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Abstract

Decidability of monadic first-order classical logic was established by Löwenheim

in 1915. The proof made use of a semantic argument and a purely syntactic proof

has never been provided. In the present paper we introduce a syntactic proof of

decidability of monadic first-order logic in innex normal form which exploits G3-

style sequent calculi. In particular, we introduce a cut- and contraction-free

calculus having a (complexity-optimal) terminating proof-search procedure. We

also show that this logic can be faithfully embedded in the modal logic T.

Keywords: proof theory, classical logic, decidability, Herbrand theorem.

1. Introduction

A cornerstone result in the field of classical logic is the undecidability of
first-order logic (FOL) [3]. Indeed, the set of first-order (FO) logical truths
is recursively enumerable and so semidecidable, but essentially undecidable.
Even before the discovery of this crucial feature, some decidable fragments
have been isolated and investigated.

One of the most representative ones is the monadic fragment obtained
by restricting the language to one-place predicates, thus excluding rela-
tions therefrom. A first proof of the decidability of monadic classical FOL
(MFOL) was given by Löwenheim [6]. The proof employed semantic argu-
ments (in particular, a form of finite model property) and it can thus be
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regarded as partially satisfactory, as it uses a semantic method to establish
a syntactic result.1

Other proofs were provided by Quine [7] and, later, by Boolos [1]. A
key ingredient in these arguments is the reduction of formulas of MFOL
to a kind of normal form, which pushes quantifiers inside formulas. Hence,
validity of the formulas thus obtained—to be called innex formulas—is
checked via semantic arguments. However, a purely syntactic and proof-
theoretic version of decidability has not been presented yet. In the present
paper, we aim at filling this gap.

The design of a terminating sequent calculus for monadic logic is not a
trivial task. Indeed, we need to observe that the rule of contraction cannot
be a priori dispensed with. An example is the formula ∃x(P (x) ⊃ ∀yP (y))
which is a monadic valid formula that is not provable without a (possibly
implicit in the rule) step of contraction.

Therefore we focus on a specific fragment of MFOL, i.e. the innex one,
and we show that we can give a terminating sequent calculus in which
every rule is height-preserving invertible without the need for any form
of contraction. The calculus G3INT is obtained by combining a form of
focusing—i.e., a specific ordering in the application of the rules [5]—with
a new rule for the existential quantifier.

These aspects contribute to complicating the structural analysis of the
system which has some peculiar traits. Furthermore, we offer an extremely
simple syntactic proof of cut-elimination which is based on a single induc-
tive parameter, the degree of the cut formula, instead of two parameters—
e.g., the degree and the height of the cut—as in calculi for FOL [8].

Finally, we offer another perspective on the decidability of the innex
fragment of monadic logic. In particular, we show that it can be soundly
and faithfully embedded in the modal system T enhanced with a first-
order language (but without quantifiers). This reduction highlights some
specific characteristics of the fragment by identifying ∀ and ∃ with the
modal operators □ and ♢, respectively.

The plan of the paper is as follows. Section 2 introduces innex normal
form and a preliminary calculus for MFOL. Section 3 is devoted to the
calculus G3INT whose properties are thoroughly investigated in Section 4.

1As observed by a reviewer, under the completeness of monadic logic, the decidability
result might be considered a semantic as well as syntactic problem. In our opinion, the
problem of whether a logic is decidable concerns derivability in a formal system and thus
it has a more intrinsically proof-theoretic content.
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Soundness and completeness are discussed in Section 5 and Section 6 deals
with the modal interpretation of the system. Finally, Section 7 adds some
concluding remarks and sketches some themes which may be an object of
future research.

2. MFOL and innex normal form

Let us fix a signature S containing a countable and non-empty set of
monadic predicates. Given a denumerable set of variables V, the language
of MFOL (in negative normal form) is defined by the following grammar:

A ::= P (x) | P (x) | A ∧A | A ∨A | ∃xA | ∀xA

where P ∈ S and x ∈ V.
Parentheses are used as usual and negation is defined via (De Morgan’s)

dualities and double-negation elimination—e.g., ¬P (x) ≡ P ≡ P (x) and
¬∀xA ≡ ∃x¬A. A literal is a formula of shape P (x) or P (x). We use the
following metavariables: x, y, z for variables, P,R, S for literals, andA,B,C
for arbitrary formulas. A[y/x] stands for the formula obtained by replacing
in A each free occurrence of x with an occurrence of y, provided that y is
free for x in A. When convenient, we use B(y) for the formula obtained
from QxB by removing the quantifier Qx and substituting y for x.

In (classical) FOL it is often preferred to work with formulas which
have a precise shape. In this sense, a normal form for FOL is the so-called
prenex normal form. A formula is in prenex normal form whenever it is of
the form: Qx1

...Qxn
A, whereQx1

...Qxn
is a finite string of quantifiers andA

is a quantifier-free formula—i.e., A contains only propositional connectives.

Proposition 2.1. Each first-order formula A is logically equivalent to a
formula A′ in prenex normal form: A and A′ are satisfied by the same
FO-models.

Proof: A standard induction on the structure of A making use of De
Morgan’s dualities, of the distributivity of ∨ over ∧ and of the following
FO-validities:2

2Without loss of generality, we are assuming that each quantifier binds a different
variable, no variable has both free and bound occurrences in a formula, and x ̸∈ B.
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• ¬∃xA ⊃⊂ ∀x¬A

• ∃xA∨∃yC ⊃⊂ ∃x(A∨C[x/y])

• ∃xA ∨B ⊃⊂ ∃x(A ∨B)

• ∃xA ∧B ⊃⊂ ∃x(A ∧B)

• ¬∀xA ⊃⊂ ∃x¬A

• ∀xA ∧ ∀yC ⊃⊂ ∀x(A ∧ C[x/y])

• ∀xA ∨B ⊃⊂ ∀x(A ∨B)

• ∀xA ∧B ⊃⊂ ∀x(A ∧B)

This is a property which is specific of classical FOL which does not usually
extend to non-classical logics or modal logics. In particular, neither FO-
intuitionistic nor FO-modal logics do validate the prenexation laws.

In this paper we are actually interested in a sort of converse transfor-
mation which pushes quantifiers inside the formulas.

Definition 2.2. A first-order formula is in innex normal form (INF) if it
is a boolean combination of formulas A and QxB, where A is a quantifier-
free formula and QxB is a formula of the form ∃x(P1(x) ∧ ... ∧ Pn(x)) or
∀x(P1(x) ∨ ... ∨ Pn(x)) where Pi is a literal.

In general, FO-formulas are not equivalent to formulas in INF, but this
holds if we consider the monadic fragment of the language—i.e, a FO-
language containing only unary predicates.

Proposition 2.3. Each formula A of the monadic fragment of the FO-
language is logically equivalent to a formula A′ in INF.

Proof: Analogous to the proof of Prop. 2.1, applying the same equiva-
lences in reverse direction, cf. [1, Lemma 21.12].

MFOL has been shown to be decidable already in [6] by means of a
semantic argument. In particular, we have the following results:

Theorem 2.4.

1. If a monadic sentence containg k predicates is satisfiable, it has a
model of size no greater than 2k [1, Lemma 21.8];

2. The satisfiability problem for monadic FO-logic is nexp-complete [4].

In this paper we are interested in giving a proof-theoretic proof of de-
cidability of MFOL. A key ingredient for this result will be Proposition
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Initial Sequents: Ax
Γ, P, P

Rules:
Γ, A Γ, B

∧
Γ, A ∧B

Γ, A,B
∨

Γ, A ∨B

Γ, A[y/x]
∀, y fresh

Γ,∀xA
Γ,∃xA,A[z/x]

∃
Γ,∃xA

Figure 1. The sequent calculus G3S

2.3: the possibility of defining an innex normal form for monadic formulas
is crucial in order to develop a terminating calculus. Indeed, innex for-
mulas remove the nesting of quantifiers and allow for a full elimination of
contraction which is harmful for proof search. Interestingly, also Quine [7]
has given a proof of decidability for MFOL exploiting Prop. 2.3. However,
his method uses truth tables which are arguably less immediate than the
method of terminating sequent calculi adopted in this paper.

2.1. Decidability of MFOL

The one-sided sequent calculus G3S for MFOL is given in Figure 1, we
refer the reader to [8] for its properties and to Section 3 for some basic def-
inition. The difficulty in directly establishing a decidability proof of MFOL
within G3S is due to the formulation of the rule ∃ in which the principal
formula is repeated in the premise of the rule. This design choice is neces-
sary in order to make the rule invertible, but it has a hidden contraction.
In principle, there is no bound on the possible number of applications of
the rule ∃.

In order to prove the decidability result we need to show a weak version
of Herbrand’s theorem which will be essential in order to obtain the proof.

Lemma 2.5. For every finite multisets of quantifier-free formulas Γ and all
quantifier-free formulas Bi, if Γ,∃x1B1, ...,∃xℓBℓ is G3S-derivable, then,
for some m and n in N, there is a derivation of the same height of

Γ, {B1[yi/x1] : i ≤ m}, ..., {Bℓ[yj/xℓ] : j ≤ n}

Proof: We argue by induction on the height h of the derivation. If h = 0,
the proof is immediate, because quantified formulas cannot be principal.

If h > 0, then we distinguish cases according to the last rule ap-
plied. If it is a propositional rule, we apply the induction hypothesis to
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the premise(s) and then the rule again. If it is a quantifier rule, then it can
only be the rule ∃. It is enough to apply the induction hypothesis.

Theorem 2.6. For every sequent Γ, where Γ is a finite multiset of formulas
of MFOL in INF, there is a procedure outputting either a G3S-proof or a
finite failed attempt to it.

Proof: The decision procedure consists in applying the invertibility of ev-
ery propositional rule. This will imply that the derivability of the sequent Γ
is equivalent to that of the sequents Γ1,...,Γn, where, for each i ∈ {1, ..., n},
Γi is of the form (for Γ′

i, Dj , and Bℓ quantifier-free):

Γ′
i,∀x1D1, . . . ,∀xmDm,∃z1B1, . . . ,∃zkBk

for some m ≥ 0 and k ≥ 0.
We now apply the invertibility of the rule ∀ to get:

Γ′
i, D1[y1/x1], ..., Dm[ym/xr],∃z1B1, . . . ,∃zkBk

Each sequent thus obtained satisfies the hypotheses of Lemma 2.5 and
therefore we can reduce its derivability to that of a sequent Γ∗

i which does
not contain any quantified formula. The derivability of each of these se-
quents is decidable.

Theorem 2.6 shows that if we restrict our attention to formulas of MFOL
that are in INF then we can bound the number of contractions hidden inside
of the rule ∃ so as to obtain a decision procedure for MFOL. Observe that
Theorem 2.6 does not mean that G3S is a terminating calculus for MFOL.
Even if we have a sequent (whose formulas are) in INF, proof-search is
non-terminating because of the contraction hidden in the repetition of the
principal formula in the premise of the rule ∃. More precisely, we have
defined a strategy to halt the search for a derivation or a countermodel,
but the decidability is not intrinsic to the calculus G3S.

The system G3S represents a bridge towards a terminating calculus for
MFOL. In order to obtain it, we will impose that the rule for the existential
quantifier can be applied only when we already know all variables over
which it can be instantiated, so that it can be instantiated over each of
them at the same time. As it will be shown in Section 4.1, this terminating
calculus has all the rules invertible without having to resort to any (hidden
or explicit) instance of contraction and, hence, it will allow for a decision
procedure for MFOL that is optimal complexity-wise.
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Initial Sequents
Ax, Γ innex

Γ, P, P

Logical Rules
Γ, A Γ, B

R∧
Γ, A ∧B

Γ, A,B
R∨

Γ, A ∨B

Γ, P1[y/x] ∨ . . . ∨ Pn[y/x]
R∀, y fresh

Γ,∀x(P1 ∨ . . . ∨ Pn)

Γ, {P1[zi/x] ∧ . . . ∧ Pn[zi/x] : zi ∈ V ar(Γ)}
R∃, Γ reduced

Γ,∃x(P1 ∧ . . . ∧ Pn)

Figure 2. The sequent calculus G3INT.

3. The calculus G3INT

To define a contraction-free calculus, we shall introduce another sequent
calculus for MFOL in INF. In particular, we will use a G3-style calculus
to obtain the result. The reason of the choice lies in the fact that G3-style
calculi have good structural properties and they are suitable for backward
reasoning, due to the invertibility of every rule.

The rules of the (one-sided) calculus G3INT are given in Figure 2. In
particular, initial sequents have the side condition that Γ is a multiset of
(monadic) formulas in INF. By V ar(Γ) we denote the set of free variables
occurring in the multiset Γ, if any, otherwise the singleton containing some
fixed variable y. Rule R∃ has the side condition that Γ is a multiset of
reduced formulas, where the notion of reduced multiset is defined as follows:

Definition 3.1. A multiset Γ is reduced whenever it does not contain
universal quantifiers.

A derivation is a finite rooted tree where the leaves are initial sequents
and every node is constructed by applications of the rules. The height of
a derivation is the number of nodes in a branch of maximal length in the
derivation minus one. The degree of a formula is the number of logical
symbols occurring in the formula. A rule is (height-preserving) admissible
if, whenever each premise of the rule is derivable (with a derivation of height
≤ n), so is the conclusion (with a derivation of height ≤ n). Without loss
of generality, we always assume to be working up to renaming of bound
variables, i.e. modulo α-conversion.

We briefly recall some properties of G3INT. We start by proving
that the rules are such that the property of being in innex normal form
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propagates from the leaves to each node of a derivation. This allows us to
restrict attention to (finite multisets of) formulas in innex normal form.

Lemma 3.2. If Γ is derivable in G3INT, then (each formula occurring in)
it is in innex normal form.

Proof: The proof is by induction on the height of the derivation. If Γ
is an initial sequent, the proof is trivial. Otherwise we distinguish cases
according to the last rule applied. In each case it is enough to apply
the induction hypothesis to (each of) the premise(s) of the rule and then
observing that the rules preserve the innex normal form.

Lemma 3.3. The rules R∧, R∨ and R∃ are height-preserving invertible.

Proof: The proof runs by induction on the height of the derivation. We
discuss the case of R∃ (the other cases are as for G3S). If Γ,∃x(P1∧. . . Pn)
is an initial sequent, so is Γ, {P1[zi/x] ∧ . . . ∧ Pn[zi/x] : zi ∈ V ar(Γ)}. If
the last rule applied is R∃ and ∃x(P1 ∧ . . . ∧ Pn) is principal, the proof is
immediate. Otherwise, the last rule applied cannot be R∀ since Γ,∃x(P1 ∧
· · · ∧ Pn) is reduced. Therefore, we simply apply the induction hypothesis
to each of the premises and then the rule again.

Lemma 3.4. The sequent Γ, A,A is provable in G3INT.

Proof: We argue by induction on the degree of A. If A is a literal then
there is nothing to prove. If A (or A) is of the shape B ∨ C, the proof is
immediate. If it is of the shape ∀xB, we first apply root-first the rules to
obtain sequents with a reduced context Γ′ and then we proceed as follows:3

IH
Γ′, A[y/x], A[z1/x], . . . , A[zn/x], A[y/x]

R∃
Γ′, A[y/x],∃xA

R∀
Γ′,∀xA,∃xA

Where z1, . . . , zn, y are all variables occurring free in Γ′, A[y/x].

3The doubleline derivation symbol marks a step that is admissible.
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4. Structural analysis of G3INT

Lemma 4.1. The rule:

Γ,∆,∆
RedC

Γ,∆

where Γ,∆,∆ is reduced, is height-preserving admissible.

Proof: We proceed by induction on the height of the derivation of the
sequent Γ,∆,∆. If it is an initial sequent, then so is Γ,∆.

If no formula in ∆ is principal, we apply the induction hypothesis and
then the rule again.

If a formulaA is principal in ∆, we distinguish cases according to the last
rule applied. The strategy consists in applying Lemma 3.3, the induction
hypothesis and then the rule again. We consider the case of the rule R∃.

Γ, A[z1/x], ..., A[zn/x],∃xA,∆′,∆′
R∃

Γ,∃xA, ∃xA,∆′,∆′

where A is a finite conjunction of atomic formulas. We construct the fol-
lowing derivation:

Γ, A[z1/x], ..., A[zn/x],∃xA,∆′,∆′

Lemma 3.3
Γ, A[z1/x], ..., A[zn/x], A[z1/x], ..., A[zn/x],∆

′,∆′

IH
Γ, A[z1/x], ..., A[zn/x],∆

′
R∃

Γ,∃xA,∆′

Proceeding in a slightly unusual order, we now prove the admissibility
of substitution. As usual, we extend substitutions to multisets of formulas.

Lemma 4.2 (Substitution). The rule:

Γ
Sub

Γ[y/x]

is height-preserving admissible

Proof: By induction on the height of the derivation D of the premise Γ.
If h(D) = 0 then the lemma obviously holds. If h(D) = n + 1 then we

have cases according to the last rule applied in D. If the last rule is an
instance of rule R∧ or R∨, the proof follows from the induction hypothesis.
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If the last step in D is the following instance of rule R∃:

Γ, A[z1/z], . . . , A[zn/z]
R∃

Γ,∃zA

where, w.l.o.g. z ̸∈ {x, y}, then we transform the derivation as follows:

Γ, A[z1/z], . . . , A[zn/z]
IH

Γ[y/x], (A[z1/z])[y/x], . . . , (A[zn/z])[y/x]
⋆

Γ[y/x], (A[y/x])[(z1[y/x])/z], . . . , (A[y/x])[(zn[y/x])/z]
R∃

Γ[y/x],∃z(A[y/x])
⋆⋆

Γ[y/x], (∃zA)[y/x]

where the steps marked with ⋆ and ⋆⋆ are syntactic rewritings that do not 
increase the height of the derivation. The application of the rule R∃ is 
justified as the set of terms occurring in Γ[y/x] is a subset of the set of 
terms occurring in (A[y/x])[(z1[y/x])/z], . . . , (A[y/x])[(zn[y/x])/z].

Furthermore, note that if z is free in A[y/x] and, for some j, k ≤ n,
x ≡ zj and y ≡ zk, then (A[y/x])[(zj [y/x])/z] ≡ (A[y/x])[(zk[y/x])/z].
This is not a problem since by the design of the rules the sequent

Γ[y/x], (A[y/x])[(z1[y/x])/z], . . . , (A[y/x])[(zn[y/x])/z]

is reduced and so we can safely apply Lemma 4.1.
Finally, suppose the last step in D is the following instance of rule:

Γ, A[y2/y1]
R∀; y2!

Γ,∀y1A

where neither y nor x is y1. We apply the inductive hypothesis (IH) twice
to the derivation of the premise, the first time to replace y2 with a variable
y3 that is new to the premise and the second time to replace x with y. By
applying an instance of rule R∀ we conclude (Γ,∀y1A)[y/x].

Lemma 4.3 (Invertibility). All rules of G3INT are height-preserving in-
vertible.

Proof: The case of rules R∨, R∧ and R∃ has been proved in Lemma 3.3.
We show, by induction on the height of the derivation D, that rule R∀ is
height-preserving invertible.
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If h(D) = 0, or if the formula we are inverting is principal in the last
step of D, then the proof is trivial.

If D is

∆′,∀y1A (∆′′,∀y1A)
R

∆,∀y1A

we know that R is not an instance of rule R∃. Once again we apply IH to
the premise(s) (possibly with a height-preserving admissible step of substi-
tution to avoid clashes of variables) and then an instance of R to conclude
∆, A[y2/y1].

Theorem 4.4. The rules of contraction are height-preserving admissible
in G3INT.

Proof: The proof is by induction on the height of the derivation D. If
Γ, A,A is an initial sequent, so is Γ, A. If A is not principal in the last rule
applied, we apply the induction hypothesis to each of the premises of the
rule and then the rule again, e.g., if D is

∆′, A,A (∆′′, A,A)
R

∆, A,A

We construct the following derivation:

∆′, A,A
IH

∆′, A

(∆′′, A,A)
IH

(∆′′, A)
R

∆, A

If, instead, A is principal, we distinguish cases according to its shape.
The strategy consists in applying the invertibility lemma followed by the
induction hypothesis. We focus on the case of the existential quantifier.
We suppose that the set of variables free in Γ is not empty and we have:

Γ,∃x(P1 ∧ . . . Pn), {P1[zi/x] ∧ . . . ∧ Pn[zi/x] : zi ∈ V ar(Γ)}
R∃

Γ,∃x(P1 ∧ . . . ∧ Pn),∃x(P1 ∧ . . . ∧ Pn)

We proceed as follows:

Γ,∃x(P1 ∧ . . . Pn), {P1[zi/x] ∧ . . . ∧ Pn[xi/x] : zi ∈ V ar(Γ)}
inv ∃

Γ, {P1[zi/x] ∧ . . . ∧ Pn[zi/x] : zi ∈ V ar(Γ)}, {P1[zi/x] ∧ . . . ∧ Pn[zi/x] : zi ∈ V ar(Γ)}
IH

Γ, {P1[zi/x] ∧ . . . ∧ Pn[zi/x] : zi ∈ V ar(Γ)}
R∃

Γ,∃x(P1 ∧ . . . Pn)



234 Eugenio Orlandelli, Matteo Tesi

Where IH stands for possibly multiple applications of the inductive hy-
pothesis.

Finally, we can prove the admissibility of the rule of weakening. Con-
trarily to usual G3-style systems, weakening is admissible without preser-
vation of height. We start by discussing a specific case, i.e. weakening for
reduced sequents.

Lemma 4.5. The rule:

Γ
WeakRed ,

Γ,∆

where ∆ is (innex and) reduced, is height-preserving admissible in G3INT.

Proof: The proof is by induction on the height of the derivation. If Γ is
an initial sequent, so is Γ,∆. If the last rule applied is ∧ or ∨, the proof
follows from the application of the induction hypothesis and the rule again.
As an example, we detail the case of ∨:

Γ, A,B
∨

Γ, A ∨B
;

Γ, A,B
IH

Γ, A,B,∆
∨

Γ, A ∨B,∆

If the last rule applied is R∃ and ∆ is reduced, we proceed as follows:

Γ′, B(z1), . . . , B(zm)
R∃

Γ′,∃xB
;

Γ′, B(z1), . . . , B(zm)
IH

Γ′, B(z1), . . . , B(zm), B(zm+1), . . . , B(zm+n),∆
R∃

Γ′,∃xB,∆

where zm+1, . . . , zm+n are the variables occurring free in ∆ but not Γ.

Lemma 4.6. The rule:

Γ
Weak, ∆ innex

Γ,∆

is admissible in G3INT.

Proof: The proof runs by induction on the height of the derivation. We
detail—for the sake of readability—the case in which ∆ consists of a single
formula A.

If Γ is an initial sequent, then Γ, A is an initial sequent too. In the
remaining cases except for R∃, we apply the induction hypothesis (and
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possibly height-preserving admissibility of substitution in order to avoid
clashes of variables) and then the rule again.

If the last rule applied is R∃, we have:

Γ, B(z1), . . . , B(zm)
R∃

Γ,∃xB

By the induction hypothesis we get a derivation of Γ, B(z1), . . . , B(zm), A.
We decompose it into reduced sequents via height-preserving invertibility
of the rules R∀, R∧ and R∨ to get sequents of the shape:

Γ, B(z1), . . . , B(zm), A1, . . . , An

where Ai is reduced for i ∈ {1, . . . , n}. Next, we proceed as follows:

Γ, B(z1), . . . , B(zm), A1, . . . , An
WeakRed

Γ, B(z1), . . . , B(zm), B(zm+1), . . . , B(zm+l), A1, . . . , An
R∃

Γ,∃xB,A1, . . . , An

The formulas B(zm+1), . . . , B(zm+l) are instantiations of B over terms oc-
curring in A1, . . . , An (introduced by the analysis of A). The application
WeakRed is justified by the previous lemma.

The desired conclusion is obtained from Γ,∃xB,A1, . . . , An via the ap-
plication of the rules used to decompose A in the reverse order.

We are now in the position to state and prove the admissibility of the
cut rule. In this case, we shall argue by induction on a single parameter,
the degree of the cut formula.

Theorem 4.7. The cut rule is admissible in G3INT.

Proof: The proof is by induction on the degree of the cut formula. We
consider an upper-most instance of a context-sharing cut:

Γ, A Γ, A
Cut

Γ

The admissibility of a context-free cut follows by the admissibility of weak-
ening and contraction.
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If the cut formula is atomic, it is of the shape P and P and we have:

...D
Γ, P Γ, P

Cut
Γ

We consider the topmost sequents of the derivation D. They will be the
sequents Γi, P , for 1 ≤ i ≤ n. We substitute P with Γ. We claim the
resulting sequent is derivable. Indeed, if P is not principal in the initial
sequent Γi, P , then also Γi,Γ is an initial sequent. Else, P is principal in
Γi, P and Γi ≡ Γ′

i, P . The sequent Γ′
i, P ,Γ is cut-free derivable by applying

an admissible instance of weakening to the right premise of the cut rule.
We can, thus replace each premise Γi, P of D with Γi,Γ. We have the
following cut-free derivation of Γ:

Γ1, P · · · Γn, P

...D
Γ, P Γ, P

Cut
Γ

;

Γ1,Γ
Inv

Γ1,Γ1
Ctr

Γ1 · · ·

Γn,Γ
Inv

Γn,Γn
Ctr

Γn

...D
Γ

In the cases in which the formula is compound, but not quantified,
we exploit invertibility and then cuts on formulas of lesser degrees. In
particular, we have:

Γ, A ∧B Γ, A ∨B
Cut

Γ

We transform the derivation as follows:

Γ, A ∧B
Inv

Γ, B

Γ, A ∧B
Inv

Γ, A
Weak

Γ, A,B

Γ, A ∨B
Inv

Γ, A,B
Cut

Γ, B
Cut

Γ

The cuts are removed by induction on the degree of the cut formula.
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If the formula is quantified, we have:

Γ,∃x(P1 ∧ . . . ∧ Pn) Γ,∀x(P 1 ∨ . . . ∨ Pn)

Γ

In this case we first apply height-preserving invertibility to both premises
of the cut in order to reach reduced sequents in Γ. In particular, this yields
two sets of sequents:

A = {Γi,∃x(P1 ∧ . . . ∧ Pn) | 1 ≤ i ≤ k} and
B = {Γi,∀x(P 1 ∨ . . . ∨ Pn) | 1 ≤ i ≤ k}

By applying height-preserving invertibility of the rules for the existential
quantifier, we get the set A′:

A′ = {Γi, {P1(zj) ∧ . . . ∧ Pn(zj) : zj ∈ V AR(Γi)} : 1 ≤ i ≤ k}

By invertibility of the rule R∀, we get derivations of: Γi, P 1(zj)∨. . .∨Pn(zj)
for each i and each zj . For every i we proceed as follows:

Γi, {P1(zj) ∧ . . . ∧ Pn(zj) : 1 ≤ j ≤ ℓ} Γi, P 1(z1) ∨ . . . ∨ Pn(z1)
Cut

Γi, {P1(zj) ∧ . . . ∧ Pn(zj) : 2 ≤ j ≤ ℓ}
...

Γi, P1(zℓ) ∧ . . . ∧ Pn(zℓ) Γi, P 1(zℓ) ∨ . . . ∨ Pn(zℓ)
Cut

Γi

All the cuts are eliminated invoking the induction hypothesis on the degree
of the cut formula. Finally, we apply the rules in the reverse order to get
a derivation of Γ.

4.1. Termination and bounds on cut-free proofs

In this subsection, we establish the termination of the proof search and
we define bounds on the height of cut-free derivations. It is easy to see
that each bottom-up application of a rule either decreases the number of
quantifiers or the number of connectives occurring in the endsequent.

Proposition 4.8. The calculus G3INT is terminating.

Proof: Given a sequent Γ we argue by induction on lexicographically
ordered pairs (m,n), where m is the number of quantifiers occurring in the
endsequent and n is the number of connectives occurring in Γ.
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It is immediate to see that the rules R∀ and R∃ decrease the number
of quantifiers. The latter potentially increases the number of connectives,
but this is not problematic, because it is the second inductive parameter.

The rules R∧ and R∨ do not increase the number of quantifiers, but
strictly decrease the number of connectives in the endsequent. Therefore
we can infer that the proof search terminates.

Next, we would like to compute explicit bounds on the height of cut-free
derivations. As it is well-known, in classical (and intuitionistic) FOL the
elimination of cuts can lead to an hyperexponential increase of the height
of the proofs. In the case of the innex fragment of classical MFOL, we
can show that the bounds on cut-free proofs is way lower than for FOL.
Indeed, since the proof search terminates for every sequent, we can define
a maximal height of any derivation.

Definition 4.9. Given a sequent Γ, we define a measure of complexity for
every formula A occurring in it, in symbols σΓ(A). If A is a literal, then
σΓ(A) = 0. If A is B#C, with # ∈ {∧,∨}, then σΓ(A) = σΓ(B)+σΓ(C)+1.
If A is ∀xB, then σΓ(∀xB) = σΓ(B) + 1 and if A is ∃xB, then σΓ(∃xB) =
σΓ(B)·sw(n(∀)Γ+n(V AR)Γ)+1, where sw(k) = 1 if k = 0 and k otherwise,
n(∀)Γ is the number of universal quantifiers occurring in Γ and n(V AR)Γ
is the number of variables having free occurrences in Γ. The complexity of
a sequent σ(Γ) is ΣA∈ΓσΓ(A).

Proposition 4.10. Given a derivable sequent Γ, the maximal height of a
cut-free derivation is σ(Γ).

Proof: The proof is straightforward by observing that the maximal num-
ber of rules which are bottom-up applicable to Γ is precisely σ(Γ).

This gives us a decision procedure for the derivablity problem in G3INT
whose complexity is in co-np. The procedure is shown in Table 1; where
universal choice handles the branching caused by rule R∧ and Lemma 4.3
allows us to freely choose which rule to apply at each step.

Proposition 4.11. The algorithm in Table 1 runs in co-np.

Proof: The procedure is in the form of a non-deterministic Turing ma-
chine with universal choice whose computations are bounded by σ(Γ).

Observe that Prop. 4.11 entails that the satisfiability problem for monadic
formulas in INF is in np. However, this result does not clash with the
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Table 1. Decision procedure for G3INT-derivability.

Input: A sequent Γ in innex normal form.
Output: If Γ is derivable then ‘yes’, else a sequent.

1 If for some A, both A and A are in Γ then return ‘yes’ and halt;
2 else if some rule is applicable then
3 | pick the first rule instance applicable;
4 | universally choose one premise Γ′ of this rule instance;
5 | check recursively the derivability of Γ′, output the answer and halt;
6 else return Γ and halt;
7 end.

nexp-hardness of the satisfiability problem for monadic FO-logic [4] since
the conversion of an arbitrary monadic formula into an innex one can lead
to an exponential explosion of σ(Γ).

5. Characterisation

Theorem 5.1 (soundness). If Γ is G3INT-derivable then
∨
Γ is valid in

classical FO-logic.

Proof: An easy induction on the height of the derivation of Γ.

In order to prove completeness, we show that all rules of G3INT are
semantically invertible:

Lemma 5.2. If there is a countermodel for all formulas in one premise
of an instance of a rule of G3INT then there is a countermodel for its
conclusion.

Proof: The case of rules R∧, R∨, and R∀ are immediate. For rule R∃ we
assume M = ⟨D,V⟩ is a model and µ an assignment defined over D such
that M, µ falsifies all formulas in

Γ, P1(z1) ∧ · · · ∧ Pn(z1), . . . , P1(zℓ) ∧ · · · ∧ Pn(zℓ) (∆)

We construct a countermodel for all formulas in Γ,∃x(P1(x)∧ · · · ∧Pn(x)).
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Initial Sequents: Ax
Γ, P, P

Logical Rules:
Γ, A Γ, B

R∧
Γ, A ∧B

Γ, A,B
R∨

Γ, A ∨B

Σ, A
R□

Γ,♢Σ,□A

Γ,♢A,A
R♢

Γ,♢A

Figure 3. The sequent calculus G3T

Given that ∆, being reduced, contains no instance of ∀, we can apply
Lemma 4.3 to it until it becomes a multiset ∆′ of literals such that X =
{z1, . . . , zℓ} is the finite set of all variables occurring (free) in ∆. It is easy to
see that that ∆′ is falsified by M∆ = ⟨D∆,V∆⟩, µ∆, where D∆ = D∩µ(X),
V∆(P ) = V(P ) ∩ µ(X), and µ∆ behave like µ for all variables occurring
free in ∆′ and maps all other variables to µ(z1). M∆, µ∆ falsifies also
∃x(P1(x) ∧ · · · ∧ Pn(x)) since each conjunct in P1(x) ∧ · · · ∧ Pn(x) is false
of some object in D∆.

Theorem 5.3 (Completeness). If
∨
Γ is valid then Γ is G3INT-derivable.

Proof: By Prop. 2.3 we can assume Γ is in INF. If G3INT ̸⊢ Γ then there
is a finite proof-search tree for Γ having at least one leaf ∆ that is not an
initial sequent. We can easily define a countermodel for ∆ from that leaf
and, by Lemma 5.2, we conclude that

∨
Γ has a countermodel.

6. Modal interpretation

It is well known that there is a sound and faithful interpretation of the
propositional modal logic S5 into MFOL [2]. We show in this section that
the innex fragment of MFOL can be soundly and faithfully interpreted
in the quantifier-free monadic fragment of the FO-modal logic T. This will
be done by using the sequent calculus for T given in Figure 3, cf. [8].

Let L□ be the language obtained from the language of MFOL (cf. Sec-
tion 2) by replacing ∀ and ∃ with □ and ♢, respectively. We define in-
ductively a pair of translations τ1, τ2 from the language of MFOL to L□

(τ = τ2 ◦ τ1). Formally, given an innex sequent Γ, we have:

• (P (y))τ1 = P (y)

• (P (y))τ1 = P (y)

• (A#B)τ1 = Aτ#Bτ , with # ∈ {∧,∨}
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• (∀xA)τ1 = □A[y/x], where y does not occur in Γ

• (∃xA)τ2 = ♢(A[z1/x] ∨ . . . ∨ A[zn/x]), where z1, . . . , zn are all the
variables free in (Γ)τ1 .

We start by showing a preliminary lemma concerning derivability inG3INT.

Lemma 6.1. Let Γ, Π and Σ be multisets of quantifier-free, universal and
existential formulas in innex normal form, respectively. If Γ,Π,Σ, is deriv-
able, then Γ,Σ or Σ, A, where A ∈ Π, is derivable with at most the same
height.

Proof: The proof runs by induction on the height of the derivation. Every
case is trivial with the exception of the case in which the last rule applied
is R∀. In the latter case we have:

Γ,Π′,Σ, P1(y) ∨ . . . ∨ Pn(y)
R∀

Γ,Π′,Σ, ∀x(P1(x) ∨ . . . ∨ Pn(x))

The induction hypothesis yields the derivability of Γ,Σ, P1(y)∨ . . .∨Pn(y)
or of A,Σ for some A in Π′. In the second case, we already have obtained
the desired conclusion. In the first one, due to the eigenvariable condition,
we observe that Σ, P1(y) ∨ . . . ∨ Pn(y) is derivable or Γ,Σ is derivable. In
the first case we get the desired conclusion via an application of the rule
R∀, the other case is trivial.

The previous lemma allows us to prove the soundness of the embedding.

Theorem 6.2. If G3INT proves ∆, then G3T proves (∆)τ .

Proof: The proof is by induction on the height of the derivation. We
detail the case of the quantifiers. Let Γ, Π and Σ be multisets of quantifier-
free, universal and existential formulas in innex normal form, respectively.
If the last rule applied is R∀, we have:

Γ,Σ,Π, P1(y) ∨ . . . ∨ Pn(y)]
R∀

Γ,Σ,Π,∀x(P1(x) ∨ . . . ∨ Pn(x))

Since Γ,Σ,Π, P1(y)∨ . . .∨ Pn(y) is derivable, then Lemma 6.1 entails that
Γ,Σ, P1(y) ∨ . . . ∨ Pn(y) is derivable or Σ, C is derivable, where C is a for-
mula in Π. The latter case is trivial and the conclusion follows from the
induction hypothesis and an application of weakening. In the first case,
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due to the eigenvariable condition either Σ, P1(y)∨ . . .∨Pn(y) is derivable
or Γ,Σ is derivable. Once again, in the latter subcase the conclusion can
be obtained by the induction hypothesis and weakening. In the first sub-
case, we first apply the height-preserving invertibility of the rule R∃ to get
A1[y/x1], . . . , Am[y/xm], P1(y)∨. . .∨Pn(y), where Σ = ∃x1A1, . . . ,∃xmAm.
Next, we have the following G3T-derivation:

A1[y/x1], . . . , Am[y/xm], P1(y) ∨ . . . ∨ Pn(y)
IH

Aτ
1 [y/x], . . . , A

τ
m[y/x], P1(y) ∨ . . . ∨ Pn(y)

several Weak and R♢
♢Στ , P1(y) ∨ . . . ∨ Pn(y)

R□
(Γ,Π)τ ,♢Στ ,□(P1(y) ∨ . . . ∨ Pn(y))

If the last rule applied is R∃, we proceed as follows:

Γ,Σ, A[z1/x], . . . , A[zn/x]
R∃

Γ,Σ,∃xA
;

Γ,Σ, A[z1/x], . . . , A[zn/x]
IH

Γτ ,Στ , Aτ [z1/x], . . . , A
τ [zn/x]

R∨
Γτ ,Στ , Aτ [z1/x] ∨ . . . ∨Aτ [zn/x]

Weak and R♢
Γτ ,Στ ,♢(Aτ [z1/x] ∨ . . . ∨Aτ [zn/x])

Where Aτ ≡ A since A is conjunction of literals.

We can also prove the faithfulness of the embedding.

Theorem 6.3. Given a sequent ∆ of monadic formulas in innex normal
form, if (∆)τ is derivable in G3T, then ∆ is derivable in G3INT.

Proof: If the sequent is initial, the proof is immediate. If it is the conclu-
sion of R∧, R∨, the proof is straightforward by the induction hypothesis.
If the last rule applied is R□, we have:

Στ , Aτ [y/x]
□

Γτ ,♢Στ ,□Aτ

We apply the induction hypothesis, the rules R∃ and R∀ and weakening.
If the last rule applied is R♢, we proceed as follows (where A is B[z1/x]∨

· · · ∨B[zn/x] and {z1, . . . zn} are all variables free in Γ):

A,♢Aτ ,Γτ

♢Aτ ,Γτ ;

Aτ ,♢Aτ ,Γτ

IH+ ∨-inv
B[z1/x], . . . , B[zn/x],∃xB,Γ

R∃∃xB, ∃xB,Γ
Ctr∃xB,Γ
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Let us observe that the structural properties established for G3INT—
including cut elimination—can now be proved indirectly via the embedding 
in the modal system.

7. Concluding remarks and future work

We have introduced a terminating sequent calculus for a fragment of MFOL.
This, combined with a normal form theorem, gives a fully syntactic decision
procedure for monadic classical first-order logic.

It is natural to ask whether it is possible to design a sequent calculus
for the full language of monadic logic. One way to do so is to define rules
which directly convert formulas in innex normal form and then to proceed
as for G3INT. We leave this theme for future investigations.

Finally, we would like to generalize the cut-elimination strategy to other
classes of logics, showing how to eliminate the cuts by induction on the
degree of the cut formula. Particularly promising would be to spell out
sufficient conditions for cut-elimination.
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