⟨a⟩O = {x ∈ H|□(a) ∧ a ≤ x} = ⟨□(a) ∧ a⟩,

(2) if a ≤ 1 → a, then ⟨a⟩O = ⟨a⟩,

(3) a ≤ b implies ⟨b⟩O ⊆ ⟨a⟩O,

(4) ⟨a⟩O ∨ ⟨b⟩O = ⟨a ∧ b⟩O,

(5) ⟨a ∨ b⟩O ⊆ ⟨a⟩O ∩ ⟨b⟩O = ⟨(□(a) ∧ a) ∨ (□(b) ∧ b))⟩O,

(6) if ⟨a⟩O = ⟨b⟩O, then x → a = x → b for all x ∈ H,

(7) ⟨a → b⟩O = ⟨a → b⟩.

Proof: (1) By Proposition 2.7 part (1), we have ⟨a ∧ (1 → a)⟩ = {x ∈
H|a ∧ (1 → a) ≤ x}. Thus F = {x ∈ H|a ∧ (1 → a) ≤ x} is a filter. We
will prove that F is open. Let x ∈ F . Since 1 → a ≤ 1 → (1 → a) by
Proposition 2.5 part (4), then

a ∧ (1 → a) ≤ (1 → a) ∧ (1 → (1 → a)) = 1 → (a ∧ (1 → a)) ≤ 1 → x
by (WH1) and (W1). Then 1 → x ∈ F . Hence F is open filter containing
a. But ⟨a⟩O is the smallest open filter containing a, therefore ⟨a⟩O ⊆ F .
On the other hand, since a, 1 → a ∈ ⟨a⟩O, then a∧ (1 → a) ∈ ⟨a⟩O by (F1).
For any x ∈ F , we get x ∈ ⟨a⟩O by (F2). Hence F ⊆ ⟨a⟩O.
(2) It follows from part (1).
(3) Since a ≤ b, then a∧ (1 → a) ≤ b∧ (1 → b) by (W1). Using Proposition
2.7 part (2), we get ⟨b ∧ (1 → b)⟩ ⊆ ⟨a ∧ (1 → a)⟩. Hence ⟨b⟩O ⊆ ⟨a⟩O by
part (1).
(4) Using part (1), (WH1) and Proposition 2.7 part (3), we have

⟨a ∧ b⟩O =⟨a ∧ b ∧ (1 → (a ∧ b))⟩ = ⟨a ∧ (1 → a) ∧ b ∧ (1 → b)⟩
=⟨a ∧ (1 → a)⟩ ∨ ⟨b ∧ (1 → b)⟩ = ⟨a⟩O ∨ ⟨b⟩O.
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(5) Using part (1) and then Proposition 2.7 part (4), we have
⟨a⟩O ∩ ⟨b⟩O = ⟨□(a) ∧ a⟩ ∩ ⟨□(b) ∧ b⟩ = ⟨(□(a) ∧ a) ∨ (□(b) ∧ b)⟩.

Put u := (□(a) ∧ a) ∨ (□(b) ∧ b) = (a ∧ (1 → a)) ∨ (b ∧ (1 → b)). We will
show that u ≤ 1 → u. By (W1), (WH1) and Proposition 2.5 part (4), we
obtain

1 → u = 1 → [(a ∧ (1 → a)) ∨ (b ∧ (1 → b))]

≥ [1 → (a ∧ (1 → a))] ∨ [1 → (b ∧ (1 → b))]

= [(1 → a) ∧ (1 → (1 → a))] ∨ [(1 → b) ∧ (1 → (1 → b))]

≥ (1 → a) ∨ (1 → b)

≥ (a ∧ (1 → a)) ∨ (b ∧ (1 → b)) = u.

So ⟨u⟩O = ⟨u⟩ by part (2). Hence ⟨a⟩O ∩⟨b⟩O = ⟨(□(a)∧a)∨ (□(b)∧ b))⟩O.
Also, ⟨a ∨ b⟩O ⊆ ⟨a⟩O ∩ ⟨b⟩O by part (3).
(6) Let ⟨a⟩O = ⟨b⟩O. Then ⟨a ∧ (1 → a)⟩ = ⟨b ∧ (1 → b)⟩. We get
a ∧ (1 → a) = b ∧ (1 → b). So x → (a ∧ (1 → a)) = x → (b ∧ (1 → b)).
Using Proposition 2.5 parts (2), (4) and (WH1) we get x → a = x → b.
(7) Using part (1) and then Proposition 2.5 part (4), we get
⟨a → b⟩O = {x ∈ H|(a → b)∧ (1 → (a → b)) ≤ x} = {x ∈ H|a → b ≤ x} =
⟨a → b⟩.

In an SDWH-algebra ⟨a⟩O ∩ ⟨b⟩O, ⟨a∨ b⟩O may not be equal in general.
See the following example:

Example 3.2. Let H = {0, a, b, 1} where 0 < a, b < 1 such that a, b are not
comparable. Consider the following binary operation:

→ 0 a b 1
0 1 1 1 1
a 0 1 0 1
b 1 1 1 1
1 0 1 0 1

It is easy to see that H = (H,∨,∧,→, 0, 1) is an SDWH-algebra and
⟨a⟩O = {c ∈ H|x ≥ a ∧ (1 → a)} = {x ∈ H|x ≥ a} = {1, a},
⟨b⟩O = {c ∈ H|x ≥ b ∧ (1 → b)} = {x| ∈ H|x ≥ 0} = {1, b, a, 0}.
Then ⟨a⟩O∩⟨b⟩O = {1, a}, but ⟨a∨b⟩O = ⟨1⟩O = {1}. Therefore ⟨a∨b⟩O ⊊
⟨a⟩O ∩ ⟨b⟩O.
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Lemma 3.3. Let F be an open filter of an SDWH-algebra H and y ∈ F .
Then x → y ∈ F for all x ∈ H.

Proof: Let x ∈ H be arbitrary. We have 1 → y ∈ F by (OF). Since
1 → y ≤ x → y by (W1), then x → y ∈ F by (F2).

The next proposition gives a concrete description of the open filter
generated by a subset of an SDWH-algebra.

Proposition 3.4. Let {Fi}i∈I be a family of open filters of an SDWH-
algebra H, S ⊆ H and a ∈ H\S. Then

(1) ⟨S⟩O = {x ∈ H| s1 ∧ · · · ∧ sn ∧ □(s′1) ∧ · · · ∧ □(s′m) ≤ x for some
m,n ∈ N, s1, . . . , sn, s

′
1, . . . , s

′
m ∈ S} = ⟨S ∩□(⟨S⟩)⟩,

(2) ⟨S∪{a}⟩O = {x ∈ H|a∧s1∧· · ·∧sn∧□(a)∧□(s′1)∧· · ·∧□(s′m) ≤ x
for some m,n ∈ N, s1, . . . , sn, s

′
1, . . . , s

′
m ∈ S},

(3) ⟨∪i∈IFi⟩O = {x ∈ H|fi1 ∧ fi2 ∧ ... ∧ fim ≤ x for some j =
1, ...,m and fij ∈ Fij}.

Proof: (1) We denote by F the set from the right part of equality from
announce (above). It is easy to prove that F is a filter containing S. We
will show that F is open. Let x ∈ F . Then there exist m,n ∈ N and
s1, . . . , sn, s

′
1, . . . , s

′
m ∈ S such that s1 ∧ · · · ∧ sn ∧□(s′1)∧ · · · ∧□(s′m) ≤ x.

Since 1 → (1 → s′i) ≥ 1 → s′i by Proposition 2.5 part (4), then

1 → x ≥ (1 → s1)∧ · · · ∧(1 → sn)∧(1 → (1 → s′1)) ∧ · · · ∧(1 → (1 → s′m))

≥ (1 → s1)∧ · · · ∧(1 → sn)∧(1 → s′1)∧ · · · ∧(1 → s′m).

by (WH1). Hence 1 → x ∈ F by (F2). But ⟨S⟩O is smallest open filter
containing S, therefore ⟨S⟩O ⊆ F .
Now, we have si, 1 → s′i ∈ ⟨S⟩O. Thus s1 ∧ · · · ∧ sn ∧ (1 → s′1)∧ · · · ∧ (1 →
s′n) ∈ ⟨S⟩O by (F1). So for any x ∈ F , we have x ∈ ⟨S⟩O. Hence F ⊆ ⟨S⟩O.
(2) and (3) are a direct consequence of (1).

Proposition 3.5. LetH be an SDWH-algebra. Then (OF (H),∧,∨,{1},H)
is a complete distributive lattice.

Proof: Suppose that {Fi}i∈I is a family of open filters of H. It is easy
to check that the infimum of of this family is ∧i∈IFi = ∩i∈IFi and the
supermum is ∨i∈IFi = ⟨∩i∈IFi⟩O Therefore (OF (H),∧,∨, {1}, H) is a
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complete lattice. We will show that for every open filter F and every
family {Fi}i∈I of open filters, F ∧ (∨i∈IFi) = ∨i∈I(F ∧ Fi). Clearly,
∨i∈I(F ∧ Fi) ⊆ F ∧ (∨i∈IFi). Conversely, suppose that x ∈ F ∧ (∨i∈IFi).
Then x ∈ F and x ⩾ fi1 ∧ fi2 ∧ ...∧ fim for some j = 1, ...,m and fij ∈ Fij .
Since (H,∨,∧, 0, 1) is a distributive lattice, then x = x ∨ (fi1 ∧ fi2 ∧ ... ∧
fim) ⩾ (x ∨ fi2) ∧ ... ∧ (x ∨ fim). We have x ∨ fij ∈ F ∩ Fij , for every
1 ≤ j ≤ m. So x ∈ ∨i∈I(F ∧ Fi) by Proposition 3.4 part (3). Hence
F ∧ (∨i∈IFi) ⊆ ∨i∈I(F ∧ Fi).

Proposition 3.6. Let F1, F2 be open filters of an SDWH-algebra H. Put
F1 → F2 := {x ∈ H|⟨x⟩O ∩ F1 ⊆ F2}. Then F1 → F2 = {x ∈ H|(x ∧
□(x)) ∨ y ∈ F2, for all y ∈ F1} ∈ OF (H).

Proof: Put F := {x ∈ H|(x∧□(x))∨y ∈ F2, for all y ∈ F1}. We will prove
that F1 → F2 = F . Suppose that x ∈ F1 → F2. Then ⟨x⟩O ∩ F1 ⊆ F2.
Let y ∈ F1 be arbitrary. We get that (x ∧ □(x)) ∨ y ∈ ⟨x⟩O ∩ F1. So
(x ∧□(x)) ∨ y ∈ F2. Therefore x ∈ F . Hence F1 → F2 ⊆ F .
Conversely, suppose that x ∈ F and y ∈ ⟨x⟩O ∩ F1. Then (x ∧ □(x)) ≤ y
and y ∈ F1. We get that y = (x ∧ □(x)) ∨ y ∈ F2. Thus x ∈ F1 → F2.
Hence F ⊆ F1 → F2.
Now, we will prove that F1 → F2 is an open filter. Since (1∧□(1))∨y = 1 ∈
F2 for all y ∈ F1, then 1 ∈ F1 → F2 and F1 → F2 is a non-empty subset of
H. Let x, y ∈ H such that x ≤ y and x ∈ F1 → F2. So ⟨x⟩O ∩F1 ⊆ F2 and
⟨y⟩O ⊆ ⟨x⟩O by Proposition 3.1 part (3). Then ⟨y⟩O∩F1 ⊆ ⟨x⟩O∩F1 ⊆ F2.
Hence y ∈ F1 → F2.
Let x, y ∈ H such that x, y ∈ F1 → F2. Then ⟨x⟩O ∩ F1 ⊆ F2 and
⟨y⟩O ∩ F1 ⊆ F2. Using Proposition 3.1 part (4) and Proposition 3.4, we
have ⟨x∧ y⟩O ∩F1 = (⟨x⟩O ∨ ⟨y⟩O)∩F1 ⊆ F2. Therefore x∧ y ∈ F1 → F2.
Hence F1 → F2 is a filter.
Let x ∈ F1 → F2. Then (x ∧ □(x)) ∨ y ∈ F2, for all y ∈ F1. Since
□(x) ≤ □2(x) by (N3), then (x∧□(x))∨y ⊆ □(x)∨y = (□(x)∧□2(x))∨y.
So (□(x) ∧□2(x)) ∨ y ∈ F2. Hence F1 → F2 is open.

In the next proposition, we will prove that OF (H) forms a complete
Heyting algebra with respect to inclusion.

Proposition 3.7. Let H be an SDWH-algebra. Define binary operations
∧, ∨ and→ on OF (H) as follows: for all F1, F2 ∈ OF (H), F1∧F2 = F1∩F2,
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F1 ∨ F2 = ⟨F1 ∪ F2⟩O, F1 → F2 = {x ∈ H|⟨x⟩O ∩ F1 ⊆ F2}. Then
(OF (H),∧,∨,→, {1}, H) is a complete Heyting algebra.

Proof: By Proposition 3.5, (OF (H),∧,∨, {1}, H) is a complete lattice.
Next, we will prove that F1∧F2 ⊆ F3 if and only if F1 ⊆ F2 → F3. Suppose
F1∧F2 ⊆ F3 and x ∈ F1. Then ⟨x⟩O ⊆ F1, hence ⟨x⟩O∧F2 ⊆ F1∧F2 ⊆ F3.
Thus x ∈ F2 → F3.
Conversely, suppose that F1 ⊆ F2 → F3 and x ∈ F1 ∧ F2. Then x ∈ F1.
So x ∈ F2 → F3. We get ⟨x⟩O ∧ F2 ⊆ F3. Then x ∈ F3. Hence F1 ∧ F2 ⊆
F3.

Proposition 3.8. Let F be an open filter of an SDWH-algebra H. Then
F is a compact element of (OF (H),∧,∨,→, {1}, H) if and only if F is a
principal open filter of H.

Proof: Suppose that F is a compact element of (OF (H),∧,∨,→, {1}, H).
Since F = ∨x∈F ⟨x⟩O, then there exist x1, x2, ..., xn ∈ F such that F =
⟨x1⟩O ∨ ⟨x2⟩O ∨ ... ∨ ⟨xn⟩O. Using Proposition 3.1 part (4), we have F =
⟨x1 ∧ x2 ∧ ... ∧ xn⟩O. Hence F is a principal open filter of H.
Conversely, let F be a principal open filter of of H. Then there exists
x ∈ F such that F = ⟨x⟩O. Suppose that {Fi}i∈I is a family of open
filters of H such that F ⊆ ∨i∈IFi. Then x ∈ ⟨∪i∈IFi⟩O. Then there
exist ij ∈ I, fij ∈ Fij (j = 1, ...,m) such that fi1 ∧ fi2 ∧ ... ∧ fim ≤ x by
Proposition 3.4 part (3). So x ∈ ⟨Fi1 ∪Fi2 ∪ ...∪Fim⟩O. Hence F = ⟨x⟩O ⊆
Fi1 ∨ Fi2 ∨ ... ∨ Fim .

We define deductive system of an SDWH algebra in a usual way:

Definition 3.9. A subset D is called a deductive system of an SDWH
algebra H if it is satisfies the following conditions, for all x, y ∈ H:

(D1) 1 ∈ D,

(D2) x, x → y ∈ D imply y ∈ D.

The set of all deductive system of H is denoted by Ds(H).

Proposition 3.10. LetH be an SDWH algebra. ThenDs(H) ⊆ OF (H) ⊆
F (H).

Proof: Let D ∈ Ds(H). We will show D is an open filter.
(F1) Let x ∈ D, y ∈ H and x ≤ y. Then x → y = 1 ∈ D by (W2). So
y ∈ D by (D2).
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(F2) Let x, y ∈ D. By Proposition 2.5 part (3), we have x → (y → (x ∧ y)) =
1 ∈ D. Then y → x ∧ y ∈ D. Hence x ∧ y ∈ D by (D2).
(OF3) Let x ∈ D. We have x → (1 → x) = 1 ∈ D by Proposition 2.5 part (1).
Thus 1 → x ∈ D by (D2). Therefore D ∈ OF (H).
It is clear that every open filter is a filter of H.

In the following example, we will see that every open filter may not be
a deductive system of an SDWH-algebra and there exists a filter that is
not an open filter.

Example 3.11. Let H = {0, a, b, 1} with 0 < a, b < 1, such that a, b are not
comparable. Consider the following binary operation:

→ 0 a b 1
0 1 1 1 1
a 1 1 1 1
b b b 1 1
1 b b 1 1

It is easy to see that H = (H,∨,∧,→, 0, 1) is an SDWH-algebra and
F (H) = {{1}, {1, b}, {1, a}, H},
OF (H) = {{1}, {1, b}, H},
Ds(H) = {H}.
So Ds(H) ⫋ OF (H) ⫋ F (H) .

Theorem 3.12. Let H be an SDWH-algebra. The following are equivalent:

(1) 1 → x ≤ x, for all x ∈ H,

(2) OF (H) = Ds(H).

Proof: (1) ⇒ (2) By Proposition 3.10, we have Ds(H) ⊆ OF (H). Let
F ∈ OF (H) and x, x → y ∈ F . We will show that (D2) is true. By
y ≤ x ∨ y ≤ 1 and (W3) we have:

1 → y = (1 → (x ∨ y)) ∧ ((x ∨ y) → y).

But (x ∨ y) → y = x → y ∈ F by (WH2). Since 1 → x ≤ 1 → (x ∨ y)
and 1 → x ∈ F by (F3), then 1 → (x ∨ y) ∈ F by (F2). So 1 → y ∈ F
by (F1). Thus y ∈ F by assumption and (F2). Therefore y ∈ Ds(H) and
OF (H) = Ds(H).
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(2) ⇒ (1) Let x ∈ H. Then open filter Fx := ⟨1 → x⟩O is a deductive
system by assumption. Obviously, 1, 1 → x ∈ Fx. So x ∈ Fx by (D2).
Hence 1 → x ≤ x by Proposition 3.1 part (7).

Proposition 3.13. Let H be an SDWH-algebra. The following are equiv-
alent:

(1) x ≤ 1 → x, for all x ∈ H,

(2) F (H) = OF (H).

Proof: (1) ⇒ (2) By Proposition 3.10, we have OF (H) ⊆ F (H). Let
F ∈ F (H). We will show that F is open. Let x ∈ F . By assumption, we
have x ≤ 1 → x. Hence 1 → x ∈ F that is, F ∈ OF (H).

(2) ⇒ (1) Let x ∈ H. Then the filter Fx = {y ∈ H|x ≤ y} is an open
filter by assumption. Thus 1 → x ∈ Fx. So x ≤ 1 → x.

Corollary 3.14. An SDWH-algebra H is a basic algebra if and only if
F (H) = OF (H).

Corollary 3.15. Let H be an SDWH-algebra. The following are equiva-
lent:

(1) x = 1 → x, for all x ∈ H,

(2) H is Heyting algebra,

(3) F (H) = OF (H) = Ds(H),

(4) F (H) = Ds(H).

The smallest deductive system of an SDWH-algebra H containing S,
(i.e. ∩{D ∈ Ds(H)|S ⊆ D}), is called the deductive system generated
by S and it will be denoted by ⟨S⟩D (⟨a⟩D is called principal deductive
system.)

Proposition 3.16. Let H be an SDWH-algebra. If a, b ∈ H, then

(1) ⟨a⟩D = {x ∈ H | □n(a → x) = 1, for some n ∈ N}
= {x ∈ H | a →n x = 1, for some n ∈ N},

(2) a ≤ b implies ⟨b⟩D ⊆ ⟨a⟩D,

(3) ⟨a ∨ b⟩D = ⟨a⟩D ∩ ⟨b⟩D,

(4) ⟨a ∧ b⟩D = ⟨a⟩D ∨ ⟨b⟩D.
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Proof: (1) We will show D = {x ∈ H | □n(a → x) = 1, for some n ∈
N} is a deductive system of H. We have a → 1 = 1, so 1 ∈ D. Let
x, x → y ∈ D. Then there exist m,n ∈ N such that □n(a → x) = 1
and □m(a → (x → y)) = 1. Then □n+m(a → x) = □m(1) = 1 and
□m+n(a → (x → y)) = □n(1) = 1 by (N3). So we have

□m+n+1(a → y) = 1 → (□m+n(a → y))

= □m+n(a → x) → □m+n(a → y)

= □m+n(a → (x → y))

= □n(1) = 1.

by (N4). Thus y ∈ D. Hence D ∈ Ds(H). Also, we have □1(a → a) = 1.
Hence a ∈ D. Then there exists n ∈ N ∪ {0} such that □n(a → x) =
1 ∈ ⟨a⟩D. Since 1 → □n−1(a → x) = 1 ∈ ⟨a⟩D and 1 ∈ ⟨a⟩D, then
□n−1(a → x) = 1 ∈ ⟨a⟩D by (DS2). By inductively, we obtain a → x ∈
⟨a⟩D. But a ∈ ⟨a⟩D. So x ∈ ⟨a⟩D by (DS2). Hence D ⊆ ⟨a⟩D. Since
⟨a⟩D is the smallest deductive system containing a, we obtain D = ⟨a⟩D.
Using (N1), we have a →n x = □n−1(a → x). So it is easy to prove that
⟨a⟩D = {x ∈ H | a →n x = 1, for some n ∈ N}.
(2) Let x ∈ ⟨b⟩D. Then there exists n ∈ N such that □n(b → x) = 1 by part
(1). By assumption a ≤ b. So b → x ≤ a → x by (W1). Using (N5), we
obtain □n(b → x) ≤ □n(a → x). Therefore □n(a → x) = 1. So x ∈ ⟨a⟩D
by part (1). Hence ⟨b⟩D ⊆ ⟨a⟩D.
(3) Let x ∈ ⟨a⟩D ∩ ⟨a⟩D. Then there exist n,m ∈ N such that we have
□n(a → x) = 1 and □m(b → x) = 1 by part (2). Put p := max{m,n}. By
(N3), we obtain □p(a → x) ≥ □n(a → x) = 1. Similarly □p(b → x) = 1.
Using (WH3) and then (N2), we get □p((a∨ b) → x) = □p((a → x)∧ (b →
x)) = □p(a → x) ∧ □p(b → x) = 1. Hence x ∈ ⟨a ∨ b⟩D. Therefore
⟨a⟩D ∩ ⟨b⟩D ⊆ ⟨a ∨ b⟩D.
Conversely, we have a, b ≤ a ∨ b. By part (2), we obtain ⟨a ∨ b⟩D ⊆
⟨a⟩D, ⟨b⟩D. Hence ⟨a ∨ b⟩D ⊆ ⟨a⟩D ∩ ⟨b⟩D.

4. Congruence relations on SDWH algebras

In this section, we study some properties that establish some connections
among the congruence relations, the open filters, and the deductive systems
of an SDWH-algebra H.
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We denote by Con(H) the congruence lattice of an SDWH-algebra H.
As usual, for a θ ∈ Con(H) denote by [1]θ its congruence class containing
the element 1, so-called kernel of θ.

Definition 4.1. Let F be an open filter of an SDWH-algebra H. Define
two binary relations ΘF and ΓF on H as follows:
ΘF = {(x, y) ∈ H ×H|x ∧ f ≤ y and y ∧ f ≤ x for somef ∈ F},
ΓF = {(x, y) ∈ H ×H|x → y, y → x ∈ F}.

Proposition 4.2. Let F be an open filter of an SDWH-algebra H. Then
ΘF is the least congruence relation on H such that [1]ΘF

= F .

Proof: Clearly, ΘF is reflexive and symmetric. In order to prove transiv-
ity, let x, y, z ∈ H such that (x, y), (y, z) ∈ ΘF . We have x ∧ f1 ≤ y,
y ∧ f1 ≤ x, y ∧ f2 ≤ z and z ∧ f2 ≤ y for some f1, f2 ∈ F . Then
x∧ (f1∧f2) ≤ z, z∧ (f1∧f2) ≤ x and f1∧f2 ∈ F by (F1). So (x, z) ∈ ΘF .
Therefore ΘF is an equivalence relation on H.
Now, we will prove that ΘF compatible with ∧,∨,→. Let (x, y), (a, b) ∈
ΘF , then x ∧ f1 ≤ y, y ∧ f1 ≤ x, a ∧ f2 ≤ b and b ∧ f2 ≤ a, for some
f1, f2 ∈ F . Put f = f1 ∧ f2. Then f ∈ F by (F1). Thus x ∧ a ∧ f ≤ y ∧ b,
y ∧ b∧ f ≤ x∧ a, (x∨ a)∧ f ≤ (y ∨ b) and (y ∨ b)∧ f ≤ (x∨ a) for f ∈ F .
So (x ∧ a, y ∧ b) ∈ ΘF and (x ∨ a, y ∨ b) ∈ ΘF . Therefore ΘF compatible
with ∧ and ∨.
We will show that (a → x, a → y) ∈ ΘF , and (a → y, b → y) ∈ ΘF which
implies by transitivity of ΘF that (a → x, b → y) ∈ ΘF .
Since x ∧ f1 ≤ y, then (a → x) ∧ (a → f1) = a → (x ∧ f1) ≤ a → y by
(WH1) and (W1). Similarly, we have (a → y) ∧ (a → f1) ≤ a → x. By
Lemma 3.3, we have a → f1 ∈ F because f1 ∈ F and F is an open filter.
So (a → x, a → y) ∈ ΘF .

Since f2 ∈ F and F is open, then 1 → f2 ∈ F . We have 1 → f2 ≤ a →
f2 = a → (a ∧ f2) ≤ a → b, so a → b ∈ F . Similarly, we obtain b → a ∈ F .
Thus (a → b) ∧ (b → a) ∈ F by (F1). We have (b → y) ∧ [(a → b) ∧ (b →
a)] ≤ (a → b)∧(b → y) ≤ a → y and (a → y)∧ [(a → b)∧(b → a)] ≤ b → y.
Hence (a → y, b → y) ∈ F . Therefore ΘF is compatible with →.
Suppose that x ∈ [1]ΘF

, so (x, 1) ∈ ΘF . Then x ∧ f ≤ 1 and 1 ∧ f ≤ x for
some f ∈ F . So x ∈ F by (F2). Conversely, let x ∈ F , we have x ∧ x ≤ 1
and 1 ∧ x ≤ x for x ∈ F . Then (x, 1) ∈ ΘF , so x ∈ [1]ΘF

. Therefore
[1]ΘF

= F .
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Suppose that θ ∈ Con(H) such that [1]θ = F . Let (x, y) ∈ ΘF . Then there
exists f ∈ F such that x ∧ f ≤ y and y ∧ f ≤ x. We get x ∧ f = y ∧ f .
Since f ∈ F = [1]θ, then (f, 1) ∈ θ. So (x, x ∧ f) = (x ∧ 1, x ∧ f) ∈ θ
and (y, y ∧ f) = (y ∧ 1, y ∧ f) ∈ θ. Thus (x, y) ∈ θ by transitivity. Hence
ΘF ⊆ θ.

Corollary 4.3. Let F be an open filter of an SDWH-algebra H. Then F
is a congruence kernel in H that is, F = [1]θ for some θ ∈ Con(H),

Proposition 4.4. Let F be an open filter of an SDWH-algebra H. Then
ΓF is congruence relation on H such that F ⊆ [1]ΓF

.

Proof: Obviously, ΓF is reflexive and symmetric. The transitivity follows
from (WH3). So ΓF is an equivalence relation on H.

Let (x, y) ∈ ΓF , and (a, b) ∈ ΓF . Then x → y, y → x ∈ F and
a → b, b → a ∈ F . By (W1) and (WH1), we obtain x → y ≤ (x ∧ a) →
y = (x ∧ a) → (y ∧ a) and y → x ≤ (y ∧ a) → x = (y ∧ a) → (x ∧ a).
Then (x ∧ a) → (y ∧ a) ∈ F and (y ∧ a) → (x ∧ a) ∈ F by (F2). So
(x ∧ a, y ∧ a) ∈ ΓF . Similarly, we can prove that (a ∧ y, b ∧ y) ∈ ΓF . Then
(x ∧ a, y ∧ b) ∈ ΓF by transitivity. Therefore ΓF compatible with ∧.
Using (W1) and (WH2), we get x → y ≤ x → (y ∨ a) = (x ∨ a) → (y ∨ a)
and y → x ≤ y → (x ∨ a) = (y ∨ a) → (x ∨ a). Thus (x ∨ a, y ∨ a) ∈ ΓF .
Similarly, (a ∨ y, b ∨ y) ∈ ΓF . Thus (x ∨ a, y ∨ b) ∈ ΓF Therefore ΓF

compatible with ∨.
By Proposition 2.5 part (5), we have x → y ≤ (a → x) → (a → y) and
y → x ≤ (a → y) → (a → x). By (F2), we obtain (a → x, a → y) ∈ ΓF .
By Proposition 2.5 part (6), b → a ≤ (a → y) → (b → y) and a → b ≤
(b → y) → (a → y). Using (F2), we get (a → y, b → y) ∈ ΓF . Hence
(a → x, b → y) ∈ ΓF . So ΓF compatible with →. Therefore ΓF is a
congruence relation on H. Let x ∈ F be arbitrary. Since F is open, then
1 → x ∈ F . By (W2) and (F2), x → 1 ∈ F . Thus F ⊆ [1]ΓF

.

In Proposition 4.4, F and [1]ΓF
may not be equal in general. See the

following example:

Example 4.5. Consider the open filter F = {1, b} of the SDWH-algebra H
in Example 3.11. Then F ⊊ [1]ΓF

= H.
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Corollary 4.6. Let D be a deductive system of an SDWH-algebra H.
Then ΓD is the greatest congruence relation on H such that D = [1]ΓD

.

Proof: By Proposition 3.10 and Proposition 4.4, ΓD is congruence rela-
tion on H such that D ⊆ [1]ΓD

. Now, suppose that x ∈ [1]ΓD
. Then

1 = x → 1 ∈ D and 1 → x ∈ D. By (D2), we get x ∈ D. Hence [1]ΓD
⊆ D.

Suppose that θ ∈ Con(H) such that D = [1]ΓD
. Let (x, y) ∈ θ. Then

(x → y, y → y) = (x → y, 1). So x → y ∈ [1]θ = D. Similarly y → x ∈ D.
Hence (x, y) ∈ ΓD. Therefore θ ⊆ ΓD.

Proposition 4.7. Let F be an open filter of an SDWH-algebra H. Then
H
ΓF

is a Heyting algebra if and only if F is a deductive system of H.

Proof: Suppose that F is a deductive system ofH and x ∈ H be arbitrary.
We have 1 → ((1 → x) → x) = (1 → x) → (1 → x) = 1 ∈ F . Since
F is a deductive system and 1 ∈ F , then (1 → x) → x ∈ F . Also,
x → (1 → x) = 1 → (x → x) = 1 ∈ F . Thus (x, 1 → x) ∈ ΓF that is,
[x]ΓF

= [1]ΓF
→ [x]ΓF

for all x ∈ H. Hence H
ΓF

is a Heyting algebra.
Conversely, let x, x → y ∈ F . Then we have [x] = [x → y] = [1]. Since
H
ΓF

is a Heyting algebra, then [x ∧ y] = [x ∧ (x → y)] = [1]. We obtain
x ∧ y ∈ F . Hence y ∈ F .

Proposition 4.8. Let θ be a congruence relation on an SDWH-algebra H.
Then

(1) [1]θ ∈ OF (H),

(2) Θ[1]θ ⊆ θ ⊆ Γ[1]θ .

Proof: (1) Let x, y ∈ [1]θ. Then (x, 1) ∈ θ and (y, 1) ∈ θ. By compatibil-
ity of θ with ∧, we have (x ∧ y, 1) ∈ θ. Thus x ∧ y ∈ [1]θ.
Let x ∈ [1]θ such that x ≤ y. Then (x, 1) ∈ θ and x ∨ y = y. So
(y, 1) = (x ∨ y, 1 ∨ y) ∈ θ. Hence [1]θ is a filter. If x ∈ [1]θ, then (x, 1) ∈ θ.
So (1 → x, 1 → 1) ∈ θ. Hence [1]θ is an open filter.
(2) Let (x, y) ∈ θ[1]θ . Then there exists f ∈ [1]θ such that x ∧ f ≤ y and
y ∧ f ≤ x. We obtain x ∧ f = y ∧ f and (f, 1) ∈ θ. So (x ∧ f, x) ∈ θ
and (y ∧ f, y) ∈ θ. Thus (x, y) ∈ θ. Hence θ[1]θ ⊆ θ.
Now, suppose that (x, y) ∈ θ. Then (x → y, y → y) = (x → y, 1) ∈ θ and
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(y → x, x → x) = (y → x, 1) ∈ θ. So x → y ∈ [1]θ and y → x ∈ [1]θ. Hence
(x, y) ∈ Γ[1]θ . Therefore θ ⊆ Γ[1]θ

In an SDWH-algebra θ and Θ[1]θ may not be equal in general. See the
following example.

Example 4.9. Let H = {0, a, b, 1} where 0 < a < b < 1. Consider the
following binary operation:

→ 0 a b 1
0 1 1 1 1
a 1 1 1 1
b a a 1 1
1 a a b 1

Obviously H = (H,∨,∧,→, 0, 1) is an SDWH-algebra. Consider the con-
gruence relation θ = {(1, 1), (b, b), (1, b), (b, 1), (a, a), (0, 0), (a, 0), (0, a)}
on H. Then [1]θ = {1, b} is an open filter of H and

Θ[1]θ = {(1, 1), (b, b), (1, b), (b, 1), (a, a), (0, 0)}.

Hence Θ[1]θ ⊊ θ.

For every RWH-algebra H, there is an isomorphism between the lattice
of open filters of H and the lattice congruence relation of H (see [4, 15]).

If H is an SDWH-algebra, then he natural map θ 7→ [1]θ associated with
Con(H) and OF (H) is well defined and onto, but not one-to-one in general
as you can see in the following example. This example also shows that the
open filters of SDWH-algebras can be kernels of more than one congruence
relation. Hence the variety of SDWH-algebras is not weakly regular.

Example 4.10. Let H = {0, a, b, 1} where 0 < a < b < 1. Consider the
following binary operation:

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 1 1 1
1 0 a a 1

It is easy to see that H = (H,∨,∧,→, 0, 1) is an SDWH-algebra and for all
x ∈ H we have 1 → x ≤ x. We have OF (H) = Ds(H) = {{1}, {1, b, a}, H}.
But we have four congruence relations on H as follows:
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θ1 = ∆ = {(0, 0), (a, a), (b, b), (1, 1)}, [1]θ1 = F1 = {1},
θ2 = ∆ ∪ {(a, b), (b, a)}, [1]θ2 = F1 = {1},
θ3 = ∆ ∪ {(a, b), (b, a), (1, b), (b, 1), (1, a), (a, 1)}, [1]θ3 = F2 = {1, b, a},
θ4 = ∇ = {(x, y)|x, y ∈ H}, [1]θ4 = F3 = H.

Remark. Let H be an SDWH-algebra. Then the natural map θ 7→ [1]θ is
an order isomorphism from Con(H) to OF (H) if and only if H is a weakly
regular algebra.

In the following, we will obtain a characterization of weakly regular
SDWH-algebras.

Lemma 4.11. Let H be an SDWH-algebra and a, b ∈ H. Then (x, y) ∈
Φ(a, b) if and only if

(1) x ∧ a ∧ b ∧ (a ↔ b) = y ∧ a ∧ b ∧ (a ↔ b),

(2) (x ∨ a ∨ b) ∧ (a ↔ b) = (y ∨ a ∨ b) ∧ (a ↔ b),

(3) a ↔ b ≤ x ↔ y.

Proof: For all n ∈ N, we have a → b ≤ □n(a → b) and b → a ≤ □n(b →
a) by (N6). Then a ↔ b ≤ □n(a ↔ b) by (N2). So tn(a, b) = a ↔ b. The
result follows from Proposition 2.9.

Recall that a variety V has equationally definable principal congruences
(EDPC) if there exists a finite family of quaternary terms {ui, vi}ri=1 such
that for every algebra A in V and every principal congruence Φ(a, b) of A,
if and only if ui(a, b, c, d) = vi(a, b, c, d) for each i = 1, ..., r ([6]). For alge-
braizable logics, EDPC corresponds to the deduction-detachment theorem.

Corollary 4.12. The variety of SDWH-algebras has EDPC.

Proposition 4.13. Let c be an element of an SDWH-algebra H. Then

(1) Φ(1, c) = Θ⟨c⟩O ,

(2) Φ(1, c) = Θ[1]Φ(1,c)
.

Proof: (1) Let (x, y) ∈ Φ(1, c). We have x∧ c∧ (1 → c) = y ∧ c∧ (1 → c)
by Lemma 4.11 part (1) and (W2). Since c ∧ (1 → c) ∈ ⟨c⟩O, then we
obtain (x, y) ∈ Θ⟨c⟩O . So Φ(1, c) ⊆ Θ⟨c⟩O .
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Conversely, suppose that (x, y) ∈ Θ⟨c⟩O . Then there exists f ∈ ⟨c⟩O such
that x∧f ≤ y and y∧f ≤ x. We get c∧ (1 → c) ≤ f and x∧f = y∧f . So

x∧c∧(1 → c) = (x∧f)∧c∧(1 → c) = (y∧f)∧c∧(1 → c) = y∧c∧(1 → c).

Hence x ∧ c ∧ 1 ∧ (1 ↔ c) = y ∧ c ∧ 1 ∧ (1 ↔ c). It is obvious that
(x∨ c∨ 1)∧ (1 ↔ c) = (y ∨ c∨ 1)∧ (1 ↔ c). We have x∧ f = y ∧ f ≤ y, so
x → f = x → (x ∧ f) ≤ x → y by (W4). Thus

1 → c = 1 → (c ∧ (1 → c)) ≤ 1 → f ≤ x → f ≤ x → y.

Similarly, we can prove that 1 → c ≤ y → x. Thus 1 ↔ c ≤ x ↔ y. Hence
(x, y) ∈ Φ(1, c) by Lemma 4.11.
(2) By Proposition 4.8 part (2), we have Θ[1]Φ(1,c)

⊆ Φ(1, c). Conversely,
suppose that (x, y) ∈ Φ(1, c) = Θ⟨c⟩O . Then there exists f ∈ ⟨c⟩O such
that c ∧ (1 → c) ≤ f and x ∧ f = y ∧ f . We have
1 ∧ c ∧ 1 ∧ (1 ↔ c) = f ∧ c ∧ 1 ∧ (1 ↔ c),
(1 ∨ c ∨ 1) ∧ (1 ↔ c) = (f ∨ c ∨ 1) ∧ (1 ↔ c),
1 ↔ c ≤ x ↔ f .
Therefore (1, f) ∈ Φ(1, c) by Lemma 4.11. Thus f ∈ [1]Φ(1,c). Hence
(x, y) ∈ Θ[1]Φ(1,c)

.

Theorem 4.14. Let H be an SDWH-algebra. Then H is weakly regular if
and only if Φ(a, b) = Θ[1]Φ(a,b)

, for all a, b ∈ H.

Proof: Suppose that H is weakly regular and a, b are two arbitrary el-
ements of H. We have Φ(a, b) ∈ Con(H), so F = [1]Φ(a,b) ∈ OF (H) by
Proposition 4.8. Also, ΘF ∈ Con(H) such that [1]ΘF

= F by Proposi-
tion 4.2. Since H is weakly regular, then ΘF = Φ(a, b). Hence Φ(a, b) =
Θ[1]Φ(a,b)

.
Conversely, let θ1, θ2 ∈ Con(H) such that [1]θ1 = [1]θ2 . Suppose that

(x, y) ∈ θ1, then Φ(x, y) ⊆ θ1. We obtain [1]Φ(x,y) ⊆ [1]θ1 = [1]θ2 . It is
easy to show that Θ[1]Φ(x,y)

⊆ Θ[1]θ2
. Using assumption and Proposition

4.8 part (2), we obtain Φ(x, y) ⊆ θ2. Thus (x, y) ∈ θ2. Hence θ1 ⊆ θ2.
Similarly, we can prove that θ2 ⊆ θ1. Therefore θ1 = θ2.

Corollary 4.15. Let H be an SDWH-algebra. If for all a, b ∈ H, there
exist c ∈ H such that Φ(a, b) = Φ(1, c), then H is weakly regular.

Proof: It follows from Theorem 4.14 and Proposition 4.13.
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Proposition 4.16. Let H be an SDWH-algebra such that H = {0, a, b, 1},
0 < a, b < 1, a, b are not comparable. Then H is weakly regular.

Proof: We will show that Φ(a, 0) = Φ(b, 1), Φ(b, 0) = Φ(a, 1) and Φ(a, b) =
Φ(1, 0). We have

a ∧ b ∧ 1 ∧ (1 → b) = 0 ∧ b ∧ 1 ∧ (1 → b),
(a ∨ b ∨ 1) ∧ (1 → b) = (0 ∨ b ∨ 1) ∧ (1 → b),
1 ∧ a ∧ 0 ∧ (a → 0) = b ∧ a ∧ 0 ∧ (a → 0),
(1 ∨ a ∨ 0) ∧ (a → b) = (1 ∨ a ∨ 0) ∧ (a → 0).

Also, we have a → 0 = 1 → b by (W5). Then a ↔ 0 = 1 ↔ b. So
Φ(a, 0) = Φ(b, 1). Similarly, we can prove Φ(b, 0) = Φ(a, 1). We have

a ∧ 1 ∧ 0 ∧ (1 → 0) = b ∧ 1 ∧ 0 ∧ (1 → 0),
(a ∨ 1 ∨ 0) ∧ (1 → 0) = (b ∨ 1 ∨ 0) ∧ (1 → 0),
1 ∧ a ∧ b ∧ (a ↔ b) = 0 ∧ a ∧ b ∧ (a ↔ b),
(1 ∨ a ∨ b) ∧ (a ↔ b) = (0 ∨ a ∨ b) ∧ (a ↔ b).

By (W5), we have a → b = 1 → b and b → a = 1 → a. Then
a ↔ b = (1 → b) ∧ (1 → a) = 1 → (a ∧ b) = 1 ↔ 0.

So Φ(a, b) = Φ(1, 0). Hence H is weakly regular by Corollary 4.15.

5. Conclusions and future works

In this paper, we have studied SDWH-algebras in the context of Birkhoff’s
Problem 73, that is we have studied whether or not SDHW-algebras are
weakly regular. To do this, we have considered open filters and deductive
systems in SDWH-algebras to show that in general, they are not weakly
regular, and give necessary and sufficient conditions for an SDWH-algebra
to be weakly regular by using principal congruence relations.

In the future, we will introduce and study a corresponding logic to
SDWH-algebras and investigate some basic properties of this logic. But
here are some open questions still about SDW-algebras to be studied.
Is there any representation theorem for SDWH-algebras? Is the class of
weakly regular SDWH-algebras a variety? With positive answer to this,
we should know the relation between this proper subvariety of SDWH-
algebras and the other subvarieties of WH- algebras such as the variety
the varieties of RWH, TWH, SRL and B. It would be interesting to find a
characterization of the WH-spaces that correspond to the algebras in the
subvariety of SDWH-algebras.
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DOI: https://doi.org/10.1007/978-3-0348-8442-6.

[8] A. Diego, Sur les algebras de Hilbert, Ed. Herman, Collection de Logique
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