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Abstract

We introduce a notion of dimension of an algebraic lattice and, treating such a

lattice as the congruence lattice of an algebra, we introduce the dimension of an

algebra, too. We define a star-product as a special kind of subdirect product.

We obtain the star-decomposition of algebras into one-dimensional factors, which

generalizes the known decomposition theorems e.g. for Abelian groups, linear

spaces, Boolean algebras.
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1. Introduction

In this paper we study properties of algebraic lattices in order to obtain
subdirect decomposition of algebras into a minimal number of irreducible
factors. The famous Grätzer-Schmidt theorem (see [6]) states that every al-
gebraic lattice is the congruence lattice of an algebra, so we study algebraic
lattices having in mind congruence lattices. Our main aim was to generalize
the known (in classical algebra) decomposition theorems to universal alge-
bra. For example, there are theorems on decomposition: of vector spaces
into one dimensional vector spaces, of finitely generated Abelian groups
into irreducible cyclic groups, or finitely generated Boolean algebras into
two-element Boolean algebras.
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In the context of decomposition of algebras, it is known the Birkhoff’s
Theorem (see [1]) which states that every algebra A is isomorphic to a
subdirect product of subdirectly irreducible algebras, but this theorem is
redundant and too general. To get irredundant decompositions we intro-
duce the notion of dimension of an algebraic lattice. We don’t know if
every algebraic lattice has the dimension, but we show that every balanced
algebraic lattice has the dimension (see Theorem 3.10), and there are also
non-balanced lattices with dimension (see Example 2.21). We define the
dimension of an algebra as the dimension of its congruence lattice. This
notion of dimension generalizes the so called Goldie dimension, which is
well defined in locally uniform lattices which are at least balanced. We
show in this paper that in balanced locally uniform lattices Goldie dimen-
sion is equal to our dimension. Goldie (see [4]) used the notion of uniform
modules to construct uniform dimension (Goldie dimension) of a module.
Goldie dimension generalizes some, but not all, aspects of the notion of
the dimension of a vector space. Goldie dimension in modular lattices were
studied by Grzeszczuk, Okniński and Puczy lowski in [8], [9], [7], [14], and in
balanced lattices - by Zolotarev and Krempa in [18], [19], [11], [12]. We use
terminology from these works such as uniform element, essential element,
independent set, balanced lattice.

We also observed that in some known decomposition theorems, for ex-
ample in finitely generated Abelian groups, there are irreducible factors,
namely the group of integers Z, that are not subdirectly irreducible. Such
algebras are finitely subdirectly irreducible. This kind of algebras is known
in the context of decomposition of algebras, for example see the paper of
Katriñák and El-Assar [10]. It is easy to see that every subdirectly irre-
ducible algebra is also finitely subdirectly irreducible. Finitely subdirectly
irreducible algebras are exactly one-dimensional algebras.

We introduced in this paper some new terminology and techniques.
The first tool is the omitting relation necessary in almost all proofs and
in definitions of ⊛-sets and ⊛-products, which define the decomposition
mentioned at the beginning. ⊛-sets and maximal independent sets are
used in the definition of a basis of an algebraic lattice and the dimension
of an algebra. We also introduced the notion of an anti-uniform element
in a lattice. In algebras with dimension we obtain a ⊛-decomposition into
one-dimensional algebras with number of factors equal to the dimension of
this algebra and, in some cases, a one algebra related to anti-uniform part
of the congruence lattice needs to be included in this ⊛-decomposition.
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The most interesting results are in the case of modular lattices, where
we obtained a full ⊛-decomposition (see Theorem 4.12) of algebras. This
theorem applies to many algebraic structures like modules, groups and
rings (noncommutative included) as their congruence lattices are modular.
In the case of congruence distributive algebras the ⊛-decompositions (see
Theorem 4.16) are unique. This theorem applies to algebraic structures
such as lattices, Boolean algebras and Heyting algebras.

1.1. Preliminaries

An algebra A of type F is an ordered pair (A,F ), where A is a nonempty
set and F is a family of finitary operations on A.

A binary relation θ on A is called a congruence on an algebra A of type
F if it is an equivalence relation on A satisfying the compatibility property
i.e. for each n-ary operation f ∈ F and elements ai, bi ∈ A if (ai, bi) ∈ θ
holds for i = 1, . . . , n then (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ. The set of all
congruences on an algebra A is denoted by ConA. It is known that ConA
ordered by inclusion is an algebraic lattice which is called the congruence
lattice of A. The least element 0 is the identity relation and the greatest
element 1 is A × A. According to terminology like ‘congruence modular
algebra’ and ‘congruence distributive algebra’, we will say that algebra is
a congruence ‘Property’ algebra if its congruence lattice has the property
‘Property’.

An algebra A is a subdirect product of a family (Ai)i∈I of algebras
if A is a subalgebra of the product

∏
(Ai)i∈I and the projection maps

πi : A → Ai are epimorphisms for each i ∈ I.
We use two important properties of congruences. The first one states

that if θ =
⋂
{θi}i∈I , then A/θ is a subdirect product of the algebras

(A/θi)i∈I . Hence if 0 =
⋂
{θi}i∈I , then A is a subdirect product of the

quotient algebras (A/θi)i∈I . The second one is The Correspondence The-
orem which states that for any algebra A and θ ∈ ConA the interval [θ, 1]
is isomorphic to ConA/θ.

An algebra A is finitely subdirectly irreducible iff 0 is a meet irreducible
element in ConA. If, additionaly, 0 is a completely meet irreducible element
in ConA, then A is called subdirectly irreducible. Every algebra with an
atomic congruence lattice with one atom is subdirectly irreducible.

For facts not recalled here see [3], [2], [5], [13].
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2. General case – algebraic lattices

We assume throughout the paper, that L is an algebraic lattice with the
least element denoted by 0 and the greatest element denoted by 1, and
where 0 6= 1. This yields that if such an L is a congruence lattice of an
algebra A, then A is nontrivial, i.e. it has at least two elements.

If L is algebraic then it is complete by definition. In complete lattices
we have

∨
∅ = 0,

∧
∅ = 1,

∨
L = 1,

∧
L = 0.

We use the fact that every algebraic lattice is upper continuous (see [15]),

i.e. for every up-directed subset D ⊆ L and a ∈ L, a∧ ~
∨
D = ~∨

d∈D(a∧d),

where ~
∨
D denotes the join of an up-directed set D in L.

2.1. Independent sets, omitting relation and star-products

The idea of introducing independent sets has its origin in independent sets
of vectors in vector spaces. There are several definitions of independent
sets in lattices (see e.g. [12], [18], [7], [5]). We use the following:

Definition 2.1. A subset X ⊆ L\{0} is independent if |X| = 1, or |X| > 1
and for every x ∈ X it holds that x ∧

∨
(X \ {x}) = 0.

Fig. 1.

The definition given in Grätzer’s book [5] is that an X ⊆ L \ {0} is
independent iff

∨
X1 ∧

∨
X2 =

∨
(X1 ∩ X2) for any two finite subsets

X1, X2 ⊆ X. Notice that if X is independent in the sense of Grätzer’s
definition in an algebraic lattice then it is independent in the sense of
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Definition 2.1 in this lattice. However, the opposite doesn’t hold. For
example, the set X = {x, y, z} in Lattice 1 (see Fig. 1.) is independent, but
it is not independent in the sense of Grätzer’s definition, because

∨
{x, y}∧∨

{y, z} >
∨
{y} = y.

Proposition 2.2. Let X ⊆ L and |X| > 1. Then X is an independent set
iff every finite nonempty subset Y ⊆ X is independent.

Proof. ⇒ is trivial. To show ⇐ notice that for any x ∈ X,
∨

(X \{x}) =
~∨D, where D is an up-directed set of all the finite joins of elements from
X \ {x}, and x ∧ d = 0 for every d ∈ D. Hence x ∧

∨
(X \ {x}) =

~∨
d∈D(x ∧ d) = 0 for any x ∈ X.

Now, we introduce a kind of complementation, namely, the relation of
omitting of subsets, which plays a crucial role in this paper. We say that
an element y ∈ L omits x ∈ L iff y ∧ x = 0. An element y ∈ L omits a
nonempty subset X ⊆ L iff y omits every element x ∈ X. If X = ∅ then
every element y ∈ L omits X.

Using Zorn’s Lemma it can be shown that for any subset X ⊆ L (the
assumption that L is an algebraic lattice is important) there exists a max-
imal element omitting X. The set of all maximal elements omitting X is
denoted by MX and elements of this set are denoted by MX . If X = {x}
then the set of all maximal elements omitting x is denoted by Mx and Mx

denotes any element of Mx.
We consider also maximal elements in L omitting a given element MX

using notation M⊛

X for any element of the set MMX
. Exceptionally, if X =

{x} then for a given Mx, M⊛
x denotes any element of the set M

⊛
x (Mx) =

{z ∈ MMX
: x ≤ z}. Consequently, for given MX and M⊛

X ∈ MMX
,

the symbol M⊛⊛

X denotes any element of the set M
⊛

MX
(M⊛

X ). Similarly,

for given MX , M⊛

X ∈ MMX
and M⊛⊛

X ∈ M
⊛

MX
(M⊛

X ), the symbol M⊛⊛⊛

X

denotes any element of M⊛

M
⊛

X

(M⊛⊛

X ).

Look at the following intuitive example, where L is a lattice of sub-
spaces of a linear space V . Let ∅ 6= X ⊆ L and let s =

∨
X. Then M⊛

s is
the subspace generated by X and Ms is a completion subspace such that
the direct sum of M⊛

s and Ms is V .

Proposition 2.3. 1. If x, y ∈ L and x ≤ y, then for any My there is
an Mx such that My ≤Mx.

2. Let x, y ∈ L and x ≤ y. If Mx omits y then Mx = My for some My.
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3. For any Mx, Mx = M⊛⊛
x independently of the choice of M⊛

x . More-
over, for any X ⊆ L and M⊛

X , M⊛

X = M⊛⊛⊛

X independently of the
choice of M⊛⊛

X .

4. Let ∅ 6= X ⊆ L and s =
∨
X. Then for every Ms there exists a

choice of {Mx}x∈X such that Mx ≥Ms and then Ms ≤
∧
{Mx}x∈X .

5. Let ∅ 6= X ⊆ L. Then for any MX there exists a choice of {Mx}x∈X

such that MX =
∧
{Mx}x∈X .

Proof. (i) and (ii) are obvious.
(iii) By definition x ≤ M⊛

x , Mx ≤ M⊛⊛
x and M⊛⊛

x omits x. Thus Mx =
M⊛⊛

x by maximality of Mx. To show the second part substitute MX in
the place of x in the first part.
(iv) Notice that for any x ∈ X, x ≤ s and use (i).
(v) Take MX and any x ∈ X. Then MX omits x, so there is Mx such
that MX ≤ Mx by maximality of Mx. Hence MX ≤

∧
{Mx}x∈X and∧

{Mx}x∈X omits X. Maximality of MX yields the equality.

Corollary 2.4. For any algebra A, if ∅ 6= X ⊆ ConA then for any
MX there exists a choice of {Mx}x∈X such that A/MX is isomorphic to a
subdirect product of algebras (A/Mx)x∈X .

The above decomposition has too many factors. We aim to obtain more
specific irredundant decomposition of algebras, so we need to introduce
some more definitions and new terminology.

An element e ∈ L is called essential in L if x ∧ e 6= 0 for every
x ∈ L \ {0}. This notion is known in module theory, where Goldie bases
were introduced in submodule lattices. The greatest element 1 is essential
in every lattice with 0 and 1. If x is essential in L then Mx = 0. We say
that an element e ∈ L is essential in an element a ∈ L iff e ≤ a and e is
essential in the interval [0, a] ⊆ L.

Definition 2.5. Let X,Y ⊆ L and X = {xi}i∈I , Y = {yi}i∈I . We say
that the pair (X,Y ) is a star pair (a ⊛-pair) in L iff

1. X is an independent set in L such that
∨
X is essential in L,

2.
∧
Y = 0,

3. yi is a maximal element omitting xi such that
∨

(X \ {xi}) ≤ yi is
essential in yi, for every i ∈ I.
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Notice that if |I| = 1, then the only ⊛-pair is ({1}, {0}). If |I| > 1
and (X,Y ) is a ⊛-pair in L then there exists a choice of elements {MX

i }i∈I

such that for every i ∈ I, MX
i = yi. In Lattice 3 (see Fig. 1.) x ∨ y 6= 1 is

essential and ({x, y}, {x, y}) is a ⊛-pair.

Example 2.6. 1. Let A = A1 × A2 be a direct product of nontrivial
algebras A1,A2. Let X = Y = {kerπ1, kerπ2}. Then (X,Y ) is a
⊛-pair in ConA.

2. Let A = Π (Ai)i∈I be a direct product of a finite family of nontri-
vial algebras (Ai)i∈I , I = {1, 2, . . . , n}. Then the pair (X,Y ), where
Y = {kerπi}i∈I and X = {

∧
{kerπj}j∈I\{i}}i∈I is a ⊛-pair in ConA.

Before we formulate the next example, notice that any vector space V

over a field K can be represented as an algebra determined on V with the
operation of adding vectors and a set of unary operations {fk}k∈K such
that fk(v) = kv. This algebra has its congruence lattice isomorphic to its
subalgebra lattice and, to the subspace lattice of V, as well. Many algebraic
structures with external operations can be represented as algebras in this
way.

Example 2.7. Let V =
⊕

(Vi)i∈I be a direct sum of nontrivial vector
subspaces. Let X = (Xi)i∈I , where for every i ∈ I, Xi is a subspace of V
such that Xi = {v ∈ V : vj = 0 for every j 6= i}. Let Y = {Yi}i∈I , where
for every i ∈ I, Yi is a subspace of V such that Yi = {v ∈ V : vi = 0}.
Then (X,Y ) is a ⊛-pair in the lattice of subspaces of V.

We will use notation y =
∧

(Y \ {y}) and Y = {y : y ∈ Y }.

Definition 2.8. We say that Y = {yi}i∈I is a star-set (a ⊛-set) in L iff
(Y , Y ) is a ⊛-pair in L.

Notice that in all cases in Examples 2.6 and 2.7, X = Y and Y is a
⊛-set in the appropriate lattice.

It is worth mentioning that every ⊛-set Y is irredundant, that is,
∧
Y =

0 and
∧

(Y \ {y}) = y 6= 0 for any y ∈ Y . Moreover, if |Y | > 1 then y 6= 0
and y is not essential in L for every y ∈ Y .

Definition 2.9. An algebra A is called a star-product (a ⊛-product) of
algebras (Ai)i∈I if A is a subdirect product of this family such that the
set Y = {kerπi}i∈I of congruences on A is a ⊛-set.
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If A is a ⊛-product of algebras (Ai)i∈I we use notation ⊛(Ai)i∈I .

Corollary 2.10. If Y = {θi}i∈I is a ⊛-set in ConA then A ≃⊛(Ai)i∈I .

2.2. Uniform and anti-uniform elements

We recall here the very important definition of a uniform element in a
lattice, known from papers of Grzeszczuk and Puczy lowski [8], [9].

We say that an element u ∈ L \ {0} is uniform in L if x∧ y 6= 0 for any
x, y ∈ (0, u]. The lattice L is uniform if 1 is uniform. The set of all uniform
elements in L will be denoted by U . We omit the subscript L because the
lattice will be known from the context. The set of all atoms will be denoted
by At. Every atom is uniform, so At ⊆ U .

Every chain lattice is uniform, the congruence lattice of any finitely
subdirectly irreducible algebra is uniform and the lattice of all subgroups
of the group of integers Z is uniform. The lattice of all subgroups of the
group Z × Z is not uniform. Generally, the lattice of all subgroups of
the power Zn, n ≥ 2 is not uniform but there are infinitely many uniform
elements in Zn.

Fact 2.11. Let u ∈ U in L. Then:

1. u is uniform in every interval [0, v] such that v ≥ u,

2. if 0 < x ≤ u then x is uniform in L,

3. for any x ∈ L if x ∧ u 6= 0 then x ∧ u is uniform in L.

Proposition 2.12. Let u, v ∈ U 6= ∅ and u ≤ v. Then for every x ∈ L,
x ∧ u = 0 iff x ∧ v = 0, and thus Mu = Mv.

Proof. Obviously, if x ∧ v = 0 then x ∧ u = 0. Assume that x ∧ u = 0.
If x ∧ v 6= 0 then 0 6= u ∧ (x ∧ v) = x ∧ (u ∧ v) = x ∧ u. By Proposition 2.3
for any Mv there exists an Mu such that Mv ≤Mu. If Mv < Mu, then Mu

doesn’t omit v, so 0 6= Mu ∧ v ≤ v. Hence 0 6= (Mu ∧ v)∧ u = Mu ∧ u = 0.
This contradiction yields Mv = Mu. Now, let us take any Mu. Then
0 = Mu ∧ u = (Mu ∧ v) ∧ u, and since u is uniform, Mu ∧ v = 0. So,
Mu ≤Mv. If Mu < Mv, then Mv doesn’t omit u, which yields Mu = Mv.

Fact 2.13. 1. A congruence θ 6= 1 in ConA is meet irreducible iff the
interval [θ, 1] is a uniform lattice iff the quotient algebra A/θ is finitely
subdirectly irreducible.
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2. A congruence θ 6= 1 in ConA is completely meet irreducible iff the in-
terval [θ, 1] is an atomic lattice with exactly one atom iff the quotient
algebra A/θ is subdirectly irreducible.

Theorem 2.14. Let u ∈ U and a ∈ At. Then for any Mu and Ma the
interval [Mu, 1] is uniform, while the interval [Ma, 1] is atomic with exactly
one atom.

Proof. Let x, y ∈ (Mu, 1]. Then Mu ≤ x ∧ y. Thus, by maximality of
Mu, x∧ u 6= 0 6= y ∧ u. As u is uniform, (x∧ u)∧ (y ∧ u) = (x∧ y)∧ u 6= 0.
Hence Mu < x ∧ y, so [Mu, 1] is uniform. If a is an atom, then a ≤ x for
every x > Ma, so Ma ≤

∧
{x ∈ L : x > Ma} ≥ a. Thus

∧
{x ∈ L : x > Ma}

doesn’t omit a and this yields Ma <
∧
{x ∈ L : x > Ma}.

Corollary 2.15. Let u ∈ U and a ∈ At in ConA for some algebra A.
Then for any Mu, Ma in ConA, A/Mu is finitely subdirectly irreducible
and A/Ma is subdirectly irreducible.

Let us introduce here a new notion of an anti-uniform element in L.
We say that an element t ∈ L \ {0} is anti-uniform in L if there is no
uniform element in the interval [0, t]. Hence every anti-uniform element
omits U . In other words, t is anti-uniform if for every 0 < s ≤ t there exist
nonzero elements x, y ≤ s such that x ∧ y = 0. A lattice L with 0 and 1 is
anti-uniform if 1 is anti-uniform. The set of all anti-uniform elements in L
is denoted by T . It is easy to see that every nonzero MU is a maximal anti-
uniform element in L. The Lindenbaum-Tarski algebra with an infinite set
of variables is an anti-uniform lattice.

Fact 2.16. Let t be anti-uniform in a lattice L. Then:

1. t is anti-uniform in every interval [0, v] such that v ≥ t,

2. if 0 < x ≤ t then x is anti-uniform in L,

3. for any x ∈ L if x ∧ t 6= 0 then x ∧ t is anti-uniform in L.

Fact 2.17. MU ∧MT = 0 for any MU and MT .

We say that a lattice L is locally uniform if for every x ∈ L \ {0}
there exists a uniform element u such that u ≤ x. Atomic lattices and, in
consequence, finite lattices, the lattice of all subgroups of the power Zn,
the lattice of subspaces of the linear space Rn are locally uniform.
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Notice that if L is locally uniform then MU = 0, M⊛

U = MT = 1. If
L is anti-uniform then MU = 1, M⊛

U = MT = 0. Moreover, if L is atomic
then MA = MU = 0, M⊛

U = MT = 1.

2.3. Bases and dimension of algebras

We say that a subset B ⊆ L is a U -independent set in L if B ⊆ U 6= ∅ is
independent in L.

Proposition 2.18. 1. For every independent set Y ⊆ L there exists a
maximal independent set X in L such that Y ⊆ X.

2. If U 6= ∅ in L then for every independent set V ⊆ U there exists a
maximal U -independent set B in L such that V ⊆ B.

Proof. (i) Take an independent set Y ⊆ L, and let In(Y ) denote the
family of all independent sets in L containing Y . Let γ ⊆ In(Y ) be a
chain. Then Y ⊆

⋃
γ, so it is enough to show that

⋃
γ is independent in

L. Thus let Z ⊆
⋃
γ be a nonempty finite subset. Then there is C ∈ γ

such that Z ⊆ C and hence Z is independent. Due to Proposition 2.2
⋃
γ

is independent in L and the Zorn’s Lemma yields the claim.
(ii) Take V ⊆ U and let In(V ) be the family of all U -independent sets in
L containing V . Let γ ⊆ In(V ) be a chain. Then V ⊆

⋃
γ and

⋃
γ is

independent in L. Notice now, that every x ∈
⋃
γ is a uniform element,

which yields that
⋃
γ is U -independent in L.

The above proposition suggests to take a maximal U -independent set
of the minimal cardinality as a basis in the given lattice, and to define
the dimension of this lattice as the cardinality of this basis. However, this
doesn’t carry the information on the decomposition into one-dimensional
factors. So, we use the more adequate definition based on the notion of
⊛-sets (Definition 2.20).

Definition 2.19. 1. A subset B ⊆ U 6= ∅ is a U -basic set in L if B is
a maximal U -independent set in L and there is a ⊛-set {MB

b }b∈B .

2. A subset B ⊆ L is a basic set in L if B is a U -basic set in L or
B = BU∪{M⊛

T } is a maximal independent set in L such that BU ⊆ U
is U -independent and there is a ⊛-set {MB

b }b∈BU ∪ {M⊛⊛

T }.

3. A subset B ⊆ L is a basis in L if B is a basic set in L of the minimal
cardinality.
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Let us define the dimension of algebraic lattices and algebras as follows:

Definition 2.20. Let L be an algebraic lattice.

1. If 0 = 1 in L then Dim(L) = 0.

2. Dim(L) = |B| if there exists a basis B, which is U -basic in L.

3. Dim(L) = |BU |+ if B = BU ∪ {M⊛

T } is a basis in L and there is no
U -basic set in L.

4. If L = ConA then we define Dim(A) = Dim(ConA).

If L is locally uniform then MT = 1, M⊛

T = 0 and then every U -basic
set is also a basic set in L. If L is anti-uniform then MT = 0, and then
M⊛

T = 1 is a one-element basic set in L, and then Dim(L) = 0+.

Example 2.21. 1. Let L be the Lattice 2 on Fig. 1., where x, y, z are
atoms. Then the set {x, y} is a maximal U -independent set in L, but
is not basic. However the sets {x, z} and {y, z} are U -basic in L and
they are bases of L, as well. Hence Dim(L) = 2.

2. Let L be as Lattice 2 on Fig. 1., where x, z are atoms and y is anti-
uniform. Then the set {x, z} is U -basic in L and it is a basis of L as
well. Hence Dim(L) = 2.

3. Let L be as Lattice 2 on Fig. 1., where x, y are atoms and z is anti-
uniform. Then the sets {x, z} and {y, z} are not U -basic in L but
they are bases of L. Then Dim(L) = 1+.

Proposition 2.22. 1. An algebra A is finitely subdirectly irreducible iff
Dim(A) = 1.

2. If Dim(A) = η, then there exists a ⊛-decomposition of A into η
one-dimensional algebras.

3. If Dim(A) = η+, then there exists a ⊛-decomposition of A into η
one-dimensional algebras and the one algebra, which is related to the
‘anti-uniform part‘ of A.

2.4. Comparison of ⊛-products with other product

constructions – examples

At the end of this section we present examples which show how ⊛-products
behave in comparison with direct products, direct sums and weak direct
products. The definition of a weak direct product was given by Grätzer
in [5] and was studied by Walendziak [16], [17]. The weak direct product
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generalizes some kinds of direct sums and does not necessarily exist. For
example, a weak direct product of an infinite set of Boolean algebras doesn’t
exist.

Example 2.23. If V is the algebra induced on the vector space V, then the
only one-dimensional algebras are one-dimensional vector spaces, which are
isomorphic to K1. The lattice SubV of subspaces of V is isomorphic to the
lattice of congruences ConV. The maximal subspaces omitting the given
one-dimensional subspace V1 is a subspace V⊥

1 (it corresponds uniquely
to a congruence) such that V ≃ V1 ⊕ V⊥

1. Hence, V ≃
⊕(

K1
)
i∈I

≃

⊛
(
K1

)
i∈I

, where |I| is a linear dimension of V.

Example 2.24. As in vector spaces, the lattice of subgroups is isomor-
phic to the lattice of congruences for any Abelian group. Let G be a
finitely generated Abelian group. Here, the only uniform subgroups(and
one-dimensional groups, as well) are Z and Zpα , where p is a prime num-
ber. As in the above example, any maximal subgroup in G omitting given
uniform subgroup G1 is a subgroup G⊥

1 such that G ≃ G1⊕G⊥

1. Hence,
G ≃

⊕
(Gi)i∈I ≃⊛(Gi)i∈I , where (Gi)i∈I are one-dimensional factors in

the direct decomposition of G.

Example 2.25. The only one-dimensional finite Boolean algebra is the
two-element algebra 2. Then any finite Boolean algebra B ≃

∏
(2)i∈I ≃

⊛(2)i∈I , where |B| = 2|I|.

Example 2.26. Consider monounary algebras with the operation f such
that f(x) = x. For any algebra A the congruence lattice is isomorphic
to the equivalence lattice on A. Hence the only one-dimensional algebras
are two-element algebras, all of them are isomorphic to the two-element
algebra, denoted by 2. Then

1. every three-element algebra A is isomorphic to a ⊛-product of two
copies of 2 and every three-element subalgebra of 2×2 is isomorphic
to A,

2. the two-element subalgebras {(0,0), (1,1)}, {(0,1), (1,0)} are subdi-
rect products of two copies of 2, but they are not ⊛-products.

Corollary 2.27. 1. If an algebra A is a finite product (a weak product,
a direct sum) of some algebras then it is a ⊛-product of the same
algebras.
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2. There are subdirect products which are not ⊛-products.

3. There are ⊛-products of finitely many one-dimensional algebras which
are not isomorphic to the direct product of these algebras nor any weak
product of these algebras.

4. A ⊛-product of one-dimensional algebras can be non-uniquely embed-
ded into the direct product of these algebras.

5. Even in classes where direct sums exist, there can be ⊛-products of
one-dimensional algebras which are not isomorphic to the direct sums
of these algebras.

3. Balanced algebraic lattices

In this section we study properties of balanced lattices in the context of
independent sets, ⊛-products and dimension. The notion of a balanced
lattice was explored in papers of Zolotarev [18], [19] and Krempa [11], [12].

A lattice L is balanced iff for any x, y, z ∈ L the following balance
condition is satisfied: if x ∧ y = 0 and (x ∨ y) ∧ z = 0 then (x ∨ z) ∧ y = 0.

A lattice L is modular iff for any x, y, z ∈ L the following condition is
satisfied: if x ≤ y then x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Throughout this section, we assume that L is an algebraic balanced
lattice. Uniform lattices, modular lattices, distributive lattices and N5 are
balanced. Notice, that the balance condition refers to the bottom of the
lattice, so it is enough to be 0-modular or 0-distributive to be balanced. A
minimal non-balanced lattice (see [11]) is Lattice 2 on Fig. 1.

3.1. Independent sets in balanced algebraic lattices

First, let us consider maximal independent sets.

Proposition 3.1. 1. If X is an independent set in L and y ∧
∨
X = 0

for some y ∈ L \ {0}, then {y} ∪X is independent in L.

2. The following conditions are equivalent:

(a) X is a maximal independent set in L,

(b) X is an independent set and
∨
X is essential in L.

Proof. Let X be independent in L, |X| > 1 and y ∧
∨
X = 0. Then for

every x ∈ X, y ∧ (x ∨
∨

(X \ {x})) = 0 and x ∧
∨

(X \ {x}) = 0. Thus the
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balance condition yields x ∧ (y ∨
∨

(X \ {x})) = 0. Therefore {y} ∪ X is
independent in L. (ii) follows directly from (i).

Notice that the balance condition is necessary in the last proposition.
In Lattice 2 on Fig. 1, the set {x, y} is maximal independent, but x ∨ y is
not essential.

If X is an independent set such that |X| > 1 then MX
x denotes a

maximal element omitting x such that
∨

(X \ {x}) ≤MX
x .

Theorem 3.2. If X is a maximal independent set in L such that |X| > 1
then {MX

x }x∈X is a ⊛-set.

Proof. We have to show that:

1.
∧
{MX

x }x∈X = 0,

2. {M
X

x }x∈X is independent and
∨
{M

X

x }x∈X is essential in L, where

M
X

x =
∧
{MX

y }y∈X\{x},

3. MX
x is a maximal element omitting M

X

x and
∨
{M

X

y }y∈X\{x} is es-

sential in MX
x , for every x ∈ X.

(i) Let X be a maximal independent set in L and α =
∧
{MX

x }x∈X . Our
claim is that α ∧

∨
X = 0. If it holds, then

∨
X being essential yields

α = 0. By definition of MX
x , α∧x = 0 for every x ∈ X. Hence there exists

a maximal subset C ⊆ X such that α ∧
∨
C = 0. If C 6= X then for some

x ∈ X \C,
∨
C ≤

∨
(X \ {x}) and (α∨

∨
C)∧ x ≤ (α∨

∨
(X \ {x}))∧ x ≤

MX
x ∧ x = 0. By the balance condition we get α ∧ (x ∨

∨
C) = 0. It

contradicts the maximality of C. Thus C = X, hence
∧
{MX

x }x∈X = 0.

(ii)
∨
{M

X

y }y∈X\{x} ∧M
X

x ≤ MX
x ∧

∧
{MX

y }y∈X\{x} =
∧
{MX

x }x∈X = 0

for every x ∈ X. Moreover, x ≤ M
X

x for every x ∈ X, hence
∨
X ≤

∨
{M

X

x }x∈X . Due to Proposition 3.1
∨
X is essential, so

∨
{M

X

x }x∈X is
essential, too.

(iii) We get immediately that M
X

x ∧MX
x =

∧
{MX

y }y∈X\{x}∧M
X
x = 0.

Hence MX
x omits M

X

x and x ≤M
X

x . By Proposition 2.3, MX
x is a maximal

element omitting M
X

x . To prove that
∨
{M

X

y }y∈X\{x} is essential in MX
x

we will show that
∨

(X \ {x}) ≤
∨
{M

X

y }y∈X\{x} is essential in MX
x for

every x ∈ X. So, take any α ≤ MX
x . Then α ∨

∨
(X \ {x}) ≤ MX

x . If
α ∧

∨
(X \ {x}) = 0 then by the balance condition

∨
X ∧ α = 0 and

∨
X

being essential in L yields α = 0.
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Corollary 3.3. A ≃ ⊛{A/MX
x }x∈X for any maximal independent set

X in ConA.

Proposition 3.4. 1. For any x,Mx ∈ L, x ∨Mx is essential in L.

2. Let ∅ 6= X ⊆ L. Then for any MX and M⊛

X , MX ∨M⊛

X is essential
in L. Moreover, M⊛⊛

X = MX .

Proof. (i) If z∧(x∨Mx) = 0 then, by the balance condition x∧(z∨Mx) =
0. Hence z ∨Mx omits x, so z = 0 by maximality of Mx.
(ii) Taking x = MX in (i) we get that MX ∨M⊛

X is essential in L. As
MX ≤M⊛⊛

X by definition, assume that MX < M⊛⊛

X . Then by maximality
of MX there is an x ∈ X such that a = M⊛⊛

X ∧x 6= 0. Then a∨MX ≤M⊛⊛

X ,
so (a ∨MX) ∧M⊛

X = 0. Thus a ∧MX ≤ x ∧MX = 0 and the balance
condition yields (a ∨M⊛

X ) ∧MX = 0. Thus a ∨M⊛

X omits MX and the
maximality of M⊛

X yields a∨M⊛

X = M⊛

X . Hence we get 0 6= a ≤M⊛

X∧M⊛⊛

X ,
which is impossible. Hence M⊛⊛

X = MX .

3.2. Uniform elements in balanced algebraic lattices

Proposition 3.5. Let V = {vi}i∈I and W = {wi}i∈I , where |I| > 0 be
sets of uniform elements such that vi ≤ wi for every i ∈ I. Then

1. V is independent in L iff W is independent in L,

2. V is maximal U -independent in L iff W is maximal U -independent
in L.

Proof. (i) It is obvious when |I| = 1, so let |I| > 1. Let J ⊆ I be a
finite nonempty subset of I and V ′ = {vi}i∈J and W ′ = {wi}i∈J . Due to
Proposition 2.2 it is enough to show that V ′ is independent in L iff W ′

is independent in L. This statement is obvious for |J | = 1. Assume that
|J | > 1. If W ′ is independent then V ′ is independent since vi ∧

∨
(V ′ \

{vi}) ≤ wi ∧
∨

(W ′ \ {wi}) = 0, for every i ∈ J . If V ′ is independent in L
then for every i ∈ J , vi ∧

∨
(V ′ \{vi}) = 0. Moreover,

∨
(V ′ \{vi}) ≤MV ′

i .

Hence by Proposition 2.12 MV ′

i is a maximal element omitting wi, and thus
wi∧

∨
(V ′ \{vi}) = 0. By Proposition 3.1 {wi}∪ (V ′ \{vi}) is independent.

By induction W ′ is independent.
(ii) If V is not maximal U -independent in L then there is u ∈ U such that
V ∪ {u} is independent. Then by (i) W ∪ {u} is independent in L and
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thus W is not maximal U -independent. Analogously, the opposite side is
proved.

Proposition 3.6. For any u ∈ U 6= ∅, every M⊛
u is a maximal uniform

element in L.

Proof. Let x ≤ M⊛
u . Then (x ∨ u) ∧Mu ≤ M⊛

u ∧Mu = 0. If x ∧ u = 0
then by the balance condition (x ∨Mu) ∧ u = 0. So, x ∨Mu omits u and
by maximality of Mu, x ≤ Mu and x = x ∧Mu ≤ M⊛

u ∧Mu = 0. Thus
x ∧ u 6= 0 for any x 6= 0. Now, let 0 6= x, y ≤ M⊛

u . Then x ∧ u 6= 0 6= y.
As u is uniform, we get that 0 6= (x ∧ u) ∧ (y ∧ u) = (x ∧ y) ∧ u. Hence
x ∧ y 6= 0, so M⊛

u is uniform. If M⊛
u ≤ v for some v ∈ U , then Mu omits

v, so v = M⊛
u .

The balance condition in the above proposition is necessary. As ex-
ample, look at the nonbalanced Lattice 2 on Fig. 1. and take u = x and
Mu = z. Then M⊛

u = x ∨ y is not uniform.

Proposition 3.7. For anyMU 6= 1, the interval [MU , 1] is locally uniform.

Proof. For any x ∈ (MU , 1] there is a u ∈ U with u ≤ x, so MU ∨u ≤ x.
We will show that MU ∨ u is uniform in the interval [MU ,MU ∨ u].

If b ∈ (MU ,MU ∨ u] then b ∧ M⊛

U 6= 0, by maximality of MU . If
MU ∧ (u ∨ (b ∧M⊛

U )) 6= 0, then using the balance condition we get that
(MU ∧ (b ∧M⊛

U )) ∨ ((MU ∨ (b ∧M⊛

U )) ∧ u) 6= 0. But MU ∧ (b ∧M⊛

U ) = 0,
so 0 6= (MU ∨ (b ∧M⊛

U )) ∧ u ≤ b ∧ u. If MU ∧ (u ∨ (b ∧M⊛

U )) = 0 and
if u ∧ (b ∧M⊛

U ) = 0, then using the balance condition again, we get that
0 = (MU ∨u)∧(b∧M⊛

U ) = b∧M⊛

U . It contradicts the fact that b∧M⊛

U 6= 0,
so 0 6= u∧ (b∧M⊛

U ) ≤ b∧ u. Thus b∧ u 6= 0. Let c ∈ (MU ,MU ∨ u]. Then
0 6= (b∧u)∧(c∧u) = b∧c∧u and MU < (b∧c∧u)∨MU ≤ (b∧c)∨MU = b∧c.
Hence b∧c > MU and hence MU∨u is uniform in the interval [MU ,MU∨u].

Corollary 3.8. Let A be a congruence balanced algebra with 0 6= MU 6= 1
in ConA. Then A ≃ A/MU ⊛A/M⊛

U , where A/MU is congruence locally
uniform.

The previous result is important because it allows to distinguish a lo-
cally uniform part of the given algebra. Unfortunately, this locally uniform
part depends on the choice of MU . Notice also that [MU , 1] need not to be
a balanced lattice.
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3.3. Bases in balanced algebraic lattices

A Goldie basis in L is a maximal U -independent set in L. According to
Krempa [11] every balanced locally uniform lattice has a Goldie basis. It is
also known that Goldie bases in the given balanced locally uniform lattice
have the same cardinality (see [18]). Earlier analogous results for modular
lattices were given in [9]. The Goldie dimension of a lattice L was defined
as the cardinality of any Goldie basis in L. More on the Goldie dimension
can be found in [19], [12], [8].

Proposition 3.9. Assume that L is a balanced locally uniform algebraic
lattice. Then

1. B is a U -basic set in L iff B is a maximal independent set in L,

2. B is a basis in L iff B is a Goldie basis in L,

3. Dim(L) is equal to the Goldie dimension of L.

Proof. (i) is an immediate consequence of Proposition 3.1.
(ii) Let B be a Goldie basis in L, so it is a maximal U -independent set
in L. If 0 6= x ∈ L and x ∧

∨
B = 0, then L being locally uniform yields

u ≤ x for some u ∈ U and u ∧
∨
B = 0. Then {u} ∪B is a U -independent

set, which contradicts the maximality of B. Hence
∨
B is essential in L.

Thus B is a U -basic set in L. As all Goldie bases have equal cardinality
we conclude that B is a basis in L and thus (iii) is true.

This yields that every congruence locally uniform balanced algebra A

is a ⊛-product of Dim(A) one-dimensional algebras. At the end of this
section we give the following basis existence theorem for any balanced al-
gebraic lattice.

Theorem 3.10. Every nontrivial balanced algebraic lattice has a basis.

Proof. Let L be a balanced algebraic lattice. If L is locally uniform,
then L has a basis. If L is anti-uniform, then {1} is a basis. If L is not
locally uniform nor anti-uniform then by definition, the interval [0,MT ]
is locally uniform for any MT . Thus [0,MT ] has a basis BT . If BT is a
U -basic set in L then it is a basic set in L, if not then BT can be extended
to a maximal U -independent set C = BT ∪ B′, due to Proposition 2.18.
If 0 6= α =

∨
B′ ∧MT then

∨
BT being essential in [0,MT ] yields 0 6=

α ∧
∨
BT ≤

∨
B′ ∧

∨
BT = 0. A contradiction. Thus

∨
B′ ∧MT = 0 and

hence there exists an M⊛

T ≥
∨
B′.
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We are going to show that B = {M⊛

T } ∪BT is a maximal independent
set in L. As M⊛

T ∧
∨
BT ≤ M⊛

T ∧MT = 0 we use Proposition 3.1 to get
that B is independent in L. We will show that

∨
BT ∨M⊛

T is essential in L.
Due to Proposition 3.4 it is enough to show that M⊛

T is a maximal element
omitting

∨
BT , so assume that M∨

BT > M⊛

T . Then M∨
BT ∧MT > 0.

But
∨
BT is essential in [0,MT ], hence 0 6= M∨

BT ∧MT ∧
∨
BT = M∨

BT ∧∨
BT = 0. A contradiction. Finally, by Theorem 3.2 {Mb}b∈B is a ⊛-set

and by Proposition 3.4 MT = M⊛⊛

T . Thus B is a basic set. Finally, there
exists a basis in L, which is any basic set of minimal cardinality.

4. Modular algebraic lattices

In this section let L represent a modular algebraic lattice with nonempty
sets U and T . Every modular lattice is balanced, so all the properties
described in the previous section hold in modular lattices. Goldie dimension
in modular lattices was investigated in [8], [9], [14].

Recall some properties of modular lattices.

M1 A lattice L is modular iff it satisfies the identity:
(x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ (x ∨ z))

M2 For any modular lattices L the Isomorphism Theorem holds, i.e. for
any a, b ∈ L the intervals [a, a ∨ b] and [a ∧ b, b] are isomorphic and
the isomorphism is ϕb(x) = x ∧ b, while the inverse isomorphism is
ψa(x) = x ∨ a.

Fig. 2.



Irredundant Decomposition of Algebras into One-Dimensional Factors 231

The modularity of a lattice and especially, the Isomorphism Theorem,
allow to simplify results of previous sections and to obtain some more
interesting properties concerning dimension and ⊛-decompositions. We
give below two lemmas useful in our proofs.

Lemma 4.1. Let a, b, c ∈ L \ {0} be such that a ∧ b = a ∧ c = b ∧ c = 0 and
let α = (a∨ b)∧ (c∨ b) > b. Then α∧a 6= 0 and α∧ c 6= 0 and the intervals
[0, α ∧ a], [b, α], [0, α ∧ c] are isomorphic (see L1 Fig. 2).

Proof. Let a, b, c ∈ L be such that a ∧ b = a ∧ c = a ∧ c = 0 and α > b.
Then by property M1 α = (a∨b)∧(c∨b) = b∨(a∧(c∨b)) = b∨(c∧(a∨b))
and (α ∧ a) ∨ b = ((a ∨ b) ∧ (c ∨ b) ∧ a) ∨ b = ((c ∨ b) ∧ a) ∨ b = α. By
assumption we have that (α ∧ a) ∧ b = α ∧ (a ∧ b) = 0. Hence, by M2
[0, α∧ a] ≃ [b, α]. Analogously, [0, α∧ c] ≃ [b, α]. Thus α∧ a 6= 0 6= α∧ c.

Lemma 4.2. Let a, b, x ∈ L\{0} be such that a∧b = 0, x∧a > 0 and x > b
and let α = (x ∧ a) ∨ b (see L2 Fig. 2). Then b < α = x ∧ (a ∨ b) ≤ a ∨ b.

Proof. If a ∧ b = 0 and x ∧ a > 0 then b < (x ∧ a) ∨ b. Modularity of L
and x > b imply (x ∧ a) ∨ b = x ∧ (a ∨ b) ≤ a ∨ b.

The next proposition shows that it is possible to distribute uniform
elements (at least a part of each of them) to M⊛

U = MT and anti-uniform
elements (at least a part of each of them) to MU = M⊛

T , independently of
the choice of MU and M⊛

U .

Proposition 4.3. For any MU and M⊛

U the following holds:

1. MU ∧ t 6= 0 for every t ∈ T ,

2. M⊛

U ∧ u 6= 0 for every u ∈ U ,

3. M⊛

U ∧ t = 0 for every t ∈ T ,

4. there exist MT and M⊛

T such that M⊛

U = MT and MU = M⊛

T , and
conversely.

Proof. (i) If MU ∧ t = 0 then MU ∨ t > MU . By maximality of
MU there exists an u ∈ U such that u ≤ MU ∨ t. Use Lemma 4.1 where
a = u, b = MU , c = t. Then α = (u∨MU )∧(t∨MU ) = MU∨(u∧(t∨MU )) =
u ∨MU > MU . Hence α ∧ u = (MU ∨ u) ∧ u = u and α ∧ t = t′ ≤ t and
[0, u] ≃ [0, t′] what is impossible as u is uniform while t′ is anti-uniform.
(ii) Assume that M⊛

U ∧ u = 0 for some u ∈ U . Then M⊛

U ∨ u > M⊛

U and
hence MU∧(M⊛

U ∨u) > 0. Moreover, u∧(MU∧(M⊛

U ∨u)) ≤ u∧MU = 0, so
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u∨(MU ∧(u∨M⊛

U )) > u. Using Lemma 4.1 where a = MU , b = u, c = M⊛

U

we get that α = (u∨MU ) ∧ (u∨M⊛

U ) = u∨ (MU ∧ (u∨M⊛

U )) > u. Hence
[0, α∧MU ] ≃ [0, α∧M⊛

U ]. As α∧MU ≤MU is anti-uniform, α∧M⊛

U is also
anti-uniform. Then (i) implies 0 < MU ∧ (α ∧M⊛

U ) = MU ∧ α ∧M⊛

U = 0.
(iii) If M⊛

U ∧ t 6= 0 for some t ∈ T then t′ = M⊛

U ∧ t ≤M⊛

U is anti-uniform.
Thus by (i) 0 6= MU ∧ t′ ≤MU ∧M⊛

U = 0, which is impossible.
(iv) M⊛

U omits every anti-uniform, so M⊛

U ≤ MT for some MT , but every
MT omits MU , so by maximality of M⊛

U , M⊛

U = MT . Finally, by (i)
M⊛

T = M⊛⊛

U = MU .

We will show that in modular lattices all [MU , 1] have the same dimen-
sion independently of the choice of MU . First, notice that for any MU ,MT ,
[0, MT ] ≃ [MU , MU ∨MT ] ⊆ [MU , 1] and [0, MU ] ≃ [MT , MU ∨MT ] ⊆
[MT , 1].

Proposition 4.4. For any MU , MT :

1. the intervals [MU , 1] and [0, MT ] are locally uniform,

2. the intervals [MT , 1] and [0, MU ] are anti-uniform.

Proof. (i) By Proposition 3.7 [MU , 1] is locally uniform, so [MU , MU ∨
MT ] is locally uniform, too.
(ii) Obviously, [0, MU ] is anti-uniform. Assume that x is uniform in [0, MT ]
then x∧MU > 0 and we can use Lemma 4.2, where a = MU , b = MT , x = x
getting MT < (x∧MU )∨MT = x∧ (MT ∨MU ). Then x∧ (MT ∨MU ) ≤ x
is uniform in [MT , MU ∨MT ] and .(x ∧ (MT ∨MU )) ∧MU = x ∧MU is
uniform in [0, MU ]. A contradiction.

Lemma 4.5. Let x, y ∈ L \ {0} and x ∧ y = 0.

1. Let the interval [0, x] be locally uniform. Then if B is a basis in [0, x]
then {b∨y}b∈B is a basis in [y, x∨y], and if C is a basis in [y, x∨y]
then {c ∧ x}c∈C is basis in [0, x].

2. Let the interval [y, 1] be locally uniform and x = My, y = Mx. Then
if B is a basis in [y, 1] then {b ∧ (x ∨ y)}b∈B is a basis in [y, x ∨ y],
and if C is a basis in [y, x ∨ y] then C is a basis in [y, 1].

Proof. (i) By M2 [0, x] ≃ [y, x ∨ y], so for any basis B in [0, x] the set
of isomorphic images {ψy(b)}b∈B = {b ∨ y}b∈B is a basis in [y, x ∨ y] and
conversely, if C is a basis in [y, x ∨ y] then {ϕx(c)}c∈C = {c ∧ x}c∈C is a
basis in [0, x].
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(ii) Let B be a basis in [y, 1] then b > y for every b ∈ B. The assumption
that y = Mx yields b∧x > 0 and by Lemma 4.2 y < (b∧x)∨y = b∧(x∨y) ≤ b
for every b ∈ B. Thus {b∧(x∨y)}b∈B is a basis in [y, 1]. As b∧(x∨y) ≤ x∨y
for every b ∈ B, {b ∧ (x ∨ y)}b∈B is a basis in [y, x ∨ y]. If C is a basis in
[y, x ∨ y] then

∨
C is essential in [y, x ∨ y] and C is independent in [y, 1].

We will show that
∨
C is essential in [y, 1]. Take any z > y. Then z∧x > 0

since y = Mx. Hence y < (z ∧ x) ∨ y = z ∧ (x ∨ y) ≤ x ∨ y by Lemma 4.2.
Finally,

∨
C ∧ z ≥

∨
C ∧ (z ∧ (x ∨ y)) > y.

Proposition 4.6. For any MU and MT if B is a basis in [MU , 1] then
the set {b ∧ (MU ∨ MT )}b∈B is a basis in [MU , MU ∨ MT ]. And then
{b∧MT }b∈B is a basis in [0, MT ]. And if C is a basis in [MU , MU ∨MT ]
then C is a basis in [MU , 1].

Proof. Notice that MU ,MT satisfy the assumptions of Lemma 4.5.

Corollary 4.7. For any MU and MT , Dim([MU , 1]) = Dim([0,MT ]).
Hence, for any congruence modular algebra A with ∅ 6= U ⊆ ConA, the
quotients A/MU have equal dimensions independently of the choice of MU .

4.1. ⊛-decompositions in modular algebraic lattices

This subsection is devoted to describing the ⊛-decompositions of congru-
ence modular algebras.

Proposition 4.8. For any maximal U -independent set B in L and any
MU , MT it holds that:

1. B′ = {b ∧MT }b∈B is a basis in [0, MT ]. Therefore, all the maximal
U -independent sets in L are of the same cardinality,

2. for every b ∈ B there exists an such that Mb ≥MU ∨
∨

(B′\{b∧MT })
and MU =

∧
{Mb}b∈B,

3. B′ ∪ {MU} is a basis in L.

Proof. Let B be a maximal U -independent set in L.
(i) Then B′ is a maximal U -independent set in L and 0 < b ∧ MT ≤
MT . Hence B′ is an independent set in [0, MT ]. By Proposition 3.1 it is
enough to show that

∨
B′ is essential in [0, MT ]. So, let 0 < x ≤ MT and

x ∧
∨
B′ = 0. Then there is a uniform element u ≤ x and u ∧

∨
B′ = 0.

Hence {u} ∪ B′ and {u} ∪ B are U -independent sets in L. It contradicts
the maximality of B. As [0, MT ] is locally uniform all the bases in [0, MT ]
are of the same cardinality.
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(ii) Let B′ be as in (i). Then B′ is independent in L and MU∧
∨
B′ ≤MU∧

MT = 0 hence B′ ∪ {MU} is independent in L and for every b ∈ B we can
take an Mb′ such that MU ∨

∨
(B′ \{b′}) ≤Mb′ . If MU <

∧
{Mb′}b∈B then

0 <
∧
{Mb′}b∈B ∧MT =

∧
{Mb′ ∧MT }b∈B ≤ 0. Thus MU =

∧
{Mb′}b∈B .

As b′ ≤ b, Proposition 2.12 yields Mb′ ∈ Mb for every b ∈ B.
(iii) Let B′ be as in (i). Then {MU} ∪B

′ is independent in L and
∨
B′ is

essential in [0, MT ]. We are going to show that MU ∨
∨
B′ is essential in

L. Let x ∈ L \ {0} and x ∧MU = 0. Then by Proposition 4.3 x /∈ T is not
and hence there is a uniform element u ≤ x and 0 < u ∧MT ≤ x ∧MT .
Hence x ∧

∨
B′ > 0, so {MU} ∪B

′ is a maximal independent set in L. By
Theorem 3.2 {Mb′}b∈B ∪ {MT } is a ⊛-set in L, where {Mb′}b∈B are as in
(ii). Thus {MU} ∪B

′ is a basic set and by (i) it is also a basis in L.

Proposition 4.9. Let B be a U -basic set in L. Then L is locally uniform
and B is a basis of L.

Proof. By definition of a U -basic set the U 6= ∅ and there exists a
⊛-set {MB

b }b∈B . Then L is not anti-uniform. Assume that T 6= ∅. Then
B′ = {b∧MT }b∈B is a U -basic set in L due to Proposition 2.12. Moreover,

0 < b′ ≤ b ≤ M
B

b ≤ M⊛

b . As M⊛

b is uniform, M
B

b is uniform, too.

Moreover, {M
B

b }b∈B is a maximal independent set in L and thus B′ is a
maximal independent set in L. This contradicts the (iii) of Proposition 4.8.
Thus T = ∅ what means that L is locally uniform and B is a basis of L.

Proposition 4.10. 1. Let r ∈ L \ {0} be a non-essential element in L
such that the interval [r, 1] is a uniform lattice. Then every Mr is a
maximal uniform element in L and r = M⊛

r .

2. Let {yi}i∈I ⊆ L be a ⊛-set in L such that [yi, 1] is a uniform lattice
for every i ∈ I. Then {yi}i∈I is a basis in L.

3. For any algebra A, if {yi}i∈I ⊆ ConA is a ⊛-set such that [yi, 1] is a
uniform lattice for every i ∈ I, then A ≃ ⊛(Ai)i∈I and Dim(Ai) =
1 for every i ∈ I.

4. If A ≃ ⊛(Ai)i∈I and Dim(Ai) = 1 for every i ∈ I, then {kerπi}i∈I

is a ⊛-set in ConA and {kerπi}i∈I is a basis in ConA.

Proof. (i) Let [r, 1] be a uniform lattice for some non-essential r 6= 0.
Then Mr 6= 0 and r∧Mr = 0, so r∨Mr > r. Thus we get a uniform lattice
[r, r ∨Mr] ≃ [0, Mr], so Mr ∈ U . Assume that u ≥ Mr for some u ∈ U .
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As r ∧Mr = 0 we get r ∧ u = 0 (by Proposition 2.12), so u 6= Mr, what
means that Mr is a maximal uniform element in L. By definition r ≤M⊛

r .
If r < M⊛

r then [r, 1] being uniform yields r < M⊛
r ∧ (r ∨Mr). Hence

0 = r ∧Mr < (M⊛
r ∧ (r ∨Mr)) ∧Mr ≤M⊛

r ∧Mr = 0. A contradiction.
(ii) If |I| = 1 then yi = 0 and then yi = 1. If |I| > 1 then every yi is a
nonzero non-essential element in L. Then by (i) Myi

is a maximal uniform
element and yi = M⊛

yi
. This yields that yi =

∧
{M⊛

yj
}j∈I\{i} ≤ Myi

. Thus
every yi is uniform and by definition of a ⊛-set, {yi}i∈I is a U -basic set.
(iii) By assumption A ≃⊛(A/yi)i∈I . As every [yi, 1] is a uniform lattice,
we have that every A/yi is a one-dimensional algebra.
(iv) is an easy conclusion from (i)-(iii).

Example 4.11. Let R be a commutative ring with unity. The ideal lat-
tice I(R) of R is modular. If P ∈ I(R) is a prime ideal in R then the
interval [P, 1] is a uniform lattice, hence the integral domain R/P is a one-
dimensional commutative ring with unity. If {Pi}i∈I ⊆ I(R) is a ⊛-set
consisting of prime ideals in I(R) then R ≃ ⊛(R/Pi)i∈I of its integral

domains. Moreover, {P i}i∈I is a U -basic set in I(R). As it can be seen
from Theorem 4.12

(
P i

)
i∈I

is a basis in I(R).

Summarizing the results of this section we obtain the following theorem.

Theorem 4.12. Assume that A is a congruence modular algebra.

1. The following conditions are equivalent:

(a) Dim(A) = η 6= 0, where η is a cardinal number,
(b) A ≃⊛(Ai)i∈I , where Dim(Ai) = 1 for every i ∈ I and |I| = η,
(c) A is congruence locally uniform and |B| = η for every basis B

in ConA.

2. The following conditions are equivalent:

(a) Dim(A) = η+, where η is a cardinal number,

(b) ConA is not locally uniform and |B| = η for every maximal
U -independent set B in ConA,

(c) A ≃⊛(Ab)b∈B∪̇{τ}, where B is any maximal U -independent set

in ConA and Dim(Ab) = 1 for every b ∈ B, while Dim(Aτ ) =
0+.
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4.2. Distributive algebraic lattices

Let as consider in this subsection algebraic distributive lattice L. In this
case all the facts concerning modular lattices are also true. The difference
is that in distributive lattice the maximal element omitting the given set is
uniquely determined. As every lattice is congruence distributive the results
obtained here are important in the lattice theory and logic.

Proposition 4.13. For any X ⊆ L there exists exactly oneMX and exactly
one M⊛

X .

Proof. Let M and N be maximal elements in L omitting X. Then we
have x ∧M = x ∧ N = 0 and x ∧ (M ∨ N) = (x ∧M) ∨ (x ∧ N) = 0 for
every x ∈ X. Thus M ∨ N omits X and maximality of M and N yields
M = N . The proof of the second part is similar.

Corollary 4.14. 1. For any u ∈ U it holds that M⊛
u is the only max-

imal uniform element such that u ≤M⊛
u .

2. MU is the only maximal anti-uniform element.

3. MT = M⊛

U is unique.

Proposition 4.15. If L is an algebraic distributive locally uniform lattice
then the set V off all maximal uniform elements in L is a basis in L.

Proof. Let B ⊆ U be a basis in L and let u ∈ V . We will show that there
exists b ∈ B such that u ∧ b 6= 0. If it holds then u ∧ b ≤ u = M⊛

u∧b = b. If
|B| = 1 then b ∈ B is essential, so u ∧ b 6= 0. If |B| > 1 then u ∧

∨
B > 0.

Assume that u ∧ b = 0 for every b ∈ B. Let C ⊂ B be a maximal subset
such that u ∧

∨
{c}c∈C = 0. Let b ∈ B \ C. Then 0 6= u ∧ (b ∨

∨
C) =

(u ∧ b) ∨ (u ∧
∨
C). Hence u ∧ b 6= 0.

Theorem 4.12 can be directly applied to congruence distributive al-
gebras taking the set of all maximal uniform elements V as a maximal
U -independent set.

Theorem 4.16. Let A be a congruence distributive algebra and let V be
the set of all maximal uniform elements in ConA.

1. The following conditions are equivalent:

(a) Dim(A) = η 6= 0, where η is a cardinal number,
(b) A is congruence locally uniform and |V | = η,
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(c) V 6= ∅ and A ≃ ⊛(Av)v∈V and Dim(Av) = 1 for every v ∈ V .
Moreover, such a decomposition is unique.

2. The following conditions are equivalent:

(a) Dim(A) = η+, where η is a cardinal number,

(b) ConA is not locally uniform and |V | = η,
(c) A ≃ ⊛(Av)v∈V ∪̇{τ} and for every v ∈ V , Dim(Av) = 1

and Dim(Aτ ) = 0+, where Aτ ≃ A/MT . Moreover, such a de-
composition is unique.
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