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Abstract

A well established technique toward developing the proof theory of a Hilbert-style
modal logic is to introduce a Gentzen-style equivalent (a Gentzenisation), then
develop the proof theory of the latter, and finally transfer the metatheoretical
results to the original logic (e.g., [1, 6, 8, 18, 10, 12]). In the first-order modal case,
on one hand we know that the Gentzenisation of the straightforward first-order
extension of GL, the logic QGL, admits no cut elimination (if the rule is included
as primitive; or, if not included, then the rule is not admissible [1]). On the other
hand the (cut-free) Gentzenisations of the first-order modal logics M® and ML?
of [10, 12] do have cut as an admissible rule. The syntactic cut admissibility proof
given in [18] for the Gentzenisation of the propositional provability logic GL is
extremely complex, and it was the basis of the proofs of cut admissibility of the
Gentzenisations of M? and ML?, where the presence of quantifiers and quantifier
rules added to the complexity and length of the proof.

A recent proof of cut admissibility in a cut-free Gentzenisation of GL is given
in [5] and is quite short and easy to read. We adapt it here to revisit the proofs
for the cases of M® and ML3?, resulting to similarly short and easy to read proofs,
only slightly complicated by the presence of quantification and its relevant rules.

Keywords: Modal logic, GL, QGL, first-order logic, proof theory, cut elim-
ination, cut admissibility, provability logic.
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1. Introduction

The propositional provability logic GL expresses provability within Peano
Arithmetic (PA) as was established by Solovay ([14]). The proof-theory of
GL has been studied effectively by proxy, introducing a Gentzen style logic
equivalent to GL — a Gentzenisation of GL, cf. [8, 18] — and developing
the proof theory of the latter, such as cut elimination, Craig interpolation,
disjunction property, etc.

Logicians have turned their attention to first-order modal logics in the
search for a predicate provability logic. Results of Vardanyan (in [3]) and
Montagna [7] showed that the “natural” first-order extension of GL, known
as Quantified GL (QGL), is not as “nice”: Its Gentzenisation provably is
not a provability logic (loc. cit.), but it even fails other nice properties such
as cut elimination ([1]) and Craig interpolation; however it satisfies the
disjunction property ([1]).

QGL’s inability to support cut elimination must be attributed to its
language: [JA has as free variables all those free in A. In fact, an almost
identical recently introduced first-order extension of GL (the ML? of [12])
differs from QGL in that its language requires that (A is a sentence for all
A.! In loc. cit. a proof of cut elimination of its Gentzenisation (the GLTS
defined in Section 2) is given in full detail (as well as a proof of Craig
interpolation and a proof of a special case of the disjunction property). It
must be stated that the genesis of ML? was not aimed at tweaking QGL
to restore cut elimination. Rather, ML? is an evolution of M? introduced
much earlier in [16, 17] in order to formalise the classical first-order “+”
within a first-order modal logic. Loc. cit. proved that such formalisation
was achieved in M? (main conservation result), by proving semantically
through Kripke models of M? that for classical ', A and B,2 we have I', A -
B classically iff IO - OA — OB - the latter proof carried in M3.
In [10] the (syntactic) proof theory of M? was developed by defining a
cut-free Gentzenisation for it, called GTKS, and proving that cut is an
admissible rule. Logic ML? is a common first-order extension of GL and

IML? has an additional axiom schema, absent from QGL: JA — [OVazA. This is
an essential independent axiom — as we prove in [15] — needed for the “conservation
property” to hold in ML3.

2Capital Greek letters such as I', A, ¥, &, Q denote sets of formulae; OI" is by defini-
tion, {{JA : A € T'}. For a formula A, VA is its universal closure, obtained by prefixing
A by Vz1Vxs ...V, ... Vo, for each z; that is free in A. VI means {VA : A € '}
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M? introduced in [12], essentially obtained from the latter by adding Léb’s
axiom without changing the language. The cut rule was proved to be
admissible in its cut-free Gentzenisation, and once again the conservation
result was syntactically proved for ML3. This variant of QGL not only
supports cut elimination (by simulating cut in its cut-free Gentzenisation)
but also is complete with respect to finite, transitive reverse well-founded
Kripke structures. By contrast, QGL is not complete with respect to any
set of Kripke structures ([7]).

This paper revisits and significantly simplifies the proofs given in [10,
12] that cut is an admissible rule. The proofs in loc. cit., especially the
one in the 2nd reference, which is based on Valentini’s ([18]) proof for the
Gentzenisation of GL, are extremely complex. The ones given here are
based on the recent proof in [5] (for GL) and are as simple as one would
hope for cut elimination/emulation to be.

2. Two Gentzen-style modal first-order logics

[10, 12] defined two first-order modal Hilbert-style logics, M® and ML?3, and
begun building their proof theory. To this end two Gentzen-style cut-free
logics were introduced, GTKS and GLTS, and were proved to be equivalent
to M3 and ML? respectively. We revisit here the two cut admissibility
results proved in loc. cit. offering greatly simplified proofs.

The rules for the Gentzenisations of M? and ML? are given in the next
two definitions (cf. [10, 12]). Upper case Latin letters stand for formulae
while upper case Greek letters T', A, ¥, ¥ (and other choices that are not
also Latin capital letters) stand for finite sets of formulae; so do primed
such letters. The expression I' = A is called a sequent and intuitively says
that the set of hypotheses (formulae) in I" proves the disjunction of the
formulae in A. T' is the antecedent part of the sequent, while A is the
succedent. “T'y A” and “A,T” mean I'U {A}.

We will not repeat the description of the common language of all four
logics (M3, ML3, GTKS and GLTS) in detail, but we will revisit the less
standard points here. In fact, we will not define M3 or ML3, since the
sole purpose of this paper is to offer simplified cut admissibility proofs for
GTKS and GLTS; the latter two logics we define here in detail.

The primary connectives are L, —,V, . There are two types of (ob-
ject) variables, free (a,b,c,a’,c”, ag, b1, etc.), and bound (x,y, z,2',y", zo,
Z12, etc.). The syntax of formulae ensures that A is a sentence, for all



134 Feng Gao and George Tourlakis

formulae A.2 The expression, A is metanotation for the expression ob-
tained from A as follows: (1) Replace all free variables that occur in A by
the lexicographically smallest? unused (in A) bound variables Tijryenes Tjps
this results to an expression we will call A’. (2) Let « represent the string
formed by arranging the used in (1) bound variables in their lexicographic
order. (3) Then “CJA” names the string OaA’. Note that if A has no free
variables, then the meta name (JA names itself (that is, A is the same
string as A’ and « is empty).”

For any expression F.° F[a] or F[z] indicates that we want to pay
attention to the free variable a or bound variable = that possibly occur in
F'. In the context of the notation F'[a], F'[t] denotes the result of replacing
a by t, everywhere in F' — an operation on the expression F' that we will
on occasion denote more explicitly by “F[a :=t]”. The [a := t] operation
has the highest priority, so, for example, A — Bla := z] stands for A —
(Bla := z]).

VrzAlz] (or just VozA) are metanotation for our familiar “for all values
of x, A[z] holds”. Thus, provided that x does not occur in A, Vo A[z] names
VxAla := z], for some a known from the context. Note that in the last
expression [a := x| applies to A before Vz does.

DEFINITION 2.1 (GTKS Rules [10]).

(1) Initial rules: T A+ A, Aand T, L - A, where A is atomic.
NMA—1FA IBFA

(2) —-left rule: , where B is not L.

T.A>BFA
(3) —-right rule: ——A " 2B
TR A A S B
. LAEA
(4) J_—T’Zght rule: m

3The motivation and rationale for this choice of an “opaque” 0 vs. the “transparent”
one in the case of QGL has been explained elsewhere ([16, 17, 10, 12, 11]) and will not
be repeated here.

4The infinite set of bound variables is finitely generated as suggested above from the
alphabet {0,1,2,3,4,5,6,7,8,9,”,z,y, 2}, whose members we list here in the intended
increasing order.

5This description and use of [(JA as metanotation parallels the one in Bourbaki ([4])
for the meta-expression 74 A.

6This expression could be a formula A, a set of formulae ¥, or a sequent ¥ F .
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(5) L-left rule: %
(6) V-right rule: m — as long as a, the eigenvariable of the
rule, does not occur in the conclusion (“denominator”) of the rule.
(7) V-left rule: W
v, O = A
(8) The modified “TR” modal rule: m‘—DA,‘I’ =

DEFINITION 2.2 (GLTS Rules [12]).

(1)—(7) As for GTKS, but instead of TR see GLR below:
VI,O0,0A - A
O Or-0A T

The I’ and A in the rules are called the “side formulae” (s.f.); the result-
ing single formula in the “denominator” in rules (2)—(8) is the “principal
formula” (p.f.) of the rule (for example, formula A — B is the p.f. of rule
(3)); rule (1) has A as principal formula. The single formulae displayed in
the “numerators” of (2)—(8) are the “minor formulae” (m.f.) of the rule
(for example, formula A and B are the m.f. of rule (3)). A numerator se-
quent is a premise while the denominator sequent is the conclusion of the
rule. ® and V¥ in rule (8) of both definitions are weakening and strength-
ening parts respectively. (A in 2.2(8) is the diagonal formula. We call the
rule (2) “Y-type” (as adjective) because of its shape. All the other rules
are “I-type”. ™

(8) The modified “GLR” modal rule:

REMARK 2.3. The departure from [8, 18] in using here VI in the premise
of TR and GLR, rather than using I', permits a central part of the proof
(given in [10, 12]) — that GTKS and GLTS are equivalent to M? and ML?
respectively — to conclude successfully. That is the part of the proof that
derives in GTKS (and GLTS) the common axiom schema A — OVxA of
M? and ML3. ™

DEFINITION 2.4 (Theorems). A theorem, or derived sequent, is defined re-
cursively to be one of:
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(1) A sequent of one of the two types in rule (1). We say it is derived
with order 0, or that it is an axiom.

(2) A sequent of the same type as in the denominator of rule (2) provided
the two corresponding sequents in the numerator are also theorems.
If the latter two are derived with orders m and n, then the former is
derived with order 1 + max(m,n).

(3) A sequent of the same type as in the denominator of rules (3-8) pro-
vided the corresponding sequent in the numerator is also a theorem.
If the latter is derived with order m, then the former is derived with
order 1 +m. ™

REMARK 2.5. The above recursive definition of theorems implicitly defines
a tree — a proof tree — with root labeled by the theorem. This root has
one (case where an I-rule was the last one applied) or two subtrees (case
where the Y-rule was the last one applied), which have root(s) labeled by
the premise(s) of the last rule used to derive the theorem. The leafs of the
proof tree are labeled by the axioms.

A derivable sequent may be derived with many different proof trees, and
therefore with many different orders as the latter depend on the particular
proof we have in mind. Thus the sentence “I' - A is (a theorem) provable
(or derivable) with order m” simply means that it is possible to derive said
sequent with order m.

We note the absence of weakening/strengthening rules, unlike the orig-
inal formulation of Gentzen’s in the case of classical logic. This is so be-
cause it is desirable to introduce weakening and strengthening as admissible
rather than as primary rules in a Gentzen logic, of which we aim to develop
the proof theory. For example, proofs by induction on the height of proof
trees are much simpler in the absence of such primary rules. This approach
was earlier followed in [9],” where his weakening/strengthening “structural
rules” are admissible, and was also present in [13, 8]. The second of the
last two references incorporates weakening and strengthening parts in TR
and GLR and in the rules under (1), just as we do. See also the proof of 2.7
below. ™

"Schiitte, loc. cit. uses a generalisation of sequent calculus for first-order classical and
Intuitionistic logic, where his “negative” and “positive” parts generalise Gentzen’s “an-
tecedent” and “succedent” formulae. Nevertheless, his techniques adapted to Gentzen’s
setting make it a straightforward matter to not require weakening/strengthening as pri-

mary rules.
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The following theorems and corollaries hold in both GTKS and GLTS.
The proofs are indebted to [9] and were adapted in the sequent setting in
[10, 12]. We include the proofs for 2.6, 2.7 and 2.9 and omit the others as
being similar.

THEOREM 2.6 (cf. [10, 12, 9]). If (T - A) [a] is provable with order m and
b is some other free variable, then (I' = A)[b] is provable with order < m.

PRrROOF. By induction on the order of derivation, m, of (I' - A)[a]. For
m =0, (I' - A)[a] is an axiom. Then so is (I' - A)[b]. For the induction
step we prove the case for m > 0. Cases (2)—(8) are numbered by the rule
number (Definition 2.1) of the last rule applied in deriving (T - A)la).

(2) (T'+ A)la] = T'[a], Ala] — Bla]  Ala]. Thus the premises of the
rule,® T'[a], Ala] — L F Ala] and T'[a], Bla] = Ala], are each derived
with orders < m. By the L.H., T'[b], A[b] — L - A[b] and I'[b], B[b] -
Ab] are derived with orders < m, thus I'[b], A[b] — BI[b] b A[b] is
derived with order < m.

(3) (T'F A)[a] =T[a] F Ala], Ala] — Bla]. Then the premise I'[a], Ala] F
Ala], Bla] is derived with order < m. By LH. so is I'[b], A[b] +
A[b], B[b], from which T'[b] = A[b], A[b] — BIb] is derived with or-
der < m.

(4), (5) We omit the similar cases for these rules.

(6) (' A)[a] =Ta] - Ola], VzAla, x]. The premise I'[a] F Olal, Ala, ag]
is derivable with order < m, where ag is the eigenvariable used. Let
ay be a new variable that does not occur in (I' F A)[a] and is distinct
from b. Applying the I.H. twice — first changing ag into a; and then
a into b — we get T'[b] - O[b], A[b, a1], which is derivable with order
< m.? Thus, T'[b] - O[b],VzAb,z] - ie., (' = A)b] - is derivable
with order < m, with eigenvariable a;.

(7) (T'F A)la] = ©lal,VxAla, z] - Ala]. The premise Ola], Ala, c] F Ala]
is derivable with order < m and so is O[b], A[b, c] F A[b] by L.H.
Applying the rule to the latter we derive ©[b], VaA[b, z] - A[b] with
order < m.

8In each case of propagating the claim from order < m to order m, we indicate
without comment the p.f. for each rule considered, for example, A[a] — Bla] here.

9Since ag does not occur in T'[a] - O[a], Yz Ala, x|, (T[a] - O[a], Ala, ao])[ao := a1] =
I'la] F Olal], Ala, a1].
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(T'F A)a] = ®[a],0Q[a] - OA[a], ¥[a]. The premise VQ[a], 0Q[a] -
Ala] is derivable with order < m. By the I.H. so is VQ[b], OQ[b] - A[b].
Thus @[], 0Q[b] + OA[D], U[b] is derivable with order < m by an
application of the same rule. It is noted that, since boxed formulae
have no free variables, OJA[a] = JA[b] and OQ[a] = ONQ[b]; moreover
VQla] = V[b] since VQ has no free variables either.

The last case was argued based on rule TR, but the proof based on
rule GLR is entirely similar, the presence of the diagonal formula [JA
in the antecedent of the premise not adding any complexity. ™

THEOREM 2.7 (Weakening; cf. [10, 12, 13, 9]). For either GTKS or GLTS,
if I'F A is derived with order m then ®,I' = A is derivable with order < m.

ProOF. By induction on the order of derivation, m, of I' H A. For m = 0,
I' - A is an axiom. Then so is ®,I' - A. For the induction step we prove
the case for m > 0. Cases (2)—(8) are numbered by the rule number of the
last rule applied in deriving I' - A.

(2)

Suppose I'; A — B F A is derived with order m. Thus the premises of
therule,'° T, A — 1 F A and T, BF A, are each derived with orders
<m. By theLH., T A — 1L - A and ¢,I", B+ A are derived with
orders < m, thus ®,I'; A — B F A is derived with order < m using
the same rule.

(4), (5) We omit the similar cases for these rules.

Let ' H A =T+F O,VzA[z]. The premise I' - ©, Alayg] is derivable
with order < m, where ag is the eigenvariable used. By 2.6, I' -
©, Alaq] is derivable with order < m, where a4 is a new variable that
does not occur in ®,T' - A. By the LH. ®, T F O, Ala;] is derivable
with order < m and thus so is ®,T' - ©,VzA[z] with order < m and
eigenvariable a;.

We omit this case as it is similar to the previous.
'FA=0,00F0A,¥. The premise V2, - A is derivable with
order < m. Thus ®,0,00  JA, ¥ is derivable with order < m by
an application of TR.

This case was argued about rule TR (and the L.H. was not used),
but the proof for rule GLR is entirely similar, the presence of the

100nce again, we implicitly indicate the p.f. in each case considered, for example,
A — B here.
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diagonal formula (JA in the antecedent of the premise not adding
any complexity. ™

THEOREM 2.8 (Strengthening; cf. [10, 12]). For either GTKS or GLTS, if
I' F A is derived with order m then I' = A, © is derivable with order < m.

PROOF. Similar to the proof of 2.7. ™

THEOREM 2.9 (Inversion rules; cf. [10, 12, 13, 9]). For either GTKS or
GLTS, we have

(1) IfT,A— BF A is derivable with order m, then each of T)A — 1 F
A and ', B+ A are derivable with order < m.

(2) If T v AJA — B is deriwvable with order m, then T'yA - A B s
derivable with order < m.

(3) IfT'F A, A — 1 is derivable with order m, thenT', A+ A is derivable
with order < m.

(4) IfT, A — L+ A is derivable with order m, then T'+ A, A is derivable
with order < m.

(5) If T' = A,VaAlz] is derivable with order m, then T' b A, Ala] is
derivable with order < m (for any choice of a).

PrROOF. By induction on the order of derivation m. We include the stan-
dard proof for a few cases and refer the reader to the literature for the ones
we omit.

(1) T,A — BF A is an axiom then so is I' - A since A — B is not
atomic, and hence so are 'y A - L F A and I', B+ A.
For the induction step we have two cases:

e Case where A — B is the p.f. of rule (2) that derived I', A —
B+ A. Then the rule premises, '’ A — L - Aand ', B+ A
are each derived with order < m by 2.4.

e Case where A — B is not the p.f. of the rule (k) (for k =

2,3,4,5,6,7,8) that derived I') A — B F A.
Consider the subcase where the Y-rule was the last applied with
pf. X — Y other than A — B, that is, ' =17, X — Y. The
premises IV A — B, X — L F Aand IV,A — B,Y - A are
derivable with order < m each.
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By the LH., the sequents IV, A — L, X — L F AandI",B, X —
LFA aswellas IV Y, A— L FA and IV, B,Y F A are also
derivable with orders < m, Therefore, applying rule (2) to the
first and third, and then to the second and fourth, we derive
(with order <m) T A — L+ A and I', BF A, respectively.
Similar argument for the I-rules 3-7.

Finally, consider the subcase where the TR or GLR was used
to derive I'; A — B = A. Here the subcase that A — B is a
side formula cannot apply, since the s.f. are of the form VX or
OX. If on the other hand A — B is a weakening formula, then
I'yA — B+ A was obtained with order m from a sequent of the
form I'" F C that was derived with order < m. Applying TR (or
GLR) to the latter, but changing the weakening part A — B to
B, we obtain I'; B+ A with order < m. Then we invoke again
the rule on the same premise, this time applying the weakening
part A — L to obtain I'; A — 1L + A also with order < m.

(5) If ' = A,VzAlz] is an axiom then so is I' = A, Afa] for any choice of
a since Yz Alz] is not atomic.
For the induction step we consider first the case where VzA[z] is the
p.f. of rule (6) that derived I' F A ,VzA[z]. Then I' b A, Afao] is
derived with order < m by 2.4, where aq is the eigenvariable used.
By 2.6, for any a, I' = A, A[a] is derived with order < m as well.!!
Say, on the other hand, that VzA[x] is not the p.f. in the rule (k)
(k=2,3,4,5,6,7) that derived T' F A, Vo Ax].
If the Y-rule was used to derive the previous sequent, then I' =
I, X — Y and the premises used were I, X — 1 F A VzA[z]
and IV Y + A, Vax Alz], each being derivable with order < m. By the
IH.eachof IV, X — 1L F A A[b] and IV, Y + A, A[b] is derivable with
order < m — using a b that does not occur in I UAU{VzA[z], X, Y }.
By rule (2), I' - A, A[b] is derivable with order < m, and an applica-
tion of 2.6 allows us to use any free variable a in the place of b.
The case of I-rules 3-7 is argued similarly.
Finally, let TR (or GLR) be the rule applied last to derive I' F
A, VxAlx], from premise IV F C, itself derived with order < m. Thus

HMRecall that ag occurs nowhere in T' = A, so the substitution (T' = A, Alao])[ao = a]
will be localised to Alao].
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Va Alz] must be a strengthening formula and reapplying TR (or GLR)
with a different strengthening, Ala] for any a we may choose, derives
'k A, Ala] with order < m. n

2.1. Reducibility

DEFINITION 2.10. In either GTKS or GLTS we define that a sequent I' - A
is irreducible if one of the following applies:

(1) LeTl.
(2) There exists an atomic formula, A, such that A € ' N A.

(3) The members of I" are atomic or boxed and A is atomic, L ¢ I" and
rnA=90.

We say that a sequent I' = A is reducible if that sequent is not irre-
ducible. ™

DEFINITION 2.11. In either GTKS or GLTS, and in the case of a reducible
sequent, at least one rule from Definitions 2.1 and 2.2 applies backwards
to yield a predecessor sequent. The predecessor relation between so related
sequents, IV = A’ (predecessor) and I' F A we will denote by <, that is,
I'EA <TFA. ™

REMARK 2.12. In either GTKS or GLTS the relation < is well-founded —
that is, there can be no infinite “descending” <-paths because each rule,
(2)—(8), when applied “backwards” from T' F A, reduces the number of
occurrences of one of the connectives —,V,din I' - A. 12

The case of TR/GLR calls for some more elaboration: Each backwards
application reduces the number of occurrences of O in the succedent and
so after a finite number of (backwards) steps neither of the two will be
applicable. Now, each of these two rules introduces a V¢ in the antecedent,
which will be eventually depleted by reverse applications of rule (7). This
latter rule does not introduce any new TR/GLR-specific p.f. to the right
of I that were not already subformulae of I' - A. Finally, we note that
a reverse application of GLR introduces a [JA in the antecedent (diagonal
formula), but this is not a p.f. for any rule, and causes no thread backwards.

12The Y-rule, applied backwards, still has the — connective in one of the predecessor
sequents. However rule (5), applied backwards, will remove it.
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Thus one can do induction along < or on the reducibility rank — RR(I' -
A) —of I' F A, that is, the path length upwards from this sequent to an
irreducible sequent. The minimal elements of this order are the irreducible
sequents.

We note that, for any ® and ¥, we have RR(®,I' - A, ¥) < RR(T' -
A). If I' = A is derivable, then this is what 2.7 and 2.8 say. If not, then
adding weakening (strengthening) to I' - A is effected by introducing it via
applications of TR/GLR along a reverse path along <, from this sequent
to an irreducible (but not an axiom) I = A’; or by modifying the side
formulae of TV F A’. Neither of these actions lengthen the path. ™

3. Cut Derivability in GTKS and GLTS

PROPOSITION 3.1. The following two statements are equivalent for every
formula A and any T, A,0,Q, P, U:

a. IfTHFAJA and A,©F Q then 0 F A, Q (cut admissibility).

b. If A— A, O+ then P+ U,

PROOF. a. — b. Derivability of A — A, ® - U entails that of A, ® - ¥ and
OH W, A (2.9, cases 1 and 4) and we are done by a.

b. — a. The assumption in 3.1. entails (by weakening/strengthening)
the derivability of T,O - A, Q, A and A,T,0© - A, Q. By rule (2.1) we get
A— AT, 0F A Q. We are done by b. ™

LEMMA 3.2 (Cut admissibility Lemma for GTKS). For any formula A, if
A — A, T A is derivable, then so is '+ A.

PRrROOF. The proof is by induction on the ordinal
a=w?’-C+w-RR+m (1)

where C is the modified complexity of A.**> — this is the primary (P.L) or
main induction. A secondary induction (S.I.) is done along the < relation
on the ' A “companion” of A — A — more accurately on RR(T' + A) —

13 By modified complezity we mean the ordinal w - k4 r where k counts [J occurrences
and r counts the total of all —,V occurrences in A. Thus (k,7r) < (k:-i- 1,7"') and

(kyr) < (k,r+1) for all k,r, .
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and on occasion we do a “local induction” (L.I.) on the order of derivation
of A,T'+ A, which we typically call m in this proof. Thus we will embark on
a triple induction, where C' is not allowed to increase during the induction
step of either the S.I. or L.I., and neither C' nor RR are allowed to increase
during the induction step of L.I.

Case 1. A is atomic.

By invertibility (Theorem 2.9, case (1) followed by case (4)), both
AT F A and T'+ A, A are derivable. By a L.I. on the order of
derivation m of A,I' = A we prove the derivability of I' - A.

(i) Basis. If m = 0, what if I' - A is not itself an axiom? Then A € A,
so'+ A =TF A, A is derivable, contradicting our “what if”.

(ii) Let us now take a L.I.LH. and assume that A,T" - A is obtained by
one of the rules (2)—(7) with order m. Note that A cannot be the p.f.
in the application of such rules.

e Case where the “Y-rule” derived A,T' - A: Then some A, TV F A
and A,T” F A (the rule’s premises) are derivable each with order
< m, and the same is true, by weakening 2.7, for A, T, TV - A
and A, T, T" + A.
Since I, T - A, A and T',T” I A, A are also derivable by weak-
ening, the local I.H. yields the derivability of each of I',TV - A
and I',T” - A, and an application of the Y-rule derives I',T" I
A =TF A as needed.'*
e Case where one of the “I-rules” (3)—(7) derived A, T - A. This
is similar to and slightly simpler than the Y-case.
Note that ' A <T'FA and T - A <T'F A, hence RR did
not increase during this induction step (cf. also concluding part
of Remark 2.12).
(iii) A,T' F A is obtained by rule (8). Thus, A is a weakening formula,
but then I' = A is also derivable by omitting the weakening A (the
L.I.LH. was not needed in this case).

Case2. A=B—C.

14Recall that what we are proving via this “local” induction is that if both A,T'+ A
and I' = A, A, are provable then so is I' = A. Thus, the acrobatics involving weakening
are needed to ensure that the “and” holds: Even though, e.g., A,T’ I A is provable, we
cannot necessarily expect that so is IV = A, A. But I',TV - A, A is provable!
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By 2.9, cases (1) and (4), we can also derive B — C,I" = A and
I' - A, B — C; and, again by invertibility, we can derive Sy =T+ A, B —
thus also S] =TFA,C,B —and S, = C,T'F Aand also S5 = B,T - A,C
by case (2). Now, we can derive Sy = B — B,T'+ A, C from S| and S3 and
rule (2); similarly, we can derive C — C, B — B,T'+ A from S; and the
obvious weakening of Sy. We can finally apply the P.I.H. twice to get ' = A.

Case3. A=VzB. Now, S =VaxB,I'F A and ' - A,VzB are derivable
by 2.9. We do a L.I. on the order of derivation m of .S, as before, to show
that I' = A is derivable.

(i) Now, if S is an axiom, then so is I' = A since Va B is not atomic.
(ii) Otherwise, let first A,T' F A be obtained by one of the rules (2)—(7)
with order m. We have the cases,

(a) A is the p.f. in the derivation of A,T' = A. Then Bla],T' + A
is derivable for some a and so is I' H A, Bla] by 2.9, last case.
Hence Bla] — Bla],T' F A is, by rule (2), and we are done by
the P.I.LH. (the L.I.H was not needed here).

(b) A is not p.f. in the derivation of A,T' - A, and A, T F A is
obtained by one of the rules (2)—(7) with order m.

e Case where the Y-rule derived A,I"' - A: Exactly as in the
corresponding case under (ii) of Case 1.
e Case where some I-rule among 3-7 derived A,T' - A. Again
as in (ii) of Case 1.
The same note regarding RR as in Case 1(ii) applies here as
well.

(iii) A,T'F A is obtained by rule (8). Exactly as (iii) under Case 1.

Case 4. A =0B.

(I) T + A is irreducible. Thus, OB,T" - A is derivable as an initial
sequent, which means that I' F A is also an initial sequent.
(IT) T+ A is reducible. We have two subcases:

(i) A,T F A is obtained by one of the rules (2)—(7) with order m.
As A cannot be p.f. in any of rules (2)—(7), sub-subcase iib of
Case 3 applies, and we have nothing further to add here. The
note inserted at the end of Case 1(ii) applies here as well: RR
did not increase.
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(ii) (Adapting Brighton’s approach ([5]) in this case.) Case where
the only applicable rule to I' - A is (8). By invertibility, S =
OB, ' - A and S =TF A, 0B are derivable. Now, if OB € T’
or[0B € A, then S=TF A or 8 =T F A respectively, and we
are done. So let OB ¢ TUA, and let us also pay no attention to
the possibility that OB is weakening/strengthening introduced
by the TR rule, as then we are done immediately.

Thus, S and S’ were obtained by proofs ending as:

S1 vB,OBVI',OI kD
S 0OB,®,0r +0OD,¥
—— =

I A

and

S2  vI,Or'-B
S @,0r +0D,¥,0B

Now, the derivable S1,52 above can also derive

S3=0pB,00 0D

S4 =0T +0OB

and

S§2' =[0OB, VI ,0O0 F B, this by weakening,

respectively. Now, we can obtain the derivable sequent S5 =
OB — OB,V , 00 + B from S2' and S4 (via (2) and (5)),
and thus also S5 = OB — OB,VI',0I" + VB by repeated
application of rule (6) — note that the left hand side of F in S5
is closed. We can also obtain S6 = VB,0B — OB, VI',0OI +
D from S1 and S4. Thus we can next obtain S7 = VB —
VB,0B — OB,VI',00 + D from S5 and S6. We can now
apply the P.LH. to obtain S8 = OB — OB,VI',0OI + D from
S7 (recall that VB has lower (modified) complexity than O0B).

But VI',OI' + D < &,00 + OD,¥ = I + A, thus, by
S.I.LH., VF/, Or - D is derivable. This, via TR, derives @, or' +
OD, W =T F A. -
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LEMMA 3.3 (Cut admissibility Lemma for GLTS). For any formula A, if
A — A, T'E A is derivable, then so is T+ A.

PROOF. As in the proof of 3.2 except for Case 4(Ilii): The only applicable
rule to I' H A is GLR. By invertibility, S = OB, ' - A and S =T+t A,0B
are derivable. Now, if OB €T or OB € A, then S=T'+FAor 8’ =TFA
respectively, and we are done. So let OB ¢ T'U A, and let us also pay no
attention to the possibility that 0B is weakening/strengthening introduced
by the GLR rule, as then we are done immediately.

Thus, S and S’ were obtained by proofs ending as:

S1 VB,OB,VI',0I, 0D+ D

S 0B, ®,00 +0OD, ¥
N—— T
T

and , ,
S2  vr,Or,0BF B

S~ 9,00 0D, ¥,0B
Now, the derivable S1,52 above can also derive

S§3=0B,00 +0OD

S4 =0T +0OB

respectively. Now, we can obtain the derivable sequent S5 = OB —
OB, VI, + B from S2 and S4 (via (2) and (5)), and thus also S5 =
OB — OB,VI',0I" F VB by repeated application of rule (6) — note that
the left hand side of F in S5 is closed. We can also obtain S6 = VB,[IB —
OB,VI',00,0D + D from S1 and S4. Thus we can next obtain S7 =
VB — VB,00B — OB,V ,00I",00D + D from S5 and S6. We can now ap-
ply the P.L.H. to obtain S8 = OB — OB, VI, 00", 0D F D from S7 (recall
that VB has lower (modified) complexity than (JB). But vI', 00, 00D +
D <®,00 -OD,¥ =T+ A, thus, by S.LH., VI, ,0D F D is deriv-
able. This, via GLR, derives ®, 00T F OD, ¥ =T I A. -

THEOREM 3.4 (Cut admissibility for GTKS and GLTS). In each of GTKS
and GLTS, ifT'H A, A and A,©0F Q, thenT,0 F A, Q.

ProoOF. By 3.2 and 3.3 via 3.1. u
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