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ABOUT LOGICALLY PROBABLE SENTENCES

Abstract

The starting point of this paper is the empirically determined ability to reason

in natural language by employing probable sentences. A sentence is understood

to be logically probable if its schema, expressed as a formula in the language of

classical propositional calculus, takes the logical value of truth for the majority

of Boolean valuations, i.e., as a logically probable formula. Then, the formal sys-

tem P is developed to encode the set of these logically probable formulas. Based

on natural semantics, a strong completeness theorem for P is proved. Alternative

notions of consequence for logically probable sentences are also considered.

Keywords: probable sentences, majority, logically probable formula, Boolean

valuation.

Intuitive motivation

Natural language reasoning can occasionally lead from true premises to
false conclusions, which is incorrect from the standpoint of classical logic.
Most of the time, the formulas of the classical propositional calculus (PC)
that correlate to such erroneous inferences are not particularly interesting
from a logical point of view. Consider the inference: “If it is raining, the
roadway will be wet. Therefore (the conclusion): If it is not raining, then
the roadway will not be wet.” Similarly: “If it is raining, the roadway will
be wet. Therefore (conclusion): If the roadway is wet, then it was raining.”
People routinely employ similar reasoning in their daily lives, even though
the results of these inferences are not logically certain or do not follow
logically from the premises. One non-trivial explanation for why this occurs
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is because, in the majority of real-world situations, the roadway simply will
not be wet if it has not rained. In other words, determining if it has rained
recently usually suffices to determine how wet the road is. We will not
investigate whether the water accidentally leaked from somewhere because
of a malfunction of a passing truck transporting mineral water or because a
Zeppelin flying nearby dropped a massive water-filled balloon. Extreme
situations, i.e., those that do not follow the ordinary course of things, are
disregarded in our predictions. We are only interested in what is normal or
typical, or what happens in most everyday situations. The precise sense in
which the conclusions of the above two inferences follow from the premises
will be given later in the paper.

We will provide one additional, perhaps distant analogy, which could
be helpful in the intuitive grounding of the research undertaken in the
next paragraphs. Consider a random device that is being utilized in a
particular manner for a specific purpose. Typically, such a device will
continue to function effectively until it wears out or malfunctions. As long
as it is operated in accordance with the instruction manual, the device
will function fairly effectively. In other words, the device will work if the
manufacturer’s requirements are satisfied, but it will not function well if
the manufacturer’s conditions are not met. The previous sentence contains
two conditional assertions that one will undoubtedly run into in everyday
life. Both are only probable, and we believe that is why we should try to
find the rules for employing probable statements.

In order to summarize the overall issue, the key problem is how logical
rules govern sentences that are merely probable, since it is known before-
hand that they do not generally hold true yet—at the same time—are true
in a limited number of or in most cases.

The observations outlined above and similar facts lead us to interest
in reasoning that involves sentences based on patterns (formulas) that are
true for most Boolean valuations.

1. Introduction

Let us take a typical propositional language based on an alphabet that com-
prises: (a) a countable set of propositional variables V = {p1, p2, p3, . . .};
(b) connectives: ¬,→,∨,∧,≡, respectively called negation, implication,
disjunction, conjunction and equivalence; (c) the ) and ( brackets, i.e., re-
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spectively, the closing bracket and the opening bracket. For the sake of con-
venience, we shall represent the variables with the symbols: p, q, r, s, t, . . ..
The meaning of the connectives is characterized by the so-called truth ta-
bles for classical logic. The set of all well-formed formulas that are based on
the aforementioned alphabet is denoted by the symbol FormPC . The sym-
bol Form→ denotes a proper subset of the set FormPC and contains formu-
las built only with the use of the variables, the sign of implication, and the
brackets. The set of all subsets of the set X is denoted by the symbol 2X ,
and the set of all finite subsets of the set X is denoted by the symbol FinX.
The derivability relation for the language of PC will be denoted by ⊢PC ,
and the corresponding consequence operation will be denoted by—CPC .
If X is a set, the symbol |X| denotes the cardinality of X. If A ∈ FormPC ,
the set of propositional variables in the formula A is denoted by the symbol
V ar(A), and the symbol |V ar(A)| denotes the cardinality of this set, e.g.,
V ar((p → q) ∨ r)) = {p, q, r} and |V ar((p → q) ∨ r))| = |{p, q, r}| = 3.

From the definition of the set of all Boolean valuations, which we denote
by the symbol V al, we know that it has a power of continuum. Each
element of the set V al is an extension of the valuation of propositional
variables v : V → {0, 1}. We will use the same symbol v for valuations of
propositional variables and valuations of formulae, as this should not cause
any confusion and is convenient.

Definition 1.1. Let A∈FormPC . For every v, v′∈V al : vRAv
′ iff v(p) =

v′(p), for any p ∈ V ar(A).

The equivalence classes of the relation RA will be denoted by [v]RA
.

Each valuation v′ ∈ [v]RA
can be uniquely assigned the restriction of the

valuation v′ to the propositional variables occuring in A, denoted further
by v′⌈V ar(A). We have:

Fact 1.2. Let A∈FormPC . For every valuation v′∈ [v]RA
holds:

v′⌈V ar(A) = v⌈V ar(A).

Proof: For every p ∈ V ar(A), (v′⌈V ar(A))(p) = (v⌈V ar(A))(p), which
gives v′⌈V ar(A) = v⌈V ar(A).

We will call each such restriction v⌈V ar(A): significantly different Bool-
ean valuation of the formula A or significantly different Boolean valuation
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for short, when it is clear what formula is involved. For the established for-
mula A∈FormPC , there is a mutually one-to-one correspondence between
equivalence classes and valuation restrictions.

This gives the following:

Fact 1.3. For any formula A, if |V ar(A)| = n, then |{v⌈V ar(A) : v ∈
V al}| = 2n (the number of significantly different Boolean valuations is 2n).

Definition 1.4. A formula A ∈ FormPC is called a tautology (or a PC
tautology) iff v(A) = 1 for every v ∈ V al.

The set of all tautologies of Classical Propositional Calculus (CPC)
will be further denoted by TAUTPC , with or without the index PC.

The obvious fact holds:

Fact 1.5. If A is a PC tautology, then (v⌈V ar(A))(A) = 1, for every
valuation v.

2. Logically probable formulas

Definition 2.1 (Logical probability function). We will call the function
m : FormPC → [0, 1] into a closed interval of real (rational) numbers
the logical probability function if for any A ∈ FormPC , m(A) =
|{v⌈V ar(A) : v(A) = 1}|/2|V ar(A)|.

Definition 2.2.1 A formula A∈FormPC will be called a logically prob-
able formula iff m(A) > 1/2.

Definition 2.3. A set X ⊂ FormPC is called contradictory iff A ∈ X
and ¬A ∈ X for some A ∈ FormPC . A set of formulas of PC is called
non-contradictory if it is not contradictory.

For the propositional language FormPC (recall the formulas inside the
set FormPC can use the negation sign) and a consequence operation C
defined for that language, the notion of a contradictory set of formulas is
not equivalent to the notion of an inconsistent set of formulas because a

1According to the meaning, a ‘probable sentence’ is one whose probability is greater
than 1/2, in the range of real numbers from 0 to 1. This sense of sentence probability
was considered by [2, p. 7]. I owe the Reviewer a significant simplification of these two
basic definitions.
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contradictory set must simultaneously contain a formula and its negation,
while an inconsistent set need not.

Recall that a set X is (simply) consistent (under C) iff there is no
formula A such that both A ∈ C(X) and ¬A ∈ C(X).

A set X is absolutely consistent (under C) iff C(X) ̸= FormPC .
2

In general, if X ⊂ FormPC is simply consistent, then X is absolute
consistent.

Using Definition 2.3, we can see that: if C(X) is non-contradictory, then
X is consistent; but if X is contradictory, then X is inconsistent because
X ⊂ C(X).

We cannot say much about the consistency of the whole set P because
we do not have a relevant operation of the consequence for the set P defined,
and that goes beyond our present work. However, there is a sense in which
the set P is provably consistent, namely by virtue of Lemma 2.4, under the
idle consequence Id (Id(X) = X, for any set X); cf. [8, p. 38]: Id(P ) = P
and P is non-contradictory.

Our further considerations (from Section 3 onwards) will concern the
set P but they will be restricted to purely implicational language. We will
then revisit the issue of consistency.

Lemma 2.4. The set P is non-contradictory.

Proof: Assume that P is contradictory, which means that some A and
¬A are members of the set P . This means that 1/2 < m(A) and 1/2 <
m(¬A), but m(¬A) = (1 − m(A)), hence m(A) < 1/2, which gives a
contradiction.

Lemma 2.5. The following statements hold: (a) P is decidable, i.e., there
exists an algorithm to determine in a finite number of steps whether any
formula A ∈ FormPC belongs to the set P or not. (b) P is not closed under
substitution. (c) P is not closed under modus ponens. (d) TAUT ⊂ P .
(e) it exists such A ∈ P , that A ̸∈ P and ¬A ̸∈ P . (f) the formulas built
only from propositional variables, brackets and the disjunction connective
belong to P . (g) P is inconsistent in propositional logic. (h) P ̸= FormPC .
(i) P is not closed with respect to the rule with the schema (A → B), (B →
C)//(A → C).

2Such an understanding of consistency is also suitable for languages without the
negation sign.
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Proof: (a) Use the method of truth tables. (b) (p → p) → q ̸∈ P while
p → q ∈ P . (c) (p ∨ q) ∈ P and (p ∨ q) → q ∈ P . (d) if A ∈ TAUT , then
m(A) = 1. (e) m(p) = m(¬p) = 1/2. (f) m(p ∨ q) = 3/4. (g) q ∈ CPC(P )
and ¬q ∈ CPC(P ) with modus ponens and substitution. (h) m(p) = 1/2.
(i) ((p → (q → p)) → (p → q)), ((p → q) → r) ∈ P , but ((p → (q → p)) →
r) ̸∈ P .

Lemma 2.6. Let A,B ∈ FormPC , the variable p ̸∈ V ar(A), |V ar(A)| = n
and V ar(B) = V ar(A) ∪ {p}, then the following hold:

1. |V ar(B)| = (n+ 1);

2. RB ⊂ RA;

3. [v′]RA
= [v′′]RB

∪ [v′′′]RB
; where v′′(p) = 1 and v′′′(p) = 0.

Proof: Ad. 1. Case 1 is obvious.
Ad. 2. Suppose < v, v′ >∈ RB , i.e., for any variable q ∈ V ar(B),

v(q) = v′(q). The set V ar(B) is a superset of V ar(A) (V ar(B) ⊃ V ar(A)),
for each variable r ∈ V ar(A), v(r) = v′(r), which results in vRAv

′.
Ad. 3. For the proof, take the pair <v, v′>∈ RA. Then, v(q) = v′(q)

for every q ∈ V ar(A). Any valuations v′′, v′′′ that belong to RB take the
same logical value for the variables belonging to the set V ar(A) as the
valuations v and v′. However, the only difference between the valuations
v′′ and v′′′ is the value they assign to the variable r, i.e., v′′(r) = 0 and
v′′′(r) = 1, or reversely. The variable has a value of 0 in one of these
valuations and a value of 1 in the other, yet both valuations fall under the
class [v′]RA

.

To explain it in another way and perhaps more intuitively, let us observe
that significantly different valuations of the formula A i.e. each v⌈V ar(A),
for v ∈ V al, can be represented as finite sequences of 0s and 1s. If x
represents such a string of length n, then the strings x0 and x1 represent
strings of length n + 1. Up to each finite height (level) n, the full binary
tree contains all such zero-one sequences with n-elements.3

We know from the previous lemma that if we add a new propositional
variable to formula A by means of any of the binary connectives, the num-
ber of equivalence classes of the new formula will double. On the other

3A binary tree consisting of a root alone has a height of 0.
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hand, if by equating two different variables we reduce the number of vari-
ables in formula A (for example, if p, q ∈ V ar(A) and |V ar(A)| = n), and
we substitute p for q in each place, we get formula B. Then, of course,
s = |V ar(B)| = |V ar(A)| − 1 = (n − 1) and the number of equivalence
classes will decrease from 2n to 2n−1, that is, it will be halved. If, on the
other hand, we increase the number of variables appearing in formula A by
combining it with the binary connective ∗ ∈ {∨,∧,→,≡} with any formula
B and obtain (A ∗ B), then as long as |V ar(A) ∩ V ar(B)| = r, the num-
ber of equivalence classes R(A∗B) will be 2n+s−r. This is also the number
of all significantly different Boolean valuations of the formula (A ∗ B) i.e.
|{v⌈V ar(A ∗B) : v ∈ V al}| = 2n+s−r.

Let us pay attention to the following important lemma with a somewhat
complex formulation:

Lemma 2.7. Let A,B, (A∗B) ∈ FormPC , where ∗ ∈ {→,∧,∨,≡}, A ∈ P ,
V ar(A) = n, V ar(B) = s, |V ar(A) ∩ V ar(B)| = r, m(A) = k/2n, and let
us denote with t the number of those valuations of the subformula A for
which it takes the value 1 in the set of all significantly different Boolean
valuations of the formula (A ∗ B) i.e. |{v⌈(A ∗ B) : v(A) = 1}| = t, then
k/2n = t/2n+s−r.

Proof: Suppose that the number of all Boolean valuations of the subfor-
mula A in (A ∗ B) for which it takes the value 1 is t, i.e., |{v⌈V ar(A ∗
B) : v(A) = 1}| = t. We know that 2n+s−r = (2n · 2s−r), therefore
(2n+s−r/2n) = 2s−r. From here we can see that the valuations of the
subformula A have been repeated 2s−r times without change in the set of
all valuations of the formula (A ∗ B), which means t = (k · 2s−r). Now
t/2n+s−r = t/(2n · 2s−r) = (k · 2s−r)/(2n · 2s−r) = k/2n.

The preceding lemmas should perhaps clarify the understanding of the
following lemmas and their proofs.

Lemma 2.8. The set P is closed with respect to each of the following rules
of conjunction elimination: (A ∧B)//A; and (A ∧B)//B.

Proof: Suppose that the formula (A ∧ B) belongs to the set P . Hence,
the majority of rows in the last column of its truth table contain 1. The
truth table of this formula has 1 in some row of the last column iff the truth
tables for each of formulas A and B have 1 in that row.
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Lemma 2.9. The set P is closed with respect to each of the following rules
of disjunction introduction: A//(A ∨B) and B//(A ∨B).

Proof: If the truth table for formula A has 1 in the majority of rows in
the last column, then the last column of the truth table for the formula
(A ∨B) contains 1 in at least the same rows as formula A; the same holds
for formula B.

Lemma 2.10. The set P is closed with respect to the rule given by A//(B →
A).

Proof: Let A be a member of the set P . The truth table for formula A
contains 1 in most of the rows in the last column. There will also be 1 in
the same rows of the truth table for (B → A) since an implication takes
the value 1 if its successor takes the value 14.

Lemma 2.11. The subset D of the set P (i.e., D ⊂ P ) of formulas which
contain just one propositional variable is a proper subset of the set TAUT
(D ⊂ TAUT ).

Proof: The truth table for any formula A ∈ D contains only two valua-
tions of the single variable. There is only one majority for a two-element
set, which is both elements of the set or all of them.

Lemma 2.12. For the set of countertautologies of PC, i.e., the set
CTAUT := {A : ¬A ∈ TAUT}, (CTAUT ∩ P ) = ∅ holds.

Proof: The last column of the truth table for the countertautologies con-
tains only 0s.

Theorem 2.13. The set P is closed with respect to a weakened form of the
rule of detachment of the scheme: if (A → B) ∈ P and A ∈ TAUT , then
B ∈ P .

Proof: Suppose that (A → B) ∈ P and A ∈ TAUT . If the formula B
were not an element of the set P , then at least half of the rows in the
last column of the truth table for formula (A → B) would contain 0, since
every row in the last column of the truth table for the formula A would

4This is just a sketch of the proof as the exact proof requires longer presentation,
but this should be clear enough.
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contain 1, and then the whole implication would not be a member of the
set P , which contradicts the assumption.

Theorem 2.14. The set P is closed with respect to a weakened form of the
detachment rule of the scheme: if (A → B) ∈ TAUT and A ∈ P , then
B ∈ P .

Proof: As in the proof of Theorem 2.13.

Lemma 2.15. The set P is not closed with respect to a rule of the scheme:
A,B//(A ∧B).

Proof: The formulas A = (p → q) and B = (q → p) both belong to the
set P , but ((p → q) ∧ (q → p)) ̸∈ P .

3. A system P of logically probable formulas
in an implicational language

Now, we will focus on the set Form→ of well-formed formulas built using
only propositional variables, brackets, and the implication sign; we shall
limit our consideration to the implicational part of PC, unless we explicitly
indicate otherwise or it is clear from the context. Strictly speaking, we will
consider the set P→ = (Form→ ∩P ); however, for the sake of convenience,
we will continue to use the P symbol as long as this does not lead to
confusion. We shall now define the syntactic consequence operation and
the corresponding derivability relationship ⊢P. As is already known, the
set of PC tautologies in a language with a single connective of implication
can be axiomatized into the following system T :

(T1) ((A → B) → ((B → C) → (A → C))) (hypothetical syllogism);

(T2) (A → (B → A)) (simplification);

(T3) (((A → B) → A) → A) (Peirce’s law);

(MP ) A, (A → B)//B (rule of detachment).

The set TAUT→ := TAUTPC ∩ Form→ is axiomatizable by means
of rule schemes T in the sense that all classical PC tautologies in our
language can be derived using formulas falling under the (T1)–(T3) schemes
and (MP ), i.e., CT (∅) = TAUT→, where CT is a consequence determined
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by T . In addition to these formulas, which are derivable in T , we still
have strictly probable formulas in the set P which are true for most but
not for all valuations (cf. Definition 3.1). We already know that the set of
such formulas is not closed with respect to the rule of detachment or the
substitution. The following question then arises:

[The Key Question] Is the entire set P→, and in particular the set of
strictly probable formulas (see Definition 3.1 below), axiomatizable i.e.,
defining an effective set of axioms, being a proper subset of the set P→,
when closed under the finite set of effective rules, gives the whole set P→?

Definition 3.1. We will call formula A a strictly logically probable formula
when A ∈ P and A ̸∈ CT (∅) = TAUT→. We will denote the set of all such
formulas by the symbol P ′.

The set P ′ is closed under the following version of the non-standard
rule, called the Successor Rule (RN):

Lemma 3.2. If A ∈ P ′,m(B) = 1/2, and ((A → B) → B) ̸∈ TAUT→,
then (A → B) ∈ P ′.

Proof: Following the assumption of this lemma, if ((A → B) → B) ̸∈
TAUT→, then for a certain valuation v, v(A) = v(B) = 0 and v(A →
B) = 1. Since m(B) = 1/2, i.e., B ̸∈ P , then in the worst case exactly
half of the truth table for formula (A → B) will contain zeros, and there
will be m(A → B) = 1/2. That is, half of the last column of the truth
table for the whole formula will then contain zeros in those rows where
formula B takes the value zero. The valuation v gives us the guarantee that
|{v⌈V ar(A → B) : v(A → B) = 1}| > |{v⌈V ar(A → B) : v(A → B) = 0}|
will occur: the whole implication will have at least one valuation v (which
assigns the whole formula the value) more than the number of valuations
assigning the value 0 to the implication.

The above objections are exemplified by the following formulas: (p →
q) → ((r → r) → s) (satisfies the assumptions of the lemma and belongs
to P ′) and (p → q) → ((p → p) → p) (does not satisfy the assumptions of
the lemma and does not belong to the set P ′).

Lemma 3.3. If A ∈ P ′ and the variable p ̸∈ V ar(A), then (A → p) ∈ P ′.

Proof: Directly from Lemma 3.2. for B = p.

At the same time we have, in a sense, a dual to Lemma 3.2.:
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Lemma 3.4. If A ∈ P , then (B → A) ∈ P .

Proof: The proof is straightforward.

Lemma 3.5. Let A ∈ Form→ and |V ar(A)| = n. Then 2n−1 ≤ |{v⌈V ar(A) :
v(A) = 1}| i.e. m(A) ≥ 1/2.

Proof: Since Lemma 3.5 is very general, to demonstrate its validity we
shall use structural induction by the number of instances of connectives
in formula A. Let us assume the assumptions of the lemma. Base step:
A is a single variable p. Hence, there is only one Boolean valuation for
which p takes the value 1, and 20 = 1 ≤ 1. If A is a simple implication
(p → q), then the cardinality of the set of Boolean valuations for which this
implication takes the Boolean value of truth is obviously 3 and is greater
than 21 = 2. Inductive step: suppose that the lemma holds for formulas
B and C, and we want to prove that it holds for A = (B → C). Suppose
|V ar(B) ∩ V ar(C)| = k. We then have to consider cases where k = 0, i.e.,
V ar(B) ∩ V ar(C) = ∅, and where k > 0, i.e., V ar(B) ∩ V ar(C) ̸= ∅. In
the first case, assuming that |V ar(B)| = n and |V ar(C)| = m, the truth
table for formula (B → C) has 2n+m rows. The column under formula C
will contain 1 in half or more of the rows. The last column of such a table
will contain 1 in at least the same rows since an implication with a true
successor takes the logical value of truth. We will consider the second
case, where formulas B and C share at least one propositional variable,
i.e., k > 0. In this case, formula (B → C) will have (n +m − k) different
propositional variables, and its truth table will have 2n+m−k rows. The
number of valuations of the output formula is decreased by 2k times because
some valuations of the n + m variables are discarded as a result of the
equivocation of the shared variables. Let us take formula C as a starting
point for consideration and assume that it has 2m significantly different
valuations, while formula B has 2n−k such valuations. In this case, the
final truth table TA for the whole formula A = (B → C) will have 2n+m−k

valuations and will have, as a fragment, a 2n−k-fold repetition of the table
for C with 2m rows. In each such fragment for C, at least half of the rows
will contain 1 (based on the inductive assumption), therefore the same
rows under formula A will also contain 1 since implication A with the true
successor is true. Since this is the case in every occurrence of the fragment
for C, so it is the same in the whole TA table for A.
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Lemma 3.6. Let Form2 = {A : A ∈ Form→ and |V ar(A)| = 2}. Then
Form2 = (X∪Y )∪Z, where: X = {A : m(A) = 1}, Y = {A : m(A) = 1/2}
and Z = {A : m(A) = 3/4}.

Proof: This follows from Lemma 3.5. because 22−1 = 21 = 2 for n = 2.
The number of all significantly different Boolean valuations of A is equal
to 4, so the numbers k for which 2 ≤ k ≤ 4 are only 2, 3 and 4.

Some known theorems on classical propositional calculus can be applied
to our considerations on the set of exclusively implicational formulas. The
compactness theorem is one of these.

Lemma 3.7. The set P is closed with respect to a weakened form of the
detachment rule of the scheme: A ∈ P and (A → B) ∈ P and m(A∧B) >
1/2, then B ∈ P .

Proof: Let A ∈ P and (A → B) ∈ P and m(A ∧ B) > 1/2. Then it is
straightforward that m(B) > 1/2.

Lemma 3.8. Every subset of the set of formulas X ⊂ Form→ is satisfiable.

Proof: Straightforward from Lemma 3.5.

Definition 3.9. A rule of the form A//e(A), where e is an endomorphism,
will be called a restricted substitution rule (RSu).

To avoid going into the technical details, it suffices to say that e(A)
is the result of substituting only propositional variables for propositional
variables in the formula A, with the following caveats:

• a propositional variable has been substituted for a propositional vari-
able;

• one and the same variable is substituted for a particular variable in
all places where it occurs;

• the cardinality of the set V ar(A), cannot change as a result of the
substitution i.e., |V ar(A)| = |V ar(e(A))|.

Let h : V → V be a permutation of the set V onto V . The set of all
such permutations will be denoted by Perm := {h : h is a permutation
of the set V }. Each such permutation can be extended uniquely to the
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substitution e, which maps FormPC to FormPC and acts as a substitution
in our system5. Strictly speaking, e(A) is the value which is taken by a
substitution e applied to the formula A. We will use the letter h, possibly
with a subscript to denote arbitrary permutation of the set V , and we will
use e for the substitution of the entire set FormPC

6.

Lemma 3.10. The set P is closed under the rule (RSu) of the scheme:
A//e(A), for any substitution e.

Proof: Suppose A∈P ′, since the case is obvious for A∈TAUT→. There-
fore, m(A) > 1/2. It is clear that we can always find such endomor-
phisms e1, e2 that A//e1(A) and e1(A)//e2(e1(A)) = e(A) when V ar(A)∩
V ar(e1(A)) = ∅ and V ar(e1(A)) ∩ V ar(e2(e1(A))) = ∅. For a better un-
derstanding of what happens when performing substitutions such as e1 or
e2, let us imagine a truth table for the formula A. The substitution con-
sists solely of respectively replacing, in the row describing the table, some
sentence variables with others, as a result of which we get a truth table
for e1(A), and similarly for e2(e1(A)). The places in the table where the
logical values of the subformulas occur remain unchanged; in particular,
the number m(A) remains unchanged. Hence, m(e(A)) > 1/2.

a. Axiom schemas and inference rules for the system P

We are now in a position to answer the Key Question posed above about
the axiomatic system.

Definition 3.11. The system P is defined by the axioms arising from the
following schemes:

(T1) ((A → B) → ((B → C) → (A → C)));

(T2) (A → (B → A));

(T3) (((A → B) → A) → A);

(T4) formula (p → q);7

5This designation of e has its own tradition; cf. [8, pp. 18–22].
6Such substitutions, also called automorphisms, form a group and satisfies the con-

ditions of composition, associativity, identity and inverse. To denote substitution in our
sense we will use the signs: e, (possible with a subscript) and α, β.

7The variables p and q are distinct. By pure coincidence, a system with our axioms,
specially (T4), is mentioned in the paper [4, p. 193].
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and the following inference rules:

(RO) if ⊢P A and ⊢P (A → B) and m(A ∧B) > 1/2, then ⊢P B;

(RN) if ⊢P A and m((A → B) → B) ̸= 1, then ⊢P (A → B);

(RSu) if ⊢P A, then ⊢P e(A), for any substitution e.

Note. The Reviewer of the paper has requested to explain why in the rule
RO above is allowed to use the semantical information in the form m(A ∧
B) > 1/2. Firstly, it should be noted that the system presented differs from
the usual semantic presentation of classical logic by the ‘quantifier’ binding
the set of logical valuations of the formula. Usually metalogic allows only
two types of the quantifiers in its semantic description: ‘for each’ and
‘it exists’. Our description additionally allows ‘for most’. Secondly, the
properties of such systems are not well recognized and studied, and our
quantifier can be introduced into the metalogic of various non-classical
systems. Third, the questionable condition can be thrown out beyond the
formulation of the rule itself to the form:

(RO) if ⊢PA and ⊢P (A→B), then ⊢PB; provided that m(A∧B)>1/2.

And fourth, some conditions of a semantic nature are excluded because
they are too general and trivialize the Key Question of axiomatizability, as
in the example: ⊢P A, provided that m(A) > 1/2.

Lemma 3.12. The rules RO1 and RO2 are derivable in P; the scheme of
RO1 is: if A ∈ TAUT→ and ⊢P (A → B), then ⊢P B, and the scheme
of RO2 is: (A → B) ∈ TAUT→, then ⊢P B.

Proof: We will give the proof for RO1 only because the proof for RO2
is similar. Let us suppose that A ∈ TAUT→ and ⊢P (A → B), then
m(A ∧ (A → B)) = m(A ∧B) > 1/2, so m(B) > 1/2, and ⊢P B.

Lemma 3.13. In the system P, there is a derivable rule of the scheme:
A//((A → B) → B).

Proof: Suppose that: ⊢P A. The formula (A → ((A → B) → B)) is a
tautology of PC. Hence, by virtue of the (RO) rule, we have: ((A → B) →
B).

This rule is important because it corresponds in our system to the rule
described in Lemma 3.2.



About Logically Probable Sentences 379

In order to clarify the restrictions imposed on the (RN) rule, let us
note that the formulas ((p → q) → p) and ((p → p) → q) are not ele-
ments of the set P , but the formula ((q → p) → p) is. However, since
we cannot use the RN rule for the derivation of this formula, we derive it
slightly differently. Here is the Hilbert-style proof in the system P, which
is characterized in Definition 3.11:

1. (p → q) from axiom (T4);

2. (q → r) from (T4) by rule (RSu);

3. ((q → r) → p) by virtue of Lemma 3.3;

4. ((q → r) → p) → ((q → p) → p) the PC-tautology;

5. ((q → p) → p) by virtue of Theorem 2.14. from 4. and 3.

Recall the following properties that a consequence operator C : 2FormPC →
2FormPC might satisfy for any set X,Y ⊂ FormPC :

(i) (Reflexivity) X ⊂ C(X);

(ii) (Monotonicity) X ⊂ Y ⇒ C(X) ⊂ C(Y );

(iii) (Idempotency) CC(X) ⊂ C(X);

(iv) (Structurality) eC(X) ⊂ C(eX) for each endomorphism e;

(v) (Finite) C(X) = ∪{C(Y ) : Y ⊂ X ∧ Y ∈ FinX}.

If C satisfies the conditions (i)–(iv), it is called structural; if it satisfies
conditions (i)–(iii), (v) it is called finitistic; and if it satisfies all the above
conditions, it is called standard. If we restrict the number of endomor-
phisms8 to the class of all automorphisms of the set FormPC , we obtain
a more detailed notion of the structural consequence operation. When CP

is the consequence that corresponds to our system P, then the following
occurs:

8In general, an endomorphism of FormPC need not be a function from FormPC

onto FormPC . In our case, it is always so because automorphisms are the unique
extensions of permutations of the set V .
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Lemma 3.14. The consequence operation CP satisfies conditions (i.)-(v.),
except that condition (iv.) holds not for each endomorphism but for any
substitution e that is a unique extension of the certain permutation h ∈
Perm.

Proof: The proof of condition (iv) requires special attention. Suppose
that A ∈ αCP(X). This means that such B exists that B ∈ CP(X) and
A = αB. Hence, there also exists a proof of αB based on the set αX.

Definition 3.15. A non-atomic formula A of the PC language is called
quasi-Horn if the following conditions are met: a) A is in canonical con-
junctive normal form (CCNF ); b) each literal clause (disjunction) contains
at least one positive literal.

The original Horn clause is supposed to contain at most one positive
literal, while our quasi-Horn formulas are supposed to contain at least one
positive literal.

Theorem 3.16 (weak completeness theorem). The consequence operation
CP that corresponds to the system P has the property: CP(∅) = P .

Proof: (⇒) Let us first prove the implications from left to right. Sup-
pose that the formula A ∈ CP(∅); thus, it has a proof based on a set of
axioms of the system P of the form < D1, D2, D3, . . . , Dn >, where each
Di(0 < i ≤ n) is either an axiom of the system or has been obtained from
prior expressions of this sequence by means of any of the rules of the sys-
tem. We will give a sketch of a well-known inductive proof, the essence
of which consists in showing that the property being proved is preserved
by the rules of the system. When the formula is an axiom, the matter
is evident because each axiom belongs to P . Also, for the rules (RO) and
(RN), the proof is straightforward by virtue of the corresponding theorems:
Theorem 2.13, Theorem 2.14., and Lemma 3.2. Consequently, we will con-
centrate on the case of the restricted substitution rule (RSu). Therefore,
let us assume that A ∈ P ′, i.e., A, is a strictly probable formula. Let
us take any bijection α : V → V . Let V ar(A) = {p1, . . . , pk}, hence
V ar(e(A)) = {e(p1), . . . , e(pk)}. According to the definition, v(A) = 1 for
the majority of the 2k valuations. If vj(0 < j ≤ 2k) is such a valuation
that vj(A) = 1, then for each such valuation vj the variables will take
corresponding logical values. Let us define the new valuation vm in the
form vj(pi) = vm(h(pi)), hence we have vj(A) = vm(e(A)), and so on for
every j.
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(⇐) We now want to prove the converse implication. Let us therefore
assume that A ∈ P and that V ar(A) = {p1, . . . , pk}. If A is a tautology,
then the case is obvious. Let be A ∈ P ′, then m(A) > 1/2. By virtue
of the relevant metatheorems, there is a formula of canonical conjunctive
normal form for A, which we will denote by ACCNF . Such a formula is
a conjunction of the clauses Ai(1 ≤ i < 2k−1), of disjunctive form whose
members, called literals, are single propositional variables or their negations
occurring in the formula A. Let us note that if A is a purely implicational
formula, then ACCNF is quasi-Horn. It can easily be seen by virtue of
Lemma 2.12. that ACCNF is a conjunction of at most 2k−1 conjuncts.
But the disjunction in the form (¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk) is excluded as
a such conjunct because, for the valuation v, if v(p1) = v(p2) = . . . =
v(pk) = 1, then v(A) = 1. So, each conjunct (elementary disjunction) of
the formula ACCNF contains at least one positive literal, and the number of
all conjuncts is less than 2k−1. It is a fact that (ACCNF ≡ A) ∈ TAUTPC ,
and this is provable in PC in the functionally complete language, which,
by virtue of the law of exportation of the scheme (B ∧ C → D) ≡ (B →
(C → D)) and the rule of equivalence elimination, we can transform to
the form (A1 → (A2 → (. . . (A((2k−1)−1) → A) . . .) ∈ TAUT→, that is
⊢P (A1 → (A2 → (. . . (A((2k−1)−1) → A) . . .). By applying the (RO) rule

2k−1 times and detaching in each step the subsequent formula Ai, we get
⊢P A. Applying the RO rule is in any case permissible since each formula
Ai and formula A satisfy the constraint imposed on its application. Note
also that every clause Ai is quasi-Horn, therefore part of such a formula
has always one of the following formulas or an equivalent formula: ¬p ∨ q;
p ∨ ¬q; p ∨ q, where p, q ∈ X.9 The corresponding formulas in the form
of an implication p → q, q → p, and ((p → q) → q) are equivalent to
each of the preceding formulas and are derivable in P. If the ACCNF

clause is more complex, then by the rule in Lemma 3.13. we can include
further disjunctive members of each clause of formula A. This completes
the proof.

Lemma 3.17. If A ⊢P e(A), then ⊢P (A → e(A)).

Proof: Suppose that |V ar(A)| = m and |V ar(e(A))| = n. IfA ∈ TAUT→,
then e(A) is also a tautology. So, suppose that A ̸∈ TAUT and A ⊢P e(A).

9Case: ¬p ∨ ¬q, is excluded as not being a quasi-Horn.
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If we show that m(A → e(A)) > 1/2, then by virtue of the weak complete-
ness theorem ⊢P (A → e(A)). We know that m(A) = m(e(A)) ≥ 1/2. The
table for the whole formula (A → e(A)), when m(A)=m(e(A))=1/2, will
have ones in the rows where its predecessor, formula A, has zeros, and this
will be exactly half of all the values of the whole implication. In addition
to this, the whole formula will have ones in the rows in which formula A
and e(A) take the value 1. Such rows certainly exist, hence the last column
of the table for the whole formula will be more than half full of ones. We
perform analogous reasoning for the case when m(A) = m(e(A)) > 1/2.
So, ⊢P (A → e(A)) by virtue of Theorem 3.16.

To prove the weak deduction theorem, we need to weaken the P system
to a system, which we will tentatively denote by the symbol P−. In this
new system, we will abandon the RSu rule, but we will close the axioms of
the system P− to any bijections and their endomorphisms, that is, to our
substitution.

Theorem 3.18 (weak deduction theorem). If {A} ⊢P− B, then
⊢P− (A→ B).

Proof: We will base our reasoning on the principle of ordinal induction,
which is equivalent to normal induction. We will prove precisely the fol-
lowing: ∀k(∀i(i < k → W (i)) → W (k)). Then, we will consider a general
sentence of the form: ∀nW (n). In our case, the formula W (n) will have
the following meaning: “a proof of B(< D1, . . . , Dn = B >) based on A,
having length n, can be transformed into a certain proof of (A → B) based
on the set ∅”. The theorem holds in the case where A is a tautology, so we
assume that A ̸∈ TAUT→. If k = 1, then it must be shown that there is
(∀i(i < 1 → W (i)) → W (1). Since the antecedent is true, it is equivalent to
the sentence W (1), i.e., a proof of length 1 has the property W . Thus, two
cases must be considered: (i) B = A; (ii) B is an axiom. If B = A, then
(A → B) = (A → A), and this is the theorem of the system P−. When B
is an axiom of P−, and if we take an axiom of the form (B → (A → B)),
then we can detach B (using RO), and we have (A → B). Now, if we
suppose that the theorem of the system P− holds for ∀i(i < k → W (i)),
then we need to show that it holds for a proof of length k, i.e., W (k).
Our system has three inference rules, so we need to examine each of the
three cases. If formula Dk is an axiom of the system or is identical to for-
mula A, then we repeat the reasoning for k = 1. For rule RO, suppose that
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there exist such indices i, j < k that Di = (Dj → Dk) = (Dj → B) and
m(Dj ∧ B) > 1/2. By virtue of the induction assumption, both A → Di

and A → Dj are theorems of the system. Let us now take a tautology of
the form (A → (Dj → Dk)) → ((A → Dj) → (A → Dk)). We can detach
(A → (Dj → Dk)) from it because it is a theorem of the system; next,
from the formula ((A → Dj) → (A → Dk)), which is also a theorem of
the system, we can detach (A → Dj) because m(Di ∧Dk) > 1/2, and also
(A → (Di ∧Dk)) > 1/2. Let us now consider the RN rule. Let us assume
that Dk = (Dj → C) for some formula Dj = B (which has a proof shorter
than k), and let us assume that ((B → C) → C) ̸∈ TAUT→. By virtue
of the induction assumption, we have a proof of (A → Dj) = (A → B).
Now, we need a proof for (A → (B → C)), where A ̸∈ TAUT→. By the
RN rule, we have ⊢P− ((A → B) → C), because ⊢P− (A → B) and
(((A → B) → C) → C) ̸∈ TAUT→, i.e., there exists such a valuation v
that v(C) = v(B) = 0 and v(A) = 1. From the tautology ((A → B) →
C) → (A → (B → C)) and its predecessor, we also have the successor
⊢P− (A → (B → C)).

The converse of the above theorem does not hold for P.

Theorem 3.19. It is not true that if ⊢P (A → B), then {A} ⊢P B.

Proof: The theorem ⊢P ((q → p) → p), whose proof is provided above,
serves as the counterexample to the implication from Theorem 3.20. The
thesis of the system P is also ⊢P (q → p); we obtain this thesis from
the axiom (T4)(p → q) by applying RSu. On the other hand, because the
rule of detachment is not a rule of P, the single variable is not a P-theorem
by virtue of Theorem 3.16. and the proof of Lemma 2.5.

Lemma 3.20. The set P is absolutely consistent under the consequence CP.

Proof: Directly from Theorem 3.16. and that, for example, ((p → p) →
p) ̸∈ P .

4. Three propositions for the definition
of the entailment relation

Definition 4.1 (entailment 1). The formula A follows from a set of for-
mulas X (symbolically: X |=1 A) iff for every B ∈ X, if B ∈ P , then
A ∈ P (or else: if X ⊂ P , then A ∈ P ).
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Definition 4.2 (entailment 2). Formula A follows from a finite set of for-
mulas X (symbolically: X |=2 A) iff (∧X → A) ∈ P , where ∧X is a gener-
alized conjunction of the elements of the set X, i.e., ∧X := (A1∧ . . .∧An).

Definition 4.3 (entailment 3). The formula A follows from a finite set of
formulas X (symbolically: X |=3 A) iff for most Boolean valuations v
of the formulas which belong to X—if these valuations have been assigned
the value 1—the value 1 has also been assigned to the formula A.

5. Some remarks on the family of all majorities

We should bear in mind that the proper object of the present work is some
notion of majority, which here we have fortunately managed to insert into
the consideration of the classical propositional calculus. So, the general
work on the notion of majority is still to be done. In this section, we will
assume that the family π(X) of the subsets of the set X is a majority
in the set of all valuations of the set X. In this section, we will try to
give suggestions for applying some typical algebraic concepts to the family
π(X). We do so because the findings of this section might, for someone,
form the basis of possible further investigations.

Definition 5.1. Let X be any finite set of propositional variables such
that |X| = n, and let VX denote the set of all valuations of variables of the
set X of the form v : X → {0, 1}. Then, by the symbol π(X) we denote a
subset of the set 2VX of the form π(X) = {Y : Y ⊂ VX ∧ 2n−1 < |Y |}.

Each element of the set VX can be naturally assigned to the formulas
of the language of the classical propositional calculus, but this is only pos-
sible for a functionally complete language. In the case of a functionally
incomplete language, there are valuations of variables to which the formu-
las of such a language do not correspond. On the other hand, a certain
set VX can be assigned to every formula A, where X = V ar(A). Among
formulas with two different propositional variables in a purely implica-
tional language, there are infinitely many tautologies, e.g., (p → (q → p)),
((p → p) → (q → q)), ((p → (p → q)) → (p → q)), and many others. The
same is true for other formulas from the set P , especially P ′. As already
mentioned, when a language is not functionally complete, such as a purely
implicational language, then the set π(X) may have less cardinality since
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there may be no formulas in a functionally incomplete language that de-
fine certain Boolean valuations. For example, in the case of formulas of
the Form→ language that are built with only two propositional variables,
p and q, we have only four elements of the set V{p,q}, and five elements of
the set π({p, q}), respectively:

• tautologies, i.e., formulas that are true for all valuations;

• v(p) = 1 and v(q) = 1, or v(p) = 1 and v(q) = 0, or v(p) = 0 and
v(q) = 1, and the corresponding formula is (p → q) → q;

• v(p) = 1 and v(q) = 1, or v(p) = 1 and v(q) = 0, or v(p) = 0 and
v(q) = 0, and the corresponding formula is (q → p);

• v(p) = 1 and v(q) = 1, or v(p) = 0 and v(q) = 0, or v(p) = 0 and
v(q) = 1, and the corresponding formula is (p → q).

Lemma 5.2. For the valuations v(p) = 1 and v(q) = 0, or v(p) = 0 and
v(q) = 0, or v(p) = 0 and v(q) = 1, there is no purely implicational formula
that defines them.

Proof: If there were such a purely implicational formula with two vari-
ables A(p, q) that were true only for these cases, then p/q := A(p, q) could
serve as the definition of a Sheffer stroke by the implication alone. This
would make it possible to define all binary connectives of the classical logic
solely by implication, which is not possible.

The set π(X) from Definition 5.1. is particularly interesting because of
its cardinality. For example, |π(X)| = 5 for |X| = 2; while |π(X)| = 94
when |X| = 3. The general formula for determining the cardinality of

this set looks like this: |π(X)| =
(

2n

2(n−1)+1

)
+ . . . +

(
2n

2(n−1)+2(n−1)

)
, when

|X| = n. Note that this function can be composed with the V ar function
and extended to the set of all FormPC : π′(A) := π(V ar(A)). For the sake
of emphasis, let us observe that for a language with implication alone there
are only four sets of valuations that the implication formulas correspond to.

Definition 5.3. For a finite set of variables X, the family π(X) forms a
certain algebra < π(X),∪,′ >, which satisfies the following conditions:

i. X ∈ π(X);

ii. If Y ⊂ Z and Y ∈ π(X), then Z ∈ π(X);

iii. If Y ∈ π(X), then Y ′ ̸∈ π(X).
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We will now apply the definition of a filter to the family π(X).

Definition 5.4. A family of sets F ⊂ π(X) is called a filter in the family
π(X) if the following conditions are satisfied:

I. X ∈ F ;

II. Y ⊂ Z and Y ∈ F , then Z ∈ F ;

III. If Z ∈ F and Y ∈ F , then Z ∩ Y ∈ F ;

IV. ∅ ̸∈ F .

As can be seen, the family F being the filter significantly reduces the
cardinality of the family π(X). For example, let us take the already
considered case of |X| = 2 and |π(X)| = 5. We then have V{p,q} =
{11, 10, 01, 00} and π({p, q}) = {X1 = {11, 10, 01, 00}, X2 = {11, 10, 01},
X3 = {11, 10, 00}, X4 = {11, 00, 01}, X5 = {10, 01, 00}}. There is only one
filter F in this family and it is non-proper: F = {X1}.

Based on the presented facts, we shall determine how we will understand
the semantic model of our system P. Since the traditional semantic model
that we are familiar with suffices for our purposes, we have so far been able
to understand it intuitively.

Definition 5.5. A structure MP =<< {1, 0}; f→ >;D = {1} > is called
a normal model for P.10

Functions, which are valuations, assign logical values of truth (1) or
false (0) to all propositional variables and formulas.

We have the following typology of formulas:

A. Formula A is satisfiable iff there is a valuation for which A takes the
logical truth value;

B. Formula A is logically probable iff it takes the logical truth value for
‘most’ Boolean valuations of A i.e. for most restrictions v⌈V ar(A) of
Boolean valuations of A.

C. Formula A is a tautology iff it takes the logical value of true for all
Boolean valuations.

10Of course, usually there are more functions: f¬, f∨, f∧, f≡.
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6. The strong completeness of the system P

Let us now consider Definition 4.1. as the fundamental definition of the en-
tailment. This definition is similar to Tarski’s definition of the entailment,
which preserves truthfulness in the sense that a proposition A does not fol-
low from the set of true propositions X when A itself is not true. A formula
A does not follow from the set of logically probable formulas X when it is
not itself logically probable, as stated in Definition 4.1. Additionally, un-
like other definitions that only permit finite sets X, this definition admits
any cardinality of the set X. It should be noted that, from the perspec-
tive of natural language, the requirement that the set of premises is finite
is not very unreasonable. Let us see, therefore, whether the consequence
that results from Definition 4.1. has the properties of a consequence in
the Tarskian (classical) sense. Since the so-understood consequence is a
relation, |=1⊂ 2Form × Form, we need to determine the properties of this
relation. We will show that it has the properties of Tarski’s consequence,
namely reflexivity, cut and monotonicity [5, p. 5].

Lemma 6.1.

a. If A ∈ X, then X |=1 A; (reflexivity).

b. If X |=1 B, for any B ∈ Y and X ∪ Y |=1 C, then X |=1 C; (cut).11

c. If X |=1 A and X ⊂ Y , then Y |=1 A; (monotonicity).

Proof: Ad a. Suppose that A ∈ X and X ⊂ P holds, then, of course, by
the definition of inclusion we have A ∈ P .

Ad b. Suppose X |=1 B, for every B ∈ Y and X ∪ Y |=1 C and
X ⊂ P . From these presumptions, we aim to demonstrate that X |=1 C.
We therefore have for every B ∈ Y , B ∈ P , that is Y ⊂ P . If X ⊂ P and
Y ⊂ P , then (X ∪ Y ) ⊂ P . And from this, we straightforwardly obtain
C ∈ P .

Ad c. Suppose that X |=1 A and Y ⊂ P . Hence, we have X ⊂ P , and
by the first assumption we have A ∈ P .

11Makinson [5] calls cut also a cumulative transitivity and characterizes it in the
terms of the consequence operator as follows: if X ⊂ Y ⊂ C(X), then C(Y ) ⊂ C(X).
Cut, given the above definition and in the presence of monotonicity, is equivalent to the
idempotence condition C(C(X)) ⊂ C(X).
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It seems natural to ask about the completeness of the system P, that
is, more precisely, whether every true formula of the language is simulta-
neously provable in this system. Such a theorem has the following strong
version: if X |=1 A, then X ⊢P A. We will attempt to provide a proof of
this important theorem later in this paper. On the other hand, the converse
implication if X ⊢P A, then X |=1 A is called the soundness theorem for
the system P, and we shall attempt to prove it first. The proof is similar
to the left-to-right implication of Theorem 3.16.

Theorem 6.2 (strong soundness of the system P). For any X ⊂ Form→
and A ∈ Form→, if X ⊢P A, then X |=1 A.

Proof: Suppose that X ⊢P A holds for given X and A, which we will
write in an equivalent way: A ∈ CP(X). Thus, A has a proof that is based
on the set of formulas X and the set of axioms of the system P of the form
d =< D1, D2, D3, . . . , Dn = A >, where each Di(1 ≤ i ≤ n) is either a
member of the set X, an axiom of the system, or has been obtained from
the prior expressions of this sequence using any of the four rules of the
system. The sequence that is a proof of a formula A based on the set of
formulas X will only contain a finite subset Y of the elements of the set
X, and for this set we have Y ⊢P A. This is due to the finite length of
the proof of a formula A. We will give a sketch of the well-known proof
of the inductive hypothesis W (n), which states that if d is a proof of A
based on the finite set Y ⊂ X, then Y |=1 A, which we shall demonstrate
for any n. To do so, it suffices to prove ∀n(∀k(k < n → W (k)) → W (n)).
Let us assume that the antecedent of the implication holds for any k < n
and W (k). The formula Dn = A in the proof d must appear as a result
of any of the following steps. When the formula A is an axiom or an
element of the set Y , then, of course, Y |=1 A. Also, for rules (RO)
and (RN), the case is evident by virtue of the corresponding theorems:
Theorem 2.13., Theorem 2.14. and Lemma 3.2. Therefore, only the proof
for the case of the restricted substitution rule (RSu) is needed. Let us
therefore assume that A ∈ P ′, i.e., A, is a strictly probable formula. Let
us take any bijection h : V → V . Let V ar(A) = {p1, . . . , pm}. Hence,
V ar(e(A)) = {h(p1), . . . , h(pm)}. By definition of the 2m valuations of
formula A, for most of them v(A) = 1. Let vj(0 < j < 2m) be such
that vj(A) = 1, then for each valuation vj of the propositional variables of
formula A, this formula will take the corresponding logical values. Let us
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define vj(pi) = vj(h(pi)), hence vj(A) = vj(e(A)) for every j. That is, if
X |=1 A, then {A} |=1 e(A), and finally X |=1 e(A).

We now proceed to the proof of completeness theorem: this is the most
important theorem for the system P; the proof is akin to the proof of the
right-to-left implication of Theorem 3.16. But first we draw the corollary,
the proof of which is based on Theorem 6.2 and Lemma 3.20:

Corollary 6.3. The system P is absolutely consistent, i.e., CP(∅) ̸=
Form→.

Theorem 6.4 (strong completeness theorem for P). For any X ⊂ Form→
and A ∈ Form→: if X |=1 A, then X ⊢P A.

Proof: We prove this theorem using some variant of Lindenbaum’s lemma
for our language that has no negation. Suppose then thatX |=1 A, i.e., that
if X ⊂ P , then A ∈ P . For an indirect proof, suppose that A ̸∈ CP(X),
hence the setX is consistent in the Post sense. Using Lindenbaum’s lemma,
we can extend the set X to a maximal and consistent set X∗ for a purely
implicational language. X∗ = ∪m∈NXm, where X0 = X; Xm+1 = Xm ∪
{wm}, if Xm ∪ {Wm} is consistent; and Xm+1 = Xm, if Xm ∪ {Wm} is
inconsistent. It is known that all formulas of the set Form→ can be put
on an infinite list: w0, w1, w2, . . . We must now prove the auxiliary lemmas
concerning the set X∗.

Lemma 6.5. Let a formula A ∈ Form→ be such that V ar(A) = {p1, p2, . . . ,
pn}: if for any Boolean valuation v and for any n ≥ i > 0, v(pi) = 1, then
v(A) = 1.

Proof: Induction by the complexity degree of a formula A. If A = p
and v(p) = 1, v(A) = 1. Suppose A = (B → C) and let formulas B,
C satisfy the assumptions of the theorem, i.e., v(B) = v(C) = 1, then
v(A) = v(B → C) = v(B) → v(C) = 1 → 1 = 1.

Lemma 6.6. For any A ∈ Form→ : A ∈ P iff A ∈ X∗.

Proof: Suppose that A ∈ P . By virtue of Theorem 3.16, ⊢P A, and
from the monotonicity of the consequence operation (Lemma 6.1(c)), we
obtain X∗ ⊢P A, hence A ∈ X∗. If A ̸∈ X∗ and the set X∗ is maximal,
then X∗ ∪ {A} is inconsistent. Conversely, suppose that A ∈ X∗, hence
X∗ ⊢P A. For the purpose of an indirect proof, we will assume that
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A ̸∈ P . By virtue of Lemma 3.5, in exactly half of the Boolean valuations
the formula A takes the Boolean value 1, and it takes the Boolean value 0
for the other half. Then, for such an A, {A} ⊢P p, where p is some variable
belonging to V ar(A).12 By further applying the rule (RSu) {p} ⊢P q, we
get {A} ⊢P q for any variable q. This, in turn, leads us to assert that X∗

is inconsistent, which contradicts the assumption.

One final step still needs to be proven:

Lemma 6.7. If A ∈ Form→ and m(A) = 1/2, then {A} ⊢P p for some
variable p ∈ V ar(A).

Proof: Assume that the assumptions of the lemma hold and let |V ar(A)| =
n. Thus, exactly 2n−1 possible Boolean valuations of formula A take the
value 1, and the other half of the valuations obviously take the value 0.
If the formula A = p, the lemma obviously holds. Suppose, then, that A
is a compound formula and has the form A = (A1 → B1) for some A1

and B1 ∈ Form→. Then, v(A) = 0 iff v(A1) = 1 and v(B1) = 0. As-
suming that B1 = (A2 → B2), then v(B1) = 0 iff v(A2 → B2) = 0 iff
v(A2) = 1 and v(B2) = 0. Thus, v(A) = 0 iff v(A1) = 1 and v(B1) = 0;
then v(A2) = 1 and v(B2) = 0. Following this pattern, after k > 1 steps we
arrive at Bk−1 = (Ak → p), where p ∈ V ar(A); iff (v(A1) = 1) ∧ (v(A2) =
1) ∧ . . . ∧ (v(Ak) = 1) ∧ (v(Bk) = v(p) = 0). From transitivity, we have if
v(A) = 0, then v(p) = 0, for some variable p ∈ V ar(A). By contraposition
for this variable, if v(p) = 1, then v(A) = 1. For the proof of the converse
implication, the key issue is whether it would be possible that v(p) = 0,
while v(A) = 1 for some valuation v. This case is ruled out since the table
for the formula A has 2n rows, half of which contain 0 and half of which
contain 1 in the last column. In the column under the variable p, also
half of the cells contain 0 and half contain 1. Consequently, if v(A) = 0,
then v(p) = 0, so 0 occurs at least in those rows of the column under the
variable p where the valuation of formula A equals 0, and exactly half of
the valuations equal 0. According to Definition 2.1, none of the other rows
in the column under the variable p can contain 0 because there are 2n−1

rows containing 1. Let us now construct a disjunctive normal form of the
formula A, that is AAPN . This formula is a disjunction of 2n−1 conjunc-
tions of literals with n members. In each such conjunction, there is as its

12The proof of this claim is given in Lemma 6.6 below.
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member a variable p. We can move this variable to the front of the con-
junction by applying the law of distributivity of the disjunction over the
conjunction to AAPN . This allows us to derive p within PC : AAPN ⊢PC p.
Also, in PC it holds that AAPN ≡ A and AAPN ⊢PC A. By virtue of the
extensionality rule, we have A ⊢PC p. From the deduction theorem for
PC, we have ⊢PC (A → p); and from the definition of the system P, we
have ⊢P (A → p). Hence from A, by rule (RO1), we will obtain p, and
finally we will also obtain p ⊢P q, for any variable q, by rule (RSu).

Lemma 6.8. The set X∗ ∪ {A} is inconsistent when A ∈ Form→ and
exactly half of its Boolean valuations take the value 1 (as in Lemma 6.6).

Proof: The set {A} is inconsistent, as follows from Lemma 6.6. So, by
virtue of monotonicity, also X∗ ∪ {A} is inconsistent.

This completes the proof of Lemmas 6.6 and 6.7, and also the proof of
Theorem 6.4 (the strong completeness theorem).

As an illustration, let us observe that within the formulas of the PC lan-
guage written with three different variables (p, q, r), there are 70 formulas in
the disjunctive normal form that have exactly half of the rows occupied by
1s in the last column of their respective truth tables. Only three of these
formulas have equivalents that are simply implicational formulas. Such
formulas are characterized by the fact that applying the Quine-McCluskey
method—also known as Karnaugh’s method—to minimize Boolean func-
tions yields a single variable. The formulas in disjunctive normal form used
in the example are:

• (p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ r);

• (p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ ¬r);

• (p ∧ q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r).

When understood as sets, the consequence relation |=1 and the relation
|=PC are distinct since they intersect. This is because {q → p} |=1 (p → q),
yet {q → p} |=PC (p → q) does not hold since, for valuations v(p) = 1 and
v(q) = 0, v(q → p) = 1, while v(p → q) = 0. Both relations hold when
premises and conclusions are tautologies. On the other hand, {(p → q) →
r, p → q} |=PC r, but {(p → q) → r, p → q} |=1 r does not hold because
the premises are elements of the set P , while the single variable r is not.
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A study of the consequence relation |=1 reveals that it has some unex-
pected properties, such as {q → p} |=1 p → q or—even more contentious—
{q → p} |=1 r → s. Due to the proven completeness theorem, {q → p} ⊢P

r → s holds because the derivation is allowed by the substitution rule
(RSu). This observation can serve as the starting point for consideration
of a system without this rule, which can be a challenging issue.

7. Further considerations regarding the entailment
relation

Since this paragraph concerns only purely implicational language, we need
to adapt Definition 4.2, which is of the logical consequence in the second
sense we have given, i.e., |=2.

Lemma 7.1 (entailment 2′). The formula A follows from a finite set of
formulas X = {A1, A2, . . . , An} (i.e., symbolically, {A1, A2, . . . , An} |=2 A)
iff (A1 → (A2 → (. . . (An → A)) . . .) ∈ P .

Proof: This transformation is made possible by the equivalence that is
the theorem of the PC: (A ∧B) → C) ≡ (A → (B → C)).

We will now demonstrate how the above understanding of the conse-
quence relation does not meet the classical properties of the consequence.

Lemma 7.2. The relation |=2 satisfies the conditions a. and c., but it does
not satisfy the condition b.:

a. If A ∈ X, then X |=2 A; (reflexivity).

b. It is not true that if for all B ∈ Y , X |=2 B, and X ∪ Y |=2 C, then
X |=2 C; (cut).

c. If X |=2 A and X ⊂ Y , then Y |=2 A; (monotonicity).

Proof: Ad a. Suppose that there exists A ∈ X = {A1, A2, . . . , An}.
Therefore, A = Ai, for some 0 < i < n + 1. Hence, {A1, A2, . . . , An} =
{A1, A2, . . . , Ai−1, Ai+1, . . . , An, Ai} |=2 A, and since (A1 → (A2 → (. . .
(Ai−1 → (Ai+1 → (. . . (An → (Ai → A))) . . .) is a tautology; therefore, by
virtue of Definition 2.2, {A1, A2, . . . , Ai−1, Ai+1, . . . , An, Ai} |=2 A because
Ai = A.
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Ad b. Suppose that for every B ∈ Y : X |=2 B, and X ∪ Y |=2 C,
where Y = {(q → p)}; B = (q → p); X = {(p → q)}; C = p. We have
(q → p) ∈ Y ; {(p → q)} |=2 (q → p), because ((p → q) → (q → p)) ∈ P ;
{(p → q)} ∪ {(q → p)} = {(p → q), (q → p)} |=2 p, because (((p →
q) ∧ (q → p)) → p) ∈ P ; but X = {(p → q)} |=2 p does not hold because
((p → q) → p) ̸∈ P .

Ad c. Suppose X |=2 A and X ⊂ Y and |Y | = n for some n. If Y
is not finite, then the consequence holds vacuously. By Definition 4.2., we
have (∧X → A) ∈ P and (∧Y → ∧X) ∈ TAUT , and from the transitivity
(∧Y → ∧X) → ((∧X → A) → (∧Y → A)). After commutating and
detaching (using (RO1)), we get (∧Y → ∧X) → (∧Y → A); then by
detaching the antecedent which is a tautology (using (RO2)), we get (∧Y →
A). This formula is a member of P . This, in turn, by virtue of Lemma 7.1,
gives Y |=2 A.

Let us now examine the properties of the third relation of consequence.
Note that here we are dealing with richer language since there is at least
a conjunction in addition to the implication. Nevertheless, we will try
to remove it. As we know, the set P itself is not closed with respect
to the rule of conjunction introduction (cf. Lemma 2.15). Let us note that
the following holds:

Lemma 7.3. Let X ⊂ FormPC and |X| = n. For any Boolean valuation
v : v(X) = 1 iff v(∧X) = 1.

Proof: Suppose v(X) = 1. This is so iff v(A) = 1 for any A ∈ X. Then,
of course, v(∧X) = 1. Conversely, if v(∧X) = 1, then v(A) = 1, for every
member A of the conjunction ∧X.

Based on above consideration, we can reformulate the definition of the
consequence |=3 and use it for the following lemma:

Lemma 7.4. Let X ⊂ Form→ be a finite set and A ∈ Form→. Then,
X |=3 A iff every Boolean valuation v from the set of the majority of
Boolean valuations satisfying the set X, i.e., v(X) = 1, also satisfies A,
i.e., v(A) = 1.

Proof: From Definition 4.3 and Lemma 7.3.

The idea behind this term is that we want every valuation which be-
longs to a majority of valuations and assigns a logical truth value to the
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conjunction of all premises to assign a logical truth value to the conclusion
as well. This term is different from both |=1 (even for finite sets of premises)
and |=2. For example, let us take the formulas: (p → q), (q → p) ∈ P .
Then, ((p → q) ∧ (q → p)) → p ∈ P , that is {(p → q), (q → p)} |=2 p,
but {(p → q), (q → p)} ̸|=1 p. To distinguish |=3 from |=2, note that
{(p → q)} |=2 (q → p) because ((p → q) → (q → p)) ∈ P ; however,
{(p → q)} |=3 (q → p) does not hold because, for a valuation where
v(p) = 0 and v(q) = 1, we have v(p → q) = 1 and v(q → p) = 0.

Lemma 7.5. For any finite X,Y ⊂ FormPC , and A,B,C ∈ FormPC :

A. If A ∈ X, then X |=3 A; (reflexivity)

B. If for all B ∈ Y : X |=3 B, and X ∪ Y |=3 C, then X |=3 C; (cut)

C. If X |=3 A and X ⊂ Y , then Y |=3 A; (monotonicity).

Proof: Ad A. Let A ∈ X, |X| = n. Suppose also that ∧X ∈ P , i.e., it
takes the value 1 for most Boolean valuations of this formula. For each
such Boolean valuation v, if v(∧X) = 1, then v(A) = 1. For if v(A) = 0,
then there would also be v(X) = 0. Thus X |=3 A.

Ad B. Suppose that for every B ∈ Y,X |=3 B, and X ∪ Y |=3 C.
Therefore, any valuation v of the conjunction ∧X that assigns it the value
1 assigns the value 1 to any formula B ∧ Y , therefore any such valuation
assigns the value 1 to the conjunction ∧Y . Hence, if v(∧X) = 1, then
v(∧Y ) = 1. Thus, the set of such valuations that v(X) = 1 is contained
in the set of valuations such that v(Y ) = 1. With X ∪ Y |=3 C, by
Definition 4.3 we can assert that each valuation (belonging to the majority
of valuations) that assigns value 1 to the conjunction ∧(X ∪ Y ) = (∧X) ∧
(∧Y ) assigns the same value to the formula C. Based on the corresponding
PC tautology, we have (∧X)∧(∧Y ) ≡ (∧X)∧(∧X → ∧Y ). So, there is an
inclusion of the set of Boolean valuations v such that v((∧X) ∧ (∧Y )) = 1
in the set of valuations such that v(∧X) = 1. Hence, X |=3 C.

Ad C. Suppose that |X| = n, |Y | = m, X |=3 A, X ⊂ Y and, for an
indirect proof, for any Y : Y ̸|=3 A. The majority of valuations in the
set of all Boolean valuations of the conjunction ∧X for which v(∧X) = 1,
under the assumption X ⊂ Y , is the superset of the set of those Boolean
valuations for which v(∧Y ) = 1. Thus, Y |=3 A, which is a contradiction.
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Because of the finiteness condition, it is debatable whether Defini-
tion 4.3 of the consequence is adequate for the realm of logically probable
formulations.

8. Conclusions

In our deliberations, the notion of majority plays an important role. There
are other research fields for which this concept is also important. For ex-
ample, there are studies focused on decision-making in the fields of social
choice theory, political sciences and economics, whose authors have exam-
ined how “[. . .] individual preferences and interests can be combined into
a collective decision.” [3, p. 1]. These studies are synthetically described
in [3], and the latest results are presented in [7]. This fact alone indi-
cates some conceptual affinity between these studies and considerations
presented in this paper. Moreover, the notion of majority in both my
theory and the theory of decision making is analysed in the context of in-
ferences and logic, although from different angles. In studies devoted to
group decision-making, this notion refers to the majority in a certain group
of subjects as a whole. In this case, the majority is a result of individual
choices made by decision-makers, and the decision of the group as a whole
(i.e., a collective judgement) is obtained through aggregation functions. In
the case analysed in this paper, the majority is formed only by the logical
valuations, and—unlike in the decision-making process—we do not need to
involve any extralogical apparatus. In short, group decision-making theory
uses means outside the arsenal of logic, while in our conception we remain
within purely logical concepts and the standard language of PC. We cannot
rule out combining our take on a majority within the framework of group
choice theory.

Another related line of research can be found in the field of logical
probability, which stems from Carnap and was developed by, for example,
[1]. This probability is defined for first-order sentences as the fraction of
the set of finite models for which a sentence is true in the set of all finite
models of the sentence. However, this study focused on logical probability,
unlike the study described in this paper; cf. [1].

The basic ideas of our paper were developed in the post-graduate thesis
of Olszewski, later summarized in a paper [6]. As I have already mentioned,
the real powerbroker of these considerations is the notion ofmajority. While
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in the presented paper majority appears in some tricky way, it seems that
the main further considerations should focus on the abstract notion of ma-
jority. Here by way of example, we will give five proposals of the definitions
of majority for some set U to show the richness of this concept. Below we
define the families of subsets of the universe U , denoted by πk(U); the
elements of these families are subsets which are the majorities in the set
U ; cf. [6]:

Def. A. Let U be any set, finite or infinite: π1(U) = {Y ⊂ U: |Y | > |Y ′|}.

Def. B. Let U be an infinite set of any cardinality: π2(U) = {Y ⊂ U :
|Y ′| = n}.

Def. C. Let U be an infinite set of any cardinality: π3(X) = {Y ⊂ U :
|Y | > |Y ′|}.

Def. D. Let U be a metric space with its metric d : π4(U) = {Y ⊂ U :
|Y | > |Y ′| and dY > dY ′}.

Def. E. Let U be a topological space: π5(U) = {Y ⊂ U : |Y | > |Y ′| and
if Y a dense subset of U}.

A quite natural direction for further research is to extend the main
results, including the completeness theorems, to the whole language of
propositional calculus. In a sense, the concept presented can be extended
to the concept of logical probability (majority) of first order formulas for a
finite universe. The concepts of the probability of the propositional language
formulas and themajority, understood as a form of modality operator, seem
equally promising.
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[8] R. Wójcicki, Theory of Logical Calculi, Springer, Dordrecht (1988), DOI:

https://doi.org/10.1007/978-94-015-6942-2.

Adam Olszewski

Pontifical University of John Paul II in Cracow
Faculty of Philosophy
ul. Kanonicza 9/203
31-002 Kraków, Poland

e-mail: adam.olszewski@upjp2.edu.pl

https://doi.org/10.2307/2963776
https://doi.org/10.1007/s10992-021-09631-7
https://doi.org/10.1007/s10992-021-09631-7
https://doi.org/10.1007/978-94-015-6942-2
adam.olszewski@upjp2.edu.pl

	Introduction
	Intuitionistic Logic with Identity
	BHK
	Hilbert-style formalization
	Natural deduction—synthetic approach
	Natural deduction—analytic approach

	Validity based on introduction rules
	Validity based on elimination rules
	Object identity and propositional identity
	Conclusions
	Positive complete theories
	Positive logic
	Positive complete and T-complete theories

	General forms of positive amalgamation 
	Introduction
	Gentzen calculus
	Cut elimination
	Kripke semantics
	Soundness and completeness
	Concluding remarks
	Introduction
	Preliminaries
	Definition and properties of pre-Hilbert algebras
	Positive implicative pre-Hilbert algebras
	Summary and future work
	Introduction
	Logically probable formulas
	A system P of logically probable formulasin an implicational language
	Three propositions for the definitionof the entailment relation
	Some remarks on the family of all majorities
	The strong completeness of the system P
	Further considerations regarding the entailment relation
	Conclusions
	Introduction
	Equivalential algebras with conjunctionon the dense elements
	Free algebras
	FD(2)
	FD(3)
	Direct indecomposability of FD(n)

	Free spectrum
	Red_B5.pdf
	Introduction
	Preliminaries
	Roughness of filters
	Conclusions and future works 
	Introduction
	Preliminaries
	Homomorphism on intuitionistic Fuzzy PMS-subalgebras
	Cartesian Product of Intuitionistic Fuzzy PMS-subalgebras 
	Conclusion
	Introduction
	Theory of extensional Kan complexes
	Extensional Kan complexes and Identity types based on higher -terms
	Conclusion
	The modelwise interpolation property
	Applications
	Introduction
	Logics defined
	Matrices fit for weak variable sharing
	Meyer's WVSP-proof in comparison

	An incorrect WVSP-proof
	Summary




