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Abstract

We address the problem of combining intuitionistic and S4 modal logic in a
non-collapsing way inspired by the recent works in combining intuitionistic and
classical logic. The combined language includes the shared constructors of both
logics namely conjunction, disjunction and falsum as well as the intuitionistic
implication, the classical implication and the necessity modality. We present
a Gentzen calculus for the combined logic defined over a Gentzen calculus for
the host S4 modal logic. The semantics is provided by Kripke structures. The
calculus is proved to be sound and complete with respect to this semantics. We
also show that the combined logic is a conservative extension of each component.
Finally we establish that the Gentzen calculus for the combined logic enjoys cut
elimination.
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1. Introduction

Prawitz was the first to recognize the relevance of tolerance when combining
intuitionistic and classical first-order logic [12] (see also [13, 2]). Therein
Prawitz proposes a combined logic where the intuitionistic logician accepts
that the tertium non datur AV.— A holds even when A is an intuitionistic
formula. On the other hand, the classical logician must also accept that
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the tertium non datur A V; = A does not hold even when A is a classical
formula.

This non-collapsing combination of intuitionistic and classical logic was
obtained by enriching intuitionistic logic with classical constructors while
sharing falsum, conjunction, negation and the universal quantifier. This
logic was endowed with a natural deduction calculus. An equivalent sequent
calculus presentation was discussed in [11], under the name Ecumenical
sequent calculus system (using indirect translations via cuts, see [17, 9]).

The interest on combining intuitionistic and classical logic has been
around namely in fibring of logics (see [3, 4]). Fibring is a combination
technique that given two logics defines another one by putting together the
deductive components of each logic while sharing or not some construc-
tors. Soon after its initial proposal, the collapsing problem of intuitionistic
into classical logic was identified and a proposal for avoiding this problem
appeared in [1]. Later on in [16] a general solution called modulated fibring
was proposed for avoiding any such collapse. Furthermore, it is worth-
while to refer to the unified calculus LU presented in [5] where a common
non-collapsing single sequent calculus for classical, intuitionistic and linear
logics is proposed.

Inspired by the tolerance principle identified by Prawitz in [12], we pro-
pose a non-collapsing combination between propositional intuitionistic and
propositional classical modal logic S4 sharing 1, A and V. The idea is
to embed intuitionistic logic into modal logic S4 in such a way that intu-
itionistic logic does not loose its identity (following [6, 8]). The properties
of false, conjunction and disjunction are the same for both logics and so
they share these constructors. On the other hand we have an intuitionis-
tic implication and a classical implication because these constructors have
different properties. There are also an intuitionistic and a classical nega-
tion defined by abbreviation from intuitionistic and classical implication,
respectively. We consider a set of (classical) propositional variables that
are also used to define (intuitionistic) propositional constructors in such a
way that hereditariness (necessity) holds. In this way we work with pure
Kripke structures for S4 and accommodate intuitionistic constructors in
this framework.

As far as we know there are no efforts on fibring intuitionistic and modal
logic S4. Nevertheless we expect that such a combination would lead to a
collapse of the intuitionistic part into the classical propositional part of
S4. In [7] a intuitionistic modal logic (the host) is enriched with classical
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constructors. This approach is different from the one we adopt herein
namely because the host of our combination is classical modal logic S4.

The paper is organized as follows. In Section 2 we present the language
and the Gentzen calculus for the combination of intuitionistic and S4 modal
logic. We show that reasoning in this combination extends reasoning in the
components. In Section 3 we prove that the Gentzen calculus for the com-
bined logic enjoys cut elimination. We introduce the Kripke semantics for
the combination in Section 4 and prove that the combination is conser-
vative over the combined logics. In Section 5 we establish soundness and
completeness of the Gentzen calculus with respect to the semantics. Finally
in Section 6 we give an overview of the paper and discuss future work.

2. Gentzen calculus

The main objective of this section is to present a Gentzen calculus for the
combination of the propositional intuitionistic logic J and propositional
modal logic S4 that we denote by J1S4. We start by presenting the lan-
guage Lj 54 and then the sequent calculus rules and axioms. After present-
ing the notion of derivation we provide some examples and establish that
reasoning over the combined logic extends reasoning over each component.

We consider fixed a denumerable set P. Let Ps = {p; : p € P} be the set
of (classical) propositional variables. The combined logic has the following
sets of constructors Cyp = { L} U P; where P; is the set {p; : p € P}, C; =
{Os} and Cy = {A,V,D;,Ds}. We denote by Ly sq4 the set of formulas
inductively defined by the constructors in C; and Cy over Cy U P;. We
may use —; @ and —g @ as abbreviations of ¢ D; L and ¢ Dy L, respectively.
Moreover we use Qs as an abbreviation of =4 =5 . We denote by L,
the set of formulas inductively generated by A, V and D; over {L} U P;.
Similarly we denote by Lss the set of formulas inductively generated by
Os, A, V and D over {L} U Ps.

A sequent is a pair (I'y A), denoted by I' — A, where I and A are finite
multisets of formulas in Ljs4. The Gentzen calculus G s4 is composed
of the following rules for constructors:

Osps, ' = A
pi,F — A

I' = A, Ogps

(RP)
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the following axioms
(Ax) ps, T — A ps (LL) L ,T—A

and
r—-Ap8 gI—A

= A

(Cut)

known as the cut rule.
A derivation for ¥ — A is a sequence ¥y — A;... ¥, — A, such that
U, > AjisP —Aandforj=1,...,n

e either ¥; — A, is an axiom

e or ¥; — A; is the conclusion of a rule and the premises appear from
j+1ton.

When there is a derivation for ¥ — A we may write

}_GJuSA U — A.

We say that ¢ is a theorem in JUS4, written Fjuss ¢, whenever
|_GJu54_> P-
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Observe that the rules applied in a derivation are such that the pre-
miss(es) is (are) below the line of inference.

We now establish useful proof-theoretical results concerning weakening,
cut, inversion and contraction.

PROPOSITION 2.1. If there is a derivation D for ¥ — A in G 54 then
there is a derivation D[P’ — A’] for ¥/, ¥ — A, A" in G54 using the same
rules by the same order over the same formulas.

The previous result follows immediately by a straightforward induc-
tion. We also omit the proof of the following proposition because it follows
straightforwardly.

ProPOSITION 2.2. The multiplicative cut rule

r—-AB8 BIV=A
DIV — AA

is derivable in G sa4.

The following result is needed for proving that the contraction rules are
derivable.

ProrosITION 2.3. The inversion lemma holds for all rules of G s4.

We now state that the left and right contraction rules are derivable in
Gjss. The proof is similar to the proof of Proposition 2.17 of [14].

PRrROPOSITION 2.4. If there is a derivation for ¢, o, U — A in G, s4 then
there is a derivation for ¢, ¥ — A in Gj 54 with at most the same length
and with the same cut formulas. Moreover, if there is a derivation for
U — A, p, ¢ in Gjyss then there is a derivation for ¥ — A, ¢ in Gy s
with at most the same length and with the same cut formulas.

We now provide derived rules for the negations -4 and —;.
PROPOSITION 2.5. Let 3 € Lyssa. Then

Os(—s B), T = A I'— A, Os(—s 8)

( ) _‘iB,F—>A (R ) F—>A,_'iﬁ
and T AR BT = A
— A, , [ —
U~ —3ro5a B v5a-p
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PROOF: The rules for —; follow from the following sequences:

1. po; L,T—>A LD; 2
2. Os(B2sL),I'= A

and
1. T—=>A8D;1 RD; 2
2. T —-ADO8Ds1)
using the abbreviations of —; and —,. Similarly for the rules for —g. O

Observe that
FGJuSz& /87F — Aaﬂ

and so we use this fact when presenting derivations under the name gAx.

The reader may wonder whether the rules of a sequent calculus for J are
derivable in the Gentzen calculus for the combination JLIS4. The answer
is that it is not always the case. For instance the usual intuitionistic rule
for introducing D; in the succedent

Faﬁl %62
I' = 31 D; B2

is not always derivable in G s4. It is true that if " is empty, we could
obtain

— B1 D; B2

— Os(B1 Ds B2)
— 1 Ds B2

B — B2

NV

But if T' is not empty, the application of (ROs) would not be possible in
general.

Example 2.6. The following derivation
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1. = pi Di (Ospi) RD; 2
2. — O(p; Ds (Osps)) ROs 3
3. = pi Ds (Ospi) RD, 4
4. p; — Osp; LP; 5
5. Osps = Ugp; RO, 6
6. Usps — p; RP; 7
7. Ogps — Ogsps gAx

shows that Fj 54 p; D; (Osp;) expressing that hereditariness holds for any
constructor p; in P;. The derivation

1. - pV(sp) Rv2
2. = p, g0 R—, 3
3. p—=op gAx

proves that by 54 © Vs (75 ) asserting that tertium non datur holds when
using classical negation. Finally, the derivation

L = (1 Dip2) Di (p1 Ds 2) RD; 2
2. = 0Os((p1Di92) Ds (p1 D5 92)) RO, 3
3. = (91 2i p2) Ds (1 Ds ¥2) RD; 4
4. ©1 D52 — P1 Ds P2 R>D, 5
D P1,P1 Di P2 — P2 LD; 6
6. ¢1,0s(p1 Ds p2) = 2 LO, 7
7. p1,01 Ds w2, 0s(01 Ds p2) = w2 LD 89
8. ¢1,92,0s(¢1 Ds p2) = 2 gAx
9. »1,0:(01 Ds 2) = @2, 01 gAx

proves that Fjss (91 Di w2) Di (91 Ds p2) expressing the intuitionistic
relationship between D; and Dy.

Next result shows that the combined logic is an extension of intuition-
istic logic, that is, every theorem in intuitionistic logic J is a theorem in
the combination J LI S4.

PRrROPOSITION 2.7. Let ¢ € Ly and Hj be the Hilbert calculus for intuition-
istic logic presented in [15] over L. Then by, ¢ in Hy implies kg, o, ©-

ProoOF: We start by proving that if ¢ is an axiom of Hj then ¢, o, ¢.
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We just consider the axiom

(1 i 2) Di (1 Di (Tip2)) Di (7).

The sequence

L = (p1 25 p2) Di ((p1 Di (T p2)) Di (Ti 1)) RD; 2
2. = Os((p1 Di2) Ds ((p1 Di (Mip2)) Di (Tipr))) RO, 3
3. = (1 Diw2) Ds ((91 D4 (T p2)) Di (i 1)) RDs 4
4. 01 Dip2 = (1 i (Tip2)) Di (Tipr) LD; 5
5. Os(p1 Ds¢2) — (</91 D (Tip2)) Di (Tip1) RD; 6
6. Os(p1 Ds 2) = Us((p1 Di (T p2)) Ds (Tip1)) ROs 7
7. Os(p1 Ds p2) = (1 D0 (Tip2)) Ds (Tip1) R>, 8
8. 1D (miw2),0s(p1 Ds p2) = i1 L>; 9
9. DOs(p1 s ( ©2)),Os(p1 Ds p2) = 71 R—; 10
10. Us(p1 D5 (mi2)), Os(1 Ds p2) = s s 01 RO, 11
11 Os(p1 Ds (Ti2)), Os(1 Ds 02) = 751 (LO,)?
12, 1 D5 (i <P2)a801 D5 p2,Us(p1 Ds (i p2)),

Os(p1 Ds p2) = 7501 R—, 13
13, 1,01 Ds (i p2), 01 Ds @2, Os(01 Ds (Ti 2)),

Os(p1 Ds p2) — Lo, 14,15
4. 1,01 Ds (Tip2), Os(p1 Ds (i 2)),

Os (91 Ds 2) = 91 gAx
15, p1,91 Ds (i p2), 02, Ts (1 Ds (i 2)),

Us (1 Ds soz) LD, 16,19
16. 1, 7% 2,02, 0s(p1 Ds (Ti 2)), Os (1 Ds p2) — L—; 17

17, 1,05 75 92,02, 0s(01 Ds (7i 92)), Os (@1 Ds 02) — LO, 18
18. ©1, s @27'35 s (;02u9027|:’s(901 DOs (_‘i 502))7

Os(p1 Ds p2) — L—g 20
19. 1, 02,0s(01 Ds (Mi 2)), Us(01 Ds p2) — 1 gAx
20. 1,0 715 02, 02, Os (91 Ds (70 02)),

Os(01 Ds p2) = @2 gAX

is a derivation for Fq, ¢, (1 Diw2) Di ((p1 Di (i p2)) Di (i w1))-
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It remains to show that g, s ¢1,91 Di w2 — @2. Indeed consider the
sequence

L p1,01 Dip2 = 2 LD; 2
2. 01,0:(p1 D5 02) = 2 L0, 3
3. p1,01 Ds w2,0s(01 Ds p2) = w2 LD 4,5
4. 1,02, 0,(¢1 Ds 2) = 2 gAx
5. 1,0(01 Ds 02) = 2,01 gAx

The fact that there is a derivation for Gj g4 for — ¢ follows by a straight-
forward induction on the length of a derivation for ¢ in Hj. O

We provide an example of the use of Modus Ponens (MP) in the context
of a derivation in G, s4. We now show that

}_GJuS4_> P1 . I L
mmplies G — Y.
}_GJuS4_> P1 i P2 s

We start by observing that there are derivations for

(T) l_GJu54_> P1, P2
(1) Fayus 1 — 02,01 Di @2

using Proposition 2.1. Then the sequence

1. — o Cut 2,3
2. @1 = P2 Cut 4,5
3. =92 (t)
4 1D p2,01 = P2 MP
5. p1 > P2,1 Di P2 (1)

is a derivation for kg, o, — ¥2.

Similarly to the previous result it is straightforward to show that rea-
soning over the combined logic is an extension of the reasoning in S4 modal
logic.
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PROPOSITION 2.8. Let ¢ € Lssa. Then ¢ is a theorem of J1S4 when ¢ is
a theorem of S4.

The next example shows that tertium non datur holds in the combined
logic J IS4 with respect to the Lgy fragment.

Ezample 2.9. Let ¢ € Lsa. Then ¢ V (5 ¢) is a theorem in JUS4, by
Proposition 2.8, since ¢ V (75 ¢) is a theorem in S4.

3. Cut elimination

The main goal of this section is to prove the Gentzen’s Hauptsatz for Gjss.
We follow the strategy of the proof in [14].

We start by introducing the notion of branch of a derivation. A branch
of a derivation ¥; — A; --- ¥, — A, starting at sequent ¥; — A; is a
finite subsequence ¥;, — A;, --- ¥, — A, of the derivation such that:

o \Ijil — Ai1 is Vv, — Ai?

e for each 1 < j < m, ¥;;, — A;, is the conclusion of a rule in the
derivation and ¥ — A is a premise of that rule in the deriva-
tion;

ij41 L1

e U, — A, iseither Axor LL.

Tm Tm

Moreover, the depth of a branch is the number of sequents in the branch
minus 1.

Let D be a derivation in G54 where the cut rule was applied in step
1 from premises at steps j and k.

The level of this cut application at ¢ is the sum of the maximum depth of
a branch starting at the premise in j with the maximum depth of a branch
starting at the premise in k. The complezity of a formula ¢ denoted by |¢|
is inductively defined as follows.

e |ps| =|L| =0 for every ps € Ps
e |p;| =2 for every p; € P;

o (1 Apa| = o1 Vo] = |p1 Ds pa| = max(|p1], [p2]) +1
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® [p1 Di pa| = max(|p1], [p2]) +3
o [Osp1] = [pa| + 1.

The rank of a cut application in D is the complexity of the respective cut
formula plus 1. The cutrank of D is the maximum of the ranks of the cut

applications in D (the cutrank of a derivation with no cut applications is
0).

ProproSITION 3.1. Given a derivation D for g, o, ¥ — A where ¥ — A
is obtained by a cut from derivations with a lower cutrank than D then
there is a derivation D* for ¢, ,, ¥ — A with a lower cutrank than D.
PRrROOF: Let D be

v — A Cut 2,n

2 U—oAe
D

n @o,¥—=A
D,

The proof follows by induction on the level of the cut. The base cases are
straightforward (see [17] and [14]). With respect to the inductive step we
only consider the case where the lengths of D; and D, are greater than
1. We start by considering the case where ¢ is principal in both premises
of the cut. There are several subcases to consider depending on the main
constructor of . We omit the subcases where the main constructor is from

S4 (see [17]).
(1) ¢ is p; € P;. Then D is the sequence
v — A Cut 2,n
U — A, p; RP; 3
¥ — A, Osps
Dy
n. pi, ¥ = A LP; n+1
n+1. Ogps, ¥ — A
Dy

Hence the target D*® can be of the form
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U — A Cut2n—1
U — A, Ogps
Dy

n—1. Ogps, ¥ — A

Ds

since this derivation has lower cutrank than D and it is for the same goal.

(2) ¢ is the formula ¢1 D; wa. Then D is the sequence

n+ 1.

U — A Cut 2,n
U — A, o1 D; 2 RD; 3
T — A, Os(p1 D5 92)

D;

01 D592, ¥ = A Lo, n+1
Os(p1 Ds 92), ¥ = A

D

Thus the target D® can be of the form

v — A Cut 2,n—1
¥ — A, Os(p1 D5 2)

2

Os(p1 Ds p2), ¥ — A

D

because this derivation has lower cutrank than D and it is for the same

goal.

We now consider the case where the cut formula is not principal in the
premise at step 2. Moreover we assume that the rule applied at step 2 is
LD;. So D is of the following form:
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01 Di 2, ¥ — A Cut 2,n
2. w1 Dip2, V1 = A L>; 3
Os(p1 Ds 92), V1 — Ao
2
n. 9,012, Y1 — A
Dy

Thus Cut can be applied to the premise of D; taking into account Propo-
sition 2.1:

. Os(p1 D5 92),01 Dip2, U1 = A Cut 2,n
2. Os(p1 Ds p2), 01 Diw2, U1 = Ao
Dilp1 Di 2 =]
n. o, 0s(¢1 Ds 92), p1 Di p2, ¥ — A
D5 [Us (1 Ds p2) =]

Then by the induction hypothesis on the level of the cut there is the fol-
lowing derivation

1. Ds(gpl Dy 4,02),901 D2, U1 — A
DY

with less cutrank than the original one. Hence we have the following deriva-
tion

L. 1 Di@2,01 Di 2, ¥ — A L>; 2
2. Oi(p1 Ds2),01 Dia, U1 — A
Dy
and the thesis follows by Proposition 2.4. O

The next result follows straightforwardly by induction on the number
of cuts with the greatest cutrank taking into account Proposition 3.1.
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PROPOSITION 3.2. Given a derivation for kg, , ¥ — A with non null
cutrank then there is a derivation for kg, ,, ¥ — A with a lower cutrank
than the given one.

Finally, we are ready to establish Gentzen’s Hauptsatz for Gy s4. The
proof follows immediately by induction on the cutrank of the given deriva-
tion taking into account Proposition 3.2.

ProPoOSITION 3.3. Given a derivation for k¢, , ¥ — A, then there is a
derivation with no cut applications for kg, o, ¥ — A.

4. Kripke semantics

The objective of this section is to introduce the main semantic concepts for
JUS4. Then we prove that the combined logic is conservative with respect
to each component.

A Kripke structure for the combined logic J US4 is a triple M = (W, R, V)
such that (W, R) is a Kripke frame where R is a reflexive and transitive
relation and V : P, x W — {0, 1} is a valuation map. We denote by M s4
the class of all Kripke structures for JLIS4.

We define that M € M 54 and w € W locally satisfies ¢ written

M,wlkjisa ¢
by induction on ¢ as follows:
o M,wlfjuss L
o M,w ;54 ps whenever V(ps, w) =1

o M,w IFj 54 p; whenever V(ps,w') = 1 for every w’ € W such that
wRw'

o M,wlFyusas p1 A2 whenever M, w Ik s4 @, for each j = 1,2
o M,wlrFyysa o1V @ whenever M, w Iy s4 ; for some j = 1,2

o M wlkjsq 1 Ds 2 whenever M, w IFj 54 1 implies M, w Iy sq
P2

o M, wlkyuss o1 D; 2 whenever M, w' Iy s4 @1 implies M, w’ Iy 54
@9 for every w' € W such that wRw’



On Combining Intuitionistic and S4 Modal Logic

o M, wlkyusqs Ogp1 whenever M, w' Ik s4 1 for all w’ € W such that
wRw'.

Following the abbreviations we also have
o M, wlkFyyss s whenever M, w Iy 54

o M, w lkjsq —; ¢ whenever M, w' Ifjusq @ for every w' € W such
that wRw'.

We extend local satisfaction to sets of formulas as follows: M, w IFj 54 ¥
whenever M, w Iy 54 9 for every ¢ € .
Moreover we say that M satisfies ¢, written

MIFyuss

whenever M, w Ik 54 @ for every w € W and M IFj 54 ¥ whenever
M IFysa ¢ for every ¢ € U. Finally, we say that U entails ¢, written

U E)ss @

if M IFysq4 ¢ whenever M Iy sq4 ¥ for every M € My s4. When ¥ = ()
we say that ¢ is valid and write Fj 54 .

We now show that the combined logic JLIS4 is conservative with re-
spect to intuitionistic logic J. We assume that J is endowed with a Kripke
semantics (see [15]) and denote by M the class of all Kripke structures
for J.

PRrOPOSITION 4.1. Let ¢ € L. Then Fj 54 ¢ implies Fj ¢.

PROOF: Let M € Mj where M = (W, R, V). We denote by M’ the Kripke
structure (W, R, V') with V' : P, x W — {0,1} such that V/(ps,w) =1
whenever V(p;,w) = 1 and V’(ps, w) = 0 otherwise. Thus M’ is a Kripke
structure for JLIS4. We start by proving by induction on ¢ that

M, w IFy ¢ if and only if M, w Ik s .

(Base) ¢ is p;. Thus M, w Ik p; iff V(p;,w) =1 iff V(p;,w’) = 1 for every
w' € W such that wRw' iff V'(ps,w’) = 1 for every w’ € W such that
wRw' iff M’,w ”__J|_|S4 Di-

(Step) We only consider the case where ¢ is @1 D; w2. Hence M, w IF;
1 Dj o iff for every w’ € W such that wRw' if M, w' -y 1 then M, w' Ik
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o iff (IH) for every w’ € W such that wRw' if M’ w’ IFjs4 1 then
M’ w' IFyusa w2 iff MY wlkjuss o1 Di pa.

So M’ IFjsq @ if and only if M I .

Finally we are ready to prove the thesis. Assume that Fj 54 ¢ and let

M € Mj. Then M’ as defined above is in M s4. Hence M’ IFj 54 .
Thus, as shown above M I ¢. O

The next example shows that tertium non datur does not hold in the
Ly fragment of the combined logic JU S4.

Ezample 4.2. Let ¢ € Lj. Then Hjusa ¢ V (mi¢) by Proposition 4.1
because Hj o V (—; ¢).

It is straightforward to show that validity over the combined logic is a
conservative extension with respect to validity in S4 modal logic.

PROPOSITION 4.3. Let ¢ € Lsa. Then ¢ is valid in JLIS4 if and only if ¢
is valid in S4.

5. Soundness and completeness

The main objective of this section is to prove that the Gentzen calculus
Gjusq for the combination of intuitionistic logic J and modal logic S4
defined in Section 2 is sound and complete with respect to the Kripke
semantics introduced in Section 4

We begin by extending the semantic notions to sequents. We say that
M = (W,R,V) € Mjysa locally satisfies in w € W the sequent ¥ — A,
written

M,w||—J|_|54 U — A

whenever M, w IFy 54 ¥ implies that there is A € A such that M, w Ik 54
A. Moreover, we say that M satisfies the sequent ¥ — A, written

Ml%]uSz;W‘)A

whenever M,w Iy 54 ¥ — A for every w € W. Furthermore we say
U — A is walid, written Fj 54 ¥ — A, whenever M Ik ,54 ¥ — A for
every M € M ss.
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In the sequel we need two properties. The first one states that satis-
faction of boxed formulas is preserved by the Kripke relation. The second
one states that for diamond formulas non-satisfiability is preserved.

ProprosSITION 5.1. Let M € My 4, w € W and ¢ € Ly s4. Then

o if M,w lkjusq Osp, w' € W and wRw' then M, w’ IFjs4 Os by
transitivity of R

o if M,w Ifyjuss Osp, w' € W and wRw' then M, w' Iy s4 Qs by
transitivity of R.

Soundness brings to light that the host of the combination is S4 modal
logic. Hence we need to translate formulas in L s4 to equivalent formu-
las in Lg4. For that we need the following map inspired by the Godel-
McKinsey-Tarski translation [15, §].

Let 7yusa : Lyusa — Lsg be the map inductively defined as follows:

* Tyusa(ps) = ps

e Tyusa(pi) = Osps
hd TJ|_|54( )

o Tyusa(pxth) =Tyusa(p) * Tyusa(th) where x € {A,V}
o Tyusa(w1 Ds p2) = Tyusalp) Ds Tyusa(t)

o Tyusa(w1 Di ) = Os(Tyusaly) Ds Tyusa(th))

o Tyusa(0s01) = Osmiusa(eon)-

Observe that 7 s4(— ) = Os(—s Tyusa(w)) and 7yusa(—s 0) = ~s Tyusa(e).
We extend the definition of 7,54 as follows:

Tyusa(¥) = {myusa(v) 1 ¢ € ¥}

The following result shows that the translation of a formula is locally
equivalent to the original formula.

PRrOPOSITION 5.2. Let ¢ € Ly 54, M be a Kripke structure and w € W.
Then,
M,wlFjsa ¢ if and only if M, w lkysa Tyusa(e).

PrOOF: The proof is by induction on the structure of .
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(Base) There are three cases.

(1) ¢ is ps € Ps. The result is immediate.

(2) ¢ is p; € B;. Thus M, w Iy 54 p; iff V(ps,w') =1 for every w’ € W
such that wRw’ iff M, w Ik 54 Osps it M, wlkyusa Tyusa(pi)-

(3) ¢ is L. The result is immediate.

(Step) There are five cases.

(1) ¢ is @1 A wa. Then M, w lFysq o1 Ao iff M, w by sa pj for j =1,2
iff (by IH) M, w IFjusa Tyusale;) for j = 1,2 iff M, w lFyusa Tyusa(er) A
Tyusa(p2) HE M w lkyysa yusa(er A @2).

(2) ¢ is 1 V @a. Similar to case (1) of step.

(3) @ is @1 Dg 2. So M,w lFyusa w1 Ds o iff if M,w Iy 54 @1 then
M, w IFysa P2 iff (by IH) if M,w IFysa TJ|_|54(<pl) then M,w IFjsa
Tyusa(p2) iff M, wlkysa Tyusa(pr) DsTaiusa(p2) iff M,w by s Tyusa(er Ds
P2).

(4) ¢ is 1 D w2. Thus M, w lFysa 1 Di o iff if M,w' IFys4 1 then
M, w' k354 @2 for every w' € W such that wRw’ iff (by TH) if M, w’ IFj 54
Tyusa(p1) then M, w' Iy sa Tyusa(pe) for every w’ € W such that wRw’
ifft M w' IFyusa Tyusa(e1) Ds Tiusa(ps) for every w' € W such that wRw’
iff M, wlkyyss Os(myusa(er) Dsmiusal(w2)) iff M,w by sa Tyusa(e1 Dipe).
(5) ¢ is Os1. Thus M, w Iky s Osq iff M, w' IFysa 7 for every w' € W
such that wRw’ iff (by TH) M, w’ Ik s4 Tyusa(p1) for every w’ € W such
that wRw' iff M, w Iy sa Os7iusaler) i M,w lFjusa Tyusa(ser). O

The next result extends to entailment the equivalence between a formula
and its translation. We omit the proof since it follows straightforwardly
from Propositions 4.3 and 5.2.

PRrROPOSITION 5.3. Let ¢ € Ljs4. Then Fjs4 ¢ if and only if Fgy
TJ|_|S4(<P)-

We are now ready to prove the soundness of G s4. We start by proving
that the rules are sound.

A rule is said to be sound whenever for every Kripke structure M €
My iss, if M satisfies the premises of the rule then M also satisfies the
conclusion of the rule.
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PROPOSITION 5.4. The rules of G, 54 are sound.

PrOOF: Let M € My sq.

(LP;) Suppose that M IFj 54 Ogps, I’ — A. Let w € W. Assume that
M,wlkys4 T and M, w IFy 54 p;. Then M, w k554 Tyusa(pi) by Propo-
sition 5.2 and so M, w Ik 54 Ogps. Hence M, w IFj 54 § for some § € A
using the hypothesis.

(RP;) Assume that M k54 I' — A,Ogps. Let w € W. Suppose
that M,w IFjsa I'. There are two cases. (1) M,w IFjsq4 ¢ for some
0 € Aand so M,w IFjusa T — Ajp;. (2) M,w Ikyss Osps. Hence
M,wlFyusa Tyusa(ps) and so M, w Ik 54 p; by Proposition 5.2.

(LD;) Suppose that M Ik 54 Os(81 Ds B2), I — A. Let w € W. Assume
that M, w Iy ysa f12D:82 and M, w Iy sa T'. Thus M, w Ik sa Tyusa(B1D:
B2) by Proposition 5.2 and so M,w IFjs4 Os(Ty0us4(81) Ds Tyusa(B2)).
Thus, M,w" IFyusa Tyusa(B1) Ds Tyusa(B2) for every w’' € W such that
wRw' and so M,w’ Iky 54 Tyusa(B1 Ds B2) for every w' € W such that
wRw'. Therefore, again by Proposition 5.2 M, w’ Ik s4 f1 Ds B2 for every
w' € W such that wRw'. So M,w Iy 54 Os(81 Ds B2). Hence, there is
6 € A such that M, w IFj 54 § using the hypothesis.

(RD;) Assume that M IFy 54 T — A, 0O4(81 Ds B2). Let w € W. Sup-
pose that M,w IFj 54 T'. There are two cases. (1) There is § € A
such that M,w IFj 54 6 and therefore M,w I T' — A, 1 D; f2. (2)
M, wlkysa Os(B1 Ds B2). Hence M, w' by sa f1 Ds B2 for every w' € W
such that wRw’ and so, by Proposition 5.2, M, w’ by sa Ty is4(1Ds/32) for
every w’ € W such that wRw’. Hence M, w' Iy 54 Tyusa(B1) Ds Tyusa(B2)
for every w’ € W such that wRw’ Thus, M,w IFjs4 Os(myusa(B1) Ds
Tyusa(f2)) and so M, w Ik 54 Tyusa(B1DiB2). Finally, by Proposition 5.2,
M, wlkyusa B1 Di P

(LO) Suppose that M IFysqe 8,08, T — A. Let w € W and assume
that M,w IFysq Os8 and M, w Iky 54 . Then M, w’ Iy sq4 B for every
w’ € W such that wRw’. Hence, M, w IFj 54 8 by reflexivity and so there
is 6 € A such that M, w IFjs4 6.

(RO;) Assume that M IFjsq O — Os A, 8. Let w € W and suppose
that M, w IFyss O, and M, w -5 54 IV. There are two cases to con-
sider. (1) M,w IFjusa 056 for some 6 € A and the thesis follows. (2)
Otherwise let w’ € W be such that wRw’. Observe that M, w’ IF;s4 O,T
by Proposition 5.1. Moreover, M, w’ Iffjusq4 Osd for for every § € A by
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Proposition 5.1. So, M,w’ Iy 54 8 using the hypothesis.

The other cases follow in a similar way. O

The next step is to show that the axioms of G, s4 are sound. We say
that an axiom is sound whenever it is satisfied by every Kripke structure
in Mj_ s4. The following result is straightforward.

PROPOSITION 5.5. The axioms of Gj 54 are sound.
Finally we have the soundness result.
PROPOSITION 5.6. Let ¢ € Ly s4. Then Fj 54 ¢ implies Fjsq .

Proor: We must start by proving that
) Fo,uw ¥ — Aimplies Fjsa U — A

The proof follows by a straightfoward induction on the length of a deriva-
tion for ¥ — A using Proposition 5.5 and Proposition 5.4. Hence as-
suming Fjsq4 ¢ then kg, o, = . Thus, by (1), Fyusa — ¢. Therefore,
Fiuss ©. O

Completeness We start by showing that the sequent derivation in G s4
is a conservative extension of the sequent derivation in Gss; modulo the
translation 7 ,s4 (see [17] for the Gentzen calculus for S4). The strategy
of proving completeness that we follow is similar to the one in [10].

PROPOSITION 5.7. Let WUA C Lj s4. Then
l_GJuSA U - A if and only if }_GS‘; TJ|_|54(\I/) —)TJu54(A).

PROOF:
(=) Let ¥y — Ay... ¥, = A, be a derivation for ¥ — A in G, s4. The
proof follows by induction on n.

(Basis) n = 1. There are two cases. (1) Uy — A; is justified by (Ax),
that is, it is of the form ps,I' — A,ps. Hence 7yusa(ps), Tyusa(l) —
Tyusa(A), 75 usa(ps) is also justified by (Ax) in Gss. (2) U1 — Ay is justified
by (LL), that is, it is of the form L, T' — A and so 7y5sa(L), Tyusa(T) —
Tius4(A) is also justified by (LL) in Gsq because 75 ,54(L) is L.

(Step) There are several cases. We only present the proof for (LP;) and
(RD;). The other proofs follow in a similar way.
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(1) &3 — A; is the conclusion of rule (LP;), that is, is of the form p;, ¥} —
Ay and so there is j = 2,...,n such that ¥; — A; is Osp,, ¥§ — Ay. Hence
I_GJuS4 Dsps,\llll — Ay and so by (IH) }_G54 TJ|_|54(|:|sps),TJus4(‘1//1) —
Tyusa(A1). Sothere is a derivation in Gsg for Ogps, Ty0sa(P)) = Tyusa(Aq).
The thesis follows since 7 ,s4(p;) is Osps.

(2) U3 — A is the conclusion of rule (RD;), that is, is of the form
Uy — Al,¢1 Di @2 and therefore there is j = 2,...,n such that ¥; —
AL Os(e1 Ds w2). Thus Fq, e P11 — A}, Oq(p1 Ds p2) and so Fg,
Tyusa(W1) — myusa(A), Os(myusa(wr) Ds Tyusa(w2)) by (IH). The thesis
follows because Og(Tyusa(w1) Ds Tyusal(w2)) is Tyusa(pr Di p2). O

The previous result can be extended straightforwardly to derivation of
formulas.

PRrROPOSITION 5.8. Let ¢ € Ly s4. Then ;54 ¢ if and only if Fgy
7'J|_|s4(<,0)-

We are ready to prove completeness of G s4 with respect to M sq.
PROPOSITION 5.9. Let ¢ € Ly sa. Then Fj 54 ¢ implies ;54 0.

PROOF: Suppose that Fj 54 ¢. Hence Fsa 75,54(¢) by Proposition 5.3.
Thus Fss 75s4(p) by completeness of S4 (see [17]) and so, by Proposi-
tion 5.8, Fjs4 . O

6. Concluding remarks

Inspired by the works of [12] and [11], we propose a logic combining in-
tuitionistic and S4 modal logic in a tolerant way. That is, the intuitionis-
tic logician accepts that the classical principles are present for the modal
language fragment of the logic and the modal logician accepts that the
intuitionistic principles hold in the intuitionistic language fragment of the
logic.

We endow the logic with a Gentzen calculus and with a Kripke semantics
and show that the combined logic is sound and complete. We prove that
the combined logic extends conservatively intutionistic and S4 modal logic.
Moreover we show that the cut rule can be eliminated.

We want to study other metaproperties of the combined logic namely
decidability, Craig interpolation and definability. Moreover, we would like



Joao Rasga, Cristina Sernadas

to investigate combinations of intuitionistic and other modal logics. Fur-
thermore, it would interesting to leave the realm of Kripke semantics and
analyze for example the combination of paraconsistent logics with intu-
itionistic or classical logic.
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