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Abstract

We construct free algebras in the variety generated by the equivalential algebra

with conjunction on dense elements and compute the formula for the free spec-

trum of this variety. Moreover, we describe the decomposition of free algebras

into directly indecomposable factors.
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1. Introduction

The equivalential algebra with conjunction on dense elements was intro-
duced in [5]. This algebra turned out to be one of the four polynomially
nonequivalent three-element algebras, that generates a congruence per-
mutable Fregean variety. The other algebras are as follows. The first one
is the three-element equivalential algebra (without any additional opera-
tion). It is very well known, also when it comes to the construction of the
n-generated free algebras, as well as the cardinality of these algebras for
small n and for some subvarieties (see [2], [9], [6], [7]). The other one is the
three-element Brouwerian semilattice. This algebra also has been very well
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researched ([3]). The third of these algebras is the three-element equiv-
alential algebra with conjunction on the regular elements. It was studied
in [4]. The mentioned work contains the description of this algebra, its
most important properties, the representation theorem, the construction
of the free algebra and the free spectrum.

Whereas, when it comes to the equivalential algebra with conjunction
on dense elements, we proved in [5] the representation theorem and we give
a sketch of the construction the finitely generated free algebras. The aim of
this paper is to extend the results of [5] by providing the formula for the free
spectrum (Section 4). In this way we complete the full description (with
accuracy to the polynomially equivalence) of the free algebras in congruence
permutable Fregean varieties generated by three-element algebras.

The second aim of this article is to describe the directly indecompos-
ability of the free algebras in the variety generated by the equivalential
algebra with conjunction on dense elements (Theorem 3.6).

2. Equivalential algebras with conjunction
on the dense elements

Preliminary facts can be found in [5], but for the convenience of the reader
we recall some basic information.

Definition 2.1. An equivalential algebra with conjunction on the
dense elements is an algebra D := ({0, ∗, 1}, ·, d, 1) of type (2, 2, 0), where
({0, ∗, 1}, ·, 1) is an equivalential algebra and d is a binary commutative
operation presented in the table below (on the right):

· 1 ∗ 0
1 1 ∗ 0
∗ ∗ 1 0
0 0 0 1

d 1 ∗ 0
1 1 ∗ 1
∗ ∗ ∗ ∗
0 1 ∗ 1

The interpretation of the name is given in [5, Definition 4.1]. We denote
by V(D) the variety generated by D.

A crucial role in the construction of the finitely generated free algebras
is played by the subdirectly irreducible algebras in V(D).
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Proposition 2.2. [5, Proposition 4.6] There are only three (up to iso-
morphism) nontrivial subdirectly irreducible algebras in V(D) : D,2,2∧,
where:

2 := {{0, 1}, ·, d, 1}, where d ≡ 1,

2∧ := {{∗, 1}, ·, d, 1}, where d(x, y) := x ∧ y.

Whatsmore, 2 and 2∧ are subalgebras of D.

Let A ∈ V(D). We denote by Cm(A) the set of all completely meet-
irreducible congruences on A.

We define an order ≤ on Cm(A) as follows:

φ ≤ ψ iff φ ⊆ ψ, for φ,ψ ∈ Cm(A).

We use the following notation:

L := {µ ∈ Cm(A) : A/µ ∼= 2},

L := {µ ∈ Cm(A) : A/µ ∼= D},

P := {µ ∈ Cm(A) : A/µ ∼= 2∧},

L := L ∪ L.

In our case it turns out that

φ ≤ ψ iff (φ ∈ L,ψ ∈ L,φ < ψ) or φ = ψ. (O1)

Moreover, if φ < ψ, then ψ = φ+.
Let φ,ψ ∈ Cm(A). We introduce an equivalence relation on Cm(A) as

follows (see [1, p. 51]):

φ ∼ ψ iff the intervals [φ,φ+] and [ψ,ψ+] are projective.

Definition 2.3. Let A ∈ V(D). The structure Cm(A) := (Cm(A),≤,∼)
is called a frame of A.

From [5, Proposition 5.4, Theorem 5.5] we get that the equivalence
classes of the relation ∼ on Cm(A) take the following form:

1. L ∈ Cm(A)/∼,

2. µ/∼ = {µ} for all µ ∈ L ∪ P .
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Moreover, (L ∪ {1A}, •, 1A) forms a Boolean group, where µ1 • µ2 :=
(µ1÷µ2)′ for µ1, µ2 ∈ L (÷ denotes the symmetric difference and ′ denotes
the complement of a set).

Now, we recall that every finite algebra from V(D) can be naturally
decomposed as the direct product of two algebras:

Proposition 2.4. Let A ∈ V(D) be finite. Then:

A ∼= A/∧L × A/∧P .

To construct the free algebras in V(D) we need the notion of the heredi-
tary sets [5, Definition 6.1] and the representation theorem
[5, Theorem 6.2].

Definition 2.5. Let A ∈ V(D) and Z ⊆ Cm(A). A set Z is hereditary
if:

1. Z = Z ↑,

2. L ⊆ Z or ((L ∩ Z) ∪ {1A}, •) is a hyperplane in (L ∪ {1A}, •).

We will denote by H(A) the set of all hereditary subsets of Cm(A).

Theorem 2.6. Let A ∈ V(D) and let A be finite. Then the map
M : A ∋ a → M(a) := {µ ∈ Cm(A) : a ∈ 1/µ} is the isomorphism
between A and (H(A),↔, d,1), where

Z ↔ Y := ((Z ÷ Y ) ↓)′

d(Z, Y ) := [Z ∪ ((Z ↓)′ ∩ L)] ∩ [Y ∪ ((Y ↓)′ ∩ L)],

1 := Cm(A),

for Z, Y ∈ H(A).

Using the above theorem we can build up elements of algebra A in V(D)
from the set Cm(A) with the order and the partial Boolean operation,
i.e. from the structure (Cm(A),≤, •).
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3. Free algebras

Let n ∈ N and let X be an n-element set of free generators of FD(n), where
D = {0, ∗, 1} is ordered by 0 < ∗ < 1. In [5] (Section 7) we give only the
sketch of the construction of FD(n), which was based on the observation
that we can identify any element of Cm(FD(n)) with a certain map, which
sends free generators in some subdirectly irreducible algebra in V(D). Now,
we will give a more detailed description of this construction, however, based
on a slightly different approach, using the fact that the only subdirectly
irreducible algebras in V(D) are D and its subalgebras 2∧ and 2 given by
sets {∗, 1} and {0, 1} (2.2). Recall that

L = {µ ∈ Cm(FD(n)) : FD(n)/µ ∼= D},

L = {µ ∈ Cm(FD(n)) : FD(n)/µ ∼= 2},

L = L ∪ L,

P = {µ ∈ Cm(FD(n)) : FD(n)/µ ∼= 2∧}.

We denote by e the map e : {0, ∗, 1} → {0, 1} given by e(0) = 0 and
e(∗) = e(1) = 1. Clearly, such defined e is a homomorphism of D onto 2.

Put now S(n) :=
{
f : X → D : f−1({0, ∗}) ̸= ∅

}
. As FD(n) is the free

algebra, every f ∈ S(n) can be uniquely extended to a homomorphism f
from FD(n) to D with Im f equal to one of three algebras: D, 2∧, or 2.
Thus ker f ∈ Cm(FD(n)). In S(n) we introduce an order relation ⪯ and
a partial binary operation · in the following way. For f, g ∈ S(n) we put
f ⪯ g if and only if f = g or g = e ◦ f , and if ∗ /∈ Im f ∪ Im g we define
(f · g)(x) := 1 if f(x) = g(x) and (f · g)(x) := 0 if f(x) ̸= g(x) for x ∈ X.

The following theorem allows us to identify the structures (S(n),⪯, ·)
and (Cm(FD(n)),≤, •), where ‘•’ is the partial Boolean operation on L.

Theorem 3.1. The map φ : S(n) ∋ f → ker f ∈ is an isomorphism of the
structures (S(n),⪯, ·) and (Cm(FD(n)),≤, •).

Proof: (1) φ is onto. Let µ ∈ Cm(FD(n)). Then FD(n)/µ is isomorphic
to K ∈ {D,2,2∧}. In all three cases we denote the isomorphism by ι.
Put πµ(t) = t/µ for t ∈ FD(n). Then ι ◦ πµ : FD(n) → K is a surjective
homomorphism. Hence ι ◦ πµ|X ∈ S(n) and φ (ι ◦ πµ|X) = ker(ι ◦ πµ) =
ker(πµ) = µ, as desired.
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(2) φ is one-to-one. Suppose, on the contrary, that f, g ∈ S(n), f ̸= g
and ker f = ker g. There is no loss of generality in assuming that there
exists x ∈ X such that f(x) < g(x). Clearly, f(x) = 0 and g(x) = ∗. Then
from Im f ∼= FD(n)/ ker f = FD(n)/ ker g ∼= Im g we deduce that Im f =
Im g. As 0 ∈ Im f and ∗ ∈ Im g, we have D = Im f = Im g. In consequence,
there exists y ∈ X such that f(y) = ∗, and hence f(yxx) = 1 = f(1), and
so 1 = g(yxx) = g(y) ∗ ∗ = g(y) = f(y), a contradiction.

(3) φ nad φ−1 are monotone. Let f, g ∈ S(n). If f ≺ g, then
g = e ◦ f . Since e is a homomorphism, we get g = e ◦ f , and so ker f ≤
ker g. Conversely, assume that ker f < ker g. From (O1) we have Im g ∼=
FD(n)/ ker g ∼= 2 and Im f ∼= FD(n)/ ker f ∼= D, and, in consequence,
Im f = D. Then there exists x ∈ X such that f(x) = ∗, and so
e(f(x)) = 1. Hence ker f < ker(e ◦ f) ∈ Cm(FD(n)). Thus, using (O1) we
obtain ker g = ker(e ◦ f), which implies g = e ◦ f , as required.

(4) φ preserves the partial operations. Let f, g ∈ S(n), f ̸= g, and
∗ /∈ Im f ∪ Im g. Then FD(n)/ ker f ∼= Im f = 2 and FD(n)/ ker g ∼=
Im g = 2. Moreover, ker f • ker g = (ker f ÷ ker g)′ ∈ Cm(FD(n)) and
Cm(FD(n))/(ker f • ker g) ∼= 2. Put h := φ−1(ker f • ker g). For x ∈ X
we have h(x) = 1 iff (x, 1) ∈ ker f • ker g iff (f(x) = 1 and g(x) = 1) or
(f(x) = 0 and g(x) = 0) iff (f · g)(x) = 1. Thus ker f • ker g = φ(f · g),
which completes the proof.

From the above theorem we get the following corollaries.

Corollary 3.2. |Cm(FD(n))| = 3n − 1.

Corollary 3.3.

1. L = {ker f : f ∈ S(n) and ∗ /∈ Im f};

L = {ker f : f ∈ S(n) and {0, ∗} ⊆ Im f};

P = {ker f : f ∈ S(n) and 0 /∈ Im f}.

Moreover, for f, g ∈ S(n) we have

2. ker f ≤ ker g if and only if {0, ∗} ⊆ Im f , ∗ /∈ Im g and f−1({∗, 1}) =
g−1({1});

3. the Boolean operation on L ∪ {1FD(n)} is defined by (1, x) ∈ ker f •
ker g if and only if f(x) = g(x) for x ∈ X.
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Theorem 3.1 allows us to identify elements from Cm(FD(n)) with maps
f from X to D. In the diagram, we will label these maps by the set of
generators belonging to the kernel of f .

Observe that the construction of the frame Cm(FD(n)) is similar to the
construction of the frame of the equivalential algebras with conjunction on
the regular elements, described in [4]. The number of elements of the
frame is the same in both cases, but the equivalence classes of relation ∼
are different.

This construction proceeds as follows:

1. Each µ ∈ Cm(FD(n)) is labelled by the set of indices {i : xi ∈
X ∩ (1/µ)} ⊆ {1, . . . , n}.

2. L has 2n−1 elements labelled by all proper subsets of {1, . . . , n} and
these elements form only one equivalence class.

3. P has 2n − 1 elements labelled by all proper subsets of {1, . . . , n},
but in this case each element forms a one-element equivalence class.

4. If µ ∈ L is labelled by S ⊊ {1, . . . , n}, so below µ (i. e. in L) there
are elements labelled by all proper subsets of S.

5. Each µ ∈ L forms a one-element equivalence class.

We will also use the following designations in the figures:

1. Each dot denotes an element of the frame.

2. Straight lines denote a partial ordering directed upwards.

3. The equivalence class with more than one element is marked with an
ellipse.

4. Each dot that does not lie in an ellipse denotes a one-element equiv-
alence class.

3.1. FD(2)

Cm(FD(2)) has 8 elements (Fig. 1): So, there are 9 hereditary sets on the
left side and 8 hereditary sets on the right side. Finally, |FD(2)| = 9·8 = 72.



406 S lawomir Przyby lo, Katarzyna S lomczyńska

{1} ∅ {2}

∅ ∅

{1} ∅ {2}

Figure 1. Cm(FD(2))

3.2. FD(3)

Cm(FD(3)) has 26 elements (Fig. 2): On the left side there are 4536 heredi-
tary sets, and on the right side there are 128 hereditary sets. Consequently,
|FD(3)| = 4536 · 128 = 580608.

{1,2} {1,3} {2,3} {1} {2} {3} ∅

{1} ∅ {2} {1} ∅ {3} {2} ∅ {3} ∅ ∅ ∅

{1,2} {1,3} {2,3} {1} {2} {3} ∅

Figure 2. Cm(FD(3))

3.3. Direct indecomposability of FD(n)

Let us start from the following observation.

Proposition 3.4. Let g ≡ 0 ∈ S(n). Then ker g is the only minimal
element of (Cm(FD(n)),≤) lying in L.

Proof: Assume to the contrary that f ∈ S(n) and ker f < ker g. Then
∗ ∈ Im f and g−1({1}) = f−1({∗, 1}) ̸= ∅, a contradiction.

To prove the uniqueness take h ∈ S(n) such that ∗ /∈ Imh, and
h ̸= g. Take x0 ∈ X such that h(x0) = 1. Define f0 : X → D given
by f0(x) = h(x) for x ̸= x0 and f0(x) = ∗ for x = x0. Since 0 ∈ Imh,
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we get {0, ∗} ⊆ Im f0 and f−1
0 ({∗, 1}) = h−1({1}). From Corollary 3.3 we

obtain ker f0 < kerh.

Example 3.5.

1. |X| = 1. Then Cm(FD(1)) = L ∪ P , where L := {ker f : f(x1) = 0}
and P := {ker f : f(x1) = ∗}. From Proposition 2.4 we get FD(1) ∼=
2 × 2∧.

2. |X| = 2. From Fig. 1 we see that L = {µ1, µ2}, µ1 ≤ ker f , where
f(x1) = 1, f(x2) = 0, and µ2 ≤ ker g, where g(x1) = 0, g(x2) = 1.
Then µ1 ∧ µ2 ≤ ker f ∧ ker g ≤ ker f • ker g = kerh, where h(x1) = 0,
h(x2) = 0. Hence

∧
L = µ1 ∧ µ2. Moreover ker f < µ1 ∨ µ2, and

so µ1 ∨ µ2 = 1FD(2). Thus FD(2)/
∧
L ∼= FD(2)/µ1 × FD(2)/µ2

∼=
D × D, and finally, from [Proposition 2.4] FD(2) ∼= D2×(2

∧
)3.

Unfortunately, for n ≥ 3, the situation is not so easy, since FD(n)/
∧
L

is not directly decomposable.

Theorem 3.6. FD(n)/
∧
L is directly indecomposable for n ≥ 3.

Proof: Let n ≥ 3. For contradiction assume that FD(n)/
∧
L is directly

decomposable. Then, since Con(FD(n)/
∧
L) = {φ/

∧
L : φ ∈ Con FD(n)

and
∧
L ≤ φ}, we can find α1, α2 ∈ Con FD(n) such that

∧
L < αi for

i = 1, 2,
∧
L = α1 ∧α2 and α1 ∨α2 = 1FD(n). For i = 1, 2 define M(αi) :=

{µ ∈ Cm(FD(n)) : αi ≤ µ}. First, we show that M(αi) ∩ L ̸= ∅. For
this purpose, we deduce from properties of αi (i = 1, 2) that αi ̸= 1FD(n).
Thus M(αi) ̸= ∅ and if M(αi) ∩ L = ∅, then we would find µ ∈ M(αi)
such that µ ∈ P , and so

∧
L < µ. From [5, Proposition 5.4] we know that

|µ/ ∼| = 1, and this means, by [1, Lemma 22], that there exists γ ∈ L such
that γ ≤ µ, which contradicts (O1). Thus, we get M(αi) ∩ L ̸= ∅, and,
consequently, M(αi) ∩ L ̸= ∅.

Moreover, using [8, Theorem 4.4.(1)], we deduce that M(αi) ∩ (L ∪
{1FD(n)}) (i = 1, 2) is a Boolean subgroup of (L ∪ {1FD(n)}, •). Boolean

groups can be treated as vector spaces over Z2. We show that L∪{1FD(n)}
can be split as the direct sum of its vector subspaces M(αi)∩(L∪{1FD(n)})
(i = 1, 2). Firstly, we observe that M(α1) ∩M(α2) = ∅, since otherwise
there exists µ ∈ M(α1) ∩M(α2), and so 1FD(n) = α1 ∨ α2 ≤ µ, a contra-

diction. Take now µ ∈ L such that µ /∈ M(α1) ∪M(α2). Then, applying
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[5, Proposition 5.5] and [1, Lemma 22] again, by α1∧α2 ≤ µ we deduce that
there exist µ1, µ2 ∈ L such that α1 ≤ µ1, α2 ≤ µ2 and µ1 ∧ µ2 ≤ µ. Now
from [8, Lemma 3.10] we get that µ = µ1•µ2, µ1 ∈M(α1), and µ2 ∈M(α2).
HenceM(αi)∩(L∪{1FD(n)}) (i = 1, 2) form a direct sum equal L∪{1FD(n)}
of dimension n. Hence

∣∣{µ ∈ L : µ /∈M(α1) ∪M(α2)}
∣∣ > 2 for n ≥ 3. We

know from Proposition 3.4 that in L there is a unique minimal element
of (Cm(FD(n)),≤). Take µ ∈ L such that α1 ≰ µ, α2 ≰ µ, and µ is
not minimal in (Cm(FD(n)),≤). Then there is γ ∈ L such that γ < µ.
As α1 ∧ α2 ≤ γ and, by [5, Proposition 5.4], |γ/∼| = 1, we obtain, using
[1, Lemma 22] again, α1 ≤ γ or α2 ≤ γ. Thus α1 ≤ µ or α2 ≤ µ, a
contradiction.

4. Free spectrum

In this section we compute the cardinality of the free algebras in FD(n),
which is a laborious task. However, it is finally possible to find the explicit
formula on the free spectrum.

From the definition of L and P , property O1 and Definition 2.5 it follows
that:

Proposition 4.1.
|FD(n)| = |H(L)| · |H(P )|,

where H(L) := {Z ∩ L : Z ∈ H(FD(n))} and H(P ) := {Z ∩ P : Z ∈
H(FD(n))}.

We first compute the right factor of this product.

Proposition 4.2. Let P = {µ ∈ Cm(FD(n)) : FD(n)/µ ∼= 2∧}. Then:

|H(P )| = 22
n−1.

Proof: The set P contains 2n − 1 elements and every subset of the P is
a hereditary set. Therefore, the number of the hereditary sets is equal to
22

n−1.

Next, we compute the left factor. For this, we will use the following
lemma. This fact has been used in the proof of [6, Theorem 10]. However,
it was given without proof. We will denote by P (n) the family of all subsets
of the set {1, . . . , n}.
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Lemma 4.3. [6, p. 1352] The map

S : P (n) ∋ A→ S(A) := {C ∈ P (n) : |A \ C| is even}

gives a one-to-one correspondence between P (n) and {H ⊆ P (n) : (H, •) is
a hyperplane (P (n), •) or H = P (n)}, where (P (n), •) is a Boolean group
with the operation • defined as follows: B •C := (B÷C)′ for B,C ∈ P (n).

Proof: We give only the main ideas of the proof (we will skip the tedious
details). First, we note that (S(A), •) is a subgroup (P (n), •) for A ∈ P (n).
This is because {1, . . . , n} ∈ S(A) is a neutral element of(P (n), •) and it is
easy to check (by considering parity) that C1•C2 ∈ S(A) for C1, C2 ∈ S(A).

In the same manner we can see that if D1, D2 /∈ S(A), so D1 • D2 ∈
S(A). Therefore, if A ̸= ∅, so S(A) is a maximal subgroup of (P (n), •) (if
A = ∅, so it is obvious that S(A) = P (n)).

It remains to prove that S is bijective. Since the sets {H ⊆ P (n) :
H jest is a hyperplane or H = P (n)} and P (n) have the same cardinality
(equal to 2n), thus it is sufficient to prove that S is injective. Let A,B ∈
P (n) such that A ̸= B. We give the proof only for the case |A|—is odd,
|B|—is odd; the other cases are left to the reader. Thus there exists x ∈
P (n), such that x ∈ A and x /∈ B (or, conversely). Then |A \ {x}| is even,
so {x} ∈ S(A) and |B \{x}| is odd. In consequence, {x} /∈ S(B). Therefore
S(A) ̸= S(B).

Next, we use [6, Theorem 10.1], which we adapted to our case.

Theorem 4.4. We have

|H(L)| =

n∑
k=0

(
n

k

) n−1∏
m=1

(l(m))αk(n,n−m) (4.1)

where

αk(n, j) :=
∑
p

(
n− k

j − 2p

)(
k

2p

)
(4.2)

for p ∈ N, such that max(0, k + j − n) ≤ 2p ≤ min(k, j) for k, j ∈ N,
0 ≤ k ≤ n and 1 ≤ j ≤ n, where

l(m) := 22
m−1.
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Proof: LetA ∈ P (n). Therefore, from Lemma 4.3 it follows that (S(A), •)
is hyperplane in (P (n), •) or (S(A), •)=(P (n), •). Write H(A) := {Z ∈
H(L) : Z ∩ L = S(A)}. Then H(L) =

⋃
{H(A) : A ∈ P (n)}. Similarly to

[6, p. 1352], every H(A) can be identified with the Cartesian product of
the family subsets of C, such that C ∈ S(A) \ {1, . . . , n}. However, in our
case the number of such subsets is 22

m−1, where m = |C|.
From this we deduce that:

|H(L)| =
∑

A∈P (n)

|H(A)| =

∑
A∈P (n)

n−1∏
m=0

l(m)|{C∈S(A):|C|=m}|.

Next, note that if |A| = |B|, so:

|{C ∈ S(A) : |C| = m}| = |{C ∈ S(B) : |C| = m}|,

for A,B ∈ P (n). Therefore:

|H(L)| =

n∑
k=0

(
n

k

) n−1∏
m=1

l(m)βk(n,m),

where
βk(n,m) := |{C ∈ S(A) : |C| = m}|,

for A ∈ P (n), such that |A| = k.
Now, we calculate βk(n,m). If C ∈ S(A) and |C| = m, so |A \C| = 2p,

for p ∈ N. Since |A| = k, so |A∩C| = k− 2p. Thus |C \A| = m− (k− 2p).
Consequently, |{C ∈ S(A) : |C| = m}| =

(
k
2p

)
·
(

n−k
m−(k−2p)

)
. Finally we get

that
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βk(n,m) =
∑
p

(
n− k

m− (k − 2p)

)(
k

2p

)
=

∑
p

(
n− k

(n− k) − (m− (k − 2p))

)(
k

2p

)
=

∑
p

(
n− k

n−m− 2p

)(
k

2p

)
,

where p ∈ N, such that max(0, k−m) ≤ 2p ≤ min(k, n−m), for k,m ∈ N,
0 ≤ k ≤ n and 0 ≤ m ≤ n − 1. Taking αk(n, j) := βk(n, n − j) (then
j = n−m) we get (4.1).

To get the explicit formula, we use the following Lemmas.

Lemma 4.5 ([6, Proposition 11]). The functions αk (k ∈ N) fulfill:

1. The recurrence equation

αk(n+ 1, j) = αk(n, j) + αk(n, j − 1),

for n ≥ k and 1 ≤ j ≤ n.

2. The boundary conditions:

αk(k, j) =

{(
k
j

)
, j − even

0, j − odd
: 0 ≤ j ≤ k.

3.

αk(n, n) =

{
1, k − even

0, k − odd
: n ≥ k.

4.
αk(n, 0) = 1 : n ≥ k.

Lemma 4.6. [6, Lemma 12] Let n, k ∈ N and n ≥ k. Let us consider the
generating functions for the coefficients αk(n, j) (j = 0, . . . , n) given by

tn,k(z) :=

n∑
j=0

αk(n, j)zj .
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Then:

tk,k(z) =

k∑
j=0

j−parzyste

(
k

j

)
zj (4.3)

where

tn,k(z) = (z + 1)n−ktk,k(z). (4.4)

Next, we prove the following Lemma.

Lemma 4.7. Let k, j ∈ N. Then:

1) k∑
j=0

j−even

(
k

j

)
2k−j =

3k + 1

2
,

2) k∑
j=0

j−even

(
k

j

)
= 2k−1.

Proof: Ad. 1. Let:

a :=

k∑
j=0

j−even

(
k

j

)
2k−j and b :=

k∑
j=0

j−odd

(
k

j

)
2k−j .

Then a+ b =
∑k

j=0

(
k
j

)
2k−j · 1j = (2 + 1)k = 3k.

In turn

a−b =

k∑
j=0

j−even

(
k

j

)
2k−j−

k∑
j=0

j−odd

(
k

j

)
2k−j =

k∑
j=0

(
k

j

)
2k−j ·(−1)j = (2−1)k = 1.

From the system of equations: a+ b = 3k and a− b = 1 we get a = 3k+1
2 .

Ad. 2. Let:

a :=

k∑
j=0

j−even

(
k

j

)
and b :=

k∑
j=0

j−odd

(
k

j

)
.



Free Spectra of Equivalential Algebras with Conjunction. . . 413

Hence a+ b =
∑k

j=0

(
k
j

)
= 2k,

and

a− b =

k∑
j=0

j−even

(
k

j

)
−

k∑
j=0

j−odd

(
k

j

)

=

k∑
j=0

(
k

j

)
1k−j · (−1)j = (1 − 1)k = 0.

From the system of equations: a + b = 2k and a − b = 0 it follows that
a = 2k−1.

Now, we prove the following result:

Corollary 4.8.

tn,k(1) =

{
2n k = 0,

2n−1 k ̸= 0.
(4.5)

Proof: From (4.4) and then from (4.3), we have for k = 0:

tn,0(1) = 2nt0,0(1) = 2n
0∑

j=0
j−even

(
0

j

)
1j = 2n.

Now, let k ̸= 0:

tn,k(1) = 2n−ktk,k(1) = 2n−k
k∑

j=0
j−even

(
k

j

)
1j .

Lemma 4.7 shows that
k∑

j=0
j−even

(
k

j

)
= 2k−1.

Hence
tn,k(1) = 2n−k · 2k−1 = 2n−k+k−1 = 2n−1.
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Finally we prove the following theorem.

Theorem 4.9.

|H(L)| = 23
n−2n+1+1 + (2−2n−1−2n+1)

n∑
k=1

(
n

k

)
2

3n−k(3k+1)
2 .

Proof: From (4.1) it follows that:

|H(L)| =
n∑

k=0

(
n

k

) n−1∏
m=1

(22
m−1)αk(n,n−m). (4.6)

Replacing n−m by j, we get:

|H(L)| =
n∑

k=0

(
n

k

)
2
∑n−1

j=1 (2n−j−1)αk(n,j). (4.7)

We calculate separately the above exponent.
Let Wk :=

∑n−1
j=1 (2n−j − 1)αk(n, j). Then:

Wk =
n−1∑
j=1

(2n−j − 1)αk(n, j) =
n−1∑
j=1

2n−jαk(n, j) −
n−1∑
j=1

αk(n, j)

=
n∑

j=0

2n−jαk(n, j) − 2n−0αk(n, 0) − 2n−nαk(n, n)

− (

n∑
j=0

αk(n, j) − αk(n, 0) − αk(n, n))

=

n∑
j=0

2n−jαk(n, j) − 2nαk(n, 0) − αk(n, n)

−
n∑

j=0

αk(n, j) + αk(n, 0) + αk(n, n).

Simplifying and applying Lemma 4.5(4), we get:

Wk =
n∑

j=0

2n−jαk(n, j) −
n∑

j=0

αk(n, j) − 2n + 1. (4.8)
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We now compute the first sum in (4.8). We denote it by Sk. Then

Sk =

n∑
j=0

2n−jαk(n, j) =

n∑
j=0

2n · 2−jαk(n, j) = 2n
n∑

j=0

2−jαk(n, j).

On account of Lemma 4.6, we have:

Sk = 2n · tn,k(
1

2
) = 2n · (

1

2
+ 1)n−k · tk,k(

1

2
) = 2n

3n−k

2n−k

k∑
j=0

j−even

(
k

j

)
2−j =

3n−k · 2k
k∑

j=0
j−even

(
k

j

)
2−j = 3n−k

k∑
j=0

j−even

(
k

j

)
2k−j .

From Lemma 4.7 we conclude that

Sk = 3n−k 3k + 1

2
.

It follows from Lemma 4.6 that the second sum in (4.8) is equal to tn,k(1).
Hence:

Wk = 3n−k 3k + 1

2
− tn,k(1) − 2n + 1.

Applying Corollary 4.8 and Lemma 4.6 we deduce that:

W0 = 3n − 2n+1 + 1,

In turn for k ̸= 0 we get:

Wk = 3n−k 3k + 1

2
− 2n−1 − 2n + 1.

We can now return to (4.7). We get:

|H(L)| = 23
n−2n+1+1 +

n∑
k=1

(
n

k

)
2

3n−k(3k+1)
2 −2n−1−2n+1 =

23
n−2n+1+1 + (2−2n−1−2n+1)

n∑
k=1

(
n

k

)
2

3n−k(3k+1)
2 .
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We can now formulate our main result.

Theorem 4.10. Let n ∈ N. Then

|FD(n)| = 23
n−2n +

n∑
k=1

(
n

k

)
2

3n+3n−k

2 −2n−1

.

Proof: Combining Theorem 4.9 with Proposition 4.2 we deduce that

|FD(n)| = 22
n−1(23

n−2n+1+1 + (2−2n−1−2n+1)

n∑
k=1

(
n

k

)
2

3n−k(3k+1)
2 ) =

23
n−2n+1+1+2n−1 + (2−2n−1−2n+1+2n−1)

n∑
k=1

(
n

k

)
2

3n−k(3k+1)
2 =

23
n−2n + 2−2n−1

n∑
k=1

(
n

k

)
2

3n−k(3k+1)
2 = 23

n−2n +

n∑
k=1

(
n

k

)
2

3n+3n−k

2 −2n−1

.

Corollary 4.11. Let n ∈ N. Then |FD(n)| is asymptotically equal to
23

n−2n .

Proof: According to the above theorem, it is sufficient to show that:∑n
k=1

(
n
k

)
2

3n+3n−k

2 −2n−1

23n−2n
n→+∞−−−−−→ 0.

First observe that:

0 ≤
∑n

k=1

(
n
k

)
2

3n+3n−k

2 −2n−1

23n−2n
≤ 2n · 2

3n+3n−1

2 −2n−1

23n−2n
≤ 2n+

3n+3n−1

2 −2n−1

23n−2n
.

We next show that: 2n+3n+3n−1

2
−2n−1

23n−2n
n→+∞−−−−−→ 0.

Since n + 3n+3n−1

2 − 2n−1 = n + 4·3n−1

2 − 2n−1 = n + 2 · 3n−1 − 2n−1, it
follows that:

2n+
3n+3n−1

2 −2n−1

23n−2n
=

2n+2·3n−1−2n−1

23n−2n

= 2n+2·3n−1−2n−1−3n+2n

= 2n−3n−1+2n−1

.

HP
Notatka
Accepted ustawione przez HP



Free Spectra of Equivalential Algebras with Conjunction. . . 417

Now that n−3n−1 +2n−1 = 3n−1( n
3n−1 −1+( 2

3 )n−1)
n→+∞−−−−−→ −∞, we have

2n+
3n+3n−1

2 −2n−1

23n−2n
n→+∞−−−−−→ 0,

and the proof is complete.
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